
Volume 8 | Issue 2 | December 2022
Special Issue on Distributed Hybrid Systems

Vol. 8, Issue 2 ISSN 2199-2002 https://www.dagstuhl.de/lites

https://www.dagstuhl.de/lites

ISSN 2199-2002

Published online and open access by
the European Design and Automation Association
(EDAA) / EMbedded Systems Special Interest Group
(EMSIG) and Schloss Dagstuhl – Leibniz-Zentrum
für Informatik GmbH, Dagstuhl Publishing, Saar-
brücken/Wadern, Germany.
Online available at
https://www.dagstuhl.de/dagpub/2199-2002.

Publication date
December 2022

Bibliographic information published by the Deutsche
Nationalbibliothek
The Deutsche Nationalbibliothek lists this publica-
tion in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at
https://dnb.d-nb.de.

License
This work is licensed under a Creative Commons
Attribution 4.0 International license (CC BY 4.0):
http://creativecommons.org/licenses/by/4.0

In brief, this license authorizes each
and everybody to share (to copy,

distribute and transmit) the work under the follow-
ing conditions, without impairing or restricting the
authors’ moral rights:

Attribution: The work must be attributed to its
authors.

The copyright is retained by the corresponding au-
thors.

Digital Object Identifier
10.4230/LITES-v008-i002

Aims and Scope
LITES aims at the publication of high-quality schol-
arly articles, ensuring efficient submission, reviewing,
and publishing procedures. All articles are published
open access, i.e., accessible online without any costs.
The rights are retained by the author(s).

LITES publishes original articles on all aspects of em-
bedded computer systems, in particular: the design,
the implementation, the verification, and the testing
of embedded hardware and software systems; the
theoretical foundations; single-core, multi-processor,
and networked architectures and their energy con-
sumption and predictability properties; reliability
and fault tolerance; security properties; and on
applications in the avionics, the automotive, the
telecommunication, the medical, and the production
domains.

Editorial Board
Alan Burns (Editor-in-Chief)
Bashir Al Hashimi
Karl-Erik Arzen
Neil Audsley
Sanjoy Baruah
Samarjit Chakraborty
Marco di Natale
Martin Fränzle
Steve Goddard
Gernot Heiser
Axel Jantsch
Sang Lyul Min
Lothar Thiele
Virginie Wiels

Editorial Office
Michael Wagner (Managing Editor)
Michael Didas (Managing Editor)
Jutka Gasiorowski (Editorial Assistance)
Dagmar Glaser (Editorial Assistance)
Thomas Schillo (Technical Assistance)

Contact
Schloss Dagstuhl – Leibniz-Zentrum für Informatik
LITES, Editorial Office
Oktavie-Allee, 66687 Wadern, Germany
lites@dagstuhl.de
http://www.dagstuhl.de/lites

http://www.dagstuhl.de/lites
https://www.dagstuhl.de/dagpub/2199-2002
https://dnb.d-nb.de
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.4230/LITES-v008-i002
http://www.dagstuhl.de/lites

Contents

Introduction to the Special Issue on Distributed Hybrid Systems
Alessandro Abate, Uli Fahrenberg, and Martin Fränzle . 0:1–0:3

Papers

Safety Verification of Networked Control Systems by Complex Zonotopes
Arvind Adimoolam and Thao Dang . 1:1–1:22

Swarms of Mobile Robots: Towards Versatility with Safety
Pierre Courtieu, Lionel Rieg, Sébastien Tixeuil, and Xavier Urbain 2:1–2:36

Higher-Dimensional Timed and Hybrid Automata
Uli Fahrenberg . 3:1–3:16

A Hybrid Programming Language for Formal Modeling and Verification of
Hybrid Systems

Eduard Kamburjan, Stefan Mitsch, and Reiner Hähnle . 4:1–4:34

Bayesian Hybrid Automata: A Formal Model of Justified Belief in Interacting
Hybrid Systems Subject to Imprecise Observation

Paul Kröger and Martin Fränzle . 5:1–5:27

From Dissipativity Theory to Compositional Construction of Control Barrier
Certificates

Ameneh Nejati and Majid Zamani . 6:1–6:17

Real-Time Verification for Distributed Cyber-Physical Systems
Hoang-Dung Tran, Luan Viet Nguyen, Patrick Musau, Weiming Xiang, and
Taylor T. Johnson . 7:1–7:19

Leibniz Transactions on Embedded Systems
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lites
https://www.dagstuhl.de/en/about-dagstuhl/

Introduction to the Special Issue on Distributed
Hybrid Systems
Alessandro Abate #

University of Oxford, UK

Uli Fahrenberg #

EPITA Research Laboratory (LRE), Paris, France

Martin Fränzle #

Carl von Ossietzky Universität Oldenburg, Germany

This special issue contains seven papers within the
broad subject of Distributed Hybrid Systems, that
is, systems combining hybrid discrete-continuous
state spaces with elements of concurrency and lo-
gical or spatial distribution. It follows up on sev-
eral workshops on the same theme which were held
between 2017 and 2019 and organized by the edit-
ors of this volume.

The first of these workshops was held in Aal-
borg, Denmark, in August 2017 and associated
with the MFCS conference. It featured invited
talks by Alessandro Abate, Martin Fränzle, Kim
G. Larsen, Martin Raussen, and Rafael Wis-
niewski. The second workshop was held in Pal-
aiseau, France, in July 2018, with invited talks
by Luc Jaulin, Thao Dang, Lisbeth Fajstrup, Em-
manuel Ledinot, and André Platzer. The third
workshop was held in Amsterdam, The Nether-
lands, in August 2019, associated with the CON-

CUR conference. It featured a special theme on
distributed robotics and had invited talks by Majid
Zamani, Hervé de Forges, and Xavier Urbain.

The vision and purpose of the DHS workshops
was to connect researchers working in real-time
systems, hybrid systems, control theory, formal
verification, distributed computing, and concur-
rency theory, in order to advance the subject of dis-
tributed hybrid systems. Such systems are abund-
ant and often safety-critical, but ensuring their cor-
rect functioning can in general be challenging. The
investigation of their dynamics by analysis tools
from the aforementioned domains remains frag-
mentary, providing the rationale behind the work-
shops: it was conceived that convergence and inter-
action of theories, methods, and tools from these
different areas was needed in order to advance the
subject.

2012 ACM Subject Classification Computing methodologies → Model verification and validation; Com-
puter systems organization → Embedded and cyber-physical systems; Mathematics of computing →
Stochastic processes; Theory of computation → Concurrency; Theory of computation → Distributed
computing models; Theory of computation → Logic and verification; Theory of computation → Pro-
gram reasoning; Theory of computation → Self-organization; Theory of computation → Timed and
hybrid models
Keywords and Phrases Distributed hybrid systems
Digital Object Identifier 10.4230/LITES.8.2.0
Acknowledgements The editors acknowledge the Chaire ISC : Engineering Complex Systems and École
polytechnique, in particular Éric Goubault, for financial support on some of the workshops, out of which
this special issue was born, as well as for financing the special issue itself. We also wish to thank the
editorial manager Michael Wagner for his excellent work, the authors of the papers in this issue, and
the speakers and participants of the three workshops on distributed hybrid systems.
Published 2022-12-07
Editor Alessandro Abate, Uli Fahrenberg, and Martin Fränzle
Special Issue Special Issue on Distributed Hybrid Systems

© Alessandro Abate, Uli Fahrenberg, and Martin Fränzle;
licensed under Creative Commons Attribution 4.0 International (CC BY 4.0)

Leibniz Transactions on Embedded Systems, Vol. 8, Issue 2, Article No. 0, pp. 00:1–00:3
Leibniz Transactions on Embedded Systems

L I T E S Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:aabate@cs.ox.ac.uk
https://orcid.org/0000-0002-5627-9093
mailto:uli@lrde.epita.fr
https://orcid.org/0000-0001-9094-7625
mailto:martin.fraenzle@uni-oldenburg.de
https://orcid.org/0000-0002-9138-8340
https://doi.org/10.4230/LITES.8.2.0
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lites
https://www.dagstuhl.de

00:2 Introduction to the Special Issue on Distributed Hybrid Systems

1 Papers in this special issue

The first paper in this issue, by Arvind Adimoolam and Thao Dang, lies in the intersection of
control theory, hybrid systems, and distributed systems. It is based on the PhD thesis of the
first author and on several conference papers of both authors, and builds upon an invited talk
by the second author at the DHS 2018 workshop. The work showcases the versatility of complex
zonotopes for the analysis of networked control systems. Such systems are subject to network
delays, packet dropouts, inaccurate sensing, and quantization errors, all of which have to be taken
into account when analysing them. The authors show a result about the existence of complex
zonotopic invariants and extend existing algorithms for stability verification of networked control
systems.

The second paper, by Pierre Courtieu, Lionel Rieg, Sébastien Tixeuil and Xavier Urbain,
concerns itself with distributed robotics, an area which itself is in the intersection of control theory
and distributed systems. It builds upon an invited talk by the fourth author at the DHS 2019
workshop and presents the Pactole framework for formal modeling and analysis of protocols for
mobile robotic swarms. Built on the Coq proof assistant, Pactole provides a uniform modeling
language for protocol development which takes into account the many variations between models
for distributed robotics and permits to devise certified proofs of possibility and impossibility
results.

Article three in this issue, authored by Uli Fahrenberg, lies in the intersection of real-time
systems and concurrency theory and introduces a new formalism of higher-dimensional timed
automata. The interest is in modeling systems which exhibit both real-time behavior and con-
currency, which is difficult or impossible in other existing frameworks. The author shows that
the standard zone-based methods carry over from timed automata to higher-dimensional timed
automata and also extends the model to higher-dimensional hybrid automata.

The fourth paper, by Eduard Kamburjan, Stefan Mitsch and Reiner Hähnle, introduces hy-
brid active objects for the modeling and analysis of hybrid systems, in order to address the
challenges at the intersection of hybrid systems and concurrency. Building upon a talk at the
DHS 2019 workshop, the proposed high-level programming-based approach extends the active-
objects language ABS with features for modeling hybrid systems. The authors also extend the
formal semantics of ABS and its runtime environment and implement a formal verification tool
for hybrid ABS.

Article five in this issue, due to Paul Kröger and Martin Fränzle, builds upon a talk at the DHS
2018 workshop and identifies shortcomings of existing formal models for hybrid systems when it
comes to describing the interactive behavior of multiple hybrid-state agents. It demonstrates
rigorously that even the most expressive formal models of hybrid-state dynamics cannot precisely
cover the emergent joint behavior of rationally acting agents and that existing models are thus
bound to either provide significantly pessimistic or significantly optimistic verdicts about the
overall system dynamics. Aligned with the overarching goal of developing pertinent theories
for the behavioral analysis of distributed hybrid systems, the article proposes a novel model
of Bayesian hybrid automata that considerably extends stochastic hybrid automata in order to
overcome this deficiency.

The sixth paper, by Ameneh Nejati and Majid Zamani, concerns itself with networks of
stochastic hybrid systems and the construction of control barrier certificates for these. The issue
at stake is compositionality, thus, the synthesis of state-feedback controllers for interconnected
systems based on certificates computed for subsystems. Building upon an invited talk by the
second author at the DHS 2019 workshop, the paper proposes a dissipativity approach which
takes into account the structure of the interconnection topology. The authors demonstrate the
obtained results on comprehensive case studies.

A. Abate, U. Fahrenberg, and M. Fränzle 00:3

The final article is titled “Real-Time Verification for Distributed Cyber-Physical Systems” and
builds upon a talk at the DHS 2019 workshop. It proposes a real-time decentralised reachability
approach for safety verification of a distributed multi-agent CPS, with the underlying assumption
that all agents are time-synchronised with a low degree of error. Each agent periodically computes
its local reachable set and exchanges this reachable set with the other agents with the goal of
verifying the system safety, with local safety verification tasks based on their local clocks by
analysing the messages it receives.

2 Conclusion

The fourth workshop on distributed hybrid systems was to be held in Vienna in 2020, associated
with the CONCUR conference, but fell victim to the Covid pandemic. Whether the DHS work-
shop series will be revived in the future, and under which format, is uncertain, so this special
journal issue may well be the conclusion of the DHS series.

One may thus rightfully pose the question as to the achievements of the workshops and
this special issue, seen as a whole. The first purpose of the DHS workshops was to connect
researchers working in real-time systems, hybrid systems, control theory, distributed computing,
and concurrency theory, and as this special issue bears witness, that purpose has been achieved.

Another question is whether, through convergence and interaction of methods and tools from
these different areas, the workshops have contributed to advance the subject of distributed hybrid
systems itself. Many of the papers in this special issue concern themselves with research in the
intersection of several of the above-mentioned areas, but it is of course difficult to assess how
much the workshops themselves have contributed to these works.

Something that still has to emerge, and perhaps would be too much to expect from just three
workshop editions, are new overarching theories which combine the subjects underlying distrib-
uted hybrid systems in new ways. The quest for such unifying theories becomes pronounced,
given that distributed hybrid systems are at the heart of the recent push towards so-called smart
environments, be it “smart cities” as denoting anticipated forms of interconnected intelligent
urban structures, or “smart grids”, “smart transportation”, and “smart health” advancing en-
ergy supplies, transportation systems, and medical technology, or “Industry 4.0” revolutionising
manufacturing technology. It thus is to be expected that such theories will materialize and will
extend and generalize beyond specific domains. The influence of the DHS workshops, which have
outlined manifold elements of an overarching theory as witnessed by the articles included in this
volume, on the final theories-to-be cannot yet be assessed with full scrutiny.

LITES

Safety Verification of Networked Control Systems by
Complex Zonotopes
Arvind Adimoolam #

Indian Institute of Technology Kanpur, Rajeev Motwani Building, Kalyanpur, Kanpur, India

Thao Dang #

VERIMAG, CNRS/University Grenoble Alpes, Bâtiment IMAG, 700 Avenue Centrale, Grenoble, France

Abstract
Networked control systems (NCS) are widely used
in real world applications because of their advant-
ages, such as remote operability and reduced in-
stallation costs. However, they are prone to vari-
ous inaccuracies in execution like delays, packet
dropouts, inaccurate sensing and quantization er-
rors. To ensure safety of NCS, their models have
to be verified under the consideration of aforemen-
tioned uncertainties. In this paper, we tackle the
problem of verifying safety of models of NCS un-
der uncertain sampling time, inaccurate output
measurement or estimation, and unknown disturb-
ance input. Unbounded-time safety verification
requires approximation of reachable sets by invari-
ants, whose computation involves set operations.
For uncertain linear dynamics, two important set op-
erations for invariant computation are linear trans-
formation and Minkowski sum operations. Zono-

topes have the advantage that linear transformation
and Minkowski sum operations can be efficiently
approximated. However, they can not encode direc-
tions of convergence of trajectories along complex
eigenvectors, which is closely related to encoding
invariants. Therefore, we extend zonotopes to the
complex valued domain by a representation called
complex zonotope, which can capture contraction
along complex eigenvectors for determining invari-
ants. We prove a related mathematical result that
in case of accurate feedback sampling, a complex
zonotope will represent an invariant for a stable
NCS. In addition, we propose an algorithm to verify
the general case based on complex zonotopes, when
there is uncertainty in sampling time and in input.
We demonstrate the efficiency of our algorithm on
benchmark examples and compare it with a state-
of-the-art verification tool.

2012 ACM Subject Classification Computer systems organization → Reliability
Keywords and Phrases Safety Verification; Networked Control System; Reachability Analysis; Invariant;
Complex Zonotope
Digital Object Identifier 10.4230/LITES.8.2.1
Received 2020-08-29 Accepted 2021-10-15 Published 2022-12-07
Editor Alessandro Abate, Uli Fahrenberg, and Martin Fränzle
Special Issue Special Issue on Distributed Hybrid Systems

1 Introduction

The computerized control of spatially distributed components through communication channels
is called networked control. The emergence of fast and reliable communication networks has
enabled efficient networked control of many applications in aerospace, automation, manufacturing
and robotics [17,26,34,37,38]. Advantages of networked control systems (NCS) include reduced
installation cost due to absence of wiring and remote operability. However, they are prone to
inaccuracies in execution such as delays, packet dropouts and errors in sensing and quantization.
To mitigate the risk of system failure, we need to verify the safety requirements of NCS in the
presence of such inaccuracies. In this paper, we tackle the problem of verifying unbounded time
safety of linear networked control systems with a uncertain sampling period for feedback input,
inaccurate sensors for output estimation and disturbance input.

Safety verification involves proving that the set of reachable states of the system are contained
within a specified safe set. However, exactly computing the set of reachable states of models
containing linear differential equations with discontinuous switching between states or vector fields,

© Arvind Adimoolam and Thao Dang;
licensed under Creative Commons Attribution 4.0 International (CC BY 4.0)

Leibniz Transactions on Embedded Systems, Vol. 8, Issue 2, Article No. 1, pp. 01:1–01:22
Leibniz Transactions on Embedded Systems

L I T E S Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:santosh@cse.iitk.ac.in
https://orcid.org/0000-0001-5991-2950
mailto:thao.dang@univ-grenoble-alpes.fr
https://doi.org/10.4230/LITES.8.2.1
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lites
https://www.dagstuhl.de

01:2 Safety Verification of Networked Control Systems by Complex Zonotopes

called affine hybrid systems, is computationally intractable [13]. Instead, a common approach is
to overapproximate this set of reachable states to prove safety. There has been a lot of research
on overapproximating the set of reachable states of affine hybrid systems in both bounded and
unbounded time [19,32,35]. But networked control systems have time triggered switching which
can be handled accurately by these methods. The reason is explained below.

Challenge of safety verification of NCS

In an NCS, there is time triggered switching of states with uncertainty in the switching time
(sampling time). The approach followed by most techniques [19, 32, 35] to overapproximate
reachable sets of hybrid systems involves computing intersection between reachable sets and
guard conditions by some set representation like polytopes [35], zonotopes [21], ellipsoids [10],
or polynomial sub-level sets like barrier certificates [32]. In the case of NCS, the guard is on
the time of switching, i.e., the clock variable. For very simple hybrid systems having constant
vector fields, there is linear relationship between clock variables and other state variables. Then,
we can expect to reliably overapproximate the intersection of guard on the clock variable and
reachable states containing value of clock variable. But an NCS is more complex involving linear
differential equations with time triggered switching. There is an exponential relationship between
the clock variable and the reachable states in NCS. Such exponential relationship can not be
captured using the well known set representations mentioned above. Instead, a more effective
way is proposed in [8, 16,18,25,31] to handle time triggered switching by dividing the switching
time into very small sub-intervals and using matrix exponentials to map the reachable states
in different sub-intervals. The above methods for stability verification of NCS do not consider
additive input in the dynamics. However, our dynamics is more general where we consider consider
additive disturbance input. The above methods [8,16,18,25,31] use ellipsoids and H-polytopes
which do not efficiently handle additive input in high dimensions. Ellipsoids provide poor accuracy
for approximating Minkowski sum with input sets, which is required in reachability analysis.
Similarly, the complexity of H-polytopes exactly representing Minkowski sums blows up at least
exponentially in the dimension of state space [28]. Therefore, we need better set representations
to accurately overapproximate the reachable sets at various switching times.

Solution: Generalizing zonotope to complex zonotope

In this context, an effective set representation is a zonotope [20], described as a linear combination
of real vectors called generators, whose combining coefficients are bounded in absolute value.
Its advantage is that linear transformation and the Minkowski sum can be efficiently computed.
However, we are required to overapproximate the unbounded time reachable set of NCS that
typically involves computing invariants. Computing invariants by a set representation requires
encoding the directions of convergence of reachable sets towards equilibrium. In NCS, some of the
directions for convergence can be along the eigenvectors of the dynamics, which can be complex
valued vectors (Theorem 7). But (simple) zonotopes, which are confined to the real valued domain,
can fail to capture such complex valued directions of convergence of trajectories. Therefore,
our goal is to extend them to the complex number domain to obtain a new set representation
called complex zonotope. Complex zonotopes retain the merit of usual zonotopes that linear
transformation and the Minkowski sum operations can be computed efficiently. Additionally, they
can capture the contraction of reachable sets based on the complex eigenstructure, which is not
possible using a real valued zonotope. We provide mathematical evidence (Theorem 7) to support
the latter claim. Furthermore, their real projections are geometrically more expressive than usual
zonotopes and can represent some non-polytopic sets.

A. Adimoolam and T. Dang 01:3

Using complex zonotopes, we propose an algorithm to verify linear safety constraints of a
linear NCS with uncertain sampling period, inaccurate output estimation and disturbance input.
The algorithm is a semi-decision procedure which can either terminate when the system is verified
to be safe or fail to terminate. In the latter case, the user can set a threshold number of iterations
for termination to get a bounded time result. Using the algorithm, we successfully applied our
algorithm to verify benchmark examples of NCS [23,29] with high dimensions (≥ 12 dimensions
(including state and controller input variables), while the simple zonotope based version of our
algorithm and a state-of-the-art verification tool [19] both failed to verify them.

In summary, we make the following contributions in this paper.
1. We introduce the complex zonotope set representation, a geometrically more expressive

representation than zonotope, to handle invariant computation in the presence of additive
input and time triggered switching.

2. We propose a theoretical result (Theorem 7) about the existence of complex zonotopic invariants
based on eigenvectors of the NCS dynamics.

3. We extend the previous algorithms for stability verification of NCS [8,16,18,25,31] without
additive input to safety verification in the presence of additive input. We use complex zonotopes
containing eigenvectors for computing invariants of NCS more effectively when there is additive
input.

4. As a proof-of-concept, we compare the performance of our complex zonotope with a real
zonotope containing concatenation of real and imaginary parts of the complex template. We
compare the performance on high dimensional (>9 state space) benchmarks examples in
literature. We show that while our complex zonotope is successful in verification, the real
zonotope either fails to compute an invariant or computes one with very large bounds above
the safety threshold. We also compare with another state-of-the-art tool [19], which also failed
to verify the benchmarks.

This paper is an extended version of part of our work presented in the conferences [1–4] and the
PhD thesis [5]. The extensions and modifications made in this paper are explained in Section 2.

Organization. In Section 2, we review previous research related to our work and draw some
comparison. In Section 3, we formalize NCS with uncertainty in sampling time, inaccurate output
estimation and unknown open loop input. We explain the relation between safety verification
and invariant computation at sampling times for an NCS. In Section 4, we introduce the complex
zonotope representation as a generalization of usual zonotopes to complex valued domain. We
describe a result that shows how a complex zonotope can specify invariants based on eigenstructure.
We discuss operations on complex zonotopes that are later used to verify safety properties. In
Section 5, we describe the procedure for verification using complex zonotopes. The experiments
on some benchmark examples and results are discussed in Section 6. We begin by describing in
the following the mathematical notation used in this paper.

1.1 Notation
The set of real numbers is represented by R, integers by Z, and their positive subsets by R≥0 and
Z≥0, respectively. The set of complex numbers is C. Given a subset S of real or complex numbers
we denote the set of n-dimensional vectors from S as Sn and n ×m matrices from S as Sn×m.
The ith component of a vector x is xi while the element of the ith row and the jth column of a
matrix X is Xij . The numbers of rows of matrix X and size of vector x are rows (X) and rows (x),
respectively. The number of columns of X is cols (X). Given any two real vectors x, y such
that rows (x) = rows (y), we say x ≤ y, if ∀i ∈ {1, . . . , rows (x)}, xi ≤ yi. The diagonal matrix

LITES

01:4 Safety Verification of Networked Control Systems by Complex Zonotopes

containing a vector x along its diagonal is denoted by D (x). The identity matrix of size n× n is
denoted by In and a vector of ones of size n is denoted by [1]n×1. The real part of a complex
number x is Re (x) and the imaginary part is Im (x). The absolute value of a complex number x

is |x| =
√

Re (x)2 + Im (x)2. The infinity norm of a complex vector x is ∥x∥∞ = maxrows(x)
i=1 |xi|.

For a complex matrix X, |X| is the matrix containing the absolute values of the elements of X,
i.e., |X|ij = |Xij |. For any a, b ∈ R

⋃
{∞,−∞} we use the following notation for intervals.

(a, b) = {x ∈ R | a < x < b} , (a, b] = {x ∈ R | a < x ≤ b}
[a, b) = {x ∈ R | a ≤ x < b} , [a, b] = {x ∈ R | a ≤ x ≤ b}

Given two same dimensional subsets of complex vector space U ∈ Cn and V ∈ Cn, we define their
Minkowski sum as follows.

U ⊕ V = {u + v | u ∈ U, v ∈ V }

Given a complex matrix M ∈ Cn×n and a non-negative real matrix Υ ∈ Rn×n
≥0 , we define a

neighborhood of M whose difference with M is less than Υ, as follows.

M ▽Υ =
{

M + M̂
∣∣∣ M̂ ∈ Cn×n,

∣∣∣M̂ ∣∣∣ ≤ Υ
}

.

2 Related work

This paper is a journal extension of part our work part on safety and stability verification using
complex zonotope presented in the conferences [1–4] and a PhD thesis [5]. The present work adapts
the algorithm used for stability verification [2,4] and tackles the problem of safety verification of
NCS. In this context, we provide a sufficient condition for checking inclusion of a set of complex
zonotopes whose templates are in the neighborhood of a complex zonotope, inside another complex
zonotope. This generalizes inclusion checking between two complex zonotopes from the conference
papers [1, 5] to inclusion checking between a set of complex zonotopes and another complex
zonotope. Our conference paper on safety verification [1] proposes an approximation of intersection
of complex zonotope with linear constraints which can be coarse because complex zonotopes
are not closed under intersection with linear constraints. If using this method for an NCS with
uncertain sampling time, intersection of complex zonotopes with sampling time constraints can be
inaccurately approximated. Instead, in this paper we make use of matrix exponential maps to
compute an invariant.

A number of set representations have also been developed for verification of hybrid systems and
also numerical programs. Linear relationships between state variables can be represented using
polytopes [15] and their variants, such as template polyhedra [35], hypercubes [36], octagons [30],
zonotopes [20] and tropical polyhedra [9]. Non-linear relationships between state variables can
be encoded by ellipsoids [11, 27], polynomial templates [7, 33] and polynomial zonotopes [6, 12].
Similarly, a barrier certificate [32] can be used to separate the reachable set from an unsafe set
using a sub-level set of a suitable function, such as a polynomial.

The efficiency of a set representation in verification depends on the efficiency of computing
common operations used in reachability analysis. For a linear networked control system with
additive uncertainty, linear transformation and the Minkowski sum are the main operations
involved in the computation of the reachable sets. The zonotope representation [20] can be
very efficient for bounded time reachability of a linear networked control system because the
linear transformation and Minkowski sum over zonotopes can be computed efficiently. However,
approximating unbounded time reachable sets typically requires computing invariants. Efficiently

A. Adimoolam and T. Dang 01:5

computing invariants requires encoding directions for convergence of state trajectories, which
can depend on complex valued eigenvectors. But real valued zonotopes can not capture the
convergence along complex valued eigenvectors. Therefore, we generalize zonotopes to complex
zonotopes that can incorporate possibly complex eigenvectors among its generators in a way that
the reachable set approximation can converge along the complex eigenvectors.

This generalization of zonotope to complex zonotope can express some non-polytopic sets in
addition to polytopic zonotopes in the real domain, and hence more expressive. This generalization
is similar in spirit to quadratic zonotope [6] or more generally polynomial zonotope [12] since both
represent constraints on variables. However, while complex zonotope involves a linear combination
of some ellipsoids and line segments, polynomial zonotope involves a non-linear combination of only
line segments. Therefore, both represent very different classes of non-polyhedral sets. Moreover,
we show in this paper that an infinite parametrized family of invariant complex zonotopes can
be represented efficiently for any stable linear system using eigenvectors. However, there is no
known guarantee of existence of invariant polynomial zonotopes, except trivially the equilibrium,
for stable linear systems.

We remark that not many set representations can handle additive disturbance efficiently. Ellips-
oids are not closed under the Minkowski sum [10], which can result in reduction of approximation
accuracy in the presence of additive disturbance. The work of Allamigeon et. al [10] proposed
an over-approximation of the Minkowski sum of ellipsoids based on the Löwner order, still the
exact Minkowski sum can not be represented by an ellipsoid. Although polytopes are closed
under Minkowski sum, there can be exponential blowup of complexity of the resulting half-space
representation [28]. In contrast, zonotope and its extension to complex zonotope can exactly
represent the Minkowski sum and its computation is also very efficient.

We draw inspirations from the algorithms for stability verification of sampled data systems
which compute invariants [8, 16, 18, 25, 31] either as sub-level sets of Lyapunov functions or
polytopes. In our work, we extend the use invariants to verify safety in addition to stability.
Furthermore, our complex zonotope representation can efficiently handle additive disturbance
due to efficient computation of the Minskowski sum. This is an advantage over sub-level sets of
Lyapunov functions where the Minkowski sum can not be represented accurately, and also over
polytopes whose representation is of exponential complexity [28].

3 Networked control systems

In a networked control system (NCS), a controller input is exchanged over a network between
different components as information packets. The controller input is sampled at discrete time
instants, while it remains constant between successive sampling times. But the sensors which
estimate the output may be inaccurate and the sampling period can be uncertain, possibly due to
packet dropouts. In this paper, we consider systems with linear dynamics, linear feedback input
from the controller, uncertainty in sampling period and inaccurate output estimation modeled by
additive error and additive disturbance input. This system can also be categorized as a hybrid
system because of periodic reset of feedback input and constraints on its sampling period.

The system is modeled as follows. The state of the entire system at time t ∈ [0,∞) is xt ∈ Rn,
the feedback input exchanged between components is ut ∈ Rm, disturbance input is vt ∈ V ⊆ Rm,
output is yt ∈ Rp, additive error estimation is wt ∈W ⊆ Rp, τmin is a lower bound on feedback
sampling period, τmax is an upper bound on sampling time, the set of initial states is Ω and
A ∈ Rn×n, B ∈ Rm×n, C ∈ Rp×n, D ∈ Rp×m, F ∈ Rm×p are real matrices related to the system
dynamics described below.

