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Abstract
Time-triggered real-time systems achieve determin-
istic behavior using schedules that are constructed
offline, based on scheduling constraints. Their de-
terministic behavior makes time-triggered systems
suitable for usage in safety-critical environments,
like avionics. However, this determinism also allows
attackers to fine-tune attacks that can be carried out
after studying the behavior of the system through
side channels, targeting safety-critical victim tasks.
Replication – i.e., the execution of task variants
across different cores – is inherently able to tolerate
both accidental and malicious faults (i.e. attacks)
as long as these faults are independent of one an-
other. Yet, targeted attacks on the timing behavior
of tasks which utilize information gained about the

system behavior violate the fault independence as-
sumption fault tolerance is based on. This violation
may give attackers the opportunity to compromise
all replicas simultaneously, in particular if they can
mount the attack from already compromised com-
ponents. In this paper, we analyze vulnerabilities of
time-triggered systems, focusing on safety-certified
multicore real-time systems. We introduce two
runtime mitigation strategies to withstand direc-
ted timing inference based attacks: (i) schedule
randomization at slot level, and (ii) randomization
within a set of offline constructed schedules. We
evaluate these mitigation strategies with synthetic
experiments and a real case study to show their
effectiveness and practicality.
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1 Introduction

In the past, real-time systems security had been given little thought, primarily because systems
were closed, ran on specialized hardware, and had limited access from the outside. This has changed
in the past decade due to the growing need for connectivity, computing power, the shift from
single to multi- and many-core architectures, and software-component reuse (e.g., from federated
avionics architectures to Integrated Modular Avionics (IMA) [56]). These trends result in a general
increase of complexity, in particular at real-time application level, with the entailed increase of the
likelihood of vulnerabilities going undetected, even in well-tested software. Consequently, real-time
system designers must now anticipate the risk of hackers trying to compromise components and
being partially successful in this task. Security has become a primary concern during system design
and deployment, not only to prevent unauthorized information disclosure, but also to prevent
malicious exploitation of vulnerabilities [54]. This is especially true for systems in safety-critical
environments, thus for the majority of real-time systems.

Real-time systems provide deterministic and dependable behavior, both in the value-domain
and in the timeliness of responses. To achieve IEC 61508 or ISO 26262 compliance [19,21], industry
employs time-triggered real-time systems which, in addition to guaranteeing that deadlines will be
met, provide determinism in the sense that it is known which task executes at any given point in
time. Unfortunately, the very essence of this determinism opens threat vectors that attackers can
exploit to harm the system and the environment in which it operates. Aside from inheriting all
classic security concerns related to providing correct, trustworthy results, real-time systems must
also produce these results in time. Attackers may exploit this property by delaying the execution
of individual tasks in targeted time-domain attacks. Moreover, the traditional means for tolerating
accidental faults, for example active replication [10,14,20] or their counterparts for intentionally
malicious faults [2, 28, 40], which require only a majority of components to work correctly, are not
immune against time-domain attacks. Such attacks constitute a common mode fault against which
replication does not protect, even if replicas are diversified (e.g., through n-version programming).

In general, attacks on the timing of tasks are more effective the more information adversaries
obtain about the system and its schedule. Adversaries may fine-tune attacks to precise points
in time and thus remain stealthy to evade detection and act when the attack is most effective.
For such attacks, time-triggered systems appear the perfect target due to their deterministic
schedules. On the other hand, this determinism seems to be the perfect protection as tasks can
only execute during predefined time windows which do not overlap with other tasks execution.
However, this perception hinges on the assumption of perfect isolation, which is brittle as long as
tasks are analyzed only according to their specified behavior (e.g., when determining cache-related
preemption delays) and as long as isolation remains imperfect. We therefore have to agree with
Yoon et al. [58] in their conclusion that time-triggered scheduling is inherently vulnerable to timing
inference based attacks.

In this article, we consolidate the findings of three independent works [25, 27, 53] of the
authors into a comprehensive analysis of the vulnerabilities and countermeasures of time-triggered
systems against timing interference based attacks. We investigate how adversaries can exploit
vulnerabilities in an accomplice task to prepare and execute targeted attacks to singleton and
replicated critical subsystems. Based on this analysis, we propose two basic strategies to mitigate
attacks:
1. online randomization of the time-triggered schedule while preserving all timing constraints
2. random online selection of offline-prepared time-triggered schedules at hyperperiod boundaries.
These results, in particular the second, are formalized by constructing schedule sets of minimal
size that achieve the highest possible upper-approximated entropy. Through this formalization,
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we were able to conclude the effectiveness of online randomization in preventing adversaries from
mounting targeted attacks. Moreover, we were able to conclude that a set of 100 offline computed
schedules suffices for our second mitigation strategy. We have evaluated our approach using
synthetic task sets and the ROSACE real-world case study.

In addition to already published results, this article extends our mathematical foundation from
implicit to constrained deadline task sets (although the bound for the latter is not tight). The
extension is purely theoretical, but shows that constrained deadlines reduce the achievable upper-
approximated entropy (because they limit the amount of randomization that can be introduced in
the system). The article also presents the results of an upper-approximated entropy limitation
analysis for the ROSACE case study. This last result demonstrates that entropies close to the
theoretical optimum can be achieved with realistic task sets that do not necessarily have the ideal
parameter distribution for this optimum.

Section 2 introduces our system model. Section 3 describes our attacker model. We present
two mitigation strategies in Section 4. In Section 5, we discuss inherent limitations of schedule
diversity and randomization. We discuss attack vectors and mitigations strategies in a multicore
system with task replication in Section 6. In Section 7, we evaluate our strategies using two sets of
experiments: synthetic task sets and a real-world case study. We discuss our findings and explore
limitations that are due to the implementation in embedded systems. Section 8 shows related
work. Finally, we conclude our work in Section 9.

2 System model

We analyze a time-triggered real-time system implemented on a multicore platform, following a
partitioned schedule. For each core, a local schedule is constructed offline and then adjusted online
as discussed in Section 4. We assume the schedules have been validated. Precautions such as
authenticated boot are in place to ensure that the validated schedule is correctly deployed to the
real-time system. A real-time operating system is present, which we assume to be correct. That is,
we do not consider bare metal real-time implementations. Safety-critical tasks are replicated and
replicas are distributed across cores to benefit from improved resilience should one core fail. The
implementation of these replicas follows an implementation diversification approach to increase
system dependability. We assume the system is configured to be able to tolerate up to f faults of
arbitrary kind simultaneously and focus in this work on what is required to tolerate time-domain
attacks in addition. That is, our approach is equally applicable to systems prepared for tolerating
accidental faults or maliciously induced (value-domain) faults and for tolerating crash as well as
Byzantine faults. The replication degree, i.e. the number n of replicas required to achieve the
mentioned fault tolerance, depends on this fault model, on the achieved system synchrony and on
the kind of agreement, e.g. single value versus interval mid point. Again, our approach is prepared
for any combination of the above. We therefore assume what the above models have in common,
namely that no more than f replicas fail simultaneously and that replicas fail independently in
the value-domain. We shall see that, without further precautions, a general fault independence
requirement can no longer be maintained in the presence of time-domain attacks.

The scheduler on each core has access to a global time base typical for time-triggered systems.
We consider global time adequately protected and divide it into slots of the same size, which are
the granule for job preemption. Our focus lies on CPU-level scheduling, hence we do not consider
time-triggered networks or communication channels. Moreover, we assume a purely time-triggered
system without asynchronous event activation.

LITES
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For each core c, we are given a task set T c = {τ c
1 , τ c

2 , . . . , τ c
m} of mc periodic tasks. Each task

τ c
i is defined as the tuple τ c

i = {ec
i , tc

i , dc
i }, where ec

i is the worst-case execution time of the task1 ,
tc
i is the task activation period, and dc

i is the task (relative) deadline. Throughout the rest of the
paper, we assume that dc

i ≤ tc
i , adopting the constrained deadline task model.

We define the time interval between task release and task deadline as this task’s execution
window. We denote with U c the task set utilization for core c, i.e., U c =

∑mc

i=1
ec

i/tc
i . We assume

that the task set is schedulable; ergo, there exists a resource distribution such that each task
meets its corresponding deadline. We denote with ℓc the hyperperiod of the task set for core c,
i.e., the least common multiple lcm(·) of the task periods, ℓc = lcm(tc

1, . . . , tc
m).

We now look at a specific core c.2 A schedule sc for the task set in core c is a sequence of ℓc

elements, that contains numbers in the set {0, 1, . . . , mc}, a number j ∈ {1, . . . , mc} denotes the
execution of task τ c

j . Assigning a given task to an element means selecting which task is executed
on core c for the corresponding time slot. Choosing j = 0 represents the execution of the idle task,
meaning keeping the processor in the idle state. We denote the idle task with τ c

0 = {ec
0, tc

0, dc
0}

and we determine its characteristics based on the characteristics of the task set. In particular,
tc
0 = dc

0 = ℓc, and ec
0 = ℓc (1 − U c).

Formally,

sc = (s1, s2, . . . , sℓc) ; sc
j ∈ {0, 1, . . . , mc}. (1)

We denote with sc
j the value of the element in position j, i.e., the task that is executed according

to the schedule sc in the j-th time unit. Given that the task set T c is schedulable, we can safely
assume that sc respects the constraints that for each task and each activation, the schedule assigns
to each task the required amount of execution time before the corresponding task deadline.

3 Threat Model and Vulnerability Analysis

In this section, we first describe our threat model, highlighting in particular the assumptions we
make on the attacker and how he or she is constrained by time-triggered systems. After that, we
analyze the vulnerabilities present in time-triggered systems.

3.1 Threat Model
We assume attackers are able to successfully infiltrate the system through undetected vulnerabilities.
Less stringent evaluation requirements make non real-time tasks as well as not safety-critical
tasks primary targets. In particular, we assume that critical tasks are sufficiently shielded against
direct attacks which requires attackers to find a pathway through less critical tasks. Firewalls and
gateways in autonomous vehicles and planes support this assumption. Even though we assume
intrusion detection [8, 32,35,60], hardening mechanisms and other defenses against the common
attack vectors (e.g. DoS attacks) are in place, we acknowledge that these techniques are imperfect
and compromises may go undetected.

Of particular concern to us are stealthy attackers [6, 7] that continue normal operation of the
compromised tasks while gathering timing information about other, critical tasks. The knowledge
about the timing of critical tasks allows to determine the point in time when a directed attack

1 To guarantee the correct execution of the task set, we ensure that a time equal to the worst-case execution
time is assigned to each task in each of the execution periods (i.e., to each job of each task). This means that
the time budget is allocated to the task even when the job completes its execution early.

2 In the following, when it is clear from the context that we talk about one specific core (and in particular in
Section 5), we will drop the superscript c and use T , τi, ei, ti, di, U , ℓ, s and sj .
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is most effective, e.g., immediately before a safety-critical victim task is run. Possible targets
of such attacks in time-triggered systems are the low-level control loops. Destabilizing these
components (e.g., by increasing the dead time or by introducing jitter in the control cycle) may
provoke critical failure modes and thus result in a continuous denial of service [55], or worse,
unsafe control decisions.

The timing information required for coordinating such a stealthy attack can be inferred via
side channels constructed using shared resources like cache 3 or memory, or through covert timing
channels, such as the scheduling-covert-channel described by Boucher et al. [5].

While there exist mitigation strategies for closing side channels (for example in the real-time
context, the works of Völp et al. [52] or Mohan et al. [36] on fixed-priority schedulers), these methods
are incomplete. Additionally, systematically closing all side channels typically entails significant
performance overheads, e.g. when flushing caches prior to scheduling a lower classified task [17].
Meltdown [30] and Spectre [22] are recent examples demonstrating the difficulty of identifying and
closing such channels in sufficiently complex architectures. Exploiting non-architectural channels
(e.g., cache allocation) as communication medium, Meltdown and Spectre extract confidential
information from speculative processor state, breaking security on most Intel and many high-end
ARM and AMD processors. While real-time systems traditionally avoid such complex hardware,
their future integration in real-time system-on-chip, e.g., for meeting the extended demand of
autonomous driving functionalities, cannot be excluded.

We assume the real-time system features isolation mechanisms for enforcing the schedule of
tasks and for limiting direct access to the memory of other tasks. Real-time operating systems
(RTOS) that feature memory isolation support this assumption unless attackers are able to
penetrate the operating system. For the purpose of this paper, we assume the deployed RTOS
excludes the possibility of OS penetration.

One immediate consequence of this isolation assumption is that when the attacker has infiltrated
the system, he or she is inherently constrained by properties of the system and its architecture
for subsequent attacks on more critical tasks. In time-triggered systems, table-driven scheduling
prevents influencing other tasks, e.g. by manipulating the execution time of a compromised task.
That is, in contrast to event-triggered scheduling, each task is confined to its execution window
and thus the actual task execution time has no influence on subsequent tasks. Time-triggered
systems therefore provide temporal isolation of CPU time irrespective of the actual behavior of
tasks and without having to revert to timing leak transformations as described for example by
Völp et al. [52]. Additionally, messages are only accepted during a certain time window, i.e., if
they are timely.

Operating system enforced schedules combined with the assumed impenetrability of the OS
ensure that the attacker can neither directly influence the scheduler nor can he or she read the
offline constructed scheduling tables. Instead, the attacker has to infer the current schedule from
observations he or she makes about the system behavior. As we show in Section 3.2, schedules
typically carry too little information to remain secure over extended periods of time even if this
information is leaked only over low bandwidth channels. Furthermore, we assume that the global
clock remains under exclusive control of the operating system and that it cannot be affected by
the attacker.

Even though time-triggered systems eliminate CPU time as shared resource over which
information can be leaked and through which other tasks may be influenced, other resources
remain through which attackers may gain information and through which they can impact the

3 Depending on the system configuration, both data and instruction caches may exhibit similar channels or
interference possibilities (e.g., instruction cache evictions to maintain inclusiveness in the last-level cache).
We shall therefore not further distinguish the type of cache.

LITES
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timing behavior of other tasks. One prominent example of such a resource is the processor cache,
which healthy tasks leave behind in a predictable state but which compromised tasks can put into
a state that may not have been anticipated when computing the worst-case execution time of
subsequent tasks.

The use of time-triggered systems imposes further limitation on attackers. For example, side
channels and covert channels can only be constructed over explicitly or implicitly shared resources,
most of which time-triggered systems already multiplex with the table driven schedule in a manner
that is agnostic to the behavior of executing tasks. Access controls and partitioning techniques
like cache coloring [29] or bank coloring [59] further constrain the attacker. However, each such
countermeasure negatively impacts system performance and they are generally not complete.

For example Bechtel et al. [3] demonstrate a Denial-of-Service attack in caches that are not
prepared for partitioning and that therefore retain shared resources (e.g., for cache-miss handling).
Once exhausted by the attacker’s accomplice task, these resources are no longer available to the
victim, stalling its execution until all outstanding write-backs are handled. The authors only
consider the accomplice and victim task to be present, both running on different cores and –
except for sharing the cache – in isolation. However, usually there are multiple tasks running in a
real-time system and the attacker may not hit the victim in all cases without previously aligning
its execution to the victim task. If the attacker has inferred the schedule instead, he or she is able
to discern the best point in time to attack (e.g. right before the victim task runs). The attacker
can remain stealthy until the time of attack has come when the victim is most vulnerable.

In addition to the above, as we show in greater detail in Section 3.2, mitigating attacks may
require avoiding tempting optimizations such as bounding the delay a task can impose through the
cache by evaluating its execution pattern. Designers may be tempted to implement optimizations
for the sake of increasing performance while neglecting security.

In summary, we assume an attacker who has infiltrated non-critical tasks of the system and
wants to infer timing information (i.e. the system schedule) in order to mount a directed attack
against a critical victim task.

3.2 Vulnerability Analysis
One of the main vulnerabilities of a time-triggered system lies in its deterministic behavior. The
schedule is the same offline constructed schedule for every hyperperiod. For each point in time,
the task executing is known. An attacker who listens to the schedule over a side channel is able
to reconstruct the schedule in reasonable time even when the channel has low bandwidth. The
schedule comprises only a few bytes of information, thus even with a very low channel bandwidth
of, for example, 1 byte per second the schedule is found out in a matter of a few minutes. As
we show in Section 7.2.3, an offline schedule of a real-world system can consist of just 52 bytes.
Through the aforementioned channel, the attacker would know the schedule after one minute.
Therefore, we reason that timing information can be inferred and focus on mitigating directed
attacks under this assumption.

