
Volume 8 | Issue 1 | November 2022
Special Issue on Embedded Systems for Computer Vision

Vol. 8, Issue 1 ISSN 2199-2002 https://www.dagstuhl.de/lites

https://www.dagstuhl.de/lites

ISSN 2199-2002

Published online and open access by
the European Design and Automation Association
(EDAA) / EMbedded Systems Special Interest Group
(EMSIG) and Schloss Dagstuhl – Leibniz-Zentrum
für Informatik GmbH, Dagstuhl Publishing, Saar-
brücken/Wadern, Germany.
Online available at
https://www.dagstuhl.de/dagpub/2199-2002.

Publication date
November 2022

Bibliographic information published by the Deutsche
Nationalbibliothek
The Deutsche Nationalbibliothek lists this publica-
tion in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at
https://dnb.d-nb.de.

License
This work is licensed under a Creative Commons
Attribution 4.0 International license (CC BY 4.0):
http://creativecommons.org/licenses/by/4.0

In brief, this license authorizes each
and everybody to share (to copy,

distribute and transmit) the work under the follow-
ing conditions, without impairing or restricting the
authors’ moral rights:

Attribution: The work must be attributed to its
authors.

The copyright is retained by the corresponding au-
thors.

Digital Object Identifier
10.4230/LITES-v008-i001

Aims and Scope
LITES aims at the publication of high-quality schol-
arly articles, ensuring efficient submission, reviewing,
and publishing procedures. All articles are published
open access, i.e., accessible online without any costs.
The rights are retained by the author(s).

LITES publishes original articles on all aspects of em-
bedded computer systems, in particular: the design,
the implementation, the verification, and the testing
of embedded hardware and software systems; the
theoretical foundations; single-core, multi-processor,
and networked architectures and their energy con-
sumption and predictability properties; reliability
and fault tolerance; security properties; and on
applications in the avionics, the automotive, the
telecommunication, the medical, and the production
domains.

Editorial Board
Alan Burns (Editor-in-Chief)
Bashir Al Hashimi
Karl-Erik Arzen
Neil Audsley
Sanjoy Baruah
Samarjit Chakraborty
Marco di Natale
Martin Fränzle
Steve Goddard
Gernot Heiser
Axel Jantsch
Sang Lyul Min
Lothar Thiele
Virginie Wiels

Editorial Office
Michael Wagner (Managing Editor)
Michael Didas (Managing Editor)
Jutka Gasiorowski (Editorial Assistance)
Dagmar Glaser (Editorial Assistance)
Thomas Schillo (Technical Assistance)

Contact
Schloss Dagstuhl – Leibniz-Zentrum für Informatik
LITES, Editorial Office
Oktavie-Allee, 66687 Wadern, Germany
lites@dagstuhl.de
http://www.dagstuhl.de/lites

http://www.dagstuhl.de/lites
https://www.dagstuhl.de/dagpub/2199-2002
https://dnb.d-nb.de
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.4230/LITES-v008-i001
http://www.dagstuhl.de/lites

Contents

Introduction to the Special Issue on Embedded Systems for Computer Vision
Samarjit Chakraborty and Qing Rao . 0:1–0:8

Papers

Susceptibility to Image Resolution in Face Recognition and Training Strategies to
Enhance Robustness

Martin Knoche, Stefan Hörmann, and Gerhard Rigoll . 1:1–1:20

Micro- and Macroscopic Road Traffic Analysis using Drone Image Data
Friedrich Kruber, Eduardo Sánchez Morales, Robin Egolf, Jonas Wurst,
Samarjit Chakraborty, and Michael Botsch . 2:1–2:27

HW-Flow: A Multi-Abstraction Level HW-CNN Codesign Pruning Methodology
Manoj-Rohit Vemparala, Nael Fasfous, Alexander Frickenstein, Emanuele Valpreda,
Manfredi Camalleri, Qi Zhao, Christian Unger, Naveen-Shankar Nagaraja,
Maurizio Martina, and Walter Stechele . 3:1–3:30

Leibniz Transactions on Embedded Systems
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lites
https://www.dagstuhl.de/en/about-dagstuhl/

Introduction to the Special Issue on Embedded
Systems for Computer Vision
Samarjit Chakraborty #Ñ

The University of North Carolina (UNC) at Chapel Hill, US

Qing Rao #

Momenta Europe GmbH, Stuttgart, Germany
We provide a broad overview of some of the current
research directions at the intersection of embedded
systems and computer vision, in addition to intro-
ducing the papers appearing in this special issue.
Work at this intersection is steadily growing in im-
portance, especially in the context of autonomous
and cyber-physical systems design. Vision-based
perception is almost a mandatory component in
any autonomous system, but also adds myriad
challenges like, how to efficiently implement vision

processing algorithms on resource-constrained em-
bedded architectures, and how to verify the func-
tional and timing correctness of these algorithms.
Computer vision is also crucial in implementing
various smart functionality like security, e.g., using
facial recognition, or monitoring events or traffic
patterns. Some of these applications are reviewed
in this introductory article. The remaining articles
featured in this special issue dive into more depth
on a few of them.

2012 ACM Subject Classification Computer systems organization → Embedded and cyber-physical
systems
Keywords and Phrases Embedded systems, Computer vision, Cyber-physical systems, Computer ar-
chitecture
Digital Object Identifier 10.4230/LITES.8.1.0
Funding Samarjit Chakraborty: Acknowledges support from the US NSF grant# 2038960.
Published 2022-11-16
Editor Samarjit Chakraborty and Qing Rao
Special Issue Special Issue on Embedded Systems for Computer Vision

1 Computer vision and embedded systems

Efficiently implementing computer vision algorithms on resource-constrained embedded systems
is necessary for many application domains and is continuing to attract widespread attention in
the research community [50]. We are witnessing a surge in the development of various smart
and autonomous systems – such as autonomous cars, robots, drones, and industrial automation
systems. All of these systems rely on environmental perception in order to generate the necessary
control action. Towards this, inputs from various sensors like cameras and lidars need to be
processed and their output serves as inputs to control algorithms that compute commands for
realizing the desired system functionality. Hence, vision processing algorithms have to meet
various architectural and resource constraints and need to be certified for functional and timing
correctness in order to ensure the reliability of the entire system. This has triggered research
on the development of high-performance embedded systems architectures to support computer
vision solutions, e.g., using accelerators like FPGAs and GPUs, in particular for those that rely
on machine learning. There has also been recent work on how to provide timing guarantees
to computer vision algorithms that are a part of feedback control loops. Power and memory
optimization of computer vision algorithms, and issues related to privacy and security of vision-
based applications and systems have also been published during the past couple of years.

In view of these developments, we organized this special issue for the Leibniz Transactions
on Embedded Systems and invited papers on a variety of topics at this intersection of computer
vision and embedded systems. The topics we listed included new embedded systems architectures

© S. Chakraborty and Q. Rao;
licensed under Creative Commons Attribution 4.0 International (CC BY 4.0)

Leibniz Transactions on Embedded Systems, Vol. 8, Issue 1, Article No. 0, pp. 00:1–00:8
Leibniz Transactions on Embedded Systems

L I T E S Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:samarjit@cs.unc.edu
https://cs.unc.edu/person/samarjit-chakraborty/
https://orcid.org/0000-0002-0503-6235
mailto:qing.rao@momenta.ai
https://doi.org/10.4230/LITES.8.1.0
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lites
https://www.dagstuhl.de

00:2 Embedded Systems for Computer Vision

– including FPGAs, GPUs, and heterogeneous MpSoCs – for computer vision, novel algorithms
for computer vision targeting embedded applications, machine learning and neural networks for
image and video understanding for autonomous systems, timing analysis of computer vision al-
gorithms and architectures, performance and power analysis and management of computer vision
systems, vision-based control or visual servoing systems, security and privacy issues in vision-
based embedded systems, robustness issues in vision-based autonomous systems, and debugging
vision-based embedded systems. Papers on applications of computer vision were also invited.

Before we introduce the three papers that comprise this special issue, we briefly review some
of the recent literature on the above topics. This review is by no means complete or detailed. Its
only purpose is to provide a context for this special issue and impress upon the reader the variety
of work that has been done in this area, and the rich set of challenges that are still remaining.

1.1 Control + Vision
As we already hinted above, almost all autonomous systems rely on different feedback control-
lers that need to be implemented on resource-constrained distributed embedded systems [5]. In
the past, controller design and their implementation were done separately, which resulted in a
mismatch between model-level assumptions and implementation realities. This necessitated an
iterative design approach and significant effort in testing and debugging. More recently, different
parts of a control system are being co-designed and co-synthesized [42].

In the case of visual servoing systems, where a computer vision system is used to compute
control inputs, co-design is also being used. More specifically, while controller design was tra-
ditionally done independently and was disconnected from the vision or perception processing
techniques, recently the need for co-design between the two is being recognized [19, 53]. Holistic
approaches to closed-loop behavior have also been studied in [44], instead of designing compon-
ents like object detection, tracking, motion planning, and multi-sensor fusion in isolation, followed
by integrating these components together. By co-designing and optimizing these components to-
gether, it has been shown that resource utilization may be significantly reduced with minimal
impact on performance such as motion planning.

Several studies have focused on evaluation of vision-in-the-loop systems, since building a full
prototype of such systems might be too expensive and infeasible. Hence, the evaluation is done in
a progressive manner as different components of the system are designed. Here, the work in [21]
has proposed an evaluation framework for model-in-the-loop, software-in-the-loop, and processor-
in-the-loop simulation features, as the design progresses from the model of the system, to the
software and its deployment on multi-core processors. The goal of this work was to evaluate
the closed-loop performance of industrial motion control systems. The design of the control
strategy, and the design and implementation of the vision processing system – both involve
several parameters. How to jointly determine the values of these parameters in order to optimize
control performance, and also resource usage, is the main problem. Today, only “point solutions”
exist and we will continue to see more work in this area.

1.2 Efficient implementation of vision processing (incl. GPUs & FPGAs)
Efficient implementation of compute-intensive tasks on resource-constrained architectures, such
as those seen in the automotive domain, require the use of various forms of hardware accelerators
like FPGAs [48]. Towards this, [20] proposed a FPGA-based scalable and resource-efficient multi-
camera GigE Vision IP core for video and image processing. This IP core, that was implemented
on a Xilinx Virtex-4 FPGA, supports the connection of multi-camera interfaces to a single Gigabit

S. Chakraborty and Q. Rao 00:3

Ethernet port using an Ethernet switch. Similar FPGA-based implementations have also been
studied in [29] and [49]. Since modern cars are now equipped with multiple cameras, lidar, and
radar sensors, the volume of data that needs to be acquired for efficient processing is also large and
efficient data acquisition techniques and communication architectures have also been studied [14].

Sensor fusion is a standard task in many domains like automotive and robotics, and can be
very resource-heavy. Therefore, techniques for efficient sensor fusion has attracted considerable
attention. For example, [43] proposes techniques for spatiotemporal sampling to activate Lidars
only at regions-of-interest that are identified by analyzing the visual input. Such a task-based
sampling approach significantly reduces the volume of data that is sensed and transferred, thereby
reducing sensor fusion workload. A similar approach, where a smart camera captures only task-
critical information and is driven by embedded deep neural network algorithms for real-time
control of sensor parameters has been presented in [32].

As outlined above, in most vision-based control applications, the vision processing algorithms
incur very heavy computational workload. The work in [8] studied approximate image processing
techniques to reduce this workload, making vision-based control suitable for embedded platforms.
The underlying control strategy was adapted to an approximation-aware optimal linear-quadratic-
gaussian (LQG) controller, where the approximation error was modeled as sensor noise. This work
may also be viewed as a co-design between control strategy and its implementation, along the
lines of other studies like [19, 53]. Further, the tradeoffs between the degree of approximation,
and the resulting closed-loop quality-of-control, and metrics like memory utilization and energy
consumption have been studied in [7].

Yet another example of efficient implementation of vision-based control is in [30], which pro-
poses identifying different system scenarios that are optimized, and a switched controller switches
between these scenarios. Identifying only a limited number of scenarios helps with optimization
that would not be possible otherwise. Along similar lines, the work in [31] attempts to reduce
sensor-to-actuator delay in vision-based control applications by pipelining the vision task on a
multiprocessor architecture. In particular, this work shows how such pipelining may be imple-
mented for model predictive control, while accounting for workload variations in the different
stages of the image processing pipeline. As a continuation of this study, how the number of
pipeline stages impacts the quality of control has been studied in [45].

1.3 Verification and monitoring
Safety [57] and security [54] of autonomous systems is usually of crucial importance. While
there has been considerable work on the functional [17] and also timing verification [47] of cyber-
physical systems, and in particular controllers implementing different autonomous features, a full
verification of the system also requires a verification of the vision processing and understanding
algorithms that provide inputs into the controllers. Towards this, monitoring [13], debugging [12]
and optimization techniques for FPGA-based implementation of vision processing [11] have also
attracted considerable attention recently. However, work in this area is relatively nascent; as
systems become more complex and the need for certification increases, we will see more results
in this domain.

1.4 Timing predictable vision processing
While mainstream computer vision has considered fast vision processing algorithms, the issue of
real-time, viz., guaranteeing that the output is produced within a deadline, has not been studied.
However, when used in conjunction with control algorithms and in safety-critical systems, such
real-time processing guarantees become necessary. Towards this, temporal isolation might be

LITES

00:4 Embedded Systems for Computer Vision

needed between soft real-time applications like computer vision and time-critical applications like
control tasks [27]. Although many certification techniques rely on time partitioning, it has been
shown that the use of multicore + accelerator platforms can disrupt such partitioning or timing
isolation schemes [3]. In this context, how to design the vision processing system to be timing
predictable [2, 4], and how to debug systems for timing violations have also been studied [41].

Most control systems tend to be have a certain degree of timing robustness [18], and this can
be used for the design of the perception processing subsystem. How the behavior of vision-in-the-
loop control systems is impacted by the processing platform and the control software executing on
it has been studied in [21]. This study, in particular, evaluates the predictability of the embedded
computational platform “CompSOC” [16], which guarantees periodic and deterministic execution
of control tasks, allowing a verification of their timing properties.

Timing predictable GPU processing: A number of papers have recently investigated the
role of GPUs in providing such timing guarantees. It has been established that using OpenCV-
based applications on GPUs, unexpected delays might occur not only on the GPUs, but also
on the host CPUs, which might jeopardize the real-time constrains associated with vision-based
applications [1]. While most studies have focused on how to use GPUs to gain computational
advantage, there has been relatively less work done on evaluating the real-time characteristics of
GPUs – from both AMD and also NVIDIA [34]. Allocation strategies for real-time management
of multi-GPU systems has been been studied in [9].

1.5 Algorithms and data structures for efficient vision processing
There exists a variety of algorithms, processing architectures, and techniques for implementing
vision processing tasks on embedded computing platforms [28]. In particular, a lot of recent
attention has been on neural network based processing and their implications, like ensuring con-
sistency in their performance [51], or efficiently implementing them on resource-constrained edge
devices [15]. To cite examples from specific domains – in-vehicle augmented reality applica-
tions [40] and autonomous features in cars (such as automated parking or driving) require new
data structures and algorithmic techniques for vision processing [37]. More importantly, these
have to be resource efficient, e.g., so that complex 3D shapes of the environment can be trans-
mitted within the vehicle using low- to medium-bandwidth communication infrastructure [36]. In
addition to suitable data structures, special compression techniques for resource efficient in-vehicle
communication and computation have also been studied [38, 35].

The use of neural networks for image processing on embedded systems has been widely
studied in the literature [52, 58], along with specialized hardware architectures for vision pro-
cessing [26, 29]. When multiple convolutional neural networks (CNNs) with each processing a
different video stream are implemented on the same resource-constrained embedded platform,
then their inference and timing performance might not be satisfactory. However, reorganizing
these CNNs and exploiting parallelism, pipelining, and merging the images, might lead to signific-
ant improvements [56]. Some studies have also considered different graph transformation [10] and
scheduling strategies for OpenVX graphs to achieve better real-time performance [55]. OpenVX is
a standard for cross-platform acceleration of computer vision algorithms, and provides a high-level
of abstraction for programming vision applications [33].

In many cost-sensitive domains like automotive and also for general purpose cost-effective
imaging, a common challenge is to solve problems using low-cost and resource-constrained com-
ponents. For example high dynamic range images may be recovered by fusing multiple low
dynamic range (LDR) images. If all the LDR images are perfectly aligned, then this fusion pro-
cess is much easier. However, in reality, there are misalignments and jitters between different

S. Chakraborty and Q. Rao 00:5

cameras and several studies have proposed machine learning techniques for correcting them (e.g.,
see [25]). This is especially relevant in the automotive and robotics domains where physical
movement causes cameras to vibrate. Another example in the same direction – where intelligent
algorithmic or machine learning techniques are used to utilize low-cost or resource-constrained
components – is where 3D shapes of objects are created from a single image using deep neural
networks in the context of autonomous driving [39].

As outlined above, there has been a tremendous growth in the use of machine learning al-
gorithms for vision processing in various embedded computing settings, especially in the auto-
motive domain. But a big challenge in their use is the need for a large amount of labelled training
data, especially because often the data needs to be manually labeled. To address this, various
techniques have been proposed to reduce the volume of such data that is needed. One such
technique is referred to as active learning, where a model selects samples for labeling based on
their uncertainty, thereby reducing the volume of data needed for various tasks like 3D object
detection [46].

1.6 Other applications
While we have so far mostly focused on autonomous systems and their instantiations in domains
like automotive and robotics, vision processing is also useful in various monitoring applications
for example for monitoring traffic flow [23] to devise suitable traffic analysis [24] and management
strategies [6]. Embedded vision processing has also been used for security and face recognition,
where various efficient implementation techniques have been studied, including how to best use
combinations of cloud and edge processing [22].

2 Papers in this special issue

This special issue features three papers. The first, entitled “Susceptibility to Image Resolution
in Face Recognition and Training Strategies to Enhance Robustness” by Knoche, Hörmann and
Rigoll studies how facial recognition algorithms are susceptible to the resolution of the input
images. They show that recognition accuracy can dramatically drop when the image resolution is
reduced. Since training images and input images that need to be recognized might not have the
same resolution, this finding poses a serious problem. To addresses this, they have proposed new
training strategies on state-of-the-art face recognition models, which provided significant boost
in accuracy and improved robustness.

The second paper, entitled “Micro- and Macroscopic Road Traffic Analysis using Drone Image
Data” by Kruber et al. discusses analysis of traffic image data that is captured using drones.
This includes estimating vehicle states and trajectories, and also macroscopic statistics such as
traffic flow and traffic density. Finally, the third paper, “HW-Flow: A Multi-Abstraction Level
HW-CNN Codesign Pruning Methodology” by Vemparala et al. is on optimizing convolutional
neural network models, that are widely used for image classification, segmentation, and object
detection tasks in autonomous vehicles. Towards this, the paper proposes a framework referred to
as HW-Flow that achieved around 2x reduction in energy and latency in a number of well-known
neural networks and datasets.

We hope that readers will find these articles to be interesting and will gain new insights into
this evolving area of embedded systems for computer vision. We thank everyone who submitted
their research to this special issue. We also thank all the reviewers, the EiC – Alan Burns –
and members of the LITES Editorial Office, especially Michael Wagner, without whose help this
special issue would not have been possible.

LITES

00:6 Embedded Systems for Computer Vision

References
1 Tanya Amert and James H. Anderson. Cupidrt:

Detecting improper GPU usage in real-time applic-
ations. In 24th IEEE International Symposium on
Real-Time Distributed Computing (ISORC), 2021.

2 Tanya Amert, Michael Balszun, Martin Geier,
F. Donelson Smith, James H. Anderson, and
Samarjit Chakraborty. Timing-predictable vision
processing for autonomous systems. In Design,
Automation & Test in Europe Conference & Ex-
hibition (DATE), 2021.

3 Tanya Amert, Zelin Tong, Sergey Voronov, Joshua
Bakita, F. Donelson Smith, and James H. An-
derson. Timewall: Enabling time partitioning for
real-time multicore+accelerator platforms. In 42nd
IEEE Real-Time Systems Symposium (RTSS),
2021.

4 Michael Balszun, Martin Geier, and Samarjit
Chakraborty. Predictable vision for autonomous
systems. In 23rd IEEE International Symposium
on Real-Time Distributed Computing (ISORC),
2020.

5 Wanli Chang and Samarjit Chakraborty.
Resource-aware automotive control systems
design: A cyber-physical systems approach.
Found. Trends Electron. Des. Autom., 10(4):249–
369, 2016.

6 Wanli Chang, Debayan Roy, Shuai Zhao,
Anuradha Annaswamy, and Samarjit Chakraborty.
Cps-oriented modeling and control of traffic signals
using adaptive back pressure. In Design, Automa-
tion & Test in Europe Conference & Exhibition
(DATE), 2020.

7 Sayandip De, Sajid Mohamed, Konstantinos Bimp-
isidis, Dip Goswami, Twan Basten, and Henk Cor-
poraal. Approximation trade offs in an image-
based control system. In Design, Automation &
Test in Europe Conference & Exhibition (DATE),
2020.

8 Sayandip De, Sajid Mohamed, Dip Goswami, and
Henk Corporaal. Approximation-aware design of
an image-based control system. IEEE Access,
8:174568–174586, 2020.

9 Glenn A. Elliott, Bryan C. Ward, and James H.
Anderson. GPUSync: A framework for real-time
GPU management. In 34th IEEE Real-Time Sys-
tems Symposium (RTSS), 2013.

10 Glenn A. Elliott, Kecheng Yang, and James H.
Anderson. Supporting real-time computer vision
workloads using OpenVX on Multicore+GPU plat-
forms. In IEEE Real-Time Systems Symposium
(RTSS), 2015.

11 Martin Geier, Marian Brändle, and Samarjit
Chakraborty. Insert & save: Energy optimization
in IP core integration for FPGA-based real-time
systems. In 27th IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS),
2021.

12 Martin Geier, Marian Brändle, Dominik Faller,
and Samarjit Chakraborty. Debugging FPGA-
accelerated real-time systems. In IEEE Real-Time
and Embedded Technology and Applications Sym-
posium (RTAS), 2020.

13 Martin Geier, Dominik Faller, Marian Brändle,
and Samarjit Chakraborty. Cost-effective en-
ergy monitoring of a Zynq-based real-time sys-
tem including dual Gigabit Ethernet. In
27th IEEE Annual International Symposium
on Field-Programmable Custom Computing Ma-
chines (FCCM), 2019.

14 Martin Geier, Florian Pitzl, and Samarjit
Chakraborty. GigE vision data acquisition for
visual servoing using SG/DMA proxying. In 14th
ACM/IEEE Symposium on Embedded Systems for
Real-Time Multimedia (ESTIMedia), 2016.

15 Abhinav Goel, Caleb Tung, Xiao Hu, George K.
Thiruvathukal, James C. Davis, and Yung-Hsiang
Lu. Efficient computer vision on edge devices with
pipeline-parallel hierarchical neural networks. In
27th Asia and South Pacific Design Automation
Conference (ASP-DAC), 2022.

16 Kees Goossens, Arnaldo Azevedo, Karthik
Chandrasekar, Manil Dev Gomony, Sven Goos-
sens, Martijn Koedam, Yonghui Li, Davit
Mirzoyan, Anca Mariana Molnos, Ashkan Beyran-
vand Nejad, Andrew Nelson, and Shubhendu
Sinha. Virtual execution platforms for mixed-
time-criticality systems: the compsoc architecture
and design flow. SIGBED Rev., 10(3):23–34, 2013.

17 Dip Goswami, Reinhard Schneider, and Samarjit
Chakraborty. Re-engineering cyber-physical con-
trol applications for hybrid communication proto-
cols. In Design, Automation and Test in Europe
(DATE), 2011.

18 Dip Goswami, Reinhard Schneider, and Samarjit
Chakraborty. Relaxing signal delay constraints in
distributed embedded controllers. IEEE Trans.
Control. Syst. Technol., 22(6):2337–2345, 2014.

19 Clara Hobbs, Debayan Roy, Parasara Sridhar Dug-
girala, F. Donelson Smith, Soheil Samii, James H.
Anderson, and Samarjit Chakraborty. Perception
computing-aware controller synthesis for autonom-
ous systems. In Design, Automation & Test in
Europe Conference & Exhibition (DATE), 2021.

20 Omar W Ibraheem, Arif Irwansyah, Jens Hage-
meyer, Mario Porrmann, and Ulrich Rueckert.
A resource-efficient multi-camera GiGE vision IP
core for embedded vision processing platforms. In
IEEE International Conference on ReConFigur-
able Computing and FPGAs (ReConFig), 2015.

21 Chaitanya Jugade, Daniel Hartgers, Phan Dúc
Anh, Sajid Mohamed, Mojtaba Haghi, Dip Gos-
wami, Andrew Nelson, Gijs van der Veen, and Kees
Goossens. An evaluation framework for vision-in-
the-loop motion control systems. In 27th IEEE In-
ternational Conference on Emerging Technologies
and Factory Automation (ETFA), 2022.

22 Anis Koubaa, Adel Ammar, Anas Kanhouch, and
Yasser AlHabashi. Cloud versus edge deployment
strategies of real-time face recognition inference.
IEEE Transactions on Network Science and En-
gineering, 9(1):143–160, 2021.

23 Friedrich Kruber, Eduardo Sánchez Morales,
Samarjit Chakraborty, and Michael Botsch.
Vehicle position estimation with aerial imagery
from unmanned aerial vehicles. In IEEE Intelli-
gent Vehicles Symposium (IV), 2020.

S. Chakraborty and Q. Rao 00:7

24 Friedrich Kruber, Jonas Wurst, Eduardo Sánchez
Morales, Samarjit Chakraborty, and Michael
Botsch. Unsupervised and supervised learning
with the random forest algorithm for traffic scen-
ario clustering and classification. In IEEE Intelli-
gent Vehicles Symposium (IV), 2019.

25 Zhen Liu, Wenjie Lin, Xinpeng Li, Qing Rao, Ting
Jiang, Mingyan Han, Haoqiang Fan, Jian Sun, and
Shuaicheng Liu. Adnet: Attention-guided deform-
able convolutional network for high dynamic range
imaging. In IEEE Conference on Computer Vis-
ion and Pattern Recognition (CVPR) Workshops,
2021.

26 Dipan Kumar Mandal, Jagadeesh Sankaran, Ak-
shay Gupta, Kyle Castille, Shraddha Gondkar,
Sanmati Kamath, Pooja Sundar, and Alan Phipps.
An embedded vision engine (EVE) for automot-
ive vision processing. In IEEE International Sym-
posium on Circuits and Systems (ISCAS), 2014.

27 Alejandro Masrur, Sebastian Drössler, Thomas
Pfeuffer, and Samarjit Chakraborty. VM-based
real-time services for automotive control applica-
tions. In 16th IEEE International Conference on
Embedded and Real-Time Computing Systems and
Applications (RTCSA), 2010.

28 Mahmoud Méribout, Asma Baobaid, Mo-
hamed Ould-Khaoua, Varun Kumar Tiwari, and
Juan Pablo Pena. State of art iot and edge
embedded systems for real-time machine vision
applications. IEEE Access, 10:58287–58301, 2022.

29 Seifeddine Messaoud, Soulef Bouaafia, Amna
Maraoui, Ahmed Chiheb Ammari, Lazhar Khriji,
and Mohsen Machhout. Deep convolutional neural
networks-based hardware-software on-chip system
for computer vision application. Comput. Electr.
Eng., 98:107671, 2022.

30 Sajid Mohamed, Dip Goswami, Vishak Nathan,
Raghu Rajappa, and Twan Basten. A scenario- and
platform-aware design flow for image-based control
systems. Microprocess. Microsystems, 75:103037,
2020.

31 Sajid Mohamed, Nilay Saraf, Daniele Bernardini,
Dip Goswami, Twan Basten, and Alberto Bem-
porad. Adaptive predictive control for pipelined
multiprocessor image-based control systems con-
sidering workload variations. In 59th IEEE Con-
ference on Decision and Control (CDC), 2020.

32 Burhan Ahmad Mudassar, Priyabrata Saha, Yun
Long, Mohammad Faisal Amir, Evan Gebhardt,
Taesik Na, Jong Hwan Ko, Marilyn Wolf, and
Saibal Mukhopadhyay. CAMEL: an adaptive cam-
era with embedded machine learning-based sensor
parameter control. IEEE J. Emerg. Sel. Topics
Circuits Syst., 9(3):498–508, 2019.

33 The Khronos Group, OpenVX: Portable, power ef-
ficient vision processing. https://www.khronos.
org/openvx/.

34 Nathan Otterness and James H. Anderson. AMD
GPUs as an alternative to NVIDIA for support-
ing real-time workloads. In 32nd Euromicro Con-
ference on Real-Time Systems (ECRTS), volume
165 of LIPIcs, pages 10:1–10:23. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2020.

35 Qing Rao and Samarjit Chakraborty. Efficient
lossless compression for depth information in traffic
scenarios. Multim. Syst., 25(4):293–306, 2019.

36 Qing Rao and Samarjit Chakraborty. In-vehicle
object-level 3D reconstruction of traffic scenes.
IEEE Trans. Intell. Transp. Syst., 22(12):7747–
7759, 2021.

37 Qing Rao, Christian Grünler, Markus Hammori,
and Samarjit Chakraborty. Design methods for
augmented reality in-vehicle infotainment systems.
In 51st Annual Design Automation Conference
(DAC), 2014.

38 Qing Rao, Christian Grünler, Markus Hammori,
and Samarjit Chakraborty. Stixel on the bus: An
efficient lossless compression scheme for depth in-
formation in traffic scenarios. In 20th Anniversary
International Conference of MultiMedia Modeling
(MMM), volume 8325 of Lecture Notes in Com-
puter Science. Springer, 2014.

39 Qing Rao, Lars Krüger, and Klaus Dietmayer.
Monocular 3D shape reconstruction using deep
neural networks. In IEEE Intelligent Vehicles
Symposium (IV), 2016.

40 Qing Rao, Tobias Tropper, Christian Grünler,
Markus Hammori, and Samarjit Chakraborty. AR-
IVI - implementation of in-vehicle augmented real-
ity. In IEEE International Symposium on Mixed
and Augmented Reality (ISMAR), 2014.

41 Debayan Roy, Clara Hobbs, James H. Ander-
son, Marco Caccamo, and Samarjit Chakraborty.
Timing debugging for cyber-physical systems. In
Design, Automation & Test in Europe Conference
& Exhibition (DATE), 2021.

42 Debayan Roy, Licong Zhang, Wanli Chang,
Sanjoy K. Mitter, and Samarjit Chakraborty.
Semantics-preserving cosynthesis of cyber-physical
systems. Proc. IEEE, 106(1):171–200, 2018.

43 Kruttidipta Samal, Hemant Kumawat, Priyabrata
Saha, Marilyn Wolf, and Saibal Mukhopadhyay.
Task-driven rgb-lidar fusion for object tracking
in resource-efficient autonomous system. IEEE
Trans. Intell. Veh., 7(1):102–112, 2022.

44 Kruttidipta Samal, Marilyn Wolf, and Saibal Muk-
hopadhyay. Closed-loop approach to perception
in autonomous system. In Design, Automation &
Test in Europe Conference & Exhibition (DATE),
2021.

45 Róbinson Medina Sánchez, Juan Valencia, Sander
Stuijk, Dip Goswami, and Twan Basten. Design-
ing a controller with image-based pipelined sens-
ing and additive uncertainties. ACM Trans. Cyber
Phys. Syst., 3(3):33:1–33:26, 2019.

46 Sebastian Schmidt, Qing Rao, Julian Tatsch, and
Alois C. Knoll. Advanced active learning strategies
for object detection. In IEEE Intelligent Vehicles
Symposium (IV), 2020.

47 Reinhard Schneider, Dip Goswami, Ale-
jandro Masrur, Martin Becker, and Samarjit
Chakraborty. Multi-layered scheduling of mixed-
criticality cyber-physical systems. J. Syst. Archit.,
59(10-D):1215–1230, 2013.

48 Shreejith Shanker, Philipp Mundhenk, Andreas
Ettner, Suhaib A. Fahmy, Sebastian Steinhorst,
Martin Lukasiewycz, and Samarjit Chakraborty.
VEGa: A high performance vehicular ethernet
gateway on hybrid FPGA. IEEE Trans. Com-
puters, 66(10):1790–1803, 2017.

49 Ponnan Suresh, Saravanakumar Umathurai, Ce-
lestine Iwendi, Senthilkumar Mohan, and Gautam

LITES

https://www.khronos.org/openvx/
https://www.khronos.org/openvx/

00:8 Embedded Systems for Computer Vision

Srivastava. Field-programmable gate arrays in a
low power vision system. Comput. Electr. Eng.,
90:106996, 2021.

50 George K. Thiruvathukal and Yung-Hsiang Lu.
Efficient computer vision for embedded systems.
Computer, 55(4):15–19, 2022.

51 Caleb Tung, Abhinav Goel, Fischer Bordwell,
Nick Eliopoulos, Xiao Hu, Yung-Hsiang Lu, and
George K. Thiruvathukal. Why accuracy is not
enough: The need for consistency in object detec-
tion. IEEE Multim., 29(3):8–16, 2022.

52 R. Udendhran, M. Balamurugan, Annamalai
Suresh, and R. Varatharajan. Enhancing image
processing architecture using deep learning for em-
bedded vision systems. Microprocess. Microsys-
tems, 76, 2020.

53 Zhilu Wang, Chao Huang, Yixuan Wang, Clara
Hobbs, Samarjit Chakraborty, and Qi Zhu. Bound-
ing perception neural network uncertainty for safe
control of autonomous systems. In Design, Auto-
mation & Test in Europe Conference & Exhibition
(DATE), 2021.

54 Peter Waszecki, Philipp Mundhenk, Sebastian
Steinhorst, Martin Lukasiewycz, Ramesh Karri,
and Samarjit Chakraborty. Automotive elec-
trical and electronic architecture security via

distributed in-vehicle traffic monitoring. IEEE
Trans. Comput. Aided Des. Integr. Circuits Syst.,
36(11):1790–1803, 2017.

55 Ming Yang, Tanya Amert, Kecheng Yang, Nathan
Otterness, James H. Anderson, F. Donelson Smith,
and Shige Wang. Making openvx really "real time".
In IEEE Real-Time Systems Symposium (RTSS),
2018.

56 Ming Yang, Shige Wang, Joshua Bakita, Thanh
Vu, F. Donelson Smith, James H. Anderson, and
Jan-Michael Frahm. Re-thinking CNN frame-
works for time-sensitive autonomous-driving ap-
plications: Addressing an industrial challenge. In
25th IEEE Real-Time and Embedded Technology
and Applications Symposium (RTAS), 2019.

57 Anand Yeolekar, Ravindra Metta, Clara Hobbs,
and Samarjit Chakraborty. Checking scheduling-
induced violations of control safety properties.
In 20th International Symposium on Automated
Technology for Verification and Analysis (ATVA),
volume 13505 of Lecture Notes in Computer Sci-
ence. Springer, 2022.

58 Junxing Zhang, Shuo Yang, Chunjuan Bo, and
Zhiyuan Zhang. Vehicle logo detection based on
deep convolutional networks. Comput. Electr.
Eng., 90:107004, 2021.