LITES

01:6 Safety Verification of Networked Control Systems by Complex Zonotopes

∃ (tk)∞
k=0 , ∀k ∈ Z≥0tk ∈ R≥0

∀t /∈
∞⋃

k=0
{tk} ,

∂xt

∂t
= Axt + But,

∂ut

∂t
= 0 (1)

∀k ∈ Z≥0, ytk
= Cxtk

+ Dutk
+ wtk

(2)
utk

= Fytk
+ vtk

(3)
(tk+1 − tk) ∈ [τmin, τmax], t0 = 0, x0 ∈ Ω (4)

We denote the combined vector of the state of the plant and controller input at any time t as
zt =

[
xT

t , uT
t

]T . We call a sequence of combined states at sampling times (ztk
)∞
k=0 as a sampling

time trajectory which, by simple manipulation of the above equations, can be shown to be
equivalently governed by the following dynamics.

ztk+1 = R(tk+1−tk)ztk
+ J1vtk+1 + J2wtk+1 where

∀τ ∈ [τmin, τmax], Rτ = Ar exp (Acτ) ,

Ar =
[
In 0
FC FD

]
, Ac =

[
A B

0 0

]
, J1 =

[
0
Im

]
, J2 =

[
0
F

]
(5)

▶ Example 1 (Damped harmonic oscillator). We consider a damped harmonic oscillator where the
feedback driving force is communicated over a network. The negative feedback driving force is
−x1 where x1 is the position of the oscillator. In this case, we we have the following matrices for
the dynamics.

A =
[
0 1
0 −0.5

]
B =

[
0
1

]
C =

[
1 0

]
D = 0 F = −1

Then the equivalent matrices for the dynamics of combined states, i.e., Ac, Ar, J1, J2 and Rt for
any t ∈ [0,∞) are the following.

Ac =

0 1 0
0 −0.5 1
0 0 0

 Ar =

 1 0 0
0 1 0
−1 0 0

J1 =

0
0
1

 J2 =

 0
0
−1

 Rt =

 1 0 0
0 1 0
−1 0 0

 exp

0 t 0
0 −0.5t t

0 0 0

3.1 Safety of NCS
Given a set of safe states S ⊆ Rn+m, we say that an NCS is safe if the state of plant, controller
and feedback input of every trajectory at all times lies within S. In other words, the set Γ of all
reachable states defined as follows should lie within S.

Γ =
{[

xτ

uτ

] ∣∣∣∣ τ ∈ [0,∞), (xt, ut)t∈[0,∞) satisfies (1)-(4)
}

We shall show below that the safety of an NCS is guaranteed by the existence of an invariant
set at sampling times that obeys certain conditions. We will later use this result to develop an
algorithm for NCS safety verification.

A. Adimoolam and T. Dang 01:7

▶ Definition 2 (Sampling time invariant set). A set Ψ of states is called a sampling time invariant if

∀t ∈ [τmin, τmax], RtΨ⊕ J1V ⊕ J2W ⊆ Ψ.

▶ Theorem 3 (Relation between safety and sampling time invariant). For any S ⊆ Rn+m, we have
the reachable set Γ is included in S, if there exists a sampling time invariant Ψ such that the
following is true

∀τ ∈ [0, τmax], exp (Acτ) Ψ ⊆ S (6)
Ω ⊆ Ψ (7)

Proof. Let us consider that at some sampling time tk, a state ztk
∈ Ψ. Then at the next sampling

time tk+1, we get the following based on (5):

ztk+1 ∈ R(tk+1−tk)Ψ⊕ J1V ⊕ J2W

We have (tk+1 − tk) ∈ [τmin, τmax] according to the dynamics of NCS. Therefore, according to the
Definition 2 of sampling time invariant, we get ztk+1 ∈ Ψ. This means that any state originating
inside Ψ will remain inside Ψ at every sampling time. Since the initial set is contained in Ψ, i.e.,
Ω ⊆ Ψ, we get that for all possible trajectories of the system, the state remains within Ψ at the
sampling time. Now, we have to prove that between any two sampling times, the state remains
within the safe set.

Let t = tk + τ be any time point where tk is the latest sampling time before t, that is,
τ ∈ [0, τmax]. Then the combined state reached at tk + τ is given by

zt = exp (Acτ) ztk
.

As we have shown that ztk
∈ Ψ, we get zt ∈ exp (Acτ) Ψ. It follows from (6), we get zt ∈ S, which

proves the theorem. ◀

According to the above theorem, the safety of NCS can be verified by finding a sampling time
invariant satisfying (6). The eigenstructure of the dynamics is closely related to sampling time
invariants, which will be explained later in Theorem 7. Therefore, we introduce complex zonotope
as a set representation in the next section, which enables us to use eigenvectors of the dynamics
to find invariants. Complex zonotope also has other advantages, such as efficient computation of
linear transformation and the Minkowski sum.

4 Complex zonotope

A simple zonotope is a set of points which are linear combinations of real vectors such that the
combination coefficients are bounded in absolute values. Under this representation, the linear
transformation and Minkowski sum can be exactly and quickly computed. This is useful for
efficient bounded time reachability of a linear system as discussed in Girard et al. [20]. The
mathematical definition of a simple zonotope or a real zonotope is as follows:

▶ Definition 4 (Simple/Real zonotope). Let P be a real valued matrix and c ∈ Rrows(P) be a real
vector. The following is a real zonotope centered at c.

Z (P, c) =
{

Pζ + c
∣∣∣ ζ ∈ Rcols(P), ∀i ∈ {1, . . . , cols (P)} |ζi| ≤ 1

}

LITES

01:8 Safety Verification of Networked Control Systems by Complex Zonotopes

We have discussed in the previous section that unbounded time safety verification of NCS is
related to computing sampling time invariants. For a stable NCS with real eigenvectors, a set
contracts along its eigenvectors. By incorporating such eigenvectors among the generators of a
zonotope, we can find sampling time invariants. However, when the eigenvectors are complex
valued, real zonotopes may not be able to represent the directions for convergence among its
generators. Therefore, we extend real zonotopes to the complex number domain to represent
complex valued eigenvectors among their generators to find positive invariants. We show in a later
lemma that incorporating complex eigenvectors allows representing invariants for a stable linear
system with possibly complex eigenvalues.

▶ Definition 5 (Complex zonotope). Let P ∈ Crows(P)×cols(P) be a complex matrix, c ∈ Rrows(P) be
a real vector and s ∈ Rcols(P)

≥0 be a non-negative real vector. The following is a complex zonotope
centered at c with template P and scale vector s.

Z (P, c, s) =
{

Pζ + c
∣∣∣ ζ ∈ Ccols(P), |ζ| ≤ s

}
While real zonotopes are a subclass of polytopes, real projections of complex zonotopes are more
general and include non-polytopic sets in addition to polytopic zonotopes. Geometrically speaking,
real projections of complex zonotopes are the Minkowski sum of some embedded ellipses and line
segments.

▶ Example 6. Let us consider a complex zonotope Z (P, c, s) where

P =
[
1 + 2ι 1 2 + ι

1− 2ι 1 2− ι

]
, c =

[
0
0

]
, s =

[
1
1

]
.

The real projection generated of Z
([

1 + 2ι

1− 2ι

]
,

[
0
0

]
, 1

)
is the ellipse{

(x, y) ∈ R2
∣∣∣ (x + y)2 + (x−y)2

4 ≤ 4
}

, real projection of Z
([

2 + ι

2− ι

]
,

[
0
0

]
, 1

)
is the ellipse{

(x, y) ∈ R2
∣∣∣ (x− y)2 + (x+y)2

4 ≤ 4
}

and the real projection of Z
([

1
1

]
,

[
0
0

]
, 1

)
is the line

segment
{

(x, y) ∈ R2 | −2 ≤ x + y ≤ 2
}

. So, the non-polytopic real projection of Z (P, c, s) in
this example is the Minkowski sum of the two ellipses and one line segment as shown in Figure 1.

Figure 1 Complex zonotope as the Minkowski sum of two ellipsoids and a line segment

The following theorem states that when the sampling time period is certain, there is no additive
disturbance input and the sampling time transformation matrix Rτmin is stable, we can find
different sampling time invariant complex zonotopes by incorporating eigenvectors of the sampling
time dynamics in its template and arbitrarily varying the scale factors.

A. Adimoolam and T. Dang 01:9

▶ Theorem 7 (Invariance based on eigenstructure). Let us consider that τmin = τmax = t, V = {0}
and W = {0}. Let E ∈ C(n+m)×(n+m) contain the eigenvectors of Rt as its columns whose
corresponding complex eigenvalues are e ∈ C(n+m). If 0 < ∥e∥∞ ≤ 1, then for any scale vector
s ∈ Rn

≥0, the complex zonotope Z (E, 0, s) is a sampling time invariant.

Proof. Let x ∈ Z (E, 0, s). Based on the complex zonotope representation, there exists ζ ∈
Cn, |ζ| < s such that x = Eζ. It then follows that

Rtx = RtEζ = ED (e) ζ (8)

Let α = D (e) ζ. So Rtx = Eα where we derive the following bound on th magnitude of αi for
any i ∈ {1, . . . , n}.

|αi| = |eiζi| = |ei| |ζi|

and since ∥e∥∞ ≤ 1, we have
|αi| ≤ |ζi| ≤ si.

As |α| ≤ s, we get Rtx = Eα ∈ Z (E, 0, s). Since this is true for all x ∈ Z (E, 0, s), we can
establish that RtZ (E, 0, s) ⊆ Z (E, 0, s). ◀

▶ Remark (Advantage of complex zonotope over real zonotope). The above theorem is true for
complex zonotopes but not for real zonotopes because real zonotopes can not have complex valued
vectors as generators. Let us consider that the dynamics with constant sampling time has complex
eigenstructure where the rank of eigenvectors is the total dimension n + m. The above theorem
means that using complex zonotopes we can find a sampling time invariant set containing any
initial set. However, using real zonotopes, we may not be able to find such a sampling time
invariant set because real zonotopes capture contraction along complex eigenvectors. This is one
main advantage of using complex zonotopes apart from being geometrically more expressive than
real zonotopes. The below example illustrates how a complex zonotope sampling time invariant
can be found by using the complex eigenvectors as generators. But a real zonotope invariant
containing an initial set can not be found by using imaginary and real parts of eigenvectors and
the coordinate directions as generators.

▶ Example 8. Let us consider the damped harmonic oscillator NCS in Example 1. Let us
consider an initial set Ω = [−0.85, 0.85] × [0, 0]. Let us consider a complex matrix P = −0.5774 −0.5774 −0.0051

0.1298− 0.5626ι 0.1298 + 0.5626ι 0.1020
0.5774 0.5774 −0.9948

. For s =

29
0.8
0.8

, we get that Z
(

P,

[
0
0

]
, s

)
is a sampling time invariant of the NCS such that Ω ⊆ Z (P, c, s). Now let us take the real matrix
G =

[
Re (P) Im (P) I3

]
, which contains the real and imaginary parts of the complex matrix P

as real generators and also the identity matrix. We used convex optimization (Algorithm 1) to
search for a scaling factor h and center c such that the real zonotope Z (G, c, h) is a sampling
time invariant containing the initial set. But our search failed to find it. Similarly, we tested with
5 uniformly randomly generated real valued templates, but all those real templates also could
not be successful in finding an invariant. This illustrates that using complex zonotope containing
eigenvectors as generators can let us find invariants in examples where real zonotopes may fail.

The result in Theorem 7 is only true when there is no uncertainty in sampling period. To handle a
more general case where there is uncertainty in sampling period, we can incorporate eigenvectors
of multiple matrices Rt for different values of t ∈ [τmin, τmax]. Then optimization can be used to
find an appropriate scale factor that guarantees invariance, which we shall explain in Section 5.

LITES

01:10 Safety Verification of Networked Control Systems by Complex Zonotopes

As mentioned earlier, like real zonotopes, complex zonotopes are also closed under linear
transformation and the Minkowski sum and they can be computed efficiently. This property is
useful for efficiently representing sets of successor states of an NCS and is exploited in computing
the operations used in our proposed NCS safety verification algorithm, namely Algorithm 1.

▶ Lemma 9 (Linear transformation and the Minkowski sum). Let us consider complex zonotopes
Z (P, c, s) ⊆ Cn and Z (Q, e, r) ⊆ Cn and real matrices A, B ∈ Rn×n. Then the following is
true:

AZ (P, c, s)⊕BZ (Q, e, r) = Z
([

AP BQ
]

, Ac + Be,

[
s

r

])
. (9)

Proof. Let us consider x ∈ Z (P, c, s) and y ∈ Z (Q, e, r). Then there exist ζ, α ∈ Cn such that
|ζ| ≤ s, |α| ≤ r, x = Pζ + c and y = Qα + e. We derive the following:

Ax + By = APζ + Ac + BQα + Be[
AP BQ

] [
ζ

α

]
+ (Ac + Be) .

We have
∣∣∣∣[ζ

α

]∣∣∣∣ ≤ [
s

r

]
. Therefore, Ax + By ∈ Z

([
AP BQ

]
, Ac + Be,

[
s

r

])
. Since this is true

for all x ∈ Z (P, c, s) and y ∈ Z (Q, e, r), we obtain (9). ◀

In order to verify sampling time invariance of a complex zonotope given an interval of uncertainty,
we need to check inclusion of a set of complex zonotopes (obtained by applying a sequence of
transformations) inside the original complex zonotope, based on the Definition 2 of invariance. In
this regard, we define a set of complex zonotopes whose templates lie in the neighborhood of a
given template as follows. Let us consider a real matrix with positive entries Υ ∈ Rrows(Q)×cols(Q)

≥0
where Q is a complex matrix and a real vector ρ ∈ Rcols(e) where e is a real vector.

Z (Q▽Υ, e▽ ρ, r) =
{
Z

(
Q + Q̂, e + u, r

) ∣∣∣ |Q| ≤ Υ, |u| ≤ ρ
}

The following relation is a sufficient condition for checking the required inclusion which is proved
later in Lemma 11.

▶ Definition 10 (Relation for checking inclusion). Let P be a complex matrix such that P T P is a
square invertible matrix. Let Υ > 0 be a real matrix with only positive elements. We define the
relation

Z (Q▽Υ, e▽ ρ, r) ⊑ Z (P, c, s)

if all of the following conditions are verified:

∃X, ∆ ∈ Ccols(P)×cols(Q), y ∈ Ccols(P) :
PX = QD (r) , ∆ =

∣∣P †∣∣ ΥD (r) , (e− c) = Py, δ =
∣∣P †∣∣ ρ (10)

∀i ∈ {1, . . . , rows (X)} |yi|+ δi +
cols(X)∑

j=1
|Xij |+ ∆ij ≤ si (11)

▶ Lemma 11 (Checking inclusion). If Z (Q▽Υ, e▽ ρ, r) ⊑ Z (P, c, s) is true for Υ, ρ > 0,
then the subset inclusion Z (Q▽Υ, e▽ ρ, r) ⊆ Z (P, c, s) is true.

A. Adimoolam and T. Dang 01:11

Proof. Let us assume that Z (Q▽Υ, e▽ ρ, r) ⊑ Z (P, c, s) is true. Hence, there exist matrices
X, ∆ and complex vectors y, ρ such that all the equations in (11) are true. Let us consider any
x ∈ Z (Q▽Υ, e, R). Based on the definition of a complex zonotope, there exists ζ ∈ Ccols(P)

such that |ζ| ≤ s and x =
(

Q + Q̂
)

ζ + e + u,
∣∣∣Q̂∣∣∣ ≤ Υ and |u| ≤ ρ. We now have to show that

x ∈ Z (P, c, s).
Let us consider a vector α ∈ Ccols(ζ) such that for any i ∈ {1, . . . , cols (ζ)}, the following is

true:

αi = ζi/ri if ri > 0, αi = 0 if ri = 0 (12)

Since |ζ| ≤ r, it follows from the above definition that |α| ≤ 1 and ζ = D (r) α. Then we derive
the following.

x =
(

Q + Q̂
)

ζ + e + u =
(

Q + Q̂
)
D (r) α + e + u

=
(

Q + Q̂
)
D (r) α + (e− c) + c + u

and from (10)

x = P
(

Xα + P †Q̂D (r) α + y + P †u
)

+ c (13)

We derive the following for any i ∈ {1, . . . , rows (X)}∣∣∣Xα + P †Q̂D (r) α + y + P †u
∣∣∣
i

≤ |y|i +
∣∣P †∣∣ |u|+ cols(X)∑

j=1

(
|X|ij +

(∣∣P †∣∣ ∣∣∣Q̂∣∣∣D (r)
)

ij

)
|α|j

≤ |y|i + δi +
cols(X)∑

j=1
|X|ij + ∆ij

≤ si. (14)

The above second inequality is true because |α| ≤ 1,
∣∣∣Q̂∣∣∣ ≤ Υ, ∆ =

∣∣P †
∣∣ ΥD (r), |u| ≤ ρ and

P †ρ = δ, and the last inequality is deduced from (11).
From (13) and (14), we get that x ∈ Z (P, c, s). As this is true for any x ∈ Z (Q, e, r), the

inclusion Z (Q, e, r) ⊆ Z (P, c, s) is true. ◀

We can algebraically compute bounds on the real projection of a complex zonotope along any
direction, that is, the support function, as follows.

▶ Lemma 12 (Computing support function). Let us consider a complex zonotope Z (P, c, s) and
a vector w ∈ Rcols(c). We have the following equality:

max
x∈Z(P, c, s)

Re
(
wT x

)
= wT c +

∣∣wT P
∣∣ s (15)

Proof. First we prove that

max
x∈Z(P, c, s)

wT x ≤ wT c +
∣∣wT P

∣∣ s (16)

LITES

01:12 Safety Verification of Networked Control Systems by Complex Zonotopes

Let us consider x ∈ Z (P, c, s). So, there exists ζ ∈ Ccols(P) such that |ζ| ≤ s and x = Pζ + c.
We derive the following:

Re
(
wT x

)
= wT c + Re

(
wT Pζ

)
≤ wT c +

∣∣wT P
∣∣ s (17)

The inequality in the above formula is deduced from the fact that |ζ| ≤ s. As the above is true for
all x ∈ Z (P, c, s), it proves (16).

Next we prove the following:

max
x∈Z(P, c, s)

wT x ≥ wT c +
∣∣wT P

∣∣ s (18)

Let us consider x = Pζ + c where ζ ∈ Ccols(P) is defined as follows.

ζi = si if Re
(
wT P i

)
≥ 0, ζi = −si otherwise (19)

Then we get the following:

Re
(
wT x

)
= Re

(
wT Pζ

)
+ wT c

=
∣∣wT P

∣∣ s + wT c

The second equality in the above is obtained by using (19). This proves (18). From the inequalities
(16) and (18), we get (15). ◀

The relation for checking inclusion ((10) and (11)) consists of a set of convex constraints
on the variables X, ∆, s, r, e and c when the templates Q and P are fixed (constants). In fact,
they constitute a class of convex constraints called second order conic constraints (SOCC) [14].
The SOCC constraints can be solved efficiently up to high numerical precision using convex
optimization techniques and many solvers are available for the same [22].

5 Using complex zonotopes for verification

In this section, we describe an algorithm based on operations on complex zonotopes to verify
safety of NCS. Our algorithm finds a complex zonotope which is a sampling time invariant and
satisfies the other required condition (6) for safety. The algorithm has two parts.
1. We find a complex zonotope that is a sampling time invariant, i.e., is invariant with respect to

the transformation at all sampling times t ∈ [τmin, τmax].
2. Next we verify that the the reachable set of the complex zonotope by continuous evolution,

without reset, within the interval [0, τmax] remains within the safe set (6).
The detailed procedure is explained in Algorithm 1 and its correctness is proved in Theorem 17. A
safe set is specified by linear constraints and an open input set, disturbance input set and initial
set bounded by complex zonotopes, as follows.

S =
{

x ∈ Rn+m | Hx ≤ d
}

, V ⊆ Z (QV , cV , sV) , W ⊆ Z (QW , cW , sW)
Ω ⊆ Z (Qinit, cinit, sinit)

A. Adimoolam and T. Dang 01:13

Algorithm 1 Verifying safety of NCS.

k ← 3;
P ←

[
Ek In+m Rτmax J1QV J2QW

]
;

Remove repeated columns and zero columns of P ;
% Find sampling time invariant candidate complex zonotope:
N ← 10;
Feasible← False;
while Feasible = False do

Feasible← True;
for t ∈ TN do

for M ∈ Θ
(

t, Et
τmax−τmin

N

)
do

if Feasible = True then
Solve for s, c by convex optimization satisfying (24)–(25);
if (24)–(25) is feasible then

Feasible← True;
else

Feasible← False;
N ← 2 ∗N ;

end
end

end
end

end
end

% Verify Safety:
Verified← False;
while Verified = False do

Choose small ϵ > 0;
if (26) is true then

Verified← True;
Return: “NCS is safe”

end
else

ϵ← ϵ/2;
end

end

5.1 Finding sampling time invariant

We first fix the template of a complex zonotope based on the eigenvectors of the dynamics and
then the templates of the input sets. We can also add arbitrary vectors to the template to increase
precision. Next we derive a set of convex constraints on center, scale factor and other auxiliary
variables of a complex zonotope such that the complex zonotope is a sampling time invariant. We
solve for the scale factor and center using convex optimization.

LITES

01:14 Safety Verification of Networked Control Systems by Complex Zonotopes

Let us choose a positive integer k > 0 and denote by Ek the matrix containing all independent
unit eigenvectors of the matrices Rt for all t ∈ Tk where

Tk =
{

t = τmin + i
τmax − τmin

k

∣∣∣∣ t ∈ [τmin, τmax]
}

The template P of the complex zonotope consists of these eigenvectors, the templates of inputs
sets J1QV , J2QW , their transformations RτmaxJ1QV , RτmaxJ2QW .

P =
[
Ek In+m Rτmax J1QV J2QW

]
(20)

If P contains repeated columns or zero columns, they are removed.
▶ Remark (Choice of template). Firstly, we add the eigenvectors EK of the transformation operators
at various sampling times. This heuristic is based on Theorem 7 which says that incorporating
eigenvectors in the complex zonotope is closely related to finding sampling time invariants. We
also include the identity matrix inside the zonotope to capture bounds along the coordinate
directions. Next, we get from Lemma 9 that the resulting complex zonotopes from applying the
linear transformation Rt at time t is RtIn+m and RtEk. Since Ek contains eigenvectors of the
dynamics at various sampling times, the directions of RtEk may not be very different from Ek.
So, we do not include RtEk for any t. However, we include the other template RtIn+m = Rt

at maximum sampling time tmax obtained by transforming the identity template. Next, by
summing the additive disturbance and open input sets, we get the template

[
J1QV J2QW

]
in a

transformed complex zonotope after the switching at sampling time, by Lemma 9 . Therefore,
this template is also concatenated to Pk. Furthermore, adding any arbitrary generator will only
increase the accuracy because our optimization will adjust the scaling factors corresponding to
the generators. So, we can increase the value of K to increase the accuracy of verification.

▶ Example 13. Let us consider the NCS in Example 1. We consider an lower bound 0.1s and
upper bound 0.3s on the sampling time. We consider the safe set S =

{
z ∈ R3 | [100]z ≤ 1

}
,

initial set Ω = [0.85, 0.85]× [0, 0]× [0, 0], open input set V = [−0.2, 0.2] and bounds on disturbance
input set W = [−0.2, 0.2]. For k = 3, we compute Ek as the concatenation of eigenvectors of
R0.1 = Ar exp (0.1Ac), R0.2 = Ar exp (0.2Ac) and R0.3 = Ar exp (0.3Ac) where Ar and Ac are
given in Example 1.

Next we have to find the center and scale factor, for the given template Pk such that we get a
sampling time invariant. Before we describe the algorithm for this, we derive the prerequisite
mathematical results.

We can expand a transformation operator Rt+δ with δ > 0 in a neighborhood of sampling
time t using the Taylor expansion as follows.

Rt+δ = Ar exp (Act) exp (Acδ) = Rt + RtAcδ + RtAcδ2/2 + Λδ (21)
where |Λδ| ≤ Et

δ = |Rt| |exp (Act)| |Ac|δ3/3.

We use the following lemma, which is proved in [24] to bound all matrices{
Rt + RtAcδ + RtAcδ2/2 | δ ≤ ϵ

}
for any ϵ > 0 by the convex hull of a finite set of matrices.

▶ Lemma 14 ([25]). Let L0, L1, ..., Lr be a finite sequence of real matrices and Uj (δ) =
∑j

i=1 Liδ
i.

If 0 ≤ δ < ϵ, then Ur (δ) ∈ Conv (U0 (ϵ) , . . . , Ur (ϵ)).

Proof. This lemma is proved in [24]. ◀

A. Adimoolam and T. Dang 01:15

Let us denote the set of finite matrices Θ (t, ϵ) =
{∑j

i=1 RtAcϵi | j = 0, 1, 2
}

. Then using
Lemma 14, we have the following set inclusion:{

Rt + RtAcδ + RtAcδ2/2 | δ ≤ ϵ
}
⊆ Conv (Θ (t, ϵ)) (22)

Therefore, using the expansion (21) and the above result (22), we get that for any ϵ > 0 and
0 ≤ δ ≤ ϵ,

Rt+δ ∈ Conv
({

M ▽ Et
ϵ |M ∈ Θ (t, ϵ)

})
. (23)

In order to verify sampling time invariance of Z (P, c, s), it is sufficient to divide the time interval
[τmin, τmax] into small intervals of a chosen size and verify invariance within each of the time
intervals. This is explained in the following lemma.

▶ Lemma 15. If there exists N > 0 such that ∀t ∈ TN , ∀M ∈ Θ
(

t,
τmax − τmin

N

)
all of the

following is true, then Z (P, c, s) is sampling time invariant.

∃ρ ∈ Rcols(c)
≥0 : Et

τmax−τmin
N

|c| ≤ ρ (24)

Z

[
MP J1 J2

]
▽

[
Et

τmax−τmin
N

|P | 0 0
]

, (Mc + J1cv + J2cw)▽ ρ,

 s

cv

cw

⊑ Z (P, c, s) (25)

Proof. Let us consider any τ ∈ [τmin, τmax]. There exists t ∈ TN , δ ∈
[
0,

τmax − τmin

N

]
such that

τ = t + δ. Then we derive the following.

Rτ Z (P, c, s) ⊕ J1Z (QV , cV , sV) ⊕ J2Z (QW , cW , sW)

= Z
([

Rτ P J1QV J2QW

]
, Rτ c + J1cv + J2cW ,

[
s sv sW

]T
)

% By (23), ∃M ∈ Θ
(

t,
τmax − τmin

N

)
, ∃M̂ ∈ 0 ▽ Et

τmax−τmin
N

: Rτ = M + M̂

= Z
([

MP J1 J2
]

+
[
M̂ 0 0

]
, Mc + M̂c + J1cv + J2cw,

[
s sv sW

]T
)

% As M̂ ∈ 0 ▽ Et
τmax−τmin

N

and Et
τmax−τmin

N

|c| ≤ ρ where Et
τmax−τmin

N

≥ 0

⊆ Z

[
MP J1 J2

]
▽

[
Et

τmax−τmin
N

|P | 0 0
]

, (Mc + J1cv + J2cw) ▽ ρ,

 s

cv

cw

% By (25) and Lemma 11 for inclusion checking
⊆ Z (P, c, s) .

Since the above is true for any τ ∈ [τmin, τmax], we get that Z (P, c, s) is a sampling time invariant
set. ◀

5.2 Safety verification
After finding a sampling time invariant containing the initial set, we have to verify that the
condition (6) that the reachable set of Z (P, c, s) by continuous evolution within [0, τmax] is
contained within the safe set. This can be verified by checking a sequence of linear inequalities as
described in the following.

LITES

01:16 Safety Verification of Networked Control Systems by Complex Zonotopes

▶ Lemma 16. For all t ∈ [0, τmax], we get exp (Act)Z (P, c, s) ⊆ S if there exists ϵ > 0 such
that the following are true:

∀k ∈ Z≥0 : k ≤ τmax

ϵ
, ∀i ∈ {1, . . . , rows (H)} , βi (P, c, s) ≤ d where

βi (P, c, s) = |Hi exp (Ackϵ) P | s + Hi exp (Ackϵ) c

+ ∥Hi∥ exp (∥Ac∥ ϵ) ∥exp (Ackϵ)∥ ϵ (∥c∥+ ∥P∥ ∥s∥) (26)

Proof. Let us consider any t ∈ [0, τmax]. There exists some k ∈ Z, t = kϵ + ρ, ρ ≤ ϵ. We can write
for ρ ∈ [0, ϵ],

exp (Acρ) =
n∑

i=0

Ai
cρi

i
= In+m + AcρM :

M ∈ R(n+m)×(n+m), ∥M∥ ≤ exp (∥Ac∥ ϵ) (27)

We derive the following:

Hi exp (Act)Z (P, c, s) = HiZ (exp (Act) P, exp (Act) c, s)
% By Lemma 12

≤ |Hi exp (Act) P | s + Hi exp (Act) c

% By (27)
= |Hi exp (Ackϵ) P | s + Hi exp (Ackϵ) c + |HiMP | s + Mc

% Substituting the bound from (27)
≤ |Hi exp (Ackϵ) P | s + Hi exp (Ackϵ) c

+ ∥Hi∥ exp (∥Ac∥ ϵ) ∥exp (Ackϵ)∥ ∥Ac∥ ϵ (∥c∥+ ∥P∥ ∥s∥) ≤ di

Therefore, exp (Act)Z (P, c, s) ⊆ {x ∈ Rn+m | Hx ≤ d} = S, which proves the lemma. ◀

The following theorem summarizes the overall sufficient condition for verifying safety based on
complex zonotopes, which can be checked by the procedure described in Algorithm 1.

▶ Theorem 17. We have Γ ⊆ S if there exist c ∈ Rn, s ∈ Rcols(P)
≥0 , ϵ > 0 and N ∈ Z≥0 such that

all of the following conditions are true.
1. Z (Qinit, cinit, sinit) ⊑ Z (P, c, s).
2. (24)–(25) are true ∀t ∈ TN , ∀M ∈ Θ (t, ϵ).
3. (26) is true.