Another vulnerability of real-time systems in general is that worst case execution time (WCET)
derivation does not take malicious behavior into account. WCET estimated through simulation of
the expected behavior of the system does not account for malicious behavior. If a task is infiltrated
at runtime and, as shown in [3], starts accessing the cache to create maximum interference for the
next task execution, the tasks simulated worst case does not account for this malicious behavior
if this behavior is not encountered during uncompromised execution. Prior research on abstract
interpretation WCET derivation claims the assumption of cold caches is too pessimistic for a real
system and shows methods to achieve tighter and less pessimistic WCET bounds [18], [11]. Such
optimizations based on assumptions on task behavior increase the severity of this vulnerability.
We have to choose WCET estimates in a way such that they also account for malicious behavior
and we have to check the impact of performance optimizations on security.
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Another countermeasure, typically applied for accidental faults, but found to be effective
also against malicious faults aims to limit attacks only to up to f out of n replicas of critical
services. This is achieved by tolerating the attack through the remaining n − f replicas operating
in consensus (e.g., triple-modular redundant systems [20] tolerate one fault with n = 3 replicas).
The condition for such replicated systems to work is a synchronchonous invocation with the
same (sensor) value such that healthy instances produce the same result in a timely manner,
which forms the majority decision to apply. Assuming synchrony (i.e., reliable time), Byzantine
fault tolerant state machine replication (BFT-SMR) [2, 28, 40] relaxes the first assumption of
synchronous identical invocation at the cost of having to execute an initial agreement phase on a
singular value or a vector median point (excluding up to f outliers on both ends) [33].

Given that replicas should operate on the same data to produce (at least approximately) the
same results, it is tempting to schedule them as a gang in the same slots on all cores they span.
However, as we shall see in more detail in Section 6, this optimization is brittle and may lead to
attacks. We shall see in particular that some attacks, like the above cache DOS attack by Bechtel
et al. [3], bear the potential to cause common mode timing faults in all replicas simultaneously.

In the next section, we show mitigation strategies for directed attacks which prevent an attacker
from exploiting the vulnerability which results from not taking malicious behavior into account.

4 Mitigation Strategies

An attacker’s goal is to predict as precisely as possible when a victim task gets scheduled
immediately after a compromised task to then mount a directed attack. Our primary mitigation
strategy is therefore to impede predictions about the point in time when the victim is executed.
While we do not prevent timing inference, i.e. we assume the attacker may gain information about
the schedule, we are able to counter predictions by changing the points in time when tasks are
executed at runtime. For this purpose, we present two strategies to mitigate directed attacks in
this section. The first strategy takes an offline constructed time-triggered schedule as input and
randomizes the schedule online at job-level while maintaining deadline constraints. The second
strategy consists of a set of offline precomputed schedules one of which is randomly chosen at the
end of each hyperperiod during runtime. Both strategies are presented in [27] and are implemented
on each core of the system.

4.1 Slot-level Online Randomization
This mitigation strategy impedes the ability of an attacker to make predictions by randomizing
job execution in a time-triggered system at runtime. Schedules for time-triggered systems are
typically constructed offline [9], where real-time constraints are resolved and represented in a
scheduling table. If not handled properly, online randomization may violate deadline constraints.
Therefore, our approach analyzes the scheduling table offline and maps timing constraints of
jobs onto execution windows. Execution windows are time intervals defined by the earliest start
time of a job and its deadline. Each task has to finish execution within its execution window.
Proper handling and, possibly, modification of execution windows solves precedence constraints.
Additionally, if one of the goals of the system is to achieve low jitter, we can reduce the size of
execution windows accordingly.

During runtime, we randomize job execution within their respective execution windows. While
we confine jobs to their execution windows, they still share the same processor so we also
have to guarantee that their execution does not lead to a deadline miss of other jobs. Slot
shifting is a scheduling algorithm which introduces the concept of spare capacities to ensure
timely execution [12]. We adopt this concept to guarantee task execution within their respective
execution windows even though the scheduling decision is randomized.

LITES
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4.1.1 Background
Slot shifting uses a discrete time model [24], where the time interval which separates two successive
events (i.e. the granularity of the system) is called a slot [42]. We analyze the time-triggered
schedule and its task set offline to determine available leeway and unused resources in the schedule
for subsequent online adjustment. In order to track the available leeway of jobs in each execution
window, a capacity interval is created for each distinct deadline in the system. Jobs with the same
deadline belong to the same capacity interval. The start of a capacity interval Ij , start(Ij), is
defined as the maximum of the earliest start time est(Ij) of jobs τi in this interval and of the end
of the previous, i.e. preceding, capacity interval:

start(Ij) = max(end(Ij−1), est(Ij)), where est(Ij) = min(est(τi)) ∀τi ∈ Ij (2)

The end of the capacity interval is determined by the common deadline of all τi ∈ Ij . If needed,
empty capacity intervals without assigned jobs are created to fill gaps between capacity intervals
with assigned jobs. Figure 1 shows an example job set derived from an offline schedule with
earliest start times esti, worst case execution times Ci and deadlines di. We derive the presented
schedule in Section 4.1.3. In the schedule presented in Figure 1, i denotes the idle task. The
schedule does not represent a hyperperiod as this is not necessary for illustratory purposes. The
algorithm operates the same whether considering the hyperperiod or not.

i
0

i
1

τ1
2

τ1
3

i
4

τ2
5

τ3
6

τ3
7 8

? ? ?

6 6
� -I1 � -I2 �-I3 τi esti di Ci

τ1 0 4 2
τ2 0 7 1
τ3 4 8 2

Figure 1 Job set and capacity intervals derived from offline schedule

Three distinct deadlines exist for that job set, thus at least three capacity intervals have to
be created. The first interval I1 starts at 0 and ends at the deadline of its assigned set of jobs
{τ1}, which is 4. The job assigned to next interval, τ2, shares the earliest start time of τ1, but
according to Equation 2, a capacity interval is not allowed to start before the end of the previous
interval. Note that capacity intervals do not overlap, while execution windows may. Thus, I2
starts at 4 and ends at the deadline of its assigned set of jobs {τ2}, which is 7. We create interval
I3 accordingly. We show the resulting capacity intervals together with an exemplary schedule in
Figure 1.

The spare capacity sc(Ij) of a capacity interval Ij is equal to the amount of free slots in Ij .
sc(Ij) is defined as the interval length minus the sum of worst case execution times Ci of all its
jobs τi minus slots borrowed from the succeeding interval (denoted as negative spare capacity),
see Equation 3 below.

sc(Ij) = |Ij | −
∑

τi∈Ij

Ci + min (sc(Ij+1), 0) (3)

Spare capacities are calculated starting from the latest capacity interval in the hyperperiod
to the earliest. Borrowing occurs in those cases where the current capacity interval provides
insufficient slots to accommodate all its jobs, which results in a negative spare capacity (I3 in
Figure 2). Capacity intervals with a negative spare capacity borrow the needed amount of slots
from the preceding interval. Negative spare capacities do not necessarily imply infeasibility in the
scheduling sense. Spare capacities are a means to track “free” slots in a capacity interval. We
show the resulting offline calculated spare capacities (for time t = 0) in Figure 2 of Section 4.1.3,
where we present the calculation of spare capacities using Equation 3.
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If we have calculated all spare capacities, the first capacity interval has a non-negative spare
capacity provided the task set is schedulable. A task set is schedulable when its utilization is
equal to or less than one since we consider each core of a partitioned multicore system separately.
Positive spare capacities represent the amount of unused resources and leeway [12] of an interval
which can be given to other tasks with overlapping execution windows to adjust the schedule. Such
adjustments may require updating spare capacities. At runtime, we update the spare capacities
after each slot to reflect the impact of scheduling decisions on the availability of “free” slots.

We consider three different cases for spare capacity updates:
1. No job executes in a given slot. In this case we have to decrease the spare capacity of the

current capacity interval by one.
2. A job executes which belongs to the current capacity interval. In this case the spare capacity

of the current interval does not change because the WCET of this job is already considered.
3. A job executes which belongs to a later capacity interval. In this case the current interval’s

spare capacity needs to be decreased by one, but executing the job ahead of time frees resources
in its assigned interval. We can therefore increase the spare capacity of the job’s interval by
one. If this capacity increase happened on a negative spare capacity (i.e., the job’s interval
is borrowing from another capacity interval), we also increase the spare capacity from the
interval from which it borrows, as it needs to lend one slot less. Cascaded borrows are resolved
recursively in a similar fashion.

The original slot shifting algorithm in [12] and [42] further integrates aperiodic tasks into a
time-triggered schedule. In this paper, we only adopt the concept of capacity intervals and spare
capacities to guarantee timely execution of periodic jobs within their execution windows without
violating constraints of other jobs. Thus, our offline algorithm needs to create only one table with
execution windows and a second one with capacity intervals and their respective spare capacities.
For our online randomizing scheduler, we update the spare capacities at runtime to keep track of
scheduling decisions.

4.1.2 Slot-Level Randomization of Jobs
Our first attack mitigation strategy is to randomize job execution at runtime. Therefore, at the
beginning of each slot, we invoke the online scheduler to select the next job from all tasks in
the ready queue at random. We consider the idle task to be part of the ready queue in order to
allow for more permutations of the schedule. Even though we select tasks randomly, we have
to guarantee that no scheduled job violates the deadline constraints of other jobs. Thus, before
taking a scheduling decision, we check if the spare capacity of the current capacity interval is
greater than zero. If this condition is fulfilled, any job is allowed to run, as sufficient time remains
in the current and later intervals such that no job misses its deadline. In other words, as long as
the schedule has leeway, each ready job has the same probability of getting selected for a slot.
Otherwise, if the spare capacity of the current interval drops to zero, there is no more leeway to
schedule arbitrary jobs. However, because we have already considered jobs of the current capacity
interval in the spare capacity computation and because all such jobs share the same deadline,
we can still randomize their execution. That is, in the case of zero leeway, the online scheduler
randomly selects among the jobs of the current capacity interval. After the job has run during its
assigned slot, we update spare capacities as shown in Section 4.1.1.

Combining time-triggered scheduling with our slot-level randomization impedes online pre-
dictions about the schedule. Since the scheduler randomly selects the next job at runtime,
predictions about which job runs next are not possible as long as execution windows allow for
leeway. Furthermore, time-triggered scheduling inherently confines application-level leakage to

LITES
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shared resources which are held across slots [51]. An investigation of leakage countermeasures
for such resources is out of the scope of this paper. While our randomization algorithm does not
allow for slot-level determinism typical for time-triggered systems, it still allows for execution
window determinism [13].

4.1.3 Example
Let us illustrate the proposed scheduling algorithm for our example jobset depicted in Figure 1.
First, we have to calculate the initial spare capacities of the capacity intervals. Starting at the last
capacity interval, I3, its spare capacity is the difference between the interval length of 1 and the
worst case execution time of its assigned jobs, τ3, which results in a spare capacity of −1. I2 has
an interval length of 3, from which we substract the worst case execution time of τ2 (i.e., C2 = 1)
and the slots borrowed by the preceding interval I3 (by adding sc(I3) = −1), which results in a
spare capacity of 1. We calculate the spare capacity of I1 accordingly. Figure 2 shows the resulting
spare capacities in the column for time t = 0.

time t 0 1 2 3 4 5 6 7 8
sc(I1) 2 2 1 0 0 0 0 0 0
sc(I2) 1 1 1 2 2 1 1 0 0
sc(I3) -1 -1 -1 -1 -1 -1 0 0 0

τ1
0

i
1

τ2
2

τ1
3

i
4

τ3
5

i
6

τ3
7 8

? ? ?

6 6
� -I1 � -I2 �-I3

Figure 2 Left: Spare Capacities of I1, I2 and I3 over time, Right: Randomized Schedule

At time t = 0, the scheduler sees that the spare capacity of the current interval I1 is positive
and picks τ1 randomly for the first slot at t = 0 from the list of ready jobs τ1, τ2, plus the idle job
i. As τ1 executes within its own interval, the current spare capacity does not change and remains
positive. The idle job i is selected to execute during the next slot starting at t = 1, necessitating a
decrease of the spare capacity by one. τ2 is randomly selected for time t = 2. τ2 does not execute
within its own capacity interval, therefore we reduce sc(I1) by one and increase sc(I2) by one,
since τ2 belongs to interval I2 and I2 does not borrow from I1. sc(I1) = 0 at t = 3 constrains
the online scheduler to select from the set of jobs {τ1} that belong to I1. τ3 becomes active at
time t = 4 and is selected to execute at time t = 5 after picking the idle thread to run at t = 4.
This is valid, as sc(I2) is positive, and thus we reduce sc(I2) by one and increase the capacity
interval of τ3, I3, by one. However, at this time, I3 is still borrowing one slot from I2. τ3 executed
prior to its own capacity interval, thus I3 needs to borrow one slot less from I2 and therefore
we increase sc(I2) by one, resulting in no change of sc(I2). In summary, sc(I2) stays at 1 and
sc(I3) is increased by one. We show further exemplary scheduling decisions and the resulting
spare capacity updates in Figure 2.

4.2 Offline Schedule-Diversification
The second mitigation strategy we investigate in this work precomputes multiple schedules
offline and switches between them randomly at hyperperiod boundaries during runtime. Resolving
scheduling constraints offline ensures lower runtime overheads, but increases the chance of attackers
to guess the schedule and launch directed attacks. For example, repeating the same offline
computed schedule several times allows an attacker to infer the schedule, as illustrated in [36], and
to coordinate directed attacks from compromised tasks scheduled later in the same hyperperiod or
in subsequent hyperperiods. To partially mitigate this threat vector, we randomly switch schedules
at the end of each hyperperiod. As a consequence, even when the attacker is able to recognize
different schedules and has enough memory available to store them, the more schedules have been
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generated, the harder it is for the attacker to recognize which schedule has been chosen for the
current hyperperiod and the less time remains to perform a directed attack. In particular, if the
attacker is not able to identify the current schedule in time for his attack, the attacker misses the
opportunity to perform a directed attack. Additionally, carefully created execution windows solve
deadline and precedence constraints.

We show in Section 7.2.5 that computing and storing all possible, feasible schedules in memory
is impractical. However, in non-embedded systems (e.g., SCADA), we foresee the continuing
generation of schedules in a non real-time subsystem (e.g., in a sufficiently protected external
control station) and an update of the set of schedules downloaded to the real-time device. This
way, once a new set of schedules has been produced (possibly by recombining precomputed and
stored schedules), the real-time device can switch to the new set at the end of the hyperperiod.
Double buffering, signing and encryption of schedules ensures that the current set of schedules
remains valid while the system validates the confidentiality and integrity of the new schedules
(e.g., in a background task). Irrespective of update possibilities, the selected subset of schedules
out of the set of all feasible schedules for a given task set should impede directed attacks as much
as possible. We present two criteria to select subsets that complicate directed attacks in addition
to guaranteeing deadlines and respecting task precedence constraints.

4.2.1 Random Selection
For the sake of low implementation complexity, the subset can be selected randomly. That is,
schedules are created randomly and checked to meet all scheduling constraints. The schedules
fulfilling this requirement form the set of schedules for the system. Schedule creation is stopped
after a certain number of feasible schedules has been constructed. We recommend this method for
large subsets, when enough memory is provided to store a large number of different schedules.
If the subset is large enough, the random selection process provides a set of schedules with a
schedule entropy close to the set of all feasible schedules. Other criteria impose more constraints
on the selection process and therefore increase its complexity.

4.2.2 Schedule Entropy
Another criterium for schedule selection is schedule entropy as presented in [58]. This metric
makes use of an approximation of the Shannon entropy and can be used to quantify the diversity
between schedules. Using an entropy-like function, we can quantify what is the diversity of a set
of schedules and then we can compute the set of schedules that maximizes the diversity. This
allows us to randomly pick a schedule in this set and give the attacker the least possible amount of
information (because from the outside, the task set execution would seem as diverse as possible).

Clearly, deadline and period constraints limit the amount of diversity that can be achieved. In
Section 5 we investigate the fundamental limitations to the achievable diversity that are imposed
by the task set characteristics.

5 Fundamental limitations to diversity and randomization

In this section, we analyze the schedule of each core separately. For each of them, our final
objective is to determine a set K of k schedules that is as diverse as possible, keeping k as small
as possible. What we are trying to assess is how effective is the randomization, given that the
schedules should respect the time constraints. We are then trying to determine how diverse can a
generic set of schedules be, given the constraint that it preserves the deadlines of all the tasks in
the task set.

LITES
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The diversity of the set of selected schedules K can be measured in different ways. The authors
of [58] propose the use of entropy-like functions to measure the diversity of the schedule set, the
slot entropy and the upper-approximated entropy. In the following, we are going to borrow these
definitions to evaluate the schedule set diversity. We first define the slot count Cj,i,K, as the
number of occurrences of a task i in a given scheduling slot j in the set K, and then use that to
formally define the slot entropy Hj(K) and the upper-approximated entropy H̃(K). We denote
with ϕ(x) the function

ϕ(x) =
{

0 x ≤ 0
−x · log2(x) x > 0

.