Susceptibility to Image Resolution in Face Recognition
and Training Strategies to Enhance Robustness
Martin Knoche #

Technische Universität München, Arcisstrasse 21 80333 München, Deutschland

Stefan Hörmann #

Technische Universität München, Arcisstrasse 21 80333 München, Deutschland

Gerhard Rigoll #

Technische Universität München, Arcisstrasse 21 80333 München, Deutschland

Abstract
Many face recognition approaches expect the input
images to have similar image resolution. However,
in real-world applications, the image resolution var-
ies due to different image capture mechanisms or
sources, affecting the performance of face recogni-
tion systems. This work first analyzes the image
resolution susceptibility of modern face recognition.
Face verification on the very popular LFW dataset
drops from 99.23% accuracy to almost 55% when
image dimensions of both images are reduced to ar-
guable very poor resolution. With cross-resolution
image pairs (one HR and one LR image), face verific-
ation accuracy is even worse. This characteristic is
investigated more in-depth by analyzing the feature
distances utilized for face verification. To increase
the robustness, we propose two training strategies
applied to a state-of-the-art face recognition model:
1) Training with 50% low resolution images within
each batch and 2) using the cosine distance loss
between high and low resolution features in a sia-

mese network structure. Both methods signific-
antly boost face verification accuracy for matching
training and testing image resolutions. Training a
network with different resolutions simultaneously
instead of adding only one specific low resolution
showed improvements across all resolutions and
made a single model applicable to unknown resolu-
tions. However, models trained for one particular
low resolution perform better when using the exact
resolution for testing. We improve the face verifica-
tion accuracy from 96.86% to 97.72% on the popular
LFW database with uniformly distributed image
dimensions between 112 × 112 px and 5 × 5 px.
Our approaches improve face verification accuracy
even more from 77.56% to 87.17% for distributions
focusing on lower images resolutions. Lastly, we
propose specific image dimension sets focusing on
high, mid, and low resolution for five well-known
datasets to benchmark face verification accuracy in
cross-resolution scenarios.

2012 ACM Subject Classification Computing methodologies → Neural networks
Keywords and Phrases recognition, resolution, cross, face, identification
Digital Object Identifier 10.4230/LITES.8.1.1
Supplementary Material Dataset (Evaluation Protocols): https://github.com/martlgap/btm-stm
Funding This work was partially supported by “Bayerische Staatsministerium für Wirtschaft, Energie und
Technologie” within the framework of a funding program of “Informations- und Kommunikationstechnik”
for the project “Grundrechtskonforme Gesichtserkennung im öffentlichen Raum” (e-freedom).
Received 2020-12-15 Accepted 2022-01-25 Published 2022-11-16
Editor Samarjit Chakraborty and Qing Rao
Special Issue Special Issue on Embedded Systems for Computer Vision

1 Introduction

Over the last few years, face recognition has gained progressively more attraction. Szegedy et
al. [24] introduced one of the first deep-learning-based approaches in 2014 and applied a 9-layer
convolutional neural network. Since then, deep-learning-based approaches have evolved more and
more due to the growing availability of powerful GPUs and novel large datasets, e.g., Microsoft’s

© Martin Knoche, Stefan Hörmann, and Gerhard Rigoll;
licensed under Creative Commons Attribution 4.0 International (CC BY 4.0)

Leibniz Transactions on Embedded Systems, Vol. 8, Issue 1, Article No. 1, pp. 01:1–01:20
Leibniz Transactions on Embedded Systems

L I T E S Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:Martin.Knoche@tum.de
https://orcid.org/0000-0002-0503-4600
mailto:S.Hoermann@tum.de
mailto:mmk@ei.tum.de
https://orcid.org/0000-0003-1096-1596
https://doi.org/10.4230/LITES.8.1.1
https://github.com/martlgap/btm-stm
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lites
https://www.dagstuhl.de

01:2 Image Resolution Analysis and Training Strategies in Face Recognition

Cross-Resolution (CR)

Equal-Resolution (ER)5 7 14 28 56 112
50

60

70

80

90

100

Test Image Resolution [px]

A
ac

cu
ra

cy
[%

]

Cross-Resolution Equal-Resolution

Figure 1 Average face verification accuracy across five popular datasets (LFW [9], AgeDB [17], CFP-
FP [22], CALFW [36] and CPLFW [35]) for cross-resolution and equal-resolution (left). One example
image pair for both scenarios in five image resolutions (right).

Celeb Dataset (MS1M) [6] with up to 87k identities. These networks are trained to map a facial
image, typically after head pose normalization, into a feature space, in which intra-class features
distances are minimized, and inter-class feature distances are maximized.

In Figure 1, we show that image accuracy drops for lower image resolution. Hence, we argue
that the learned features depend on the training image resolution. Popular approaches learn a
projection into a distinct feature space with datasets containing mainly high resolution (HR)
images. However, in real-world applications, the image quality is often inferior. Besides external
factors like illumination or the subject’s distance to the camera, sensor characteristics or image
compression affect the image quality. For example, surveillance cameras capture faces at very low
resolutions, in contrast to very high-quality mug-shots-like passport images. Another example is
social media, which tries to recognize HR faces in the foreground and tiny low resolution (LR)
faces in the background. In this work we focus on the most important characteristic of image
quality - the image resolution.

LR face recognition [13, 2, 1] addresses the verification and identification of faces on images
with the same coarse resolution. However, in real-world scenarios, the image resolution is arbitrary
and unknown. Cross-Resolution (CR) face recognition addresses this problem of comparing images
with varying resolutions, but has yet found minor attraction by the research community.

In this work, we first investigate the verification performance of a state-of-the-art face recogni-
tion network [3] on different image resolutions. We differentiate between CR and LR verification
scenarios in our analysis. Figure 1 demonstrates that the performance is significantly worse in
CR and LR scenarios across several datasets. At resolutions below 10 × 10 px, the accuracy is
slightly above 50%, which is only barely above guessing. Therefore, we assume a possibility for
improvements, especially for very low image resolutions.

A major drawback of the works [5, 18] in CR face recognition is their focus on one specific image
resolution, which assumes the image resolution to be known. Moreover, one needs several models
to face a wide range of image resolutions, which are likely to occur in real-world applications.
Zeng et al. [32] use a mix of two/four different image resolutions during training.

Our work distinguishes between two-resolution (i.e., training a network specifically with images
in high resolution and one particular low resolution) and multi-resolution (i.e., feeding the model
with HR and multiple LR images) training.

M. Knoche, S. Hörmann, and G. Rigoll 01:3

In summary, our main contributions are:
We analyze the susceptibility for different image resolution on face verification in-depth.
We propose two intuitive, straightforward approaches and show performance improvements on
several datasets for CR face verification, especially at very low image resolutions.
Lastly, we propose and publish three evaluation protocols to measure face recognition robustness
against CR images. That is, to the best of our knowledge, the first benchmark for CR.

2 Related Work

2.1 Generic Face Recognition
In recent years, face recognition research has focused on loss functions applied mainly on ResNet [7]
architectures. In [14], the authors propose an angular softmax loss with a multiplicative angular
margin and in [27] an additive cosine margin. Deng et al. [3] applied an additive angular margin
loss function, which can effectively extend the discriminating power of features. Recently, Kim
et al. [12] presented with GroupFace a novel architecture that utilizes multiple group-aware
representations to improve the quality of the features. Wang et al. [28] proposed a hierarchical
pyramid diverse attention network. Schroff et al. [21] introduced the triplet loss to maximize the
distances between an anchor image and its genuine sample (same identity) while minimizing the
distance between an anchor image and its imposter sample (different identity).

2.2 Image Resolutions
To the best of our knowledge, no large training dataset provides different resolution versions of
the same facial image. Furthermore, large datasets are often crawled from the web, and thus
they lack very LR images on which the identity is unrecognizable. However, such a dataset is
crucial to train a network, which is robust against varying image resolutions. The generation of
LR images from HR images is an essential component in super-resolution. According to Zhou and
Süsstrunk [37], a mapping from LR to HR images is often learned by synthetically downsampled
HR images to retrieve target-oriented training data. They further state that the frequently used
bicubic interpolation [10] significantly differs from real-world camera-blur and is not optimal.
Nevertheless, simple bicubic downsampling is a cheap, reproducible, and effective way to lower
the image resolution.

2.3 Cross-Resolution Face Recognition
According to [23], existing CR approaches can be grouped into two areas: 1) Transformation-based
methods [34, 4, 19, 8] aim to transform images/features from low resolution to high resolution or
vice versa to project them in a common space. 2) Non-transformation-based approaches [16, 32]
intend to extract scale-invariant features directly into a common feature space. Wang et al. [29]
show an exhaustive review of those methods for addressing CR face recognition, and Figure 2
gives a brief functional overview of those two methods.

Transformation-based Methods
Lu et al. [15] presented a deep coupled ResNet model containing one trunk network and a two-
branch network. The trunk network extracts features, whereas the two-branch network transforms
HR and the corresponding LR features into a space in which their difference can be minimized.

Zangeneh et al. [31] proposed a two-branch deep convolutional neural network. While the
LR branch consists of a super-resolution network combined with a feature extraction network,
the HR branch is only a feature extraction network. Both branches are trained in three different

LITES

01:4 Image Resolution Analysis and Training Strategies in Face Recognition

Same Person?or

LR Image

HR Image

Feature-Distance
in HR Space

Non-Transformation-basedTransformation-based

Feature-Distance
in common Space

Feature-Distance
 in LR Space

L
R

 F
ea

t.
 E

x
tr

a
ct

o
r

F
ea

t.
 E

x
tr

a
ct

o
r

H
R

 F
ea

t.
 E

x
tr

a
ct

o
r

Face Verification

L
R

 F
ea

t.
 E

x
tr

a
ct

o
r

F
ea

t.
 E

x
tr

a
ct

o
r

H
R

 F
ea

t.
 E

x
tr

a
ct

o
r

Superresolution

Downsampling

Figure 2 Transformation-based approaches (left) transform either learned image features (dashed path)
or images into a shared space (solid path). Non-Transformation-based (right) methods aim to project
scale-invariant image features directly.

training phases. In the benchmark, images are assigned to a particular branch depending on their
resolution. A similar approach was used in [11]. They trained a U-Net with a combination of
reconstruction and identity preserving loss to super-resolve multi-scale LR images. For feature
extraction, they utilized a pretrained Inception-ResNet.

The authors of [25] proposed a coupled GAN network structure, which comprises two sub-nets,
one for high resolution and one for low resolution. The correlation between the sub-net-generated
features is maximized. Moreover, they considered facial attributes by implicitly matching facial
details for both resolutions.

Non-Transformation-based Methods

In [32], Zeng et al. presented a resolution-invariant deep network and trained it directly with
unified LR and HR images. However, they used only resolutions in the range of 24 to 60 pixels for
LR images.

Massoli et al. [16] proposed a student-teacher network approach. They showed that their
approach can be more effective rather than preprocessing images with super-resolution techniques.

The authors of [18] report that their deep CNN architecture can address the problem of CR
face recognition. They present a two-branch network architecture, which is trained in a pair-wise
manner with multiple classification and contrastive loss functions.

In [5], Ge et al. focused on low computational costs in LR face recognition. Therefore, they
introduced a new learning approach via selective knowledge distillation. A two-stream technique
(large teacher model and a light-weight student model) is employed to transfer selected knowledge
from the teacher model to the student model.

M. Knoche, S. Hörmann, and G. Rigoll 01:5

3 Experimental Setup

3.1 Baseline Network
As our baseline network, we choose a network structure comprising a modified ResNet-50 [7] as
proposed in ArcFace [3], pretrained on ImageNet [20], and an ArcFace layer for classification.

The backbone network (ResNet-50) consists of a set of stacked residual blocks, which are
repeated four times and contains in total 50 convolutional layers. It squeezes the input image from
112 × 112 × 3 px down to 4 × 4 × 2048 px utilizing multiple convolutions. After flattening the
output from the backbone network, dropout is added. A bottleneck layer (512-dimensional fully
connected layer), which represents the extracted features is added following [30, 14, 27]. Finally, a
fully connected layer with 87 k (number of identities in our training set) neurons is added. We
then apply Additive Angular Margin Loss to the network following [3].

For training, we select the cleaned Microsoft MS1M [6] dataset containing about 5.8M images
from about 87k identities. We perform random brightness and saturation variations, left-right
flipping, and random cropping of images as data augmentation. All training parameters are set
according to [3] except for a smaller batch-size of 128 due to hardware limitations. The learning
rate is set to 0.01 and is decreased by a factor of 10 after epoch 9 and epoch 13. In total, we train
for 16 epochs with momentum SGD optimizer. The dropout rate and weight decay are set to 0.5
and 5 · 10−4, respectively.

3.2 Testing Datasets
We select five popular dataset (cf. Table 1) for evaluating face verification performance.

Table 1 Statistics for five popular test datasets.

LFW [9] AgeDB [17] CFP-FP [22] CALFW [36] CPLFW [35]

Identities 5749 568 500 5749 5749
Images 13233 16488 7000 13233 13233
Pairs 6000 6000 7000 6000 6000

We use the aligned face, which is cropped to 112 × 112 × 3 px afterwards for all testing
datasets mentioned in Table 1. In this paper, we exclusively deal with images having equal width
and height. For the sake of simplicity, we denote the image resolution by naming only the first
dimension, i.e., a resolution of 112 px defines a 112 × 112 × 3 px image.

3.3 Reduction of Image Resolution
The baseline network requires HR input images IHR of the dimension 112 px. We simulate a
resolution reduction by performing the following two steps: 1) Downsample Fdown,r(·) images
to an image dimension r in pixels followed by 2) upsampling Fup,r(·) the images back to the
original image dimension and denote the resulting LR images as ILR. The complete process can
be formulated as follows:

ILR = Fup,112(Fdown,r(IHR)) (1)

For both sampling processes, bicubic interpolation [10] is applied. To reduce unwanted artifacts,
typically introduced by the downsampling process, standard anti-aliasing techniques are employed.
In subsection 4.1, we further investigate these effects.

LITES

01:6 Image Resolution Analysis and Training Strategies in Face Recognition

112px

1
1
2
p
x

14px

1
4
p
x

112px

1
1
2
p
x

Downsampling Upsampling
IHR ILR

Figure 3 Bicubic down- and up-sampling process to reduce the image resolution but keeping the image
dimension.

Figure 3 illustrates the synthetic image resolution reduction. The left image IHR is a sample
taken from the MS1M dataset with a resolution r = 112. In the center, the downsampled image
Fdown,14(IHR) with image dimension r = 14 is depicted. Finally, the upsampled image ILR is
shown on the right and has qualitatively considered an image resolution of r = 14 but technically
the same image dimension as the IHR image. It is evident that all the high-frequency information
is removed by this synthetically resolution reduction. Simultaneously, the image dimension is
equal to the original image, which is the required image dimension for our networks.

3.4 Accuracy in Face Verification
We report accuracy in all experiments, which denotes the face recognition rate in terms of face
verification. To calculate the accuracy value for a given dataset, we first take the cosine distances
d between features of every image pair (I1, I2) extracted from a model M(·) according to N image
pairs defined in the specific evaluation protocol for each dataset. respectively:

d = 1 − M(I1) · M(I2)
∥M(I1)∥2 ∥M(I2)∥2 (2)

Then, we use 10-fold cross-validation to find optimal thresholds that can separate feature
distances of genuine from imposter pairs. The number of correctly identified genuine and imposter
samples from a total number of samples N are then named as true positives TP and true negatives
TN , respectively. We then calculate an accuracy score Acc as follows:

Acc = TP + TN

N
(3)

For all experiments in the CR scenario we generate two evaluation protocols by flipping the
pairwise matching resolution from(

M(Fup,112(Fdown,r(I1))), M(I2)
)

to (
M(I1), M(Fup,112(Fdown,r(I2))

)
We then calculate the accuracy score for both test datasets and then compute the mean.

M. Knoche, S. Hörmann, and G. Rigoll 01:7

4 Analysis of Image Resolution Susceptibility

In this section, we first investigate the effect by reducing the resolution across five test datasets.
Then, we examine the performance of the baseline network under LR conditions in CR and ER
scenarios. Afterward, we take a closer look at the extracted features, especially at the cosine
distance between the image pairs, which is used to classify them as genuine or imposter.

4.1 Resolution Reduction on several Datasets
To better understand what happens when performing resolution reduction synthetically, we analyze
the effect of downsampling on several testing datasets. Hence, we calculate a mean image across
the whole dataset and highlight the mean pixel difference between LR and HR images. The mean
images in Figure 4 are computed as follows:

Imean
HR = 1

N

N∑
i=1

IHR,i (4)

where N denotes the number of elements of the dataset.
Below each mean HR image, we denote the mean absolute pixel differences Dr between

synthetically reduced images ILR,r, and original IHR images across each dataset. We retrieve
those images for four resolutions r ∈ {7, 14, 28, 56} according to:

Dmean
r = 1

N

N∑
i=1

(∣∣∣Fup,112(Fdown,r(IHR,i)) − IHR,i

∣∣∣) (5)

As expected, the resolution reduction process in all datasets is heavily affected by eye, nose,
and mouth regions. High detail information in those regions is lost. This reasonably results in
worse face verification performance as we show later in the next section. The maximum derivation
of a single LR image pixel concerning its corresponding pixel in the HR image is about 50%. In all
pixel-difference images grid-style artifacts occur, which in our opinion result from the anti-aliasing
method of the bicubic interpolation algorithm.

56px 28px

7px14px

IHR

ILR

LFW AgeDB CFP-FP CALFW CPLFW
50%

0%

10%

20%

30%

40%

Figure 4 The left column shows a high resolution sample image IHR from MS1M and its corresponding
reduced-resolution images Fdown,r(Fup,112(IHR)) for four resolutions r ∈ {7, 14, 28, 56}. In the first row
are then the mean images Imean

HR for several datasets shown. Below are the pixel difference images Dmean
r

for specific resolutions.

LITES

01:8 Image Resolution Analysis and Training Strategies in Face Recognition

The mean dataset HR images are quite different across all datasets. Pose variations in CPLFW
dataset result in blurrier areas of the image. In contrast, the CALFW and LFW dataset images
seem to be very accurately aligned and show almost a clear and detailed average face. Interestingly,
the background in the CFP-FP dataset is very dark compared to other datasets. This results
from cropped faces which are padded in black, especially in the top image region. Also, the pose
variation is visible in the average face. Some ghosting effects are also present in that image.

The mean absolute pixel difference images show the same pattern across all datasets. With
decreasing resolution the difference is more visible, especially in the high frequency regions (eyes,
nose, and mouth).

4.2 Face Verification Accuracy

As depicted in Figure 5, the performance on all datasets drops for lower resolutions as expected.
The accuracy on the LFW dataset is best for high resolution but drops heavily for lower resolutions.
The worst performance on high resolutions can be seen on the CPLFW dataset. A reason for this
behavior can be the large pose variations in this test set, which are not occurring in the training
set and therefore unknown to the network.

Interestingly, we see different decreasing characteristics between the CR and ER scenarios. To
a particular resolution, all datasets show worse performance in the ER scenario than in the CR
scenario. This performance gap is reasonable since more pixel information is present in a CR pair
than in an ER image pair. Against intuition, this trend reverses for very low resolutions except
for the AgeDB dataset. We explain this behavior with a more significant domain shift for the
network necessary within the CR image pairs than within the ER image pairs. Our network is
familiar with HR images, and down to a specific resolution, it can interpret lower quality faces
quite well. Whereas beneath a threshold, both LR images are unfamiliar to the network, and thus,
features represent different ID characteristics compared to HR features. However, in the AgeDB
dataset is a significant age gap within the pairs, which implicates that on LR images, for example,
large hair-style variations or the effect of gray-scale vs. color images, might confuse the network
for positive image pairs.

5 7 14 28 56 112

60

80

100

Test Image Resolution [px]

A
cc

ur
ac

y
[%

]

LFW-cross LFW-equal
AgeDB-cross AgeDB-equal
CFP-FP-cross CFP-FP-equal
CALFW-cross CALFW-equal
CPLFW-cross CPLFW-equal

Figure 5 Face verification accuracy across several datasets for different image resolutions in cross-
resolution (high resolution vs. low resolution image) and equal-resolution (low resolution vs. low resolution
image) scenario.

M. Knoche, S. Hörmann, and G. Rigoll 01:9

4.3 Feature Distances
Since the accuracy depends on a distance threshold, which classifies sample pairs as genuine
or imposter, the distance between both features vectors is crucial for the verification accuracy.
Hence, we look at the average feature distance for all genuine and imposter image pairs of the
LFW dataset (cf. Figure 6. We divide the diagram roughly into three sections: 1) r > 60 px, 2)
> 20 px < r < 60 px, and 3) r < 20 px. In the first section, feature distances between genuine
and imposter image pairs seem to be independent of the image resolution. The average distance
is about 0.3 within genuine pairs and 1.0 within imposter pairs, which means that the high
dimensional feature vectors are almost orthogonal. The second section reveals, that in both CR
and ER scenario the distance of genuine image pairs tends to increase, whereas the distance for
imposter image pairs is only slightly decreasing. A small reduction of image resolution causes
repelling features. However, reducing the image resolution more (section 3), all LR image features
are projected closely together (far away from HR features), which results in small distances for ER
and high distances in the CR scenario. Considering that almost all pairs are then categorized as
genuine (in the CR scenario) or imposter (in the ER scenario), the face verification performance
is merely guessing.

For the CR scenario, we conduct that our network is not able to extract accurate features
for the very LR images. Hence, this results in a large distance between features because the HR
image features are still very distinctive. However, in the ER scenario, both images are unfamiliar
to the network, which results in resembling extracted features.

Figure 7 captures the cosine feature distance distributions for the LFW dataset. The center
violin plots represent the feature distance distribution for HR image pairs. Distances for genuine
and imposter image pairs are clearly distinguishable. The genuine distances are mainly in a range
between 0.1 and 0.6, whereas imposter distances are mostly in the field of 0.6 and 1.4. Both classes
can be separated effectively with a threshold of about 0.6, and thus, the accuracy for HR face
verification is best (cf. Figure 5). On the left side, distributions for the CR scenario are shown,
whereas on the right side, ER feature distributions are plotted. For images resolutions of 56 px
and 28 px the distributions in both scenarios is similar to the HR distribution. The fact that the
peak feature distance for genuine image pairs even exceeds the maximum distance for imposter
pairs in the CR scenario at very low resolution 5 px, leads to the conclusion that image resolution

5 7 14 28 56 112
0

0.5

1

Test Image Resolution [px]

C
os

in
e

D
is

ta
nc

e

Negative CR Negative ER
Positive CR Positive ER

Figure 6 Average cosine feature distances between image pairs for genuine (◦) and imposter (△) pairs
in the LFW dataset. Dashed lines shows distances in the equal-resolution scenario, while solid lines
represent distances in the CR scenario.

LITES

01:10 Image Resolution Analysis and Training Strategies in Face Recognition

7 14 28 56 112 56 28 14 7
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Test Image Resolution [px]

C
os

in
e

D
is

ta
nc

e
←− Cross-Resolution | Equal-Resolution −→

Figure 7 Cosine feature distance distributions for genuine (blue) and imposter (yellow) cross-resolution
(left) and equal-resolution (right) pairs in the LFW dataset. Five different resolutions are shown for our
baseline model.

has a more significant impact on the distance than the identity itself. The gap between CR and
ER accuracy for very low resolutions is therefore reasonable. Although the small distances for
both kinds of image pairs in the ER case, more genuine feature distance still have a smaller value.
This behavior explains a higher accuracy for very low resolutions in the ER scenario compared
to CR scenario. Further experiments with CFP-FP, AgeDB, CALFW, and CPLFW datasets
underline this trend.

5 Training Methods

To improve the separability between feature distances of genuine and imposter image pairs, and
hence, the accuracy, we pursue two intuitive non-transformation-based methods (cf. Figure 8): 1)
CR batch training and 2) CR siamese network training.

In all training sessions, we use the MS1M dataset and train in total for 16 epochs. All training
parameters are set according to our baseline (cf. section 3) for a fair comparison.

5.1 Cross-Resolution Batch Training

Motivated by [32, 16], we first propose a straightforward batch CR training approach to tackle the
susceptibility to image resolutions. Instead of using HR images only, we randomly select half of
the images per batch and synthetically reduce their resolution (cf. subsection 3.3).We train several
specific networks specializing each on a particular resolution. For the sake of simplicity, we refer to
these models according to the following rule: BT-r where r denotes the specific LR value during
training. We apply resolutions r ∈ {x ∈ N | 5 ≤ x ≤ 22} ∪ {28, 56} in our experiments. Since we
only take half of the images per batch for resolution reduction, the network is still exposed to HR
images and thus learns to extract features from HR and LR images at the same gradient update
step.

M. Knoche, S. Hörmann, and G. Rigoll 01:11

LR Batch

HR Batch

A
rc

F
ac

e
L
ay

er

HR&LR Batch

R
es

n
et

50

A
rc

F
ac

e
L
ay

er

R
es

n
et

50

Siamese Network TrainingBatch Training

A
rc

F
ac

e
L
ay

er

R
es

n
et

50

HR Cross
Entropy

Loss

LR Cross
Entropy

Loss

Feature
Distance

Loss

Cross
Entropy

Loss

Weight SharingWeight Sharing

Figure 8 Overview of our proposed methods. The left part shows the cross-resolution batch training
method, whereas the right part shows the siamese network cross-resolution training approach.

5.2 Siamese Network Cross-Resolution Training
Inspired by Tang et al. [26], we implement a siamese network structure (cf. Figure 8 CR training.
Each branch of the network consists of our baseline architecture and trains the network for a
specific image resolution. With weight-sharing across all branches, we keep the same number of
parameters and ensure similar inference during test-time compared to BT-r. We construct two
branches for training with exactly two resolutions (the high resolution and one low resolution).
Our objective is to closely project the corresponding features from all branches for a specific image
with an arbitrary resolution. We add a new loss function to the network to enforce this, which
penalizes a high cosine distance between both features. We employed the cosine distance metric
to match the evaluation protocol. Applying a HR image to the ArcFace network (HR branch),
fHR then denotes the corresponding output feature vector, and images from the particular LR
branches are named fLR accordingly. The cosine feature distance loss Ldist is then calculated as:

Ldist = 1 − fHR · fLR

∥fHR∥2 ∥fLR∥2 (6)

For both branches, we calculate the cross-entropy loss LCE,HR and LCE,LR, respectively. We
weigh all three losses approximately equally and multiply the feature distance loss by a factor of
25. Finally, we conclude the total loss function L for the siamese training approach as follows:

L = LCE,HR + LCE,LR + 25 · Ldist (7)

Due to the siamese network architecture, both images, in high resolution and low resolution,
need to be propagated through each branch. Thus, the training time is about double in the
two resolution training scenario. In our experiments, we select the following resolutions r ∈
{5, 6, 7, 8, 12, 14, 20, 28, 56} to train specific resolution models. In the following, we refer to this
training technique as ST-r.

6 Experimental Results

In this section, we present and discuss the results of our proposed approaches. Firstly, we focus on
the two-resolution scenario, i.e., high resolution (112 px) and one specific low resolution. Secondly,
focus on simultaneously training with multiple image resolutions, i.e., high resolution (112 px) and

LITES

01:12 Image Resolution Analysis and Training Strategies in Face Recognition

multiple low resolutions (7 px, 14 px, 28 px, and 56 px) in one training. We analyze the accuracy
on five popular datasets and compare the distances of the resulting features for all methods.
Moreover, we introduce a new evaluation protocol to measure the performance of a model for
multiple resolutions in the test dataset. We conclude this section with a comparison of all methods
proposed in this paper, especially concerning the differences in accuracy and training time.

6.1 Two-Resolution Training Scenario
As previously mentioned in section 5, we now analyze the CR batch training approach BT-r and
the siamese network CR training approach ST-r concerning the face verification accuracy on
five popular datasets. This two-resolution training scenario trains each model with exactly two
specified resolutions and compares the results to the baseline network concerning accuracy and
feature distances.

Face Verification Accuracy
As introduced in subsection 3.4, accuracy is a standard metric to measure the performance of a
face verification model. Figure 9 depicts the average face verification accuracy across five common
datasets of the BT-r and ST-r model compared to our baseline model. Note that BT-@ and ST-@
data points represent different models trained explicitly for the test resolution. Both approaches
outperform the baseline model for low image resolutions. For very low resolutions, i.e., 5 px to
8 px, the performance can be increased from ≈ 50% up to 70%. Above r ≈ 40 px, no significant
difference exists between all approaches, which affirms our expectations since the LR images
are visually hardly distinguishable from the original images, and the absolute pixel difference is
minimal (cf. subsection 3.3).

Generally, the performance improvement is increasing with decreasing resolutions. The BT-r
method performs slightly better than the ST-r method, from which we conclude that the siamese
approach might concentrate too much on projecting the features of the same image in different
resolutions into the same space than on classifying the correct identity regardless of the resolution.
For applications with a known fixed resolution, a BT−@ are the better choices.

Moreover, we compare our results on the very popular LFW dataset with two other approaches
(cf. Table 2): First, the selected knowledge distillation technique proposed by Ge et al. [5], and
second, the attribute-guided coupled GAN approach introduced by Talreja et al. [25]. Our systems

5 7 14 28 56 112

60

80

100

Test Image Resolution [px]

A
cc

ur
ac

y
[%

]

Baseline
BT-@
ST-@

Figure 9 Evaluation of average face verification accuracy across five popular datasets for different
resolution with several models.

M. Knoche, S. Hörmann, and G. Rigoll 01:13

Table 2 Face verification accuracy on the LFW dataset. The best performance of each image resolution
is marked bold.

Image Resolution Model Accuracy

64 px

BT-64 (ours) 99.38%
ST-64 (ours) 99.35%
S-64-sc [5] 92.83%
Talreja et al. [25] 94.92%

32 px

BT-32 (ours) 99.08%
ST-32 (ours) 98.32%
S-32-sc [5] 89.72%
Talreja et al. [25] 91.08%

16 px
BT-16 (ours) 98.17%
ST-16 (ours) 97.8%
S-16-sc [5] 85.87%

clearly outperform both competitors. However, the comparison to Ge et al.’s approach is not fair.
Their baseline model (teacher model) only reaches an accuracy of 97.15%, which is not comparable
to our baseline and state-of-the-art. On the other hand, the model’s number of parameters also
differs. They only trained both models for three different resolutions, showing only a few snapshots
and not the whole performance curve. The lowest resolution, (16 px) is relatively high compared
to our analysis, so we cannot fully exploit our strengths here.

Feature Distances

Similar to subsection 4.3, we pick five different resolutions and take a closer look at the features
themselves. To be more precise, we plot the distance distributions for genuine and imposter image
pairs from the LFW dataset.

7 14 28 56 112
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Test Image Resolution [px]

C
os

in
e

D
is

ta
nc

e

BT-@

7 14 28 56 112
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Test Image Resolution [px]

ST-@

Figure 10 Cosine feature distance distributions for genuine (blue) and imposter (yellow) cross-resolution
pairs in the LFW dataset. For both models, @ denotes that the training resolution matches the test
resolution.

LITES

01:14 Image Resolution Analysis and Training Strategies in Face Recognition

5 7 14 28 56 112
0

0.2

0.4

0.6

0.8

1

Test Image Resolution [px]

T
hr

es
ho

ld

Baseline
BT-@
ST-@

Figure 11 Best thresholds selected for calculating the accuracy on the LFW dataset using different
models. In the model description an @ denotes, that the training resolution matches the test resolution.

Figure 10 shows that distances of genuine and imposter pairs are much better separable for
low resolutions 14 px, 28 px and 56 px than the baseline results (cf. Figure 7). The main difference
compared to the baseline is the shift of genuine and imposter distances to a range of almost 0 and
0.1 in the very low resolution scenario (7 px). This behavior is remarkable and shows that both
networks learn to project features from very different resolutions into the same space. Although
all distances are small, imposter distances are still greater than genuine, and the distributions
are separable, consistent with the accuracy improvement discussed in the previous subsection
(cf. Figure 9). Furthermore, there is no significant difference between both proposed methods.
This is in line with with the last section’s accuracy values.

To understand and determine the exact resolution where the feature distances drop so much, we
calculate the optimal threshold and analyze the corresponding accuracy values (cf. subsection 3.4).
Figure 11 depicts the threshold values for the baseline, BT-r, and ST-r models on all tested
image resolution in the CR scenario. Thresholds for our baseline model are increasing for lower
resolutions. This trend is consistent with our results in subsection 4.3, where genuine and imposter
feature distances increase for lower resolutions. Our two-resolution training networks show a
significant drop at r = 9 px for BT-r and r ≈ 12 px for ST-r. From these points on, both models
behave differently in the training sessions and project features for significant resolution differences
more closely.

6.2 Multi-Resolution Training Scenario

We propose multiple-resolution training for both approaches to simulate a more applicable model,
which is capable of handling arbitrary resolutions. We train the BT-r model with more than
two resolutions simultaneously by randomly picking a different resolution in {7, 14, 28, 56, 112}
to generate a LR image. Each batch contains HR images and multiple LR images with different
resolutions. We find that those five resolutions equally represent the range of image resolutions.
This range reflects, for example, equivalent distances from subjects to the camera in real life. The
probability of each resolution is set to be equal. We name this approach BT-M in the following.

In the ST-r approach, we apply two different methods for training with multiple resolutions
simultaneously. First, for the LR branch, we randomly pick a resolution from the numbers
{7, 14, 28, 56} and feed the LR branch with LR images of different resolutions within each batch.
The HR branch always takes 112 px images. This training with in total five different resolutions
simultaneously doubles the training time. In the following, this approach will be referred to as

M. Knoche, S. Hörmann, and G. Rigoll 01:15

ST-M1. The second method ST-M2 extends the siamese network to five branches, each branch
representing a particular defined resolution (7 px, 14 px, 28 px, 56 px, and 112 px). Consequently,
four feature distance losses are calculated each between the HR and the corresponding LR branch.
Moreover, we also calculate the cross-entropy loss for each branch. All feature distance losses are
weighted each with a factor of 25, to be in the same order of magnitude as the cross-entropy losses.
The training time for this experiment is about five times longer than the baseline because it is
scaling with the number of defined resolutions for training.

Face Verification Accuracy

Figure 12 presents the face verification accuracy for BT-M, ST-M1, and ST-M2 model across
arbitrary image resolutions. All three approaches perform significantly better than the baseline
model in resolutions below 13 px and worse above a resolution of 28 px. Note that there is a
significant peak at a resolution of 14 px, especially for BT-M. One reason for this could be that
this specific resolution was used during training, and hence, this effect is also visible at resolutions
7 px, 28 px, and 56 px.

Another finding is that the siamese network CR training outperforms the CR batch training
for low resolutions (r < 16 px) and vice-versa for mid and high resolutions (r > 16 px). For
r = 7 px, the ST-M1 model achieves an accuracy score of ≈ 75%, which is almost 25% above the
baseline performance and even higher than ST-7. At the same time, that approach loses about
8% performance at high resolutions r = 56 px. For a more scale-comprehensive performance score,
we will introduce three new evaluation protocols in subsection 6.3.

Figure 13 investigates the performance at and close to two selected resolutions, 7 px and
14 px. On the left side, we can see that BT-7 and ST-7 optimized the performance strictly
for the 7 px resolution, and hence they perform worse in the neighboring regions. BT-@ and
ST-@, which represent specific resolution trained models, perform best at each scale, and this
is reasonable due to the training with that particular image resolution. The performance loss
for all multiple-resolution trained approaches (BT-M, ST-M1, and ST-M2) is compensated by
the benefit of having a single model for arbitrary resolutions. The right part of Figure 13 shows
an excerpt of resolutions from 10 px to 18 px. Here, the wave effect of BT-14 and ST-14 is also
slightly visible, meaning that those two models perform relatively best on exactly 14 px resolution.