Proof. By ((24)-(25)) and Lemma 15, we prove that Ψ = Z (P, c, s) is a sampling time invari-
ant. By the first condition Z (Qinit, cinit, sinit) ⊑ Z (P, c, s), we get that the initial set Ω is
contained inside the sampling time invariant Ψ. By (26) and Lemma 16, we prove that for all
t ∈ [0, τmax], exp (Act)Z (P, c, s) ⊆ S. Then based on Theorem 3, we get Γ ⊆ S. ◀

Based on Theorem 17, we propose a semi-decision procedure in Algorithm 1 to verify safety. The
algorithm is a semi-decision procedure because if it returns that the NCS is safe, then the NCS is
indeed safe as proved in Theorem 17. However, the algorithm is not guaranteed to terminate. So,
the user can choose to terminate the algorithm in any threshold number of iterations possibly
with inconclusive result. In this context, we note NCS is a hybrid system and it is known that
verification of reachability of very simple classes of hybrid systems is undecidable [13]. So, it is
unlikely that we can not come up with a sure shot decision procedure to verify safety of NCS.

A. Adimoolam and T. Dang 01:17

▶ Example 18. Let us the NCS in Example 13. We took K = 3 and ran our algorithm using the
template matrix containing complex eigenvectors as shown in Equation 20, without any random
matrix, i.e., Π = 0. Then we could verify that the x1 bounds on the unbounded time reachable
set is |x1| ≤ 2.22.

Comparison with real zonotope. Next, we concatenated the real and imaginary parts of Pk into
a real matrix G where repeated column vectors were removed. We ran our algorithm to find a real
zonotope invariant containing the real template G, but our algorithm failed. We also considered
5 uniformly randomly generated real valued templates to run our algorithm, but the search for
sampling time invariant failed. Thus, complex zonotope based on eigenstructure is shown to be
the better choice for verification on this example.

6 Experimental results

We implemented our algorithms and tested them on benchmark examples of NCS. We drew
comparison with simple zonotope, i.e., having real valued generators and also the state-of-the-art
tool SpaceEx [19]. For comparison with simple zonotope, we took the real template as the
concatenation of real and imaginary parts of our complex template without repeated columns, and
ran the same algorithm. In SpaceEx [19], the verification is performed by step-by-step forward
reachability computation. In SpaceEx, we modeled NCS with uncertain sampling time as a hybrid
system with linear guards and linear transitions. For convex optimization, we used CVX (version
2.2) with MOSEK solver (version 7.1) and Matlab 2020a on a computer with 1.4 GHz Intel Core
i5 processor and 4 GB 1600 MHz DDR3. The precision of the solver is set to the default precision
of CVX.

6.1 Networked platoon of vehicles

This example is adapted from a model of a networked cooperative platoon of vehicles, which is
presented as a benchmark in the ARCH workshop [29]. The platoon consists of three follower
vehicles M1, M2 and M3 along with a leader board ahead M4. Each of the vehicles receives
feedback input added to the acceleration, which depends on the communication of their relative
distances, velocities and accelerations over a WLAN. The distance between a vehicle Mi and its
next vehicle Mi+1, relative to a reference distances dref

i , is denoted by ei. The acceleration of the
leader vehicle is aL which ranges between [−9, 1](m/s). The state of the system is denoted by
a 9-dimensional vector x = [e1, ė1, ë1, e2, ė2, ë2, e3, ė3, ë3], which is the reference distance minus
relative distances, the relative velocities and relative accelerations of the vehicles.

The disturbance input is the acceleration aL ∈ [−9, 1](m/s2) of the leader board. In our
adaptation, we consider that there can be uncertainty in the sampling period of the feedback
input. The matrices of the NCS model are given below.

LITES

01:18 Safety Verification of Networked Control Systems by Complex Zonotopes

A =

0 1.0000 0 0 0 0 0 0 0
0 0 −1.0000 0 0 0 0 0 0

1.6050 4.8680 −3.5754 0 0 0 0 0 0
0 0 0 0 1.0000 0 0 0 0
0 0 1.0000 0 0 −1.0000 0 0 0
0 0 0 1.1936 3.6258 −3.2396 0 0 0
0 0 0 0 0 0 0 1.0000 0
0 0 0 0 0 1.0000 0 0 −1.0000

0.7132 3.5730 −0.0964 0.8472 3.2568 −0.0876 1.2726 3.0720 −3.1356

B =

0 0 0
0 0 1
1 0 0
0 0 0
0 0 0
0 1 0
0 0 0
0 0 0
0 0 0

 C = I9 D = 0

F =

[
0 0 0 −0.8198 0.4270 −0.0450 −0.1942 0.3626v − 0.0946

0.8718 3.8140 −0.0754 0 0 0 −0.5950 0.1294 −0.0796
0 0 0 0 0 0 0 0 0

]
V =

{[
0
0
x

]
| x ∈ [−9, 1]

}
, i.e., Re

(
Z

([
0 0 1

]T
,

[
0 0 −4

]T
, 5

))
W = 0

Verification problem

For a given uncertainty of sampling period, the goal is to find the minimum possible reference
distances dref ∈ R3 such that the vehicles should not collide, that is, −ei ≤ dref

i ∀i ∈ {1, 2, 3}.
For our experiment, we fix the lower bound on sampling period as 0.01(s) and verify the minimum
possible bounds for various values of τmax ∈ {0.012, 0.014, 0.016, 0.018s, 0.02} s. We used our
Algorithm 1 to verify the bounds taking K = 3. We then used repeated the same algorithm
with simple real valued zonotope containing concatenation of real and imaginary parts of the
complex template. We also used SpaceEx to verify the bounds and draw a comparison based on
the smallest value of the bound verified.

Results

For the different values of τmax ∈ {0.012, 0.014, 0.016, 0.018, 0.02} s, we could verify finite values
for

[
dref

1 , dref
2 , dref

3

]
such that −e ≤ dref using our complex algorithm with complex zonotopes.

The verified bounds are given in Table 1. The computation time is less than 310s for every bound
and sampling time interval below. On the other hand, the simple zonotope version of our algorithm
was unsuccessful in finding finite bounds. SpaceEx terminated unsuccessfully without being able
to find any bounds on the reachable set.

Effect of increasing number of sampling times for eigenvectors. We increased K to 5 and got
the following smaller bounds for τmax = 0.2s: dref

1 = 40m, dref
2 = 29m and dref

3 = 19m. But the
computation time increased to 656s.

Remarks

In a continuous feedback model without switching based on digital sampling, the SpaceEx
verification found the bounds dref = (30, 30, 16) as reported in [29]. However, when there is
intermittent switching of feedback input with uncertainty in the sampling time, SpaceEx could
not find bounds in our experiment. Possibly the inductive step-by-step reachability algorithm

A. Adimoolam and T. Dang 01:19

Table 1 Verified bounds for vehicle platoon.

τmin = 0.01s

τmax dref
1 dref

2 dref
3

0.012s 35m 26m 17m

0.014s 38m 27m 18m

0.016s 40m 29m 19m

0.018s 40 29m 19m

0.02s 44m 33m 22m

used in SpaceEx could not overapproximate the reachable set resulting from switching of states
in sampling time interval. Also, the simple zonotope version of our algorithm could not find a
sampling time invariant. On the other hand, our complex zonotope containing eigenvectors in
its template is able to represent a finite invariant for various levels of uncertainty in sampling
time. Furthermore, the fact that use of simple zonotope failed to compute invariant but complex
zonotope containing complex eigenvectors is successful shows that use of complex eigenvectors
increases the chance of finding invariant in the presence of complex eigenstructure.

6.2 Self-balancing two wheeled robot
This example concerns a verification problem for the model of a self-balancing two wheeled robot
called NXTway-GS11 by Yorihisa Yamamoto, which was presented in the ARCH workshop [23].
We consider the linearized networked control system model from the paper. The state of the
plant is represented by a 6-dimensional vector xp = (θ̇, θ, ρ̇, ρ, ϕ̇, ϕ)T , where θ is the average angle
of the left and right wheel, ρ is the body pitch angle, ϕ is the body yaw angle, and the rest
coordinates are their respective angular velocities. The output of the plant is represented by
a 3-dimensional vector (ρ̇out, θm1 , θmr)T such that yp = Cpxp. The input to the plant up is a
2dimensional vector. The plant gets feedback input from a controller whose state is a 5-dimensional
vector xc =

(
θerr, θref , θ̇ref_lpf , ρ, θlpf

)
. The variable θerr is integration of error between θ̇ and

θref , and integration of θ̇ref is θref . The low pass filter applied to θ̇ref is θ̇ref_lpf , body pitch
angle is ρ, and the low pass filter applied to average valued of left/right motor angle is θlpf . The
output of the controller is a 2-dimensional vector which is used to compute the feedback input.
There is also a 2-dimensional unknown disturbance input.

In the benchmark paper [23], the output of the controller is sampled at 4ms to update the
feedback input. In our experiment, we also consider the case where there is uncertainty in sampling
period a possible disturbance in estimated output due to inaccurate sensors. The original model
has an eleven dimensional continuous state of the plant (6) and controller (5) and 5-dimensional
input. The trajectories of the system were unbounded along a 3-dimensional subspace of the system
which can be found by diagonalization. We decoupled these unbounded directions and performed
model reduction to obtain a lower dimensional system. For performing this decoupling, we used
linear transformation of the state space based on block diagonalization. The transformed system
has an eight dimensional continuous state, 2-dimensional controller output and four dimensional

1 http://www.mathworks.com/matlabcentral/fileexchange/
19147-nxtway-gs-self-balancing-two-wheeled-robot-controller-design

LITES

http://www.mathworks.com/matlabcentral/fileexchange/
19147-nxtway-gs-self-balancing-two-wheeled-robot-controller-design

01:20 Safety Verification of Networked Control Systems by Complex Zonotopes

input. The matrices of the transformed NCS, disturbance input and output error sets are given
below.

A =

0.0000 0.0000 0.1241 0.5638 0.5774 −0.0000 0.0066 0.5774

−0.0000 −92.4135 0.0000 0.0000 0.0000 −0.0000 −0.0000 0.0000
−363.0957 0.0000 −127.3488 112.2606 85.8204 −0.0714 −2.2691 89.4013
256.3623 0.0000 64.4048 −77.3066 −45.5575 −0.3242 −17.1890 −29.2897
172.3365 0.0000 34.5588 −51.1441 −26.0550 0.6640 −17.2627 −9.3837

0 0 0 0 0 −1.0000 0 0
2.9915 0.0000 0.8811 −0.3305 0.0320 −0.0038 −0.1829 0.2342

122.3365 0.0000 45.3074 −2.8986 −26.0550 −0.3320 33.3025 −59.3837

B =

−0.0000 −0.0000 0 0

−51.3265 51.3265 0 0
144.4698 144.4698 0 0
−76.6947 −76.6947 0 0
−43.8551 −43.8551 0 0

0 0 0 0
−0.8985 −0.8985 0 0

−43.8551 −43.8551 0 0

 D = 0

C = 1000 ×
[

−0.6895 0.0000 0.1537 0.6846 0.0151 −0.0135 1.1696 −0.6538
−0.6895 0.0000 0.1537 0.6846 0.0151 −0.0135 1.1696 −0.6538

]
F =

[0.0809 0
0 0.0809
0 0
0 0

]
V = [−100, 100] × [−100, 100] W = [−1, 1]

Verification problem

The safety requirement is that the body pitch angle ρ of the robot should be bounded within[
−π

2 , π
2

]
. The verification problem for NCS we consider in this paper is to find the largest

value of upper bound τmax on sampling time such that the system is safe, given a lower bound
τmin = 0.1(ms) and the safe set ρ ∈ [−π

2 , π
2]. We used Algorithm 1 to verify safety bounds and

subsequently find results for the above challenges based on complex zonotope. The same algorithm
is repeated with a simple zonotope containing the concatenation of real and imaginary parts of
our complex template. Concerning the experiment with SpaceEx using support functions, we
tested with the octagon template and a template with 400 uniformly sampled support vectors
distributed uniformly.

Results

Our algorithm based on complex zonotope could verify safety for τmax = 2ms, given τmin = 0.1ms.
But SpaceEx could not find finite bounds on the reachable set for any value of uncertainty in
sampling time. The simple zonotope based algorithm found a sampling time invariant, but its
bounds were far over the threshold of safety, i.e., ρ ∈ [−5.1π/2, 5.1π/2]. The computation time
for complex zonotope based algorithm is 153s. We increased K to 7, but could not find any larger
verified sampling time interval.

Remarks

The step-by-step reachability algorithm in SpaceEx possibly could not overapproximate resulting
set of states from switching over the sampling time interval, due to which it failed to find bounds
on reachable set. On the other hand, our complex zonotope containing eigenvectors in its template
found bounded invariant which is within the limits of the safe set. Regarding the simple zonotope,
although a sampling time invariant was found, the bounds were far over the threshold of safety.
The reason complex zonotope is far more accurate than simple zonotope on this example is possibly
that complex zonotope is geometrically more expressive, being able to encode nonlinear boundaries
of invariants.

A. Adimoolam and T. Dang 01:21

We saw that increasing K did not allow verification in a larger time interval. So, the strategy of
sampling more time stamps for eigenvector template may not be the best strategy for improving the
accuracy of verification. The problem remains open how to select sub-matrices for concatenation
to the template to improve the accuracy of verification.

7 Conclusion

Given the pervasiveness of networked control systems with safety-critical applications, it is essential
to develop verification algorithms for such systems in the presence of various possible inaccuracies
in their execution. In this paper, we developed an algorithm to verify unbounded time safety
of NCS with uncertain feedback sampling period, inaccurate output sensing and disturbance
input. Our algorithm uses a novel set representation called complex zonotope that can capture
convergence of forward reachable sets along eigenvectors and represent invariants. Complex
zonotope is essentially an extension of simple zonotopes to the complex domain so as to efficiently
compute invariants required by safety verification. Geometrically, their real projections represent
a wider class of sets including some non-polytopic sets, while they retain the advantage of usual
zonotope that the Minkowski sum and linear transformation can be computed efficiently. The
practicality of our algorithm is demonstrated by successfully verifying benchmark examples with
high dimensions (≥ 12 state+controller input variables), which the simple zonotope and another
state-of-the-art tool failed to verify. An important direction for extension of this research is
verifying NCS with non-linear differential equations and feedback. In this context, we need to find
complex zonotope approximation of non-linear transformations and also conditions for checking
invariance under non-linear transformation.

References
1 Arvind Adimoolam and Thao Dang. Augmented

complex zonotopes for computing invariants of af-
fine hybrid systems. In International Conference on
Formal Modeling and Analysis of Timed Systems,
pages 97–115. Springer, 2017.

2 Arvind Adimoolam and Thao Dang. Template
complex zonotopes for stability and invariant veri-
fication. In 2017 American Control Conference
(ACC), pages 2544–2549. IEEE, 2017.

3 Arvind S Adimoolam and Thao Dang. Template
complex zonotopes: a new set representation for
verification of hybrid systems. In 2016 Interna-
tional Workshop on Symbolic and Numerical Meth-
ods for Reachability Analysis (SNR), pages 1–2.
IEEE, 2016.

4 Arvind S Adimoolam and Thao Dang. Using com-
plex zonotopes for stability verification. In 2016
American Control Conference (ACC), pages 4269–
4274. IEEE, 2016.

5 Santosh Arvind Adimoolam. A Calculus of Com-
plex Zonotopes for Invariance and Stability Veri-
fication of Hybrid Systems. PhD thesis, Université
Grenoble Alpes, 2018.

6 Assalé Adjé, Pierre-Loïc Garoche, and Alexis Werey.
Quadratic zonotopes. In Asian Symposium on Pro-
gramming Languages and Systems, pages 127–145.
Springer, 2015.

7 Assalé Adjé, Stéphane Gaubert, and Eric Goubault.
Coupling policy iteration with semi-definite relaxa-
tion to compute accurate numerical invariants in
static analysis. In European Symposium on Pro-
gramming, pages 23–42. Springer, 2010.

8 Mohammad Al Khatib, Antoine Girard, and Thao
Dang. Stability verification of nearly periodic im-
pulsive linear systems using reachability analysis.
IFAC-PapersOnLine, 48(27):358–363, 2015.

9 Xavier Allamigeon, Stéphane Gaubert, and Eric
Goubault. Inferring min and max invariants using
max-plus polyhedra. In International Static Ana-
lysis Symposium, pages 189–204. Springer, 2008.

10 Xavier Allamigeon, Stéphane Gaubert, Eric
Goubault, Sylvie Putot, and Nikolas Stott. A fast
method to compute disjunctive quadratic invariants
of numerical programs. ACM Transactions on Em-
bedded Computing Systems (TECS), 16(5s):1–19,
2017.

11 Xavier Allamigeon, Stéphane Gaubert, Nikolas
Stott, Éric Goubault, and Sylvie Putot. A scal-
able algebraic method to infer quadratic invariants
of switched systems. ACM Transactions on Embed-
ded Computing Systems (TECS), 15(4):1–20, 2016.

12 Matthias Althoff. Reachability analysis of nonlinear
systems using conservative polynomialization and
non-convex sets. In Proceedings of the 16th interna-
tional conference on Hybrid systems: computation
and control, pages 173–182, 2013.

13 Rajeev Alur. Formal verification of hybrid systems.
In Proceedings of the ninth ACM international
conference on Embedded software, pages 273–278,
2011.

14 Stephen Boyd, Stephen P Boyd, and Lieven Vanden-
berghe. Convex optimization. Cambridge university
press, 2004.

LITES

01:22 Safety Verification of Networked Control Systems by Complex Zonotopes

15 Patrick Cousot and Nicolas Halbwachs. Automatic
discovery of linear restraints among variables of a
program. In Proceedings of the 5th ACM SIGACT-
SIGPLAN symposium on Principles of program-
ming languages, pages 84–96, 1978.

16 Jamal Daafouz, Pierre Riedinger, and Claude
Iung. Stability analysis and control synthesis for
switched systems: a switched lyapunov function
approach. IEEE transactions on automatic control,
47(11):1883–1887, 2002.

17 Lei Ding, Qing-Long Han, Eyad Sindi, et al. Distrib-
uted cooperative optimal control of dc microgrids
with communication delays. IEEE Transactions on
Industrial Informatics, 14(9):3924–3935, 2018.

18 Mirko Fiacchini and Irinel-Constantin Morărescu.
Set theory conditions for stability of linear impuls-
ive systems. In 53rd IEEE Conference on Decision
and Control, pages 1527–1532. IEEE, 2014.

19 Goran Frehse, Colas Le Guernic, Alexandre Donzé,
Scott Cotton, Rajarshi Ray, Olivier Lebeltel, Ro-
dolfo Ripado, Antoine Girard, Thao Dang, and
Oded Maler. Spaceex: Scalable verification of hy-
brid systems. In Proc. 23rd International Con-
ference on Computer Aided Verification (CAV),
LNCS. Springer, 2011.

20 Antoine Girard. Reachability of uncertain linear
systems using zonotopes. In International Work-
shop on Hybrid Systems: Computation and Control,
pages 291–305. Springer, 2005.

21 Antoine Girard and Colas Le Guernic. Zono-
tope/hyperplane intersection for hybrid systems
reachability analysis. In International Workshop on
Hybrid Systems: Computation and Control, pages
215–228. Springer, 2008.

22 Michael Grant, Stephen Boyd, and Yinyu Ye. Cvx:
Matlab software for disciplined convex program-
ming, 2009.

23 Thomas Heinz, Jens Oehlerking, and Matthias
Woehrle. Benchmark: Reachability on a model
with holes. In ARCH@ CPSWeek, pages 31–36,
2014.

24 Laurentiu Hetel, Jamal Daafouz, and Claude Iung.
Lmi control design for a class of exponential uncer-
tain systems with application to network controlled
switched systems. In 2007 American Control Con-
ference, pages 1401–1406. IEEE, 2007.

25 Laurentiu Hetel, Jamal Daafouz, Sophie Tar-
bouriech, and Christophe Prieur. Stabilization of
linear impulsive systems through a nearly-periodic
reset. Nonlinear Analysis: Hybrid Systems, 7(1):4–
15, 2013.

26 Kyoung-Dae Kim and Panganamala R Kumar.
Cyber–physical systems: A perspective at the
centennial. Proceedings of the IEEE, 100(Special
Centennial Issue):1287–1308, 2012.

27 Alexander B Kurzhanski and Pravin Varaiya. El-
lipsoidal techniques for reachability analysis. In In-
ternational Workshop on Hybrid Systems: Compu-
tation and Control, pages 202–214. Springer, 2000.

28 Michal Kvasnica. Minkowski addition of convex
polytopes, 2005.

29 Ibtissem Ben Makhlouf and Stefan Kowalewski.
Networked cooperative platoon of vehicles for test-
ing methods and verification tools. In ARCH@
CPSWeek, pages 37–42, 2014.

30 Antoine Miné. The octagon abstract domain.
Higher-order and symbolic computation, 19(1):31–
100, 2006.

31 Stefan Pettersson and Bengt Lennartson. Hybrid
system stability and robustness verification using
linear matrix inequalities. International Journal of
Control, 75(16-17):1335–1355, 2002.

32 Stephen Prajna and Ali Jadbabaie. Safety veri-
fication of hybrid systems using barrier certific-
ates. In International Workshop on Hybrid Sys-
tems: Computation and Control, pages 477–492.
Springer, 2004.

33 Enric Rodríguez-Carbonell and Deepak Kapur.
Automatic generation of polynomial invariants of
bounded degree using abstract interpretation. Sci-
ence of Computer Programming, 64(1):54–75, 2007.

34 Henrik Sandberg, Saurabh Amin, and Karl Henrik
Johansson. Cyberphysical security in networked
control systems: An introduction to the issue. IEEE
Control Systems Magazine, 35(1):20–23, 2015.

35 Sriram Sankaranarayanan, Thao Dang, and Franjo
Ivančić. Symbolic model checking of hybrid systems
using template polyhedra. In International Confer-
ence on Tools and Algorithms for the Construction
and Analysis of Systems, pages 188–202. Springer,
2008.

36 Ashish Tiwari. Generating box invariants. In In-
ternational Workshop on Hybrid Systems: Compu-
tation and Control, pages 658–661. Springer, 2008.

37 Yu-Long Wang and Qing-Long Han. Network-based
modelling and dynamic output feedback control for
unmanned marine vehicles in network environments.
Automatica, 91:43–53, 2018.

38 Xian-Ming Zhang and Qing-Long Han. Network-
based h∞ filtering using a logic jumping-like trigger.
Automatica, 49(5):1428–1435, 2013.

Swarms of Mobile Robots: Towards Versatility with
Safety
Pierre Courtieu #

Conservatoire des arts et métiers, Cédric EA 4629, Paris, France

Lionel Rieg #

VERIMAG, Grenoble INP – UGA, CNRS UMR 5104, Université Grenoble-Alpes, Saint Martin d’Hères,
France

Sébastien Tixeuil #

Sorbonne University, CNRS, LIP6, Paris, France

Xavier Urbain #

Université de Lyon, Université Claude Bernard Lyon 1, CNRS, INSA Lyon, LIRIS, UMR 5205, F-69622
Villeurbanne, France

Abstract
We present Pactole, a formal framework to design
and prove the correctness of protocols (or the im-
possibility of their existence) that target mobile
robotic swarms. Unlike previous approaches, our
methodology unifies in a single formalism the execu-
tion model, the problem specification, the protocol,
and its proof of correctness. The Pactole frame-
work makes use of the Coq proof assistant, and is
specially targeted at protocol designers and problem

specifiers, so that a common unambiguous language
is used from the very early stages of protocol de-
velopment. We stress the underlying framework
design principles to enable high expressivity and
modularity, and provide concrete examples about
how the Pactole framework can be used to tackle
actual problems, some previously addressed by the
Distributed Computing community, but also new
problems, while being certified correct.

2012 ACM Subject Classification Theory of computation → Distributed computing models; Theory of
computation → Self-organization; Theory of computation → Program reasoning; Theory of computation
→ Logic; Software and its engineering → Formal methods
Keywords and Phrases distributed algorithm, mobile autonomous robots, formal proof
Digital Object Identifier 10.4230/LITES.8.2.2
Supplementary Material Software (Coq Formalization): https://pactole.liris.cnrs.fr
Funding This work was partially supported by CNRS peps DiDaSCaL and ANR project SAPPORO
2019-CE25-0005.
Acknowledgements The authors would like to thank the referees whose comments and suggestions
helped improve the presentation of this work.
Received 2020-07-09 Accepted 2022-01-28 Published 2022-12-07
Editor Alessandro Abate, Uli Fahrenberg, and Martin Fränzle
Special Issue Special Issue on Distributed Hybrid Systems

1 Introduction: low cost and high expectations

Swarm Robotics envisions groups of mobile robots self-organizing and cooperating toward the
resolution of common objectives, such as patrolling, exploring and mapping disaster areas, con-
structing ad hoc mobile communication infrastructures to enable communication with rescue
teams, etc. In many cases, such groups of robots are deployed in adverse environments (e.g. space,
deep sea, disaster areas). Thus, a group must be able to self-organize in the absence of any prior
infrastructure and ensure dynamic coordination in spite of the presence of faulty robots as well as
environmental changes. A faulty robot can stop its execution (crash) or start to behave in an

© Pierre Courtieu, Lionel Rieg, Sébastien Tixeuil, and Xavier Urbain;
licensed under Creative Commons Attribution 4.0 International (CC BY 4.0)

Leibniz Transactions on Embedded Systems, Vol. 8, Issue 2, Article No. 2, pp. 02:1–02:36
Leibniz Transactions on Embedded Systems

L I T E S Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:pierre.courtieu@cnam.fr
https://orcid.org/0000-0001-8789-9781
mailto:lionel.rieg@univ-grenoble-alpes.fr
mailto:sebastien.tixeuil@lip6.fr
https://orcid.org/0000-0002-0948-7172
mailto:xavier.urbain@liris.cnrs.fr
https://orcid.org/0000-0001-7442-2538
https://doi.org/10.4230/LITES.8.2.2
https://pactole.liris.cnrs.fr
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lites
https://www.dagstuhl.de

02:2 Swarms of Mobile Robots: Towards Versatility with Safety

arbitrary way either due to some external factors (e.g. electromagnetic fields, attacks) or to some
inaccurate information received by its own sensors.

Sending a single complex expensive robot for example to explore a dangerous area is often
not the best solution, as some environments are likely to destroy robots in a matter of hours.1
Instead, using a large number of cheap simple robots one can afford to lose, but that nonetheless
are able to coordinate to globally solve a given task, is the underlying principle of swarm robotics.

The possibility to have a robot fail being almost certain, the operator has to use cheap robots
to form the swarm, implying that very weak individual sensing and actuating capacities are to be
privileged. Lowering the individual robots’ abilities raises an important theoretical question: which
individual capacities are necessary (and sufficient) to collectively solve a given task? Obviously,
robots with more abilities than necessary to solve a task can still solve it. Conversely if a given task
solvability requires a particular capacity, and that capacity is unavailable to the robots forming
the swarm, no genius algorithm or protocol can come to the rescue.

Another consequence of failure likeliness is that no robot in the swarm should have a particular
role to assume (e.g. a leader from which other robots wait for orders). Indeed, if the particular
robot ceases functioning or starts behaving arbitrarily, the entire swarm fails. Instead, all robots
are to be given the same role, and self-organization is to be used to take collective decisions
regardless of the current situation.

On the other hand, proving task solvability requires to envision all situations, even the most
unlikely ones. A classical setup only considers the system behaviour from a given well-formed
initial state. Proofs written in the context of swarm robotics must consider all possible failure
occurrences, be they at the individual robot level or induced by a catastrophic change in the
environment.

Actual deployment of mobile robotic swarms mandates preliminary theoretical assessments, to
ensure the swarm behaves according to its specification, and to assess its practical feasibility with
respect to expected completion time and used resources. While the latter is typically quantified
through simulations, the former requires a sound mathematical proof of correctness. Most of the
literature makes use, for this purpose, of handwritten proofs. As recent findings show [1, 14, 32, 33],
handwritten proofs are error-prone, and sometimes erroneous, which may compromise the safety
and the correctness of actual deployments. Hence, a recent trend deals with computer-aided
proving of important properties for mobile robotic swarms.

Following this trend, our focus in this paper is to propose a unified formal approach that
permits us to express both the execution model and its variants, and the property specifications
and their proof, relating all that we formally state to the usual model in the Distributed Computing
Community. In more detail, our starting point is the model by Suzuki and Yamashita [65] (who
was recently awarded the Prize for Innovation in Distributed Computing), extended by the many
variants the Distributed Computing developed throughout the years [37], unified in a modular
formal framework developed in Coq.

Our framework is meant to answer legitimate questions that arise when developing protocols
for mobile robotic swarms:
1. Is algorithm A a solution to problem X in model variant Y ?
2. Is problem X solvable using model variant Y ?
3. Which problems are solvable using model variant Y ?
4. What is the weakest model variant that permit to solve problem X?
5. Does the proof for algorithm A remain valid if we switch model variant Y for model variant Z?
6. etc.

1 https://www.theguardian.com/world/2017/mar/09/fukushima-nuclear-cleanup-falters-six-years-after-tsunami

https://www.theguardian.com/world/2017/mar/09/fukushima-nuclear-cleanup-falters-six-years-after-tsunami

P. Courtieu, L. Rieg, S. Tixeuil, and X. Urbain 02:3

The remainder of the paper is organized as follows. Section 2 reviews previous work related to
the use of formal methods in the context of Distributed Computing, as well as an introductory
example. The Pactole library for the Coq proof assistant is presented in Section 3. In Section 4,
we review the structure of model variants used by the Distributed Computing community for
mobile robotic swarms, while its formalization in our framework is presented in Section 5. Several
case studies in Section 6 demonstrate the simplicity and universality of our approach. Finally,
concluding remarks are presented in Section 8.