▶ Definition 1. Given a set of k valid schedules K = {s(1), s(2), . . . , s(k)} for the task set T , the
j-th time unit, and the i-th task τi, we define the slot count Cj,i,K as a function that counts
the occurrences of the task i in the given position j in the set K. Using the square brackets as
the Iverson brackets — that evaluates to 1 if the proposition inside the bracket is true, and to 0
otherwise — we can then write Cj,i,K as

Cj,i,K =
∑

s(q)∈K

[
s

(q)
j = i

]
=

k∑
q=1

[
s

(q)
j = i

]
. (4)

Using the slot count, we can now formally write the slot entropy and the upper-approximated
entropy according to the definitions given in [58].

▶ Definition 2. The slot entropy Hj(K) can be written as a function of the tasks found in slot j,
i.e.,

Hj(K) =
m∑

i=0
ϕ

(
Cj,i,K

k

)
=

m∑
i=0

−
Cj,i,K

k
· log2

Cj,i,K

k
. (5)

▶ Definition 3. The upper-approximated entropy is the sum of all the slot entropies in the
hyperperiod, i.e.,

H̃(K) =
ℓ∑

j=1
Hj(K) =

ℓ∑
j=1

m∑
i=0

−
Cj,i,K

k
· log2

Cj,i,K

k
. (6)

Now we can formally state the objective of minimizing the information that can be extracted
from the system by observing its schedule. Given a task set T and the set of all valid schedules S,
what is the smallest subset of S that maximizes the upper-approximated entropy?

Mathematically, this problem can be written as the following optimization problem.
▶ Problem 4. Given a task set T and a valid set of schedules S, solve

K∗ = arg min
K⊆S

|K| s.t. H̃(K) = max
L⊆S

H̃(L).

Here L is any generic subset of S, and we search for the set K with the minimum cardinality that
achieves the maximum upper-approximated entropy. This problem consists of two main aspects.
First we must determine the maximum upper-approximated entropy; that is we must solve

H̃∗ = max
L⊆S

H̃(L).

Then we must find the smallest subset K∗ ⊆ S with upper-approximated entropy H̃(K∗) = H̃∗.
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Problem 4 could be approached by an exhaustive search. If one evaluated the upper-
approximated entropy for every element in the power set of S, the optimal solution to Problem 4
could be obtained by choosing the smallest subset that achieves H̃∗. However since the cardinality
of S is typically large, this will be infeasible in practice. Such an approach is also naïve. Afterall
it seems improbable that the solution to Problem 4 would have cardinality one, so we could rule
those subsets out of our exhaustive search.

One natural question then arises: Are there any fundamental limits on the achievable maximum
upper-approximated entropy or the cardinality of K? The remainder of this section is devoted to
answering this question. We show that the properties of the task set T impose fundamental limits
both on H̃∗, and on the cardinality of the subsets that can achieve this bound.

The fact that each task in the task set T must be executed with a certain frequency imposes a
fundamental limit on the maximum upper-approximated entropy. The intuitive explanation for
this is as follows. It is our objective to select a set of schedules that minimizes the information that
an attacker can obtain by observing the execution of any individual task. We therefore want it to
appear as if each task was allocated randomly to each given slot. However we cannot necessarily
make this allocation appear random with equal probability, because we are required to execute
tasks for given time units a certain number times in each hyperperiod and only in the first time
units in the period, to meet a given deadline. Therefore the best we can do is make each task
appear random with probability specified by its relative frequency in the hyperperiod and not
after its deadline is expired. The entropy of the corresponding random variable then specifies an
upper bound on the upper-approximated entropy of any set of schedules K ⊆ S.

▶ Theorem 5. Given any schedule set K ⊆ S for a constrained deadline task set,

H̃(K) ≤ ℓ ·
m∑

i=0

di

ti
· ϕ (ei/di) =: H̃ub (7)

Proof. The proof hinges on three key observations. The first is that since the function ϕ(x) =
−x · log2(x) is continuous and concave for all x > 0, given any set of positive weights aj ≥ 0,

ℓ∑
j=1

ajϕ

(
Cj,i,K

k

)
≤

 ℓ∑
j=1

aj

ϕ

(∑ℓ
j=1 ajCj,i,K/k∑ℓ

j=1 aj

)
. (8)

The second is that the i-th task can only be active during the first di slots of the task period ti.
Therefore since ϕ (0) = 0,

ϕ

(
Cj,i,K

k

)
= Ij,iϕ

(
Cj,i,K

k

)
, (9)

where Ij,i = 1 if mod (j − 1, ti) < di, and Ij,i = 0 otherwise (i.e. Ij,i indicates whether the i-th
task can be active in slot j). By setting aj ≡ Ij,i, together (8)–(9) imply that

ℓ∑
j=1

ϕ

(
Cj,i,K

k

)
≤

 ℓ∑
j=1

Ij,i

ϕ

(∑ℓ
j=1 Cj,i,K/k∑ℓ

j=1 Ij,i

)
. (10)

The final observation is that

ℓ∑
j=1

Cj,i,K

k
= ℓ

ei

ti
,

ℓ∑
j=1

Ij,i = ℓ
di

ti
. (11)
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These relations follow from the fact that K contains k valid schedules (i.e. task i is given ei slots
per period ti, and can only be active in the first di slots). Substituting (11) into (10) shows that

ℓ∑
j=1

ϕ

(
Cj,i,K

k

)
≤

(
ℓ
di

ti

)
ϕ

(
ei

di

)
.

The result follows by summing over all the tasks (c.f. the definition of the upper-approximated
entropy). ◀

▶ Remark. Notice that in the case of an implicit deadline task set (di = ti, ∀i), the condition of
the theorem simplifies to

H̃(K) ≤ ℓ ·
m∑

i=0
ϕ (ei/ti) . (12)

We now present two corollaries that link the upper-approximated entropy to aggregate charac-
teristics of the task set, i.e., the number of tasks and the utilization.

▶ Corollary 6. Given any schedule set K ⊆ S,

H̃(K) ≤ −ℓ · log2 (1/(1 + m)) . (13)

Proof. Knowing that ei/ti > 0, ϕ(ei/ti) = −ei/ti · log2(ei/ti) is continuous and concave. This implies
that 1/(m + 1)

∑m
i=0 ϕ(ei/ti) ≤ ϕ (1/(m + 1)

∑m
i=0

ei/ti). This gives us
m∑

i=0
ϕ(ei/ti) ≤ (m + 1) ϕ (1/(m + 1)) = −m + 1

m + 1 · log2 (1/(m + 1)) .

◀

The expression in Equation (13) is not always reachable, depending on the characteristics of the
task set. This leads us to consider the task set characteristics. In particular, we can compute a
bound that takes into account the utilization U of the task set, leading to the following corollary.

▶ Corollary 7. Given any schedule set K ⊆ S,

H̃(K) ≤ ℓ · {−(1 − U) · log2(1 − U) − U · log2(U/m)}. (14)

This corollary can be proven by splitting the contribution of the idle task and the regular tasks
in the task set. The contribution of the idle task to the upper-approximated entropy is equal to
ℓ · {−(1 − U) · log2(1 − U)}. The maximum value for the upper-approximated entropy is reached
when the utilizations of the tasks allow them to be evenly distributed. The contribution of each of
them is then −ℓ · U/m · log2(U/m). Deriving the expression in Equation (14) allows us also to study
when we can be closer to the bound in Equation (13) — and when can we expect to reach the
maximum upper-approximated entropy for a set of m tasks, depending on the task characteristics.
With respect to the utilization U =

∑m
i=1

ei/ti, the upper approximated entropy can reach its
maximum when the utilization of the system is equal to U = m/(1 + m).

We will now show that a given schedule set K ⊆ S can only achieve an upper-approximated
entropy of H̃ub (from Equation (7)) if all the tasks have implicit deadlines and the cardinality of
K is at least

ℓ

gcd(ei/ti · ℓ) .

This is important, since it shows that if we want to achieve the upper bound on the upper-
approximated entropy from Theorem 5, we must enforce di = ti, ∀i and use a schedule set of at
least the size given above.
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▶ Theorem 8. Given any schedule set K ⊆ S for a constrained deadline task set, if there exists a
task p such that dp < tp then the inequality in Equation (7) is strict. Furthermore, if all the tasks
have implicit deadlines (di = ti, ∀i) and

|K| <
ℓ

gcd (ei/ti · ℓ) ,

then the inequality in Equation (7) is strict.

Proof. The upper-approximated entropy is the sum of the contribution of each slot. Therefore, to
achieve the upper bound H̃ub, we should maximize all the summands – i.e., the contribution to
the upper-approximated entropy of each slot should be maximized.

It follows from Jensen’s inequality and Equation (11) that the inequality in Equation (8) is
strict unless

Cj,i,K/k = α (15)

for all j such that Ij,i = 1 (reusing the notation of the proof of Theorem 5). The constant α can
be found using Equations (10)–(11). In particular, Equation (10) implies that

ℓ∑
j=1

Cj,i,K/k = α

ℓ∑
j=1

Ij,i = αℓ
di

ti
=⇒

Equation (11)
α = ei

di

Since every task is active in the first slot, this implies that the inequality in Equation (7) is strict
unless

C1,i,K/k = ei

di
. (16)

To prove the first part of the theorem, suppose that di < ti for some i. Now assume that
Equation (16) holds. This implies that

m∑
i=0

C1,i,K/k =
m∑

i=0

ei

di
> 1.

However
∑m

i=0 C1,i,K = k, since every slot in the schedule set is assigned to one task. This is a
contradiction.

To prove the second part, now suppose that di = ti for all i. The contribution of each task to
the slot entropy should then be equal to the task utilization ei/ti – notice that this includes the idle
task. To find a lower bound for k, we can then look at a single slot j. In fact, additional slots will
only potentially increase the number of schedules needed to achieve higher upper-approximated
entropy. We can then formulate the problem of finding |K∗| = k∗ as an optimization problem.

min
k∈Z+

Cj,i,K∈Z+

k s.t. Cj,i,K =
ei

ti
· k, ∀i ∈ {0, . . . , m}. (17)

This means that we have a positive integer number of schedules in the set K that allows Cj,i,K (the
number of times task i appears in slot j in set K) to be positive a integer number for each task i.
We perform a variable substitution and define y = ℓ/k. Minimizing k now becomes equivalent
to maximizing y. Relaxing temporarily the requirement that k be an integer, the problem in
Equation (17) is reformulated as

max
Cj,i,K∈Z+

y s.t. Cj,i,K =
ei

ti
·

ℓ

y
, ∀i ∈ {0, . . . , m}. (18)
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The solution to the problem in Equation (18) is that y should be equal to the greatest common
divisor of the utilizations multiplied by the hyperperiod, y = gcd(ei/ti · ℓ), which yields to

k∗ =
ℓ

gcd (ei/ti · ℓ). (19)

For this to be the solution of the optimization problem in Equation (17), k∗ must be an integer
number. Because the utilizations of the task set (including the idle task) sum to one,

∑m
i=0

ei/ti = 1,
the constraint for the idle task in the optimization problem of Equation (18) can also be written as

Cj,0,K =
(

1 −
m∑

i=1

ei

ti

)
·

ℓ

y
=
(

ℓ

y
−

ℓ

y
·

m∑
i=1

ei

ti

)
.

The solution of problem (18) ensures that ℓ
y ·
∑m

i=1
ei/ti ∈ Z+ due to the m constraints for the

(non idle tasks in the) task set. The value of ℓ/y (equal to k∗) must then be a positive integer
number. This implies that the solution of the problem in Equation (18) is also a solution of the
problem in Equation (17) and k∗ ∈ Z+. ◀

▶ Corollary 9. A simple modification of the proof of Theorem 8 shows that for any K ⊆ S, if

|K| mod ℓ

gcd(ei/ti · ℓ) ̸= 0,

then H̃(K) < H̃ub. This means that the cardinality of K must be a multiple of ℓ
gcd(ei/ti·ℓ) in order

to achieve the bound in Theorem 8.

6 Extension to replicated systems on multicores

So far, we have assumed that accomplices of attackers are limited to the tasks of non-critical
subsystems. Through the use of replication, we can consider stronger adversaries, capable of
compromising also up to f replicas of an n-fold replicated critical subsystem. This leads to the
following additional attack vectors:
AV1: A compromised task or replica attacks the task executing next on the same core.
AV2: A compromised task or replica attacks replicas executed in parallel on another core.
AV3: A combination of both attack vectors AV1 and AV2, i.e., attacks are mounted from one

core shortly before a replica is run on another core.

The challenge with AV2 and AV3 lies in ensuring that at most f replicas can be affected
in any cycle required to rejuvenate all n replicas, returning them to a healthy state [45,46]. In
particular in real-time systems, where results must be timely, systematic delays of more than
f replicas (minus those already compromised) may turn out fatal, as this allows compromised
but timely replicas and consequently the attacker to gain control. Extending offline and online
schedule-diversification allows us to protect against the above threat vectors.

6.1 Offline Schedule-Diversification
Offline schedulers posess the advantage to solve complex constraints before runtime. In addition
to the deadline constraints already discussed in Section 4.1.1 (and possibly further constrains to
accomodate for precedence or jitter), we shall impose as constraint that at the end of each slot,
no two cores switch to the same job. This way, schedules across cores are diverse and we mitigate
AV2, by avoiding replica execution at the same time.
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However, the offline constructed schedule still provides the determinism an attacker can exploit
for AV1 and AV3. As the constructed schedules are diverse, each cores RTOS stores all schedules.
The RTOS instances on these cores switch at the end of the hyperperiod to another schedule in
an offline defined, deterministic way, such that each core executes a different schedule. This still
provides deterministic execution to the attacker, however the window of repetition, that is, the
size of the hyperperiod is larger.

Alternatively, the scheduler may choose the next schedule at the end of the hyperperiod at
random. If the set of diverse schedules is diverse enough, the possibility of retrieving information
using the schedule is low. In addition, if the upper-approximated entropy bound given by
Equation (7) is reached for the set of schedules that is used for schedule diversification, it is
possible to state that there is no additional diversity that can be added by varying the schedule.

Cores may execute the same schedule at the same time and thus replicas may be executed in
parallel, but the attacker is not able to rely on this possibility in a deterministic fashion.

6.2 Online Slot-Level Randomization

Online slot-level randomization, as discussed in Section 4.1.2, prevents predictions about the
points in time when replicas are executed in parallel or on other cores and thus mitigates all
attack vectors, AV1 to AV3. The attacker is unable to predict system behavior and cannot rely
on deterministic assumptions to coordinate his or her attack. This strategy prevents the stealthy
attack we consider for all three attack vectors.

6.3 Combining Offline and Online Strategies

In this approach, we combine both strategies presented in Section 6.1 and Section 6.2. First
we create non-overlapping execution windows of replicas offline, i.e., replica execution windows
are restricted not to overlap each other to fulfill this constraint. As consequence, the replicas
have different earliest start times and deadlines on each core. This constraint eliminates AV2,
where replicas are scheduled at the same time. Then, during runtime, we use slot-level online
randomization to prevent predictions and thus eliminate attack vectors AV1 and AV3 enabled
by a deterministic schedule. Compared to the pure online approach presented in Section 6.2,
the combined strategy never schedules replicas in parallel. However, depending on the task set,
the restriction of replica execution windows may leave few leeway in the schedule for the online
randomization algorithm.

7 Experiments

We evaluate our mitigation strategies and insights on schedule entropy with experiments. First,
we present a search algorithm that generates a set of schedules for each synthetic task set under
the constraint that it maximizes the task sets upper-approximated entropy. We investigate the
limits on randomization and entropy through the achievable entropy and its variance. Second, we
employ the ROSACE case study [38] to evaluate our attack mitigation strategies. The ROSACE
case study provides task set parameters for a safety-critical real-time system of an aircraft called
the longitudinal flight controller. We provide an analysis of runtime overhead and memory cost.

LITES



01:18 Randomization as Mitigation of Attacks on TT Real-Time Systems with Replication

0
0
.2

0.
4

0.
6

0.
8

1

123

m
=

2,
10
0.
0%

H̃
u
b
/
ℓ

−
lo
g
2
(1
/(

1
+

m
)
)

−
{(

1
−

u
)
·l
o
g
2
(1

−
u
)
+

u
·l
o
g
2
(u
/m

)}

0
0.
2

0.
4

0.
6

0.
8

1

123

m
=

3,
10
0.
0%

0
0.
2

0.
4

0.
6

0.
8

1

123

m
=

4,
99
.7
%

0
0.
2

0.
4

0.
6

0.
8

1

123

m
=

5,
9
7.
4%

0
0.
2

0.
4

0.
6

0
.8

1

123

m
=

6,
95
.2
%

0
0.
2

0.
4

0.
6

0.
8

1

123

m
=

7,
92
.8
%

0
0.
2

0.
4

0.
6

0.
8

1

123

m
=

8,
8
9.
5% u
ti
li
za
ti
on

0
0.
2

0.
4

0.
6

0
.8

1

123

m
=

9,
89
.0
%

u
ti
li
za
ti
on

0
0.
2

0.
4

0.
6

0.
8

1

123

m
=

10
,
88
.0
%

u
ti
li
za
ti
on

Fi
gu

re
3

Av
er

ag
e

sl
ot

en
tr

op
y

of
ra

nd
om

se
ts

co
m

po
se

d
of

m
ta

sk
s

w
ith

m
∈

{2
,.