5 7 14 28 56 112

60

80

100

Test Image Resolution [px]

A
cc

ur
ac

y
[%

]

Baseline
BT-M
ST-M1
ST-M2

Figure 12 Average face verification accuracy across five popular datasets for different image resolutions
with several models. Except for the Baseline all models were trained using multiple image resolutions.

LITES

01:16 Image Resolution Analysis and Training Strategies in Face Recognition

5 6 7 8 9

50

60

70

80

90

Test Image Resolution [px]

A
cc

ur
ac

y
[%

]
BT-@ BT-7 BT-M
Baseline ST-M1 ST-M2
ST-@ ST-7

10 11 12 13 14 15 16 17 18

70

80

90

100

Test Image Resolution [px]
A

cc
ur

ac
y

[%
]

BT-@ BT-14 BT-M
Baseline ST-M1 ST-M2
ST-@ ST-14

Figure 13 Accuracy on the LFW dataset for several models trained with different image resolutions.
In the model description an @ denotes, that the training resolution matches the test resolution.

Feature Distances

Interestingly, in terms of feature distance distributions (cf. left part of Figure 14), the multi-
resolution batch training is not behaving similarly to the two resolution batch training. Specifically
for BT-r, at very low resolutions (r = 7 px), the feature distance distributions for genuine and
imposter pairs are even larger than for all other resolutions. This characteristic fits to the BT-r
accuracy at that scale (cf. Figure 13). In contrast to the two-resolution case, both siamese training
approaches (ST-M1 and ST-M2) project features for all resolutions closer together. We conduct
this from very low distances across all scales (center and right parts in Figure 14). The maximum
feature distance for both approaches is about 0.1.

7 14 28 56 112
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

Test Image Resolution [px]

C
os

in
e

D
is

ta
nc

e

BT-M

7 14 28 56 112
0.00
0.02
0.04
0.06
0.08
0.10
0.12

Test Image Resolution [px]

ST-M1

7 14 28 56 112
0.00
0.02
0.04
0.06
0.08
0.10
0.12

Test Image Resolution [px]

ST-M2

Figure 14 Cosine feature distance distributions for genuine (blue) and imposter (yellow) cross-resolution
pairs in the LFW dataset at different test-set image resolutions. For training, multiple image resolutions
were used.

M. Knoche, S. Hörmann, and G. Rigoll 01:17

6.3 Evaluation Protocols for Multiple Resolutions

Evaluation protocols for common public datasets are not taking into account the image resolution.
In the previous sections, we only considered a specific image resolution to calculate the face
verification accuracy. With single networks (cf. subsection 6.2) capable of handling arbitrary
image resolutions at once, there is a need for a more meaningful evaluation considering multiple
resolutions. Therefore, we propose specific evaluation protocols for all five datasets, with a focus
on four different resolution ranges:

Low resolutions: r ∈ {x ∈ N | 5 ≤ x ≤ 10}
Mid resolutions: r ∈ {x ∈ N | 11 ≤ x ≤ 40}
High resolutions: r ∈ {x ∈ N | 41 ≤ x ≤ 112}
All resolutions: r ∈ {x ∈ N | 5 ≤ x ≤ 112}

The evaluation protocols define the resolution for each image in each pair for the corresponding
dataset, and we keep the probability for each resolution in the generation process equal. All
protocols are available at: https://github.com/martlgap/btm-stm.

6.4 Comparison of the proposed Methods

To conclude this chapter, we provide a comparison between all introduced methods. First, we
analyze the verification performance on HR images for all proposed methods and compare them
to the baseline approach. Figure 15 shows the accuracy of the LFW dataset for each epoch.
We select models BT-7, BT-56, ST-7, and ST-56 to represent both, shallow and relatively high
resolutions. After the first epoch, our baseline model achieves about 98% accuracy, followed by
almost peak accuracy already after the second epoch. During epochs 3 and 16, no significant
changes in accuracy are visible. The BT-56 starts with equal accuracy after the first epoch
and then takes another two epochs to reach almost peak accuracy. The ST-56 gets only after
epoch 4 approximately peak performance. This model needs significantly more samples than both
previously mentioned models to achieve similar accuracy. One reason could be the additional
feature distance loss, which forces the network to minimize feature distances and learn a reasonable
classification.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
85

90

95

100

Epoch

A
cc

ur
ac

y
[%

]

Baseline BT-56
BT-7 ST-7
ST-56

Figure 15 Evaluation of face verification accuracy on the original LFW dataset for high resolution
images.

LITES

https://github.com/martlgap/btm-stm

01:18 Image Resolution Analysis and Training Strategies in Face Recognition

Table 3 Comparison of training time per epoch and accuracy on LFW dataset for different test image
resolution protocols. Bold numbers denote the best performance across all methods.

Accuracy [%] for Test Resolution

Model
Training Time
per Epoch [h] 112 px all_res high_res mid_res low_res 5 px

Baseline 2 99.23 96.86 99.20 95.89 77.57 54.65
BT-M 2 99.30 97.72 99.33 97.78 87.17 71.53
ST-M1 4 97.40 96.76 97.35 96.98 91.50 76.78
ST-M2 20 95.62 95.07 95.62 95.51 88.72 71.84

The peak performance for both methods BT-7 and ST-7 are significantly lower compared to
the other approaches. This decrease could evolve from too little information in the shallow LR
images, which might probably be just too little resolution to be able to learn a proper feature
extraction. Moreover, models converge slower and need at least 10 epochs to reach the overall
maximum accuracy region.

Second, Table 3 compares all presented methods to their training time per epoch and per-
formance in the multi-resolution scenarios and depicts accuracy values on the LFW dataset. We
conduct that compared to the two resolution techniques, both ST-M1 and ST-M2 models clearly
outperform the baseline and the BT-M for low resolutions. Focusing on higher resolutions, we
conclude that BT-M is the best performing method. Even for the original image resolution of
11 px, the BT-M model performs better than the baseline. We think this is reasonable because
using lower resolutions additionally during training can be seen as extra data augmentation and
hence, can improve the performance. One also has to compromise that for an absolute performance
improvement of about 14% in the low_res protocol, the performance for high_res drops about
2%. In the second siamese training approach, ST-M2 is performing worse in all categories than
ST-M1. Therefore, we conclude that the much greater effort for training is not worth it. It seems
to be less important to force a network to learn close features for the same image in different
resolutions, within each batch, than across several batches.

Lastly, the number of parameters, and hence the inference time, is equal for all models, thus
making the comparison fair and reasonable.

7 Conclusions and Future Work

This work analyzes the impact of different image resolutions on face verification performance
utilizing a state-of-the-art approach. The distances between extracted features are investigated in
detail. Our findings are that facial features extracted from established face recognition networks are
not scale-invariant, and hence the performance decreases substantially for lower image resolutions.

To obtain the best performance, the resolution of the testing images must be the same as in
the corresponding training dataset for the network. To overcome this problem, we propose two
intuitive methods to learn scale-invariant features directly: 1) Training our network with batches
containing an equal amount of LR and HR images. Experiments across five conventional test
datasets show improvements up to 24.80% for for very low image resolutions of 5 px. 2) Training
a siamese network structure, which additionally minimizes feature distances between LR and HR
versions of the same image besides the cross-entropy loss. Evaluations across five conventional
test datasets indicate an improvement in performance up to 31.77%.

Furthermore, we train our proposed models with several resolutions at once. Hence, a single
model can be applied to arbitrary image scales, making it more applicable. We also report a
considerable improvement of 17.96% with our best model ST-M1 for CR verification performance,

M. Knoche, S. Hörmann, and G. Rigoll 01:19

especially for low resolutions. Compared to the simple batch training method, the siamese network
CR training performs better for low resolutions and worse for mid and high resolutions. For
applications with a known fixed resolution, the latter method is the better choice.

Lastly, we introduce and release three different evaluation protocols for five popular datasets,
defining multiple resolutions for CR scenarios.

Our work showed that a loss on feature distances helps to mitigate the resolution susceptibility
in face verification. Therefore, in the future, we want to employ a specifically designed triplet loss
variant, which minimizes intra-class and maximizes inter-class feature distances. We also want
to extend the downsample process by using arbitrary blur kernels described in [33] and applying
them in our work.

References
1 Omid Abdollahi Aghdam, Behzad Bozorgtabar,

Hazim Kemal Ekenel, and Jean-Philippe Thiran.
Exploring factors for improving low resolution face
recognition. In 2019 IEEE/CVF Conference on
Computer Vision and Pattern Recognition Work-
shops (CVPRW), pages 2363–2370. IEEE, 2019.

2 Zhiyi Cheng, Xiatian Zhu, and Shaogang
Gong. Low-resolution face recognition. CoRR,
abs/1811.08965, 2018. arXiv:1811.08965.

3 Jiankang Deng, Jia Guo, Niannan Xue, and
Stefanos Zafeiriou. Arcface: Additive angular mar-
gin loss for deep face recognition. In Proceedings
of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 4690–4699, 2019.

4 Berk Dogan, Shuhang Gu, and Radu Timofte. Ex-
emplar guided face image super-resolution without
facial landmarks. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recogni-
tion Workshops, pages 0–0, 2019.

5 Shiming Ge, Shengwei Zhao, Chenyu Li, and Jia
Li. Low-resolution face recognition in the wild via
selective knowledge distillation. IEEE Transactions
on Image Processing, 28(4):2051–2062, 2018.

6 Yandong Guo, Lei Zhang, Yuxiao Hu, Xiaodong
He, and Jianfeng Gao. Ms-celeb-1m: A dataset
and benchmark for large-scale face recognition. In
European conference on computer vision, pages
87–102. Springer, 2016.

7 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and
Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 770–
778, 2016.

8 Chih-Chung Hsu, Chia-Wen Lin, Weng-Tai Su,
and Gene Cheung. Sigan: Siamese generative ad-
versarial network for identity-preserving face hallu-
cination. IEEE Transactions on Image Processing,
28(12):6225–6236, 2019.

9 E. G. Huang, G. B. Learned-Miller. Labeled Faces
in the Wild: Updates and New Reporting Proced-
ures. Technical Report UM-CS-2014-003, Univer-
sity of Massachusetts, Amherst, May 2014.

10 Robert Keys. Cubic convolution interpolation for
digital image processing. IEEE transactions on
acoustics, speech, and signal processing, 29(6):1153–
1160, 1981.

11 Vahid Reza Khazaie, Nicky Bayat, and Yalda
Mohsenzadeh. Ipu-net: Multi scale identity-
preserved u-net for low resolution face recognition.
arXiv preprint, 2020. arXiv:2010.12249.

12 Yonghyun Kim, Wonpyo Park, Myung-Cheol Roh,
and Jongju Shin. Groupface: Learning latent
groups and constructing group-based representa-
tions for face recognition. In Proceedings of the
IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 5621–5630, 2020.

13 Pei Li, Loreto Prieto, Domingo Mery, and Patrick J
Flynn. On low-resolution face recognition in the
wild: Comparisons and new techniques. IEEE
Transactions on Information Forensics and Secur-
ity, 14(8):2000–2012, 2019.

14 Weiyang Liu, Yandong Wen, Zhiding Yu, Ming
Li, Bhiksha Raj, and Le Song. Sphereface: Deep
hypersphere embedding for face recognition. In
Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 212–220, 2017.

15 Ze Lu, Xudong Jiang, and Alex Kot. Deep coupled
resnet for low-resolution face recognition. IEEE
Signal Processing Letters, 25(4):526–530, 2018.

16 Fabio Valerio Massoli, Giuseppe Amato, and Fab-
rizio Falchi. Cross-resolution learning for face recog-
nition. Image and Vision Computing, page 103927,
2020.

17 Stylianos Moschoglou, Athanasios Papaioannou,
Christos Sagonas, Jiankang Deng, Irene Kotsia,
and Stefanos Zafeiriou. Agedb: the first manually
collected, in-the-wild age database. In Proceedings
of the IEEE Conference on Computer Vision and
Pattern Recognition Workshops, pages 51–59, 2017.

18 Sivaram Prasad Mudunuri, Soubhik Sanyal, and
Soma Biswas. Genlr-net: Deep framework for
very low resolution face and object recognition
with generalization to unseen categories. In 2018
IEEE/CVF Conference on Computer Vision and
Pattern Recognition Workshops (CVPRW), pages
602–60209. IEEE, 2018.

19 Nasrabadi NM et al. Identity-aware deep face hallu-
cination via adversarial face verification. In IEEE
International Conference on Biometrics Theory
Applications and Systems, 2019.

20 Olga Russakovsky, Jia Deng, Hao Su, Jonathan
Krause, Sanjeev Satheesh, Sean Ma, Zhiheng

LITES

http://arxiv.org/abs/1811.08965
http://arxiv.org/abs/2010.12249

01:20 Image Resolution Analysis and Training Strategies in Face Recognition

Huang, Andrej Karpathy, Aditya Khosla, Michael
Bernstein, et al. Imagenet large scale visual recog-
nition challenge. International journal of computer
vision, 115(3):211–252, 2015.

21 Florian Schroff, Dmitry Kalenichenko, and James
Philbin. Facenet: A unified embedding for face
recognition and clustering. In Proceedings of the
IEEE conference on computer vision and pattern
recognition, pages 815–823, 2015.

22 Soumyadip Sengupta, Jun-Cheng Chen, Carlos
Castillo, Vishal M Patel, Rama Chellappa, and
David W Jacobs. Frontal to profile face verification
in the wild. In 2016 IEEE Winter Conference on
Applications of Computer Vision (WACV), pages
1–9. IEEE, 2016.

23 Maneet Singh, Shruti Nagpal, Richa Singh, Mayank
Vatsa, and Angshul Majumdar. Magnifyme: Aiding
cross resolution face recognition via identity aware
synthesis. arXiv preprint, 2018. arXiv:1802.08057.

24 Christian Szegedy, Wei Liu, Yangqing Jia, Pierre
Sermanet, Scott Reed, Dragomir Anguelov, Du-
mitru Erhan, Vincent Vanhoucke, and Andrew Ra-
binovich. Going deeper with convolutions. In Pro-
ceedings of the IEEE conference on computer vision
and pattern recognition, pages 1–9, 2015.

25 Veeru Talreja, Fariborz Taherkhani, Matthew C
Valenti, and Nasser M Nasrabadi. Attribute-guided
coupled gan for cross-resolution face recognition.
arXiv preprint, 2019. arXiv:1908.01790.

26 Su Tang, Shan Zhou, Wenxiong Kang, Qiuxia Wu,
and Feiqi Deng. Finger vein verification using a
siamese cnn. IET Biometrics, 8(5):306–315, 2019.

27 Hao Wang, Yitong Wang, Zheng Zhou, Xing Ji,
Dihong Gong, Jingchao Zhou, Zhifeng Li, and Wei
Liu. Cosface: Large margin cosine loss for deep face
recognition. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition,
pages 5265–5274, 2018.

28 Qiangchang Wang, Tianyi Wu, He Zheng, and
Guodong Guo. Hierarchical pyramid diverse atten-
tion networks for face recognition. In Proceedings
of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 8326–8335, 2020.

29 Zhifei Wang, Zhenjiang Miao, QM Jonathan Wu,
Yanli Wan, and Zhen Tang. Low-resolution face
recognition: a review. The Visual Computer,
30(4):359–386, 2014.

30 Yandong Wen, Kaipeng Zhang, Zhifeng Li, and
Yu Qiao. A discriminative feature learning approach
for deep face recognition. In European conference
on computer vision, pages 499–515. Springer, 2016.

31 Erfan Zangeneh, Mohammad Rahmati, and Yalda
Mohsenzadeh. Low resolution face recognition us-
ing a two-branch deep convolutional neural network
architecture. Expert Systems with Applications,
139:112854, 2020.

32 Dan Zeng, Hu Chen, and Qijun Zhao. Towards res-
olution invariant face recognition in uncontrolled
scenarios. In 2016 International Conference on
Biometrics (ICB), pages 1–8. IEEE, 2016.

33 Kai Zhang, Wangmeng Zuo, and Lei Zhang. Deep
plug-and-play super-resolution for arbitrary blur
kernels. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages
1671–1681, 2019.

34 Kaipeng Zhang, Zhanpeng Zhang, Chia-Wen
Cheng, Winston H Hsu, Yu Qiao, Wei Liu, and
Tong Zhang. Super-identity convolutional neural
network for face hallucination. In Proceedings of the
European conference on computer vision (ECCV),
pages 183–198, 2018.

35 Tianyue Zheng and Weihong Deng. Cross-pose lfw:
A database for studying cross-pose face recognition
in unconstrained environments. Beijing University
of Posts and Telecommunications, Tech. Rep, 5,
2018.

36 Tianyue Zheng, Weihong Deng, and Jiani Hu.
Cross-age lfw: A database for studying cross-age
face recognition in unconstrained environments.
arXiv preprint, 2017. arXiv:1708.08197.

37 Ruofan Zhou and Sabine Susstrunk. Kernel model-
ing super-resolution on real low-resolution images.
In Proceedings of the IEEE International Confer-
ence on Computer Vision, pages 2433–2443, 2019.

http://arxiv.org/abs/1802.08057
http://arxiv.org/abs/1908.01790
http://arxiv.org/abs/1708.08197

Micro- and Macroscopic Road Traffic Analysis using
Drone Image Data
Friedrich Kruber #

Technische Hochschule Ingolstadt, Esplanade 10, Ingolstadt, Germany

Eduardo Sánchez Morales #

Technische Hochschule Ingolstadt, Esplanade 10, Ingolstadt, Germany

Robin Egolf #

Technische Hochschule Ingolstadt, Esplanade 10, Ingolstadt, Germany

Jonas Wurst #

Technische Hochschule Ingolstadt, Esplanade 10, Ingolstadt, Germany

Samarjit Chakraborty #

University of North Carolina at Chapel Hill (UNC), Department of Computer Science, NC 27599, USA

Michael Botsch #

Technische Hochschule Ingolstadt, Esplanade 10, Ingolstadt, Germany

Abstract
The current development in the drone technology,
alongside with machine learning based image pro-
cessing, open new possibilities for various applica-
tions. Thus, the market volume is expected to grow
rapidly over the next years. The goal of this paper
is to demonstrate the capabilities and limitations of
drone based image data processing for the purpose
of road traffic analysis.

In the first part a method for generating micro-
scopic traffic data is proposed. More precisely, the
state of vehicles and the resulting trajectories are
estimated. The method is validated by conducting
experiments with reference sensors and proofs to
achieve precise vehicle state estimation results. It
is also shown, how the computational effort can be
reduced by incorporating the tracking information

into a neural network. A discussion on current lim-
itations supplements the findings. By collecting a
large number of vehicle trajectories, macroscopic
statistics, such as traffic flow and density can be
obtained from the data. In the second part, a pub-
licly available drone based data set is analyzed to
evaluate the suitability for macroscopic traffic mod-
eling. The results show that the method is well
suited for gaining detailed information about mac-
roscopic statistics, such as traffic flow dependent
time headway or lane change occurrences.
In conclusion, this paper presents methods to ex-
ploit the remarkable opportunities of drone based
image processing for joint macro- and microscopic
traffic analysis.

2012 ACM Subject Classification Computing methodologies → Machine learning
Keywords and Phrases traffic data analysis, trajectory data, drone image data
Digital Object Identifier 10.4230/LITES.8.1.2
Supplementary Material Software (Source Code): https://github.com/fkthi/OpenTrafficMonitoring
Plus
Acknowledgements The authors acknowledge the financial support by the Federal Ministry of Education
and Research of Germany (BMBF) in the framework of FH-Impuls (project number 03FH7I02IA).
Received 2021-05-11 Accepted 2022-01-29 Published 2022-11-16
Editor Samarjit Chakraborty and Qing Rao
Special Issue Special Issue on Embedded Systems for Computer Vision

1 Introduction

Drones are an excellent example of the ongoing technological development of embedded systems.
The commercial drone market is already a multi-billion dollar business. Growth rates of 15 percent
per year are forecast for the coming years [13]. The capability of drones to carry payloads make

© Friedrich Kruber, Eduardo Sánchez Morales, Robin Egolf, Jonas Wurst, Samarjit Chakraborty, and
Michael Botsch;
licensed under Creative Commons Attribution 4.0 International (CC BY 4.0)

Leibniz Transactions on Embedded Systems, Vol. 8, Issue 1, Article No. 2, pp. 02:1–02:27
Leibniz Transactions on Embedded Systems

L I T E S Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:friedrich.kruber@thi.de
https://orcid.org/0000-0002-7777-0033
mailto:eduardo.sanchesmorales@thi.de
https://orcid.org/0000-0001-8622-0757
mailto:robin.egolf@thi.de
https://orcid.org/0000-0001-6001-5827
mailto:jonas.wurst@thi.de
https://orcid.org/0000-0002-0399-3672
mailto:samarjit@cs.unc.edu
https://orcid.org/0000-0002-0503-6235
mailto:michael.botsch@thi.de
https://orcid.org/0000-0002-0900-1697
https://doi.org/10.4230/LITES.8.1.2
https://github.com/fkthi/OpenTrafficMonitoringPlus
https://github.com/fkthi/OpenTrafficMonitoringPlus
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lites
https://www.dagstuhl.de

02:2 Drone Image Data For Joint Micro- and Macroscopic Road Traffic Analysis

them versatile tools. They are used to detect biological microorganisms or chemical substances, to
inspect technical equipment such as wind turbines and gas pieplines, or to monitor crop growth
and measuring biomass, to name a few examples [56]. Most commonly, drones are equipped with
cameras. The development of drones as embedded vision systems runs parallel to breakthroughs in
computer vision using deep learning methods. This increases the potential for automated analysis
of image data.

The present work is specifically dedicated to the application for traffic surveillance and analysis.
Traffic is traditionally analyzed either on a global, macroscopic view, or in contrast, on a vehicle
based, microscopic view. Section 2 summarizes typical sensor setups and study procedures from
established methods.

Section 3 proposes methods for some of the core elements for the data acquisition via drones:
image registration, object detection, coordinate transformation and object tracking. The re-
quirements for object detection are high, since every pixel translates into several centimeters
on the ground. For example, it is crucial to know which lane a vehicle is located in. Thus,
the tolerance is accordingly in the range of a few decimeters or pixels, respectively. In order
to map the images to the real world, the pixelized information has to be transformed to real
world coordinates. Since a hovering drone is exposed to wind, slight movements have to be
compensated with image registration techniques. By tracking vehicles over time, state variables,
such as position over time, speed, acceleration and orientation can be obtained. To validate
the proposed method of estimating the vehicle’s state, experiments with reference sensors are
conducted in this work. Lastly in Section 3, a novel approach to reduce the computational load of
the object detection is proposed. For this, Kalman Filter based predictions are fed into a neural
network as region proposals, which allows to deactivate one part of the neural network temporally
and increases the average throughput. The code for the complete methodology is available at
https://github.com/fkthi/OpenTrafficMonitoringPlus.

By collecting a large number of vehicle trajectories, macroscopic traffic statistics can be derived
as well. In Section 4, a publicly available dataset, acquired by means of drones, is used to validate
the approach for macroscopic traffic statistics. The synchronization of the micro- and macroscopic
domain can improve traffic modeling, but is difficult to accomplish with established approaches.
Now, information from both domains can be captured synchronous by a single camera, mounted
on a drone. Questions like how likely are lane changes performed in relation to the traffic flow,
how do vehicles distribute on multi-lane roads, or how do drivers adapt distances related to the
traffic situation, can be answered with bird’s-eye view images from hovering drones.

Possible applications are accordingly diverse. For example, the data can be used to understand
risk factors for traffic accidents by analyzing the behavior of traffic participants in intersections.
Macroscopic traffic simulations benefit from real traffic measurements too. They are applied in
many fields, for example to predict the effects of road network modifications, to optimize traffic
signal coordination for green wave traffic, or to improve emergency vehicles travel times [10].
Roadside unit sensors are expensive to plan, install and maintain, while drone recording campaigns
can be carried out at every place with low effort, so that investigations can also be conducted off
the main roads and at very short notice. Such data supports engineers in making traffic in various
situations more predictable and controllable as well.

Other applications target the automotive industry. Trajectory prediction and path planning
are two main challenges for automated driving. Here, data is typically collected with test vehicles,
equipped with reference sensors. However, the field of view from the vehicle perspective is limited
because of occlusions and the range of vision, which negatively affects the understanding of
other traffic participants decisions and actions. Images from aerial campaigns do not suffer from
occlusion and observe a large area on ground. They allow data collection for many vehicles in
parallel and capture how individual objects interact with each other.

https://github.com/fkthi/OpenTrafficMonitoringPlus

F. Kruber, E. Sánchez Morales, R. Egolf, J. Wurst, S. Chakraborty, and M. Botsch 02:3

2 Related work

This section starts with an overview on typical measurement principles for macroscopic data,
followed by the microscopic data collection. The third subsection summarizes the current state of
traffic surveillance from aerial imagery and provides an overview of public available data sets.

2.1 Macroscopic data

Traffic flow theory has been intensively researched for decades, starting with Greenshields pub-
lication and the first fundamental diagram in 1933 [18]. The works of [20, 23] provide a broad
overview of the literature research of traffic stream characteristics and comparisons of several
approaches on how to obtain data. Table 1 summarizes the measurement principles, typical
sensors and the obtained measurements. It should be noted that, while some variables cannot
be measured with certain methods, they can still be estimated to some extent. For example,
single loop detectors cannot estimate speed, but if several of them are placed within distances
of some hundred meters, average speed can still be estimated. Around 90 % of fixed sensors
are induction loops [9], which are buried in the pavement. Radars and cameras are increasingly
becoming established and are constantly being further developed. Floating car data, acquired by
cell phones, enables end-user services for estimated travel times and alternative routes. Electronic
toll collection is automated with RFID tag equipped vehicles. By measuring the time between
consecutive toll readers, the travel times can be estimated as well [9]. The type of variables
that can be captured by a fixed camera depends on the mounting location. For example, if they
are located on a high building to perceive a large area, they offer the same possibilities as a
drone. A major advantage of image-based methods is that they can deliver both, point-based and
distance-based variables. Looking at an individual image frame, the distance-based traffic density
can be estimated. However, if one considers a sequence of video frames, the number of vehicles
crossing a specific location over time yields the traffic flow.

The costs for fixed sensor units are estimated up to USD 20,000, depending on existing
structures [15]. Once installed, they deliver a constant data stream and they are less affected by
weather conditions compared to drones. In contrast to that, drone data can only be obtained within
certain time windows and the data acquisition causes variable costs. Batteries are a bottleneck,
but this disadvantage can nowadays be compensated by tethered drone systems, which allow flight
durations of several hours. Wind and water resistance, alongside with low-light capabilities of
cameras, are still weak points. In return, drone based data acquisition has three key advantages:
1) data can be recorded without the necessity of additional infrastructure and 2) both, point-based
and distance-based variables can be obtained, and 3) it enables joint micro- and macroscopic
traffic analysis.

2.2 Microscopic data

In this work, microscopic data is defined as the estimation of vehicle state variables, such as speed,
accelerations and rotation rates. By observing several nearby located vehicles, their interactions
can be inferred as well. In contrast to that, the aggregation of data from many vehicles over
time or space defines the macroscopic view. While the macroscopic analysis is rather of interest
for transportation planners, the microscopic data is targeted towards the automotive industry.
Typical data recording procedures from the ego vehicle perspective are:

Field Operational Tests (FOT),
Natural Driving Studies (NDS).

LITES

02:4 Drone Image Data For Joint Micro- and Macroscopic Road Traffic Analysis

Table 1 Measurement principles, available sensors and corresponding traffic variables for macroscopic
traffic stream characteristics.

Method Sub-Method Measurements

Sp
ee

d

Fl
ow

D
en

si
ty

O
cc

up
an

cy

Tr
av

el
T

im
e

H
ea

dw
ay

Ve
hi

cl
e

cl
as

s

Fixed sensor

single loop x x
dual loop x x x x x

radar x x x x x x
camera x x x x x x x

Drone hovering x x x x x x x

Floating cars GPS / Cell Phones x x
Transponder (RFID) x

The two procedures differ according to their target [35]. In FOT, the drivers get instructions
in order to validate or assess a certain functionality. As an example, the drivers are asked to
evaluate a lane keeping assist. In contrast to that, NDS are free of instructions in order to analyze
unbiased driving behavior. For example, NDS can be used to examine how fast drivers approach
an uncontrolled intersection, or how often they perform lanes changes. Car manufacturers proceed
similarly. Test drives can be performed to validate a specific functionality according to given
specifications. Alternatively, long term tests can be carried out without specific instructions in
order to reveal any sort of unexpected malfunction, especially in the context of system integration.
In both cases, FOT and NDS, vehicles can be either equipped with series production sensors, or
additionally with reference sensors, such as Lidars and additional cameras.

The scope of in-vehicle testing spans all aspects of driving: perception, planning, and execution.
In contrast to that, recordings from external sensors capture only the output of these tasks.
Nevertheless, such data is valuable for several purposes, such as developing trajectory planning
algorithms, where the drone based recordings function as ground truth data. Another application
is the development of behavior models of traffic participants.

2.3 Traffic data acquired with drones
The interest in traffic data acquisition with drones is underlined by the increasing number of
publications over the past years. Here, related works are divided into object detection methods
from aerial imagery, followed by publicly available data sets.

Some works propose architectures for object detection from satellite or airplane images [34, 4, 41],
while the present work pursues a precise state estimation from flight altitudes of up to 100 m.
Other works focus on detection and tracking from drones or infrastructure cameras [19, 53, 32].
DroNet [32] is a lean implementation of the YOLO network [45], where the number of filters in
each layer is reduced. DroNet outputs several frames-per-second (fps) with onboard hardware,
but at the cost of lower detection performance and image resolution. The network struggles with
variations in flight height and vehicle sizes. It outputs horizontal bounding boxes, which are not
favorable for estimating variables such as the vehicle orientation or yaw rate. DroNet is rather
implemented for vehicle detection with a moving drone, than for vehicle state estimation. The
R3 network [34] enables the detection of rotated bounding boxes from high altitude images. R3

is a bounding box detector, while the method in this work uses Mask R-CNN [22], which is an
instance segmentation network. Except for [53], no other work focuses on the vehicle tracking and
state estimation.

F. Kruber, E. Sánchez Morales, R. Egolf, J. Wurst, S. Chakraborty, and M. Botsch 02:5

Data generation
Video and DGPS

Pre-Processing
Image registration

Object Detection
Rotated BBox

Post-Processing
Tracking, Mapping

Figure 1 The overall process: From data recording to tracking.

The work in [19] approximates the most to the present work. A test vehicle was equipped
with a GPS logger that receives positions and speed. The images were geo-referenced to obtain a
fixed frame. The main differences with the present work can be stated as follows: The detection
algorithm in [19] compares the differences between two frames, hence identifying moving objects
by localizing altered pixel values. This type of detector is prone to errors, e.g., during vehicle
standstills, changing light conditions or due to the movement of vegetation, as stated by the
authors. The output is a non-rotated bounding box, which fails to estimate the vehicles shape
and thereby worsens the state estimation. The images in [19] were processed with a Gaussian blur
filter, which is claimed to eliminate high frequency noise. Applying such a filter blurs the edges
and is contra productive when applying a neural network detector. Finally, relief displacement was
not taken into account, which causes an increasing error with growing distance to the principal
point, see Section 3. The authors state a normalized root mean square error of 0.55 m at a flight
altitude of 60 m. By the same measure, the error obtained in the present work is much lower with
0.18 m at a flight altitude of 75 m and identical image resolution. Finally, the reference sensor used
in [19] has an accuracy of 0.2 m and 0.03 m/s in the position and velocity respectively, while the
one used in this work has a position and velocity accuracy of 0.01 m and 0.01 m/s accordingly. A
better reference sensor accuracy allows a pixel-accurate comparison, which makes the experiments
more relevant.

Regarding the public data sets, two different types are available. The first type provides
pre-processed trajectory data [28, 58, 47, 12, 6]. With more trajectory data sets available now, not
only vehicles are tracked, but also bicycles and pedestrians among other classes. Also, the types
of locations broaden, from highway to urban infrastructure, such as crossings and roundabouts.
The dataset in [6] extends the perceptive field throughout a complete city district with a swarm
of several drones flying simultaneously.

The other type of data sets provide labeled training data to improve computer vision methods
and tracking algorithms. Large data sets can be found in [42, 59]. Despite their size, these are less
useful for traffic monitoring and vehicle state estimation, since the drone does not hover but flies
without providing the flight meta data of the drone. Additionally, it was found that [59] appears
to lack partly label quality, which is a key factor to obtain good results. Other data sets, such
as [40, 11] provide additionally flight meta data including the measurements from GPS and a
Inertial Measurement Unit (IMU). In these works, the drones fly at low altitudes, thus capturing
a smaller area on ground. The scope of these works is rather on visual odometry, Simultaneous
Localization and Mapping (SLAM) or autonomous aerial surveillance.

3 Drone image based vehicle state estimation

This section builds on our previous work in [30, 50] and describes a method to acquire a highly
accurate vehicle state based on computer vision detection. An overview of the main steps is
depicted in Figure 1. In the present work, the method is extended by feeding Kalman Filter [24]
based proposals into the neural network in order to reduce the computational load.

The section starts with a description of the coordinate systems, followed by the method
description and experiments.

LITES

02:6 Drone Image Data For Joint Micro- and Macroscopic Road Traffic Analysis

3.1 Coordinate systems
The coordinate systems used in this work are described in what follows. The vehicles move on the
Local Tangent Plane (LTP), where xL points east, yL north and zL upwards, with an arbitrary
origin oL on the surface of the earth. The Local Car Plane (LCP) is defined according to the
ISO 8855 norm, where xC points to the hood, yC to the left seat, zC upwards, with the origin oC
at the center of sprung mass of the vehicle. For simplification, it is assumed that
1) the xCyC-plane is parallel to the xLyL-plane,
2) the centre of sprung mass and geometrical centre of the vehicle are identical, and
3) the sensor in the vehicle measures in the LCP.
Quantities expressed in the LTP and LCP are given in the International System of Units (SI).
The Pixel Coordinate Frame (PCF) is a vertical image projection of the LTP, where xP and yP
represent the axes, with the origin oP in one corner of the image. It is assumed that the camera is
pointing vertically downwards. Quantities expressed in PCF are given in pixels (px).

In the following, vectors are represented in boldface and matrices in boldface, capital letters.

3.2 Data generation setup
The data set was recorded on a test track. This gives certain degrees of freedom regarding
arbitrary vehicle trajectories within the image frame and allows the experiments to be repeated
with the same setup. The test vehicle was equipped with an Inertial Navigation System (INS)1,
which serves as a reference sensor for the position, velocity, acceleration, orientation and rotation
rate. This INS is equipped with servoaccelerometers, optical gyroscopes and receives Real-Time
Kinematic (RTK) correction data. The Correvit sensor2 estimates the linear velocities (vx, vy)
along the longitudinal and lateral axes of the vehicle by means of an optical grid [21]. According
to [16] the sideslip angle of the vehicle is defined as

β = arctan(vy
vx

). (1)

Therefore, the Correvit can serve as the reference sensor for the estimated sideslip angle.
Table 2 depicts the flight altitudes and Ground Sampling Distance (GSD) for the drone3 in

use, Section 3.5.1 details the computation.