2 Formal approaches and their complementary uses

Motivations

Models of distributed computations are traditionally presented in natural language. But the
algorithm, even when presented as pseudo-code [49], cannot be understood without the precise
setting in which it is executed. Implicit assumptions [50] are known as folklore but as properties of
distributed algorithms rely on very subtle hypotheses, in most cases a small barely noticeable shift
in the statement of these assumptions may induce dramatic changes in an algorithm behaviour.
Such shifts can still be found in the literature, and have led to erroneous results being published.

Formal methods tackle this difficulty, most notably with the use of tools providing a mathem-
atical language that is non-ambiguous [62]. Given how challenging the task of establishing correct
results in the area of distributed computing is, the simple fact of using a common non-ambiguous
format for definitions constitutes a significant asset.

So far the most popular formal method in the Distributed Computing community has been
model checking. Formal methods however encompass a wide variety of other methods. Formal
proof for instance has little to do with model checking, and in most aspects it can be considered
as its dual: formal provers can be applied to almost any domain of mathematics [55, 42, 41, 2, 67]
but are poorly automated when dealing with higher order properties, whereas model checkers
only apply on decidable (hence less expressive) logics but are highly automated. Model checkers
produce counter-examples whereas theorem provers do not (at least systematically), etc.

Model Checkers

The power and elegance of model checking lie in building an abstraction of the property to prove,
tailored so that its validity can be checked exhaustively by an automated tool. The correctness of
the abstraction being in general proved on paper.

Model checking has been used with impressive success for distributed protocols, both in
proving [14, 34, 35, 54, 51, 43, 28], and disproving [32, 33, 14] their correctness. In some cases, it
was possible to go as far as program synthesis [16, 59, 36, 31] (that is, generating algorithms that
are correct by design using a computer program). It may however be subject to combinatorial
explosion, or become undecidable [4].

Consequently, model checking often deals with instances of a problem rather than with its
full generality. Parameterized model checking sometimes allows for model checking all instances
where an (infinite) parameter varies. For example, Sangnier et al. [64] makes use of Presburger
formulae to express mobile robotic swarms operating on a discrete space (a ring of size n, meant
to be arbitrary, and a parameter of the model). However, a key result of Sangnier et al. [64] in
this context is that non-trivial properties (namely, liveness properties) are undecidable. Those
recent findings command studying complementary techniques like formal proofs.

LITES

02:4 Swarms of Mobile Robots: Towards Versatility with Safety

Formal Proofs

The formal proof approach consists in writing mathematical proofs in a fully explicit way, leaving
absolutely no reasoning detail hidden or implicit. This is (obviously) a very tedious task, and it
cannot really be applied without the help of mechanical tools, called proof assistants, that provide
(1) a language for mathematical definitions and properties;
(2) an interactive system assisting the user in writing all details of the proofs, thus ensuring their

correctness by construction.

Since the proof system is not bound to be fully automatic, very expressive (undecidable) logics
are allowed, making it possible to write virtually any mathematical definition, as witnessed by the
wide range of mathematical results that have been proven using these tools [55, 42, 41, 2, 67, 48].

A drawback of being very expressive is an induced lack of automation. Despite the help of a
variety of decision procedures for decidable sub-logics of the system, developing proofs in a proof
assistant still requires a lot of expertise.

Given its characteristics, one can expect formal proof to be successfully applied in distributed
computing, but in a way that is complementary to the model checking approach. Figure 1 gives
hints on where a proof assistant and model checking are potentially usable in the everyday life of
a researcher in distributed algorithms.

Primarily, it can be used as the underlying non-ambiguous language for all definitions involved
in Distributed Computing: from high-level model specifications to low-level algorithms and all
their properties. This is a specific complementary benefit of proof assistants. For instance in our
setting it is possible to state and prove properties explicitly quantified over continuous spaces like
R2 or the type of all protocols (functions over functions on R2):

∀ r : (robot → R2) → R2 , . . .

or over types populated with infinite objects like demons (infinite streams):

∀ d : Stream demonic_action , . . .

This makes possible to state for instance that a given task is impossible to achieve [6, 23, 12] in
some model, i.e. that for all protocols (even those that cannot be computed with usual operations)
there exists an adversary (demon) that will make the protocol fail.

Even if this part is much more intricate and needs dedicated expertise, the proof assistant can
also be used to prove these properties. It is notably more tedious than writing a pen and paper
proof because of the required level of details, and it requires expertise in the assistant involved.
Expecting an expert in any domain of computer science to become also an expert with a proof
assistant it thus somewhat unrealistic at this time. It also misses the point as the fundamental
first step consists in providing formal definitions, and not proofs.

Finally the architecture of proof assistants allows for building large libraries of shared definitions
for models, problems, protocols, and theorems, ensuring their mutual consistency, and reusability.
In the long run this makes possible new and increasingly intricate but sound results.

To this goal, collaborations between experts of distributed algorithms and formal proof are
needed and the Pactole library is an example of such collaboration, among others [3, 19].

3 The Pactole library for the Coq proof assistant

3.1 The Coq proof assistant
The proof assistant used for this work is Coq [5, 15]. It is based on type theory and its
language for definitions and properties is a very rich typed λ-calculus: the calculus of inductive
constructions [22, 15].

P. Courtieu, L. Rieg, S. Tixeuil, and X. Urbain 02:5

Model checking

Proof Assistant

Computation
ModelOther Model Problem P Protocol p

Inclusion Impossibility Correctness Instance I

I ⊨LT L ϕ?Counter-examples

abstraction

assisted proof assisted proof assisted proof

automated proof

generation

Figure 1 Potential uses of a proof assistant: Definitions, statements of results and their proofs.

A particularity of proof assistants based on type theory is that the definition language is
also used to express proofs. More precisely it makes use of the Curry-Howard correspondence:
types are considered as properties, and a term of a given type is actually a proof of this property.
Checking correctness of proofs therefore amounts to type-checking λ-terms. Since this is a rather
simple task, a small kernel can be written, and proofs accepted by the proof assistant have strong
guarantees of correctness.

The syntax of the Coq language is similar to that of a functional programming language à
la ML. Function types are written in the usual Curryfied way: A → B → C denotes the type of
functions that take a parameter of type A and return a function from B to C, which can also be
seen as the type of functions that take an A and a B, and return a C but can be partially applied to
their first argument. Applying a function f to an argument a is simply denoted by juxtaposition:
f a.

Function definitions and type synonyms are introduced with Definition. New data types
may be defined either by their exhaustive list of constructors with Inductive (and the pattern
matching of such a type is done by the match ... with ... end construction) or as a Record whose
values are of the form {| fld1 := val1;fld2 := val2 ... |}, and fields can be accessed by the
usual dot notation. For example: let x be the record {| f1 := a ; f2 := b |}, the expression
x.(f1) has value a.

A particular construction allows for defining (sub-)types by intention: { x : T | P x } represents
the type of any element x of type T paired with a proof that P holds on x.

Coinductive types (mainly infinite streams in our context) can be easily defined in Coq and
coinductive values are introduced by cofix.

3.2 Pactole
Developed with and for the Coq proof assistant, Pactole is a library gathering definitions and
proofs on a variety of models of robot swarms. It implements the generic seminal model by Suzuki
and Yamashita [65] presented in details in Section 4.1.

Formally proven results are correct by construction and can therefore be highly trusted and
reused. It is worth noting that it is still the responsibility of the experts of a certain domain to
check what those results are the proof of. It is indeed critically important that the definitions

LITES

02:6 Swarms of Mobile Robots: Towards Versatility with Safety

are scrutinized and validated by the community. The proofs themselves, while sometimes worth
sketching, need not to be human-checked.2 In that respect, a focus in Pactole is on the ease to
write and read specifications.

Designed for robots and in particular agents that are mobile, Pactole provides a wide range
of definitions and proofs, from very high level notions to concrete protocols and their properties:

Definitions of models, proofs of relations between models (inclusion, equivalence, etc.);
problem definitions (gathering, exploration, etc.);
protocol definitions and proofs of correctness;
proofs of impossibility.

All these notions are inter-dependent. One of the benefits of proposing the widest range of
notions of the domain is that they share the same underlying definitions. They are therefore
consistent with each other by construction.

For example, when dealing with impossibility results for some problem P , and protocols solving
P under particular assumptions, sharing the definition of P ensure that these results are correctly
linked together.

As another example, when two models m1 and m2 are proven equivalent (any execution
possible in one is also possible in the other), then any proof made using the definition of m1 can
be transferred to m2 without any risk of a shift in the definitions.

In this article

All the results we present in this paper have been fully formalized and proved in Coq and
Pactole. For the sake of clarity a few definitions given in the following have been slightly
stripped of some technical details. The actual formal development is publicly available at
https://pactole.liris.cnrs.fr.

3.3 A tour of formal proof for robotic swarms
A formal semantics of a dynamic system (processor, virtual machine, robot swarm, physical system,
etc) is a mathematical object that mimics perfectly the aspects of the behaviour of the system
under consideration. All possible behaviours of the system must be possible in the model, and any
impossible behaviour of the system must also be impossible in the model. Some things may be left
out of scope of the model, usually on the basis of being irrelevant to the particular problem under
study. For instance, we may ignore thermal radiation from the sun slowly heating up robots, as
in most cases this does not result in any noticeable behavioural change. Or, while modelling a
processor, we may choose not to model its performance counters and their associated instructions.

The mathematical object modelling the system is generally a function3 taking as input the
state of the environment of the system and returning as output the evolution (the new state)
of the system in this environment. In the following we give a series of examples of increasing
complexity showing how we model different systems in robotic swarms.

3.3.1 A simple example
Suppose we want to model a single robot evolving on a ring with only three nodes in the following
way: when reaching a node in the ring, the robot selects the next node clockwise and starts moving
toward this new target.

2 The actual work of reviewing in the context of formal proof is discussed by Bauer and Mahboubi [13, 56].
3 It may be a relation instead, for instance if the system is non-deterministic.

https://pactole.liris.cnrs.fr

P. Courtieu, L. Rieg, S. Tixeuil, and X. Urbain 02:7

West

North

East

If we suppose that the robot cannot be interrupted during its move from one node to another,
it is sufficient to model the topology with three positions North, East and West. A configuration
is then given by a function returning the position of the robot.

Inductive Position : Type := North | East | West .
Definition Configuration := robot → Position .

It may seem silly to model a configuration with a single robot as a function but this representation
generalizes to an arbitrary number of robots, so we choose to use it from the start.

The evolution of the system can then be formalized as a function round that takes the
configuration and returns the new configuration after one round.

Definition round (c : Configuration) : Configuration :=
fun id :robot ⇒

match c id with (* take position of id and compute the next one. *)
| North ⇒ East
| East ⇒ West
| West ⇒ North
end .

We can now define an execution as an infinite stream of configurations obtained by successive
applications of round,4 and it is quite straightforward to prove for instance that in any such
execution starting from a valid configuration (one position occupied by a robot) from any moment
every node is occupied infinitely many times.

Lemma all_pos_occupied_eventually : ∀ (c : Configuration) (p : Position) ,
Stream . eventually (fun str ⇒ (hd str) Robot1 = p) (execute c) .

Proof .
intros c p .
(* by cases on positions and configurations *)
destruct p;destruct (c Robot1) eqn :heq;

try (constructor 1;now auto);
try (constructor 2; constructor 1;

unfold execute , round; simpl;
rewrite heq; reflexivity);

try (constructor 2; constructor 2; constructor 1;
unfold execute , round; simpl;
rewrite heq; reflexivity) .

Qed .

Lemma all_pos_occupied_forever : ∀ (c : Configuration) (p : Position) ,
Stream . forever (Stream . eventually (fun str ⇒ (hd str) Robot1 = p))

(execute c) .

4 See Figure 5 for the coinductive definition of execute in Coq.

LITES

02:8 Swarms of Mobile Robots: Towards Versatility with Safety

Proof .
cofix HI .
constructor .
− apply all_pos_occupied_eventually .
− simpl .

apply HI .
Qed .

The important statement here is that what is true for this function is also true for the
computation model it represents.5 In other words we have reduced the problem of proving
properties of the model to the problem of proving properties of a well defined function; a task
theorem provers are perfectly suited for.6

3.3.2 The local computations
There is however a problem with this formalization. In the round function above, something
important is left implicit: we formalized the decision of the robot without defining the actual
embedded algorithm operation. Instead, we have only formalized a centralized protocol. This is a
serious gap between the model we want to represent (autonomous robots) and our formalization.
Distributed algorithms have very subtle behaviours, in particular because the code is executed on
different devices “viewing” the global system from different perspectives. Any attempt to model
distributed systems that jumps directly to a centralized vision like this would miss the important,
and most difficult part, of distributed systems. In order to represent faithfully the distributed
nature of our model we need to separate the computations done locally by each robot from the
global behaviour of the system they yield.

To illustrate this, we need to define what the perception of the robot is. In this section we
suppose that the robot sees the ring but cannot detect the “real” identity of a node. The robot
sees the whole ring and knows on which node it stands, though it has no knowledge of whether it
is actually North, East or West. The robot enjoys chirality: it can distinguish the node on its
left (clockwise) from its right (counterclockwise). Let us rework our example to represent the
distributed protocol. In the following we distinguish between two notions:

the global configuration: what is really happening in the system, and where; this viewpoint is
called the global frame of reference or the demon’s frame of reference;
the (local) observation: the global configuration as seen by the robot. In our case the observation
is composed of three nodes Me, Left and Right named after their positions relative to the
observing robot. An observation is a function giving the position of all robots relative to the
observing robot. This viewpoint is called the local frame of reference or the robots’s frame of
reference.

Inductive RelativePosition : Type := Me | Left | Right .
Definition Observation : Type := robot → RelativePosition .

The protocol takes as input an observation and produces a decision: where to go next, expressed
in its own frame of reference.

We reformulate the round function with an explicit call to the protocol on the observation by
the robot. More precisely round

5 The fact that the represented model itself is the model accepted by the community needs a validation by
experts.

6 Actually our claim is that humans also take benefit in agreeing that the function is accepted as the actual
true definition of the model, once approved by the community.

P. Courtieu, L. Rieg, S. Tixeuil, and X. Urbain 02:9

(1) establishes the robot’s observation,
(2) passes it as a parameter to the protocol and takes back the returned decision (expressed in

the robot’s own frame of reference), and then
(3) determines where the robot moves in the global frame of reference.
Note that the protocol we consider in our example is very simple: since the robot sees itself at Me,
its target is always the Left node in its own frame of reference.

Denoting by relative_config the “localized” version of the configuration where nodes are
described relatively to an observing robot (eg. in the first figure of Section 3.3.1 where the robot
is at East, East becomes Me, West becomes Left, North becomes Right) and globalise_pos

the converse function mapping local names to global ones, we obtain the simple code:

(* Always go left, since this is clockwise. *)
Definition protocol (o : Observation) : RelativePosition := Left .
Definition round (c : Configuration) :=
fun id : robot ⇒
let pos_id := c id in (* Where is id? *)
let obs := relative_config c pos_id in(*id sees c rotated with id on Me*)
let destination := protocol obs in (* Call protocol on observation *)
globalise_pos pos_r destination . (* Rotate back to global reference *)

It is now provable that this protocol behaves globally like the centralized version described in
Section 3.3.1.

Lemma equiv_centralized :
∀ c : Configuration , execute c ≡ Centralized . execute c .

Proof .
cofix HI .
intros c ; constructor; [simpl;reflexivity | apply HI] .

Qed .

This kind of proof may be quite difficult on realistic protocols. It generally (although not in
this case) relies on the fact that the algorithm consists in operations that are invariant relative to
the frame of reference.

Note that we can consider another distributed algorithm in the same model just by changing
the protocol operations.

3.3.3 Weakening the sensing capabilities of robots
In this section, we change the computation model and the round function to account for more
realistic sensors. In this new model, the robot’s compass may be subject to arbitrary recalibration
at each round and change its chirality, i.e. its Left node may correspond to its clockwise or
counterclockwise neighbour. Clearly the previous algorithm in this model behaves completely
differently and does not satisfy the same properties, because when choosing always Left the robot
may actually go counterclockwise.

The chirality reversal of the robot is not controllable and may change at each round, each
leading to a different possible execution step. To account for this variability of execution we
reformulate the model: round now takes a new parameter: a flip function that selects the
chirality of the robot at the current round. The protocol is now called on the possibly flipped
observation to simulate the new calibration of the sensors.

More generally, the uncontrollable part of the environment, that is the alea the protocol must
be robust to, should be defined as a parameter of round, so that we can reason for all possible
values.

LITES

02:10 Swarms of Mobile Robots: Towards Versatility with Safety

Denoting by mirror_pos/_obs the reversing of Left and Right we obtain the code:

(* flip id = false → robot id has clockwise orientation,
true → counterclockwise orientation *)

Definition round (c : Configuration) (flip : robot → bool) :=
fun id : robot ⇒
let pos_id := c id in
let c_local := relative_config c pos_id in
let obs := if flip id then mirror_obs c_local else c_local in (* flip? *)
let dest := protocol obs in (* Call protocol on observation *)
let dest_swap := if flip id then mirror_pos dest else dest in (*unflip?*)
globalise_pos pos_id dest_swap . (* Rotate back to global reference *)

With this version of the formal model it is now possible to prove that, for example, there
exist executions that never reach, say, node East. It suffices to use an infinite sequence of flip
functions alternating the chirality of the robot, so that it would go alternatively to North and
West.

Lemma exist_never_reaching_East : ∃ c (d : Stream .t (robot → bool)) ,
Stream . forever (fun strm ⇒ hd strm Robot1 ̸= East) (execute d c) .

Proof .
∃ (fun id ⇒ match id with _ ⇒ North end) . (* initial position *)
∃ (alternate (fun x ⇒ true) (fun x ⇒ false)) . (* alternating demon *)
cofix HI . constructor .
− simpl . discriminate .
− simpl . constructor .

+ simpl . discriminate .
+ apply HI .

Qed .

3.3.4 Modeling Concurrency
Until now, our example involved one robot only. To model several distributed agents acting at the
same time we need to determine the level of synchronicity of the agents. In the version above
(Sections 3.3.2 and 3.3.3) we can see that round always applies the protocol at each round: the
output position of any robot is obtained by calling the protocol on its observation. In other words,
if multiple robots are present it activates all robots at each round. This model where all robots
are always active at the same rate is called fully synchronous and is presented in more details
together with others in Section 4.4.

We can relax this constraint to obtain a more loosely synchronized model: for some reason
robots may not be all activated at each round. Similarly to chirality flips in the previous section,
the subset of robots activated at each round is not controllable. Thus, in the same fashion that
the flip parameter allows for quantifying on the uncontrollable variability of the sensors, a new
parameter is added to account for the variability of scheduling. To avoid multiplying parameters we
group uncontrollable parameters into a single record argument. This argument is called demonic
action in the following in reference to the view of the environment as an adversary trying to make
the protocol’s task fail.

Record Demonic_action : Type := {
activate : robot → bool; (* activated at his round? *)
chirality : robot → bool; (* inverted chirality at this round? *)

} .
Definition round (da : Demonic_action) (c : Configuration) :=

P. Courtieu, L. Rieg, S. Tixeuil, and X. Urbain 02:11

fun id : robot ⇒
if negb (da . (activate) id) then c id (* if not activated, don’t move *)
else (* else move according to protocol and chirality *)
let pos_id := c id in
let c_local := relative_config c pos_id in
let obs := if da . (chirality) id then mirror_obs c_local else c_local in
let dest := protocol obs in
let dest_swap := if da . (chirality) id then mirror_pos dest else dest in
globalise_pos pos_id dest_swap .

In this version of the model, most provable properties depend upon a hypothesis on the fairness
of the scheduler, i.e. constraints on the successive values of activate in the demonic action. See
Section 4.4.

3.3.5 Other refinements
In the Pactole library, we model all the variants of the model described above and a few others.

The demonic action encompasses all external effects altering the operation of our robots. For
example, the ground may be slippery and although robots try to reach a different node, some
of them may simply not move. In this case, instead of reaching their target, the new locations
of the robots depend on another Boolean function provided by the demonic action, say reach,
expressing whether robots stay on their current location or reach their targets. Another example:
a form of asynchronicity can be modelled by considering that robots may be activated while other
have not yet reached their destination, etc.

One does not have to keep extending the definitions of demonic action and round for each
additional environmental effect: there is a general version that can encompass a wide range of
external forces and is explained in Section 5.1. In order to get to this point, we must first present
the seminal model by Suzuki and Yamashita [65] and the corresponding lattice of models.

4 A lattice of models

Research in Distributed Computing has traditionally considered three complementary approaches:
complexity-driven when a particular problem can be solved in a particular model, it becomes

interesting to reduce the complexity of the solutions. Various metrics can be considered, such
as memory, time, number and size of exchanged messages, size of a causal chain of events, etc.

model-driven when a particular model is designed for distributed computations (usually mimicking
actual networks or systems), it becomes interesting to characterize the set of problems that
are solvable in this model.

problem-driven when a particular problem is considered important in a general setting, it becomes
interesting to characterize the models that enable solutions of the problem, and the models
that make the problem impossible to solve.

The domain of mobile robotic swarms is mostly problem-driven. The focus of past efforts have
thus consisted in characterizing which hypotheses are necessary and sufficient to solve a particular
problem. Since the various hypotheses considered are sometimes unrelated, it becomes difficult
to compare two different models with different sets of hypotheses. However, some particular
hypotheses can be ordered, inducing a partial ordering among models. This partial ordering is
important for two reasons: (i) if a model X is “weaker” than another model Y (in the sense that
fewer computations are possible in model X than in model Y), then a solution to a problem
considering model Y is also a solution to the problem considering model X, and (ii) if a given

LITES

02:12 Swarms of Mobile Robots: Towards Versatility with Safety

F G

A B

H I

C

ED

Figure 2 A lattice of models, with proofs on models B and H carrying to other models in the lattice.

problem admits no solution in model X, then it also admits no solution in model Y . Since the
ordering between models is only partial, it is possible that two distinct models are both necessary
and sufficient for solving a particular problem, albeit being unrelated with respect to the partial
order.

Figure 2 depicts a possible partial order of models, where X ← Y denotes the fact that X is a
weaker model than Y . For a given problem, one was able to prove that a solution exists assuming
model B, but that no solution exists assuming model H. Hence, from the partial hierarchy of
models, it is possible to deduce that the problem is also solvable in models A, G, and F (that are
weaker than B), and impossible to solve in models I, C, and E (that are stronger than H). From
the current results, it remains unknown whether the problem is solvable assuming model D.

Hypotheses about the model span across various dimensions. The main ones are:
synchronization relates to the fact that mobile robots have independent control flow, and may

thus execute their protocol at different paces;
memory relates to the fact that robots may make use of persistent memory, and may want to

store various kinds of data (e.g. bits or Euclidean positions);
sensors relates to the fact that robots may have limited sensing capabilities, or limited ability to

receive messages from other robots;
actuators relates to the fact that robots may have unreliable motion actuators;
faults relates to the fact that robot may follow their prescribed protocol or deviate from it [29].

The rest of the section presents the main relevant hypotheses that have been considered since
the paper of Suzuki and Yamashita, and their induced order.

4.1 The Suzuki and Yamashita model
The seminal paper for studying robotic swarms from a Distributed Computing perspective is due
to Suzuki and Yamashita [65]. They introduce, in this paper, a mathematical model for studying
geometric pattern formation by swarms of possibly oblivious robots. The motivation for studying
oblivious robots (that is, robots that do not retain history of past actions) is resilience to faults.
For example, if a robot crashes, after rebooting it should not trust the content of its memory,
either because it might be corrupted, or because it refers to an outdated view of the system.
Ignoring past actions forces the design of algorithms that are simply more versatile.

P. Courtieu, L. Rieg, S. Tixeuil, and X. Urbain 02:13

In the Suzuki and Yamashita initial model, robots are represented as dimensionless points
evolving in a bidimensional Euclidean space (that is, R2), and can accumulate on the same
location. They operate in Look-Compute-Move cycles. In each cycle, a robot “Looks” at its
surroundings and obtains (in its own coordinate system) a snapshot containing some information
about the locations of all robots. Based on this visual information, the robot “Computes” a
destination location (still in its own coordinate system), and then “Moves” towards the computed
location. When the robots are oblivious, the computed destination in each cycle only depends
on the snapshot obtained in the current cycle (and not on the past history of actions). The
visual snapshots obtained by the robots are not necessarily consistently oriented in any manner.
Then, an execution of a distributed algorithm by a robotic swarm consists in having every robot
repeatedly execute its Look-Compute-Move cycle. In general, executions are infinite (even if
robots do not move after a while, they still look, compute and decide not to move) and fair (every
robot executes an infinite number of Look-Compute-Move cycles).

Although this mathematical model is perfectly precise, it allows a great number of variants
(developed over a period of 20 years by different research teams [37]), according to the various
dimensions described above, namely: sensors, memory, actuators, synchronization, and faults,
which we investigate now. This flurry of subtly different models makes reasoning very error-prone
as it can easily happen that one designs a protocol in a model, and derives its proof in a slightly
different one, without noticing the difference. A summary of all model variants explored in this
section in depicted on Figure 4. In order to remain readable, we present all the dimensions
separately, so that the overall lattice must be understood as the Cartesian product of all these
smaller lattices.

4.2 Sensors

Robots perceive their surroundings through sensors, whose abilities have strong impact on task
solvability. The most commonly considered types of sensors vary along several capabilities,
described below. Obviously, one can think of other kinds of sensors not described here. For
instance, in a completely opaque environment, one may imagine that the only available information
is by direct contact through bumpers.

4.2.1 Range

The most obvious parameter of sensors is their range, that denotes how far a robot can sense
another robot’s location:
full visibility robots are able to sense every other robot’s location, regardless of distance;
limited visibility there exists λ > 0 such that robots are able to sense every other robot’s location

if their distance to the observing robot is less than λ, and are unable to sense the locations of
other robots [38];

k-random there exists λ > 0 such that robots are able to sense every other robot’s location if
their distance to the observing robot is less than λ, and up to k robots at distance more than λ,
chosen uniformly at random, cannot be sensed (the other “distant” robots can be sensed) [45];

k-enemy there exists λ > 0 such that robots are able to sense every other robot’s location if their
distance to the observing robot is less than λ, and up to k robots at distance more than λ,
chosen by an adversary, cannot be sensed (the other “distant” robots can be sensed) [45].

Note that in general, robots are not aware of λ. Obviously, a protocol assuming limited visibility
is strictly more powerful than one that requires full visibility.

LITES

02:14 Swarms of Mobile Robots: Towards Versatility with Safety

4.2.2 Multiplicity detection
Multiplicity refers to the ability of robots to distinguish (to some extent) the number of robots
sharing a given location. There are three variants about the accuracy, ordered by decreasing
strength:
no multiplicity detection sensors can only distinguish occupied and unoccupied location, but any

estimation about the number of robots present remains unknown;
weak multiplicity detection sensors can distinguish between a single robot or more than one

robots at a location, but not their precise number [47];
strong multiplicity detection sensors can accurately count the number of robot at a location.

Another axis for variants is related to the range of the multiplicity detection:
local multiplicity detection indicates that weak or strong multiplicity information is only ob-

servable for the position of the observing robot (that is, a robot can only obtain multiplicity
information about its own location) [46];

global multiplicity detection indicates that weak or strong multiplicity information can be ob-
tained for all observed positions (that is, a robot can obtain multiplicity information about all
locations in its viewing range).

Overall, we thus have five variants for multiplicity: no multiplicity, weak local multiplicity,
weak global multiplicity, strong local multiplicity, and strong global multiplicity. Obviously, an
algorithm assuming no multiplicity detection is more powerful than one requiring any of the other
assumptions. However, some assumptions are uncomparable, e.g. weak global multiplicity and
strong local multiplicity.

4.2.3 Orientation
This refers to the ability of robots to share some common notion of direction or orientation. Again,
there are many variants:
common direction the robots have the same North-South and/or East-West axes, but the direction

along these axes may be inverted (this is also called two-axes direction) [40];
common orientation in addition to having the same two axes direction, robots may also share

orientation on either one axis (e.g. North only) or two axes (e.g. North and West);
common chirality robots have the same notion of left and right [39].

Notice that it is entirely possible to have common chirality without sharing a common direction.
When having common direction, orientation on one axis, and chirality, robots are said to have full
compass. Note that orientation on one axis and chirality amounts to having orientation on two
axes.

4.3 Memory/Communication
The benefit of using oblivious robots is that they easily recover from crashes and memory corruption.
Nevertheless, several extensions with memory have been proposed, ordered from strongest to
weakest:
oblivious only volatile memory is available. Memory is reset at the beginning of each Look-

Compute-Move cycle. Robots thus have no memory of past actions. Practically, robots only
use their current snapshot in the compute phase.

finite memory robots may have persistent memory between Look-Compute-Move cycles. Sev-
eral variants of this model called the luminous model [26, 66, 44, 27, 25] have been investigated
(see below).

P. Courtieu, L. Rieg, S. Tixeuil, and X. Urbain 02:15

Round 1 Round 2 Round 3 Round 4

(a) The FSYNC model.

Round 1 Round 2 Round 3 Round 4

(b) The SSYNC model.
Round 1 Round 2 Round 3 Round 4

(c) The centralized model.

· · ·

(d) The ASYNC model.

Figure 3 Synchronization hypotheses in models.

infinite memory robots may make use of an infinite amount of memory. It allows robots to
remember a full observation, as the position of robots may have to be encoded as actual real
numbers (in the ego-centred observation).

Since robots are assumed to be anonymous, there is no way of performing point-to-point
communication with a particular neighbour. Therefore, communication is handled through
broadcast, which is described as the robots having lights whose color may be adjusted during the
compute phase. In addition to the number of available colours for a robot light (hence the amount
of states of information transmitted), there are three kinds of lights:
internal lights are only visible by the emitting robot itself, thus actually represent finite memory

(the robot communicates with itself);
external lights are only visible by other robots but not the emitting root, thus they represent

communication without memory [60];
full lights combine internal and external lights: they are visible by all robots.

4.4 Synchronicity and fairness
The considered model is based on discrete logical time, that is, on a sequence of events, an event
being any change in the state of any robot.