..
,1

0}
an

d
m

ax
im

um
hy

pe
rp

er
io

d
ℓ

=
10

0.



K. Krüger, N. Vreman, R. Pates, M. Maggio, M. Völp, and G. Fohler 01:19

0
0
.2

0.
4

0.
6

0.
8

1

123

m
=

2,
10
0.
0%

H̃
u
b
/
ℓ

−
lo
g
2
(1
/(

1
+

m
)
)

−
{(

1
−

u
)
·l
o
g
2
(1

−
u
)
+

u
·l
o
g
2
(u
/m

)}

0
0.
2

0.
4

0.
6

0
.8

1

123

m
=

3,
82
.4
.0
%

0
0.
2

0.
4

0.
6

0.
8

1

123

m
=

4,
66
.7
%

0
0.
2

0.
4

0.
6

0.
8

1

123

m
=

5,
5
2.
5%

0
0.
2

0.
4

0.
6

0.
8

1

123

m
=

6,
44
.6
%

0
0.
2

0.
4

0.
6

0.
8

1

123

m
=

7,
38
.4
%

0
0.
2

0.
4

0.
6

0.
8

1

123

m
=

8,
3
1.
8% u
ti
li
za
ti
on

0
0.
2

0.
4

0.
6

0.
8

1

123

m
=

9,
28
.7
%

u
ti
li
za
ti
on

0
0.
2

0.
4

0.
6

0.
8

1

123

m
=

10
,
24
.7
%

u
ti
li
za
ti
on

Fi
gu

re
4

Av
er

ag
e

sl
ot

en
tr

op
y

of
ra

nd
om

se
ts

co
m

po
se

d
of

m
ta

sk
s

w
ith

m
∈

{2
,.

..
,1

0}
an

d
m

ax
im

um
hy

pe
rp

er
io

d
ℓ

=
50

0.

LITES



01:20 Randomization as Mitigation of Attacks on TT Real-Time Systems with Replication

7.1 Synthetic Task Sets
In order to investigate the limits on schedule randomization and schedule entropy presented in
Section 5, we implemented a search algorithm based on constraint optimization that generates a
set of schedules maximizing the upper-approximated entropy for a given task set.4

We looked at each core separately and tested the algorithm with synthetic task sets, composed
of n tasks with n ∈ {2, . . . , 10} and maximum hyperperiod ℓ ∈ {100, 200, 300, 400, 500}. For each
of the possible combinations, we generated 1000 task sets using an extension of the UUniFast
algorithm [4], that allows us to control the maximum hyperperiod. We randomized the periods ti of
each task, and imposed an implicit deadline constraint ti = di, ∀i ∈ {1, . . . , n}. We computed the
upper-approximated entropy H̃ub, for the task set according to Theorem 5. We then computed the
average contribution of each slot H̃ub/ℓ, to be able to compare task sets with different hyperperiods.
Finally, we ran our algorithm to generate the schedule set K, with the lowest cardinality k∗ given
by Theorem 8.

In principle, the algorithm could run for a long time to find the maximum. There is also
the possibility that the maximum is not reachable with any schedule set that satisfies all the
constraints (in our experimental campaign, we did not encouter such a set, but our theoretical
results do not exclude this possibility). Therefore, we limited the duration and allowed a budget
of 60 minutes to compute the schedule set.

We define the algorithm accuracy as the percentage of task sets for which the algorithm found
an optimal schedule set. In Figures 3 and 4, we show the results for the cases with ℓ = 100
and ℓ = 500, respectively. In particular, we show the average contribution of each slot to the
upper-approximated entropy H̃ub/ℓ. In each plot, we write the number of tasks m and the
algorithm accuracy.

The dots in the Figures 3 and 4 show the tight bounds and the achievable entropy, while the
dashed line represents the (non-tight) bound discussed in Corollary 7, Equation (14). As can be
seen, for some of the task sets, the constraints imposed by the execution times and the periods
allow the upper-approximated entropy to reach this bound, but in other cases the bound presented
in Theorem 5 is tighter. One can also notice that the variance of the achieved upper-approximated
entropy increases when the utilization increases. This is because a higher utilization introduces
tighter constraints on the achievable entropy.

Another important result is the fact that the upper-approximated entropy reaches the maximum
bound discussed in Corollary 7 for m/(m + 1). The implication of this is that from an entropy
perspective the optimal system utilization is m/(m + 1). This is very important for determining
critical system parameters like the task set utilization for security-aware embedded and real-time
systems.

Finally, the yellow solid lines represent the (non-tight) bound introduced by Corollary 6. In
most cases, this bound is unreachable, due to the constraints introduced by the tasks characteristics.

7.2 Real-world case study (ROSACE)
We evaluated our two directed attack mitigation strategies presented in Section 4 using the
ROSACE case study [38]. ROSACE is a practical, real-world example of a real-time system in a
safety-critical avionics environment. Pagetti et al. [38] carried out a case study of a longitudinal
flight controller of an aircraft. The longitudinal flight controller helps the pilot to accurately track
altitude, vertical speed and airspeed of the aircraft. Pagetti et al. describe two control loops: the

4 The code for the algorithm is available at https://gitlab.control.lth.se/NilsVreman/rand-sched, to-
gether with the full set of results.

https://gitlab.control.lth.se/NilsVreman/rand-sched
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Figure 5 Longitudinal flight controller design

Table 1 Flight controller task set [38]

Taskname Frequency WCET
Vz_control 50Hz 100µs
Va_control 50Hz 100µs
altitude_hold 50Hz 100µs
h_filter 100Hz 100µs
az_filter 100Hz 100µs
Vz_filter 100Hz 100µs
q_filter 100Hz 100µs
Va_filter 100Hz 100µs

Table 2 Execution windows in terms of slots

Name Start End WCET
h_filter 0 50 1
az_filter 0 50 1
Vz_filter 0 50 1
q_filter 0 50 1
Va_filter 0 50 1
h_filter 50 100 1
az_filter 50 100 1
Vz_filter 50 100 1
q_filter 50 100 1
Va_filter 50 100 1
altitude_hold 0 100 1
Vz_control 0 100 1
Va_control 0 100 1

V a_control loop handles airspeed control by maintaining the desired airspeed V a; the second
control loop — altitude control — combines altitude_hold and V z_control. First, altitude_hold

translates altitude commands to vertical speed commands. Then, V z_control tracks the vertical
speed V z of the aircraft. Both control loops are fed with filtered data: h, az and q for altitude,
vertical acceleration and pitch rate, respectively. Vertical airspeed V z and true airspeed V a are
also inputs to the control loops. We show the design of the controller in Figure 5.

According to Pagetti et al. [38], the closed-loop system with continuous-time controllers can
tolerate delays of up to roughly 1 second before destabilizing. To preserve stability as well as to
increase performance, Pagetti et al. chose lower sampling periods of 50 Hz for the digitalization
tasks of the three controller blocks and 100 Hz for the filter tasks which feed the data to the
controller. Pagetti et al. derived worst case execution times of all tasks using a measurement-based
approach by measuring the repeated execution of a task in isolation. The granularity the authors
chose for the measuring clock was 100µs, thus the worst case execution times for the tasks shown
are the same as they presumably finished execution in that granule. Table 1 shows the task set
with implicit deadlines for the longitudinal flight controller. In this work, we do not consider
environment simulation tasks as they are not part of the controller but only of the test environment.

LITES



01:22 Randomization as Mitigation of Attacks on TT Real-Time Systems with Replication

We construct the execution windows of all tasks from the task set in Table 1. Schorr [42]
suggests 200,000 clock cycles as slot shifting slot length. The processor cores in ROSACE run at
1.2GHz, which results in 167 µs for 200,000 clock cycles. We choose 200 µs as slot length to evenly
divide the task periods into slots. Task execution is non-preemptive, as the worst case execution
times are smaller than the slot length. Table 2 shows the resulting execution windows.

7.2.1 Runtime Overhead for Slot-Level Randomization
Our slot-level randomization algorithm is based on Schorr’s [42] slot shifting algorithm. Schorr
measured the runtime overhead of the unmodified slot shifting algorithm on a cycle-accurate
ARM quadcore simulator — MPARM — with ARM7 cores running at 200 Mhz, 8kB 4-way set
associative L1 cache, 8kB direct mapped L1 instruction cache, 1MB core-private memory and
1MB shared memory. Schorr provided minimum and maximum runtimes of all parts of the slot
shifting algorithm for single core execution. Using the timing measurements of [42], shown in
Table 3, we approximate the runtime overhead of slot-level randomization, when executed on the
same processor.

Table 3 Minimum and maximum runtime overhead per slot for single core execution in ns [42]

Function Min Max
update spare capacity (upsc) 2,655 10,145
update ready list (upready) 3,500 9,115
next job selection (sel) 1,850 2,350
ISR overhead (ISR) 2,560 3,120

Slot-level randomization invokes the same functions to update spare capacities and the ready
list. The cost of the function to update spare capacities increases linearly with the number of
intervals due to cascaded borrowing in the worst case. However, according to the slot shifting
algorithm as explained in Section 4.1.1, only 2 intervals are created for the presented task set.
Hence, the costs of both functions remain the same. The interrupt service routine (ISR) overhead
is architectural and hence should not change for an implementation of slot-level randomization in
the same operating system. Randomization is not part of slot shifting and as such not covered
by the above measurements. As calculating random numbers for each slot is independent of
parameters like the number of tasks or intervals, we assume a constant per slot overhead. Moreover,
assuming an O(1) get_length implementation of the ready list, pruning random values to a list
index remains a constant operation.

We calculate the maximum runtime overhead as:

tov,rand,max = randmax + upsc,max + upready,max + selmax + ISRmax (20)

Accordingly, the minimum runtime overhead results in:

tov,rand,min = randmin + upsc,min + upready,min + selmin + ISRmin (21)

Using the measurements from Table 3 for equation 20 and assuming randmax = 5, 000ns, the
maximum runtime overhead results in tov,rand,max = 29, 730ns, which is around 3 percent of the
assigned slot size of 1ms in [42]. Keeping in mind that ROSACE uses 6 times faster cores than [42]
and that execution time does not scale exactly linear with processor speed, we can approximate
the runtime overhead for ROSACE. Therefore, we divide these values by 5 for a core with 1.2 Ghz
and approximate the maximum runtime overhead for ROSACE to be tov,rand,max = 6, 000ns.
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Under the assumption that randmin = 2, 000ns, the minimum runtime overhead results in
tov,rand,min = 12, 565ns, which is around 1.3 percent of the slot size in [42]. Dividing these values
by 5 as explained earlier, we approximate the minimum runtime overhead for ROSACE to be
tov,rand,min = 2, 500ns.

7.2.2 Runtime Overhead for Offline Precomputed Schedules
The runtime overhead for offline precomputed schedules is lower than that of scheduling algorithms
which have to take more complex decisions online, which we also prove in this section. Again we
can make use of the overhead measurements done in [42], which we show in Table 4.

Table 4 Minimum and maximum runtime overhead for single core execution in ns [42]

Function Min Max
next job selection (sel) 1,850 2,350
ISR overhead (ISR) 2,560 3,120

At runtime, the scheduler performs a table lookup to select the next job after each slot. In
constrast to the slot-level randomization scheduling algorithm, the overhead only consists of the
next job selection and the interrupt service routine. At the end of the hyperperiod, we select the
next offline precomputed schedule randomly. We calculate best and worst case runtime overhead
for selecting a precomputed schedule in MPARM as shown below.

tov,prec,max = randmax + selmax + ISRmax = 10470ns (22)
tov,prec,min = randmin + selmin + ISRmin = 6410ns (23)

Using the same estimation on the execution time of the randomization function for the ROSACE
case study as in Section 7.2.1, best and worst case approximated overhead results in 1300 ns and
2100 ns, respectively. Thus, around 1 percent of the chosen slot size is used for scheduling for
both ROSACE and on the ARM simulator MPARM.

7.2.3 Memory Cost for Offline Precomputed Schedules
Each precomputed schedule needs to be stored in memory. For ROSACE, we can build an offline
schedule in the same way as shown in Table 2. Each task has its own task ID, an entry for the
start and end of the execution of its instance, and a fourth entry for its worst case execution
time. The difference between start and end time must be equal to its worst case execution time
and the execution windows for different jobs must not overlap. Table 5 shows an example for a
precomputed time-triggered schedule.

Table 5 Exemplary precomputed time-triggered schedule for ROSACE

ID 0 1 2 3 4 0 1 2 3 4 5 6 7
Start 1 8 22 33 35 51 58 66 67 71 80 88 94
End 2 9 23 34 36 52 59 67 68 72 81 89 95
WCET 1 1 1 1 1 1 1 1 1 1 1 1 1

Assuming each entry has the size of 1 byte, a single schedule with this information needs
13 ∗ 4 = 52 bytes of memory. Theorem 8 and Corollary 9 state that we need only k∗ schedules to
achieve the maximum diversity. In the case of ROSACE, this number is 100. Thus, we are able to

LITES
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calculate the total memory cost to store all these schedules, which amounts to 100 ∗ 52 = 5200
bytes. This example also shows that the memory cost scales linearly with the number of tasks
involved. Each instance of a periodic task, i.e. each job adds 4 entries to this table.

7.2.4 Upper-approximated Entropy Analysis
Here we derive the actual numbers for the ROSACE case study, determining the limitations of
the achievable upper-approximated entropy. We first look at the specifics of the given task set,
and all the individual task utilizations, using Theorem 5. Then we look at a generic task set with
the same utilization as the ROSACE utilization and apply the results of Corollary 7. Here, we see
how ROSACE compares with other task sets with the same utilization (unsurprisingly, ROSACE
does not have the “perfect” workload distribution to achieve the highest entropy). Notice that our
solution is optimal in the space of solutions that satisfy the ROSACE schedulability.

Using a slot length of 200 µs, we can compute the hyperperiod ℓ = 100 slots and the minimum
number of schedules k∗ needed to achieve the maximum value of the upper-approximated entropy
according to Equation (18), which amounts to 100 schedules. We use the tool presented in
Section 7.1 to generate a set of 100 schedules that achieves the maximum upper-approximated
entropy. The generated set reaches a value of H̃∗ = 93.8495, which is the optimal value that can
be reached for the characteristics of the given task set. This means that each of the schedule
slots contributes with a diversity of 0.9385. This number is, again, optimal with respect to the
utilizations and periods of the task set of this specific case study.

We now turn to the question how good the given scenario performs in terms of diversity
compared to what is possible for task sets of the same utilization. For that, we can look at
Corollary 7. The maximum upper-approximated entropy contribution per slot is 0.9474, given by
Equation (14). This means that the distribution of the tasks that we find in our scenario is very
close to the optimum that can be achieved at the given utilization level.

7.2.5 Discussion
Real-time systems are often implemented as embedded systems. As such, they are not only subject
to size, weight and power considerations, but also have only limited memory available. Low
memory cost and low computation overhead become even more important for these constrained
systems. We will analyze our mitigation methods with respect to these constraints.

Slot-level randomization proves to be practical, as the approximated overhead in Section 7.2.1
shows. In the worst case, slot-level randomization uses less than 3 percent of the slot size for
scheduling. Precomputing offline schedules can further reduce this overhead to roughly 1 percent
of the slot size, but physical memory capacity limits the number of offline precomputed schedules
that can be stored in a system. In general, it is possible to offload scheduling tables to secondary
storage by accepting an increase of scheduling overhead while loading the selected scheduling table
from this memory. However, we know from Theorem 8 and Corollary 9 that we need only k∗

schedules to achieve the maximum diversity and we are able to calculate this number. In the case
of ROSACE, we need 100 schedules to achieve maximum diversity, which amounts to 5200 bytes
of required memory storage (see Section 7.2.3 for details).

As we mentioned in Section 3.2, an attacker might identify a small number of schedules after
several minutes or a few hours even for side channels with low bandwith. The attacker might
even be able to derive a minimal set of schedules that achieves maximum diversity, as scheduling
parameters might be known, derived from system observation or reverse engineered. However,
this set is not unique, i.e. different sets of schedules are able to achieve maximum diversity. Even
under the assumption that the attacker is able to store a huge number of schedules, the higher the
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number of precomputed schedules, the longer it takes for the attacker to be sure which schedule is
used. Updating the stored scheduling tables partially mitigates the threat that the attacker might
eventually identify the schedule in time. The threat is fully mitigated with slot-level randomization,
which we recommend in general, due to the comparable overhead, and for systems with strict
memory constraints.