Table 2 Total count of frames and GSD per altitude.

Flight altitude 50 m 75 m 100 m

Number of frames 14 532 15 217 24 106

GSD [cm/px] 3.5 5.2 6.9

Generally, for a vertical photograph, the GSD S is a function of the camera’s focal length f

and flight altitude H above ground:

S = f

H
. (2)

1 GeneSys ADMA-G-PRO+
2 Kistler Correvit S-Motion
3 DJI Phantom 4 Pro V2

F. Kruber, E. Sánchez Morales, R. Egolf, J. Wurst, S. Chakraborty, and M. Botsch 02:7

Figure 2 Registered image (left) and the raw drone image (right) of a Ground Control Point (GCP)
from 1.5 m height. The borders of the left image are clipped due to translation and rotation. The red box
depicts the GCP location at the first video frame, which was shot around 30 s beforehand.

Varying altitudes brings flexibility in the trade-off between GSD and the captured area on the
ground. For each altitude, from 50 m to 100 m, several videos were recorded. Note, that minor,
unavoidable altitude differences during hovering are compensated by the image registration, see
Section 3.3. The camera frame-rate ff was set to ff = 50 fps and exposure time was kept constant
at 1

400 s for all recordings.

3.3 Pre-processing
The pre-processing consists generally of two parts: The camera calibration and the image registra-
tion. According to the manufacturer of the drone, the camera is shipped calibrated, so this step is
skipped. The image registration is performed to overlay the sequential video frames over the first
one to ensure a fixed image frame. The registration implemented in this work is composed of a
correction of the orientation, translation, and scaling of the image. Figure 2 depicts an example of
the registration result. This process involves three steps in order to find correspondences between
two images: a feature detector, a descriptor and finally the feature matching. The goal of the
detector is to find identical points of interest under varying viewing conditions. The descriptor is
a feature vector, which describes the local area around the point of interest. To match the points
between two images, the distances between the feature vectors are computed. If the distance
fulfills a certain criterion, e. g., a nearest neighbor ratio matching strategy, a matching point on
two images is found. The matches are then fed into the MLESAC algorithm [54] to eliminate
outliers. Lastly, a randomly selected subset of the remaining matching points is used for the image
scaling, rotation and translation. The scenery recorded should offer some distinguishable, static
features to ensure a robust image registration. Since all consecutive video frames are compared
to the very first frame, a confusion between static and moving objects can be avoided. In this
work, two competitive algorithms are applied and compared according to their execution time:
SURF [7] and ORB [49], based on their openCV implementation. Additional information can be
obtained from the survey [27].

3.4 Object detection
In addition to the object detection, an estimation of the dimensions and orientation of the vehicles
is required for many applications. Semantic segmentation networks are suitable for this purpose,
since they detect objects in random shapes, based on a pixelwise prediction. From these shapes
rotated rectangles can be derived, which serve as bounding boxes for the vehicles. In particular,
networks of the subgroup of instance segmentation are advantageous, since these networks output
directly object wise instances, instead of a pixelwise class prediction over the complete image. For

LITES

02:8 Drone Image Data For Joint Micro- and Macroscopic Road Traffic Analysis

Figure 3 Detection examples: The left column depicts examples from the experiments performed on
the test track. Other images are taken on roads, partly from publicly available sources [59, 44]. The
masks, depicted with random colors, are used to compute the location, size and orientation of the smallest
rectangle containing all mask pixels of the detected object. Note, the non-rotated bounding boxes would
be the final output of typical object detectors without the segmentations masks.

this work, the Mask R-CNN network [22] is chosen for its strong detection performance for traffic
surveillance with drone images. Mask R-CNN extends Faster R-CNN [46] by adding a parallel,
Fully Convolutional Network [39] branch for instance segmentation, next to the classification and
bounding box regression from Faster R-CNN. The network is a so called two stage detector: In
the first stage, feature maps generated by a backbone network are fed into a Region Proposal
Network (RPN), which outputs Regions of Interest (RoI). In the second stage, the predictions are
performed within the RoI Heads. One head predicts classification and regression, the second head
provides segmentation masks. These masks are used to compute the location, size and orientation
of the smallest rectangle containing all mask pixels of the detected object, in our case a vehicle.
The combination of the RPN with a Feature Pyramid Network (FPN) [37], both part of Mask
R-CNN, achieve strong detection results for rather small objects and additionally for objects of
different scales, which result from varying flight altitudes, as well as the varying objects sizes from
a small car up to a large truck, see Figure 3 for examples.

The network is pre-trained on the Common Objects in Context (COCO) data set [38]. To
predict vehicles from the top view, transfer learning has been applied with an own, manually
labeled data set. Further details, along to the extension with Kalman Proposals are presented
in Section 3.9. Implementation details are provided in our repository. Figure 3 depicts some
detection examples. The left column depicts examples from the experiments performed on the
test track (Section 3.7). Other images are taken on roads, partly from publicly available sources
[59, 44]. Note, the non-rotated bounding boxes in Figure 3 would be the final output of typical
object detectors without the segmentations masks.

3.5 Post-processing steps
To complete the process for a single image, two more steps are performed. First, the output from
the neural network, given in PCF, has to be mapped to the LTP. The mapping in this work is
applied in order to perform the experiments with the reference sensors. Another use-case for the
mapping is the translation of the pixelized information onto a road map. In the second step,
measures are taken to reduce errors induced by the relief displacement.

3.5.1 PCF Mapping
A comparison to the reference sensors requires the mapping of the PCF to the LTP. For this,
GCPs are placed on the xLyL-plane, in such a way that they are visible on the image. The i-th
GCP is defined in LTP as gi,L =

[
xi,L yi,L

]T, and in PCF as gi,P =
[
xi,P yi,P

]T. The GSD S

is calculated from two GCPs by

F. Kruber, E. Sánchez Morales, R. Egolf, J. Wurst, S. Chakraborty, and M. Botsch 02:9

S = |gi+1,L − gi,L|
|gi+1,P − gi,P|

. (3)

The i-th GCP can then be expressed in meters by

g̃i = gi,P · S =
[
x̃i ỹi

]T
. (4)

The orientation offset δ from the LTP to the PCF is calculated as

δ = θi − θi,L,with (5)

θi = atan2(ỹi+1 − ỹi, x̃i+1 − x̃i), (6)

θi,L is calculated by analogy. The GCP g̃i is then rotated as follows

ĝi = Rr (δ)T
g̃i, (7)

where Rr (·) is a 2D rotation matrix. The linear offsets from the LTP to the PCF are calculated
by ∆ = ĝi − gi,L. Finally, a pixel pP =

[
xP yP

]T on the PCF can be mapped to the LTP by

pL
P =

(
Rr (δ)T (pP · S)

)
− ∆. (8)

The next stage is to semantically define the four bounding box corners. It is assumed that the
box covers the complete shape of the vehicle. The i-th corner of the bounding box is defined in
PCF as bi =

[
xb,i,P yb,i,P

]T, and the bounding box is defined in PCF as

BP =
[
b1 b2 b3 b4

]
. (9)

The corners of the bounding box are mapped to the LTP as shown in Eq. (8) to obtain BL
P. The

geometric centre of the vehicle oveh is calculated by

oveh =

 max(BL
P 1,i)+min(BL

P 1,i)
2

max(BL
P 2,i)+min(BL

P 2,i)
2

 , (10)

for i = 1, . . . , 4. The dimensions of the detected vehicle are calculated next. Let

||b2 − b1|| < ||b3 − b1|| < ||b4 − b1||, (11)

then ŵ = S · ||b2 − b1|| and l̂ = S · ||b3 − b1|| are the estimated width ŵ and length l̂ of the vehicle
in meters.

Knowing this, the orientation ψL
veh of the vehicle is given by

ψL
veh = atan2(yL

j,P − yL
1,P, x

L
j,P − xL

1,P), (12)

where j is the element of BP associated with the length l̂ of the vehicle. The measurement vector
for the Kalman Filter is then defined as

zin =
[
oT

veh ψL
veh

]T
. (13)

LITES

02:10 Drone Image Data For Joint Micro- and Macroscopic Road Traffic Analysis

The estimation of the measurement noise is detailed in what follows. As described above, the
GSD and the orientation offset can be estimated from one pair of GCPs as long as they are visible
on the PCF. By using the same method, if n ≥ 2 GCPs are visible on the PCF, then the number
of values c that can be calculated for the GSD and for the orientation offset can be calculated as

c = n!
2! (n− 2)! , (14)

where n is the number of GCPs. An arithmetic mean S for the GSD can then be calculated as

S =
∑c
i=1 Si
c

, (15)

where Si is the GSD estimated with the i-th pair of GCPs. Likewise, an arithmetic mean δ for
the orientation offset can be calculated as

δ =
∑c
i=1 δi
c

, (16)

where δi is the orientation offset estimated with the i-th pair of GCPs. The measurement error
ζo,veh for the position and the measurement error ζψ,veh for the orientation can then be calculated
by

ζo,veh = max
(
Si − S

)
, with i ∈ {1, . . . , c}, (17)

ζψ,veh = max
(
δi − δ

)
, with i ∈ {1, . . . , c}. (18)

The measurement noise for the Kalman Filter is then defined as the diagonal matrix ζz

ζz = diag (ζo,veh, ζo,veh, ζψ,veh) . (19)

3.5.2 Relief displacement
Photographs yield a perspective projection. A variation in the elevation of an object results in a
different scale and a displacement of the object. An increase in the elevation of an object causes
the position of the object’s feature to be displaced radially outwards from the principal point Oc
[36].

Assuming a vertical camera angle, the displacement can be computed from the similar triangles
LOcA

′′ and AA′A′′, according to Figure 4:

D

h
= R

H
, d

h
= r

H
, (20)

where the second equation is expressed in GSD, with d defining the relief displacement and r the
radial distance between oc and the displaced point a in PCF. D defines the equivalent distance of
d, projected on the ground, R the radial distance from Oc, H defining the flight altitude and h

being the object height in LTP. L is the camera lens exposure station, where light rays from the
object intersect before being imaged at the cameras’ sensor. The relief displacement decreases
with an increasing hovering altitude and is zero at Oc.

According to Eq. 20, the bounding box has to be shifted radially. Two approaches are
considered: The first one requires knowledge of the vehicle sizes, and the second one is an
approximation for unknown vehicle dimensions. Since the training is performed to detect the
complete vehicle body, the corner closest to Oc can be identified as the bottom of the vehicle body.
So the height of this point is equal to the ground clearance. Knowing the height of this corner, its
displacement is corrected as described in what follows.

F. Kruber, E. Sánchez Morales, R. Egolf, J. Wurst, S. Chakraborty, and M. Botsch 02:11

H

f
L

oc

R

A

A´
A´´

h

D

a a´
d r

LTP
Oc

PCF

Figure 4 Geometry of the relief displacement, adapted from [36]. The red bar depicts an object of
height h. Due to the perspective projection and R > 0, the top of the bar A is displaced on the photo
compared to the bottom A′. The relief displacement d is the distance between the corresponding points a

and a′ in the PCF.

Defining the horizontal and vertical resolution of the image as rx and ry, the coordinates in
PCF of bi w.r.t. the image center are given by[

xb,i,img
yb,i,img

]
=

[
xb,i,P − rx

2
yb,i,P − ry

2

]
. (21)

The shift ∆x,P along the xP axis is calculated on the PCF by

∆x,P = xb,i,img · hb,i,L

H
, (22)

where hb,i,L is the height of the i-th corner on the LTP. The shift for ∆y,P is computed by analogy
along the yP axis. The shifted coordinates bi,shift of bi are then given by

bi,shift = bi −
[
∆x,P ∆y,P

]T . (23)

Let w be the width and l the known length of the vehicle and b1 be the closest corner to the
image centre. Then, b1 is used for scaling b2 and b3 as follows

bw,scaled =
(w
ŵ

· (b2 − b1)
)

+ b1, and (24)

bl,scaled =
(
l

l̂
· (b3 − b1)

)
+ b1, (25)

where w is the element of BP associated with ||b2−b1|| and l associated with ||b3−b1||, respectively.
The shifted centre of the vehicle can then be calculated by

oveh,shift = bw,scaled + bl,scaled

2 . (26)

LITES

02:12 Drone Image Data For Joint Micro- and Macroscopic Road Traffic Analysis

When gathering data on public roads, the vehicle dimensions are unknown and cannot be estimated
with a mono camera. An approximation for the displacement can be performed by assuming that
two sides of the bounding box closest to oc, are collinear to the lowest part of the vehicle chassis.
The ground clearance can be approximated as 15 cm for passenger cars [55]. The remaining two
sides can usually be referred to as the vehicle body shoulders, which usually protrude further
than the roof of the vehicle. The shoulders height is roughly half of the vehicle height and can
be approximated with 75 cm for passenger cars. Then all four corners can be shifted following
Eq. (22). Although this is only a coarse approximation, the overall error is reduced when compared
to the initial situation of neglecting the displacement.

3.6 Tracking and state estimation
To enable the object tracking, the detections must be associated across frames in a sequence
of images. The association procedure in this paper follows the computationally efficient SORT
algorithm [8]. In contrast to batch tracking methods, this algorithm solely requires information
from the previous and current frame. It is therefore suitable for real-time applications and
endless video recording or streaming. In principle, an Intersection-over-Union (IoU) distance is
computed for all detected vehicle shapes from two consecutive frames and stored in a cost matrix.
The assignment is computed optimally using the Hungarian algorithm [31]. If no detection is
associated to a vehicle no corresponding measurement vector can be generated. However, its state
is continuously predicted without measurement variables using the Kalman Filter. After a defined
number of frames without association, the vehicle track is withdrawn. The IoU distance allows
implicitly short-term occlusions.

Having the measurement vector from Equation (13), the state vector from Equation (27) and
measurement noise from Equation (19) assigned to an object, the next step is to estimate the
vehicle state using the Kalman Filter as described in [24]. The Kalman Filter also allows to
estimate state variables that are not part of the measurement vector by allowing the system noise
to propagate. The specifics applicable to this work are described in the following.

The used state vector is defined as

x = [xcar, ycar, vx,car, vy,car, ax,car, ay,car, ψcar, ψ̇car]T, (27)

where xcar and ycar are the (x,y) coordinates of ocar in LTP, vx,car and vy,car are the velocities of
ocar along the xL and yL axes, ax,car and ay,car are the accelerations of ocar along the xL and yL
axes, ψcar is the angle from xL to xC in LTP, and ψ̇car is the yaw rate around zC. In this work a
linear motion model is used.

Since the course over ground θcog in LTP of the vehicle is defined as

θcog = atan2(vy,car, vx,car), (28)

the sideslip β of the car can then be calculated by

β = θcog − ψcar. (29)

Detailed information about vehicle dynamics and non-tractive driving can be found in [3] and [52].
In this work, the sideslip angle is estimated by means of a Linear Kalman Filter and Equation

(29). This produces better results than using an Extended Kalman Filter. This is explained by
the fact the sideslip angle is not part of the measurement vector. Using an Extended Kalman
Filter would imply the estimation of the sideslip angle by noise propagation, whereas Equation
(29) allows a direct calculation.

F. Kruber, E. Sánchez Morales, R. Egolf, J. Wurst, S. Chakraborty, and M. Botsch 02:13

3.7 Experiments
This section details the experiments carried out on the test track for the validation of the proposed
methods. The errors are defined as the deviation from the reference sensors to the estimated
states. Figure 5 a) depicts the cumulative error curves for the position estimation before applying
the Kalman Filter, so that the results represent unfiltered detections. A spiral template trajectory
is driven to obtain different vehicle poses and to cover a large are of the image. The test vehicle
is then equipped with a driving robot and a Satellite Navigation (SatNav) system that receives
RTK correction data. This ensures an identical reproduction of the trajectory for all experiments,
and a centimeter-accurate vehicle localization. No markers are placed on the vehicle to approach
real-testing conditions on public roads.

Depicted are curves for each flight altitude and the three main processing steps, where
depicts results for non-registered images, for registered images, and for registered images
with corrected relief displacement. Image registration is the key to obtain reasonable results. The
correction of the relief displacement improves the results by 0.8 px on a weighted average4. Note,
that the impact of the relief displacement is dependent on the distance R of the vehicle to the
image center Oc. Hence, data sets recording vehicles at the image border benefit more. The mean
position error is 0.2 m and 0.14 m for a flight altitude of 100 m and 50 m, respectively. In terms of
pixels, the errors are comparable for all flight heights. Around 90 % of all frames have an error of
7 px or less.

Figure 5 b) depicts the cumulative error curves for all estimated state variables, where
depicts cumulative error plots for 50 m, for 75 m and for 100 m hovering altitude,
respectively. To generate the data from Figure 5 b) and c), which includes the tracking and
Kalman Filter, the vehicle is equipped with the reference sensors and is driven in a random manner
on a test track. No specific maneuver is driven in order to avoid tuning Kalman Filter parameters
for a specific trajectory or specific driving style. The test drives include standstill, walking velocity,
high acceleration, hard braking, tractive and non-tractive driving (drifting). The results show that,
once steps are taken to minimize errors, the precision of the estimated vehicle state is comparable
to the precision of consumer-grade sensors, such as silicon-based INSs or SatNav receivers with no
correction data. This with the advantage of being able to record information for various traffic
participants with a single drone. Also, the precision of the estimated sideslip angle allows to
differentiate between tractive and non-tractive driving [3]. As part of the experiment strategy, the
vehicle was forced to perform drift maneuvers, so that the side slip angle reached high values of
up to 28◦. The sideslip angle is a relevant state variable to determine the vehicle stability.

Figure 5 c) depicts the estimated state variables () against the reference sensors () for
one test drive, which includes full-throttle acceleration, hard braking and sudden steering. The
estimated position, course over ground and yaw angle for this trial have a mean error of 0.19 m,
4.7◦ and 1.0◦ respectively. This precision is equivalent to that of consumer-grade INSs. Subfigure
c) also shows that the estimated velocity is affected by a dampening effect and by a time delay.
Both are caused by the Kalman gains. A test-specific tuning of the gains could help to reduce
the velocity error for this trial, but would increase the error for other tests with lower vehicle
dynamics. The deviation of the estimated sideslip is caused mainly by the velocity error. This
is because the sideslip angle is estimated using the course over ground, which is calculated from
the velocity. During this test, a sideslip angle of 28◦ is reached, which clearly indicates that the
vehicle is drifting. The error in the acceleration is explained by two facts: First, the estimated
acceleration is calculated by system noise propagation, so it is low-pass filtered. Second, the
reference acceleration, that is measured by the INS, includes vibrations from the drivetrain, the
tires and the suspension, as well as from the pitch and roll of the vehicle.

4 weighted by the number of frames per height

LITES

02:14 Drone Image Data For Joint Micro- and Macroscopic Road Traffic Analysis

a) Position estimation with effects of registration and relief displacement (before tracking)

2 4 6 8 10 120

0.2

0.4

0.6

0.8

1 7 14 21 28 35 42

Error in cm and px

C
um

ul
at

iv
e

fr
eq

ue
nc

y
50m

2 4 6 8 10 120

0.2

0.4

0.6

0.8

1 10 20 31 41 52 62

Error in cm and px

75m

2 4 6 8 10 120

0.2

0.4

0.6

0.8

1 14 28 41 55 69 83

Error in cm and px

100m

registration + relief displacement registration raw images

b) State estimation results including registration and relief displacement correction

0 0.2 0.4 0.6 0.80

0.2

0.4

0.6

0.8

1

Error in meter

C
um

ul
at

iv
e

fr
eq

ue
nc

y

Position

0 0.5 1 1.5 20

0.2

0.4

0.6

0.8

1

Error in m/s

Velocity

0 1 2 3 4 5 60

0.2

0.4

0.6

0.8

1

Error in m/s2

Acceleration

0 1 2 3 4 50

0.2

0.4

0.6

0.8

1

Error in degrees

C
um

ul
at

iv
e

fr
eq

ue
nc

y

Yaw angle

0 2 4 6 8 10 12 14 160

0.2

0.4

0.6

0.8

1

Error in degrees

Sideslip angle

0 2 4 6 8 10 12 14 160

0.2

0.4

0.6

0.8

1

Error in degrees

Course over ground

50 m 75 m 100 m

c) Results for one test drive with the drone hovering at 75 m

0 10 20 30

−60

−40

−20

0

meter

m
et

er

Position

0 10 20 30 40 500

2

4

6

8

10

12

second

m
/
s

Velocity over ground

0 10 20 30 40 500

5

10

second

m
/
s2

Acceleration

0 10 20 30 40 50
−200

−100

0

100

200

second

de
g

Yaw angle

0 10 20 30 40 500

10

20

30

second

de
g

Sideslip angle

0 10 20 30 40 50
−200

−100

0

100

200

second

de
g

Course over ground

Reference sensor Estimated state

Figure 5 Depicted are: a) Cumulative error curves for the position estimation with the effect of
registration and relief displacement before applying the KF, b) Cumulative error curves for all estimated
state variables after the KF, c) Estimated states variables against the reference sensor for one test drive
with high longitudinal and lateral dynamics.

F. Kruber, E. Sánchez Morales, R. Egolf, J. Wurst, S. Chakraborty, and M. Botsch 02:15

A summary of the experimental results leads to the following conclusions:
1) A robust image registration is crucial for a good performance. If the effects of the relief

displacement are neglected, larger errors are present in the estimated vehicle state. This error
increases as the hovering altitude decreases and as the objects are farther away from the nadir
point.

2) Considering the pixelwise results, similar performance is observed for all three altitudes, which
proofs that the traffic data can be obtained at different flight heights by a single Mask R-CNN
network. This advantage can also be helpful for detecting other object classes.

3) As a consequence of the GSD, the best results in metric units are achieved at lower altitudes.
Alternatively, in order to capture a larger surface area, one can raise the drone to higher
altitudes, increase the resolution and crop the image if necessary.

4) Regarding real-world applications, the vehicle can be associated to a lane with a precise velocity
and orientation estimation, and it can be identified whether the vehicle is drifting or not.

To identify the root causes of the deviations from ground truth, the next section analyzes
important sources of errors.

3.8 Limitations and sources of error
The methodology involves several processing steps with associated error sources. The main sources
of errors are listed in what follows:

pixel ambiguity and blurring effect,
relief displacement,
sensor synchronization.

The blurring effect that can be appreciated on the images can be caused by image compression,
camera optics or light propagation. It is precisely this blurring effect that prevents to unambiguously
associate a point to a GCP, or a pixel to the vehicle during the labeling of training data or object
detection. A pixel ambiguity ζ ± 1 px in both, the xP and yP axes is not uncommon. Since the
detection error of ±1 px per axis is transferred to the bounding box, then bi could have an error
of

√
2 px.

The effect on the PCF to LTP mapping is shown next. Similarly, the effect of pixel ambiguity
can be applied to the image registration process, when pixel-pairs of two images do not match
exactly. For a GCP, the gi,P is rewritten as

gi,P =
[
xi,P yi,P

]T ± ζ. (30)

This association ambiguity has an effect on all three parameters that map the PCF to the
LTP. The case of the spatial resolution is analyzed first.

Considering a pixel ambiguity of ζ ± 1 px per axis and squared pixels, the distance between
the true and associated positions of a GCP on the PCF can be of

√
2 px. This mis-association

causes an error on the spatial resolution. The similarity in percentage ηS between the seen and
the true values of the spatial resolution is calculated by

ηS = |gi+1,P − gi,P|
|gi+1,P − gi,P| + 2 ·

√
2ζ2

. (31)

The Equation (4) is then rewritten as

g′i = gi,P · S · ηS =
[
x′i y′i

]T . (32)

LITES

02:16 Drone Image Data For Joint Micro- and Macroscopic Road Traffic Analysis

From the Equations (31) and (32), it can be deducted that the effect of ηff increases as gi,P → gi+1,P.
In a scenario for a Full-HD image, where both GCPs are placed on opposite diagonal corners of
the picture, the similarity can drop to 99.87%. For example, if the true value of |gi+1,L − gi,L| is
100 m, a similarity of 99.87 % will rescale it as 99.87 m, meaning a 0.13 m difference.

Next, the effect on the orientation offset is analyzed. This is done in pixels to decouple errors
caused by ηS. To consider the pixel ambiguity, the Equation (6) is rewritten as

ξθimage = atan2((ỹi+1 − ỹi) ± 2ζ, (x̃i+1 − x̃i) ± 2ζ), (33)

where ζ is multiplied by two because ξθimage is calculated using two GCPs. Similar as with ηS, the
effect of the pixel ambiguity increases as gi,P → gi+1,P. In a scenario for a Full-HD image, where
the GCPs are in opposing diagonal corners of the image, then ηξθimage

could reach 0.07◦.
The orientation error affects the rotation step of the PCF to LTP mapping. So, the effect of

orientation error increases as the points to map are farther from the rotation axis. For the i-th
corner of the bounding box, the mapping error ηbi

due to the orientation error is given by

ηbi
=

∣∣∣R (
ηξθimage

)
bi − bi

∣∣∣ · S. (34)

For example, if the drone records a Full-HD video while hovering at 50 m, bi=
[
1920 1080

]T and
ηξθimage

= 0.07◦, then ηbi
≈ 0.08 m.

The error propagation causes a deviation on the linear offsets as well. The linear offset error
ηξd due to the orientation and scaling errors is expressed by

ηξd =
((

R
(
ηξθimage

)T
(gi,P · ηS)

)
− gi,P

)
· S. (35)

In a scenario where the drone records a Full-HD video while hovering at 50 m, gi,P=
[
1920 1080

]T,
a similarity of 99.87% and orientation error of 0.07◦, then ηξd ≈

[
−0.13 m −0.03 m

]T.
From the previous, it is deducted that the best way to minimize errors caused by the PCF to

LTP mapping, is to locate the GCPs as far from each other as possible. Also, since the direction
of the pixel ambiguity is not deterministic, the errors can be compensated by using different
combinations of various GCPs.

Next, the effect of the relief displacement is analyzed. The maximum positioning error ηr,
when assuming that the true centroid of the vehicle corresponds to the seen centroid yields:

ηr =

√
x2

b,i,img + y2
b,i,img · S · (h− hc)

2 ·H
. (36)

For example, if the drone hovers at 50 m, the vehicle height is h = 1.4 m, the ground clearance
is hc = 0.15 m and bi is on one corner of the image, then ηr ≈ 0.48 m. From the discussion above
it follows that the best way to minimize positioning errors due to relief displacement, is to correct
it only for the corner nearest to the centre of the image, and to re-scale the bounding box.

Another relevant source of error is the synchronization of the sensors. This error is only relevant
in a multi-sensor setup as used in this work for the experiments, which is usually not required
for real world applications. In this work, the synchronization is performed by using the in-built
PPS-LED light of a SatNav receiver as reference. The rising edge of the PPS pulse indicates the
start of every second. This rising edge is used as a trigger for lighting up a LED that stays on for
a determined period of time so that the light can be seen on the image to be processed. Since this
LED is part of the SatNav module, the latency between the PPS reception and the LED lighting
up is negligible. The start of each second can be known with frame-accuracy by recording this

F. Kruber, E. Sánchez Morales, R. Egolf, J. Wurst, S. Chakraborty, and M. Botsch 02:17

LED. The limitation of this technique is that the videos are a series of static pictures. Hence, it is
not known if the LED lights up when the shutter is closed, creating a synchronization error. The
maximum synchronization error ητ is given by

ητ = 1
ff

. (37)

In this work, 50 fps are used, so that ητ ≤ 0.02 s. The positioning error ηpos caused by ητ is given
by

ηpos =
√
v2
x,car + v2

y,car · ητ . (38)

As an example with a vehicle moving with 50 km/h and a drone hovering at 100 m recording
a video with 50 fps, then ηpos ≤ 0.25 m. It can be deduced from what is discussed above that
synchronization errors, even in the millisecond order, have a significant influence.

3.9 Extension with Kalman Proposals
Common object detection methods are designed for standstill images without spatiotemporal
correlation. As a result, a massive amount of anchors are generated throughout the complete
image. In the case of Mask R-CNN, these proposals are generated in the Region Proposal Network
(RPN). The proposals are ranked by confidence and a predefined number of top ranked proposals
is fed into the second stage for the computation of the classification, regression and mask output.

Image sequences are highly correlated, especially when traffic is recorded from a bird’s-eye
view. Several works propose architectures, which integrate the tracking task into a neural network.
Usually, these papers deal with the challenge of the visual appearances changes in natural captured
images, i. e. images from a human perspective [57, 26, 25, 5, 17]. To combine detection and
tracking in a neural network is appealing. However, the approaches have some of the following
drawbacks: 1) The methods require a batch-wise computation, which means they process a
complete video sequence at once. The batch-wise computation makes them unsuitable for online
tracking, which is required in real time applications such as surveillance video streams. 2) Visual
tracking requires storing the information over consecutive frames, which limits the sequences
length input.

Changing appearances are not a particular problem for detecting vehicles from bird’s-eye view
images. Therefore, in this paper an alternative approach is introduced, which efficiently utilizes
the existing information from previous frames to accelerate the detection by coupling the Kalman
Filter predictions into the neural network. Compared to the related works above, this approach
is forward capable, i. e. one is not restricted to run through a complete video sequence at once.
The Kalman proposal method can be added to any detector which predicts the output based on
region proposals. The Kalman predicted proposals are guided into the second stage of the detector
and replace the RPN network for a defined time window. Since only few Kalman Proposals are
sufficient for accomplishing the task, less computational resources are required when compared to
the typical brute-force proposal generation. To match the expected input for the ROI heads, the
Kalman Proposals are fed in as non-rotated bounding boxes.

For initializing the tracks, the RPN is still required and switched on for a certain amount of
frames. Then it is turned off and only Kalman Proposals are fed into the second stage of Mask
R-CNN. The region proposals for the next video frames are estimated based on the Kalman Filter
predicted position of the vehicle and its estimated size. In order to feed these regions to the Mask
R-CNN network, they are transformed from the LTP back to the PCF. Afterwards, the same
cycle is repeated for detecting new objects. Figure 6 illustrates the changes applied to a Mask
R-CNN network, with Kalman Predictions active and the RPN deactivated.

LITES

02:18 Drone Image Data For Joint Micro- and Macroscopic Road Traffic Analysis

Image Backbone

RPN

ROI Align
Mask
Head

ROI Head

init

update

predict

KF

NMS

measure

Figure 6 Kalman-Proposals, as part of the assignment and tracking task, are fed into a Mask R-CNN
network. The RPN can be switched on and off depending on a time-based event. When the RPN is
switched off, only Kalman Predictions are fed into the second stage of Mask R-CNN. The output of the
Mask Head functions as measurements induced to the tracking task. The final output is acquired from
the KF objects, depicted with a folder symbol.

Table 3 Performance results for Kalman Proposals: On the left side the RPN is turned on for a varying
number of consecutive frames and turned off for γ = 23 frames. On the right side the RPN is turned on
for 10 frames and turned off for a varying number of frames, where Kalman Proposals are fed in instead.
True Positives are depicted below (✓), False Negatives below (✗) and hit rates below ✓

✓+ ✗
.

RPN on RPN off ✓ ✗ ✓
✓+ ✗

RPN on RPN off ✓ ✗ ✓
✓+ ✗

3 23 52544 396 99.1% 10 10 52808 132 99.7%
5 23 52574 366 99.2% 10 23 52616 324 99.3%
10 23 52616 324 99.3% 10 50 51973 967 98.1%
20 23 52657 283 99.4% 10 75 51143 1797 96.5%

In order to evaluate the Kalman Proposals, five video sequences with totally 10 000 frames are
analyzed. The videos were recorded at a public roundabout location. When the vehicles enter or
leave the image, they are not fully visible, which results in a shifted centroid oveh. The centroid is
used for tracking, as described in Section 3.6. In other words, during entering or exiting the image
frame, the vehicles’ state estimations are not valid. Therefore, the tracking generally only starts
at a minimum vehicle length ratio τ = l̂q,t

l̂q
, where l̂q,t is the estimated vehicle length at frame

t and l̂q the arithmetic mean value of all measurements for that specific q-th vehicle. In these
experiments, the threshold is set to τ = 80%.

Next, a suitable time window, where only Kalman Proposals are fed into the network, has
to be defined. The suggested approach is to set the trigger according to the maximum velocity
observed for all vehicles in relation to the average vehicle length l̂ and frame rate ff:

γ = max(v)
l̂

ff. (39)

Each video is initialized with 50 frames to compute a first valid γ. Then, the RPN is turned
off according to γ and turned on for between 3 and 20 frames, as depicted in Table 3 on the left
side. Next, the RPN is turned on for 10 frames and its off cycle is varied up to a 75 frames, as
depicted in Table 3 on the right side. The results show for experiments with γ a hit rate of over
99%. Furthermore, shorter switching cycles show better performance. Expanding the Kalman

F. Kruber, E. Sánchez Morales, R. Egolf, J. Wurst, S. Chakraborty, and M. Botsch 02:19

Table 4 Execution time in milliseconds. With Kalman Proposals, the speed gain is achieved at the
RPN and ROI stage. Lowering the resolution by half reduces the execution by approximately two thirds.

Registration Detection with RPN
Resolution

[px] SURF ORB Back-
bone

RPN/
KP

ROI
Heads

Pre+
Post

CUDA
Total Tracking Total

Runtime
1920x1080 90 38 57 17 8 12 94 4 136
960x540 33 18 16 7 7 4 34 4 56

Detection with Kalman Proposals
1920x1080 90 38 57 2 4 11 74 4 116
960x540 33 18 16 2 4 4 26 4 48

2080 Ti [2018]
* V100 [2017]

RTX 3090 [2020]
* A100 [2020]

1
1.25

1.75
2.9

Figure 7 Comparison between two generations of consumer and server grade (*) Nvidia GPUs with
their release date in squared brackets. The numbers indicate the relative training throughput for a Mask
R-CNN network according to [33].

Proposal bounding boxes to compensate prediction uncertainty yields lower performance. For
example, increasing the boxes in both axis by 5% or 10% reduces the hit rate by approximately
0.4% and 0.7%. Finally, it should be noted, that the runtime and hit rate with Kalman proposals
is tested with a Mask R-CNN network. Nevertheless, these proposals are applicable for replacing
the common brutal force proposal generation as part of other neural network architectures as well.
The execution time for the detection is not only reduced in the region proposal part, but also
in the final detection and segmentation head, since only a few proposals are evaluated by the
network.

3.9.1 Runtime and hardware requirements
This section takes a in-depth look at the runtimes. The measurements are depicted in Table 4. The
code was processed on a workstation5. Image registration was performed with the ORB and SURF
implementation from the OpenCV library. The measurement includes the writing of registered
images on the hard drive. ORB outperforms SURF in terms of execution time. Nevertheless, the
registration acquires 38 ms for a FHD resolution. The other major bottlenecks are the backbone
(ResNet50-FPN) and the RPN. The average RPN execution time can be dramatically reduced by
using the Kalman Proposals. The pre- and post-processing part within the detection performs
image normalization, copies the image into the GPU RAM and expands the predictions to the
input image size after the network again.