The possible interleavings of those events define the synchronicity level of an execution.
If the Look-Compute-Move cycles are considered atomic, that is no event can occur during

a cycle, the model is said to be semi-synchronous (SSYNC): a subset of the robots enter (and
finish) their cycle and each phase within it simultaneously while the others are idle, hence the
notion of round. In the constrained version of SSYNC where no robot is idle, that is where all
robots are activated simultaneously, the execution is said to be fully-synchronous (FSYNC). In the
case where the cycles are not atomic and may overlap, the execution is said to be asynchronous
(ASYNC) [40]. Clearly, ASYNC is the strongest model and FSYNC is the weakest.

A fourth synchronicity model exists: the centralized one, where only a single robot moves every
round. It is a particular case of the SSYNC model (thus it is weaker) but it is incomparable to
the FSYNC one.

Figure 3 illustrates these synchronicity hypotheses.
These synchronicity hypotheses between the Look-Compute-Move cycles of robots are of

paramount importance for proofs. Many proofs made in weak synchronization models were claimed
to hold also under stronger synchronization models but turned out to be incorrect. This is actually
the main source of errors in the literature.

LITES

02:16 Swarms of Mobile Robots: Towards Versatility with Safety

In the FSYNC, SSYNC, and centralized models, the actual duration of each phase does not
matter since no observation occurs while a robot is moving, which justifies using discrete logical
time. On the opposite, the ASYNC model represents the complete lack of synchronization between
robots, and duration is important here, as a robot may observe others while they are moving.

Fairness

In all models except FSYNC where all robots are active at all times, the subset of active robots is
chosen by the environment. In all generality, nothing prevents the environment, a.k.a the demon,
from starving some or all robots. Obviously, most tasks are infeasible if some robots never get
opportunities to act. Thus, there are fairness constraints on demons: a demon is said fair if every
robot gets activated infinitely often. This is equivalent to saying that at any point of the execution,
every robot is eventually activated.

Although fairness is usually enough for most protocols, it does not give any guarantee on the
relative rates of robot activations: a robot may be activated arbitrarily more often than another.
To remedy this situation, one can use the stronger fairness condition of k-fairness:7 every robot is
activated at least once for every k activations of any other robot.

4.5 Rigid/Flexible Movement
The atomicity of cycles does not imply that the computed destination is actually reached by a
robot before the start of its new cycle: the robot may be interrupted during its move by the
environment.

An execution where all robots always reach the destination returned by the protocol is said to
be rigid. Conversely, if robots can start a new cycle before they completed their scheduled journey,
the execution is flexible. In such a case, so as to avoid Zeno-like counter-examples, it is assumed
that robots travel at least some minimal non-null distance δ towards the expected destination
before being subject to restart. In particular, a journey shorter than δ is always completed. This
minimal uninterruptable distance is unknown to robots;8 they may however take into account
that such a minimum exists.

4.6 Faults
In an adversarial environment, faults must be considered, either because malicious agents are
present or because one of our own agent has been corrupted.

The most common fault hypotheses made in models are (from strongest to weakest):
byzantine faults some robots do not follow the protocol and are controlled by an adversary;
crash some robots may crash and stop acting forever;
no fault correct robots follow the protocol forever.

Notice that the faults described here are permanent, that is, they span the entire execution
once they occur.

7 Early literature introduced k-bounded: between two activations of a robot, there are at most k activations of
any other robot. This is not equivalent to k-fairness since it is vacuously satisfied if a robot is never activated:
there are no two activations we should count activations of other robots between. Furthermore, one can prove
that k-bounded and fair is equivalent to k-fair, making k-fairness the useful notion.

8 It would however make little sense to base an algorithm on such an absolute δ as it is possible that robots do
not share frames of reference.

P. Courtieu, L. Rieg, S. Tixeuil, and X. Urbain 02:17

Range

Multiplicity

Orientation

Memory/Lights

Synchronicity

Fairness

Rigidity/Flexibility

Faults

Full
visibility k-random k-enemy Limited

visibility

Strong global
multiplicity

Weak global
multiplicity

Strong local
multiplicity

Weak local
multiplicity

No multiplicity

Full
compass

Shared 1-axis
orientation

Shared
direction Disoriented

Shared
chirality

Infinite memory

Full lights

Internal lights

External lights

Obliviousness

FSYNC

Centralized

SSYNC ASYNC

k-fair Fair

Rigid Flexible

No fault Crash Byzantine

Figure 4 The model lattice for robot swarms, as the Cartesian product of smaller lattices.

LITES

02:18 Swarms of Mobile Robots: Towards Versatility with Safety

5 The formalization of the Suzuki, Yamashita model

The formalization of a computation model in a proof assistant consists of a body of mathematical
definitions linked together. The main statement defines the set of correct computations in this
model. This definition must be inspected very carefully to ensure it complies exactly with what
specialists have in mind. It is however not rare that on the occasion of a formalization one
realizes that different specialists have slightly different models in mind. Formalization is thus
the occasion of clarifying things, either by proving equivalence of models or by establishing more
subtle correspondences between them.

The computational model introduced by Suzuki and Yamashita states basically that robots
move in space according to their observation of the environment. In order to complete a formal
description of this model, we hence have to provide a Coq encoding of the relevant space, and
of course a way to characterize robots and their sensors (that is the way the environment is
perceived).

Implementing robot capabilities and instantiating the universe the robots move in must be
generic, abstract, and (relatively) user-friendly. This is crucial, as this is where the developer
clarifies assumptions and removes ambiguities and the expert validates definitions. It is a sine qua
non for a broad acceptance of a formal framework.

We must also formalize the Look-Compute-Move cycles and their possible interleavings:
i.e. the core of the model and its synchronicity level. While the latter is still a parameter chosen
by the user, the core itself is agnostic to assumptions about the environment. It is modelled in
the framework by a function, round, that the developer never has to look at, except maybe for
reassurance that it actually encodes Suzuki and Yamashita’s robotic swarms model.

We hence shall describe first how round simulates the evolution of the system, with completely
abstract parameters. Then we explore how various flavours of Suzuki and Yamashita’s robots
can or cannot solve fundamental tasks, and how to instantiate those variants within our formal
framework.

5.1 Structure of the model, abstractions
So as to keep the core of the model as generic as possible, we provide the description of the
environment as parameters. This way, those specifications and assumptions are kept abstract in
the core, that is the actual description of how the system evolves.

The environment may be defined with several straightforward settings: the space where robots
are moving, the level of synchronicity, the characteristics and capabilities of robots and their
sensors (for example their accuracy or range), etc. Figure 6 and Section 5.4 show in details the
structure of all parameters that must be instantiated.

Following Figure 6 we consider being given:
a topology with its usual operations,
the definition of a robot’s state that includes its location (the position in space it is at), and a
way of accessing it for all robots,
a notion of observation that only considers what is allowed by the relevant variant, and finally
an embedded algorithm : the protocol.

Usual operations regarding the space and its topology typically include a decidable equality on
locations and change of frame operators.

A state describes, typically as a record, the internal state of robots, including in certain cases
of synchronicity (namely ASYNC) their computed destination. Its access is ensured through the
configuration: a function that takes a robot identifier as argument, and returns its state.

P. Courtieu, L. Rieg, S. Tixeuil, and X. Urbain 02:19

The configuration cannot generally be used as an observation of the robots as it may include
private information about internal states, and thus may display what should not be observed by
other robots. It is the case for example if local sensors have a limited range, or cannot get robots’
ids, or even cannot detect multiplicity (i.e., the exact number of robots inhabiting a location
in space), etc. Forbidden/private information is thus pruned from the configuration to get an
observation. That observation is the one and only allowed input for a robot to compute its next
destination; examples of its instantiation are given in section 5.3.2.

The protocol, that is the embedded algorithm that returns a path to a destination 9, based on
an observation, is shared by all robots. It consists of the actual function mapping observations to
(path-containing) states, and some properties (though irrelevant to round) ensuring, for example,
that two equivalent observations produce equivalent paths and destinations, or on a graph that
there is an actual arc towards the targeted node.

While the Pactole library can express all of the synchronicity hypotheses, namely ASYNC,
SSYNC, centralized, and FSYNC, we shall focus in the following on the description of SSYNC
executions (of which FSYNC executions are a particular case).

Modelling flexible executions simply amounts to allowing for a restart of any robot at any
ratio of its trajectory, providing the effectively travelled distance is at least the minimal one δ.
The new state is returned accordingly.

5.2 The function round

We describe the evolution of the system, following Suzuki and Yamashita’s model, with a function:
round.

5.2.1 Inputs
We want to design a function that, from a configuration, and given an embedded algorithm,
returns the next configuration. Two obvious parameters for round are thus:
1. the configuration, and
2. the shared algorithm driving the robots: the protocol.
However, what happens in a step of execution depends also on some choice made by the demon,
akin to Maxwell’s: which robots are activated, what the new frames are, what distances are
effectively travelled. . . We consider those choices as the results of a demonic action, which is given
as an extra argument to round:
3. a demonic action.
We may find in a demonic action:

the indication that a robot of a given id is activated, that is a function activate returning a
Boolean when given an id as argument, in the special case of an FSYNC execution, its result
is always true.
a function for conversion of frames of references, say change_frame,10

the actual function returning relevant choices on the entry of any robot’s id. That function is
a parameter of the model, it is hereafter referred to as choose_update.

9 Observe that simply assuming robots move toward the destination along a straight line precludes the use of
our framework for e.g. proving the correctness of existing algorithms that make use of non-linear paths, such
as parametric paths used by Defago et al. [30]. Hence, to preserve generality of the framework, we assume
protocols return a path.

10 As it is constrained by the robot under consideration (recall that frames are self-centred) this function takes
also a robot as argument.

LITES

02:20 Swarms of Mobile Robots: Towards Versatility with Safety

Depending on assumptions, robots may also undergo Byzantine failures. As the movements of
Byzantine robots is, by definition, not determined by the algorithm, demonic actions must in
that case include:
a function that chooses the next destination of each Byzantine robot, hereafter referred to as
relocate_byz.
Finally, one needs a set of properties ensuring that the choices are coherent, for example that
robots do not go past their computed destination, do not follow non-existing paths, etc.

The infinite sequence of demonic actions characterizes the choices for the whole execution, and
constitutes the demon of the execution.

Finally, we have to be able to express flexible executions. Recall that in those, robots may be
interrupted/restarted before they reach the end of their planned journey, but after they travelled
at least an absolute distance δ. While the value of δ is unknown to robots, it is used in enforcing
that the execution fulfils the aforementioned constraints. It has thus to be provided to round:
4. a minimal travel length δ.

It is worth noticing that the formal development allows for comparison of demons; it provides
in particular proofs that demons with rigid movements are equivalent to demons with flexible
movements and movement ratio 1, in the sense that any execution for one can be also obtained
for the other.

We shall now describe the evolution of the system, following Suzuki and Yamashita’s model,
by devising our function round.

5.2.2 Operation
For the sake of simplicity, we focus on SSYNC flexible executions, of which FSYNC flexible
executions are the particular case where all robots are selected to be activated by every demonic
action.

In the remainder of this section, we shall denote the four formal parameters for round as
follows :

δ obviously represents δ,
r represents the protocol,
da represents the used demonic action,
c represents the configuration.

The result of round is a configuration, that is a function. The body of round δ r da c is hence
a functional object taking an identifier, say id, as unique parameter, and returning its (new) state.
We just have to describe this new state.

The first step is to figure out if the robot is activated, that is susceptible to undergo any
change. This is a decision of the demon, and as so is stated in the demonic action. In an SSYNC
context, da.(activate) id can either return false,11 in which case the new state is the previous
one: c id; or return true in which case choices and changes may apply for robot id: usually some
change of frame function together with a travel ratio.

Note that this information is irrelevant if id is Byzantine. Should it be the case, its new state
would be arbitrarily chosen by the demon, using da.(relocate_byz).

Otherwise, if id refers to a correct robot, the new state depends on the protocol that requires
an observation for id.

11 Recall that this is never the case in an FSYNC execution.

P. Courtieu, L. Rieg, S. Tixeuil, and X. Urbain 02:21

1. The configuration is thus expressed from id’s point of view using its new frame of reference
provided/chosen by the demonic action da. One obtains id’s observation by pruning the now
translated configuration from illegitimate information.

2. The protocol may now be applied on that observation.
The results contains in particular a path to a destination location, but is this local target
reached before a new cycle starts? That depends of a choice of the demon, and is constrained
by the ratio provided in da.(choose_update) id.
Any destination location, in the local targeted state, closer than δ is reached, otherwise the
location attained along the path is the one determined by the chosen ratio, the chosen target.

3. The demon-chosen target state is computed from the local target state by applying in particular
the travel ratio.

4. As the distance between the current location of the robot and the chosen target is to be
compared to the absolute δ, coordinates have to be translated back to the demon’s frame of
reference. The actual update with the new state can now be obtained from the result of this
comparison: either the new location corresponds to the target locally computed or to the
(demon-) chosen one.

5.3 Model specialization

As the core of the model is set once and for all, we may consider the many variants of Suzuki and
Yamashita’s robots. A slight modification of the robots, in their sensor capabilities for example,
can dramatically change the feasibility of any given task. We shall review some of those, and
describe how to instantiate the formal model accordingly.

5.3.1 Space

In this paper, we mainly consider the Euclidean plane R2 [24, 11]. Nevertheless, the formal model
is not tied to this choice and we can consider any other space such as the real 3D space (R3), the
real line (R) [6, 23], discrete ones such as a ring (Z/nZ) or an arbitrary graph [12], possibly with
robots moving continuously on edges [7], or even more exotic ones.

Providing a space in the formal framework amounts to define a type of locations where the
robots are, and the necessary operations to compute: distances, the actual operations of the
protocol, and changes of frames of references.

The computations by the protocol usually involve basic arithmetics; this is for example the
case in Courtieu et al. [24] or Balabonski et al. [11] where all the necessary machinery to compute
barycentres is provided with the instantiation of R2.

Conversions into different frames of references can be as simple as rotations and homothetic
transformations in a Euclidean space. They are however subtler when the considered space is a
graph, and may then involve permutations of the node names.

To allow for a comfortable use of graphs in Pactole, Balabonski et al. [12] define a (light-
weight12) template to be instantiated as desired by the user. The relevant interface is designed to
link up with the general signature for spaces; it provides also a specialised version for rings.

12 This template is not intended to be as powerful as a specialised development on graphs, like for instance the
LoCo library for local computation on graphs [19].

LITES

02:22 Swarms of Mobile Robots: Towards Versatility with Safety

Definition round δ r da c :=
(** for a given robot, we compute the new configuration *)
fun id ⇒

let state := c id in (* state: id’s state as seen by demon *)
if da . (activate) id (** Is the robot activated? *)
then match id with (** Byzantine or correct? *)

| Byz b ⇒ da . (relocate_byz) b (* Demon relocates Byzantine *)
| Good g ⇒ (* Config. expressed in the frame of g: PHASE 1 *)
let frame_conv := da . (change_frame) c id in
let local_config := map_config frame_conv c in
let obs := obs_from_config local_config id in

(* APPLY r ON OBSERVATION: PHASE 2 *)
let local_target_state := r obs in

(* Demon chooses a point on the path to the target *)
let chosen_target_state := da . (choose_update) (* PHASE 3 *)

id
local_config
local_target_state in

(update (* Actual update: PHASE 4 *)
δ (* (including comparison) *)
local_config
id
frame_conv −1

loc_target_state
chosen_target_state)

end
else state . (** Inactive robots stay unchanged *)

(** [execute r d config] returns an (infinite stream) execution from an
initial global configuration config, a demon d and a protocol r
running on each good robot. Each configuration being the result of
round applied to the previous configuration (and the corresponding
demonic_action). *)

Definition execute r : demon → configuration → execution :=
cofix execute d c :=

Stream .cons c (execute (Stream .tl d) (round δ r (Stream .hd d) c)) .

Figure 5 The round function, core of the formal simulator, and the execute function that produces
an infinite execution from it.

P. Courtieu, L. Rieg, S. Tixeuil, and X. Urbain 02:23

5.3.2 Sensors
One of the key concepts in Suzuki and Yamashita’s model is the one of observation, that is the
way to get some snapshot about the environment. The sensor capabilities can indeed change
dramatically what is achievable in any given model. A very simple example of that is perception
with a limited range: if robots are far enough apart to the point of not being aware of the others,
there is no hope of cooperation of any kind!

Even seemingly minor differences may change the impossibility frontier: Gathering is im-
possible in general [23], but becomes possible with either a common compass [40] or detection of
multiplicity [24] (that is, when robots can count the number of robots on a location instead of
just detecting that the location is inhabited).13

Sensor capabilities are modelled through the way the configuration is perceived, that is
transformed into an actual observation. The fact that states of robots may include some internal
states, and thus may display information that should not be observed by other robots, prevents
them to be used directly as an observation.

Depending on the variant one is interested in, assumptions may indeed require that local
sensors cannot tell robots apart (anonymity), or detect whether they are correct or Byzantine, or
are endorsed with multiplicity detection, etc.

These restrictions can be defined and encapsulated in the notion of observation, which charac-
terizes what a robot’s sensors can perceive of the global system.

To obtain the observation, that is the only input to the protocol, all forbidden information
must be pruned from the configuration. To that goal, a function obs_from_config is devised to
return an observation when given the actual configuration. This function takes also the internal
state of the observer, as the actual perception may depend on characteristics of its own sensors.14

Sensor capabilities are thus characterized through:
the datatype for observation, and
the operation of obs_from_config.

5.3.2.1 Anonymity, multiplicity

Modelling capabilities through the type definition is straightforward as the type has to describe
only the public information.

Let us say one wants to model anonymous robots, equipped with sensors that can “see” the
whole universe, and detect the number of robots inhabiting any location (strong multiplicity). A
convenient datatype for the observation in that case may be simply a multiset of the inhabited
locations, the detection of multiplicity (number of robots in a place) being directly expressed by
multiplicities of elements (number of times a location appears as the location of a robot).

This is not tied to the underlying space: in the case of a discrete graph where no node naming
or origin is shared between robots, one would have a multiset of nodes, with one node marked as
the location of the observing robot.

In the case the anonymous robots cannot distinguish between different inhabitants, detecting
only that the location is inhabited, the observation datatype may then be just a set of inhabited
locations. Again, this would work just as well on a graph rather than the Euclidean plane.

For non-anonymous robots, observations may be sets of pairs consisting of a robot identifier
and the location where this robot is.

13 Constraints on the starting configuration may be necessary, like the forbidding of a bivalent configuration.
14 Of course, that does implies presence of (parts of) the internal state in the result of obs_from_config,

which depends on what is allowed by the variant.

LITES

02:24 Swarms of Mobile Robots: Towards Versatility with Safety

5.3.2.2 Accuracy, range limits

It is possible to represent bounded accuracy of sensors, or limited vision, in the sense that the
whole space is not perceivable by a single robot. Those are variants that are taken care of in the
function rather than in the datatype definition directly.

Bounded accuracy can be obtained by rounding values in the configuration to the adequate
level before entering them in the observation. It is for example possible to introduce noise, or
even map actual locations to an underlying discrete version of the space, where robots perform
their computations.

Limited perception is obtained by deleting from a “total” observation the robots that are
out of range for the observer under consideration. Note the use of the internal state, given as
a parameter, in that case where location and range of detection are at play to determine the
observable ball.

5.3.2.3 Colours, memory

In the robots with lights variant, robots are equipped with coloured lights that they can turn on
and off. Colours can have a dramatic impact on possibility results, as they introduce a form of
communication and, when self-perceived, a certain kind of memory.

Let us consider that the observation for a variant without colours is, say, a multiset of n-
tuples (location, id, etc.). Adding colours to that variant basically consists in adding the colour
information to that observation, that is considering a multiset of n + 1-tuples including the colour.
An additional tuple that represents the observing robot itself must be added if it can detect its
own colour. It must be absent from the observation otherwise, as it introduces some memorized
information about the robot’s previous state.

Should robots be endowed with unbounded memory, being able to remember all previous
observations for example, adding the list of previous observations as an internal state in the
definition of the robots suffices. The relevant information from this list would then be included in
the observation by obs_from_config.

5.4 Formal Parameters of the model

Figure 6 shows all the parameters needed to instantiate a particular model. The main parameters
are:

the location and more generally the State of the robot;
the observation of the robot;
the characterization of a demonic_action;
the way the robots move (update_function), given the decisions of the robot and of the
demon.

These parameters are themselves parameterized by types (Names, etc).

6 Examples

Examples provided in this section contain only a small subset of certified results obtained with
the Pactole framework. For completeness, we summarize published results based on Pactole
in Table 1.

P. Courtieu, L. Rieg, S. Tixeuil, and X. Urbain 02:25

State

Location,state

+get_location

demonic_action

(Names, TframeChoice, TrobotChoice, TactiveChoice)

+activate: ident → bool
+relocate: config → B → state
+change_frame: config → G → Tframe
+chose_update: config → G → TrobotChoice → TactiveChoice

update_function

Names TframeChoice TrobotChoice
TactiveChoice

+update

Observation

Names,observation

+obs_from_config: configuration → state → observation
+obs_is_ok: observation→ configuration → state → Prop

Model

+round:
protocol
→ demonic_action
→ config
→ config

Figure 6 Parameters needed for a model.

6.1 Gathering
Robotic swarms are mostly a problem-driven domain, and as such focus on a few paradigmatic
problems, some being fundamental, as for instance Gathering. This problem has been extensively
studied, in particular by Principe [63], and in a formal setting by Balabonski et al. [10].

In its commonly shared definition, solving Gathering consists in having, within finite time, all
correct (non-Byzantine) robots to stand on the same location, unknown beforehand, and to stay
there indefinitely.

To describe Gathering formally, one has to define static (depending only on the configuration)
and dynamic (depending on the demon) properties characterizing:
1. a configuration with all correct robots located at the same position, say p,
2. an execution with all correct robots staying at the same position indefinitely,
3. an execution consisting of a finite number of evolution steps (the actual gathering movements),

followed by what is an execution fulfilling the description of item 2.

The first item is easily modelled by a definition gathered_at stating that, given a configuration
c and a location p, for any robot identifier, if that robot is correct, then its location is p in c.

Definition gathered_at (p : location) (c : configuration) : Prop :=
∀ id , good id → get_location (c id) = p .

The second item characterizes an execution e with a location p: at each step in e, that is for
each configuration c in e,15 gathered_at p c holds. Let us call this property of p and e: Gather
p e.

15 Recall that executions are streams of configurations, so that a property P on the head of a stream e must be
projected by Stream.instant P e.

LITES

02:26 Swarms of Mobile Robots: Towards Versatility with Safety

Table 1 Certified results based on Pactole

Problem Type of result Setting References LoC

Framework
Core All 1 000
Spaces R, R2, rings, grids, graphs 5 176
Observation multiset, sets 626

Gathering
Impossibility R, R2, SSYNC [23] 1 109
Correctness R, R2, not bivalent, SSYNC [24] 2 307
Correctness R2, FSYNC, flexible [11] 609

Convergence Impossibility R, 1/3 Byzantine [6] 578
Correctness R, FSYNC 170

Exploration Impossibility Ring, FSYNC, n|k [12] 474
with stop Necessary condition Ring, FSYNC 203
Life-line Correctness R2, FSYNC [8, 9] 1592

Model equivalence Graph, ASYNC [7] 1187
Model equivalence ASYNC, flexible/rigid 275

Definition Gather (p : location) (e : execution) : Prop :=
Stream . forever (Stream . instant (gathered_at p)) e .

The third item states a location p exists such that the Gather p status is reached in finite time
for an execution e. WillGather e is directly an inductive property over streams, that is holding
from a point in the stream accessible/reachable in finite time.

Definition WillGather (e : execution) : Prop :=
Stream . eventually (fun ex ⇒ ∃ p , Gather p ex) e .

A protocol r achieves Gathering for a demon d if from any starting configuration c, all correct
robots are eventually gathered forever in the execution obtained from r and d, that is :

Definition FullSolGathering r d : Prop :=
∀ c , WillGather (execute r d c) .

Expressing now that a given protocol r is a solution to Gathering is simply stating that for
every demon d, FullSolGathering r d holds.16

Conversely, expressing that Gathering is unsolvable (under certain assumptions) is simply
stating that for any protocol r, it does not hold that r solves Gathering for every demon.

6.1.1 A model where gathering is proven impossible
In this section we give an example of a model where gathering is proved impossible. This is a well
known fact [65, 63], of which a generalized version has been formally proved [23].

Instantiating the model

Let us have an arbitrary even number of robots, say n, of which none is Byzantine, moving on the
Euclidean plane (note the use of Variable and Hypothesis for parameters left abstract).

16 This can be constrained to demons fulfilling the assumptions of the considered variant: synchronicity, fairness,
etc.).

P. Courtieu, L. Rieg, S. Tixeuil, and X. Urbain 02:27

Variable n : nat .
Hypothesis even_nG : Nat .Even n .
Definition MyRobots : Names := Robots n 0 .
Definition Loc : Location := make_Location R2 .

Movements are rigid (that is: robots always reach their destination before the next round).
No demon interference is applied on robot’s choice, and all operations deal with locations only:

Definition rchoice : Trobotchoice := location .
Definition state : State location := OnlyLocation .
Definition dchoice : Tactivechoice := unit .
Instance UpdFun : update_function := RigidUpdate .

Robots have multiplicity detection but cannot distinguish one robot from another. To model
this limitation in sensing capabilities, we define the observation of a robot as a multiset of
locations: the multiplicity of a location p gives the number of robots present at p, but robots
are not identifiable. We give here the instantiation of the Observation model parameter. It is a
record containing:
(1) the logical definition of what the observation of a configuration must be: obs_is_ok, which is

what is used in future proofs;
(2) the definition of the function obs_from_config that computes the observation, from the

configuration, and that is used in round (see figure 5)
(3) the proof of correctness of obs_from_config with reference to the characteristic property

obs_is_ok.

Definition multiset_observation : Observation := { |
observation := multiset location;
(* Characteristic property of the observation of a config. *)
obs_is_ok obs (c :config) st :=

∀ loc , multiplicity obs loc
= countA_occ loc (map c MyRobots);

(* Function computing the observation from config *)
obs_from_config c st := make_multiset (map c MyRobots) ;
(* Proof that obs_from_config satisfies characteristic property *)
obs_from_config_spec c st : obs_is_ok (obs_from_config c st) c st :=

. . .
|} .

Note that in this example, the assumptions on the sensors are completely global, unrelated to the
internal state of the observer. Thus, obs_from_config does not use this state, even though it
receives it as a parameter.

Stating the result

We call a position invalid if all robots are on two towers of the same height, that is: evenly
distributed on exactly two distinct locations. Such a position is known as bivalent.

Definition invalid (config : configuration) :=
∃ pt1 pt2 : location , pt1 =/= pt2

∧ multiplicity pt1 (obs_from_config config origin) = nG / 2
∧ multiplicity pt2 (obs_from_config config origin) = nG / 2 .

LITES

02:28 Swarms of Mobile Robots: Towards Versatility with Safety

The final lemma states that for any protocol, if one starts in an invalid configuration then
there exists a demon that makes the protocol fail, i.e. that prevents the system to reach a gathered
position.
Theorem noGathering : ∀ r : protocol , ∀ c : configuration ,
invalid c →

∃ d , SSYNC d ∧ Fair d ∧ ¬ WillGather (execute r d c) .

A remark on the dual property

Adding as a condition on the initial configuration that it is not invalid (not bivalent) suffices
to get a universal algorithm solving Gathering. Developed in Pactole, the solution given by
Courtieu et al. [24] uses the exact same specifications of the model and the environment, thus
eliminating any risk of shift, and closing the problem under those assumptions: Fair-SSYNC
Gathering of oblivious rigid anonymous robots in R2 is impossible, unless the initial configuration
is not bivalent, in which case a protocol is proven correct.

6.1.2 A model where gathering is proven possible
It is however possible to achieve gathering when different capabilities for sensors are assumed. For
the sake of the example, we assume now, as in the works of Balabonski et al. [11], that sensors
cannot detect multiplicity. It should be stressed here that the formal definition of the problem is
strictly the same as before, preventing any shift or bias in its definition.

Instantiating the model

Let us have an arbitrary number n (more than 1) of robots (0 Byzantine) moving on the Euclidean
plane.
Variable n : nat .
Hypothesis H_nG : n >= 2 .
Definition MyRobots : Names := Robots n 0 .
Definition Loc : Location := make_Location R2 .

Movements are flexible (i.e. robots may not reach their destination before the next round).
Let us have an arbitrary δ representing the minimal distance (in the global reference) a robot
moves between two rounds, unless its destination is attained. The only choice made by the demon
after a robot’s decision is the ratio of the path toward its target the robot actually reaches.
Variable δ : R .
Definition ratio : Tactivechoice := {x : R | 0 ≤ x ≤ 1} .
Definition rchoice : Trobotchoice := path location .
Definition FlexChoice : update_choice := Flexible . OnlyFlexible .
Instance UpdFun : update_function rchoice location ratio := FlexibleUpdate δ .

As robots cannot detect multiplicity, observations may be reduced to a set of (inhabited)
positions, as remarked in section 5.3.2.1.
Definition set_observation : Observation := { |

observation := set location;
obs_is_ok s c pt := ∀ l , In l s ↔ In l (map c MyRobots);
obs_from_config c pt := make_set (map c MyRobots);
obs_from_config_spec c st : obs_is_ok (obs_from_config c st) c st :=

. . .
|} .

P. Courtieu, L. Rieg, S. Tixeuil, and X. Urbain 02:29

Stating the result

The main theorem of Balabonski et al. [11] states that the protocol ffgatherR2, given below,
solves the gathering for any fully synchronous demon and any starting configuration.

Definition ffgatherR2_pgm (s : observation) : path :=
paths_in_R2 (isobarycenter (elements s)) .

Theorem FSGathering_in_R2 :
∀ d , δ > 0 → FSYNC d → FullSolGathering ffgatherR2 d .

And with strong detection of multiplicity?

The framework is generic enough to provide also a formal certification for a result by Cohen and
Peleg [20, 21] when robot sensors are this time endowed with detection of multiplicity. The only
noticeable difference in the two approaches is the definition of the observation: a multiset for
Cohen and Peleg’s, and a set for Balabonski et al.’s. The proof argument is similar, and only a
few technical steps to take into account the new type for observation are required [11].