In order to show how many possible schedules slot-level randomization covers, we calculate
the total number of possible feasible schedules for the task set presented in Table 2. For each
execution window, the binomial coefficient

(
n
k

)
calculates the number of possibilities to execute

the task in different slots, where n is the window size and k the worst case execution time, both
quantified in slots. The binomial coefficients of neighbouring and overlapping execution windows
are multiplied with each other. If execution windows overlap, we subtract the worst case execution
time of tasks belonging to execution windows whose binomial coefficients are already accounted for
in the equation (“preceding” binomial coefficients) from the window size. Thus, we calculate the
number of possible feasible schedules for the presented task set as shown below. On the left side
of the equation, the binomial coefficients of the five tasks with periods of 50 slots are calculated
two times, because the hyperperiod results in 100 slots. Their combined worst case execution
time of 10 slots is then substracted from the execution window sizes of the tasks with a period of
100 slots.[(

50
1

)(
49
1

)(
48
1

)(
47
1

)(
46
1

)]2
×
(

90
1

)(
89
1

)(
88
1

)
= 4.56 × 1022 (24)

4.56 × 1022 schedules with 52 bytes require 281 bytes of storage, so we can safely conclude that it
is infeasible to track or store all possible schedules in terms of memory space and computation
time needed. Positive spare capacities, i.e. leeway in the schedule, are key for a high number of
distinct feasible schedules.

8 Related Work

Security is a major concern for real-time and control systems [15,16,48–50,57]. Modern embedded
systems are vulnerable to many different security threats [23, 39], one of them being side-channel
attacks [47]. Side-channel attacks are based on attackers gathering knowledge about a system,
and exploiting this knowledge to influence its behavior [1, 34,41,44,47]. For example, recently, a
team of researchers showed that it is possible to retrieve the engine speed from the frequency of
execution of its control task [31]. In general an attacker knowing the schedule of an embedded
control system can infer that the controller is sending a control signal to a plant periodically
in predictable time slots. They can then use this knowledge to jam the network only when the
control signal is being transmitted. Reducing the need for the attacker to be active also reduces
the possibility of detecting the ongoing attack.

Several security solutions exist which prevent information leakage in real-time systems. For
example, Völp et al. show in [52] how to prevent timing leaks in fixed-priority schedulers by
exploiting the idle task to mask early stops or blocks of a high priority task such that a low
priority task always has the same view of the high priority task. Naturally, time-triggered systems
do not require this modification since no two tasks execute in the same time window on the same
processor. In [36], Mohan et al. focus on the problem of information leakage over shared resources.
They define security levels for tasks and prevent undesirable information flow between tasks of
different security levels by flushing the resource. Further, they discuss the integration of security
constraints into the design of fixed-priority schedulers. In contrast to [52] and [36], we consider
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time-triggered systems which have no concept of task priority. Additionally, we do not focus on
preventing timing channels or information leakage. In fact, we assume timing information, in
particular task set parameters, may be inferred.

One of the logical countermeasures against this type of attacks is to impede the information
gathering phase. In particular, an attacker who observes the execution of the real-time system
should not be able to get timing information beneficial for an attack. However, classical scheduling
algorithms are designed exactly for predictability and repeatability. Schedules (for periodic task
sets) usually repeat after a predetermined amount of time. This is precisely what gives an attacker
the ability to observe the system and infer knowledge. An observer collecting information for long
enough can then infer the execution pattern and rely on the real-time systems predictability for a
directed attack. Schedule randomization was proposed [58] to defend real-time systems against
side-channel attacks. During the execution of the system, as long as deadline constraints are not
violated, the next task is picked randomly from the ready queue. The schedule is either generated
online [27,58], or selected from a set of pre-generated schedules [26,27]. For embedded systems,
the overhead of online generation can be avoided if it is possible to compute and store a schedule
set with acceptable diversity [26].

Nasri et al. [37] analyze the conditions for successful time-domain attacks, concluding the
difficulty of mounting such attacks in event-triggered systems. While it is true that some of these
attacks can be difficult to mount for a generic system, the predictable schedule of time-triggered
systems makes them more vulnerable. The attacks are simpler to carry on and can be more
disruptive.

Two examples for state-of-the-art research deal with security for time-triggered communication.
In [43], Skopik et al. introduce a security architecture for time-triggered communication which
adds device authentication, secure clock synchronization and application level security. Wasicek
et al. [54] investigate the security of time-triggered transmission channels and show how an
authentication protocol secures these channels without violating timeliness properties. In our work,
we do not consider intended communication channels for infering timing information, but instead
focus on covert or side channels and the implication of attackers learning timing information to
coordinate their attacks.

9 Conclusion

In this paper we analyzed vulnerabilities of time-triggered systems with respect to timing-inference
based directed attacks, presented two mitigation strategies, and analyzed the randomness of
schedules. The deterministic behaviour of time-triggered systems allows attackers to infer timing
information over side channels and precisely target victim tasks. Worst case execution time
assumptions, on which schedules are based, do not take malicious behaviour into account. As the
schedule of a time-triggered system comprises only a few bytes, it can be inferred by an attacker
over side-channels. In order to prevent attackers from predictions about the point in time when a
certain task is executed, we presented two mitigation strategies for directed attacks. First, we
introduced slot-level randomization, which impedes predictions about the schedule by selecting
the next job at random. We employ concepts of slot shifting to allow randomization of a time-
triggered schedule without violating timing constraints. Secondly, we proposed online selection of
offline precomputed schedules for mitigation of directed attacks. At runtime, a schedule from a
precomputed set of schedules is randomly selected at the end of each hyperperiod. We showed
how to compute the minimum number of schedules needed to achieve maximum schedule diversity
and devised an algorithm to find these schedules. First, we tested our algorithm with synthetic
task sets and presented results regarding achievable entropy respecting varying hyperperiods and
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utilization levels. Then, we evaluated our mitigation strategies with respect to overhead and
memory cost with a practical, real-world case study of a safety-critical flight controller. Slot-level
randomization has a runtime overhead of around 3 percent of the slot size in the worst case, which
makes it suitable for practical use. Scheduling precomputed schedules reduces the worst case
runtime overhead to around 1 percent of the slot size, but is more costly in terms of memory. A
single schedule for the case study has a size of 52 bytes, but the total number of feasible schedules
lies in the magnitude of 1022. Out of this large amount of schedules, only 100 are needed to achieve
the optimal upper-approximated entropy. Thus, both mitigation strategies proved to be practical.
Attackers could still try to launch undirected attacks, but they will be easier to detect this way.
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Abstract
Modern mobile and embedded devices have high
computing power which allows them to be used
for multiple purposes. Therefore, applications with
low security restrictions may execute on the same
device as applications handling highly sensitive in-
formation. In such a setup, a security risk occurs
if it is possible that an application uses system
characteristics to gather information about another
application on the same device.

In this work, we present a method to leak sens-
itive runtime information by just using temperature
sensor readings of a mobile device. We employ a
Convolutional-Neural-Network, Long Short-Term

Memory units and subsequent label sequence pro-
cessing to identify the sequence of executed applic-
ations over time. To test our hypothesis we collect
data from two state-of-the-art smartphones and
real user usage patterns. We show an extensive
evaluation using laboratory data, where we achieve
labelling accuracies of up to 90% and negligible
timing error. Based on our analysis we state that
the thermal information can be used to compromise
sensitive user data and increase the vulnerability
of mobile devices. A study based on data collected
outside of the laboratory opens up various future
directions for research.
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1 Introduction

Due to their high computational power, mobile devices, such as smartphones and tablets, are
often used for multiple purposes concurrently. Consequently, applications with different levels of
security and privacy clearances reside on the same piece of equipment. For example, companies
may allow their employees to use the same smartphone for business and private applications,
or people with medical conditions may use their smartphone to monitor their health status. In
both cases, applications performing highly-critical tasks operate beside benign applications, like
games. To prevent security and privacy violations due to different applications on the same
device, Operating Systems (OSs) often rely on the security paradigm of application isolation and
permission separation. This paradigm defines that security and privacy are ensured if information
transfer between applications is only possible under the oversight of the OS.

Previous work has shown that the security framework of application isolation and permission
separation is susceptible to data leaks based on shared resources, such as caches [42]. While shared
resources can be used to compromise the system, they can aim at increasing the efficiency of a
system or providing monitored means of communication between applications. So even though
shared resources might pose a security threat, we do not consider their presence in a system as a
breach of the security paradigm of application isolation and permission separation.

An example for an implementation of application isolation and permission separation is Android
application sandboxing1. Android sandboxing isolates applications and only allows applications to
communicate through explicitly permitted channels. For example, applications can communicate
using intents, which are subject to the scrutiny of the OS as all intents are routed through the
Android system. While previous work has shown that intents can be misused to create data
leaks [11], we argue that the principal design of intents does not violate the security paradigm of
application isolation and permission separation.

In this work, we show how to bypass the security paradigm of application isolation and
permission separation and compromise a system by providing a method that allows an adversary
to determine which applications are executed on the device at specific time intervals.

The execution of applications influences the power consumption of the device and its tem-
perature. Therefore, temperature readings may contain information on the executed application.
Modern Systems-on-Chips (SoCs) typically have multiple thermal sensors to support smart power
management. For example, Arm big.LITTLE SoCs often feature thermal sensor readings in
both core clusters and several more for other components of the SoC. In general, these thermal
measurements are exposed to the OS through an unrestricted software interface, which makes
thermal data easily accessible. For instance, there are several applications on the Google Play

1 https://source.android.com/security/app-sandbox

https://source.android.com/security/app-sandbox
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Figure 1 (a) Different applications are executed on a mobile device depending on the user input. (b)
Thermal information provided by the Operating System is collected by a third-party application. (c)
Analysis of the thermal data to determine the application sequence. (d) The application sequence is used
to create a usage profile or detect other applications, causing security and privacy violations.

Store that allow the thermal information of an Android device to be read, without the need for
elevated privileges2. It has already been shown that these thermal readings may lead to security
issues [6]. In particular, the thermal covert channel presented in by Bartolini et al. [1] shows the
possibility of a data leak, as Ristenpart et al. [35] already stated that “Covert channels provide
evidence that exploitable side channels may exist”. However, as thermal information is vital to
power management, it remains accessible without further permission requirements.

In this work, we present a side channel attack based on thermal sensor readings of a mobile
device, as depicted in Figure 1. Different applications are executed on a mobile device based
on the user input (a). These applications are not allowed to share any information without
the supervision of the OS, due to the security paradigm of application isolation and permission
separation. However, applications are allowed to read thermal information from the OS software
interface. An adversary may deploy an application to read the thermal information (b) and
analyses the thermal data (c). This allows the adversary to determine the execution sequence of
other applications or detect the set of running applications (d). As this establishes an information
transfer between intentionally isolated applications, such a thermal side channel violates the
security and privacy restrictions imposed by the OS.

Contributions. Our main contributions in this work are:
1. We present a side channel attack that uses thermal data collected from mobile devices to

determine patterns of application usage.
2. To the best of our knowledge, we are the first to apply machine learning techniques from time-

series processing domain to determine an application execution sequence.
3. We present an extensive experimental evaluation of the thermal side channel based on real

user interactions with the device, laboratory and real-world data.

2 Related work

Mobile devices are now present in almost all aspects of our daily life and have increased computing
power. While usage information can be used to improve the functionality of mobile devices [5],
this information can also be misused for malicious purposes [39]. This leads to security and
privacy issues, which are well defined and broadly studied problems in current computing systems.
Lampson [19] was the first to highlight the problem of covert and side channels, when he defined
the confinement problem. The confinement problem states that an application is secure as long as
it is ensured, that no information can be leaked to a third party. However, data leaks in form of

2 e. g., Simple System Monitor (https://play.google.com/store/apps/details?id=com.dp.sysmonitor.ap
p)

LITES
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covert or side channels are almost omnipresent in modern computing systems, which makes their
analysis even more important. In this work, we analyse a data leak, or side channel, based on the
availability of temperature data.

2.1 Architectural data leaks
In the last years, many data leaks have been discovered and analysed, often based on architectural
features of modern multicore systems. For example, the well known Spectre [18] and Meltdown [21]
data leaks take advantage of the hyper-threading in Intel processors. Similarly, Rong et al. [36]
showed how to compromise cloud systems by taking advantage of the so called Cloud Covert Channel
based on Memory Deduplication (CCCMD). This channel has further been improved [24, 33]
and specifically targeted at Intel SGX based systems [10]. Furthermore, a variety of other cache
channels exploit the fact that multiple cores share the same cache [20]. However, also branch
predictors [8] or random number generators [7] have been exploited as possible sources for data
leaks in modern computing systems. Our work will not take advantage of architectural issues to
establish a data leak, but exploit a data leak based on the thermal state of a mobile device.

2.2 Temperature related data leaks
Murdoch [31] showed that it is possible to identify servers in the tor network by analysing the
temperature induced clock skew of the machines. The server was heated by causing a high load
and was identified by concurrently analysing the timestamps of response packets of the server.
This temperature induced timing side channel was further analysed and improved by Zander
and Murdoch [44]. The authors minimized the clock jitter in the response packets and derived
a channel capacity of approximately 20.5 bits per hour [43]. Furthermore, Ristenpart et al. [35]
showed that this technique can also be applied to find other Virtual Machines (VMs) running on
the same infrastructure. Other temperature related data leaks have been shown, which rely on
the effects of the power management system of the devices. This includes fan speed [2], power
consumption [26, 30] or operating frequency [27]. Similar to these work, we will also take advantage
of the fact that modern computing devices have varying power needs and temperature profiles for
different computing tasks.

Data leaks might also occur if chips are not operated in the right temperature range, as
demonstrated by Hutter and Schmidt [15] on the RSA implementation on an AVR microcontroller.
The authors showed that the hamming weight of the key can be leaked by correlating temperature,
power and execution time, if the chip is operated beyond its specified temperature range. In this
work, we will also use temperature as a medium to leak information, without the knowledge of the
OS. However, we will not tamper with the environmental conditions and only rely on temperature
measurements provided by the device.

2.3 Thermal data leaks and attacks
In addition to temperature related effects, temperature itself can serve as a medium to leak data.
Islam et al. [17] presented a thermal side channel attack that allows an attacker to time power
attacks on data centres more effectively. Thermal covert channels have also been extensively
studied on FPGAs, where on-chip heat generators were used to transfer information out of the
secure zone of the chip [22, 3, 16] or over time to the next scheduled application [40]. It has also
been shown that general purpose CPUs are vulnerable to temperature based covert channels [23, 1].
Guri et al. [13] presented a method to establish such a thermal covert channel between air-gapped
systems.
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Figure 2 The information flow during a thermal side channel attack. A user executes a sequence
of different applications A on the device. The sink application monitors the resulting heat generation
from the device by reading the respective system files F for the different thermal zones z ∈ Z. The
sink application outputs the thermal sequence SA (t, z), which is fed to the sequence model. This model
generates the label sequence LA′

(t), holding one application label per time-step. LA′
(t) is fed to the

sequence transformer, which then outputs the inferred application sequence A′.

2.4 Machine learning in security applications
Fuelled by the rapid advances in the machine learning domain, techniques from the machine
learning domain are more frequently applied to device security and privacy relevant topics. Machine
learning methods have been employed to build detectors for malicious applications. For example,
the detectors analyse the Application Program Interface (API) calls and correlate it with the
permission set of applications [32]. Buczak and Guven [4] gathered many other examples for
machine learning applications in the domain of cyber security, classifying all these methods in
three groups:

(i) misuse based approaches that identify known attacks by their signature,
(ii) anomaly based approaches which recognise behaviour which is not considered “normal”, and
(iii) hybrid systems, which are a mix of misuse and anomaly based approaches.
All of these techniques rely on the availability of large amount of data for training.

In our work, we will also apply machine learning techniques in the security domain. While
most of the existing works take advantage of machine learning techniques for defence mechanisms,
we will use machine learning from the perspective of an adversary. Furthermore, we will show how
to generate a large amount of data for training, without having to deploy a complex measurement
system for a long period of time.

3 Threat model

First, we describe the attack scenario to define the threat model of the thermal side channel attack.
Second, we present the attack concept to outline the techniques used to mount a thermal side
channel attack.

3.1 Attack scenario
We base our threat model on the scenario presented in Figure 1 and the information flow in
Figure 2. A user runs a sequence of applications A on a mobile device. This sequence consists
of an arbitrary sequential order and duration of application executions, depending on the user
needs. Due to the difference in computational effort and the components utilised by different
applications, the device generates different heat patterns in time and space. These heat patterns
can be determined by observing the different thermal zones of a device. A thermal zone defines

LITES
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sensor readings for a specific part of a device, for example, a processor core. An adversary
infiltrates the mobile device, for example, by disguising a thermal monitoring sink background
service as part of a benign game. Therefore, the adversary is able to monitor the temperature
sensors of the mobile device.