Regarding the object detection, the Kalman Proposals reduce the time for the proposal
generation, as well as for the ROI heads. The proposal generation takes only 2 ms instead of 17
ms, and the ROI heads runtime is reduced by half. The runtime is reduced to about one third by
decreasing the resolution by half. The tracking part includes copying the results to the hard disk,

5 Intel Xeon E-2176G, Nvidia Geforce 2080 Ti, M.2 SSD

LITES

02:20 Drone Image Data For Joint Micro- and Macroscopic Road Traffic Analysis

the code is written in Phyton. Overall, the complete method achieves approximately 7 fps at FHD
and 18 fps at half FHD resolution, considering the workstation in use. A benchmark from [33]
indicates, that the throughput for a Mask R-CNN network increases by about 75% with the next
generation GPU, compared to the GPU used in this work, see Figure 7. With new generation
hardware, typical camera frame rates of 25 or 30 fps are within reach for half FHD resolution.

In order to achieve a higher throughput, besides faster hardware, several aspects can be
considered for future work: 1) perform the registration on the GPU directly and pass the image
tensor on to the detection network, 2) avoid image registration by detecting Ground Control
Points automatically in order to apply the image transformation, 3) replace the backbone by a
light-weight network.

On-board GPU accelerated hardware, mounted on a drone, can only process a fraction of the
information compared to a full-size GPU. Therefore, running high resolution image registration
and segmentation on such platforms remains a challenging task currently.

4 Macroscopic statistics

In the previous section the focus was to detail how to generate new traffic data sets by using drones.
The focus of the following is to show how such data sets can be used to perform a macroscopic
traffic analysis. The pre-processed image data from the publicly available highD dataset [28] is
used because such type of analysis benefit from bigger data sets. The results are compared with
literature data to examine the validity of the approach.

4.1 Data set description
The highD data set was published alongside with the publication [28]. Videos of German motorways
were recorded from a drone perspective. The following list, adopted from [28], depicts some key
facts about the data set:

around 110 500 vehicles recorded,
road length of about 420 m with two or three lanes,
the total driven distance is 45 000 km,
the GSD is 0.1 m/px.

The semantic segmentation was performed using a modified U-Net neural network [48]. Transfer
learning was applied with around 3000 manually labeled image patches. The trajectories were
smoothed and validated in a post-processing step according to the authors. Already preprocessed
variables are for example the velocities, accelerations and time headway for each recorded frame.
The vehicles are divided into two classes: cars and trucks.

The present work focuses on the aggregated, macroscopic view on the data. For an example
for utilizing the data for a vehicle based view, interested readers are referred to [51]. In that work,
cut-ins and hard braking maneuvers are analyzed and related to automatic emergency braking
system alerts.

4.2 Variables of interest
The three macroscopic variables considered in this work are the traffic flow rate, the traffic density
and the average velocity of the traffic stream. With these variables the fundamental diagrams are
plotted. The flow rate q is defined as

q = vehicles/time (40)

F. Kruber, E. Sánchez Morales, R. Egolf, J. Wurst, S. Chakraborty, and M. Botsch 02:21

and is measured at a certain point over time. The traffic density ρ is defined as

ρ = vehicles/distance. (41)

In order to measure the traffic density, a road segment of at least several hundred meters should
be observed [20]. The third and last variable, the average velocity, can be estimated as “time
mean velocity” or “space mean velocity” [20]. The difference of both is minor for stable traffic
flow and therefore neglected in the following.

Two more relevant variables for traffic modeling are the distance to the front vehicle, the
distance headway (DHW), and the time headway (THW). The THW is defined as

THW = xl − xf
vf

, (42)

where x denotes the position and v the velocity. The subscript l denotes the leader vehicle, the
subscript f the follower vehicle.

4.3 Fundamental diagrams
This subsection starts with a brief description of the terms free flow, bounded flow and congested
traffic. Graphically, these terms are depicted in the fundamental traffic diagrams. The fundamental
diagrams visualize the relationship of traffic flow, density and speed. In this work, these macroscopic
variables are also linked to the microscopic based THW measure in order to demonstrate the
interconnection between both domains. A synchronous linking of both domains is difficult with
traditional methods, but can be easily achieved with drone based image data analysis.

The terms free flow, bounded flow and congested/jammed traffic are briefly discussed based
on [43] and referenced literature. Graphically, they are depicted by the dashed lines in the ρ− q

diagram in Figure 8 a).
During free flow traffic, the dependency of the flow rate to the density can be fitted linearly,

as the fluctuations are minor. The positive signed slope of the curve represents the average
velocity for that traffic type. Exceeding a certain density threshold, the average velocity drops
significantly. The critical density threshold depends on the drivers and environmental parameters,
including the road infrastructure. Beyond the critical density threshold, the traffic characteristics
change and reach the state of bounded traffic. Bounded traffic can be divided into three classes.
First, the homogeneous flow, where density and velocities stay rather constant. This state can be
depicted as a point in the fundamental diagram. In the second case, the velocity is homogeneous,
but the flow rate and density vary over time and space. This state can be depicted as a line
with negative gradient in the fundamental diagram. In the third and most frequently appearing
class for bounded traffic, all three parameters vary, while vehicles still keep a certain velocity.
Considering time series data, the consecutive datapoints of this inhomogeneous traffic stream class
jump stochastically in the fundamental diagram. A further increase of the traffic density yields a
stop-and-go situation followed by the jammed traffic with zero velocity.

The following part of this subsection depicts the classical fundamental diagrams derived from
the data set. The relationship between the density and flow rate is depicted in Figure 8 a). For
free flow traffic up to around ρ = 10 − 15 veh/km, the curve can be fitted linearly. The correlation
coefficient Rc for ρ < 15 veh/km is Rc = 0.94. The zone for bounded traffic up to stop-and-go traffic
is depicted within the two dashed lines. The transition from stop-and-go to jammed traffic arises
with a density of approximately ρ = 30 − 40 veh/km, while saturating at around ρ = 45 − 50 veh/km

per lane. The plot coincides with the results of the empirical studies in [14, 43], which were
obtained with another data source.

LITES

02:22 Drone Image Data For Joint Micro- and Macroscopic Road Traffic Analysis

0 10 20 30 40 50 60

Density per lane [veh/km]

0

500

1000

1500

2000

2500
F

lo
w

 r
at

e
pe

r
la

ne
 [v

eh
/h

]

0 500 1000 1500 2000 2500

Flow rate per lane [veh/h]

0

20

40

60

80

100

120

140

V
el

oc
ity

 [k
m

/h
]

a) b)

0 10 20 30 40 50 60

Density per lane [veh/km]

0

20

40

60

80

100

120

140

V
el

oc
ity

 [k
m

/h
]

c) d)

Figure 8 Fundamental diagrams: The dashed lines in a) and c) represent the transition from free flow
to bounded flow up to stop-and-go traffic. Jammed traffic was not recorded within one-minute periods.

Figure 8 b) depicts the average flow rate over the velocity. Two different velocity ranges can
be found at the same flow rate, which yields to the classification of stable and unstable traffic
flow. Figure 8 c) depicts the velocity over the traffic density. The graph is approximately divided
into the three traffic types (dashed lines). The average velocity decreases slightly up to a certain
density threshold. Above the threshold the velocity drops significantly. Most of the recorded data
is located in the transition zone of free flow to bounded traffic, while still retaining a velocity of
v ≥ 100 km/h. Figure 8 d) depicts a three-dimensional plot, combining all three variables.

Finally, Figure 9 depicts the relationship between the flow rate, density and THW from all
available time frames, aggregated to one minute slices. Overall, the THW is considerably lower for
cars than for trucks. The datapoints for cars show a clear tendency towards smaller THW with an
increasing density and flow rate. Trucks have a larger spread and are less correlated to the density
and flow. The THW values reach a bottom of 1.2 s around the transition zone between bounded
traffic and stop-and-go traffic (ρ ≈ 30 veh/km). From there on a tendency towards larger THW
values can be recognized. Drivers keep in average a certain minimum distance of some meters to
their leader vehicle during stop-and-go traffic. This yields larger averaged THW values due to the
low velocity.

F. Kruber, E. Sánchez Morales, R. Egolf, J. Wurst, S. Chakraborty, and M. Botsch 02:23

2000

q [veh/h]

10000

1

 [veh/km]

2T
H

W
 [s

]

3

0

4

5

0 5 10 15 20 25 30 35 40 45 50 55

Cars
Trucks

Figure 9 The traffic density, flow rate and the average THW over all recorded time frames, aggregated
to one minute slices.

4.4 Lane changes and load per lane

For the design of highways, it is important to know to which proportions a lane is used and where
the saturation point is reached. From the perspective of traffic safety, accidents caused by lane
changes are ranked third, behind speed violations and short distances [1, 2]. Since these two
indicators are important for traffic analysis, the load per lane and lane changes in dependance to
the traffic flow are examined and compared to literature.

Figure 10 depicts the relative lane load depending on the traffic flow rate of the road. Here,
the load per lane is defined as the fraction of the overall number of vehicles on the road segment.
Higher traffic flow rates increase the proportion of vehicles on the outer left lane. Smaller flow
rates increase the proportion to the outer right lane, since drivers are legally obliged to drive
on the right lane, if not driving at a higher velocity than the leader vehicle. In order to reach
velocities above the truck velocity limits at higher flow rates, drivers switch to the middle and with
further increasing traffic flow switch more often to the left lane. This observation holds as long as
the traffic does not reach a stop-and-go state. The conclusions from [14] coincide by means of the
tendency, that higher flow rates increase the proportion of vehicles on the left lane, decrease it on
the middle lane slightly and decreases it heavily on the right lane. The publication [14] proposes
flow rates per lane as depicted in Figure 11. The right lane saturates at around q = 800 veh/h and
the left lane at around q = 2600 veh/h [14, 29].

Figure 12 and Figure 13 depict the normalized number of lane changes over the flow rate and
traffic density. The data points depicted in the figures are aggregated values of one-minute slices.

Publication [14] proposes a maximum lane change rate at around 3500 vehicles per hour for a 3
lane motorway. In [14] the lane change rate is described by step functions which form a triangular
shape. Similar to [14], a triangular fit for the highD data set is depicted in Figure 12. It encloses
at least 97% of all depicted one-minute slices for the upper and lower road. The results on the
lane change rate coincide with the observation in [14]. Regarding the dependency on the traffic
density, the lane change rate increases up to around 10-12 vehicles per kilometer and lane [14],
according to the findings depicted in Figure 13.

The results from this chapter confirm that the drone-based approach can provide valid
estimates on macroscopic traffic data. Furthermore, the results can be interpreted in the context
of microscopic variables as well. This is demonstrated with the relationship of the THW to the
traffic density and flow.

LITES

02:24 Drone Image Data For Joint Micro- and Macroscopic Road Traffic Analysis

1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500

Total flow rate q [veh/h]

15

20

25

30

35

40

45
Lo

ad
 p

er
 la

ne
 [%

]

Lane 1: outer right
Lane 2: middle
Lane 3: outer left

Figure 10 The relative lane load depending
on the averaged traffic flow rate. The curves are
processed with a smoothing filter. For this plot
only roads with 3 lanes are considered.

1000 1500 2000 2500 3000 3500 4000 4500 5000 5500

Total flow rate q [veh/h]

0

500

1000

1500

2000

2500

F
lo

w
 r

at
e

q
pe

r
la

ne
 [v

eh
/h

]

Right lane
Middle lane

Left lane
Saturation line

Figure 11 A schematic comparison of the av-
erage load for a 3 lane motorway from [14]. The
right lane saturates around q = 800 veh/h, the left
lane around q = 2600 veh/h.

0 500 1000 1500 2000 2500

Flow rate per lane [veh/h]

0

200

400

600

800

1000

1200

La
ne

 c
ha

ng
es

 [1
 /(

km

 h
)]

Triangular fit

Figure 12 The number of lane changes per
lane, hour and kilometer depending on the aver-
aged traffic flow rate per lane.

0 10 20 30 40 50 60

Density per lane [veh/km]

0

200

400

600

800

1000

1200

La
ne

 c
ha

ng
es

 [1
 /(

km

 h
)]

Triangular fit

Figure 13 The number of lane changes per
lane, hour and kilometer depending on the traffic
density.

5 Conclusions

The technological improvement of drones combined with the capabilities of computer vision
methods, namely deep neural networks, open a new chapter for applications in road traffic
surveillance and analysis. Observation campaigns can be carried out at every place, without the
need of installing and maintaining roadside units. First projects attempt to expand the field of
view by operating with swarms of drones and thereby capture whole city districts. The accuracy of
the state estimation by means of aerial imagery is suitable for many trajectory based applications
as well. This enables the individual analysis of objects, as well as observing the interaction between
traffic participants.

In this work, a methodology for generating microscopic traffic data is proposed. More precisely,
the state of vehicles and the resulting trajectories are estimated. The method is validated
with experiments and reaches consumer-grade INS precision for the vehicle state estimation. A
detailed look into the error sources, limitations and runtimes complements the proposed method.

F. Kruber, E. Sánchez Morales, R. Egolf, J. Wurst, S. Chakraborty, and M. Botsch 02:25

Additionally, a new approach for reducing the average computational runtime, named Kalman
Proposals, are presented. With Kalman Proposals, the runtime for object detection can be
decreased by up to 20% with minor losses on the detection performance.

Furthermore, a publicly available data set for highway traffic is analyzed in order to validate
the drone based approach for macroscopic traffic analysis. The statistics derived in this work
are compared to related publications, where data was collected and processed with alternative
approaches. The analysis confirms the applicability for capturing macroscopic traffic data as well.

In conclusion, the results of this paper underline the versatility of drone based image processing
for synchronous macro- and microscopic road traffic analysis.

References
1 Daten und Fakten: Autobahn-Unfälle, 2010.
2 Runter vom Gas, Unfallursachen, 2018.
3 Mujahid Abdulrahim. On the dynamics of auto-

mobile drifting. SAE Mobilus, April 2006. doi:
10.4271/2006-01-1019.

4 Seyed Majid Azimi, Eleonora Vig, Reza Bahman-
yar, Marco Körner, and Peter Reinartz. Towards
multi-class object detection in unconstrained re-
mote sensing imagery, 2018. arXiv:1807.02700.

5 S. Bae and K. Yoon. Robust online multi-object
tracking based on tracklet confidence and online
discriminative appearance learning. In 2014 IEEE
Conference on Computer Vision and Pattern Re-
cognition, pages 1218–1225, 2014. doi:10.1109/
CVPR.2014.159.

6 Emmanouil Barmpounakis and Nikolas Geroliminis.
On the new era of urban traffic monitoring with
massive drone data: The pneuma large-scale field
experiment. Transportation Research Part C:
Emerging Technologies, 111:50–71, 2020. doi:
10.1016/j.trc.2019.11.023.

7 Herbert Bay, Tinne Tuytelaars, and Luc Van Gool.
SURF: Speeded Up Robust Features. In Computer
Vision – ECCV, 2019.

8 A. Bewley, Z. Ge, L. Ott, F. Ramos, and B. Up-
croft. Simple online and realtime tracking. In
2016 IEEE International Conference on Image Pro-
cessing (ICIP), 2016.

9 Peter J. Bickel, Chao Chen, Jaimyoung Kwon, John
Rice, Erik van Zwet, and Pravin Varaiya. Measur-
ing Traffic. Statistical Science, 22(4), 2007.

10 Laura Bieker-Walz. Wie kann eine Verkehrssim-
ulation den Rettungsdienst unterstützen? In
WAW DLR.Open II, oktober 2017. URL: https:
//elib.dlr.de/114841/.

11 Ilker Bozcan and Erdal Kayaan. Au-air: A multi-
modal unmanned aerial vehicle dataset for low alti-
tude traffic surveillance. In IEEE International
Conference on Robotics and Automation (ICRA),
2020.

12 Antonia Breuer, Jan-Aike Termöhlen, Silviu
Homoceanu, and Tim Fingscheidt. Opendd: A
large-scale roundabout drone dataset. In Proceed-
ings of International Conference on Intelligent
Transportation Systems, September 2020.

13 Bundesverband der Deutschen Luftverkehr-
swirtschaft. Analyse des deutschen Drohnen-
marktes. URL: https://www.bdl.aero/
de/publikation/analyse-des-deutschen-
drohnenmarktes/.

14 Fritz Busch. Spurbelastungen und Häufigkeit
von Spurwechseln auf einer dreispurigen BAB-
Richtungsfahrbahn. ATZ - Automobiltechnische
Zeitschrift, June 1984. doi:10.1007/s35148-012-
0485-x.

15 CATT (University of Maryland. Traffic Flow
Measures Implementation Guide, 2008. URL:
http://www.catt.umd.edu/sites/default/
files/documents/traffic_flow_measure_
guidelines_v8.pdf.

16 Bo-Chiuan Chen and Feng-Chi Hsieh. Sideslip angle
estimation using extended kalman filter. Vehicle
System Dynamics - VEH SYST DYN, 46, Septem-
ber 2008. doi:10.1080/00423110801958550.

17 C. Feichtenhofer, A. Pinz, and A. Zisserman. Detect
to track and track to detect. In 2017 IEEE Inter-
national Conference on Computer Vision (ICCV),
pages 3057–3065, 2017. doi:10.1109/ICCV.2017.
330.

18 B Grienshields. The photographic method of study-
ing traffic behavior. In Proceedings of the Thir-
teenth Annual Meeting of the Highway Research
Board, 1933.

19 Giuseppe Guido, Vincenzo Gallelli, Daniele Rogano,
and Alessandro Vitale. Evaluating the accuracy
of vehicle tracking data obtained from Unmanned
Aerial Vehicles. International Journal of Trans-
portation Science and Technology, 2016.

20 Hall, Fred. TRAFFIC STREAM CHARACTER-
ISTICS, 1996.

21 Jörg Haus and Norbert Lauinger. Optische gitter:
Die abbildung der realität – 75 jahre berührungslose
dynamische meßtechnik auf der basis optischer git-
ter. Laser Technik Journal, 4:43–47, April 2007.
doi:10.1002/latj.200790155.

22 Kaiming He, Georgia Gkioxari, Piotr Dollár, and
Ross Girshick. Mask R-CNN. In Proceedings of
the International Conference on Computer Vision
(ICCV), 2017.

23 Dirk Helbing. Traffic and related self-driven
many-particle systems. Rev. Mod. Phys., 73:1067–
1141, December 2001. doi:10.1103/RevModPhys.
73.1067.

24 R.E. Kalman. A new approach to linear filtering
and prediction problems, 1960.

25 Kai Kang, Hongsheng Li, Tong Xiao, Wanli
Ouyang, Junjie Yan, Xihui Liu, and Xiaogang
Wang. Object detection in videos with tubelet pro-
posal networks. 2017 IEEE Conference on Com-

LITES

https://doi.org/10.4271/2006-01-1019
https://doi.org/10.4271/2006-01-1019
http://arxiv.org/abs/1807.02700
https://doi.org/10.1109/CVPR.2014.159
https://doi.org/10.1109/CVPR.2014.159
https://doi.org/10.1016/j.trc.2019.11.023
https://doi.org/10.1016/j.trc.2019.11.023
https://elib.dlr.de/114841/
https://elib.dlr.de/114841/
https://www.bdl.aero/de/publikation/analyse-des-deutschen-drohnenmarktes/
https://www.bdl.aero/de/publikation/analyse-des-deutschen-drohnenmarktes/
https://www.bdl.aero/de/publikation/analyse-des-deutschen-drohnenmarktes/
https://doi.org/10.1007/s35148-012-0485-x
https://doi.org/10.1007/s35148-012-0485-x
http://www.catt.umd.edu/sites/default/files/documents/traffic_flow_measure_guidelines_v8.pdf
http://www.catt.umd.edu/sites/default/files/documents/traffic_flow_measure_guidelines_v8.pdf
http://www.catt.umd.edu/sites/default/files/documents/traffic_flow_measure_guidelines_v8.pdf
https://doi.org/10.1080/00423110801958550
https://doi.org/10.1109/ICCV.2017.330
https://doi.org/10.1109/ICCV.2017.330
https://doi.org/10.1002/latj.200790155
https://doi.org/10.1103/RevModPhys.73.1067
https://doi.org/10.1103/RevModPhys.73.1067

02:26 Drone Image Data For Joint Micro- and Macroscopic Road Traffic Analysis

puter Vision and Pattern Recognition (CVPR),
July 2017. doi:10.1109/cvpr.2017.101.

26 Kai Kang, Wanli Ouyang, Hongsheng Li, and
Xiaogang Wang. Object detection from video tube-
lets with convolutional neural networks. 2016 IEEE
Conference on Computer Vision and Pattern Re-
cognition (CVPR), June 2016. doi:10.1109/cvpr.
2016.95.

27 Ebrahim Karami, Siva Prasad, and Mohamed
Shehata. Image Matching Using SIFT, SURF,
BRIEF and ORB: Performance Comparison for
Distorted Images, 2017.

28 Robert Krajewski, Julian Bock, Laurent Kloeker,
and Lutz Eckstein. The highD Dataset: A Drone
Dataset of Naturalistic Vehicle Trajectories on Ger-
man Highways for Validation of Highly Automated
Driving Systems. In IEEE 21st International
Conference on Intelligent Transportation Systems
(ITSC), 2018.

29 Stefan Krauß. Microscopic Modeling of Traffic
Flow:Investigation of Collision Free Vehicle Dy-
namics.

30 F. Kruber, E. Sánchez Morales, S. Chakraborty,
and M. Botsch. Vehicle Position Estimation with
Aerial Imagery from Unmanned Aerial Vehicles. In
IEEE Intelligent Vehicles Symposium (IV), 2020.

31 H. W. Kuhn and Bryn Yaw. The hungarian method
for the assignment problem. Naval Res. Logist.
Quart, pages 83–97, 1955.

32 C. Kyrkou, G. Plastiras, T. Theocharides, S. I.
Venieris, and C. Bouganis. DroNet: Efficient con-
volutional neural network detector for real-time
UAV applications. In Design, Automation Test in
Europe Conference Exhibition (DATE), 2018.

33 Lambda Labs. Deep Learning GPU Bench-
marks, 2021. URL: https://lambdalabs.com/gpu-
benchmarks.

34 Qingpeng Li, Lichao Mou, Qizhi Xu, Yun Zhang,
and Xiao Xiang Zhu. R3-Net: A Deep Network for
Multi-oriented Vehicle Detection in Aerial Images
and Videos. CoRR, 2018. arXiv:1808.05560.

35 H. Lietz, Petzoldt T., M. Henning, J. Haupt,
G. Wanielik, J. Krems, H. Mosebach, J. Schomerus,
M. Baumann, and U. Noyer. Methodische und tech-
nische Aspekte einer Naturalistic Driving Study.
FAT Schriftenreihe, 2011.

36 Thomas Lillesand, Ralph W. Kiefer, and Jonathan
Chipman. Remote Sensing and Image Interpreta-
tion, volume 5. Wiley, 2003.

37 T. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan,
and S. Belongie. Feature Pyramid Networks for Ob-
ject Detection. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2017.

38 Tsung-Yi Lin, Michael Maire, Serge Belongie,
James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C. Lawrence Zitnick. Microsoft COCO:
Common Objects in Context. In Computer Vision
– ECCV, 2014.

39 J. Long, E. Shelhamer, and T. Darrell. Fully con-
volutional networks for semantic segmentation. In
IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2015.

40 A.L. Majdik, C. Till, and D. Scaramuzza. The
zurich urban micro aerial vehicle dataset. Interna-
tional Journal of Robotics Research, 2017.

41 L. Mou and X. X. Zhu. Vehicle Instance Seg-
mentation From Aerial Image and Video Using
a Multitask Learning Residual Fully Convolutional
Network. IEEE Transactions on Geoscience and
Remote Sensing, 2018.

42 Matthias Mueller, Neil Smith, and Bernard
Ghanem. A benchmark and simulator for uav track-
ing. In Computer Vision – ECCV 2016. Springer
International Publishing, 2016.

43 Lutz Neubert. Statistische Analyse von
Verkehrsdaten und die Modellierung von Verkehrs-
fluss mittels zellularer Automaten. PhD thesis,
Universität Duisburg, 2000.

44 Pix4D SA. Example projects - real photogram-
metry data (https://www.pix4d.com). URL: https:
//www.pix4d.com.

45 J. Redmon, S. Divvala, R. Girshick, and A. Farhadi.
You Only Look Once: Unified, Real-Time Object
Detection. In IEEE Conference on Computer Vis-
ion and Pattern Recognition (CVPR), 2016.

46 Shaoqing Ren, Kaiming He, Ross Girshick, and Jian
Sun. Faster R-CNN: Towards Real-Time Object
Detection with Region Proposal Networks. In Ad-
vances in Neural Information Processing Systems
28. Curran Associates, Inc., 2015.

47 A. Robicquet, A. Sadeghian, A. Alahi, and S. Sav-
arese. Human Trajectory Prediction In Crowded
Scenes. In European Conference on Computer Vis-
ion (ECCV), 2016.

48 Olaf Ronneberger, Philipp Fischer, and Thomas
Brox. U-net: Convolutional networks for biomed-
ical image segmentation. CoRR, 2015.

49 E. Rublee, V. Rabaud, K. Konolige, and G. Brad-
ski. Orb: An efficient alternative to sift or surf.
In 2011 International Conference on Computer
Vision, 2011.

50 E. Sánchez Morales, F. Kruber, M. Botsch,
B. Huber, and A. García Higuera. Accuracy Char-
acterization of the Vehicle State Estimation from
Aerial Imagery. In IEEE Intelligent Vehicles Sym-
posium (IV), 2020.

51 Patrick Schneider, Martin Butz, Christian Hein-
zemann, Jens Oehlerking, and Matthias Woehrle.
Scenario-based threat metric evaluation based on
the highd dataset. In IEEE Intelligent Vehicles
Symposium (IV), 2020.

52 Dieter Schramm, Manfred Hiller, Roberto Bardini,
et al. Modellbildung und Simulation der Dynamik
von Kraftfahrzeugen, volume 124. Springer, 2010.

53 Marc René Zofka Tobias Fleck, Sven Ochs and
J. Marius Zöllner. (accepted) robust tracking of
reference trajectories for autonomous driving in
intelligent roadside infrastructure. In Intelligent
Vehicles Symposium (IV) 2020, oktober 2020.

54 Philip Torr and A. Zisserman. MLESAC: A New
Robust Estimator with Application to Estimating
Image Geometry. Computer Vision and Image Un-
derstanding, June 2000.

55 Verband der TÜV e.V. Merkblatt 751, 2008.
56 Bas Vergouw, Huub Nagel, Geert Bondt, and Bart

Custers. Drone Technology: Types, Payloads, Ap-
plications, Frequency Spectrum Issues and Future
Developments, pages 21–45. T.M.C. Asser Press,
2016. doi:10.1007/978-94-6265-132-6_2.

https://doi.org/10.1109/cvpr.2017.101
https://doi.org/10.1109/cvpr.2016.95
https://doi.org/10.1109/cvpr.2016.95
https://lambdalabs.com/gpu-benchmarks
https://lambdalabs.com/gpu-benchmarks
http://arxiv.org/abs/1808.05560
https://www.pix4d.com
https://www.pix4d.com
https://doi.org/10.1007/978-94-6265-132-6_2

F. Kruber, E. Sánchez Morales, R. Egolf, J. Wurst, S. Chakraborty, and M. Botsch 02:27

57 L. Wang, W. Ouyang, X. Wang, and H. Lu. Visual
tracking with fully convolutional networks. In
2015 IEEE International Conference on Com-
puter Vision (ICCV), pages 3119–3127, 2015. doi:
10.1109/ICCV.2015.357.

58 Wei Zhan, Liting Sun, Di Wang, Haojie Shi, Aubrey
Clausse, Maximilian Naumann, Julius Kümmerle,
Hendrik Königshof, Christoph Stiller, Arnaud

de La Fortelle, and Masayoshi Tomizuka. INTER-
ACTION Dataset: An INTERnational, Adversarial
and Cooperative moTION Dataset in Interactive
Driving Scenarios with Semantic Maps. arXiv, 2019.
arXiv:1910.03088.

59 Pengfei Zhu, Longyin Wen, Xiao Bian, Ling Haibin,
and Qinghua Hu. Vision Meets Drones: A Chal-
lenge. arXiv preprint, 2018. arXiv:1804.07437.

LITES

https://doi.org/10.1109/ICCV.2015.357
https://doi.org/10.1109/ICCV.2015.357
http://arxiv.org/abs/1910.03088
http://arxiv.org/abs/1804.07437

HW-Flow: A Multi-Abstraction Level HW-CNN
Codesign Pruning Methodology
Manoj-Rohit Vemparala #

BMW Autonomous Driving, Munich, Germany
Nael Fasfous #

Technical University of Munich, Munich, Germany
Alexander Frickenstein #

BMW Autonomous Driving, Munich, Germany
Emanuele Valpreda #

Politecnico di Torino, Turin, Italy
Manfredi Camalleri #

BMW Autonomous Driving, Munich, Germany
Qi Zhao #

BMW Autonomous Driving, Munich, Germany
Christian Unger #

BMW Autonomous Driving, Munich, Germany
Naveen-Shankar Nagaraja #

BMW Autonomous Driving, Munich, Germany
Maurizio Martina #

Politecnico di Torino, Turin, Italy
Walter Stechele #

Technical University of Munich, Munich, Germany

Abstract
Convolutional neural networks (CNNs) have pro-
duced unprecedented accuracy for many computer
vision problems in the recent past. In power and
compute-constrained embedded platforms, deploy-
ing modern CNNs can present many challenges.
Most CNN architectures do not run in real-time
due to the high number of computational operations
involved during the inference phase. This empha-
sizes the role of CNN optimization techniques in
early design space exploration. To estimate their
efficacy in satisfying the target constraints, exist-
ing techniques are either hardware (HW) agnostic,
pseudo-HW-aware by considering parameter and
operation counts, or HW-aware through inflexible
hardware-in-the-loop (HIL) setups. In this work,

we introduce HW-Flow, a framework for optimizing
and exploring CNN models based on three levels
of hardware abstraction: Coarse, Mid and Fine.
Through these levels, CNN design and optimization
can be iteratively refined towards efficient execution
on the target hardware platform. We present HW-
Flow in the context of CNN pruning by augmenting
a reinforcement learning agent with key metrics
to understand the influence of its pruning actions
on the inference hardware. With 2× reduction in
energy and latency, we prune ResNet56, ResNet50,
and DeepLabv3 with minimal accuracy degrada-
tion on the CIFAR-10, ImageNet, and CityScapes
datasets, respectively.

2012 ACM Subject Classification Computing Methodologies → Artificial intelligence
Keywords and Phrases Convolutional Neural Networks, Optimization, Hardware Modeling, Pruning
Digital Object Identifier 10.4230/LITES.8.1.3
Received 2020-12-15 Accepted 2021-09-05 Published 2022-11-16
Editor Samarjit Chakraborty and Qing Rao
Special Issue Special Issue on Embedded Systems for Computer Vision

1 Introduction

Convolutional neural networks (CNN) are widely used for solving problems like image classifica-
tion [13], semantic segmentation [3], object detection [45], complex autonomous driving tasks [2]
and medical diagnosis of brain tumors [28]. Having outperformed hard-coded algorithms on
challenging benchmarks such as ImageNet [30], CNNs also surpassed human-level accuracy. How-
ever, the computational complexity of these networks hampers their application in embedded
environments. Most accurate CNN models require up to hundreds of megabytes for parameter
storage [24] and billions of multiplications [32]. For instance, a ResNet-152 [13] trained on the
ImageNet dataset [30] requires up to 244MB of learned parameters to execute 517 layers, with
around 22 billions operations. Compression techniques have become an essential topic of research

© Manoj-Rohit Vemparala, Nael Fasfous, Alexander Frickenstein, Emanuele Valpreda, Manfredi Camalleri,
Qi Zhao, Christian Unger, Naveen-Shankar Nagaraja, Maurizio Martina, and Walter Stechele;
licensed under Creative Commons Attribution 4.0 International (CC BY 4.0)

Leibniz Transactions on Embedded Systems, Vol. 8, Issue 1, Article No. 3, pp. 03:1–03:30
Leibniz Transactions on Embedded Systems

L I T E S Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:manoj-rohit.vemparala@bmw.de
https://orcid.org/0000-0001-8186-8319
mailto:nael.fasfous@tum.de
https://orcid.org/0000-0002-8081-7904
mailto:alexander.frickenstein@bmw.de
mailto:emanuele.valpreda@polito.it
https://orcid.org/0000-0002-1285-9360
mailto:manfredi.camalleri@bmw.de
https://orcid.org/0000-0002-7050-8980
mailto:qi.zhao@bmw.de
https://orcid.org/0000-0003-0944-8058
mailto:christian.unger@bmw.de
mailto:naveen-shankar.nagaraja@bmw.de
https://orcid.org/0000-0002-7608-1439
mailto:maurizio.martina@polito.it
https://orcid.org/0000-0002-3069-0319
mailto:walter.stechele@tum.de
https://orcid.org/0000-0002-7455-8483
https://doi.org/10.4230/LITES.8.1.3
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lites
https://www.dagstuhl.de

03:2 HW-Flow: A Multi-Abstraction Level HW-CNN Codesign Pruning Methodology

for finding light-weight architectures capable of efficiently solving various deep learning tasks.
Despite the remarkable compression rates of existing pruning methods, conventional approaches
are either hardware (HW) agnostic, pseudo-HW-aware by considering proxies, or HW-aware
through inflexible hardware-in-the-loop (HIL) setups, which lead to vendor lock-ins.

In embedded applications such as autonomous driving and robotics, the design of neural
networks and the target HW accelerator goes hand in hand. During the early development phases,
it is likely that the target platform is not fully defined, the HW is not available, or compilers are
prone to errors, making a HIL-based approach challenging. Alternatively, proxy metrics, such as
parameter (Param) and operation (OP) counts, offer a detached yet loosely correlated indication of
hardware performance [1]. Reliance on proxy metrics oversimplifies the problem at hand and does
not always guarantee improvements in energy or latency when deployed on real hardware. Directly
choosing a hardware-platform restricts the CNN optimizer, and conversely, directly choosing the
compression technique may not match the hardware architectures being designed.

This circumstance calls for a HW-CNN codesign paradigm that guarantees synergies in
the process of deploying CNNs to real-world applications. This work aims to estimate the
implementation metrics at different abstraction levels through various hardware models and a
novel scheduler. This allows for either a top-down or a meet-in-the-middle codesign approach,
giving the designer the ability to gradually traverse through the design abstraction levels, while
permitting design space exploration and exploitation after each stage of refinement. With this
flexibility, the designer can analyze the impact of various CNN pruning configurations and HW
specific hyperparameters, without committing to a target hardware platform in the early design
phases. This ultimately leads to a platform-aware optimization technique, which improves energy
efficiency and/or latency at design time.

We remove the limitations of pure proxy and HIL-based neural network pruning and use a
reinforcement learning (RL) agent to prune filters by considering the estimates of the proposed
HW-Flow framework. With this method, we overcome the burden of wasting GPU-hours for
optimizing CNNs, which do not guarantee an efficiency gain for a target hardware platform.
We can assert that the decision of pruning rate for each layer is highly correlated to the target
hardware constraint and inference platform. The estimates generated for a HW platform can
directly influence which layers are pruned and to what extent. They also help the CNN designer
understand which scheduling schemes and hardware dimensions are necessary to have a reasonable
pruning rate/burden, to match the target application constraints. The contributions of this work
can be summarized as follows:

We introduce HW-Flow, a framework for optimizing and exploring CNN models based on three
hardware abstraction levels, Coarse | Mid | Fine, by scheduling and mapping workloads onto
potential HW-architectures. With this approach, we model different HW platforms without
costly fabrication and explore the pruning potential of CNN models at each design phase.