6.2 Exploration
An interesting benchmarking problem when dealing with robots on graphs is the one of exploration,
in particular with stop. Exploration with stop (also known as Terminating Exploration) requires
to ensure that:
1. all nodes are visited by a robot at some point during the execution, and
2. all robots eventually stop moving once all nodes have been visited.

There are thus 2 properties to formalize: for the space to be explored, and for the system to
stop evolving.

For a node, say v, being eventually visited (inhabited) by a robot is simply an inductive (that
is finitely reachable) property on the execution, say e: at some accessible point along e, the
configuration returns a state displaying v as the current location.17 This is a basic property about
streams.

Definition Will_be_visited v e :=
Stream . eventually (Stream . instant (is_visited v)) e .

The second property, the halting, is built in three steps:
firstly, one defines what is it for an execution to have two consecutive identical configurations,
namely that it stalls. It is simply a call to the equivalence relation on configurations

Definition Stall e :=
Config .eq (Stream .hd e) (Stream .hd (Stream .tl e)) .

secondly, the stall has to hold indefinitely

Definition Stopped e := Stream . forever Stall e .

and finally the point where the execution is Stopped is reached within a finite number of steps;
this is property Will_stop.

17 Recall that, an execution being a stream of configurations, a property P on the head of a stream e is projected
by Stream.instant P e.

LITES

02:30 Swarms of Mobile Robots: Towards Versatility with Safety

Definition Will_stop e := Stream . eventually Stopped e .

Let execute r d c be the execution obtained by running a protocol r with a demon d from an
initial configuration c. Protocol r achieves Exploration with stop for a demon d if from every initial
configuration c, Will_be_visited v (execute r d c) holds for every node v (the exploration part),
AND this execution stops, that is Will_stop (execute r d c) holds.

Definition FullSolExplorationStop r d :=
∀ c , (∀ v , Will_be_visited v (execute r d c))

∧ Will_stop (execute r d c) .

Similarly to what has been done for Gathering, expressing that a given protocol r is a solution
to Exploration with stop is simply stating that for every demon d, FullSolExplorationStop r

d holds.18

Conversely, expressing that the problem is unsolvable (under certain assumptions) is simply
stating that for any protocol r, it does not hold that r is a solution.

6.2.1 A model where Exploration with stop is proven impossible
We want to prove that Exploration with stop on a ring is not possible if the number of robots
divides the size of the ring. We proceed along the lines of Balabonski et al. [12].

Instantiating the model

A ring is a special case of finite graph, already defined by the function Ring taking as input the
size, which must be an integer greater than 1.

Variable ring_size : nat .
Hypothesis ring_size_spec : 1 < ring_size .
Instance Ring_space : FiniteGraph := Ring ring_size ring_size_spec .

Let us have an arbitrary number kG of robots (of which none is Byzantine) moving on our
ring. We assume that kG divides the size ring_size of the ring and remove two corner cases:
kG = 1 and kG = ring_size.

Variable kG : nat .
Instance Robots : Names := Robots kG 0 .
Hypothesis kdn : ring_size mod kG = 0 .
Hypothesis k_bounds : 1 < kG < ring_size .

As in the first example, robots contain no more information than their locations, robots’
observations are the multiset of locations, and the demon does not interfere with the robot’s
choice, that is, movements are rigid.

Definition state : State location := OnlyLocation .
Instance RobotObs : Observation := multiset_observation .
Definition dchoice : Tactivechoice := unit .

18 That is where constraints on the demon should appear, of the form for all demons verifying such given
property, FullSolExplorationStop r d holds, as detailed in Section 6.2.1.

P. Courtieu, L. Rieg, S. Tixeuil, and X. Urbain 02:31

The local frame is the one described in the introductory examples of Section 3.3, which amounts to
a translation along the ring (relative locations) and potentially a symmetry (for chirality change).

The difference with these earlier examples is that robots do not choose a new node of the ring
to move to, they only pick a direction. The update function is still rigid, and it simply applies the
function move_along that returns the node reached by following the chosen direction from the
robot’s current location.

Inductive direction := Forward | Backward | SelfLoop .
Definition rchoice : Trobotchoice := direction .
Instance UpdFun : update_function := move_along .

Stating the result

The final theorem states that for any protocol r, there is a FSYNC demon d against which r does
not solve exploration with stop, that is, there exists a configuration c such that the execution
following r and d starting from c either does not terminate or does not explore the ring.

Theorem no_exploration :
∀ r : protocol , ∃ d : demon , FSYNC d ∧ ¬ FullSolExplorationStop r d .

7 Related work

Numerous formalizations and verification tools have been designed and used to account for cor-
rectness in distributed computing. The formal treatment of mobile robotic swarms nevertheless
requires specific tooling (w.r.t. “classical” distributed computing), as there is no direct transforma-
tion of “classical” shared memory or message passing models into models suitable to study mobile
robotic entities. A naive transformation from the shared memory model would be to consider that
the “values” shared by the robots are their positions, that observing other robots’s positions is
similar to reading a shared variable, and that moving to a new position is similar to writing a new
value in a shared variable. However, some aspects prevent formal solutions for the shared memory
model to also apply to the mobile robots model.

First, the notion of “local observation” is quite specific to mobile robots: a robot has only
access to a degraded view of its neighbourhood (according to its visual sensors), and the view
is obtained in its local (i.e. ego centred) coordinate system. So, the same robot may appear at
two different positions at the exact same time in the execution (by two different robots that have
different coordinate systems), and, in the same execution, the same robot may appear or not
appear at a given observing robot (depending on the location and sensing abilities of the observing
robot). Second, in the more interesting ASYNC model, a robot can observe other robots while
they move, resulting in getting any intermediate position the observed robot may reach during
its movement. This is a strictly weaker setting than the classical “atomic” and “regular” shared
memory registers popularized by Lamport [52, 53] (where reads may only return the “before-write”
or the “after-write” value), and yet strictly stronger than the classical “safe” register [52, 53]
(where any value in the domain could be returned by a read) if we make the reasonable assumption
that robots cannot cover an infinite surface in a single move. Last: the position of a robot may
belong to a continuous (dense) set, while a shared register is typically a discrete value.

This last concern makes model checking mobile robot algorithms quite difficult. If one wants a
direct translation of the Suzuki and Yamashita model, one has to consider discrete (i.e. graphs)
locations [14, 33, 35]. While this approach is suitable for checking problem instances, it cannot
scale as when the number of locations becomes a parameter, interesting properties become

LITES

02:32 Swarms of Mobile Robots: Towards Versatility with Safety

undecidable [64], even if the graph representing locations is as simple as a ring. Hence, the current
hope on the model-checking side is to consider more abstract models, in the spirit of the recent
approach by Defago et al. [28]. However, more abstract models yield two significant issues. First,
models are likely to target a single problem rather than being generic, with no hint earned as
how to handle other problems in the same setting. Second, one has to prove that properties
obtained mechanically by model-checking for the abstract model echo in interesting properties for
the original model (in the approach of Defago et al. [28], this part is handwritten, hindering a
fully mechanized checkability of the approach).

From the methodology perspective, Pactole is close to Ivy [61, 58] and LoE [57]: they are
based on a master model designed in a proof assistant and a methodology is designed to prove
specific protocols in these model.

8 Conclusion

The mathematical description of mobile robotic swarms by Suzuki and Yamashita proved to be
a fertile ground19 of research, with many model variants developed throughout the years, and
many applicative domains envisioned by research teams all over the world (see the book edited by
Flocchini et al. [37] for a recent survey).

When robotic swarm protocols are developed for critical applications, with lives at stake,
reasoning about the model requires the foundations of a formal framework and methodology aimed
at mobile robot protocol designers, to enable the certification of tentative robot protocols for any
property related to their spatio-temporal behaviour that is useful in practice, or to demonstrate
the impossibility of such designs.

A first step in that direction has been proposed with the Pactole framework, which allows so
far working formally with:

Euclidean spaces with geometrical constructs (barycentres, smallest enclosing circles, etc.,
together with their relevant properties) ; Graphs, either discrete or with continuous movement
along the edges,
Rigid/flexible moves, SSYNC/FSYNC/ASYNC, various properties on demons (flavours of
fairness), equivalences between demons, and means for the theoretical study of their lattice,
Common notions of observation depending on the capabilities of robots,

including many cases studies, e.g. exploration, gathering, convergence. . .
Pactole is publicly available to the community at https://pactole.liris.cnrs.fr.
Three main axes of development are worth considering.
The first one addresses the issue of probabilistic behaviours. Probabilistic arguments are

indeed commonly used in recent results regarding mobile robotic swarms, e.g. to break symmetries
in configurations [18, 17, 68]. Probabilistic behaviours may also occur outside protocols, in the
environment. Including probabilistic behaviours on the autonomous robot side (that is, robots are
able to take actions based on some probabilistic source) and on the environment side (that is, the
scheduling decisions are based on some probability distribution) in the Pactole framework is
thus an important task.

The second one is to ensure that certified developments remain accessible to a non-specialist
of formal proof, and to ease the proof burden as much as possible. This amounts to building
manageable libraries with clear independent modules, definitions that can be shared and proof
steps that can be reused. Fundamental results must be gathered into a formal library, with each
relevant notion properly specified in the formal model, and each reusable property receiving a
corresponding formal proof.

19 Masafumi Yamashita was awarded the 2016 Prize for Innovation in Distributed Computing for this seminal
work.

https://pactole.liris.cnrs.fr

P. Courtieu, L. Rieg, S. Tixeuil, and X. Urbain 02:33

Automation is expected wherever possible in this building process. Certifying properties of an
algorithm in a proof assistant amounts to developing mechanical techniques matching the proof
structures brought to the fore. Developing automation in that context is two-fold. On the one
hand it involves high-level tactics to relieve the user from tedious and repetitive proof steps. On
the other hand it must help in exhibiting certain properties and obtaining as a result a formal
proof of it. In doing this, inputs from model checking approaches are precious due to their capacity
to exhibit counter-examples, thus helping the developer, and to discharge automatically some base
cases prior to induction steps.

Finally, it is fundamental to provide the prototype of an environment for proof and development
of trustworthy distributed protocols for mobile robots, by linking together the results obtained
with reference to the formal model, libraries, proof automation and management techniques, etc.
Such an environment should allow the user to specify the algorithm, and to certify its properties,
using generated verification conditions and proof constructs with the help of decision procedures.
To reach this goal, one key challenge is to devise an annotation language rich enough to specify
properties in the scope of our studies, but still convenient to use by designers of robot protocols.
To ensure protocol validation, it must also integrate proof mechanisms allowing both assisted or
automated certification, thus defining a complete certification chain that should be easy enough
to use, even for a non specialist.

References
1 Jordan Adamek, Mikhail Nesterenko, and Sébas-

tien Tixeuil. Evaluating and optimizing stabilizing
dining philosophers. In 11th European Dependable
Computing Conference, EDCC 2015, Paris, France,
September 7-11, 2015, pages 233–244. IEEE, 2015.

2 José Bacelar Almeida, Manuel Barbosa, Endre
Bangerter, Gilles Barthe, Stephan Krenn, and San-
tiago Zanella Béguelin. Full Proof Cryptography:
Verifiable Compilation of Efficient Zero-Knowledge
Protocols. In ACM Conference on Computer and
Communications Security, pages 488–500, 2012.

3 Karine Altisen, Pierre Corbineau, and Stéphane De-
vismes. A framework for certified self-stabilization.
In Elvira Albert and Ivan Lanese, editors, Formal
Techniques for Distributed Objects, Components,
and Systems - 36th IFIP WG 6.1 International
Conference, FORTE 2016, Held as Part of the 11th
International Federated Conference on Distributed
Computing Techniques, DisCoTec 2016, Heraklion,
Crete, Greece, June 6-9, 2016, Proceedings, volume
9688 of Lecture Notes in Computer Science, pages
36–51. Springer-Verlag, 2016.

4 Krzysztof R. Apt and Dexter C. Kozen. Limits
for automatic verification of finite-state concurrent
systems. Information Processing Letters, 22(6):307–
309, 1986.

5 The Coq Proof Assistant. https://coq.inria.fr/.
6 Cédric Auger, Zohir Bouzid, Pierre Courtieu, Sé-

bastien Tixeuil, and Xavier Urbain. Certified Im-
possibility Results for Byzantine-Tolerant Mobile
Robots. In Teruo Higashino, Yoshiaki Katayama,
Toshimitsu Masuzawa, Maria Potop-Butucaru, and
Masafumi Yamashita, editors, Stabilization, Safety,
and Security of Distributed Systems - 15th Inter-
national Symposium (SSS 2013), volume 8255 of
Lecture Notes in Computer Science, pages 178–186,
Osaka, Japan, November 2013. Springer-Verlag.

7 Thibaut Balabonski, Pierre Courtieu, Robin Pelle,
Lionel Rieg, Sébastien Tixeuil, and Xavier Urbain.
Continuous vs. discrete asynchronous moves: A
certified approach for mobile robots. In Mo-
hamed Faouzi Atig and Alexander A. Schwarzmann,
editors, Networked Systems - 7th International
Conference, (NETYS 2019), Revised Selected Pa-
pers, volume 11704 of Lecture Notes in Computer
Science, pages 93–109, Marrakech, Morocco, June
2019. Springer-Verlag.

8 Thibaut Balabonski, Pierre Courtieu, Robin Pelle,
Lionel Rieg, Sébastien Tixeuil, and Xavier Urbain.
Brief Announcement: Computer Aided Formal
Design of Swarm Robotics Algorithms. In Colette
Johnen and Stefan Schmid, editors, Stabilization,
Safety, and Security of Distributed Systems - 23th
International Symposium, (SSS 2021), Virtual con-
ference, November 2021.

9 Thibaut Balabonski, Pierre Courtieu, Robin Pelle,
Lionel Rieg, Sébastien Tixeuil, and Xavier Urbain.
Computer aided formal design of swarm robotics
algorithms. CoRR, abs/2101.06966, 2021.

10 Thibaut Balabonski, Pierre Courtieu, Lionel Rieg,
Sébastien Tixeuil, and Xavier Urbain. Certified
gathering of oblivious mobile robots: Survey of re-
cent results and open problems. In Laure Petrucci,
Cristina Seceleanu, and Ana Cavalcanti, editors,
Critical Systems: Formal Methods and Automated
Verification - Joint 22nd International Workshop
on Formal Methods for Industrial Critical Systems
- and - 17th International Workshop on Automated
Verification of Critical Systems, (FMICS-AVoCS
2017), volume 10471 of Lecture Notes in Computer
Science, pages 165–181, Turin, Italy, September
2017. Springer-Verlag.

11 Thibaut Balabonski, Amélie Delga, Lionel Rieg,
Sébastien Tixeuil, and Xavier Urbain. Synchron-
ous gathering without multiplicity detection: A

LITES

https://coq.inria.fr/

02:34 Swarms of Mobile Robots: Towards Versatility with Safety

certified algorithm. Theory of Computing Sys-
tems, pages 200–218, 2019. https://doi.org/10.1007/
s00224-017-9828-z.

12 Thibaut Balabonski, Robin Pelle, Lionel Rieg, and
Sébastien Tixeuil. A foundational framework for
certified impossibility results with mobile robots
on graphs. In Paolo Bellavista and Vijay K. Garg,
editors, Proceedings of the 19th International Con-
ference on Distributed Computing and Networking,
ICDCN 2018, Varanasi, India, January 4-7, 2018,
pages 5:1–5:10. ACM, 2018.

13 Andrej Bauer. How to review formalized math-
ematics. http://math.andrej.com/2013/08/19/how-to-
review-formalized-mathematics/, August 2013.

14 Béatrice Bérard, Pascal Lafourcade, Laure Millet,
Maria Potop-Butucaru, Yann Thierry-Mieg, and Sé-
bastien Tixeuil. Formal verification of mobile robot
protocols. Distributed Computing, 29(6):459–487,
2016.

15 Yves Bertot and Pierre Castéran. Interactive The-
orem Proving and Program Development. Coq’Art:
The Calculus of Inductive Constructions. Texts
in Theoretical Computer Science. Springer-Verlag,
2004.

16 François Bonnet, Xavier Défago, Franck Petit,
Maria Potop-Butucaru, and Sébastien Tixeuil. Dis-
covering and assessing fine-grained metrics in robot
networks protocols. In 33rd IEEE International
Symposium on Reliable Distributed Systems Work-
shops, SRDS Workshops 2014, Nara, Japan, Octo-
ber 6-9, 2014, pages 50–59. IEEE, 2014.

17 Quentin Bramas and Sébastien Tixeuil. Brief An-
nouncement: Probabilistic Asynchronous Arbitrary
Pattern Formation. In George Giakkoupis, editor,
35th ACM Symposium on Principles of Distributed
Computing (PODC 2016), pages 443–445, Chicago,
IL, USA, July 2016. ACM.

18 Quentin Bramas and Sébastien Tixeuil. The Ran-
dom Bit Complexity of Mobile Robots Scattering.
International Journal of Foundations of Computer
Science, 28(2):111–134, 2017.

19 Pierre Castéran, Vincent Filou, and Mohamed Mos-
bah. Certifying Distributed Algorithms by Embed-
ding Local Computation Systems in the Coq Proof
Assistant. In Adel Bouhoula and Tetsuo Ida, ed-
itors, Symbolic Computation in Software Science
(SCSS’09), 2009.

20 Reuven Cohen and David Peleg. Robot Conver-
gence via Center-of-Gravity Algorithms. In Ras-
tislav Kralovic and Ondrej Sýkora, editors, Struc-
tural Information and Communication Complexity
- 11th International Colloquium (SIROCCO 2004),
volume 3104 of Lecture Notes in Computer Science,
pages 79–88, Smolenice Castle, Slowakia, June 2004.
Springer-Verlag.

21 Reuven Cohen and David Peleg. Convergence Prop-
erties of the Gravitational Algorithm in Asynchron-
ous Robot Systems. SIAM Journal of Computing,
34(6):1516–1528, 2005.

22 Thierry Coquand and Christine Paulin-Mohring.
Inductively Defined Types. In Per Martin-Löf and
Grigori Mints, editors, International Conference on
Computer Logic (Colog’88), volume 417 of Lecture
Notes in Computer Science, pages 50–66. Springer-
Verlag, 1990.

23 Pierre Courtieu, Lionel Rieg, Sébastien Tixeuil,
and Xavier Urbain. Impossibility of Gathering,
a Certification. Information Processing Letters,
115:447–452, 2015.

24 Pierre Courtieu, Lionel Rieg, Sébastien Tixeuil,
and Xavier Urbain. Certified universal gathering al-
gorithm in R2 for oblivious mobile robots. In Cyril
Gavoille and David Ilcinkas, editors, Distributed
Computing - 30th International Symposium, (DISC
2016), volume 9888 of Lecture Notes in Computer
Science, pages 187–200, Paris, France, September
2016. Springer-Verlag.

25 Shantanu Das, Paola Flocchini, Giuseppe Prencipe,
and Nicola Santoro. Forming sequences of patterns
with luminous robots. IEEE Access, 8:90577–90597,
2020.

26 Shantanu Das, Paola Flocchini, Giuseppe Pren-
cipe, Nicola Santoro, and Masafumi Yamashita.
Autonomous mobile robots with lights. Theor.
Comput. Sci., 609:171–184, 2016.

27 Xavier Défago, Adam Heriban, Sébastien Tixeuil,
and Koichi Wada. Brief announcement: Model
checking rendezvous algorithms for robots with
lights in euclidean space. In Jukka Suomela, editor,
33rd International Symposium on Distributed Com-
puting, DISC 2019, October 14-18, 2019, Budapest,
Hungary, volume 146 of LIPIcs, pages 41:1–41:3.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2019.

28 Xavier Défago, Adam Heriban, Sébastien Tixeuil,
and Koichi Wada. Using model checking to formally
verify rendezvous algorithms for robots with lights
in euclidean space. In International Symposium on
Reliable Distributed Systems, SRDS 2020, Shang-
hai, China, September 21-24, 2020, pages 113–122.
IEEE, 2020.

29 Xavier Défago, Maria Potop-Butucaru, and Sébas-
tien Tixeuil. Fault-tolerant mobile robots. In Paola
Flocchini, Giuseppe Prencipe, and Nicola Santoro,
editors, Distributed Computing by Mobile Entit-
ies, Current Research in Moving and Computing,
volume 11340 of Lecture Notes in Computer Sci-
ence, pages 234–251. Springer, 2019.

30 Xavier Défago and Samia Souissi. Non-uniform
circle formation algorithm for oblivious mobile ro-
bots with convergence toward uniformity. Theor.
Comput. Sci., 396(1-3):97–112, 2008.

31 Carole Delporte-Gallet, Hugues Fauconnier, Yan
Jurski, François Laroussinie, and Arnaud Sangnier.
Towards synthesis of distributed algorithms with
SMT solvers. In Mohamed Faouzi Atig and Alex-
ander A. Schwarzmann, editors, Networked Sys-
tems - 7th International Conference, NETYS 2019,
Marrakech, Morocco, June 19-21, 2019, Revised
Selected Papers, volume 11704 of Lecture Notes in
Computer Science, pages 200–216. Springer, 2019.

32 Ha Thi Thu Doan, François Bonnet, and Kazuhiro
Ogata. Model checking of a mobile robots per-
petual exploration algorithm. In Shaoying Liu,
Zhenhua Duan, Cong Tian, and Fumiko Nagoya,
editors, Structured Object-Oriented Formal Lan-
guage and Method - 6th International Workshop,
SOFL+MSVL 2016, Tokyo, Japan, November 15,
2016, Revised Selected Papers, volume 10189 of
Lecture Notes in Computer Science, pages 201–219,
2016.

https://doi.org/10.1007/s00224-017-9828-z
https://doi.org/10.1007/s00224-017-9828-z
http://math.andrej.com/2013/08/19/how-to-review-formalized-mathematics/
http://math.andrej.com/2013/08/19/how-to-review-formalized-mathematics/

P. Courtieu, L. Rieg, S. Tixeuil, and X. Urbain 02:35

33 Ha Thi Thu Doan, François Bonnet, and Kazuhiro
Ogata. Model checking of robot gathering. In James
Aspnes and Pascal Felber, editors, Principles of
Distributed Systems - 21th International Confer-
ence (OPODIS 2017), Leibniz International Pro-
ceedings in Informatics (LIPIcs), Lisbon, Portugal,
December 2017. Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik.

34 Ha Thi Thu Doan, Kazuhiro Ogata, and François
Bonnet. Specifying a distributed snapshot al-
gorithm as a meta-program and model checking it
at meta-level. In Kisung Lee and Ling Liu, editors,
37th IEEE International Conference on Distrib-
uted Computing Systems, ICDCS 2017, Atlanta,
GA, USA, June 5-8, 2017, pages 1586–1596. IEEE
Computer Society, 2017.

35 Ha Thi Thu Doan, Adrián Riesco, and Kazuhiro
Ogata. An environment for specifying and model
checking mobile ring robot algorithms. In Mohsen
Ghaffari, Mikhail Nesterenko, Sébastien Tixeuil,
Sara Tucci, and Yukiko Yamauchi, editors, Stabiliz-
ation, Safety, and Security of Distributed Systems
- 21st International Symposium, SSS 2019, Pisa,
Italy, October 22-25, 2019, Proceedings, volume
11914 of Lecture Notes in Computer Science, pages
111–126. Springer, 2019.

36 Fathiyeh Faghih, Borzoo Bonakdarpour, Sébastien
Tixeuil, and Sandeep S. Kulkarni. Automated syn-
thesis of distributed self-stabilizing protocols. Lo-
gical Methods in Computer Science, 14(1), 2018.

37 Paola Flocchini, Giuseppe Prencipe, and Nicola
Santoro, editors. Distributed Computing by Mobile
Entities, volume 11340 of Lecture Notes in Com-
puter Science, Theoretical Computer Science and
General Issues. Springer Nature, 2019.

38 Paola Flocchini, Giuseppe Prencipe, Nicola Santoro,
and Peter Widmayer. Gathering of asynchronous
oblivious robots with limited visibility. In Afonso
Ferreira and Horst Reichel, editors, STACS 2001,
18th Annual Symposium on Theoretical Aspects
of Computer Science, Dresden, Germany, Febru-
ary 15-17, 2001, Proceedings, volume 2010 of Lec-
ture Notes in Computer Science, pages 247–258.
Springer, 2001.

39 Paola Flocchini, Giuseppe Prencipe, Nicola San-
toro, and Peter Widmayer. Pattern formation by
anonymous robots without chirality. In Francesc
Comellas, Josep Fàbrega, and Pierre Fraigniaud,
editors, SIROCCO 8, Proceedings of the 8th In-
ternational Colloquium on Structural Information
and Communication Complexity, Vall de Núria,
Girona-Barcelona, Catalonia, Spain, 27-29 June,
2001, volume 8 of Proceedings in Informatics, pages
147–162. Carleton Scientific, 2001.

40 Paola Flocchini, Giuseppe Prencipe, Nicola Santoro,
and Peter Widmayer. Arbitrary pattern forma-
tion by asynchronous, anonymous, oblivious robots.
Theoretical Computer Science, 407(1-3):412–447,
2008.

41 Georges Gonthier. Formal Proof—The Four-Color
Theorem. Notices of the AMS, 55(11):1382–1393,
December 2008.

42 Georges Gonthier. Engineering Mathematics: the
Odd Order Theorem Proof. In Roberto Giaco-
bazzi and Radhia Cousot, editors, POPL, pages
1–2. ACM, 2013.

43 Rachid Guerraoui, Thomas A. Henzinger, Barbara
Jobstmann, and Vasu Singh. Model checking trans-
actional memories. In Rajiv Gupta and Saman P.
Amarasinghe, editors, Proceedings of the ACM SIG-
PLAN 2008 Conference on Programming Language
Design and Implementation, Tucson, AZ, USA,
June 7-13, 2008, pages 372–382. ACM, 2008.

44 Adam Heriban, Xavier Défago, and Sébastien
Tixeuil. Optimally gathering two robots. In Paolo
Bellavista and Vijay K. Garg, editors, Proceedings
of the 19th International Conference on Distrib-
uted Computing and Networking, ICDCN 2018,
Varanasi, India, January 4-7, 2018, pages 3:1–3:10.
ACM, 2018.

45 Adam Heriban and Sébastien Tixeuil. Mobile ro-
bots with uncertain visibility sensors. In Keren
Censor-Hillel and Michele Flammini, editors, Struc-
tural Information and Communication Complexity
- 26th International Colloquium, (SIROCCO 2019),
volume 11639 of Lecture Notes in Computer Sci-
ence, pages 349–352, L’Aquila, Italy, July 2019.
Springer-Verlag.

46 Taisuke Izumi, Tomoko Izumi, Sayaka Kamei, and
Fukuhito Ooshita. Randomized gathering of mobile
robots with local-multiplicity detection. In Rachid
Guerraoui and Franck Petit, editors, Stabilization,
Safety, and Security of Distributed Systems, 11th
International Symposium, SSS 2009, Lyon, France,
November 3-6, 2009. Proceedings, volume 5873 of
Lecture Notes in Computer Science, pages 384–398.
Springer, 2009.

47 Tomoko Izumi, Taisuke Izumi, Sayaka Kamei, and
Fukuhito Ooshita. Mobile robots gathering al-
gorithm with local weak multiplicity in rings. In
Boaz Patt-Shamir and Tínaz Ekim, editors, Struc-
tural Information and Communication Complexity,
17th International Colloquium, SIROCCO 2010,
Sirince, Turkey, June 7-11, 2010. Proceedings,
volume 6058 of Lecture Notes in Computer Sci-
ence, pages 101–113. Springer, 2010.

48 Gerwin Klein, June Andronick, Kevin Elphinstone,
Gernot Heiser, David Cock, Philip Derrin, Dham-
mika Elkaduwe, Kai Engelhardt, Rafal Kolanski,
Michael Norrish, Thomas Sewell, Harvey Tuch, and
Simon Winwood. seL4: Formal verification of an
operating system kernel. Communications of the
ACM, 53(6):107–115, 2010.

49 Igor Konnov, Helmut Veith, and Josef Widder. Who
is afraid of model checking distributed algorithms?
Unpublished to: CAV Workshop (EC)2, July 2012.

50 Philipp Küfner, Uwe Nestmann, and Christina
Rickmann. Formal Verification of Distributed Al-
gorithms - From Pseudo Code to Checked Proofs.
In Jos C. M. Baeten, Thomas Ball, and Frank S.
de Boer, editors, IFIP TCS, volume 7604 of Lecture
Notes in Computer Science, pages 209–224, Amster-
dam, The Netherlands, September 2012. Springer-
Verlag.

51 Sandeep S. Kulkarni, Borzoo Bonakdarpour, and
Ali Ebnenasir. Mechanical verification of automatic
synthesis of fault-tolerant programs. In Sandro
Etalle, editor, Logic Based Program Synthesis and
Transformation, 14th International Symposium,
LOPSTR 2004, Verona, Italy, August 26-28, 2004,
Revised Selected Papers, volume 3573 of Lecture

LITES

02:36 Swarms of Mobile Robots: Towards Versatility with Safety

Notes in Computer Science, pages 36–52. Springer,
2004.

52 Leslie Lamport. On interprocess communication.
part I: basic formalism. Distributed Comput.,
1(2):77–85, 1986.

53 Leslie Lamport. On interprocess communication.
part II: algorithms. Distributed Comput., 1(2):86–
101, 1986.

54 Leslie Lamport and Stephan Merz. Specifying and
verifying fault-tolerant systems. In Formal Tech-
niques in Real-Time and Fault-Tolerant Systems,
volume 863 of Lecture Notes in Computer Science,
pages 41–76. Springer-Verlag, 1994.

55 Xavier Leroy. A Formally Verified Compiler Back-
End. Journal of Automated Reasoning, 43(4):363–
446, 2009.

56 Assia Mahboubi. Checking machine-checked proofs.
https://project.inria.fr/coqexchange/checking-
machine-checked-proofs/, July 2017.