The sink in Figure 2 collects a temperature sequence SA (t, z), which is composed of the
thermal readings of all observed thermal zones z ∈ Z. The adversary analyses the temperature
sequence SA (t, z) using a sequence model. As a result of the analysis, the adversary obtains an
application label sequence LA′ (t) with one label per time-step. In the final analysis step, the per-
time-step label sequence LA′ (t) is transformed into a condensed application label sequence A′.
This transformation is necessary to eliminate duplicate labels and artefacts in the per-time-step
label sequence LA′ (t). Finally, the output application sequence A′ allows an adversary to derive
further insights into the user behaviour with different security and privacy implications. These
implications depend on whether the adversary does the analysis offline or online.

Offline Scenario. In this scenario, the adversary only deploys the sink application on the attacked
device. The sequence model, as well as the sequence transformer, are implemented on a dedicated
analysis device. Therefore, the sink application transfers the thermal data to the analysis device
for application sequence inference. This way, the attacker can determine which applications were
executed at what time and create a detailed user profile containing sensitive information. For
example, the usage of medical applications would allow inferences on the medical condition of the
user, or location-based applications, e. g., a regional tourism application, allow inferences about
the location and activities of the user. Such a data leak would present a major privacy violation,
as the profiling of the user behaviour could be performed without the user’s knowledge or consent.

Online Scenario. In the online attack scenario, the attacker performs the application sequence
inference on the attacked device in real-time. This means, in addition to the sink applications,
the sequence model and the sequence transformer also have to be deployed on the attacked device.
The attacker may then use the real-time information to time a targeted attack on a specific
application in the secure domain. Such an attack is dangerous when considering a company
that enforces the bring-your-own-device policy. According to this policy, employees will use their
mobile devices for private and business applications. Therefore, the phone features two application
domains, i. e., business and private, which are separated by virtualisation. An example of a
virtualisation environment is “Android for work”. Such a system is vulnerable if an attacker
can retrieve information about applications in the secure domain. This can be achieved if an
attacker mounts an online thermal side channel attack in the less secure domain to gain runtime
information from the secure domain.

3.2 Concept of a thermal side channel attack
To mount the thermal side channel attack, the sink application, the sequence model and the
sequence transformer need to be implemented. We base the sink application design on ExOT,
presented by Miedl et al. [29], which allows us to sample the thermal zones of a device in a timed
fashion and without the need for elevated privileges.

The thermal side channels establish a highly complex transformation from device usage patterns
to observable temperature changes in the various thermal zones z ∈ Z. In addition, the usage
patterns of applications differ vastly, as do the interactions of applications with their users. Masti
et al. [23] already stated that correlation based methods show very limited capabilities as thermal
features identifying an application are very subtle. Therefore, we use techniques from the machine
learning domains of sequence-to-sequence labelling and time-series modelling to implement the
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sequence model. We build our sequence model using a Convolutional-Neural-Network (CNN)
and a Recurrent Neural Network (RNN), which we describe in detail in section 5. The sequence
transformer is based on classical filtering algorithms and rules of condensing labels, as outlined in
section 6.

It is well known that CNNs and RNNs require a tremendous amount of labelled training data
to perform well. In our case, suitable data should be available to represent user interactions and
to represent thermal traces from different applications on different devices and in different thermal
environments. However, there is no appropriate dataset available, nor is it feasible to deploy a
long-term measurement setup to gather sufficiently diverse data (user interactions, applications,
devices, thermal environments, interferences) and label them correctly. Therefore, we must define
a data augmentation scheme that allows us to generate a highly representative and diverse data
set.

4 Data augmentation

The overall process to generate a large set of diverse thermal sequences is depicted in Figure 3. It
contains four distinct components that will be detailed in the subsequent sections. Input to the
data augmentation scheme are

(i) the device for which the thermal sequence needs to be generated,
(ii) the set of applications that will potentially run and corresponding user inputs, and
(iii) a dataset configuration, which contains information to configure the whole generation scheme.
The device characterisation uses measurements in order to model the thermal behaviour of the
device itself. The outcomes are temperature coefficients, namely, the internal thermal, ambient
heating and ambient cooling coefficients, which are used to concatenate the thermal profiles of
applications and augment the data by modelling changes in the ambient temperature of the device.
Note that these coefficients are determined for each temperature sensor (or zone) z individually.

The purpose of the application characterisation is to record the temperature trace of a running
application. This is characteristic for the application and can be used by an adversary application
to spy on it. Again, the traces are collected for each temperature zone individually.

The sequence parameter generation determines (random) sequences of applications whose
corresponding temperature sequences are generated by the thermal sequence generation. In
order to increase the diversity of training data, it also (randomly) generates traces of ambient
temperature offsets in order to model that the device is exposed to dynamically changing external
temperatures.

The thermal sequence generation combines all of this information to generate a temperature
sequence and its associated label sequence.

We base our thermal modelling on Newton’s law of cooling. It states that the rate of heat loss
of a body is directly proportional to the difference in the temperatures between the body and its
surroundings. Therefore, it is expected that the system will experience exponential decay in the
temperature difference of body and surroundings as a function of time. Note that Newton’s law
does not take heat transfer between individual architectural elements into account. However, as
the experimental results show, this approximation is sufficiently accurate for our purpose.

The basic form of Newton’s law is

T (t2) = T idle + (T (t1) − T idle) · e−β(t2−t1) (1)

where β denotes the thermal coefficient, T (t) denotes the temperature at time t, we have t2 ≥ t1,
and T idle denotes the steady-state temperature. For convenience, we introduce the temperature

LITES
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Figure 3 Overall data augmentation scheme structure. We generate a thermal sequence and its labels
based on (i) the particular device and its measured thermal characterisation, (ii) the set of identifiable
applications and their thermal characterisations, and (iii) the highly-configurable data set configuration.
Using diverse configurations, we generate representative training data.

function C(·) with

∆T (t0 + t) = C(∆T (t0), β, t) = ∆T (t0) · e−β·t (2)

It returns the temperature difference to the steady-state temperature ∆T (t0 + ∆t) = T (t0 + ∆t) −
T idle after time t and uses the initial temperature difference ∆T (t0) = T (t0) − T idle, the thermal
coefficient β, and the time difference t. In order to be able to consider different heat transfer
mechanisms that mediate between heat losses and temperature differences, we can use different
constant thermal coefficients in the temperature function C(·).

4.1 Device characterisation
One basic component of the data augmentation scheme is the characterisation of each device in
terms of its thermal coefficients. This model will be used later on to combine the temperature
profiles of two applications that run in sequence.

In order to consider different heat transfer mechanisms, we will characterise each thermal zone
z ∈ Z of a given device by three thermal coefficients:
1. the internal temperature coefficient βz,
2. the ambient heating coefficient βheat

z , and
3. the ambient cooling coefficient βcool

z .

The internal temperature coefficient βz describes how long the heating effect from a previously-
executed application continues. To approximate this coefficient, we conduct measurements on the
respective device. The device is placed in an environment with the controlled ambient temperature
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and kept idle before the start of the measurement. Next, a benchmark application is executed for
some randomly chosen time, which increases the temperatures of the zones by some value. As
soon as the application is stopped, a temperature trace is recorded. The measurement is repeated
for different run-times of the benchmark. From these traces, we derive the internal temperature
coefficient βz for each thermal zone z using regression analysis of the temperature traces, i. e.,
fitting the temperature function C (·) in Equation (2) to the temperature measurements using
non-linear least squares.

The two ambient coefficients for heating and cooling, βheat
z and βcool

z , respectively, model
the influence of increasing or decreasing ambient temperatures on a specific thermal zone. Both
coefficients are determined by first moving the idle device to an environment with a different
ambient temperature, then moving it back to the initial environment and taking the corresponding
temperature trace. By isolating the time intervals when the device adapts to the new ambient
temperature, similar to βz, we use regression analysis to determine βheat

z and βcool
z .

4.2 Application characterisation
We characterise an application a running on a chosen device by determining the thermal profile
T a (∆t, z), which describes the thermal behaviour caused by the execution of the application a.
Here, ∆t denotes the time since the application start and z denotes the observed thermal zone of
the device.

To derive the thermal profile of an application, we record a thermal trace T a (t, z) during
the execution of the application a, i. e., 0 ≤ t ≤ texec. We do this measurement in the same
environment as before for the internal thermal coefficients βz. This way, we can ensure that the
device has settled before starting the measurement and minimise the chance for interference from
external factors.

For every application, we perform multiple measurements to derive multiple thermal profiles.
This allows us to acquire a more diverse set of profiles and compensate for thermal variations
caused by the measurement setup. In addition, we also record multiple user interaction patterns
for each application, encapsulating typical application use cases. The user input for the different
use cases of the applications is recorded and replayed, to ensure reproducibility of the raw data.

4.3 Sequence parameter generation
The component for sequence parameter generation provides a sequence of applications and a trace
of changing ambient temperature offsets. Depending on these inputs, the corresponding thermal
sequence is generated. By changing the sequence of applications and the ambient temperature
offset of the device in an appropriate way, a large set of diverse thermal sequences and their
associated labels can be generated. The strategy by which the sequence parameters are generated
is described in the dataset configuration. In the following, we describe the functionality of the
sequence parameter generation.

Based on the available applications a and the dataset configuration, we generate the application
sequence as an ordered list of tuples A. The ith tuple of A is defined as < ai, tstart

i , tend
i >, where

ai defines the ith application which is started at time tstart
i and closed at time tend

i . We do not
consider the concurrent execution of two or more applications. Therefore, the execution intervals
of individual applications are assumed to be disjoint and consecutive: tstart

i+1 = tend
i and tend

i > tstart
i .

This assumption is realistic, considering the typical usage of a mobile device where a single
foreground application is executed at a time. Nevertheless, one should also mention that there are
also other usage patterns where music can play in the background, or two applications can be
used side-by side in split-window mode.

LITES
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Depending on the information in the dataset configuration, we generate the application sequence
A either
(A) randomly,
(B) systematically to increase the number of different thermal profile sequences in the data set, or
(C) such that thermal profiles are randomly chosen from two sets of profiles, alternating.
Method (B) ensures that the maximum number of different thermal profiles appear in the data
set. Method (C) is used, for example, if the thermal profiles can be split into two groups, i. e.,
thermal profiles of known and unknown applications.

The thermal offset T offset(t, z) simulates different environmental temperatures for different
locations of the mobile device, e. g., indoors or outdoors. To generate a relative offset trace
T offset(t, z) for each temperature z, the sequence parameter generation first randomly generates
an initial thermal ambient thermal offset ∆T ambient

0 and an ambient thermal offset sequence
∆Tambient with n tuples. The ith tuple of the sequence is defined as < ∆T ambient

i , tenter
i > and

specifies that the device enters an environment with the ambient thermal offset of T ambient
i at

time tenter
i . The ambient thermal offset is relative to the ambient temperature in the measurement

environment used for the application characterisation (see above). Based on this ambient thermal
offset sequence, we derive T offset(t, z) using Newton’s law as follows:

T offset(t, z) =



U(−1, 1) + ∆T ambient
0 ∀ 0 ≤ t < tenter

1

U(−1, 1) + ∆T ambient
i + C

(
T offset(tenter

i , z) − T ambient
i , βheat

z , t − tenter
i

)
· · ·

∀ 1 ≤ i ≤ n ∧ tenter
i < t ≤ tenter

i+1 ∧ T ambient
i−1 ≤ T ambient

i

U(−1, 1) + ∆T ambient
i + C

(
T offset(tenter

i , z) − T ambient
i , βcool

z , t − tenter
i

)
· · ·

∀ 1 ≤ i ≤ n ∧ tenter
i < t ≤ tenter

i+1 ∧ T ambient
i−1 > T ambient

i

(3)

where tenter
n+1 = ∞. Note that when the ambient temperature increases, we use βheat

z as the thermal
parameter for the thermal behaviour model of the zone, while for decreasing ambient temperatures,
we employ βcool

z . T offset (t, z) not only contains the ambient offset of the thermal trace but also
adds random thermal noise U(−1, 1), where −1 and 1 define the maximum amplitude of the
thermal noise in ◦C. This is necessary, as traces generated from laboratory data is less noisy than
real-world recordings.

4.4 Thermal sequence generation
Now that we have chosen the sequence parameters and have characterised the device, as well as
the applications, we are in the position to generate a corresponding thermal sequence.

The first challenge is to generate application sequences based on the provided temperature
profiles. The simple concatenation of these profiles following the provided application sequence A
is not possible for three reasons: First, the final temperature of a temperature profile does not
typically match the initial temperature of the subsequent application. Second, we cannot expect
that an application runs from start to end. Rather, it undergoes a halting or closing phase when
a context switch takes place. Finally, we must consider the changing ambient temperature offset,
as well as the initial temperature offset of the thermal sequence. We will now go through these
challenges one-by-one.

Before we can concatenate the thermal profiles according to the generated application sequence
A, we have to select and crop thermal profiles to the desired length. However, we must include
the thermal information of closing or halting the application in the cropped thermal profile. To
this end, we empirically evaluate the time interval at the end of a thermal profile necessary to
close an application. For example, a thermal profile has the length of 20 s, and we have evaluated
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Figure 4 Thermal sequence build from different thermal profiles collected from a Sony Xperia Z5, see
Equation (6). (a) illustrates the thermal traces, (b) the label sequence LA (t) and (c) the application
trace A. The application labels correspond to Table 1. Our data augmentation removes temperature
discontinuities at application pre-emption points without distorting the thermal profiles.

that the last 4 s are used to close the application. If we now want to crop the thermal profile
to a length of 12 s, we crop it to 8 s and then append the final 4 s. To ensure that there are no
temperature discontinuities in the cropped thermal profile, we employ the temperature function
C (·) as follows:

T
a(t, z) =


T a(t, z) ∀ t ≤ tcrop − tclose

T a(t + texec − tcrop, z) + · · ·
C (T a(tcrop − tclose, z) − T a(texec − tclose), βz, t + tclose − tcrop)

∀ tcrop − tclose < t ≤ tcrop

(4)

Here, tcrop is the cropped length the thermal profile, i. e., the length as requested from the
application sequence, tclose is the time interval needed for closing an application, and texec the
total length of the thermal profile. We note that tclose < tcrop < texec.

Now, we will determine the thermal sequence SA (t, z) of an application sequence A with
tuples < ai, tstart

i , tend
i > for 1 ≤ i ≤ nA, while

(i) considering that there are no discontinues in the sequence when switching from one application
to the next,

(ii) taking into account that the ambient temperature is changing, and
(iii) setting the initial temperature of the thermal sequence.

We obtain the thermal sequence SA (t, z) for each temperature zone z as follows:

SA (t, z) =


T offset (t, z) + T

a

1 (t, z) ∀ 0 = tstart
1 ≤ t ≤ tend

1

T offset (t, z) + T
a

i (t, z) + C
(

SA(tend
i−1, z) − T

a

i (0, z) , βz, t − tstart
i

)
∀ 2 ≤ i ≤ nA ∧ tstart

i < t ≤ tend
i

(5)

Here, we have nA applications with indices 1 ≤ i ≤ nA, where the first application starts at time
tstart
1 = 0. Note that we use the cropped temperature profiles, as determined in Equation (4).

We employ the temperature function C (·) to offset every thermal profile in accordance with our
temperature model so that there are no discontinuities in the thermal trace at the concatenation
points. As a final step, we derive the label sequence LA(t) corresponding to the thermal sequence
SA(t, z). The label sequence LA(t) is the numerical representation of the application label for
each time step.

Figure 4 illustrates the thermal sequence generated from the example application sequence A
defined as

A = ( < HO, 0.00 s, 1.13 s >, < GA, 1.13 s, 4.83 s >, < -, 4.83 s, 6.79 s >,

< HO, 6.79 s, 8.52 s >, < WB, 8.52 s, 13.04 s >, < HO, 13.04 s, 15.60 s >,

< MA, 15.50 s, 17.38 s >, < HO, 17.38 s, 18.97 s >, < CL, 18.97 s, 20.22 s >) (6)
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The application labels are outlined in Table 1, and the thermal profiles were collected from a
Sony Xperia Z5 smartphone and the settings outlined in section 7. The example illustrates that
our data augmentation scheme is able to generate traces that look realistic and do not show any
discontinuities.

5 The sequence model

In this section, we show how we can apply well-known methods from time-series and sequence-
to-sequence modelling to mount a thermal side channel attack. In particular, we describe an
implementation of the sequence model, as shown in Figure 2. Its purpose is to transform the
received thermal sequences from all the thermal zones SA (t, z) into a sequence of labels LA′ (t),
i. e., the sequence of presumably running applications. We describe the chosen basic neural network
architecture, as well as the training setup.