We reduce the time required to produce an optimal schedule using analytical search approaches,
circumventing exhaustive and random sampling techniques used in literature.

We augment a state-of-the-art learning-based pruning agent [16] with rewards in the form
of model-based HW estimates (e.g., OPs, DRAM accesses, energy, and latency). Using this
information, the agent produces an optimal pruning strategy required to meet the target
constraints. We obtain different pruning configurations, which result in a 2× reduction of the
respective KPIs (Key Performance Indicators), with minimal accuracy degradation.

M-R. Vemparala et al. 03:3

2 Background

2.1 Convolutional Neural Networks
CNNs are deep neural networks which are well-suited for generating predictions based on multi-
dimensional, localized input feature spaces, e.g. image processing applications. The convolution
of an input activation Al−1 with the convolution kernel W l produces an output feature map Al,
where each pixel of the feature map Al can be computed as shown in equation 1.

Al[co][ho][wo] =

Inp.Ch︷︸︸︷
Ci∑
ci

Kernel.dim︷ ︸︸ ︷
Kw∑
kw

Kh∑
kh

al−1
ci,wo·s+kw,ho·s+kh

· wlco,ci,kw,kh
, where Al ∈ RCo×Ho×Wo (1)

The input feature maps (Ifmaps) denoted by Al−1 are composed of multiple channels Ci
and spatial dimensions Wi, Hi. To compute the convolution operation, the kernel of dimensions
Kw ×Kh slides across the input 2-D map with stride size s. A dot-product is performed between
the kernel pixels wl ∈ W l and a sub-set of pixels al−1 ∈ Al−1 from the input volume. The
dot-product accumulates the values across all input channels resulting in an output pixel. The
convolution operation is the repetition of the aforementioned dot-product operation for the entire
Ifmap with Co filters, generating output feature maps (Ofmaps) Al ∈ RWo×Ho×Co . Successive
layers detect different features in the input image at different scales. The first layers are usually
responsible of recognizing simple shapes, edges and patterns, while complex features can be
detected at the deeper stages of the network. Fully Connected (FC) layers can be simplified
considered a special case of the convolution operation by setting Wi = Kw, Hi = Kh, Wo = 1 and
Ho = 1. These layers restrict weight reuse opportunities and demand high memory bandwidth
during the inference. CNNs have produced better predictions than humans on computer vision
applications such as image classification [13] and semantic segmentation [3] using supervised
ground truth labels.

Image Classification. Out of O possible classes, the input image is predicted based on the output
Ỹ ∈ RO. It is typical to translate the problem into predicting the probability of each possible
class given an input image, so that the output layer produces a vector with a fixed dimension of O.
Several CNN topologies were proposed in the last decade to solve the image classification problem,
dealing with different datasets such as CIFAR-10 [19] and ImageNet [30]. For instance, AlexNet
was introduced by Krizhevsky et al. [20] as the first CNN topology for classifying the ImageNet
dataset. The network consists of five convolutional layers, max-pooling layers, dropout layers and
three fully-connected layers, where the last one maps to a 1000-element vector representing the
number of possible classes for the ImageNet dataset. Other examples which followed in the next
years include VGG-16 [24], Inception-Net [33], ResNet [13] and EfficientNet [34].

Image Semantic Segmentation. Segmentation-based CNNs such as FCN [25] and DeepLab [3]
predict the class of each pixel in the input image from O possible categories. The semantic maps
are derived from the logits Ỹ ∈ RW×H×O with O probability values per pixel. The CNN topology
for this task follows an encoder-decoder architecture. The encoder network is a feature extractor
having a similar architecture as image classification CNNs and the decoder network is a set of
upsampling layers which restore the original image resolution in order to predict the pixel-wise
class output. FCN uses transpose convolution to upsample features whereas DeepLab uses the
bilinear upsampling method.

LITES

03:4 HW-Flow: A Multi-Abstraction Level HW-CNN Codesign Pruning Methodology

2.2 Reinforcement Learning
Reinforcement learning (RL) is an exploration-exploitation approach to optimize decisions based on
interactions with a dynamic environment [18]. The optimization problem is solved using an agent
which is connected to the considered environment via perception and action. The environment is
characterized by its state S which describes the relevant features for the decision making process.
At each step, the agent generates an action A which changes the state of the environment and
outputs a reinforcement signal or reward R describing the quality of this state transition. Given
a state and action space, the purpose is to find a policy which maps each state to the optimal
action, which maximizes the sum of future rewards. RL-based systems often balance a trade-off
between exploration and exploitation while predicting new actions. Exploitation is entirely based
on the knowledge acquired by the agent and predicts actions that maximize the expected return
value according to the gained experience. Exploration assumes that the current knowledge can be
further improved by exploring different actions.

Supervised learning and reinforcement learning differ from each other in two major aspects.
First, supervised learning is based on a set of data pairs where each input has a clearly defined
ground-truth label. This is not the case for RL where each input (action) generates an immediate
reward while the objective function is to maximize the sum of all future rewards. Second, RL
is typically deployed in an online manner, i.e. RL-based systems are evaluated and trained
concurrently to optimize the agent decisions for new input sequences. Deep Deterministic Policy
Gradient (DDPG) [23] is an RL technique that outputs continuous action using Q-Networks and
Actor-Critic based policy gradients. Here Q refers to the function which the algorithm predicts.
Reinforcement learning has been applied in several fields such as robotics, gaming, traffic light
control, and resource management systems [26, 39, 29]. In this work, we use a DDPG-based RL
agent in order to decide the optimal pruning configuration of CNNs.

3 Related Work

Based on the target optimization metrics, we classify pruning techniques into four categories:
HW-agnostic, pseudo-HW-aware, HIL-based, and HW-modeling-based pruning techniques, as
compared in Table 1. Additionally, we discuss HW-modeling works that compute the HW estimates
of CNN accelerators in literature.

HW-agnostic Pruning. The advantages of pruning were investigated in early works such as
[6, 12]. Subsequent works determined the redundant weights based on an iterative method, without
considering any target hardware resource constraints, e.g. simple magnitude-based pruning [11].
Recently, He et al. [15] pruned redundant filters using a geometric median heuristic. However,
the efficiency term was limited to the pruning rate (PR), i.e., the ratio of pruned to total
parameters. The PR was set constant to all the layers, which does not capture the energy or
latency requirements of the target inference hardware. The work by Guo et al. [10], dynamically
pruned CNNs irregularly based on a saliency function during training to produce efficient networks.
Recently, Frickenstein et al. [9] proposed the auto-encoder-based low-rank filter-sharing technique
(ALF), which utilizes sparse auto-encoders to extract the most salient features of convolutional
layers, pruning redundant filters. The above works only target to compress the CNN model with
minimal accuracy degradation without considering the benefits on the target HW platform.

Pseudo HW-aware Pruning. The authors of [14] proposed structured channel pruning, where
the saliency of individual channels is determined through Lasso regression. The pruning ratio for
each layer is based on handcrafted heuristics which targets lower proxy metrics such as OPs and

M-R. Vemparala et al. 03:5

Params. In more recent works, automated pruning methods have gained popularity. Huang et
al. [17] trained layer-specific agents, which receive the kernel matrix as a state and produce actions
to prune exact filters. Contrary to [16], here the agent has a more complex task of learning the
features of a layer rather than simply its sparsity ratio. The agent’s reward is formulated using a
multi-objective cost function, which aims to find CNN models with both high accuracy and low
proxy metrics. Reward functions based on proxy metrics do not guarantee an improvement for HW
deployment, as we demonstrate in the following sections. The work in [36] identifies redundant
weights for different regularizations during the training process using a HW loss formulation. The
HW loss is limited to optimization of proxy metrics.

HW-aware Pruning. As hardware platforms tend to be complex, the effects of arbitration, stalls,
etc., may be severely understated if hardware estimations purely rely on proxy metrics. By
considering real hardware metrics, hardware-in-the-loop (HIL) training frameworks have been used
to verify the advantages of CNN optimization techniques pragmatically [42, 7, 16]. NetAdapt [42]
prunes filters based on a preexisting look-up table of hardware metrics obtained ahead of time
from a mobile device. This is a costly pseudo-HIL approach, as building the look-up table is
tedious and time consuming, requiring the designer to execute all possible workloads and layer
dimensions to be accurate and complete. For this method to work, the hardware would need to
be decided and readily available before the CNN optimization process starts. Another drawback
to the approach is that the pruning technique is performed in a layer-wise manner, which is
susceptible to local minima, as inter-layer effects on the hardware platform and prediction accuracy
are not considered. ChamNet [7] also adopts a look-up table strategy to estimate the latency with
a Bayesian energy predictor and performs neural architectural search. The predictors for the HW
metrics also require the “ready-to-use” target HW platform to perform optimization. Furthermore,
if the target hardware is changed, the effort to recollect the data for the new look-up table and
the Bayesian optimizer needs to be taken into account. HW-NAS-Bench [22] presents a dataset
to evaluate various CNN configurations on different HW platforms. The dataset is generated by
performing extensive real HW measurements on NAS-specific search spaces [8, 40] Furthermore,
the dataset does not cover exploration of HW specific hyper-parameters which impacts the CNN
compilation/scheduling procedures. The work in AMC-AutoML [16] demonstrated an RL pruning
agent, producing channel sparsity ratios for each layer as its action after every episode. Based on
the magnitude obtained from the L2-norm heuristic and the sparsity ratio of each layer given by
the RL agent, the redundant channels are pruned. The work demonstrated results of both proxy
metrics (OPs and Params) and HIL-based timing evaluation using TF-Lite. Another HIL-based
optimization technique, HAQ [38], resorts to RL-based exploration to determine suitable, layer-wise
quantization levels for weights and activations in the CNN model. The reward function, including
real hardware metrics, is generated by directly executing the inference of a CNN model on a Field
Programmable Gate Array (FPGA) design which supports quantized computations [31].

Hardware Modeling. The deterministic nature of CNN inference execution on hardware makes
analytical hardware modeling an intuitive approach to simulate aspects of the synthesis and
deployment phases. Timeloop [27] is a HW-modeling tool that exploits CNN execution determinism
to offer accurate estimates of a given hardware description. It shows the strength of HW modeling,
circumventing the need for cycle-accurate CNN hardware simulators and/or synthesized hardware
in the early phases of development. The tool provides the flexibility of changing the cost of
hardware operations (e.g. read, write, multiply-accumulate) and the memory hierarchy, among
other design parameters. Based on the data movement constraints set by the designer, the tool
searches the scheduling solution space in an exhaustive or randomly sampled manner, thereby

LITES

03:6 HW-Flow: A Multi-Abstraction Level HW-CNN Codesign Pruning Methodology

providing the HW estimates. The schedule search time could either last significantly long with
exhaustive search or lead to a sub-optimal solution with random sampling. Interstellar [43]
proposes formal dataflow definitions. Unlike Timeloop, the authors of Interstellar use the Halide
programming language to represent the HW-architecture and data movement constraints. The
influence of memory hierarchy and dataflows on energy efficiency and latency is investigated
thoroughly. MAGNet [37] considers various CNN architectures and hardware constraints generating
an optimal RTL and mapping strategy to execute the CNNs efficiently. It explores various tiling
strategies and dataflows by proposing a highly configurable processing element array. Yang et
al. [41] leverage a HW-model to estimate the energy requirements of each layer. The layers with
the highest energy contribution present a good starting point for the pruning process, based on
the L2-norm heuristic. However, energy estimates do not influence the sparsity ratio directly.
The work is also limited to optimizing normalized energy, but not latency, which is an equally
important parameter for real-time applications. In this work, we remove the limitations of pure
proxy and HIL-based neural network pruning by introducing a multi-abstraction level HW-model
for estimating the efficiency of CNN architectures. Instead of exhaustive and random sampling
search techniques, we analytically reduce the size of the search space, and thereby the search-time,
without sacrificing schedule efficiency. A deep deterministic policy gradient (DDPG) based learning
agent is augmented with key rewards and state information, allowing it to understand the influence
of its pruning actions on the inference hardware for energy and latency, and enabling HW-CNN
codesign-based optimization.

Table 1 Classification of pruning, modeling techniques and their advantages.

Agnostic Proxy HIL HW-Model HW-Flow
Advantage [15, 10, 9] [14, 17, 36] [16, 42, 7, 22] [27, 41] [Ours]

Accuracy optimization: ✓ ✓ ✓ ✓ ✓

OPs/Params optimization: ✗ ✓ ✓ ✓ ✓

Energy/latency optimization: ✗ ✗ ✓ ✓ ✓

HW-design exploration: ✗ ✗ ✗ ✓ ✓

Learning based agent: ✗ ✓ ✓ ✗ ✓

HW-CNN codesign (abstraction/refinement): ✗ ✗ ✗ ✗ ✓

4 Hardware-Flow

In the case of general-purpose HW, such as off-the-shelf GPUs and CPUs, HIL-based approaches
may indeed be less cumbersome than building a hardware model. For many real-time, energy, and
latency-critical applications, these platforms are not applicable at deployment time. Carefully
designing custom hardware, which meets specific criteria for an application, necessitates following
a HW-SW codesign paradigm. In the top-down approach, this implies iteratively going through
different levels of abstraction and performing some iterations of exploration before fixing some
parameters and refining the design to one abstraction level lower. During inference, CNN forward-
pass executions are entirely deterministic, making it hard to justify the need for synthesized
hardware to observe training or optimization effectiveness. This makes hardware modeling an
attractive and economical alternative for rapid prototyping and testing of different HW-aware
optimization strategies.

In this paper, the HW-Flow framework is based on an interaction between the CNN environment
f , the pruning agent π and the hardware model µ (shown in Figure 1). In detail, the agent
receives a layer-wise state Sl and an accuracy term ψ, from the environment. The environment’s

M-R. Vemparala et al. 03:7

accuracy/precision ψ is computed with respect to the logits Ỹ and labels of the validation set.
Depending on the level of abstraction, the CNN f is simulated and scheduled on the HW-model µ,
returning estimates φ of an embedded application for the agent to produce a pruning action Al.

Multi-Level HW-Model Optimization µ:

Environment :

Agent �:

Al-1

l

Pred Y
~

Conv ...

Conv

HW Estimates
• NormEnergy
• Latency
• Ops/Params

ci

Buffer SRAM

Off-Chip DRAM

Inference
Simulation

Conv

Learning-Agent:

Task Metrics
• Accuracy

Reward

Pruned by l+1

Actor:

Opti. Targets:
• Energy
• Computations
• Memory
• Accuracy

Pruned by l

Action

• Multi abstraction level (Coarse,Mid, Fine)
• Dynamic layer-wise scheduling scheme

Pruning mask

Samples(I/Y)

HW-Model: Scheduler:

Map

State
• e.g. Wl, Al, k, ...global

Coarse
Mid
Fine

HW-FlowHIL

Ab
st

ra
ct

io
n

O
pt

im
iza

tio
n

local
Optimum

wi

hi

Wl

co

ci

kw

kh

Al cowo

ho

l+1Action

Figure 1 Overview of HW-Flow enabling HW-model based pruning. The CNN environment (bottom)
is pruned by a DDPG agent (right). The distinction of layer-wise sparsity is based on the three proposed
HW-modeling abstraction levels - Coarse, Mid and Fine, which estimate the complexity of CNN workloads.

4.1 Problem Formulation

Without loss of generality, in an L-layer CNN, the convolutional layer l ∈ {1, ..., L} receives an
input feature map Al−1 ∈ RHi×Wi×Ci , where Hi, Wi, and Ci indicate the spatial height, width,
and input channels respectively. A0 is the input image I to the CNN, as shown in Figure 1
(bottom). The weights W ∈ RKh×Kw×Ci×Co are the trainable parameters of the individual layers,
here Kh, Kw, and Co are the kernel dimensions and the number of output channels (filters)
respectively. The input Al−1 is convolved with the weights W l, where the kernels are moved
over the input with stride s. In detail, the task of the agent π is to prune the input channels
Ci of the environment by zeroizing the binary pruning mask Al = {0, 1}1×1×Ci×1. To select
the most salient channels, the Hadamard product ⊙ is applied, giving a sparse representation
W̃ l ∈ RKh×Kw×Ci×Co = W l ⊙ Al. Referring to Figure 1, zeroizing an input channel in the l layer
will zero out the corresponding output feature map from the l− 1 layer. Consequently, the kernels
of all filters in the l − 1 layer are also zeroed-out. Channel-wise pruning removes several weights
from the CNN at once, causing a significant loss in accuracy. To mitigate this negative effect and
guarantee an energy and latency efficient compression, the learning-based agent π has to learn
good actions Al. The goal of HW-Flow is to complement well-established proxies, such as OPs and
Params count, with more elaborate HW-model based estimates, which are conducive to finding
efficient CNNs for embedded applications.

LITES

03:8 HW-Flow: A Multi-Abstraction Level HW-CNN Codesign Pruning Methodology

4.2 Deep Deterministic Policy Gradient-based Agent
The DDPG agent’s architecture, including the actor and the critic, is adopted from He et al. [16].
The agent is augmented with key rewards and state information, allowing it to understand the
influence of its pruning actions on the inference hardware with respect to the energy estimates
φE and the latency estimates φL, elaborated in Section 4.4. The newly adapted state S is
composed of the following layer information of the environment’s f : the index of the layer l, stride
s and the layer dimensions after pruning C̃o, C̃i,Wi, Hi. It should be noted that the multi-level
estimates φ obtained from the HW-models are considered to be part of the state S, where
φ = [φ0, ..., φl, ..., φL] ensembles either layer-wise energy estimates φE or latency estimates φL.
As expressed in equation 2, the action Al−1 is applied for composing the input state of the agent.

Sl =< l, s, C̃o, C̃i,Wi, H, φ
l,

l−1∑
i=0

φi,

L∑
j=l+1

φj ,Al−1 > (2)

In this work, the agent is trained using one of the two search protocols, either the estimate
balanced or estimate constrained reward function, as defined in equation 3. The balanced reward
of equation 3 is inspired by [17]. When the HW-constraints are unknown in the early stages of
the design, the reward function can be formulated to achieve at least a target accuracy ψ∗ before
optimizing the performance estimate term. A trade-off between the accuracy term (1 − (ψ∗ −ψ)/b)
and the estimate term log(φ∗/φ) after each pruning action is the goal of the estimate balanced
reward function. Parameter b influences the turning point between a negative and positive reward
R, encouraging the agent to improve the accuracy when the difference between ψ∗ and ψ is larger
than b. When this condition is met, the agent starts to optimize the trade-off between accuracy and
hardware estimates. This reward can also be extended to optimize multiple KPI’s by appending
several logarithmic terms. The estimate constrained compression improves the reward R by
maintaining higher prediction accuracy ψ after each pruning action. This encourages the agent to
prune the CNN model while minimizing the accuracy degradation when the HW-constraints are
strictly stipulated.

R =
{ (

1 − ψ∗−ψ
b) · log(φ

∗

φ), if balanced
ψ, otherwise constrained

. (3)

The estimate term in the reward represents the benefits obtained from pruning with respect to
the HW-model µ, giving the estimate φ∗ of the unpruned base model and φ after each episode of
the agent.

4.3 HW-model Abstraction Levels
The HW-Flow framework proposes 3 levels of abstraction, Coarse, Mid, and Fine, for estimating
the complexity of a CNN workload (Table 2). At the Coarse level, the goal would be to narrow
down the CNN architectures which would suit an application’s accuracy requirements, while
maintaining a reasonable number of OPs and Params.

Once satisfied with the CNN’s computational complexity, the Mid-level estimates take interme-
diate design parameters such as memory hierarchy, partitioning, and bandwidth into consideration,
which decide whether the off-chip to on-chip communication infrastructure is suitable for the
considered HW design. At the Mid-level, HW-Flow provides refined metrics such as off-chip to
on-chip data transfer volumes, computation-to-communication ratio (CTC) and off-chip energy
φE,off−chip due to external memory accesses. Using this information, the candidate CNNs can be
tested for various criteria, such as respecting the communication bandwidth constraints expected

M-R. Vemparala et al. 03:9

Table 2 Input, output and optimization details of HW-Flow’s abstraction levels.

Level Input Optimization Output

Coarse: • CNN graph • N/A • OPs/Params

Mid: • Memory hierarchy • Loop tiling • CTC ratio
• Memory size/partitioning • Loop reordering • Off-chip energy/accesses: φE,off−chip

• Off-chip bandwidth/burst length • Mid Latency φL,bandwidth

• Compute array sizes

Fine: • Complete memory/compute • Loop unrolling • Total inference energy: φE,NE

hierarchy • Interleaving • Breakdown of datatype energy
• PE specification • Folding • Total inference latency: φL,inference

• Supported dataflows • Mapping exploration • Detailed data movement schedule

on the hardware platform, resulting in latency estimates φL,bandwidth at the Mid level. In Section 5,
we demonstrate how the Mid-level can provide an intermediate evaluation closer to the detailed
Fine-level without requiring the designer to decide the low-level details of the compute array at
this stage. This eases the design process into the next stage and provides one more stepping-stone
before narrowing down the complete HW design.

HW-Flow’s Fine estimates provide metrics that consider specific details of the accelerator, such
as the detailed structure and dimensioning of the processing element (PE) array and the scheduling
strategies supported by the on-chip interconnect, which determines the possible communication
channels between the PEs. The estimates at this level provide normalized energy costs φE,NE of
each datatype dtype ∈ {ifmap, ofmap, psum, weight} at each memory level of the system. The
agent π receives estimates for the energy and latency for a particular scheduling strategy relative
to each layer of the investigated network. At the Mid and Fine levels, HW-Flow additionally
searches for scheduling solutions which optimize the criteria provided by the designer, e.g. latency,
energy or a trade-off. The latency is the time interval between the stimulation of the host and its
response from the accelerator for a particular neural network, i.e. time between the pre-processed
input and the output of the neural network. The total energy consumption of the CNN accelerator
is determined using the data movement cost at various memory hierarchies and compute cost in
processing element array.

For a human designer, the three levels allow the structured traversal of the HW and CNN
design space, which may be a daunting task otherwise. The designer starts with a set of potential
CNNs and tests their pruning potential in terms of OPs, Params and task-related accuracy. Once a
subset of CNNs with high pruning ratios and acceptable task-related accuracies is narrowed down,
the Mid-level is then critical in designing the communication infrastructure between the host and
the accelerator, as well as dimensioning the on-chip SRAM. After pruning, an under-dimensioned
SRAM can result in high communication effort with off-chip DRAM, resulting in higher stress on
the off-chip to on-chip interconnect. An over-dimensioned SRAM can lead to area-on-chip and
fabrication cost problems. Therefore, the pruning potential of the CNN needs to be evaluated
alongside the on-chip SRAM dimensions and the interconnect stress at the Mid-level. Finally, at
the Fine-level, the designer can use the findings at the Coarse and Mid-level and further specify
the computation infrastructure of the accelerator (such as PE count, register files sizes, dataflow).
Tackling all three levels by searching for an efficient HW and CNN configuration at once would
potentially lead to sub-optimal results. This would also result in more GPU hours of CNN pruning
and HW search due to the difficulty in understanding which part of the system (CNN or HW)
needs to be adjusted to meet the demands of the application at hand.

LITES

03:10 HW-Flow: A Multi-Abstraction Level HW-CNN Codesign Pruning Methodology

4.4 HW-model Optimizer
Model: The core structure of the HW-model in HW-Flow is based on two generic blocks, namely
the memory and compute blocks. Arbitrary memory hierarchies can be instantiated using these
generic blocks. Each block is accounted for its position in the hierarchy by referring the memory
below it and the level at which it is placed. The highest level represents the largest memory, where
all the data fits. Memory blocks can be detailed with their total or datatype-wise segmented
size. Below last-level memories, a compute block can be instantiated, as shown in Figure 2. The
compute block is defined by several parameters, including the number of processing elements (PE),
interconnect dimensions, and register file sizes. The register files in each PE can be specified

Ti
lin

g,
 R

eo
rd

er
in

g
St

ra
te

gy
, U

nr
ol

lin
g

G
oa

ls
: C

TC
, D

RA
M

 E
ne

rg
y

Scheduler:CNN:

Bad Pruning → No Good Utilization

Al-1

Al

Wl

co

ci

Upper Level Memory:

Banks:
ifmap

weights

ofmap

O
n-

ch
ip

 B
uf

fe
r/S

RA
M

Mapper:

Lo
op

 U
nr

ol
lin

g
St

ra
te

gy
 (F

ol
di

ng
, I

nt
er

le
av

in
g)

G
oa

ls
: L

at
en

cy
, E

ne
rg

y,
Tr

ad
e-

of
f

Al-1

Al

Wl

co

ci

Ti
le

Conv

=

DRAM: Compute Block:

HW-Accelerator:
PE

co

ci

kw

kh

TCi
wi

hi

wo

ho

a a+(b·c)←
Register

Control

Figure 2 Scheduling strategies for data movement optimization.

according to their size and segmentation, as shown in Figure 2 (top/right). Using these blocks,
diverse compute architectures can be described. In this paper, we focus on modeling architectures
similar to [4], with a single on-chip buffer and a compute core with an array of PEs, as depicted
in Figure 2.

Scheduler. The energy contribution of data movement cannot be disregarded for efficient
execution of CNNs. For most cases, it constitutes the majority of the total power consumption
to execute CNN models. CNNs are commonly represented in a nested loop format, as expressed
in Figure 3. The for-loops shown present many reuse opportunities. The main computation

#Strided Convolution
I[B][Ci][Hi][Wi] = inp
W[Co][Ci][Kh][Kw] = wgt
O[B][Co][Ho][Wo] = out
for(int b=0; b<B; b++):
for(int co=0; co<Co; co++):
for(int ci=0; ci<Ci; ci++):
for(int ho=0; ho<Ho; ho++):
for(int wo=0; wo<Wo; wo++):
for(int kh=0; kh<Kh; kh++):
for(int kw=0; kw<Kw; kw++):
w = W[co][ci][kw][kh]
i = I[b][ci][wo*sw+kw][ho*sh+kh]
O[b][co][wo][ho]+=w*i

#Loop Tiled
#Higher memory schedule:
for(int co=0;co<Co;co+=T_Co):
#Lower memory schedule:
for(int t_co=0;t_co<T_Co;t_co++):

#Loop Reordered
#1-Read ci: #3-Purge ci, read ci++
for(int ci=0; ci<Ci; ci++):
#2-Iterate over all co:
for(int co=0; co<Co; co++):

#Loop Unrolled
#Execute pw operations in parallel
for(int kw=0; kw<Kw; kw+=pw):

Figure 3 Nested for-loop representation of strided convolution.

M-R. Vemparala et al. 03:11

is at the core of the inner-most loop and many elements are accessed in multiple iterations of
the higher loops. Specifically, reuse occurs when the indices of the parameters involved in the
inner-most computation remain fixed for some loops before iterating in others. In hardware, this
translates to a single element being stored at a lower level memory for multiple iterations before
being purged to make space for new data. For optimal reuse to occur, no single element should
be read more than once from a higher level memory. This implies that during all the iterations
that a single element is involved in, all the other elements that it is reused against also fit in
the lower level memory. Practically, due to memory constraints, the parameters required by the
entire nested-loop do not fit in the lowest-level of the memory hierarchy. A standard method of
exploiting the entire hierarchy is to relax this constraint and split the for-loops into shallower loops
through a technique called loop-tiling. As shown in Figure 2, the loop tiling strategy effectively
decides which tiles T ∈ {TCi

, TCo
, THo

, TWo
, TKw

, TKh
, TB} of CNN computation will take place

in one round of communication with a lower level memory. Note that TB is the tiling along the
batch dimension when performing batch processing. The tiling strategy is selected based on the
amount of on-chip buffer Buf , respecting the inequality in equation 4.

THi
× TWi

× TCi
× TB︸ ︷︷ ︸

Input Tile

+THo
× TWo

× TCo
× TB︸ ︷︷ ︸

Output Tile

+Kh ×Kw × TCi
× TCo︸ ︷︷ ︸

Weight Tile

≤ Buf (4)

To generate an output tile with spatial dimensions TWo
, THo

with stride s and kernel k, an
input tile with spatial dimensions TWi , THi are required. The relation between input and output
tiles is given in equation 5.

TWi
= (TWo

− 1) · s+Kw

THi = (THo − 1) · s+Kh

(5)

The order of the loops can also be manipulated dynamically for each layer without affecting the
algorithm through loop-reordering. As an example in Figure 3, loop Ci can be swapped with
loop Co, allowing a single element ci to reside longer on the lower-level memory while iterating
over all possible elements co ∈ Co. This can help extract improved reuse opportunities since the
lower-level loops remain on the lower-level memories of the hardware architecture, thus closer
to the compute units. Particularly for Mid-level estimates, these permutations directly impact
the number of DRAM accesses and consequently DRAM energy. This work considers three loop
orders, namely Input Reuse Order (IRO), Weight Reuse Order (WRO), and Output Reuse Order
(ORO) schemes inspired by the work in [35]. Switching dynamically between these three reuse
schemes allows to schedule the entire CNN exploiting the reuse opportunities of different layers.
As an example, layers with a very large kernel can benefit from ORO and WRO schedules, whereas
layers with large feature maps (e.g. the first layers of most conventional CNN) will benefit the
most with IRO schedule. This is refereed to as dynamic loop tiling. Finally, once a memory level
is distributed spatially, further loops can be unrolled over the parallelism degree offered by the
hardware architecture through loop-unrolling. In Figure 3, the kernel’s elements can be assigned to
spatially distributed processing elements, executing several Kw loop iterations in parallel during a
single clock cycle. HW-Flow’s mapper component optimizes the execution schedule through this
technique, as detailed in the following subsection.

Using the aforementioned strategies, the scheduler builds a matrix of possible tilings and loop
orders. Each potential solution in the matrix is checked for legality, by assessing whether its
transfer size breaches the memory restrictions at lower levels. The volumes V moved between the
memory levels are calculated based on the memory occupation and the number of invocations
required. To analytically reduce the size of the search space, a Computation-to-Communication
(CTC) hall-of-fame is constructed after the evaluation of all legal solutions, which contains only

LITES

03:12 HW-Flow: A Multi-Abstraction Level HW-CNN Codesign Pruning Methodology

a top percentage of the highest CTC loop tilings/orderings. Equation 6 represents a CTC ratio
formula, inspired by the work in [44]. γ represents a bandwidth-correction term to account for the
burst-length of the memory transfers. The numerator is the number of operations/complexity of a
particular workload. The denominator is the overall DRAM access along with bandwidth scaling
for input, weights, and outputs for a particular workload.

CTC = 2 ·Ho ·Wo ·Kh ·Kw · Co · Ci∑
dtype γdtype · Vdtype

,

dtype ∈ {ifmap, ofmap, psum, weight} (6)

The hall-of-fame solutions are passed on to the mapper for Fine-level estimations. An analysis on
the hall-of-fame size and the efficiency of the final schedule produced is presented in Section 5.4.

Mapper. Many dataflow strategies have been explored in literature [4, 43]. Reuse opportunities in
CNNs include convolutional, weight, input, and partial sum reuse. In this work, we focus on three
dataflows, namely weight-stationary, output-stationary, and row-stationary. The weight-stationary
dataflow unrolls the dimensions TCi

and TCo
as PCi

and PCo
across the spatially distributed

computation array. Each PE holds complete kernels (Kw ×Kh) and corresponding input feature
slices. Spatial reduction of partial sums can occur inside the PE; however, accumulation across
input channels requires psum traversal over the spatial computation array. The output-stationary
dataflow similarly unrolls PCi

and PCo
; however, the psums remain stationary in each processing

element, while input feature map pixels traverse the array and kernel pixels are updated once
they are exhaustively used over the tile. Finally, row-stationary as introduced in [4] unrolls the
THo dimension horizontally across the array as PHo . Each Kh column of PEs is responsible for
the complete computation of an entire row of the output Wo, while the neighboring set of Kh

PEs computes the output row below that. Folding and replication techniques are applied to fit
this unrolling method on the physical array dimensions. All three dataflows enable interleaving of
channel computation within a single PE to maximize the use of the register files.

HW-Flow’s mapper analytically determines the viability of a particular dataflow, based on
the hardware details such as the interconnect dimensions, processing array size, and scratchpad
configuration. HW-Flow attempts to find a mapping that optimizes a given criterion (energy,
latency, or a trade-off) while respecting the dataflow’s restrictions. As presented in Figure 3,
unrolling a subset of a loop’s iterations as P spatially distributed computations, improves execution
time. Assuming a filled pipeline, the latency of a layer φL can be estimated as the product of
intertile and intratile latency as shown in equation 7. The intertile latency is computed based
on the number of tiles required to transfer from off-chip memory to on-chip memory. Based on
the PE unrolling procedure of the tiles available in the on-chip memory, the intratile latency is
calculated. In equation 7, the kernel dimensions Kh and Kw are not tiled, as such granular tilings
result in performance degradation for modern CNN models with small kernel sizes.

φ̃L,interTile =
⌈
Co
TCo

⌉
·
⌈
Ci
TCi

⌉
·
⌈
Ho

THo

⌉
·
⌈
Wo

TWo

⌉
φ̃L,intraTile =

⌈
TCo

PCo

⌉
·
⌈
TCi

PCi

⌉
·
⌈
THo

PHo

⌉
·
⌈
TWo

PWo

⌉
·
⌈
TKh

PKh

⌉
·
⌈
TKw

PKw

⌉
φ̃L,total = φ̃L,interTile × φ̃L,intraTile

(7)

A particular mapping produces reuse factors for each datatype at different memory levels. We
denote a reuse factor with R

dtype
level, where level ∈ {Offchip, Onchip, Array, Registers}. Reuse

factors are dependent on tiling and unrolling strategies, as well as data interleaving [4], where

M-R. Vemparala et al. 03:13

a single computation element switches between multiple sets of the same datatype in order to
extend the utilization of its registers. Once a legal mapping is found, the energy contributions of
each datatype at each memory level can be computed. Equation 8 shows an example of the energy
consumption calculation at a particular memory level for a single datatype [4]. The read/write cost
term C of a particular memory level can be set based on the fabrication technology or a relative
normalized cost to other memory types in the hardware architecture. The energy estimates of all
datatypes at all memory levels can be calculated similarly and summed up to obtain the total
layer energy φE .

φE,Level(dtype) = (
Level∏

off−chip

Rdtype
level) · CLevel

∀ dtype ∈ {ifmap, ofmap, psum, weight} (8)

Finally, the mapping found is fed back to the scheduler, determining whether the tiling factors it
provided were adequate. The possible combinations for legal schedules are evaluated and compared.
These two optimization problems are codependent, as a tiling strategy that optimizes off-chip data
movement may result in a mapping that under-utilizes the processing elements for a particular
dataflow and vice versa. Therefore, a feedback loop, such as the one in HW-Flow, is essential in
finding an optimal scheduling strategy for the overall system.