57 Vincent Rahli Mark Bickford, Robert L. Constable.
Logic of events, a framework to reason about distrib-
uted systems. In 2012 Languages for Distributed
Algorithms Workshop, Philadelphia, PA, 2012.

58 Kenneth L. McMillan and Oded Padon. Ivy: A
multi-modal verification tool for distributed al-
gorithms. In Shuvendu K. Lahiri and Chao Wang,
editors, Computer Aided Verification - 32nd In-
ternational Conference, CAV 2020, Los Angeles,
CA, USA, July 21-24, 2020, Proceedings, Part II,
volume 12225 of Lecture Notes in Computer Sci-
ence, pages 190–202. Springer, 2020.

59 Laure Millet, Maria Potop-Butucaru, Nathalie
Sznajder, and Sébastien Tixeuil. On the synthesis
of mobile robots algorithms: The case of ring gath-
ering. In Pascal Felber and Vijay K. Garg, ed-
itors, Stabilization, Safety, and Security of Dis-
tributed Systems - 16th International Symposium,
(SSS 2014), volume 8756 of Lecture Notes in Com-
puter Science, pages 237–251, Paderborn, Germany,
September 2014. Springer-Verlag.

60 Takashi Okumura, Koichi Wada, and Xavier Défago.
Optimal rendezvous l-algorithms for asynchronous
mobile robots with external-lights. In Jiannong
Cao, Faith Ellen, Luis Rodrigues, and Bernardo
Ferreira, editors, 22nd International Conference on
Principles of Distributed Systems, OPODIS 2018,
December 17-19, 2018, Hong Kong, China, volume
125 of LIPIcs, pages 24:1–24:16. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2018.

61 Oded Padon, Kenneth L. McMillan, Aurojit Panda,
Mooly Sagiv, and Sharon Shoham. Ivy: safety veri-
fication by interactive generalization. In Chandra
Krintz and Emery Berger, editors, Proceedings of
the 37th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, PLDI
2016, Santa Barbara, CA, USA, June 13-17, 2016,
pages 614–630. ACM, 2016.

62 Maria Potop-Butucaru, Nathalie Sznajder, Sébas-
tien Tixeuil, and Xavier Urbain. Formal methods
for mobile robots. In Paola Flocchini, Giuseppe
Prencipe, and Nicola Santoro, editors, Distributed
Computing by Mobile Entities, Current Research
in Moving and Computing, volume 11340 of Lec-
ture Notes in Computer Science, pages 278–313.
Springer, 2019.

63 Giuseppe Prencipe. Impossibility of gathering by
a set of autonomous mobile robots. Theoretical
Computer Science, 384(2-3):222–231, 2007.

64 Arnaud Sangnier, Nathalie Sznajder, Maria Potop-
Butucaru, and Sébastien Tixeuil. Parameterized
verification of algorithms for oblivious robots on
a ring. Formal Methods Syst. Des., 56(1):55–89,
2020.

65 Ichiro Suzuki and Masafumi Yamashita. Distrib-
uted Anonymous Mobile Robots: Formation of
Geometric Patterns. SIAM Journal of Computing,
28(4):1347–1363, 1999.

66 Giovanni Viglietta. Rendezvous of two robots with
visible bits. In Paola Flocchini, Jie Gao, Evangelos
Kranakis, and Friedhelm Meyer auf der Heide, ed-
itors, Algorithms for Sensor Systems - 9th Interna-
tional Symposium on Algorithms and Experiments
for Sensor Systems, Wireless Networks and Dis-
tributed Robotics, ALGOSENSORS 2013, Sophia
Antipolis, France, September 5-6, 2013, Revised
Selected Papers, volume 8243 of Lecture Notes in
Computer Science, pages 291–306. Springer-Verlag,
2013.

67 Vladimir Voevodsky. An experimental library of
formalized mathematics based on the univalent
foundations. Mathematical Structures in Computer
Science, 25(5):1278–1294, 2015.

68 Yukiko Yamauchi and Masafumi Yamashita. Ran-
domized Pattern Formation Algorithm for Asyn-
chronous Oblivious Mobile Robots. In Fabian Kuhn,
editor, Distributed Computing - 28th International
Symposium, (DISC 2014), volume 8784 of Lecture
Notes in Computer Science, pages 137–151, Austin,
USA, October 2014. Springer-Verlag.

https://project.inria.fr/coqexchange/checking-machine-checked-proofs/
https://project.inria.fr/coqexchange/checking-machine-checked-proofs/

Higher-Dimensional Timed and Hybrid Automata
Uli Fahrenberg #

EPITA Research and Development Laboratory (LRDE), France

Abstract
We introduce a new formalism of higher-dimen-
sional timed automata, based on Pratt and
van Glabbeek’s higher-dimensional automata and
Alur and Dill’s timed automata. We prove that
their reachability is PSPACE-complete and can
be decided using zone-based algorithms. We also
extend the setting to higher-dimensional hybrid
automata.

The interest of our formalism is in modeling
systems which exhibit both real-time behavior
and concurrency. Other existing formalisms
for real-time modeling identify concurrency
and interleaving, which, as we shall argue, is
problematic.

2012 ACM Subject Classification Theory of computation → Concurrency; Theory of computation →
Timed and hybrid models
Keywords and Phrases concurrency, real time, higher-dimensional automaton, timed automaton
Digital Object Identifier 10.4230/LITES.8.2.3
Acknowledgements The author acknowledges the support of the Chaire ISC : Engineering Complex
Systems and École polytechnique where most of this work was carried out. He is most grateful to Kim
G. Larsen and Eric Goubault for numerous interesting discussions on the subject of this paper.
Received 2020-08-04 Accepted 2022-01-28 Published 2022-12-07
Editor Alessandro Abate, Uli Fahrenberg, and Martin Fränzle
Special Issue Special Issue on Distributed Hybrid Systems

1 Introduction
In approaches to non-interleaving concurrency, more than one event may happen at the same
time. There is a multitude of formalisms for modeling and analyzing such concurrent systems,
e.g., Petri nets [47], event structures [46], configuration structures [58, 57], asynchronous transition
systems [8, 50], or more recent variations such as dynamic event structures [6] and Unravel
nets [16]. They all share the convention of differentiating between concurrent and interleaving
executions; using CCS notation [44], a|b ̸= a.b + b.a.

For modeling and analyzing embedded or cyber-physical systems, formalisms which use real
time are available. These include timed automata [5], time Petri nets [43], timed-arc Petri
nets [38], or various classes of hybrid automata [3]. Common for them all is that they identify
concurrent and interleaving executions; here, a|b = a.b + b.a.

We are interested in formalisms for real-time non-interleaving concurrency. Hence we would
like to differentiate between concurrent and interleaving executions and be able to model and
analyze real-time properties. Few such formalisms seem to be available in the literature. The
situation is perhaps best epitomized by the fact that there is a natural non-interleaving semantics
for Petri nets [34] which is also used in practice [22, 23], but almost all work on real-time extensions
of Petri nets [43, 38, 51, 53], including the popular tool TAPAAL,1 use an interleaving semantics.
(A notable exception here are the time Petri nets of [43] which do have a non-interleaving real-time
semantics [18, 17, 7, 32] which has also been used for networks of timed automata [15].)

Also Uppaal,2 the successful tool for modeling and analyzing networks of timed automata, uses
an interleaving semantics for such networks. This leads to great trouble with state-space explosion
(see also Sect. 7 of this paper) which can be avoided with a non-interleaving semantics such as we

1 http://www.tapaal.net/
2 http://www.uppaal.org/

© Uli Fahrenberg;
licensed under Creative Commons Attribution 4.0 International (CC BY 4.0)

Leibniz Transactions on Embedded Systems, Vol. 8, Issue 2, Article No. 3, pp. 03:1–03:16
Leibniz Transactions on Embedded Systems

L I T E S Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:uli@lrde.epita.fr
https://orcid.org/0000-0001-9094-7625
https://doi.org/10.4230/LITES.8.2.3
http://www.tapaal.net/
http://www.uppaal.org/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lites
https://www.dagstuhl.de

03:2 Higher-Dimensional Timed and Hybrid Automata

propose here. Intuitively, interleaving composition of networks adds n! different interleavings for
every concurrent composition of n independent events, whereas in the non-interleaving semantics,
only one (n-dimensional) object is added to the system.

We introduce higher-dimensional timed automata (HDTA), a formalism based on the (non-
interleaving) higher-dimensional automata of Pratt and van Glabbeek [48, 54] (see also [56]) and
the timed automata of Alur and Dill [5, 4]. We show that HDTA can model interesting phenomena
which cannot be captured by neither of the formalisms on which they are based, but that their
analysis remains just as accessible as the one of timed automata. That is, reachability for HDTA
is PSPACE-complete and can be decided using zone-based algorithms.

In the above-mentioned interleaving real-time formalisms, continuous flows and discrete
actions are orthogonal in the sense that executions alternate between real-time delays and
discrete actions which are immediate, i.e., take no time. (In the hybrid setting, these are usually
called flows and mode changes, respectively.) Already Sifakis and Yovine [52] notice that this
significantly simplifies the semantics of such systems and hints that this is a main reason for the
success of these formalisms (see the more recent [53] for a similar statement).

In the (untimed) non-interleaving setting, on the other hand, events have a (logical;
unspecified) duration. This can be seen, for example, in the ST-traces of [55] where actions
have a start (a+) and a termination (a−) and are (implicitly) running between their start and
termination, or in the representation of concurrent systems as Chu spaces over 3 = {0, 1

2 , 1},
where 0 is interpreted as “before”, 1

2 as “during”, and 1 as “after”, see [49]. Intuitively, only if
events have duration can one make statements such as “while a is running, b starts, and then
while b is running, a terminates”.

In our non-interleaving real-time setting, we hence abandon the assumption that actions are
immediate. Instead, we take the view that actions start and then run during some specific time
before terminating. While this runs counter to the standard assumption in most of real-time and
hybrid modeling, a similar view can be found, for example, in Cardelli’s [14].

Given that we abandon the orthogonality between continuous flows and discrete actions, we
find it remarkable to see that the standard techniques used for timed automata transfer to our
non-interleaving setting. Equally remarkable is, perhaps, the fact that even though “[t]he timed-
automata model is at the very border of decidability, in the sense that even small additions to the
formalism [. . .] will soon lead to the undecidability of reachability questions” [1], our extension
to higher dimensions and non-interleaving concurrency is completely free of such trouble.

We also show that our HDTA model naturally extends to a formalism of higher-dimensional
hybrid automata (HDHA), which can be used to model cyber-physical systems which exhibit
concurrency. We introduce tensor products both for HDTA and HDHA which can be used for a
concurrent composition of systems which avoids state-space explosion.

The contributions of this paper are, thus, (1) the introduction of a new formalism of HDTA, a
natural extension of higher-dimensional automata and timed automata, in Sect. 3; (2) the proof
that reachability for HDTA is PSPACE-complete and decidable using zone-based algorithms, in
Sects. 5 and 6; (3) the introduction of a tensor product for HDTA which can be used for parallel
composition, in Sect. 7; and (4) the extension of the definition to higher-dimensional hybrid
automata together with a non-trivial example of two independently bouncing balls, in Sect. 8.

This paper is based on the conference contribution [27], which has been presented at the
6th IFAC Conference on Analysis and Design of Hybrid Systems in Oxford, UK. Compared to
this previous paper, we have included proofs of all statements, improved the presentation and
examples, and added a precise definition of tensor product of higher-dimensional hybrid automata.

U. Fahrenberg 03:3

xδ0
1x δ1

1x

δ0
2x

δ1
2x

δ0
1δ0

2x = δ0
1δ0

1x

δ0
1δ1

2x = δ1
1δ0

1x

δ1
1δ0

2x = δ0
1δ1

1x

δ1
1δ1

2x = δ1
1δ1

1x

Figure 1 A 2-cube x with its four faces δ0
1x, δ1

1x, δ0
2x, δ1

2x and four corners.

2 Preliminaries

We recall a few facts about higher-dimensional automata and timed automata.

2.1 Higher-Dimensional Automata
Higher-dimensional automata are a generalization of finite automata which permit the
specification of independence of actions through higher-dimensional elements. That is, they
consist of states and transitions, but also squares which signify that two events are independent,
cubes which denote independence of three events, etc. To introduce them properly, we need to
start with precubical sets.

A precubical set is a graded set X =
⋃

n∈N Xn, with Xn ∩Xm = ∅ for n ̸= m, together with
mappings δν

k,n : Xn → Xn−1, k = 1, . . . , n, ν = 0, 1, satisfying the precubical identity

δν
k,n−1δµ

ℓ,n = δµ
ℓ−1,n−1δν

k,n (k < ℓ) .

Elements of Xn are called n-cubes, and for x ∈ Xn, n = dim x is its dimension. The
mappings δν

k,n are called face maps, and we will usually omit the extra subscript n and write
δν

k instead of δν
k,n. Intuitively, each n-cube x ∈ Xn has n lower faces δ0

1x, . . . , δ0
nx and n upper

faces δ1
1x, . . . , δ1

nx, and the precubical identity expresses the fact that non-parallel (n − 1)-faces
of an n-cube meet in common (n− 2)-faces; see Figure 1 for an example.

A precubical set X is finite if X is finite as a set. This means that Xn is finite for each n ∈ N
and that X is finite-dimensional: there exists N ∈ N such that Xn = ∅ for all n ≥ N .

Let Σ be a finite set of actions and recall that a multiset over Σ is a mapping Σ → N; we
denote the set of such by NΣ. The cardinality of S ∈ NΣ is |S| =

∑
a∈Σ S(a).

▶ Definition 1. A higher-dimensional automaton (HDA) is a structure (X, x0, Xf , λ), where X is
a finite precubical set with initial state x0 ∈ X0 and accepting states Xf ⊆ X0, and λ : X → NΣ

is a labeling function such that for every x ∈ X,
|λ(x)| = dim x,
λ(δ0

kx) = λ(δ1
kx) for all k ≤ dim x, and

λ(x) \ λ(δ0
kx) is a singleton for all k ≤ dim x.

The conditions on the labeling ensure that the label of an n-cube is an extension, by one
event, of the label of any of its faces. The computational intuition is that when passing from
a lower face δ0

kx of x ∈ X to x itself, the (unique) event in λ(x) \ λ(δ0
kx) is started, and when

passing from x to an upper face δ1
ℓ x, the event in λ(x) \ λ(δ1

ℓ x) is terminated.
HDA can indeed model higher-order concurrency of actions. As an example, the hollow cube

on the left of Figure 2, consisting of all six faces of a cube but not of its interior, models the
situation where the actions a, b and c are mutually independent, but cannot be executed all three
concurrently. The full cube on the right of Figure 2, on the other hand, has a, b and c independent

LITES

03:4 Higher-Dimensional Timed and Hybrid Automata

as a set. The left HDA might model a system of three users connected to two printers, so that
every two of the users can print concurrently but not all three, whereas the right HDA models a
system of three users connected to (at least) three printers.

▶ Remark. Instead of using multisets as we do here, labeling of precubical sets is commonly
introduced by defining a precubical set !Σ induced by Σ and then letting the labeling be a
precubical morphism, see for example [24, 36]. This has the advantage that HDA can be posed
as a slice category, but we will not need this here.

There is a rich literature on the geometric and topological analysis of HDA, starting with their
geometric realization as directed topological spaces. The interested reader is referred to [37, 30,
31, 28, 24, 25].

2.2 Timed Automata
Timed automata extend finite automata with clock variables and invariants which permit the
modeling of real-time properties. Let C be a finite set of clocks. Φ(C) denotes the set of clock
constraints defined as

Φ(C) ∋ ϕ1, ϕ2 ::= c ▷◁ k | ϕ1 ∧ ϕ2 (c ∈ C, k ∈ N, ▷◁ ∈ {<,≤,≥, >}) .

Hence a clock constraint is a conjunction of comparisons of clocks to integers.
A clock valuation is a mapping v : C → R≥0, where R≥0 denotes the set of non-negative real

numbers. The initial clock valuation is v0 : C → R≥0 given by v0(c) = 0 for all c ∈ C. For
v ∈ RC

≥0, d ∈ R≥0, and C ′ ⊆ C, the clock valuations v + d and v[C ′ ← 0] are defined by

(v + d)(c) = v(c) + d ; v[C ′ ← 0](c) =
{

0 if c ∈ C ′ ,

v(c) if c /∈ C ′ .

For v ∈ RC
≥0 and ϕ ∈ Φ(C), we write v |= ϕ if v satisfies ϕ and JϕK = {v : C → R≥0 | v |= ϕ}.

▶ Definition 2. A timed automaton is a structure (Q, q0, Qf , I, E), where Q is a finite set of
locations with initial location q0 ∈ Q and accepting locations Qf ⊆ Q, I : Q → Φ(C) assigns
invariants to states, and E ⊆ Q× Φ(C)× Σ× 2C ×Q is a set of guarded transitions.

The semantics of a timed automaton A = (Q, q0, Qf , I, E) is a (usually uncountably infinite)
transition system JAK = (S, s0, Sf ,⇝), with ⇝ ⊆ S × S, given as follows:

S = {(q, v) ∈ Q× RC
≥0 | v |= I(q)}

s0 = (q0, v0) Sf = S ∩ Qf×RC
≥0

⇝ = {((q, v), (q, v + d)) | ∀0 ≤ d′ ≤ d : v + d′ |= I(q)}
∪ {((q, v), (q′, v′)) | ∃(q, ϕ, a, C ′, q′) ∈ E : v |= ϕ, v′ = v[C ′ ← 0]}

a

c

b a

c

b

Figure 2 Two example HDA. Left, the hollow cube; right, the full cube.

U. Fahrenberg 03:5

Note that we are ignoring the labels of transitions here, as we will be concerned with reachability
for now. As usual, we say that A is reachable iff there exists a finite path s0 ⇝ · · · ⇝ s in JAK
for which s ∈ Sf .

The definition of ⇝ ensures that actions are immediate: whenever (q, ϕ, a, C ′, q′) ∈ E, then
A passes from (q, v) to (q′, v′) without any delay. Time progresses only during delays (q, v) ⇝
(q, v + d) in locations.
▶ Remark. Timed automata have a long and successful history in the modeling and verification
of real-time computing systems. Several tools exist which are routinely applied in industry, such
as Uppaal [42, 9], RED [59] or Kronos [13]. The interested reader is referred to [12, 41, 1].

3 Higher-Dimensional Timed Automata

Unlike timed automata, higher-dimensional automata make no formal distinction between states
(0-cubes), transitions (1-cubes), and higher-dimensional cubes. We transfer this intuition to
higher-dimensional timed automata, so that each n-cube has an invariant which specifies when it
is enabled and an exit condition giving the clocks to be reset when leaving:

▶ Definition 3. A higher-dimensional timed automaton (HDTA) is a structure
(L, l0, Lf , λ, inv, exit), where (L, l0, Lf , λ) is a finite higher-dimensional automaton and inv : L→
Φ(C), exit : L→ 2C assign invariant and exit conditions to each n-cube.

The semantics of a HDTA A = (L, l0, Lf , λ, inv, exit) is a (usually uncountably infinite)
transition system JAK = (S, s0, Sf ,⇝), with ⇝ ⊆ S × S, given as follows:

S = {(l, v) ∈ L× RC
≥0 | v |= inv(l)}

s0 = (l0, v0) Sf = S ∩ Lf×RC
≥0

⇝ = {((l, v), (l, v + d)) | ∀0 ≤ d′ ≤ d : v + d′ |= inv(l)}
∪ {((δ0

kl, v), (l, v′)) | k ∈ {1, . . . , dim l}, v′ = v[exit(δ0
kl)← 0] |= inv(l)}

∪ {((l, v), (δ1
kl, v′)) | k ∈ {1, . . . , dim l}, v′ = v[exit(l)← 0] |= inv(δ1

kl)}

We omit labels from the semantics, as we will be concerned only with reachability for now: Given
a HDTA A, does there exist a finite path s0 ⇝ · · ·⇝ s in JAK such that s ∈ Sf ?

Note that in the definition of ⇝ above, we allow time to evolve in any n-cube in L. Hence
transitions (i.e., 1-cubes) are not immediate. The second line in the definition of ⇝ defines the
passing from an (n−1)-cube to an n-cube, i.e., the start of a new concurrent event, and the third
line describes what happens when finishing a concurrent event. Exit conditions specify which
clocks to reset when leaving a cube.

▶ Example 4. We give a few examples of two-dimensional timed automata. The first, in Figure 3,
models two actions, a and b, which can be performed concurrently. It consists of four states (0-
cubes) l0, l1, l2, lf , four transitions (1-cubes) e1 through e4, and one ab-labeled square (2-cube) u.
This HDTA models that performing a takes between two and four time units, whereas performing
b takes between one and three time units. To this end, we use two clocks x and y which are reset
when the respective actions are started and then keep track of how long they are running.

The clocks are reset by the condition exit(l0) = {x, y}, and the invariants x ≤ 4 at the a-
labeled transitions e1, e4 and at the square u ensure that a takes at most four time units. The
invariants x ≥ 2 at l1, e3 and lf take care that a cannot finish before two time units have passed.
Note that x is also reset when exiting e2 and l2, ensuring that regardless when a is started,
whether before b, while b is running, or after b is terminated, it must take between two and four
time units.

LITES

03:6 Higher-Dimensional Timed and Hybrid Automata

l0 l1

l2 lf

x, y ← 0 x ≥ 2; y ← 0

y ≥ 1; x← 0 x ≥ 2 ∧ y ≥ 1

x ≤ 4; y ← 0
e1 a

y ≤ 3
x← 0

e2

b

x ≥ 2
y ≤ 3
e3

b

x ≤ 4 ∧ y ≥ 1
e4 a

x ≤ 4 ∧ y ≤ 3
ab

u

Figure 3 The HDTA of Example 4.

x, y ← 0 x ≥ 2; y ← 0

y ≥ 1; x← 0 x ≥ 2 ∧ y ≥ 1

x ≤ 4; y ← 0
a

y ≤ 3
x ≥ 1
x← 0

b
x ≥ 2
y ≤ 3b

x ≤ 5 ∧ y ≥ 1
a

1 ≤ x ≤ 4 ∧ y ≤ 3
ab

Figure 4 The HDTA of Example 5.

▶ Example 5. In the HDTA shown in Figure 4 (where we have omitted the names of states etc.
for clarity and show changes to Figure 3 in bold), invariants have been modified so that b can
only start after a has been running for one time unit, and if b finishes before a, then a may run
one time unit longer. Hence an invariant x ≥ 1 is added to the two b-labeled transitions and to
the ab-square (at the right-most b-transition x ≥ 1 is already implied), and the condition on x at
the top a-transition is changed to x ≤ 5. Note that the left edge e2 is now permanently disabled:
before entering it, x is reset to zero, but its edge invariant is x ≥ 1. This is as expected, as b

should not be able to start before a.

▶ Example 6. The HDTA in Figure 5, where we again show changes to Figure 4 in bold, models
the additional constraint that b also finish one time unit before a. To this end, an extra clock
z is introduced which is reset when b terminates and must be at least 1 when a is terminating.
After these changes, the right b-labeled edge is deadlocked: when leaving it, z is reset to zero but
needs to be at least one when entering the accepting state. Again, this is expected, as a should
not terminate before b.

x, y ← 0 x ≥ 2 ∧ z ≥ 1; y ← 0

y ≥ 1; x← 0 x ≥ 2 ∧ y ≥ 1 ∧ z ≥ 1

x ≤ 4; y ← 0
a

x ≥ 1
y ≤ 3

x, z ← 0
b

x ≥ 2
y ≤ 3
z ≥ 1
z ← 0

b

x ≤ 5 ∧ y ≥ 1
a

1 ≤ x ≤ 4 ∧ y ≤ 3
z ← 0; ab

Figure 5 The HDTA of Example 6.

U. Fahrenberg 03:7

As both vertical edges are now permanently disabled, the accepting state can only be reached
through the square. This shows that reachability for HDTA cannot be reduced to one-dimensional
reachability along transitions and relates them to the partial HDA of [29, 20].

▶ Remark. In our model of HDTA, the exit conditions of a cube are the same regardless of
how the cube is exited. One could imagine an extension of the model where exit conditions
may be different depending on whether an action is terminated or a new one is started, so that
exit : L × L ⇀ 2C would be a partial function from pairs of cubes, one a face of the other. Our
results still hold for this extension of the model, but we have not seen use for it in examples, and
for the sake of simplicity, we do not pursue it here.

4 One-Dimensional Timed Automata

We work out the relation between one-dimensional HDTA (i.e., 1DTA) and standard timed
automata. Note that this is not trivial, as in timed automata, clocks can only be reset at
transitions, and, semantically, transitions take no time. In contrast, in our 1DTA, resets can
occur in states and transitions may take time.

▶ Proposition 7. There is a linear-time algorithm which, given any timed automaton A,
constructs a 1DTA A′, with one extra clock, so that A is reachable iff A′ is.

Proof. Let A = (Q, q0, Qf , I, E) be a timed automaton. It is clear that L = Q ∪ E forms a one-
dimensional precubical set, with L0 = Q, L1 = E, δ0

1(q, ϕ, a, C ′, q′) = q, and δ1
1(q, ϕ, a, C ′, q′) = q′.

Let l0 = q0 and Lf = Qf . In order to make transitions immediate, we introduce a fresh clock
c /∈ C. For q ∈ Q, let λ(q) = ∅, inv(q) = I(q), and exit(q) = {c}. For e = (q, ϕ, a, C ′, q′) ∈ E,
put λ(e) = {a}, inv(e) = ϕ ∧ (c ≤ 0), and exit(e) = C ′. We have defined a 1DTA A′ =
(L, l0, Lf , λ, inv, exit) (over clocks C ∪ {c}). As c is reset whenever exiting a state, and every
transition has c ≤ 0 as part of its invariant, it is clear that transitions in A′ take no time, and
the claim follows. ◀

▶ Proposition 8. There is a linear-time algorithm which, given any 1DTA A, constructs a timed
automaton A′ over the same clocks such that A is reachable iff A′ is.

Proof. Let A = (L, l0, Lf , λ, inv, exit) be a 1DTA, we construct a timed automaton A′ =
(Q, q0, Qf , I, E). Because transitions in A may take time, we cannot simply let Q = L0, but
need to add extra states corresponding to the edges in L1. Let, thus, Q = L, I = inv, and

E = {(δ0
1x, tt, τ, exit(δ0

1x), x), (x, tt, λ(x), exit(x), δ1
1x) | x ∈ L1} ,

where τ /∈ Σ is a fresh (silent) action; see Figure 6 for an illustration.
Semantically, this converts the 0-cube δ0

1x to the location δ0
1x; but its exit condition C1 is

moved to the new outgoing τ -edge. Thus, the location δ0
1x is enabled precisely when the 0-cube

δ0
1x is enabled, and when it is exited by immediate execution of the τ -edge, its exit condition is

applied. Similar considerations apply to the conversion of the 1-cube x to the location x; thus,
A′ is reachable iff A is. ◀

Note that even though silent transitions in timed automata are a delicate matter [11], the fact
that we add them in the last proof is unimportant as we are only concerned with reachability.
PSPACE-completeness of reachability for timed automata [2] and Proposition 7 now imply the
following:

▶ Corollary 9. Reachability for HDTA is PSPACE-hard.

LITES

03:8 Higher-Dimensional Timed and Hybrid Automata

ϕ1, C1

δ0
1x

ϕ3, C3

δ1
1x

ϕ2, C2, a

x

ϕ1

δ0
1x

ϕ2

x

ϕ3

δ1
1x

tt, C1
τ

tt, C2
a

Figure 6 Conversion of 1DTA edge to timed automaton.

5 Reachability for HDTA is PSPACE-Complete

We now turn to extend the notion of regions to HDTA, in order to show that reachability for
HDTA is decidable in PSPACE.

▶ Definition 10. Let (L, l0, Lf , λ, inv, exit) be a HDTA and R ⊆ L× RC
≥0 × L× RC

≥0. Then R is
an untimed bisimulation if ((l0, v0), (l0, v0)) ∈ R and, for all ((l1, v1), (l2, v2)) ∈ R,

l1 ∈ Lf iff l2 ∈ Lf ;
for all (l1, v1)⇝ (l′

1, v′
1), also (l2, v2)⇝ (l′

2, v′
2) for some ((l′

1, v′
1), (l′

2, v′
2)) ∈ R;

for all (l2, v2)⇝ (l′
2, v′

2), also (l1, v1)⇝ (l′
1, v′

1) for some ((l′
1, v′

1), (l′
2, v′

2)) ∈ R.

For a HDTA A, let MA denote the maximal constant appearing in any inv(l) for l ∈ L, and
let ∼=MA

denote the standard region equivalence [5] on RC
≥0 defined as follows. For d ∈ R≥0, write

⌊d⌋ and ⟨d⟩ for the integral, respectively fractional, parts of d, and then for v, v′ : C → R≥0,
v ∼=MA

v′ iff
⌊v(x)⌋ = ⌊v′(x)⌋ or v(x), v′(x) > MA, for all x ∈ C,
⟨v(x)⟩ = 0 iff ⟨v′(x)⟩ = 0, for all x ∈ C with v(x) ≤MA, and
⟨v(x)⟩ ≤ ⟨v(y)⟩ iff ⟨v′(x)⟩ ≤ ⟨v′(y)⟩ for all x, y ∈ C with v(x) ≤MA and v(y) ≤MA.

Extend ∼=MA
to JAK by defining (l, v) ∼=MA

(l′, v′) iff l = l′ and v ∼=MA
v′.

▶ Lemma 11. ∼=MA
is an untimed bisimulation.

Proof. This follows from standard properties of region equivalence [5]. First, (l0, v0) ∼=MA

(l0, v0), and for all (l1, v1) ∼=MA
(l2, v2), l1 ∈ Lf ⇔ l2 ∈ Lf because l1 = l2.