5.1 Neural Network architecture

The thermal side channel is characterised by complex, largely unknown and non-deterministic
properties. First, the running applications can only be identified through their time-dependent
usage pattern of the various components of the device such as its CPUs, GPU, memory and
dedicated processing components. This usage pattern is unknown and non-deterministic, as it
depends on the interaction of the user with the application, as well as data input. Second, the usage
pattern leads to distributed power consumption that is converted to temperature changes and
heat diffusion through an unknown thermal model of the device. Last but not least, interferences
from changing ambient temperature, air flow, running software services, as well as measurement
noise change the temperature pattern received by the sink application.

The transformation of a running application to a corresponding thermal sequence involves
long-term and state-dependent behaviour. For example, an application can be identified by a
sequence of usage patterns of the various components of the device and, therefore, memorising
and identifying this sequence of usage patterns is an essential prerequisite for the sequence mode.
The transfer from usage patterns to the thermal response at the thermal zones of the device also
involves long-term state dependencies. In this case, the thermal energy that is diffusing. As a
result, an effective sequence model needs to be able to flexibly represent state-dependent behaviour
internally, i. e., it should have an internal state.

Due to this complexity of the input data, we choose a Neural Network (NN) based sequence
model, which is able to learn the relation between running applications and the received thermal
sequence. We compose this NN based sequence model using a feed-forward Convolutional-Neural-
Network (CNN) for feature extraction and a Long Short-Term Memory (LSTM) based Recurrent
Neural Network (RNN) to obtain the temporal relation between the thermal features. We give a
brief overview of these two NN types in the following two sections.

5.1.1 The Convolutional Neural Network

A Convolutional-Neural-Network (CNN) is one of the techniques used in time-series processing,
for example, seismic data [25]. As stated by Goodfellow et al. [9, Chapter 9], a CNN implements
the convolution operation to extract feature maps from the input using kernels, defined as

y(t) = (x ∗ k)(t) =
∞∑

i=−∞
(x(i) · k(t − i)) (7)
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...k kernel size... pooling sizeP... number of time steps after convolutiontconv

number of kernels...Ktin ... number of input time steps

}
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Figure 5 A simplified example of a one-dimensional Convolutional-Neural-Network (CNN). Note that
the number of time steps after the 1D-convolution tconv depends on the kernel size k and the data padding
used for the convolution.
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Figure 6 A Recurrent Neural Network (RNN) cell, in simple representation (left), and unrolled over
time. it represents the input, ot the output and ht the internal state at time t.

where x(t) is the input and k(t) is the kernel. In our model, we employ one-dimensional feed-
forward convolutional layers to transform the input to feature maps. Furthermore, we use pooling
layers to reduce the size of the convolutional layer output. Roughly speaking, a CNN can efficiently
transform our time-series data into a suitable format for further processing, while reducing the
data size and thus reducing the complexity of following computation steps.

Figure 5 illustrates an example of such a CNN. The input data has a length of tin time steps
and Din dimensions. Different dimensions can be, for example, different sensors that are read.
The 1D-convolutional layer processes the input data to obtain the so-called hidden feature map,
which has a size of [tconv × K]. Here, tconv defines the number of time steps in the data after
the convolution operation, which depend on the size of the kernel k and the padding method
that is used. K defines the number of different kernels, or filters, used by the 1D-convolutional
layer, illustrated by the different colours in Figure 5. The hidden feature map is downsampled by
the pooling layer using a fixed pooling size P and a pre-defined function, for example, max. The
pooling layer outputs the final feature map of size [(tconv/P ) × K].

5.1.2 The Long Short-Term Memory based Recurrent Neural Network
In contrast to simple feed-forward neural networks, RNNs have internal feedback loops that
allow them to capture, represent and use temporal information in the input sequences. Figure 6
illustrates an RNN consisting of a single cell, feeding the internal state of the current time-step
to the next time-step. For training, the RNN is unrolled over time (see Figure 6), to perform a
back-propagation through time for computing gradients. In other words, after unrolling, the input
vector dimensions of the RNN are extended by the time dimension. For example, a RNN that
takes an input vector with NF feature dimensions and is unrolled NT time-steps, will take an
NT × NF input matrix during training.

LITES
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Figure 7 Setup during the training phase of the sequence model.

The main issue of simple RNN cells is the vanishing-gradient-problem, which does not allow
them to capture long-term temporal relations in the data [12, Section 3.2]. This problem arises
because, as the weights are shared for all time steps, input values are multiplied with the same
weights, which leads to exponential decay of the sensitivity of the nodes towards the input data.
To compensate the vanishing-gradient-problem, Hochreiter and Schmidhuber [14] designed Long
Short-Term Memory (LSTM) cells with an input, a forget and an output gate. These gates
allow LSTMs to control the information flow over time (long-term memory) better and, therefore,
compensate for the vanishing-gradient-problem [12, Chapter 4].

LSTMs are often implemented as bi-directional networks, which capture temporal relationship
in the data in both directions. Simply speaking, bi-directional networks consist of two sub-
networks, one of which traverses the data from past to future and the other from future to past [12,
Section 3.2.3]. Bi-directional networks often perform better, but they are more complex due to
the increased size of the network. In addition, bi-directional networks cannot be used on-line as
they require information from the future to process a label output. Therefore, we will use simple
uni-directional LSTM layers in our sequence model.

5.2 Model structure and training setup

For our experiments, we use a network consisting of
(i) one convolutional layer with 64 filters and a kernel size of 25 (1 s),
(ii) one max-pooling layer,
(iii) 4 LSTM-layers with 128 units each, and
(iv) a dense layer with as many units as labels in the experiment scenario.

The CNN reduces the amount of data fed to the LSTM layers and extracts the most important
thermal features. Using the LSTM layers, we derive and memorise timing-related information
from the internal thermal feature stream. Lastly, the dense layer converts the LSTM layer output
to a one-hot-encoded output label vector.

Figure 7 illustrates the setup for training of the sequence model. The input for the training
are the thermal sequence SA (t, z) and the corresponding label sequence LA (t), which we generate
as described in section 4.

During training, we use the sequence loss from the TensorFlow 2.0 Addons seq2seq package3.
This loss function allows us to weight the individual samples of the trace for two purposes:

3 https://www.tensorflow.org/addons/api_docs/python/tfa/seq2seq/sequence_loss

https://www.tensorflow.org/addons/api_docs/python/tfa/seq2seq/sequence_loss
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(i) if the input trace length is shorter than the actual input length of the model, we use zero
weights to indicate which samples should be ignored, and

(ii) the weights allow us to compensate if some labels appear disproportionately often in the
training data to ensure the training puts the same emphasis on all labels (example-weighted
training).

The weight generator generates the weights depending on how often a label occurs in a batch.
For example, in a batch label with two labels A and B, A occurs twice as often as B. In this
case, the weights are 0.5 for label A and 1 for label B. The determined loss is then fed to the
RMSprop optimiser, an adaptive learning rate optimiser which has proven to work well for many
applications [41]. We choose the RMSprop optimiser because it is widely used and has been
empirically evaluated to outperform simple stochastic gradient decent in terms of training time4.
However, we acknowledge criticism towards stochastic optimisation techniques that has been
raised in the past [34], but leave an evaluation of different optimisers for future work.

To avoid over-fitting, we use dropout layers and early stopping during training. The early
stopping is triggered whenever the loss on the test set does not decrease, and the per-time-step
accuracy does not increase after 20 epochs of training.

6 Sequence transformation and performance metrics

Following the information flow, as depicted in Figure 2, the sequence model transforms the thermal
sequence into a label sequence. Due to the limited view of the sequence model on the relation
between the application sequence and the resulting temperature sequence, we can observe artefacts
when switching between applications. Finally, in order to evaluate the difference between the
initial application sequence and the predicted application sequence, appropriate metrics need to
be defined.

6.1 Sequence transformation
After training the sequence model, we feed an example thermal sequence to obtain the label
trace, as illustrated in Figure 8. The example is generated using thermal profiles collected from a
Sony Xperia Z5 smartphone, using the experimental setup outlined in section 7. In this section,
we highlight issues in the label trace LA′(t) as produced by the sequence model and provide an
approach to address them. Figure 8 illustrates a thermal sequence using the applications outlined
in Table 1 and thermal profiles from a Sony Xperia Z5 (see section 7 and section 8). (a) shows the
thermal sequence SA(t, z) for one of the zones, (b) the output label trace LA′(t) from the time-
sequence model, (c) the output application sequence A′, and (d) the ground truth A.

The literature offers a variety of different approaches for a transformation from a label per
time unit to a label interval. For example, combining the RNN with a Hidden Markov Model
(HMM) or using the so-called Connectionist Temporal Classification (CTC) algorithm [12]. CTC
based models provide an output distribution over all possible application sequences for a given
input. One can use this distribution either to infer a likely application sequence or to assess the
probability of a given one. However, as such advanced approaches require a considerable amount
of training and computing overhead, we resort to the following simpler two-step approach: Use a
filter to avoid the jitter label and a label condensing rule to convert LA′(t) into A′. We consider
this simple approach sufficient for our application, as we do not need to differentiate whether

4 https://towardsdatascience.com/understanding-rmsprop-faster-neural-network-learning-62e116f
cf29a
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(c)HO GA - HO WB HO MA HO ClPredicted Apps A'
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Figure 8 A thermal sequence processing example taken from the evaluation in section 8 using thermal
profiles collected from a Sony Xperia Z5. shows (a) the thermal sequence SA(t, z) for one of the zones, (b)
the labelling sequence LA′

(t), (c) the predicted application sequence A′ and (d) the actual application
sequence A. The application Labels correspond to the labels outlined in Table 1. The plot shows that
the sequence model is capable of predicting correct labels with only a small amount of timing inaccuracy.
Yet, labelling artefacts at the application pre-emption points at 169.66 s and 390.02 s occur. However, the
sequence transformation using a majority voting filter and label condensing is able to compensate for such
labelling artefacts.

an application has been executed multiple times in a row or once for a longer period of time.
Nevertheless, the parameter of the filter should match the minimal time period of an application
to be recognized.

In Figure 8, the output label trace LA′(t) at the pre-emption points at 169.66 s and 390.02 s
jumps between multiple labels. Therefore, there is a need for an additional filter to eliminate such
a label jitter. We apply a simple sliding window with majority voting replacement with a window
length of 25 s as the minimal length of an application execution is larger. This window size is
sufficiently large to compensate the label jitter and other labelling artefacts, yet small enough to
allow for a sufficient temporal accuracy of the labelling.

After determining the filtered per-time-step labelling sequence LA′(t), we have to apply a final
transformation to derive the predicted application sequence A′. All consecutive equal labels are
combined to a single label. By tracing the start and end time of the condensed labels, we can
determine when an application is executed. The example from Figure 8 shows that the network is
capable of determining the correct application sequence and that the timing is reasonably accurate.
The latency of the labels at the application pre-emption points can be considered normal as
Graves [12] already stated that uni-directional LSTM models often set the labels with some delay.
However, the example also shows that if the thermal trace does not contain sufficient thermal
features, misclassifications might happen. As the gaming application (GA) seems to be idle at the
pre-emption point at 120.74 s, the sequence model sets the unknown label (“-”) too early.

6.2 Performance metrics
In order to evaluate the performance of the whole approach as outlined in Figure 2, we need to
determine different metrics. First, we derive the per-timestep accuracy of the label sequences
LA(t) and LA′(t), which are of equal length. The per-timestep accuracy is the number of equal
elements in LA(t) and LA′(t), divided by the length of LA(t).

To get a more detailed understanding of the performance of our approach, we also evaluate the
difference between the initial application sequence A and the predicted one A′. The associated
challenges are due to the following characteristics:

(i) two application sequences A and A′ might have different lengths,
(ii) element-wise comparison of two sequences may lead to misleading results, and
(iii) we are interested in the temporal correctness of the predicted application sequence in addition.



P. Miedl, R. Ahmed and L. Thiele 02:17

For example, the element-wise comparison of the correct sequence “ABDABABAB” and
predicted sequence “ABDBABAB” yields a relative error of 5/8 when taking only the shorter
application sequence as a reference. Besides the problem of different sequence lengths, we can
also observe that there is just one difference in the two sequences, namely the missing “A” after
“D”. A metric that can handle sequences of different lengths is the relative Levenshtein distance,
also known as relative edit distance. The relative Levenshtein distance is the minimal number
of modifications that have to be applied to a sequence to be equal to another one, divided by
the length of the correct sequence. Possible modifications are insert, delete and replace. For
our example sequences, the relative Levenshtein distance is 1/8 as we just need to insert the
application “A” after “D”. This result shows that the two sequences are rather similar in terms of
the relative Levenshtein distance, which is closer to our intuition.

The second metric we use for the final evaluation is the average timing error or temporal
label placement error. A naive approach would measure the time error of the label placement by
calculating the Euclidean distance between the predicted application pre-emption points and the
actual pre-emption points. However, the predicted application sequence can contain a different
number of application pre-emptions than the real application sequence. Therefore, we combine the
Euclidean distance with the Dynamic Time Warping (DTW) algorithm [37]. DTW will calculate
the Euclidean distance between all pre-emption points reported in the predicted application
sequence, with the most similar pre-emption point in the true application sequence, and report the
sum of all distances calculated for the sequences. For example, let us assume the network reports
three application pre-emptions at 5 s, 8 s and 11 s, while the true sequence only contains two pre-
emption points at 5 s and 9 s. Using DTW, the reported Euclidean distance will, therefore, be 0 s
+1 s +2 s = 3 s. To normalise the time error metric, we divide the value reported by the DTW
algorithm by the number of actual pre-emptions in the true sequence. This would result in an
average time error of 1.5 s in the example. If a predicted application sequence only contains one
application and, therefore, no pre-emption point, the average timing error is NaN .

7 Target Setup

The final performance evaluation of the thermal side channel attack is based on data from real
smartphones. We chose two different smartphones from two different vendors for our evaluation:

A Samsung Galaxy S5 SM-900H based on a Samsung Exynos 5422 SoC, with Android 5.0 and
3 thermal zones; from now on referred to as S5.
A Sony Xperia Z5 based on a Snapdragon 810 SoC with Android 7.0 and 36 thermal zones,
referred to as Z5.

If not otherwise specified, the two smartphones are placed in an air-conditioned server room
with approximately 22◦C and are connected to the power outlet. To generate our datasets, we use
a measurement setup based on the ExOT (see Miedl et al. [29]). ExOT provides building blocks
for measurement applications, as well as an experiment execution and analysis flow. To read the
thermal zones, we employ a sink application which reads the corresponding sysfs files5.

In addition, for the evaluation purposes, the sink application determines the current foreground
application, i. e., the ground truth. Note that this just implemented for determining the ground
truth and is not part of the attack scenario at all. The foreground application is determined by
querying the usage stats or activity manager, depending on the Android build. As these methods
require elevated privilege levels, in a real attack the sink application is not able to determine the
foreground application.

5 On the most Unix based systems the thermal zone nodes can be accessed via the sysfs where $i is the
respective thermal zone number: /sys/devices/virtual/thermal/thermal_zone$i/temp
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Table 1 Used applications and associated labels during the performance evaluation.

Label Application Name Description

VM AnTuTu Benchmark Suite
CL Dropbox Cloud storage application
DO Document Viewer Standard document viewer
GA Angry Birds Rio Game
SM Facebook Social Media client
IM Wire Instant messaging service
WB Chrome Browser Web browser
MA Gmail E-mail client
LO Google Maps Location services
VI YouTube Video streaming service
HO Launcher/Home Android system
- Blank/Unknown Unknown application

The sink application is implemented as an Android background service and is configured to
conduct a measurement every 1 ms. However, due to the Android scheduling policy, the sampling
period is longer and fluctuates. This results in an average sampling period of approximately 30 ms
on S5 and 46 ms on Z5. To get equally-spaced samples for further data processing, we re-sample
all thermal traces with a sampling period of 40 ms.

To minimise the data processing overhead, we embed our analysis into the existing ExOT
framework to take advantage of the data processing stack. We randomly choose ambient thermal
offset between −35◦C and 35◦C and allow multiple ambient temperature changes per batch.
Table 1 outlines all possible foreground applications and the associated labels, if not defined
otherwise. We selected those applications since they cover the most common use cases of a current
smartphone.

7.1 Thermal parameters
For applying a thermal side channel attack according to Figure 2, we need to train the corresponding
sequence model, see Figure 3. To be able to apply the data augmentation scheme as described in
section 4, we need to characterise the device and determine the necessary thermal parameters,
namely, the internal thermal, ambient heating and ambient cooling coefficients.

We also use the thermal coefficients to select the thermal zones which show high thermal
dynamics, i. e., potentially carry useful information. Initial measurements on Z5 show that 24 of
the 36 thermal zones provide usable thermal measurements. The other thermal zones either only
provide 0◦C outputs or are not affected by any application execution. Furthermore, on S5, we
exclude the battery sensor as it does not show any application-dependent thermal variations. All
parameters are outlined in Figure 9.