4.5 Search Space for HW-model Optimizer
For Fine-level estimates, creating a complete schedule implies choosing a fixed set of tiling factors
{TCi

, TCo
, THo

, TWo
} and unrolling factors {PCi

, PCo
, PHo

, PWo
, PKh

, PKw
}. We restrict TKh

= Kh

and TKw = Kw, and therefore omit them from the tiling factors set. Modern CNNs employ small
kernel sizes, making it unreasonable to tile them during computation. Furthermore, tiling the
kernel dimension generates a large amount of partial sums which can quickly become parasitic
due to memory consumption and on-chip movement, if not collapsed into an output pixel. We
can define two subspaces in the scheduling search space: tiling space T and mapping space P.
Equation 9 defines the size of the subspaces. Ord defines the reordering possibilities of the outer
(off-chip memory) loops of the convolution. In this work, we consider three distinct orderings,
IRO, ORO, and WRO, relating to inputs, outputs, or weights being kept longer on the on-chip
memory respectively [35].

|T | = Ci · Co ·Ho ·Wo ·Ord
|Pτ | = TCi · TCo · THo · TWo · TKh

· TKw ∀τ ∈ T (9)

|T | and |Pτ | represent the cardinality of the tiling space and mapping space associated with
a single tiling τ ∈ T respectively. Therefore, the size of Pτ is directly dependent on a single
solution τ = {TCi

, TCo
, THo

, TWo
, Ord} ∈ T . Restricting T directly reduces the number of total

Pτ searches necessary for finding a schedule. T may contain a single solution τ which results in a
single mapping ρ ∈ Pτ , that is optimal for the overall schedule, in terms of latency, energy, or
both. The trade-off in restricting the size of T is between schedule search speed and the optimality
of the found schedule. To avoid evaluating drastically sub-optimal tilings, we analytically reduce
the size of T , and maintain solutions τ , which have a higher probability of producing efficient ρ
mappings. The search for the optimal mapping ρ can also be expedited with further sampling
techniques.

A straightforward approach to restricting the search space is to uniformly sample equidistant
solutions in T . We choose uniform sampling over random sampling to consider, at a minimum, a
single candidate from each neighborhood in the search space. For fixed dimensions Ci, Co, Ho,

LITES

03:14 HW-Flow: A Multi-Abstraction Level HW-CNN Codesign Pruning Methodology

and Wo, the distance between two solutions depends on the sampling step. For small search
spaces, the sampling step can be set to a small integer value. Therefore, for all experiments on
the CIFAR-10 dataset, the sampling step was set to 2, effectively halving the number of tiles from
each dimension. For the larger CNN models, better suited for the ImageNet dataset, integer steps
are less effective. The size of a particular dimension Ci, Co, Ho, and Wo, varies greatly between
the first layer of the CNN towards the last. This makes the choice of a single integer step-size for
all dimensions either grossly large to maintain simulation speed or small to maintain optimality
at the cost of prohibitively increased search time. We use a ratio-based sampling to overcome
this problem, where the step-size is a fixed fraction of the total dimension. This decouples the
dimensions of the CNN from the number of τ mappings to be evaluated. We also allow each
dimension to have its own ratio, providing more flexibility in finely searching smaller dimensions
and coarsely searching larger ones. One more technique to aggressively reduce the search space is
to find all the factors (divisors) of a particular dimension and declare those as the possible tiling
factors. Since a factor will always give an integer number of tiles, this method usually leads to
near-optimal results and is scalable to larger CNNs.

The CTC ratio metric is elaborated in Section 4.4 for choosing a reasonable tiling solution.
Based on the intuition that a high CTC tiling solution τ could result in an efficient mapping, we
analytically reduce the search space by creating a CTC hall-of-fame (HOF). In the first step, we
evaluate the CTC ratio for all τ ∈ T , which is a fast and parallelizable operation. A set percentage
of T with the highest CTC ratios among all the solutions is entered in the HOF. Only members
of the HOF have their respective P searched for mapping solutions.

For Mid-level estimates, evaluating the outputs shown in Table 2 is a fast and parallel operation,
which can be done by either sampling the tiling space or exhaustively, since the total number of
solutions to evaluate at this level is |T |. For Fine-level, we have a total number of full schedule
evaluations equal to

∑T
τ |Pτ |, which rapidly grows with T , emphasizing the importance of good

search space reduction techniques to maintain reasonable search time, without cutting out the
optimal solutions in the space.

5 HW-model Design Space Exploration

We evaluate the HW-Flow framework by exploring the HW estimations at various abstraction
levels in Section 5.1. We explore the design choices and estimates at the Mid and Fine-level
abstractions in Section 5.2 and Section 5.3 respectively. We improve the schedule search time of
HW-Flow by systematically reducing the search space of the proposed HW-model optimizer using
a detailed ablation study in Section 5.4. Finally, in Section 5.5, the optimal mapping is validated
with the estimates reported in Eyeriss [4] and compared against the HW modeling framework
Timeloop [27]. An advantage of using HW-models over HIL-based methods is the flexibility of
prototyping and testing multiple target architectures before committing to a final design for
synthesis and fabrication. We report various HW configurations with different PE array sizes,
memory costs, SRAM buffer and register sizes in Table 3. Column 3 indicates the data access cost
from higher memory levels (DRAM) to lower levels (RF) relative to one MAC operation. This
section uses the HW-Flow-Val model with 16-bit word length to explore the Coarse, Mid and Fine
abstraction levels and validate the modeling tool.

5.1 HW Estimations at Various Abstraction Levels
In this subsection, we demonstrate the HW estimates produced across various abstraction levels
and discuss their use in the context of HW development. For this purpose, we interpret the
influence of on-chip buffer size through DRAM access counts and throughput of the HW-Flow-Val

M-R. Vemparala et al. 03:15

Table 3 Hardware configurations used for experiments and validation. RS refers to row-stationary
dataflow.

Hardware
Model

Architecture
Spec PE Array Memory Cost SRAM Register

DRAM, SRAM, Array, RF size Words
<KB> filter, ifmap, psums

HW-Flow - Val 16 × 16 200, 6, 2, 1 128 192, 12, 16
Timeloop [27] 16 × 16 200, 7.41, 0, 1 128 192, 12, 16

Eyeriss-like-168 PE (RS) 12 × 14 200, 6, 2, 1 128 224, 12, 14
Eyeriss-like-256 PE (RS) 16 × 16 200, 13.84, 2, 1 256 224, 12, 14
Eyeriss-like-1024 PE (RS) 32 × 32 200, 155.35, 2,1 3072 224, 12, 14
Eyeriss-like-Deeplab (RS) 32 × 32 200, 155.35, 2,1 3072 224, 37, 16

model in Figure 4. We obtain the Coarse-level estimations for DRAM access counts (indicated in
red) by simply summing-up the layer-wise transfer volumes of ifmaps, ofmaps and weights. This
is equivalent to considering that the HW has unbounded buffers and communication bandwidth.
Similarly, we consider that all the compute units in the PE array are fully occupied and report
the accelerator’s throughput. These assumptions in the initial phases of development allow the
designer to choose the CNN topologies that suit the application under consideration. For Mid-level
estimations, we optimize layer-wise schedules for minimum DRAM energy by considering the
possibility of dynamic tiling and reordering schemes as described in Section 4.4. We report
the sum of DRAM accesses across all layers (indicated in green). To calculate the accelerator’s
throughput at Mid-level, we consider the external memory bandwidth as 8 words/cycle. For
Fine-level estimations, we optimize the row-stationary dataflow to obtain a trade-off between
normalized energy and latency (indicated in blue).

We perform the measurements for four CNN architectures, namely AlexNet, VGG-16, ResNet18,
and ResNet152. We observe that as the on-chip buffer size increases, larger tiles of input, weights,
and outputs can be stored on the buffer, thereby decreasing the number of DRAM Accesses.
We also observe that the Mid and Fine estimations for all the CNN architectures could meet
the ideal Coarse estimations at higher buffer sizes (≥ 512KB). We notice that the Fine-level
estimations produce a higher number of DRAM accesses, as the schedule must consider more
complex HW details and constraints at this level. The AlexNet architecture achieves the least
throughput among other architectures, as a considerable number of operations and parameters
are assigned to fully-connected layers. The throughput produced at the Fine-level considers the
dataflow and the underlying unrolling scheme and therefore achieves closer estimates compared
to real target deployment. We observe that the throughput saturates at 128KB of buffer size
for both Mid and Fine level estimations for different CNN architectures. A slight decrease in
throughput happens for AlexNet and ResNet18 at Fine-level scheduling for on-chip memories
larger than 128KB. This due to the Fine-level schedule simultaneously optimizing for inference
energy (not shown in the figure) as the on-chip memory grows.

5.2 Mid-Level Estimations and Design Choices
In Figure 5, we evaluate the number of DRAM accesses for different loop ordering schemes. We also
evaluate the Mid-level throughput estimation for different external bandwidth considerations (4,
8, 16 words/cycle). Among IRO, WRO and ORO loop ordering schemes, we observe that the IRO
scheme produces DRAM accesses close to the layer-wise dynamic ordering scheme for AlexNet. For
ResNet18, we observe that the ORO scheme achieves DRAM access closer to the dynamic order.
This emphasizes the importance of a dynamic ordering scheme as different workloads prefer reuse

LITES

03:16 HW-Flow: A Multi-Abstraction Level HW-CNN Codesign Pruning Methodology

8 16 32 64 128 256 512

102

103

104

On-chip memory

D
R

A
M

A
cc

es
s

(M
B)

AlexNet VGG-16 ResNet18 ResNet152

Coarse Mid Fine

8 16 32 64 128 256 512
32

64

96

128

160

192

224

256

On-chip memory
T

hr
ou

gp
ut

(O
ps

/C
yc

le
)

Figure 1 Analysis of DRAM Access and Throughput on varying the on-chip buffer size and different
CNN architectures.

References

© Author: Please fill in Copyright macro;
licensed under Creative Commons License CC-BY

Leibniz Transactions on Embedded Systems, Vol. To be completed by Dagstuhl editorial office, Issue To be completed by
Dagstuhl editorial office, pp. 1–1

Leibniz Transactions on Embedded Systems
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

Figure 4 Analysis of DRAM Access and Throughput on varying the on-chip buffer size and different
CNN architectures.

for different datatypes. Fixing the dynamic ordering scheme, the throughput of the accelerator is
analyzed for AlexNet and ResNet-18 under different external memory bandwidth considerations.
We observe a significant improvement in the throughput of AlexNet as the bandwidth increases.
For ResNet18, the throughput saturates at 8 words/cycle. Improving the throughput for AlexNet
depends on the choice of external memory bandwidth as AlexNet has several memory-bounded
fully-connected layers compared to ResNet18.

5.3 Fine-Level Estimations and Dataflows
The row-stationary (RS), weight-stationary (WS) and output-stationary (OS) dataflows, detailed
in the Section 4.4, are used to explore the Fine-level estimates. The mapper searches for a
trade-off between normalized energy and latency while respecting each dataflow’s unrolling rules
and the HW’s memory and compute capacity checks. We obtain the Fine estimates for AlexNet
and ResNet18 models for different on-chip buffer sizes considering the HW-Flow-Val model. We
observe that the RS dataflow is the most energy efficient at all the buffer sizes. This is due to RS
maximizing the data reuse at the register-level, for all the datatypes [4]. OS and WS dataflows
maximize the compute utilization of PE arrays, albeit with higher normalized energy requirements.
The WS dataflow achieves higher throughput using larger buffer sizes (≥ 32KB) for ResNet18.

5.4 Search Space Exploration for Fine-level Estimations
We perform multiple experiments to measure the sensitivity of the scheduling tool under the
search space sampling strategies described in Section 4.5. Although all schedules produced under
any of the sampling strategies are valid, it is favorable to maintain schedules which are close or
comparable to the optimum for a particular CNN workload. To explore the search space, we use
the HW-Flow-Val model with RS dataflow to estimate convolutional layers of the AlexNet model
with 16-bit weights and activations, as it offers a diverse set of workloads with different kernel
sizes and strides. The input batch size is set to 16. AlexNet consists of convolutional workloads
with strides 4, 2 and 1 and kernels sizes 11, 5 and 3. Grouped convolution is performed for layers
2, 4 and 5.

M-R. Vemparala et al. 03:17

8 16 32 64 128 256 5120

100

200

300

400

On-chip memory

D
R

A
M

A
cc

es
s

(M
B

)

IRO ORO WRO Dynamic 4 Word/cyc 8 Word/cyc 16 Word/cyc

AlexNet ResNet18

8 16 32 64 128 256 512
32

64

96

128

160

192

224

256

On-chip memory

T
hr

ou
gp

ut
(O

ps
/C

yc
le

)

Figure 1 Influence of loop reordering schemes and external memory bandwidth on DRAM access and
throughput of the HW accelerator.

0.1 Fine-Level Estimations and Dataflows1

8 16 32 64 128 256 5120

50

100

150

On-chip memory

N
or

m
al

iz
ed

En
er

gy
(×

10
9)

AlexNet ResNet18

RS OS WS

8 16 32 64 128 256 5120

32

64

96

128

160

192

224

256

On-chip memory

T
hr

ou
gp

ut
(O

ps
/C

yc
le

)

Figure 2 Influence of dataflows selection on normalized energy and throughput of the HW accelerator.

© Author: Please fill in Copyright macro;
licensed under Creative Commons License CC-BY

Leibniz Transactions on Embedded Systems, Vol. To be completed by Dagstuhl editorial office, Issue To be completed by
Dagstuhl editorial office, pp. 1–13

Leibniz Transactions on Embedded Systems
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

Figure 5 Influence of loop reordering schemes and external memory bandwidth on DRAM access and
throughput of the HW accelerator.

8 16 32 64 128 256 5120

50

100

150

On-chip memory

N
or

m
al

iz
ed

En
er

gy
(×

10
9)

AlexNet ResNet18

RS OS WS

8 16 32 64 128 256 5120

32

64

96

128

160

192

224

256

On-chip memory

T
hr

ou
gp

ut
(O

ps
/C

yc
le

)

Figure 1 Influence of dataflows selection on normalized energy and throughput of the HW accelerator.

References

© Author: Please fill in Copyright macro;
licensed under Creative Commons License CC-BY

Leibniz Transactions on Embedded Systems, Vol. To be completed by Dagstuhl editorial office, Issue To be completed by
Dagstuhl editorial office, pp. 1–1

Leibniz Transactions on Embedded Systems
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

Figure 6 Influence of dataflows selection on normalized energy and throughput of the HW accelerator.

Table 4 shows the search time needed for different analytical search strategies to produce a
schedule. The quality of the search method can be measured by its corresponding mapping goal.
Three different T sampling rates (5%, 10%, 20%) are explored in Figure 7 with 1% CTC-HOF. We
observe that the normalized energy increases as we limit the exploration by increasing the sampling
rate. Based on the trade-off between evaluation speed (see Table 4) and schedule optimality
(Figure 7), we sample the tile space with 10% for ImageNet experiments to obtain HW estimates

LITES

03:18 HW-Flow: A Multi-Abstraction Level HW-CNN Codesign Pruning Methodology

for the pruning process. This results in an overall shorter search time (up to ×2.5) at the cost
of degradation in mapping optimization goal. We also highlight the tile sampling method by
computing divisors in Table 4. We observe that the divisors-based sampling method produces a
schedule with the lowest energy consumption. However, this method might produce sub-optimal
results in case of channel pruning when the agent finds prime-number of filters for a particular
layer. For CIFAR-10 experiments, we use smaller, integer steps of 2, as these CNNs have a small
scheduling search space.

We perform multiple experiments to measure the sensitivity of the scheduling tool under the1

search space sampling strategies described in Section ??. Although all schedules produced under2

any of the sampling strategies are valid, it is favorable to maintain schedules which are close or3

comparable to the optimum for a particular CNN workload. To explore the search space, we use4

the HW-Flow-Val model with RS dataflow to estimate convolutional layers of the AlexNet model5

with 16-bit weights and activations, as it offers a diverse set of workloads with different kernel6

sizes and strides. The input batch size is set to 16. AlexNet consists of convolutional workloads7

with strides 4, 2 and 1 and kernels sizes 11, 5 and 3. Grouped convolution is performed for layers8

2, 4 and 5.9

Table ?? shows the search time needed for different analytical search strategies to produce a10

schedule. The quality of the search method can be measured by its corresponding mapping goal.11

Three different T sampling rates (5%, 10%, 20%) are explored in Figure 1 with 1% CTC-HOF.12

We observe that the normalized energy increases as we limit the exploration by increasing the13

sampling rate. Based on the trade-off between evaluation speed (see Table ??) and schedule14

optimality (Figure 1), we sample the tile space with 10% for ImageNet experiments to obtain HW15

estimates for the pruning process. This results in an overall shorter search time (up to ×2.5) at16

the cost of degradation in mapping optimization goal. We also highlight the tile sampling method17

by computing divisors in Table ??. We observe that the divisors-based sampling method produces18

a schedule with the lowest energy consumption. However, this method might produce sub-optimal19

results in case of channel pruning when the agent finds prime-number of filters for a particular20

layer. For CIFAR-10 experiments, we use smaller, integer steps of 2, as these CNNs have a small21

scheduling search space.

CONV1 CONV2 CONV3 CONV4 CONV5
0

1

2

3

4

5 ·1010

N
or

m
al

iz
ed

En
er

gy

DRAM SRAM Array RF MAC

0

0.2

0.4

0.6

0.8

1

1.2
·108

N
or

m
al

iz
ed

La
te

nc
ytile 5% tile 10% tile 20%

5 % latency 10% latency 20% latency

Figure 1 Sensitivity analysis for search space sampling of tiling factors.
22

References

© Author: Please fill in Copyright macro;
licensed under Creative Commons License CC-BY

Leibniz Transactions on Embedded Systems, Vol. To be completed by Dagstuhl editorial office, Issue To be completed by
Dagstuhl editorial office, pp. 1–1

Leibniz Transactions on Embedded Systems
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

Figure 7 Sensitivity analysis for search space sampling of tiling factors.

The sensitivity analysis of the CTC-HOF tile space reduction technique is shown in Table 4.
The results show that the (10% T , 1% HOF) strategy is very effective, providing a speedup
of 2.14× compared to (10% T , 100% HOF) schedule without sacrificing the optimality of the
schedule. Combining these methods is critical in maintaining a reasonable exploration time for
multiple pruning experiments. We finally use the sampling strategy (10% T , 1% HOF) with an
overall search time reduction of 20× compared to the search strategy (5% T , 100% HOF). Once a
HW-CNN pair is found, the HW-optimizer can run with a more exhaustive search strategy and
provide an improved schedule for the final deployment stage. For reference, we also present the
search/calculation time for Mid and Coarse estimate levels in Table 4. In addition to facilitating
the proposed codesign approach, the two higher abstraction levels are much faster to estimate,
allowing agent π to run for more episodes than with Fine-level estimates, for the same amount of
time.

5.5 Validation with Eyeriss and Timeloop
Validation: To validate the correctness of HW-Flow’s modeling and mapping components, we
compare its estimates with the Eyeriss architecture [4] and its Timeloop model [27] for AlexNet [21]
inference, which has diversified kernel sizes, strides and input/output dimensions. Figure 8 shows
a breakdown of normalized energy contributions of each datatype at each memory level for the
convolutional layers. We observe that HW-Flow tracks the original Eyeriss results similar to
Timeloop. A slight offset is observed, which can be attributed to small differences in the energy
references used during the search. The overlapping line charts show the latency estimates of both
frameworks.

6 Experimental Results

In Sections 6.1 to 6.6, we demonstrate the influence of channel pruning on different abstractions,
reward functions, target HW architectures and mapping schemes using the estimates generated
by HW-Flow. The pruning is evaluated based on CIFAR-10 [19] and ImageNet [30] for the
classification task and CityScapes [5] for the semantic segmentation task. The 50K train and 10K

M-R. Vemparala et al. 03:19

Table 4 Schedule search duration and optimality under different search space reduction strategies for
AlexNet on Eyeriss-like-256. All schedules optimize for a trade-off between latency and energy, unless
marked otherwise. Similar to Eyeriss [4], we normlize DRAM energy (column 3) and total energy (column
4) to the cost of one MAC operation.

Search Strategy Search DRAM Energy Energy Latency
Time [s] [×109] [×109] [×106cycles]

10% T , 1% HOF* 9.87 10.76 83.25 379
10% T , 1% HOF** 10.13 155.82 257.49 65
10% T , 1% HOF 10.23 11.06 91.89 67

5% T , 1% HOF 25.59 12.10 83.96 60
10% T , 1% HOF 10.23 11.06 91.89 67
20% T , 1% HOF 7.23 10.47 104.61 118
divisors T , 1% HOF 12.86 14.60 71.61 65

5% T , 100% HOF 215.42 12.10 83.96 60
5% T , 1% HOF 25.59 12.10 83.96 60
10% T , 100% HOF 23.03 11.06 91.89 67
10% T , 10% HOF 15.24 11.06 91.89 67
10% T , 1% HOF 10.76 11.06 91.89 67
divisors T , 100% HOF 51.47 9.67 72.44 65
divisors T , 1% HOF 12.86 14.60 71.61 65

Coarse Estimates 0.10 - - -
Mid Estimates 5% T *** 5.23 8.13 - -

All simulations were run with 24 threads on an Intel Xeon E5-2698 Process

Mapping goal : *energy, **latency, ***dram access

test images of CIFAR-10 are used to train and evaluate the base models, respectively. The images
have a resolution of 32 × 32 pixels. ImageNet consists of ∼ 1.28M train and 50K validation images
with a resolution of 256 × 256 pixels. The CityScapes dataset consists of 2975 training images
and 500 validation images, including their corresponding ground truth labels. The images of size
2048 × 1024 show German street scenes along with their pixel-level semantic labels of 19 classes.
The pruning experiments are performed using the agent detailed in Section 4.2, for 150 episodes of
pruning exploration and 400 for learning and exploitation. After the agent selects the best action
corresponding to the reward, the environment is fine-tuned for 60 epochs with a learning rate of
1e-03 for CIFAR-10 experiments. For ImageNet experiments, we fine-tune for 20 epochs with an
initial learning rate of 1e-02, step decay of 1e-01 for every 5 epochs. For CityScapes experiments,
we fine-tune the model with a learning rate of 1e-02 for 240 epochs with a polynomial learning
rate. If not otherwise mentioned, all hyper-parameters specifying the task-related training were
adopted from the CNN’s base model. The batch size is set to 4 to evaluate the HW estimates.

HW metrics such as DRAM accesses, normalized energy, and latency are generated based on
the different variants of an Eyeriss-like architecture [4] mentioned in Table. 3. These metrics are
also reported similarly in the works of Timeloop [27] and Eyeriss [4]. In Table 5-10, the reported
normalized energy estimates are relative to the cost of one MAC operation and are therefore
unitless. The latency is reported as number of clock cycles. Additionally, we report the accuracy
and pruning rate for each experiment. The pruning rate indicates the number of operations
reduced relative to the baseline CNN. For comparison with the state of the art, we measure
the memory required to store training parameters under 16-bit fixed-point representation. To
demonstrate the effect of pruning on different HW-architectures, we scale the variants of spatial,
eyeriss-like accelerators from 168 to 256 and 1024 PEs (Table 3).

LITES

03:20 HW-Flow: A Multi-Abstraction Level HW-CNN Codesign Pruning Methodology

Validation: To validate the correctness of HW-Flow’s modeling and mapping components, we1

compare its estimates with the Eyeriss architecture [1] and its Timeloop model [2] for AlexNet [3]2

inference, which has diversified kernel sizes, strides and input/output dimensions. Figure 1 shows3

a breakdown of normalized energy contributions of each datatype at each memory level for the4

convolutional layers. We observe that HW-Flow tracks the original Eyeriss results similar to5

Timeloop. A slight offset is observed, which can be attributed to small differences in the energy6

references used during the search. The overlapping line charts show the latency estimates of both7

frameworks.8

CONV1 CONV2 CONV3 CONV4 CONV5
0

0.5

1

1.5

2

2.5

3

3.5
·1010

N
or

m
al

iz
ed

En
er

gy

DRAM SRAM Array RF MAC

0

1

2

3

4

5
·107

N
or

m
al

iz
ed

La
te

nc
yTimeloop latency HW-Flow latency

Eyeriss Timeloop HW-Flow

Figure 1 Validation with the Eyeriss accelerator [1] and Timeloop [2]. Note: [1] does not report
layerwise latencies.

References
1 Y. Chen, J. Emer, and V. Sze, “Eyeriss: A Spatial

Architecture for Energy-Efficient Dataflow for Con-
volutional Neural Networks,” in ACM/IEEE An-
nual International Symposium on Computer Archi-
tecture (ISCA), 2016. DOI: 10.1109/ISCA.2016.40.

2 A. Parashar, P. Raina, Y. S. Shao, Y. Chen, V. A.
Ying, A. Mukkara, R. Venkatesan, B. Khailany,
S. W. Keckler, and J. Emer, “Timeloop: A System-
atic Approach to DNN Accelerator Evaluation,” in

IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS), 2019.
DOI: 10.1109/ISPASS.2019.00042.

3 A. Krizhevsky, I. Sutskever, and G. E. Hinton,
“ImageNet Classification with Deep Convolutional
Neural Networks,” in Advances in Neural Infor-
mation Processing Systems (NeurIPS) (F. Pereira,
C. J. C. Burges, L. Bottou, and K. Q. Weinberger,
eds.), 2012. DOI: 10.1145/3065386.

© Author: Please fill in Copyright macro;
licensed under Creative Commons License CC-BY

Leibniz Transactions on Embedded Systems, Vol. To be completed by Dagstuhl editorial office, Issue To be completed by
Dagstuhl editorial office, pp. 1–1

Leibniz Transactions on Embedded Systems
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

Figure 8 Validation with the Eyeriss accelerator [4] and Timeloop [27]. Note: [4] does not report
layerwise latencies.

6.1 Pruning on Different Abstraction Levels

In this experiment, we fix the target hardware architecture to an Eyeriss-like 256 PE accelerator
and perform pruning based on HW-Flow’s Coarse, Mid and Fine estimates. At each level, we
choose the constrained reward function (equation 3), and set the target metric reduction to 50%
of the baseline value (unpruned model execution). To observe the impact of the metrics at each
abstraction level on the hardware architecture, we evaluate all the generated pruned networks on
the Fine-level model.

The experiments in Table 5 serve as an example on how the three HW abstraction levels
(Course | Mid | Fine) can be used to narrow down the range of CNNs and HW architectures which
result in an optimal task-to-resource mapping. When using the HW-Flow design methodology,
the Coarse-level helps the designer evaluate the pruning potential of a set of different CNNs. The
designer only needs to have a rough number of OPs in mind, a target CNN memory footprint, and
an estimation of the desired accuracy. For the purpose of demonstration, we use ResNet56 as
our baseline CNN model, with a task-accuracy of 93.59% on the CIFAR-10 dataset. We analyze
the compression capability by constraining 50% of OPs. After evaluating the CNNs’ compression
potential, a set of promising candidates can be narrowed down.

The search can be refined to take the on-chip memory hierarchy and dimensioning into
consideration at the Mid-level. The focus at this level is to choose the correct on-chip memory size
and the amount of communication that needs to take place between the host and the accelerator. An
under-dimensioned on-chip SRAM would lead to more stress on the communication infrastructure
since more rounds of communication are necessary with the DRAM. A large SRAM, although
costly, might relieve the complexity of a high-speed, high-bandwidth interconnect. In this context,
HW-Flow’s Mid-level can play a pivotal role in helping the designer dimension the SRAM and the
off-chip to on-chip interconnect while considering the pruning potential of the CNN. In Table 5,
we check if the on-chip SRAM (256KB) is in a good range to achieve reductions in DRAM
accesses without having to over-prune our CNN and lose the task-related accuracy goal with the
available loop tiling and reordering possibilities. We observe that the agent prunes 63.84% of OPs
constraining DRAM accesses to 50%.

Going deeper to the Fine-level, the pruning rate is relaxed as the efficient Eyeriss-like architec-
ture is able to meet the constraint requirements without a high pruning rate. Consequently, this
preserves the network’s accuracy equivalent to the Coarse level, while meeting lower target energy
and latency.

M-R. Vemparala et al. 03:21

Table 5 ResNet56 pruned at different HW abstraction levels for Eyeriss-like 256 PE configurations.
RS refers to row-stationary dataflow.

Prune configuration Acc PR Energy Latency
(< constraint >;< level >;< hw_model >) [%] [%] [×109] [×103cycles]

Baseline (not pruned); 256 PE - RS 93.59 - 3.76 2350

-50% Ops *; Coarse; 256 PE - RS 93.03 50.00 2.08 1219

-50% DRAM access *; Mid; 256 PE - RS 91.82 63.84 1.50 862

-50% Energy *; Fine; 256 PE - RS 93.14 54.00 1.88 1159
-50% Latency *; Fine; 256 PE - RS 93.24 50.89 2.05 1176

* : reduction required to meet constraint | (matched for))

6.2 Pruning on Different Rewards
To demonstrate the application of HW-Flow to a hardware design problem, we consider the three
candidate Eyeriss-like hardware accelerators with 168, 256, and 1024 PEs. In this experiment,
the agent performs pruning based on the two types of reward functions proposed in equation 3,
namely estimate constrained and balanced.

Estimate Constrained. The agent is tasked with pruning the ResNet56 model trained on CIFAR-
10 such that it meets a given fixed constraint while minimizing the accuracy degradation of the
compressed network. The constraint is set to 50% energy or latency reduction relative to the
baseline leader, i.e. the accelerator which performs the best for the target metric. The results
in Table 6 show several interesting trends. We observe that the 168 PE variant is the baseline
leader for energy-constrained pruning and the 1024 PE accelerator as a baseline leader for latency
constrained pruning. With 1024 PEs, there is an ample capacity to improve latency, requiring a
lower pruning rate to meet the application constraint. Conversely, the CNN can be pruned more
effectively for 168 and 256 PEs when considering an energy-constrained application. For both
cases, choosing the correct hardware platform results in a pruned network with higher accuracy.
Figure 9a-c shows the agent’s decisions across the episodes for the three HW platforms with
energy and latency constrained experiments. The noisy actions taken in the exploration phase
(first 150 episodes) allow the agent to collect data on the environment and then start convergence
and optimization in the following 400 episodes. For Figure 9a-latency and 9b-latency, the agent
heavily prunes the model to achieve the target constraints, resulting in an accuracy degradation
(marked as red in Table 6 if ≥ 2%). In Figure 9c-energy, the agent struggles to meet the desired
constraints, resulting in an accuracy degradation after fine-tuning. These critical observations can
facilitate the choice of a suitable hardware for a given application constraint.

Estimate Balanced. As detailed in Section 4.2 and equation 3, the balanced estimate reward
encourages the agent to maintain the target accuracy ψ∗, while minimizing the estimates φ. Here,
ψ∗ and b are set to 0.5, 0.125 respectively. Figure 10 demonstrates episode-wise reward plots for
the balanced reward formulation of ResNet20 and ResNet56 configurations under various HW
platforms. From Table 7, we observe that all the configurations optimized for energy and latency
undergo minimal degradation in prediction accuracy with different latency and energy estimates.
The Eyeriss-like 168 PE configuration achieves the best energy, whereas 1024 PEs achieves the
best latency. Generally, for experiments in Figure 10, we observe an improvement in accuracy
and reduction in HW metrics as the number of episodes increase. We also observe that the agent

LITES

03:22 HW-Flow: A Multi-Abstraction Level HW-CNN Codesign Pruning Methodology

Table 6 Pruning ResNet56 on CIFAR-10 using estimate constrained reward R on Eyeriss-like accelera-
tors.

Prune configuration Acc PR Energy Latency
(< constraint >;< level >;< hw_model >) [%] [%] [×109] [×103cycles]

Baseline (not pruned); Fine; 168 PE - RS 93.59 - 3.72 3377
Baseline (not pruned); Fine; 256 PE - RS 93.59 - 3.76 2350
Baseline (not pruned); Fine; 1024 PE - RS 93.59 - 5.52 588

Target Energy (-50%)**; Fine; 168 PE - RS* 92.63 58.16 1.85 1644
Target Energy (-50%)**; Fine; 256 PE - RS 93.14 54.00 1.88 1159
Target Energy (-66%)**; Fine; 1024 PE - RS 91.09 75.22 1.88 170

Target Latency (-92%)**; Fine; 168 PE - RS 86.89 93.14 0.40 269
Target Latency (-87%)**; Fine; 256 PE - RS 89.66 87.94 0.59 306
Target Latency (-50%)**; Fine; 1024 PE - RS* 92.92 52.68 3.07 294

*: Baseline leader | **: reduction required to meet constraint | (violated constraint) (matched constraint)

Table 7 Pruning ResNet56 on CIFAR-10 using the estimate balanced reward function on Eyeriss-like
accelerators.

Prune configuration Acc PR Energy Latency
(< reward >;< level >;< hw_model >) [%] [%] [×109] [×103cycles]

Baseline (not pruned); Fine; 168 PE - RS 93.59 - 3.72 3377
Baseline (not pruned); Fine; 256 PE - RS 93.59 - 3.76 2350
Baseline (not pruned); Fine; 1024 PE - RS 93.59 - 5.52 588

Energy balanced; Fine; 168 PE - RS 91.94 69.14 1.41 1309
Energy balanced; Fine; 256 PE - RS 92.56 62.22 1.61 913
Energy balanced; Fine; 1024 PE - RS 92.30 62.09 2.69 238

Latency balanced; Fine; 168 PE - RS 92.64 56.50 1.94 1658
Latency balanced; Fine; 256 PE - RS 92.58 59.75 1.69 975
Latency balanced; Fine; 1024 PE - RS 92.97 57.14 3.18 276

finds a pruning strategy for challenging HW configurations (168 PE latency constraint or 1024 PE
energy constraint), with minimal accuracy degradation. We also observe quick convergence for
ResNet56 pruning on the 256 PE accelerator in Figure 10e.

6.3 Pruning on Different Mappings
The following experiment is performed to evaluate the relationship between effective pruning and
an efficient dataflow. We compare the target hardware model, with 256 PEs, against two variants
with identical specification, except for their dataflows. Here, the three dataflows, weight-stationary
(WS), output-stationary (OS), and row-stationary (RS), described in Section 4.4, are compared in
their potential for improved execution of pruned CNNs.

The baseline estimates of the unpruned network show the energy and latency variation caused
by dataflows (Table 8). All three dataflows present unique non-dominated solutions for baseline
energy and latency. Similar to the estimate constrained experiment in Section 6.2, we set the
constraint with respect to the baseline leader dataflow. Figure 9d-f shows the agent’s highly
varying actions depending on the dataflow and the target constraint. RS results in the lowest
baseline energy, whereas the OS has the lowest baseline latency. We can observe that the agent
obtains minimum accuracy degradation for RS when constraining for energy. When constraining

M-R. Vemparala et al. 03:23

0 100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Episode

H
ar
d
w
ar
e
K
P
I/
A
cc
u
ra
cy

0 100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Episode

H
ar
d
w
ar
e
K
P
I/
A
cc
u
ra
cy

(a) 168 PE - RS: −50% Energy | −92% Latency

0 100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

1

Episode

H
ar
d
w
ar
e
K
P
I/
A
cc
u
ra
cy

0 100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

1

Episode

H
ar
d
w
ar
e
K
P
I/
A
cc
u
ra
cy

(d) 256 PE - RS: −50% Energy | −58% Latency

0 100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Episode

H
ar
d
w
ar
e
K
P
I/
A
cc
u
ra
cy

0 100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Episode

H
ar
d
w
ar
e
K
P
I/
A
cc
u
ra
cy

(b) 256 PE - RS: −50% Energy | −87% Latency

0 100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

1

Episode

H
ar
d
w
ar
e
K
P
I/
A
cc
u
ra
cy

0 100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

1

Episode

H
ar
d
w
ar
e
K
P
I/
A
cc
u
ra
cy

(e) 256 PE - OS: −69% Energy | −50% Latency

0 100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Episode

H
ar
d
w
ar
e
K
P
I/
A
cc
u
ra
cy

0 100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Episode

H
ar
d
w
ar
e
K
P
I/
A
cc
u
ra
cy

(c) 1024 PE - RS: −69% Energy | −50% Latency

0 100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Episode

H
ar
d
w
ar
e
K
P
I/
A
cc
u
ra
cy

0 100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

1

Episode

H
ar
d
w
ar
e
K
P
I/
A
cc
u
ra
cy

(f) 256 PE - WS: −79% Energy | −58% Latency

Figure 1 Training curves of the agent detailing the Reward, reduction in Latency Energy
OPs at every episode. We calculate reward by computing prediction accuracy on 10000 randomly sampled
images from training dataset.

References

© Author: Please fill in Copyright macro;
licensed under Creative Commons License CC-BY

Leibniz Transactions on Embedded Systems, Vol. To be completed by Dagstuhl editorial office, Issue To be completed by
Dagstuhl editorial office, pp. 1–1

Leibniz Transactions on Embedded Systems
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

Figure 9 Training curves of the agent detailing the Reward, reduction in Latency Energy
OPs at every episode. We calculate reward by computing prediction accuracy on 10000 randomly sampled
images from training dataset.

Table 8 Constraining dataflows relative to 50% of the baseline leader (RS for energy and OS for
latency).

Prune configuration Acc PR Energy Latency
(< constraint >;< level >;< hw_model >) [%] [%] [×109] [×103cycles]

Baseline (not pruned); Fine; 256 PE - OS 93.59 - 5.87 1960
Baseline (not pruned); Fine; 256 PE - WS 93.59 - 5.77 1991
Baseline (not pruned); Fine; 256 PE - RS 93.59 - 3.76 2350

Target Energy (-68%); Fine; 256 PE - OS 91.84 72.05 1.88 584
Target Energy (-68%); Fine; 256 PE - WS 90.06 84.53 1.75 1308
Target Energy (-50%); Fine; 256 PE - RS * 93.14 54.00 1.88 1159

Target Latency (-50%); Fine; 256 PE - OS * 92.91 52.11 3.06 981
Target Latency (-51%); Fine; 256 PE - WS 84.17 96.20 0.71 1612
Target Latency (-58%); Fine; 256 PE - RS 92.36 61.05 1.72 984

*: Baseline leader | (violated constraint) (matched constraint)

for latency, the agent achieves better accuracy for OS and RS. WS demands higher pruning rate
when constraining both energy and latency thereby resulting in lower accuracy (marked as red
in Table 8). We can also see that the agent does not change its action across several episodes
when constraining latency under WS dataflow (see Figure 9f). Thus, we can conclude that the
row stationary dataflow is an optimal mapping scheme to achieve efficient energy and latency.

LITES

03:24 HW-Flow: A Multi-Abstraction Level HW-CNN Codesign Pruning Methodology

(a) 168 PE - RS - ResNet20 Energy | Latency Balance (d) 168 PE - RS - ResNet56 Energy | Latency Balance

(b) 256 PE - RS - ResNet20 Energy | Latency Balance (e) 256 PE - RS - ResNet56 Energy | Latency Balance

(c) 1024 PE - RS - ResNet20 Energy | Latency Balance (f) 1024 PE - RS - ResNet56 Energy | Latency Balance

Figure 1 Training curves of the agent detailing the Reward Accuracy Normalized Latency Nor-
malized Energy Normalized OPs at every episode.

References

© Author: Please fill in Copyright macro;
licensed under Creative Commons License CC-BY

Leibniz Transactions on Embedded Systems, Vol. To be completed by Dagstuhl editorial office, Issue To be completed by
Dagstuhl editorial office, pp. 1–1

Leibniz Transactions on Embedded Systems
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

Figure 10 Training curves of the agent detailing the Reward Accuracy Normalized La-
tency Normalized Energy Normalized OPs at every episode.

6.4 Layer-wise Analysis of ResNet18

Energy: Baseline OPs Prune DRAM Prune Energy Prune Latency Prune
Latency: Baseline OPs Prune DRAM Prune Energy Prune Latency Prune

CONV211

CONV212

CONV221

CONV222

CONV3S

CONV311

CONV312

CONV321

CONV322

CONV4S

CONV411

CONV412

CONV421

CONV422

CONV5S

CONV511

CONV512

CONV521

CONV522
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6 ·109

N
or

m
al

ize
d

En
er

gy

7 × 714 × 1428 × 2856 × 56

0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2

·106

N
or

m
al

ize
d

La
te

nc
y

Figure 1 Energy consumption and latency of the pruned layers in ResNet18 on an Eyeriss-like 256 PE
accelerator under different pruning constraints.

Based on different pruning constraints, the layer-wise analysis of the ImageNet-trained1

ResNet18, scheduled on an Eyeriss-like 256 PE accelerator, is presented in Figure 1. The2

architecture of ResNet18 consists of four stages based on the output feature map spatial size.3

The results detail the achieved Fine estimates (normalized energy and latency). We observe that4

the agent’s pruning rate decision for each layer depends on the constrained HW metric. The5

layers with higher spatial output sizes (56 × 56) are aggressively pruned when constraining DRAM6

accesses. On the other hand, the pruning rate for the layers with smaller spatial output size (7 × 7)7

is observed higher when constraining for OPs. We also observe a lower drop in energy and latency8

(≤ 50%) for layers such as CONV411, CONV511, CONV512 to avoid accuracy degradation for all kinds9

of pruning constraints. The prediction accuracy and the pruning rates of the four configurations10

are reported in Table ??.11

References

© Author: Please fill in Copyright macro;
licensed under Creative Commons License CC-BY

Leibniz Transactions on Embedded Systems, Vol. To be completed by Dagstuhl editorial office, Issue To be completed by
Dagstuhl editorial office, pp. 1–1

Leibniz Transactions on Embedded Systems
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

Figure 11 Energy consumption and latency of the pruned layers in ResNet18 on an Eyeriss-like 256
PE accelerator under different pruning constraints.

Based on different pruning constraints, the layer-wise analysis of the ImageNet-trained
ResNet18, scheduled on an Eyeriss-like 256 PE accelerator, is presented in Figure 11. The
architecture of ResNet18 consists of four stages based on the output feature map spatial size.
The results detail the achieved Fine estimates (normalized energy and latency). We observe that
the agent’s pruning rate decision for each layer depends on the constrained HW metric. The
layers with higher spatial output sizes (56 × 56) are aggressively pruned when constraining DRAM

M-R. Vemparala et al. 03:25

accesses. On the other hand, the pruning rate for the layers with smaller spatial output size (7 × 7)
is observed higher when constraining for OPs. We also observe a lower drop in energy and latency
(≤ 50%) for layers such as CONV411, CONV511, CONV512 to avoid accuracy degradation for all kinds
of pruning constraints. The prediction accuracy and the pruning rates of the four configurations
are reported in Table 10.

6.5 Pruning DeepLabv3 for Semantic Segmentation
Using the HW-Flow estimations, we prune DeepLabv3 [3] (using ResNet18 backbone) on the
CityScapes dataset. For the DeepLab-based CNN, the bottleneck layers consist of two residual
blocks with a dilation rate of 2 and an Atrous Spatial Pyramid Pooling (ASPP) block with dilation
rates {1, 8, 12, 18}. To obtain Fine-level estimates for dilated convolutional layers from the
HW-Flow framework, we adapt the row-stationary dataflow. The rows of PEs responsible for
the dilated parts of the kernel can either be clock-gated or removed from the logical mapping.
This implies that the diagonal reuse of input pixels across the spatial array is disrupted. This
phenomenon is equivalent to a regular convolution with a large stride, where not every row of
the input feature is shared directly with the diagonal neighbor PE [4]. Nevertheless, a non-direct
neighbor PE may still reuse the input feature map row. In this case, the potential to reuse an
input feature map row at the PE array-level depends on the degree of unrolling PHo , the dilation
rate, and the stride. We use an Eyeriss-like architecture with a large PE array to perform inference
of the DeepLabv3 model. In Table 9, we highlight that the DeepLabv3 cannot be scheduled
on the standard Eyeriss architecture [4] (Eyeriss-168). This is due to the ifmap register files
being dimensioned to hold at-most 12 pixels at a time (see Table 3), which is a decision made
by the designers in [4] to support the largest kernel size row in AlexNet (11 pixels). The dilated
convolution layers in DeepLabv3, can have up to 36 pixel rows at a time, for a 3×3 kernel with
a dilation rate of 18. Increasing the PE array dimensions would not resolve this issue, as it is
inherent to the pipeline and dataflow constraints of the Eyeriss-like architecture. We increase
the ifmap register sizes to 37 pixels per PE (i.e. 36 + 1) to make all layers schedulable on the
accelerator and obtain baseline estimates.

Table 9 Pruning DeepLabv3 on the CityScapes dataset.

Prune configuration mIOU PR Memory Energy Latency
(< reward >;< level >;< hw_model >) [%] [%] [MB] [×109] [×106cycles]

Baseline (not pruned); Fine; Eyeriss-like 168 PE 69.68 - 33.26 NS NS
Baseline (not pruned); Fine; Eyeriss-like 1024 PE 69.68 - 33.26 NS NS
Baseline (not pruned); Fine; Eyeriss-like-Deeplab 69.68 - 33.26 1541 267.4

Ops Constrained (Ours); Coarse; Eyeriss-like-Deeplab 69.69 50.00 25.48 954 174.9
Energy Constrained (Ours); Fine; Eyeriss-like-Deeplab 69.88 51.90 29.05 820 161.5
Latency Constrained(Ours); Fine; Eyeriss-like-Deeplab 69.79 60.36 16.87 677 119.6

(NS: Not Schedulable) (matched constraint)

We constrain the number of operations, energy, and latency during the pruning process to
50% as shown in Table 9. There is no degradation in the mIOU (mean intersection over union)
evaluation metric for different pruning constraints. We could derive that the unpruned DeepLabv3
model is over-parameterized for the CityScapes dataset. We observe that a higher pruning
rate is required to constrain latency to 50%. We highlight the pruned models’ effectiveness by
demonstrating the semantic predictions on three sample images of the CityScapes dataset. We
observe that the pruned models could produce better predictions (terrain in column 1, bikers in
column 2, motorcycle and terrain in column 3) due to their higher generalization capability. By
analyzing the layer-wise pruning ratios for different target constraints, we observe that the agent
heavily prunes the ASPP and decoder blocks. For energy-constrained pruning, the agent only
finds redundant operations in the decoder blocks.

LITES

03:26 HW-Flow: A Multi-Abstraction Level HW-CNN Codesign Pruning Methodology

Raw Image

Labels

Baseline

50% Ops

50% Energy

50% Latency

Figure 12 Qualitative results for pruned models on different scenarios in the CityScapes dataset. Black
regions are unlabeled in the original dataset.

M-R. Vemparala et al. 03:27

6.6 Results Summary and Discussion
In this section, we compare HW-Flow with other channel pruning works proposed in literature.
Table 10 details various pruning configurations of ResNet variants trained on CIFAR-10 (ResNet20,
ResNet56) and ImageNet (ResNet18, ResNet50), evaluated on an Eyeriss-like 256 PE accelerator.
The table also includes other pruning methods and baseline models for reference. FPGM [15]
and Channel-Pruning [14] do not consider HW metrics as optimization targets or constraints, but
rather limit the compressed models only to be efficient with respect to computational complexity.
Due to a lack of information given by the authors, the estimation of the energy and the latency is
not possible for these works.

Table 10 Constrained and balanced pruning configurations using HW-Flow on ResNet variants,
compared to other works in literature. HW estimates measured on Eyeriss-like-256.

Prune configuration Acc PR Memory Energy Latency
(< reward >;< level >) [%] [%] [MB] [×109] [×103cycles]

ResNet20
Baseline (not pruned) 92.48 - 0.54 1.22 765
FPGM [15] (HW agnostic) 91.09 42.20 - - -
Ops Constrained [16]; Coarse 91.78 50.00 0.33 0.82 464
DRAM Constrained (Ours); Mid 90.78 70.87 0.27 0.43 236
Energy Constrained (Ours); Fine 91.46 56.12 0.35 0.61 359
Latency Constrained (Ours); Fine 90.53 48.55 0.35 0.66 383

ResNet56
Baseline (not pruned) 93.59 - 1.69 3.76 2350
FPGM [15] (HW agnostic) 92.89 52.60 - - -
Channel-pruning [14] (proxy) 91.80 50.00 - - -
Ops Constrained [16]; Coarse 93.03 50.00 1.21 2.08 1219
DRAM Constrained (Ours); Mid 91.82 63.84 1.21 1.50 862
Energy Constrained (Ours); Fine 93.14 54.00 1.11 1.88 1159
Latency Constrained (Ours); Fine 93.24 50.89 1.15 2.05 1176

ResNet18
Baseline (not pruned) 68.33 - 23.34 64.85 37796
FPGM [15] (HW agnostic) 67.81 41.80 - - -
Ops Constrained [16]; Coarse 67.66 50.00 16.94 32.89 18906
DRAM Constrained (Ours); Mid 66.38 54.46 15.94 30.17 16755
Energy Constrained (Ours); Fine 66.58 50.63 14.69 32.32 18280
Latency Constrained(Ours); Fine 66.92 49.70 16.61 33.62 18889

ResNet50
Baseline (not pruned) 76.06 - 51.00 361.12 206873
FPGM [15] 74.83 53.50 - - -
Channel-pruning [14] (proxy) 72.30 50.00 - - -
Ops Constrained [16]; Coarse 73.25 50.00 22.67 178.55 103968
DRAM Constrained (Ours); Mid 72.17 58.61 17.16 148.67 86411
Energy Constrained (Ours); Fine 73.69 49.82 24.12 180.91 104411
Latency Constrained(Ours); Fine 74.35 49.68 25.62 180.93 103576

(violated constraint) (matched constraint)

The accuracy and HW-estimates for AMC [16] are re-implemented by constraining the OPs in
HW-Flow’s Coarse-level estimation. We observe that constraining DRAM accesses by 50% using
Mid-level estimation demands higher pruning rate as there is little room for optimizing the HW
schedule. This results in accuracy degradation compared to other pruning configurations from
other target constraints (see DRAM constrained pruning for ResNet56, ResNet50 in Table 10).
HW-Flow is able to constrain energy and latency precisely to 50% of its baseline metrics by
using Fine-level HW estimates during the pruning process. For ResNet50, the energy and latency

LITES

03:28 HW-Flow: A Multi-Abstraction Level HW-CNN Codesign Pruning Methodology

constrained solutions by HW-Flow produce 0.44% and 1.10% better prediction accuracy compared
to the work in AMC (OPs constrained). AMC also prunes the CNNs based on latency, but it is
only limited to general-purpose HW platforms (Pixel 1 and TitanX GPU). We should note that
HW-Flow can prune CNN models at different HW abstraction levels and with a customizable,
accurate HW optimizer/modeler, thus allowing for a HW/CNN co-design approach.

7 Conclusion

Optimization of CNNs and the design of resource-constrained HW platforms go hand in hand.
In this paper, we propose HW-Flow, a framework for optimizing and exploring CNN models
based on three levels of hardware abstraction: Coarse, Mid and Fine. We propose analytical
search techniques to systematically traverse through the scheduling and mapping space, thereby
generating accurate HW estimates. We show that the pruning rate is an inaccurate proxy metric for
HW efficiency. With HW-aware pruning using Fine-level estimates, HW-Flow achieved ×2 energy
and latency reduction with minimal loss in prediction accuracy compared to its baseline unpruned
models. We extend the investigation to segmentation tasks, where observations on pruning
rates of decoder and ASPP blocks were made with respect to the pruning target. DeepLabv3’s
energy and latency were reduced by ∼50%, while improving the accuracy of the baseline, over-
parameterized model. HW-Flow can prune CNN models at different HW abstraction levels and
with a customizable and accurate HW modeling technique, facilitating a HW-CNN codesign
approach.

References
1 Han Cai, Ligeng Zhu, and Song Han. Proxyless-

NAS: Direct Neural Architecture Search on Target
Task and Hardware. In International Conference
on Learning Representations (ICLR), 2019. URL:
https://dblp.org/rec/conf/iclr/CaiZH19.bib.

2 C. Chen, A. Seff, A. Kornhauser, and J. Xiao. Deep-
driving: Learning affordance for direct perception
in autonomous driving. In 2015 IEEE Interna-
tional Conference on Computer Vision (ICCV),
pages 2722–2730, December 2015. doi:10.1109/
ICCV.2015.312.

3 Liang-Chieh Chen, Yukun Zhu, George Papandreou,
Florian Schroff, and Hartwig Adam. Encoder-
Decoder with Atrous Separable Convolution for
Semantic Image Segmentation. In The Euro-
pean Conference on Computer Vision (ECCV),
Cham, 2018. Springer International Publishing.
doi:10.1007/978-3-030-01234-2_49.

4 Y. Chen, J. Emer, and V. Sze. Eyeriss: A Spatial
Architecture for Energy-Efficient Dataflow for Con-
volutional Neural Networks. In ACM/IEEE Annual
International Symposium on Computer Architec-
ture (ISCA), 2016. doi:10.1109/ISCA.2016.40.

5 Marius Cordts, Mohamed Omran, Sebastian
Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo
Benenson, Uwe Franke, Stefan Roth, and Bernt
Schiele. The Cityscapes Dataset for Semantic Ur-
ban Scene Understanding. In IEEE/CVF Con-
ference on Computer Vision and Pattern Recogni-
tion (CVPR), 2016. URL: https://dblp.org/rec/
journals/corr/CordtsORREBFRS16.bib.

6 Yann Le Cun, John S. Denker, and Sara A. Solla.
Optimal Brain Damage. In Advances in Neural In-

formation Processing Systems (NeurIPS). Morgan
Kaufmann Publishers Inc., 1990.

7 Xiaoliang Dai, Peizhao Zhang, Bichen Wu, Hongxu
Yin, Fei Sun, Yanghan Wang, Marat Dukhan, Yun-
qing Hu, Yiming Wu, Yangqing Jia, Peter Vajda,
Matthew Uyttendaele, and Niraj K. Jha. Chamnet:
Towards efficient network design through platform-
aware model adaptation. 2019 IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition
(CVPR), 2019. doi:10.1109/CVPR.2019.01166.

8 Xuanyi Dong and Yi Yang. Nas-bench-201: Extend-
ing the scope of reproducible neural architecture
search. In International Conference on Learning
Representations, 2020. URL: https://openreview.
net/forum?id=HJxyZkBKDr.

9 Alexander Frickenstein, Manoj-Rohit Vemparala,
Nael Fasfous, Laura Hauenschild, Naveen-Shankar
Nagaraja, Christian Unger, and Walter Stechele.
Alf: Autoencoder-based low-rank filter-sharing for
efficient convolutional neural networks. In Proceed-
ings of the 57th ACM/EDAC/IEEE Design Au-
tomation Conference, (DAC), 2020. doi:10.1109/
DAC18072.2020.9218501.

10 Yiwen Guo, Anbang Yao, and Yurong Chen. Dy-
namic Network Surgery for Efficient DNNs. In
D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon,
and R. Garnett, editors, Advances in Neural In-
formation Processing Systems (NeurIPS). Curran
Associates, Inc., 2016. URL: https://dblp.org/
rec/conf/nips/GuoYC16.bib.

11 Song Han, Jeff Pool, John Tran, and William Dally.
Learning both Weights and Connections for Effi-
cient Neural Network. In C. Cortes, N. D. Lawrence,
D. D. Lee, M. Sugiyama, and R. Garnett, editors,

https://dblp.org/rec/conf/iclr/CaiZH19.bib
https://doi.org/10.1109/ICCV.2015.312
https://doi.org/10.1109/ICCV.2015.312
https://doi.org/10.1007/978-3-030-01234-2_49
https://doi.org/10.1109/ISCA.2016.40
https://dblp.org/rec/journals/corr/CordtsORREBFRS16.bib
https://dblp.org/rec/journals/corr/CordtsORREBFRS16.bib
https://doi.org/10.1109/CVPR.2019.01166
https://openreview.net/forum?id=HJxyZkBKDr
https://openreview.net/forum?id=HJxyZkBKDr
https://doi.org/10.1109/DAC18072.2020.9218501
https://doi.org/10.1109/DAC18072.2020.9218501
https://dblp.org/rec/conf/nips/GuoYC16.bib
https://dblp.org/rec/conf/nips/GuoYC16.bib

M-R. Vemparala et al. 03:29

Advances in Neural Information Processing Sys-
tems (NeurIPS). Curran Associates, Inc., 2015.

12 Babak Hassibi, David G. Stork, Gregory Wolff,
and Takahiro Watanabe. Optimal Brain Surgeon:
Extensions and Performance Comparisons. In Ad-
vances in Neural Information Processing Systems
(NeurIPS), San Francisco, CA, USA, 1993. Mor-
gan Kaufmann Publishers Inc. doi:10.1109/ICNN.
1993.298572.

13 K. He, X. Zhang, S. Ren, and J. Sun. Deep Resid-
ual Learning for Image Recognition. In IEEE/CVF
Conference on Computer Vision and Pattern Recog-
nition (CVPR), 2016. doi:10.1109/CVPR.2016.90.

14 Y. He, X. Zhang, and J. Sun. Channel Pruning
for Accelerating Very Deep Neural Networks. In
IEEE International Conference on Computer Vi-
sion (ICCV), 2017. doi:10.1109/ICCV.2017.155.

15 Yang He, Ping Liu, Ziwei Wang, Zhilan Hu, and
Yang Yang. Filter Pruning via Geometric Me-
dian for Deep Convolutional Neural Networks Ac-
celeration. IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2018.
doi:10.1109/CVPR.2019.00447.

16 Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia
Li, and Song Han. AMC: AutoML for Model Com-
pression and Acceleration on Mobile Devices. In
European Conference on Computer Vision (ECCV),
2018. doi:10.1007/978-3-030-01234-2_48.

17 Qiangui Huang, Shaohua Kevin Zhou, Suya You,
and Ulrich Neumann. Learning to Prune Filters
in Convolutional Neural Networks. IEEE Winter
Conference on Applications of Computer Vision
(WACV), 2018. doi:10.1109/WACV.2018.00083.

18 Leslie Pack Kaelbling, Michael L Littman, and An-
drew W Moore. Reinforcement learning: A survey.
Journal of artificial intelligence research, 4:237–285,
1996.

19 Alex Krizhevsky. Learning Multiple Layers of
Features from Tiny Images, 2009. University of
Toronto.

20 Alex Krizhevsky, Ilya Sutskever, and Ge-
offrey E Hinton. Imagenet classification
with deep convolutional neural networks. In
F. Pereira, C. J. C. Burges, L. Bottou, and
K. Q. Weinberger, editors, Advances in Neural
Information Processing Systems, volume 25.
Curran Associates, Inc., 2012. URL: https:
//proceedings.neurips.cc/paper/2012/file/
c399862d3b9d6b76c8436e924a68c45b-Paper.pdf.

21 Alex Krizhevsky, Ilya Sutskever, and Geoffrey E
Hinton. ImageNet Classification with Deep Convo-
lutional Neural Networks. In F. Pereira, C. J. C.
Burges, L. Bottou, and K. Q. Weinberger, edi-
tors, Advances in Neural Information Processing
Systems (NeurIPS). Curran Associates, Inc., 2012.
doi:10.1145/3065386.

22 Chaojian Li, Zhongzhi Yu, Yonggan Fu, Yon-
gan Zhang, Yang Zhao, Haoran You, Qixuan Yu,
Yue Wang, Cong Hao, and Yingyan Lin. {HW}-
{nas}-bench: Hardware-aware neural architecture
search benchmark. In International Conference
on Learning Representations, 2021. URL: https:
//openreview.net/forum?id=_0kaDkv3dVf.

23 Timothy P Lillicrap, Jonathan J Hunt, Alexan-
der Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous

control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

24 Shuying Liu and Weihong Deng. Very deep con-
volutional neural network based image classifica-
tion using small training sample size. In 2015 3rd
IAPR Asian Conference on Pattern Recognition
(ACPR), pages 730–734, 2015. doi:10.1109/ACPR.
2015.7486599.

25 Jonathan Long, Evan Shelhamer, and Trevor Dar-
rell. Fully convolutional networks for semantic
segmentation. In The IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR),
June 2015.

26 Hongzi Mao, Mohammad Alizadeh, Ishai Menache,
and Srikanth Kandula. Resource management with
deep reinforcement learning. In Proceedings of the
15th ACM workshop on hot topics in networks,
pages 50–56, 2016.

27 A. Parashar, P. Raina, Y. S. Shao, Y. Chen, V. A.
Ying, A. Mukkara, R. Venkatesan, B. Khailany,
S. W. Keckler, and J. Emer. Timeloop: A System-
atic Approach to DNN Accelerator Evaluation. In
IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS), 2019.
doi:10.1109/ISPASS.2019.00042.

28 S. Pereira, A. Pinto, V. Alves, and C. A. Silva.
Brain tumor segmentation using convolutional neu-
ral networks in mri images. IEEE Transactions
on Medical Imaging, 35(5):1240–1251, May 2016.
doi:10.1109/TMI.2016.2538465.

29 Martin Riedmiller and Thomas Gabel. On experi-
ences in a complex and competitive gaming domain:
Reinforcement learning meets robocup. In 2007
IEEE Symposium on Computational Intelligence
and Games, pages 17–23, 2007.

30 Olga Russakovsky, Jia Deng, Hao Su, Jonathan
Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael
Bernstein, Alexander C. Berg, and Li Fei-Fei. Im-
ageNet Large Scale Visual Recognition Challenge.
International Journal of Computer Vision (IJCV),
115(3), 2015. doi:10.1007/s11263-015-0816-y.

31 Hardik Sharma, Jongse Park, Naveen Suda,
Liangzhen Lai, Benson Chau, Vikas Chandra, and
Hadi Esmaeilzadeh. Bit Fusion: Bit-Level Dy-
namically Composable Architecture for Accelerat-
ing Deep Neural Networks. In ACM/IEEE An-
nual International Symposium on Computer Ar-
chitecture (ISCA), ISCA ’18. IEEE Press, 2018.
doi:10.1109/ISCA.2018.00069.

32 V. Sze, Y. Chen, T. Yang, and J. S. Emer. Efficient
Processing of Deep Neural Networks: A Tutorial
and Survey. Proceedings of the IEEE (Volume: 105,
Issue: 12), 105(12), November 2017.

33 Christian Szegedy, W. Liu, Y. Jia, Pierre Ser-
manet, Scott E. Reed, Dragomir Anguelov, D. Er-
han, V. Vanhoucke, and Andrew Rabinovich. Go-
ing deeper with convolutions. 2015 IEEE Confer-
ence on Computer Vision and Pattern Recognition
(CVPR), pages 1–9, 2015.

34 Mingxing Tan and Quoc Le. EfficientNet: Rethink-
ing model scaling for convolutional neural networks.
In Proceedings of the 36th International Conference
on Machine Learning, 2019.

LITES

https://doi.org/10.1109/ICNN.1993.298572
https://doi.org/10.1109/ICNN.1993.298572
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/ICCV.2017.155
https://doi.org/10.1109/CVPR.2019.00447
https://doi.org/10.1007/978-3-030-01234-2_48
https://doi.org/10.1109/WACV.2018.00083
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://doi.org/10.1145/3065386
https://openreview.net/forum?id=_0kaDkv3dVf
https://openreview.net/forum?id=_0kaDkv3dVf
https://doi.org/10.1109/ACPR.2015.7486599
https://doi.org/10.1109/ACPR.2015.7486599
https://doi.org/10.1109/ISPASS.2019.00042
https://doi.org/10.1109/TMI.2016.2538465
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1109/ISCA.2018.00069

03:30 HW-Flow: A Multi-Abstraction Level HW-CNN Codesign Pruning Methodology

35 F. Tu, S. Yin, P. Ouyang, S. Tang, L. Liu, and
S. Wei. Deep convolutional neural network ar-
chitecture with reconfigurable computation pat-
terns. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, 25(8):2220–2233, 2017.
doi:10.1109/TVLSI.2017.2688340.

36 Manoj Rohit Vemparala, Nael Fasfous, Alexander
Frickenstein, Sreetama Sarkar, Qi Zhao, Sabine
Kuhn, Lukas Frickenstein, Anmol Singh, Christian
Unger, Naveen Shankar Nagaraja, Christian Wress-
negger, and Walter Stechele. Adversarial robust
model compression using in-train pruning. 2021
IEEE/CVF Conference on Computer Vision and
Pattern Recognition Workshops (CVPRW), pages
66–75, 2021.

37 R. Venkatesan, Y. Shao, Miaorong Wang, Jason
Clemons, S. Dai, M. Fojtik, Ben Keller, Alicia
Klinefelter, N. Pinckney, Priyanka Raina, Y. Zhang,
B. Zimmer, W. Dally, J. Emer, Stephen W. Keckler,
and B. Khailany. Magnet: A modular accelerator
generator for neural networks. In 2019 IEEE/ACM
International Conference on Computer-Aided De-
sign (ICCAD), 2019. doi:10.1109/ICCAD45719.
2019.8942127.

38 Kuan Wang, Zhijian Liu, Yujun Lin, Ji Lin, and
Song Han. HAQ: Hardware-Aware Automated
Quantization With Mixed Precision. In IEEE/CVF
Conference on Computer Vision and Pattern Recog-
nition (CVPR), 2019.

39 Marco A Wiering. Multi-agent reinforcement learn-
ing for traffic light control. In Machine Learning:
Proceedings of the Seventeenth International Con-
ference (ICML’2000), pages 1151–1158, 2000.

40 Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yang-
han Wang, Fei Sun, Yiming Wu, Yuandong Tian,
Péter Vajda, Yangqing Jia, and Kurt Keutzer.
Fbnet: Hardware-aware efficient convnet design

via differentiable neural architecture search. 2019
IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 10726–10734,
2019.

41 T. Yang, Y. Chen, and V. Sze. Designing Energy-
Efficient Convolutional Neural Networks Using
Energy-Aware Pruning. In IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition
(CVPR), 2017. doi:10.1109/CVPR.2017.643.

42 Tien-Ju Yang, Andrew Howard, Bo Chen, Xiao
Zhang, Alec Go, Mark Sandler, and Hartwig Sze,
Vivienneand Adam. NetAdapt: Platform-Aware
Neural Network Adaptation for Mobile Applica-
tions. In The European Conference on Computer
Vision (ECCV). Springer International Publish-
ing, 2018. URL: https://dblp.org/rec/journals/
corr/abs-1804-03230.bib.

43 Xuan Yang, Mingyu Gao, Qiaoyi Liu, Jeff Setter,
Jing Pu, Ankita Nayak, Steven Bell, Kaidi Cao,
Heonjae Ha, Priyanka Raina, Christos Kozyrakis,
and Mark Horowitz. Interstellar: Using halide’s
scheduling language to analyze dnn accelerators. In
International Conference on Architectural Support
for Programming Languages and Operating Sys-
tems (ASPLOS), pages 369–383, New York, NY,
USA, 2020. Association for Computing Machinery.
doi:10.1145/3373376.3378514.

44 C. Zhang, Zhenman Fang, Peipei Zhou, Peichen
Pan, and Jason Cong. Caffeine: Towards uniformed
representation and acceleration for deep convolu-
tional neural networks. In IEEE/ACM Interna-
tional Conference on Computer-Aided Design (IC-
CAD), 2016. doi:10.1145/2966986.2967011.

45 Xingyi Zhou, Dequan Wang, and Philipp Krähen-
bühl. Objects as points. In arXiv preprint, 2019.
arXiv:1904.07850.

https://doi.org/10.1109/TVLSI.2017.2688340
https://doi.org/10.1109/ICCAD45719.2019.8942127
https://doi.org/10.1109/ICCAD45719.2019.8942127
https://doi.org/10.1109/CVPR.2017.643
https://dblp.org/rec/journals/corr/abs-1804-03230.bib
https://dblp.org/rec/journals/corr/abs-1804-03230.bib
https://doi.org/10.1145/3373376.3378514
https://doi.org/10.1145/2966986.2967011
http://arxiv.org/abs/1904.07850

	lites-v008-i001-frontmatter
	lites-v008-i001-a000-foreword
	1 Computer vision and embedded systems
	1.1 Control + Vision
	1.2 Efficient implementation of vision processing (incl. GPUs & FPGAs)
	1.3 Verification and monitoring
	1.4 Timing predictable vision processing
	1.5 Algorithms and data structures for efficient vision processing
	1.6 Other applications

	2 Papers in this special issue

	lites-v008-i001-a001-knoche
	1 Introduction
	2 Related Work
	2.1 Generic Face Recognition
	2.2 Image Resolutions
	2.3 Cross-Resolution Face Recognition

	3 Experimental Setup
	3.1 Baseline Network
	3.2 Testing Datasets
	3.3 Reduction of Image Resolution
	3.4 Accuracy in Face Verification

	4 Analysis of Image Resolution Susceptibility
	4.1 Resolution Reduction on several Datasets
	4.2 Face Verification Accuracy
	4.3 Feature Distances

	5 Training Methods
	5.1 Cross-Resolution Batch Training
	5.2 Siamese Network Cross-Resolution Training

	6 Experimental Results
	6.1 Two-Resolution Training Scenario
	6.2 Multi-Resolution Training Scenario
	6.3 Evaluation Protocols for Multiple Resolutions
	6.4 Comparison of the proposed Methods

	7 Conclusions and Future Work

	lites-v008-i001-a002-kruber
	1 Introduction
	2 Related work
	2.1 Macroscopic data
	2.2 Microscopic data
	2.3 Traffic data acquired with drones

	3 Drone image based vehicle state estimation
	3.1 Coordinate systems
	3.2 Data generation setup
	3.3 Pre-processing
	3.4 Object detection
	3.5 Post-processing steps
	3.5.1 PCF Mapping
	3.5.2 Relief displacement

	3.6 Tracking and state estimation
	3.7 Experiments
	3.8 Limitations and sources of error
	3.9 Extension with Kalman Proposals
	3.9.1 Runtime and hardware requirements

	4 Macroscopic statistics
	4.1 Data set description
	4.2 Variables of interest
	4.3 Fundamental diagrams
	4.4 Lane changes and load per lane

	5 Conclusions

	lites-v008-i001-a003-vemparala
	1 Introduction
	2 Background
	2.1 Convolutional Neural Networks
	2.2 Reinforcement Learning

	3 Related Work
	4 Hardware-Flow
	4.1 Problem Formulation
	4.2 Deep Deterministic Policy Gradient-based Agent
	4.3 HW-model Abstraction Levels
	4.4 HW-model Optimizer
	4.5 Search Space for HW-model Optimizer

	5 HW-model Design Space Exploration
	5.1 HW Estimations at Various Abstraction Levels
	5.2 Mid-Level Estimations and Design Choices
	5.3 Fine-Level Estimations and Dataflows
	5.4 Search Space Exploration for Fine-level Estimations
	5.5 Validation with Eyeriss and Timeloop

	6 Experimental Results
	6.1 Pruning on Different Abstraction Levels
	6.2 Pruning on Different Rewards
	6.3 Pruning on Different Mappings
	6.4 Layer-wise Analysis of ResNet18
	6.5 Pruning DeepLabv3 for Semantic Segmentation
	6.6 Results Summary and Discussion

	7 Conclusion