To determine the thermal coefficients βz, we place the target devices in a testbed [38, Chapter
3], which allows us to control the temperature in a range of approximately 15◦C to 50◦C. For
each ambient temperature, we conduct two measurements where we keep the device idle for
3 minutes and then execute a CPU benchmark6 for either 70 or 130 seconds. The execution of the
benchmark heats up the device, and we observe the cooling-off phase for 3.5 minutes, as illustrated
in Figure 10.

6 CPU Throttling Test (https://play.google.com/store/apps/details?id=skynet.cputhrottlingtest)

https://play.google.com/store/apps/details?id=skynet.cputhrottlingtest
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Figure 9 Thermal coefficients for internal (βz), increasing (βheat
z ) and decreasing ambient temperatures.

To determine the ambient heating and cooling coefficients, we simply move the idle phones
to different locations in- and outside of an office building. From the resulting thermal trace, we
isolate the resulting thermal changes and determine βheat

z and βcool
z . The results in Figure 9

illustrate that the ambient thermal coefficients βheat
z and βcool

z are significantly lower than the
respective βz, on both platforms. However, due to the length of our temperature observations, the
long-term influence of varying ambient temperatures cannot be neglected.

The thermal coefficients illustrated in Figure 9 show that the CPUs have the highest thermal
dynamics on both smartphones S5 and Z5. Furthermore, while the internal thermal coefficients
βz for the cores are high compared to other thermal zones, the influence of increasing ambient
temperatures is rather low, as indicated by the comparison of βheat

z for different zones. Therefore,
we will only use the eight CPU thermal zone readings on S5 and the single CPU cluster reading
on Z5 as input for the application detection.
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Figure 10 The device is heated up by an active application and we derive the thermal coefficients from
the measurements taken when the device is idle and cools down.

7.2 Preparing thermal profiles for data augmentation
In order to generate the thermal profiles T a(t, z) required by the data augmentation scheme, see
Figure 3, we need user inputs to interact with the selected applications. We use the RepetiTouch
Pro application7 to record user inputs. RepetiTouch Pro also allows us to replay recorded user
inputs to generate multiple thermal profiles for one application usage. In our experimental setup,
the user inputs are collected by a single user, who executes 49 different use cases. Each use case
defines the usage of one application in a specific manner. By defining multiple use cases for each
application, we ensure that the model learns the thermal profile of an application rather than one
specific use case. In order to increase the pool of thermal profiles to feed to the data augmentation
scheme, we record 10 traces per use case, i. e., 10 thermal profiles per use case.

The collected thermal profile traces can contain labels which we do not specify in Table 1.
This is caused by dynamic application content, for example, advertisement pop-ups. As the
execution of recorded user inputs with RepetiTouch is static, such dynamic application content
causes deviations from the defined use case and results in unknown application labels. Depending
on the evaluation scenario, we remove parts with unknown labels and use data augmentation to
ensure there are no temperature discontinuities in the thermal profiles.

Moreover, we define that the data augmentation scheme uses thermal profile snippets with a
length of at least 30s. Hence, our scheme is limited to a minimal use of a single application of 30
seconds. Shorter usages of applications are not considered at this stage.

8 Performance evaluation

In this section, we evaluate the performance of the thermal side channel attack based on the
training and test datasets defined in subsection 7.2. We divide our performance evaluation into
multiple scenarios. For each scenario, we generate 28 training and 7 test batches, with a batch
length of 3 hours and 45 minutes (13500 s). The augmentation scheme uses 8 thermal profiles of
each use case to generate the training dataset and the remaining 2 thermal profiles of each use
case as a base for the test dataset.

No Augmentation Scenario. In the “No Aug” scenario, we train the network using the raw
data we have collected without using the proposed augmentation technique. Thermal sequences
that are shorter than the specified model input are zero-padded, and we use zero weights so that
the training is not affected by the padding. This results in 325 training batches, one for each
application use case. As a test, we generate 7 batches by simply concatenating recorded lab traces
without augmenting the ambient temperature and the dynamic offset.

7 https://play.google.com/store/apps/details?id=com.cygery.repetitouch.pro

https://play.google.com/store/apps/details?id=com.cygery.repetitouch.pro
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Whitebox Scenario. The training dataset for the “Whitebox” scenario, generated using the
data augmentation scheme, only contains known labels. This means we remove all portions with
unknown labels from the datasets as described in subsection 7.2.

New Apps Scenario. In the “New Apps” scenario, we evaluate the performance of the model
if a new application is added to the device after training using augmented data. In contrast to
the “Whitebox” scenario, we keep all unknown labels in the training dataset. Furthermore, we
record thermal profiles using the AndroBench8 application and add it to the test data. Instead of
introducing new labels for applications not defined in Table 1, the unknown (“-”) label is used.

8.1 Expressiveness of the performance metrics
First, we intend to validate whether the chosen performance metrics are sufficiently expressive.
To this end, we perform a manual evaluation by means of a visual inspection of a sample of the
“New Apps” scenario, shown in Figure 11, and compare it to the performance metrics illustrated
in Figure 12.

The per-time-step accuracy outlined in Figure 12 indicates that the models perform better
with data from Z5 than S5, which is also supported by the trace illustrated in Figure 11. However,
the relative Levenshtein distance is quite high for both platforms, as the experiments yield 0.83
for S5 and 0.70 for Z5. This indicates that the model misclassifies short thermal patterns, which
are not compensated by the majority filtering. As the durations of the misclassified trace intervals
are very short, they cause a higher relative Levenshtein distance while still yielding a high per-
time-step accuracy. We assume that this behaviour is mainly caused by the fact that thermal
patterns occurring during the execution of an application are very similar to the thermal pattern
when starting other applications and, therefore, are misclassified. A possible solution to this issue
could be to increase the long-term-memory of the model, to increase the amount of temporal
context information that is taken into account by the model when placing the labels. The majority
filter size could also be increased, but this would also increase the minimal detectable application
execution length. This example shows that neither the per-time-step-accuracy nor the relative
Levenshtein distance on its own are expressive regarding the performance of the model. Only
when combined can these metrics be used to assess the performance of the models reliably.

The average temporal errors, shown in Figure 12 for the two platforms, S5 and Z5, are
significantly lower than the length of the majority filtering window of 25 s. This indicates that the
temporal error of the labelling models is mainly due to label misclassifications. This assumption
is also supported by the labelling sequences illustrated in Figure 11.

8.2 Effectiveness of the data augmentation scheme
The experimental results depicted in Figure 12 show that training without augmentation (“No
Aug”) is not able to learn a proper sequence model, in contrast to the “Whitebox” and the “New
Apps” scenario.

To provide a more detailed experimental analysis of the effectiveness of the data augmentation
scheme, we run an experiment where we generate the training data with a reduced set of raw
thermal profiles, i. e., we use 2 instead of 8 thermal profiles per use case as a basis for the training
dataset. Figure 13 illustrates the results for the “New Apps” scenario with the normal and a
reduced raw thermal profile set as used for generating the training dataset. For Z5, the performance
for the reduced training data scenario decreases. For S5, however, training fails completely. We
assume that these two effects are caused by the following factors:

8 https://play.google.com/store/apps/details?id=com.andromeda.androbench2
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Figure 11 Traces indicate a higher amount of labelling errors on S5 than on Z5.

S5 Z5
Per-Time-Step Accuracy

8.7% 10.9%

77.4%
90.9%

72.3%
84.6%

S5 Z5
Relative Levensthein Distance

0.92 0.94
0.78

0.47
0.83 0.70

S5 Z5
Average Time Error

NaN NaN

9.17s
3.98s

8.25s 6.66s

No Aug. Whitebox New Apps

Figure 12 Training the model without augmented data is not possible. Models trained with augmented
data perform well, but adding a new application cause performance degradation.

The performance for Z5 degrades as the model does not generalise well. The augmentation
scheme is not capable of generating a training data set with sufficient variance to allow the
model to generalise well based on two very similar thermal profiles for each use case.

For S5, training of the sequence model is not possible anymore, as the thermal profiles chosen for
the training set are not representative. This might be caused by the fact that the measurement
of the thermal profiles contains more measurement artefacts. Therefore, the smaller the set of
thermal profiles, the more important their quality.

In sum, we can state that while the proposed augmentation scheme helps to generate datasets
which allow for the training of the sequence model, there are some caveats that need to be
considered. The quality of the training dataset highly depends on the quality of the thermal
profiles. However, as there is the risk of measurement artefacts, data cleansing is necessary, as
the quality of the training and test data highly depends on the quality of the initial raw data.
Unfortunately, data cleansing is a process which can hardly be automated and, to some extent,
will always have to be done manually.

8.3 Performance on different devices

The results illustrated in Figure 12 show that in general models trained for Z5 outperform the
models for S5. While we mentioned in the previous subsection that the quality of the thermal
profiles collected on S5 seem to be less representative, we also assume that the lower performance
on S5 is caused by the lack of thermal information that we can collect. On Z5, we can use 8 sensor
reading for 8 cores, while on S5 we can only get 1 reading for all 8 cores. Therefore, the amount
of thermal information that we can extract is lower on S5, which lowers the performance of the
sequence model.
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Figure 13 Reducing the base dataset of thermal profiles for the data augmentation causes a slight
performance drop for Z5, but has a substantial impact on the performance for data from S5. This is
caused by the dependency of our data augmentation scheme on the amount and quality of the thermal
profiles available for data generation.

8.4 Influence of new applications
To assess the influence of a new application in the test dataset, we compare the performance
metrics for the “Whitebox” and the new app scenario illustrated in Figure 12. The metrics suggest
that the model performance suffers when the test data contains applications labelled as unknown,
which are not present in the training dataset. A detailed analysis of the labelling traces shows
that the accuracy degradation of the per-time-step accuracy from the “Whitebox” to “New Apps”
scenario is approximately the amount of unknown label in the test dataset. Therefore, we conclude
that our models are not capable to properly label new applications with the unknown (“-”) label.

The models react as expected and simply label the new application with the application label,
which has the most similar thermal profile. This issue can be addressed by either implementing
unsupervised online learning to update the model constantly or offline re-training of the model.
However, these extensions are left for future work.

8.5 Single application detection
For the final laboratory test, we evaluate the performance of the model when it only has to detect
whether a specific application is running or not. Therefore, in the training set, we only have two
labels

(i) the targeted application, or
(ii) unknown.

Figure 14 illustrates the performance metrics for the different applications, i. e., each case corres-
ponds to a completely new learning scenario where one of the applications is known and all other
applications are labelled as unknown (“-”).

Except for Chrome (“WB”), Google Maps (“MA”) and YouTube (“VI”), on both platforms
single applications are detected with an accuracy above 80%, sometimes even exceeding 90%.
However, we also have to consider the relative Levenshtein distance, which is above 0.5 for many
test-cases and also high average timing errors. We assume that the lower performance for some
applications is caused by more ambiguous thermal profiles. For example, for YouTube (“VI”),
the thermal profile is very different depending on whether a video is played or the application is
only opened and the search function is used, without video playback. Therefore, we conclude that
it might also be useful to introduce multiple labels per application to differentiate, for example,
different operations like menu and video replay.

Training a model for single application detection is harder than for the multilabel case. This is
caused by the fact that the real data and the training data might be very different. While we
configured our augmentation scheme to generate training data sets to contain many occurrences of
the target application, in real life, a target application might not be used for a long time. However,
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Figure 14 Performance metrics for the detection of a single application. While the per-time-step
accuracy is very high for most applications, the relative Levenshtein distance varies between 0.1 to 0.6.
This indicates that the applications with a high relative Levenshtein distance have a less unique thermal
profile. Furthermore, the time errors indicate that the labels are placed with an almost perfect temporal
accuracy, as they are considerably smaller than the majority voting filter window of 25 s.
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Figure 15 The real-world traces for both smartphones, S5 and Z5. The short temporal snippets validate
the performance metrics and illustrate that the models are not able to correctly label the thermal trace.

if the target application does not appear often enough in the training data, the model will not be
able to learn the thermal profile of the application. On the other extreme, if the target application
thermal profile is inserted too often and with an unintended periodicity, the model might learn
the periodicity in which the target application appears, rather than the thermal profile. Therefore,
a model needs to be trained carefully to learn the target application thermal profile without
expecting this thermal profile to occur regularly.

If trained properly and when considering the observations from subsection 8.4, a model for
single application detection might be more robust in a real deployment. Let us consider that
the multidimensional feature space used by the RNN to classify the thermal traces is a high-
dimensional Euclidean space. In such a case, the similarity of two thermal profiles can be illustrated
by the distance between the two corresponding points in the feature space. The space mapped
to the target application label will be small compared to the space which maps to all the other
unknown applications. Therefore, if a new application thermal profile is presented to the model,
its representation will most likely be mapped to the unknown label. Hence, the model performance
will not degrade, i. e., the model is robust against new applications.

8.6 Real-world applicability
In addition to the lab generated data, we also collect a real-world trace: the same user who
recorded the inputs for the laboratory setup carries each smartphone for a day. The user freely
runs the applications available on the smartphones to imitate normal behaviour. As no data is
recorded when the smartphone is locked, this results in trace lengths of
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(i) 3h (10800 s) for S5, and
(ii) 4.5h (16200 s) for Z5.

The models trained with the “New Apps” scenario training set achieved a per-time-step
accuracy of less than 20%. This means that the models are not able to detect any applications in
the real-world thermal trace correctly, as outlined in the example illustrated in Figure 15. Also,
models for the binary use cases were not capable of detecting the respective target application in
the real-world trace.

The real world data shows more short term variability than the laboratory data. Causes for
this are the variable temperature influences from the environment and the position of the phone,
e.g. how the phone is held and operated. Furthermore, the laboratory traces were collected with
a minimum amount of applications running in the background, while during the real world data
more applications might be active and disturb the thermal profile of a foreground application.
Therefore, the significance and shape of the thermal features that the model uses change, which
makes it harder for the model to correctly infer the right application based on thermal data. In
addition, the user interaction pattern in the real-world experiment could have deviated significantly
from the typical usage patterns recorded for training. This would have resulted in significantly
different thermal profiles and consequently, higher error.

8.7 Future directions

While the results based on laboratory data are promising and clearly show the threat potential
of the thermal side channel, the tests using data collected outside of the laboratory illustrate
that there are still challenges to overcome to implement the thermal side channel attack in a
real environment. As the sequence model requires a large amount of data for training, we do
not consider manual data collection outside of a laboratory setup a viable alternative to a data
augmentation scheme. However, the data augmentation scheme needs to be refined to resemble
real-world data more closely. This includes, for example, influences on the temperature of the
smartphone when it is held in the hand compared to sitting on a table. In addition, the current
scheme does not take into account that the set of applications running in the background changes
under normal use. This influences the scheduling and core pinning of the foreground application
and adds noise to the profile, whereas in our evaluation all thermal profiles for training are collected
from smartphones running the same set of background services.

Furthermore, a study evaluating the relation between severity of the side channel and the
amount of available thermal information would allow more insights in possible mitigation strategies.
Sparse spatial information, less available sensors, or a low temporal resolution of the measurements
might drastically reduce the possibility to mount the thermal side channel attack, while still
providing enough thermal information to the power management system.

Another possible direction for exploration are server racks or laptops. Due to the lower mobility
we expect the environmental influences to be lower. However, the cooling systems and the high
utilisation of those systems might make a thermal side channel attack, as presented in this work,
very challenging.

In future work, the online scenario also needs to be evaluated. This requires that the sequence
model is optimised for the attacked platforms, to minimise the computation and memory footprint.
Otherwise, the attack is easy to detect or it might not even be possible to deploy it, due to the
limited hardware capabilities of the smartphones. Moreover, evaluating online learning methods
that would allow the model to predict applications it has not seen during the initial training would
further increase the capabilities of the thermal side channel attack.

LITES
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9 Concluding remarks

In this work, we presented a data leak based on the measurement of the temperature of a mobile
device using its internal sensors. We showed that it is possible to determine which applications
were executed at what time. This kind of information can be acquired without the knowledge of
the user and may pose a serious security and privacy violation.

We showed how to generate a fitting dataset for training a model based on real-world measure-
ments but without the need for an extensive measurement campaign. Furthermore, we explained
in detail how to build and train this time-sequence model using Convolutional-Neural-Network
(CNN), Long Short-Term Memory (LSTM) and label trace filtering. In addition, we outlined an
extensive laboratory study based on data from two smartphones, a Samsung Galaxy S5 and a
Sony Xperia Z5. The results of the laboratory results are promising, with per-time-accuracy of
up to 90% for a scenario with 11 different application labels. However, tests using data recorded
outside of the laboratory setup revealed that the data augmentation scheme is not sophisticated
enough to use laboratory data to generate training datasets that resemble outside use.

Lastly, we showed that it is possible to misuse this thermal information to mount a thermal side
channel attack. Because a thermal side channel attack violates security and privacy constraints,
action needs to be taken to mitigate this data leak before it can become a real threat.
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