Let (l, v1) ∼=MA
(l, v2) and (l, v1)⇝ (l′, v′

1); we show that there is v′
2 such that (l, v2)⇝ (l′, v′

2)
and (l′, v′

1) ∼=MA
(l′, v′

2). The symmetric case is analogous.
Assume v′

1 = v1 + d and l′ = l, then we have d′ such that v′
2 := v2 + d′ ∼=MA

v1 + d, but then
also (l, v2)⇝ (l′, v′

2) and (l, v′
1) ∼=MA

(l, v′
2).

Assume l = δ0
kl′ for some k and v′

1 = v1[exit(l) ← 0] |= inv(l′). Let v′
2 = v2[exit(l) ← 0], then

v′
2
∼=MA

v′
1 and v′

2 |= inv(l′), hence (l, v2)⇝ (l′, v′
2) and (l, v′

1) ∼=MA
(l, v′

2).
Assume l′ = δ1

kl for some k and v′
1 = v1[exit(l) ← 0] |= inv(l′). Let v′

2 = v2[exit(l) ← 0], then
v′

2
∼=MA

v′
1 and v′

2 |= inv(l′), hence (l, v2)⇝ (l′, v′
2) and (l, v′

1) ∼=MA
(l, v′

2). ◀

For any HDTA A, the quotient of JAK = (S, s0, Sf ,⇝) under an untimed bisimulation R is
defined, as usual, as JAK/R = (S/R, [s0]R, Sf /R, ⇝̃), where S/R is the set of equivalence classes,
[s0]R is the equivalence class which contains s0, and ⇝̃ ⊆ S/R × S/R is defined by s̃ ⇝̃ s̃′ iff
∃s ∈ s̃, s′ ∈ s̃′ : s⇝ s′.

▶ Lemma 12. Let A be a HDTA and R an untimed bisimulation on A. Then A is reachable iff
JAK/R is.

U. Fahrenberg 03:9

Proof. By definition, an accepting location is reachable in A iff an accepting state is reachable
in JAK. On JAK, R is a standard bisimulation, hence the claim follows. ◀

▶ Lemma 13. For any HDTA A, the quotient JAK/∼=MA
is finite.

Proof. This follows immediately from the standard fact that the set of clock regions,
i.e., RC

≥0/∼=MA
, is finite [5]. ◀

The size of JAK/∼=MA
is exponential in the size of A, but reachability in JAK/∼=MA

can be
decided in PSPACE, see [5]. Together with Corollary 9, we conclude:

▶ Theorem 14. Reachability for HDTA is PSPACE-complete.

6 Zone-Based Reachability

We show that the standard zone-based algorithm for checking reachability in timed automata
also applies in our HDTA setting. This is important, as zone-based reachability checking is at
the basis of the success of tools such as Uppaal, see [42].

Recall that the set Φ+(C) of extended clock constraints over C is defined by the grammar

Φ+(C) ∋ ϕ1, ϕ2 ::= c ▷◁ k | c1 − c2 ▷◁ k | ϕ1 ∧ ϕ2 (c, c1, c2 ∈ C, k ∈ Z, ▷◁ ∈ {<,≤,≥, >}),

and that a zone over C is a subset Z ⊆ RC
≥0 which can be represented by an extended clock

constraint ϕ, i.e., such that Z = JϕK. Let Z(C) denote the set of zones over C.
For a zone Z ∈ Z(C) and C ′ ⊆ C, the delay and reset of Z are given by Z↑ = {v + d | v ∈ Z}

and Z[C ′ ← 0] = {v[C ′ ← 0] | v ∈ Z}; these are again zones, and their representation by an
extended clock constraint can be efficiently computed [10]. Also zone inclusion Z ′ ⊆ Z can be
efficiently decided.

The zone graph of a HDTA A = (L, l0, Lf , λ, inv, exit) is a (usually infinite) transition system
Z(A) = (S, s0, Sf ,⇝), with ⇝ ⊆ S × S, given as follows:

S = {(l, Z) ∈ L×Z(C) | Z ⊆ Jinv(l)K}
s0 = (l0, Jv0K↑ ∩ Jinv(l0)K) Sf = S ∩ Lf×Z(C)
⇝ = {((δ0

kl, Z), (l, Z ′)) | k ∈ {1, . . . , dim l}, Z ′ = Z[exit(δ0
kl)← 0]↑ ∩ Jinv(l)K}

∪ {((l, Z), (δ1
kl, Z ′)) | k ∈ {1, . . . , dim l}, Z ′ = Z[exit(l)← 0]↑ ∩ Jinv(δ1

kl)K}

As an example, Figure 7 shows the zone graph of the HDTA in Figure 3 (Example 4), with
zones displayed graphically using x as the horizontal axis and y as the vertical. (We have taken the
liberty to simplify by computing unions of zones at the locations u, e3 and e4 before proceeding.)

▶ Lemma 15. For any HDTA A, an accepting location is reachable in A iff an accepting state is
reachable in Z(A).

Proof. This follows from standard arguments as to the soundness and completeness of the zone
abstraction, see [5]. ◀

Any standard normalization technique [10] may now be used to ensure that only a finite
portion of the zone graph Z(A) is visited, and then the standard zone algorithms can be employed
to efficiently decide reachability in HDTA.

LITES

03:10 Higher-Dimensional Timed and Hybrid Automata

l0 e1 l1

u

e2

l2

u

e4

e4

e3

e3

lf

lf

Figure 7 Zone graph of the HDTA in Figure 3.

x← 0 x ≥ 2 y ← 0 y ≥ 1x ≤ 4
a

y ≤ 3
b

Figure 8 The two 1DTA of Example 17.

7 Parallel Composition of HDTA

There is a tensor product on precubical sets which extends to HDTA and can be used for parallel
composition (below we use ⊔ for disjoint unions):

▶ Definition 16. Let Ai = (Li, li,0, Li,f , λi, invi, exiti), for i = 1, 2, be HDTA. The tensor product
of A1 and A2 is A1 ⊗A2 = (L, l0, Lf , λ, inv, exit) given as follows:

Ln =
⊔

p+q=n

L1
p × L2

q l0 = (l1,0, l2,0) Lf = L1,f × L2,f

δν
i (l1, l2) =

{
(δν

i l1, l2) if i ≤ dim l1

(l1, δν
i−dim l1 l2) if i > dim l1

λ(l1, l2) = λ(l1) ⊔ λ(l2) inv(l1, l2) = inv(l1) ∧ inv(l2)
exit(l1, l2) = exit(l1) ⊔ exit(l2)

Intuitively, tensor product is asynchronous parallel composition, or independent product. In
combination with relabeling and restriction, any parallel composition operator can be obtained,
see [60] or [24] for the special case of HDA.

U. Fahrenberg 03:11

x ≤ D

x ≤ D x ≤ D

rec[i]?

rec[i]? rec[i]?

w[i]! y > d

rec[(i+1)%N]!

y > d

rec[(i+1)%N]! w[i]!

rec[i]? x, y ← 0

Figure 9 A single node in Milner’s scheduler from [19].

▶ Example 17. Of the two 1DTA in Figure 8, the first models the constraint that performing
the action a takes between two and four time units, and the second, that performing b takes
between one and three time units. (In the notation of [14], these are the processes a[2]:a(2):0 and
b[1]:b(2):0.) Their tensor product is precisely the HDTA of Example 4.

▶ Example 18. Using tensor product for parallel composition, one can avoid introducing spurious
interleavings and thus combat state-space explosion. As an example, we recall the real-time
version of Milner’s scheduler from [19], a real-time round-robin scheduler in which the nodes are
simple timed automata. Figure 9 shows one node in the scheduler, with two transitions from
the initial to the topmost state, one that outputs w[i] (“work”) and another that passes on the
token (rec[(i+1)%N]!). These transitions are independent, but because of the limitations of the
timed-automata formalism, they have to be modeled as an interleaving diamond. Apart from the
number N of nodes the model has two other parameters, real numbers d < D that specify the
time interval within which the tokens have to be passed on.

When a larger number of nodes (N = 30, say) are composed into a scheduler, a high amount
of interleaving is generated: but most of it is spurious, owing to constraints of the modeling
language rather than properties of the system at hand. That is, most of the interleaving in
the composed model is an artefact of the modeling formalism and denotes, so to say, higher-
dimensional concurrent structures which have been forgotten. The authors of [19] show that
especially when d is much smaller than D (for example, d = 4 and D = 30), verification of the
scheduler becomes impossible already for N = 6 nodes.

One can use methods from partial order reduction [33] to detect spurious interleavings. Aside
from the fact that this has proven to be largely impractical for timed automata [39], we also argue
that by using HDTA as a modeling language, partial order reduction is, so to speak, built into
the model. Spurious interleavings are taken care of during the modeling phase, instead of having
to be detected during the verification phase.

8 Higher-Dimensional Hybrid Automata

We show that our definition of HDTA extends to one for higher-dimensional hybrid automata.
Let X be a finite set of variables, Ẋ = {ẋ | x ∈ X}, X ′ = {x′ | x ∈ X}, and Pred(Y) the set of
(arithmetic) predicates on free variables in Y .

LITES

03:12 Higher-Dimensional Timed and Hybrid Automata

inv : x1, x2 ≥ 0
flow : ẋ1 = v1, ẋ2 = v2, v̇1 = v̇2 = −g,

ṙ1 = ṙ2 = 0
exit : r′

1 = r′
2 = 0

inv : x1 = 0, v1 ≤ 0, r1 ≤ ϵ, x2 ≥ 0
flow : ẋ1 = 0, v̇1 = 0, ṙ1 = 1,

ẋ2 = v2, v̇2 = −g, ṙ2 = 0
exit : r′

1 = r′
2 = 0, v′

1 = −cv1

inv : x2 = 0, v2 ≤ 0, r2 ≤ ϵ, x1 ≥ 0
flow : ẋ2 = 0, v̇2 = 0, ṙ2 = 1,

ẋ1 = v1, v̇1 = −g, ṙ1 = 0
exit : r′

1 = r′
2 = 0, v′

2 = −cv2

Figure 10 Two independently bouncing balls (opposite edges identified).

▶ Definition 19. A higher-dimensional hybrid automaton (HDHA) is a structure
(L, λ, init, inv, flow, exit), where (L, λ) is a finite higher-dimensional automaton and init, inv : L→
Pred(X), flow : L→ Pred(X ∪ Ẋ), and exit : L → Pred(X ∪ X ′) assign initial, invariant, flow,
and exit conditions to each n-cube.

Note that we have removed initial and final locations from the definition; this is standard
for hybrid automata. Also, remark how this continues our mantra that there is no conceptual
difference between states and transitions; everything is an n-cube, and what are transition guards
in hybrid automata are now invariants.

The semantics of a HDHA A = (L, λ, init, inv, flow, exit) is a (usually uncountably infinite)
transition system JAK = (S, S0,⇝), with ⇝ ⊆ S × S, given as follows:

S = {(l, v) ∈ L× RX
≥0 | v |= inv(l)}

S0 = {(l, v) ∈ S | v |= init(l)}
⇝ = {((l, v), (l, v′)) | ∃d ≥ 0, f ∈ D([0, d],RX) : f(0) = v, f(d) = v′,

∀t ∈]0, d[: f(t) |= inv(q), (f(t), ḟ(t)) |= flow(q)}
∪ {((δ0

kl, v), (l, v′)) | k ∈ {1, . . . , dim l}, (v, v′) |= exit(δ0
kl)}

∪ {((l, v), (δ1
kl, v′)) | k ∈ {1, . . . , dim l}, (v, v′) |= exit(l)}

Here D(D1, D2) denotes the set of differentiable functions D1 → D2, and we write (v, v̇) |= flow(q)
to mean that the predicate flow(q) on X ∪ Ẋ evaluates to true when the variables are replaced
by their values in v and v̇; similarly for (v, v′) |= exit(l).

▶ Example 20. As a non-trivial example, we show a 2DHA which models two independently
bouncing balls, following the temporal regularization from [40], in Figure 10. Here, the 2-cube
models the state in which both balls are in the air. Its left and right edges are identified, as are
its lower and upper edges, so that topologically, this model is a torus.

Its left / right edge is the state in which the second ball is in the air, whereas the first ball
is in its ϵ-regularized transition (ϵ > 0) from falling to raising (v′

1 = −cv, for some c ∈]0, 1[).
Similarly, its lower / upper edge is the state in which the first ball is in the air, while the second
ball is ϵ-transitioning.

Due to the identifications, there is only one 0-cube, which models the state in which both
balls are ϵ-transitioning; its inv, flow and exit conditions can be inferred from the ones given.

We can extend the tensor product of HDTA to HDHA:

U. Fahrenberg 03:13

inv : x = 0, v ≤ 0, r ≤ ϵ

flow : ẋ = 0, v̇ = 0, ṙ = 1
exit : r′ = 0, v′ = −cv

inv : x ≥ 0
flow : ẋ = v, v̇ = −g, ṙ = 0
exit : r′ = 0

Figure 11 HDHA for a bouncing ball.

▶ Definition 21. Let Ai = (Li, λi, initi, invi, flowi, exiti), for i = 1, 2, be HDHA. The tensor
product of A1 and A2 is A1 ⊗A2 = (L, λ, inv, flow, exit) given as follows:

Ln =
⊔

p+q=n

L1
p × L2

q δν
i (l1, l2) =

{
(δν

i l1, l2) if i ≤ dim l1

(l1, δν
i−dim l1 l2) if i > dim l1

λ(l1, l2) = λ(l1) ⊔ λ(l2)
init(l1, l2) = init(l1) ∧ init(l2) inv(l1, l2) = inv(l1) ∧ inv(l2)
flow(l1, l2) = flow(l1) ∧ flow(l2) exit(l1, l2) = exit(l1) ∧ exit(l2)

▶ Example 22. Figure 11 shows the HDHA for a bouncing ball, with one 1-cube in which the ball
is in the air and one 0-cube for its ϵ-regularized transition from falling to raising. Denoting the
model as A(x, v, r), we can now construct models for arbitrarily many independently bouncing
balls as

k⊗
i=1

A(xi, vi, ri) ;

note that for k = 2 we obtain the HDHA from Figure 10. We emphasize that such a simple
construction for systems of bounccing balls is not available in the standard interleaving formalisms
for hybrid automata [3].

9 Conclusion and Further Work

We have seen that our new formalism of higher-dimensional timed automata (HDTA) is useful
for modeling interesting properties of non-interleaving real-time systems, and that reachability
for HDTA is PSPACE-complete, but can be decided using zone-based algorithms.

We have also shown how tensor product of HDTA can be used for parallel composition,
and that HDTA can easily be generalized to higher-dimensional hybrid automata. We believe
that altogether, this defines a powerful modeling formalism for non-interleaving cyber-physical
systems.

We have argued that in a non-interleaving real-time setting, events should have a time
duration. Note that this differs from [15, 18, 17], where, going back to [7], processes are partial
orders of events which are fired punctually. Chatain and Jard in [18] notice that “[t]ime and
causality [do] not necessarily blend well in [...] Petri nets” and propose to (locally) let time run
backwards to get nicer semantics. We should like to argue that our proposal of letting events
have duration appears more natural.

We have not paid any attention to categorical notions or results here. Higher-dimensional
automata have a natural categorical semantics [24], and also for timed automata, works on
categorical semantics are available [26, 45, 21], so this should be a natural extension. We would
have liked the semantics of HDTA to be precubical in some sense, but this does not seem easy.
A coalgebraic formulation of higher-dimensional automata would help here, but also this is not
available.

LITES

03:14 Higher-Dimensional Timed and Hybrid Automata

We have mentioned that techniques from geometry and (directed) topology are used to analyze
higher-dimensional automata. We have not used any such techniques here, but it appears only
natural to try to extend them to work for HDTA. A starting point could be the timed higher-
dimensional automata of Goubault’s [35], which are essentially connected complexes of singular
cubes in a locally compact Hausdorff space. We believe that HDTA can be given semantics as
sets of such Goubault automata.

Finally, we should mention that this paper is part of a long-term effort to develop useful theory
and tools for the analysis of distributed hybrid systems. Such systems consist of cyber-physical
components which are distributed in the sense that no central clock synchronization mechanism
is available, and the current state-of-the-art in distributed and hybrid systems analysis does not
allow for the modeling and analysis of such systems. We believe that through convergence and
interaction of methods and tools from concurrency theory, hybrid systems, control theory, and
distributed systems, significant advances can be obtained in this area.

References
1 Luca Aceto, Anna Ingólfsdóttir, Kim G. Larsen,

and Jiří Srba. Reactive Systems. Cambridge
University Press, 2007.

2 Luca Aceto and François Laroussinie. Is your
model checker on time? On the complexity of
model checking for timed modal logics. Journal
of Logic and Algebraic Methods in Programming,
52-53:7–51, 2002.

3 Rajeev Alur, Costas Courcoubetis, Nicolas
Halbwachs, Thomas A. Henzinger, Pei-Hsin Ho,
Xavier Nicollin, Alfredo Olivero, Joseph Sifakis,
and Sergio Yovine. The algorithmic analysis of
hybrid systems. Theoretical Computer Science,
138(1):3–34, 1995.

4 Rajeev Alur and David L. Dill. Automata for
modeling real-time systems. In Mike Paterson,
editor, ICALP, volume 443 of Lecture Notes in
Computer Science, pages 322–335. Springer, 1990.

5 Rajeev Alur and David L. Dill. A theory of
timed automata. Theoretical Computer Science,
126(2):183–235, 1994.

6 Youssef Arbach, David Karcher, Kirstin Peters,
and Uwe Nestmann. Dynamic causality in
event structures. In Susanne Graf and Mahesh
Viswanathan, editors, FORTE, volume 9039 of
Lecture Notes in Computer Science, pages 83–97.
Springer, 2015.

7 Tuomas Aura and Johan Lilius. Time processes
for time Petri-nets. In Pierre Azéma and
Gianfranco Balbo, editors, ICATPN, volume 1248
of Lecture Notes in Computer Science, pages 136–
155. Springer, 1997.

8 Marek A. Bednarczyk. Categories of asynchronous
systems. PhD thesis, University of Sussex, UK,
1987.

9 Gerd Behrmann, Alexandre David, and
Kim Guldstrand Larsen. A tutorial on uppaal.
In Marco Bernardo and Flavio Corradini, editors,
SFM-RT, volume 3185 of Lecture Notes in
Computer Science, pages 200–236. Springer, 2004.

10 Johan Bengtsson and Wang Yi. Timed automata:
Semantics, algorithms and tools. In Lectures
on Concurrency and Petri Nets, volume 3098 of
Lecture Notes in Computer Science, pages 87–124.
Springer, 2003.

11 Béatrice Bérard, Antoine Petit, Volker Diekert,
and Paul Gastin. Characterization of the
expressive power of silent transitions in timed
automata. Fundamenta Informaticae, 36(2-
3):145–182, 1998.

12 Patricia Bouyer, Uli Fahrenberg, Kim G. Larsen,
Nicolas Markey, Joël Ouaknine, and James
Worrell. Model checking real-time systems. In
Edmund M. Clarke, Thomas A. Henzinger, Helmut
Veith, and Roderick Bloem, editors, Handbook of
Model Checking., pages 1001–1046. Springer, 2018.

13 Marius Bozga, Conrado Daws, Oded Maler,
Alfredo Olivero, Stavros Tripakis, and Sergio
Yovine. Kronos: A model-checking tool for real-
time systems. In Alan J. Hu and Moshe Y. Vardi,
editors, CAV, volume 1427 of Lecture Notes in
Computer Science, pages 546–550. Springer, 1998.

14 Luca Cardelli. Real time agents. In Mogens Nielsen
and Erik Meineche Schmidt, editors, ICALP,
volume 140 of Lecture Notes in Computer Science,
pages 94–106. Springer, 1982.

15 Franck Cassez, Thomas Chatain, and Claude
Jard. Symbolic unfoldings for networks of timed
automata. In Susanne Graf and Wenhui Zhang,
editors, ATVA, volume 4218 of Lecture Notes in
Computer Science, pages 307–321. Springer, 2006.

16 Giovanni Casu and G. Michele Pinna. Petri nets
and dynamic causality for service-oriented
computations. In Ahmed Seffah, Birgit
Penzenstadler, Carina Alves, and Xin Peng,
editors, SAC, pages 1326–1333. ACM, 2017.

17 Thomas Chatain and Claude Jard. Complete finite
prefixes of symbolic unfoldings of safe time Petri
nets. In Susanna Donatelli and P. S. Thiagarajan,
editors, ICATPN, volume 4024 of Lecture Notes in
Computer Science, pages 125–145. Springer, 2006.

18 Thomas Chatain and Claude Jard. Back in time
Petri nets. In Víctor A. Braberman and Laurent
Fribourg, editors, FORMATS, volume 8053 of
Lecture Notes in Computer Science, pages 91–105.
Springer, 2013.

19 Alexandre David, Kim G. Larsen, Axel Legay,
Ulrik Nyman, Louis-Marie Traonouez, and
Andrzej Wasowski. Real-time specifications.

U. Fahrenberg 03:15

Int. J. Software Tools for Technology Transfer,
17(1):17–45, 2015.

20 Jérémy Dubut. Trees in partial higher dimensional
automata. In Mikołaj Bojańczyk and Alex
Simpson, editors, FOSSACS, volume 11425 of
Lecture Notes in Computer Science, pages 224–
241. Springer, 2019.

21 Jérémy Dubut, Ichiro Hasuo, Shin-ya Katsumata,
and David Sprunger. Quantitative bisimulations
using coreflections and open morphisms. CoRR,
abs/1809.09278, 2018.

22 Javier Esparza. A false history of true concurrency:
From Petri to tools (invited talk). In Jaco van de
Pol and Michael Weber, editors, SPIN, volume
6349 of Lecture Notes in Computer Science, pages
180–186. Springer, 2010.

23 Javier Esparza and Keijo Heljanko. Unfoldings
– A Partial-Order Approach to Model Checking.
Monographs Theor. Comput. Sci. Springer, 2008.

24 Uli Fahrenberg. A category of higher-dimensional
automata. In Vladimiro Sassone, editor, FoSSaCS,
volume 3441 of Lecture Notes in Computer
Science, pages 187–201. Springer, 2005.

25 Uli Fahrenberg. Higher-Dimensional Automata
from a Topological Viewpoint. PhD thesis, Aalborg
University, Denmark, 2005.

26 Uli Fahrenberg. How to pull back open maps along
semantics functors. In Jochen Pfalzgraf, editor,
ACCAT, 2008.

27 Uli Fahrenberg. Higher-dimensional timed
automata. In Alessandro Abate, Antoine Girard,
and Maurice Heemels, editors, ADHS, volume 51
of IFAC-PapersOnLine, pages 109–114. Elsevier,
2018.

28 Uli Fahrenberg, Christian Johansen, Georg Struth,
and Krzysztof Ziemiański. Languages of higher-
dimensional automata. Mathematical Structures
in Computer Science, pages 1–39, 2021.

29 Uli Fahrenberg and Axel Legay. Partial higher-
dimensional automata. In Lawrence S. Moss and
Pawel Sobocinski, editors, CALCO, volume 35 of
LIPIcs, pages 101–115, 2015.

30 Lisbeth Fajstrup, Eric Goubault, Emmanuel
Haucourt, Samuel Mimram, and Martin Raussen.
Directed Algebraic Topology and Concurrency.
Springer, 2016.

31 Lisbeth Fajstrup, Martin Raussen, and Éric
Goubault. Algebraic topology and concurrency.
Theoretical Computer Science, 357(1-3):241–278,
2006.

32 Hans Fleischhack and Christian Stehno.
Computing a finite prefix of a time Petri
net. In Javier Esparza and Charles Lakos,
editors, ICATPN, volume 2360 of Lecture Notes
in Computer Science, pages 163–181. Springer,
2002.

33 Patrice Godefroid. Partial-Order Methods for the
Verification of Concurrent Systems, volume 1032
of Lecture Notes in Computer Science. Springer,
1996.

34 Ursula Goltz and Wolfgang Reisig. The non-
sequential behavior of Petri nets. Information and
Control, 57(2/3):125–147, 1983.

35 Eric Goubault. Durations for truly-concurrent
transitions. In Hanne Riis Nielson, editor,

ESOP, volume 1058 of Lecture Notes in Computer
Science, pages 173–187. Springer, 1996.

36 Eric Goubault. Labelled cubical sets and
asynchronous transition systems: an adjunction.
In Preliminary Proceedings CMCIM’02, 2002.

37 Marco Grandis. Directed algebraic topology:
models of non-reversible worlds. New
mathematical monographs. Cambridge University
Press, 2009.

38 Hans-Michael Hanisch. Analysis of
place/transition nets with timed arcs and
its application to batch process control. In
Marco Ajmone Marsan, editor, ATPN, volume
691 of Lecture Notes in Computer Science, pages
282–299. Springer, 1993.

39 Henri Hansen, Shang-Wei Lin, Yang Liu,
Truong Khanh Nguyen, and Jun Sun. Partial order
reduction for timed automata with abstractions.
In Armin Biere and Roderick Bloem, editors,
CAV, volume 8559 of Lecture Notes in Computer
Science, pages 391–406. Springer, 2014.

40 Karl Henrik Johansson, Magnus Egerstedt,
John Lygeros, and Shankar Sastry. On the
regularization of Zeno hybrid automata. Systems
& Control Letters, 38(3):141–150, 1999.

41 Kim G. Larsen, Uli Fahrenberg, and Axel Legay.
From timed automata to stochastic hybrid games.
In Dependable Software Systems Engineering,
pages 60–103. IOS Press, 2017.

42 Kim G. Larsen, Paul Pettersson, and Wang Yi.
Uppaal in a nutshell. Int. J. Software Tools for
Technology Transfer, 1(1-2):134–152, 1997.

43 Philip M. Merlin and David J. Farber.
Recoverability of communication protocols–
implications of a theoretical study. IEEE
Transactions on Communications, 24(9):1036–
1043, 1976.

44 Robin Milner. Communication and Concurrency.
Prentice Hall, 1989.

45 Mogens Nielsen and Thomas Hune. Bisimulation
and open maps for timed transition systems.
Fundamenta Informaticae, 38(1-2):61–77, 1999.

46 Mogens Nielsen, Gordon D. Plotkin, and Glynn
Winskel. Petri nets, event structures and domains,
part I. Theoretical Computer Science, 13:85–108,
1981.

47 Carl A. Petri. Kommunikation mit Automaten.
Bonn: Institut für Instrumentelle Mathematik,
Schriften des IIM Nr. 2, 1962.

48 Vaughan R. Pratt. Modeling concurrency with
geometry. In David S. Wise, editor, POPL, pages
311–322. ACM Press, 1991.

49 Vaughan R. Pratt. Higher dimensional automata
revisited. Mathematical Structures in Computer
Science, 10(4):525–548, 2000.

50 Mike W. Shields. Concurrent machines. The
Computer Journal, 28(5):449–465, 1985.

51 Joseph Sifakis. Use of Petri nets for performance
evaluation. In Measuring, Modelling and
Evaluating Computer Systems, pages 75–93.
North-Holland, 1977.

52 Joseph Sifakis and Sergio Yovine. Compositional
specification of timed systems. In Claude Puech
and Rüdiger Reischuk, editors, STACS, volume
1046 of Lecture Notes in Computer Science, pages
347–359. Springer, 1996.

LITES

03:16 Higher-Dimensional Timed and Hybrid Automata

53 Jiří Srba. Comparing the expressiveness of
timed automata and timed extensions of Petri
nets. In Franck Cassez and Claude Jard, editors,
FORMATS, volume 5215 of Lecture Notes in
Computer Science, pages 15–32. Springer, 2008.

54 Rob J. van Glabbeek. Bisimulations for higher
dimensional automata. Email message, June 1991.

55 Rob J. van Glabbeek. On the expressiveness
of higher dimensional automata. Theoretical
Computer Science, 356(3):265–290, 2006.

56 Rob J. van Glabbeek. Erratum to “On the
expressiveness of higher dimensional automata”.
Theoretical Computer Science, 368(1-2):168–194,
2006.

57 Rob J. van Glabbeek and Gordon D. Plotkin.
Configuration structures. In LICS, pages 199–209.
IEEE Computer Society, 1995.

58 Rob J. van Glabbeek and Gordon D. Plotkin.
Configuration structures, event structures and
Petri nets. Theoretical Computer Science,
410(41):4111–4159, 2009.

59 Farn Wang, Aloysius K. Mok, and E. Allen
Emerson. Symbolic model checking for distributed
real-time systems. In Jim Woodcock and
Peter Gorm Larsen, editors, FME, volume 670 of
Lecture Notes in Computer Science, pages 632–
651. Springer, 1993.

60 Glynn Winskel and Mogens Nielsen. Models for
concurrency. In Handbook of Logic in Computer
Science, volume 4. Clarendon Press, Oxford, 1995.

A Hybrid Programming Language for
Formal Modeling and Verification of Hybrid Systems
Eduard Kamburjan #

Department of Informatics, University of Oslo, Norway
Department of Computer Science, Technische Universität Darmstadt, Germany

Stefan Mitsch #

Computer Science Department, Carnegie Mellon University, USA

Reiner Hähnle #

Department of Computer Science, Technische Universität Darmstadt, Germany

Abstract
Designing and modeling complex cyber-physical
systems (CPS) faces the double challenge of com-
bined discrete-continuous dynamics and concurrent
behavior. Existing formal modeling and verifica-
tion languages for CPS expose the underlying proof
search technology. They lack high-level structuring
elements and are not efficiently executable. The
ensuing modeling gap renders formal CPS models
hard to understand and to validate. We propose a
high-level programming-based approach to formal

modeling and verification of hybrid systems as a hy-
brid extension of an Active Objects language. Well-
structured hybrid active programs and requirements
allow automatic, reachability-preserving transla-
tion into differential dynamic logic, a logic for hy-
brid (discrete-continuous) programs. Verification is
achieved by discharging the resulting formulas with
the theorem prover KeYmaera X. We demonstrate
the usability of our approach with case studies.

2012 ACM Subject Classification Computing methodologies → Distributed programming languages;
Computing methodologies → Model verification and validation; Theory of computation → Logic and
verification; Theory of computation → Timed and hybrid models
Keywords and Phrases Active Objects, Differential Dynamic Logic, Hybrid Systems
Digital Object Identifier 10.4230/LITES.8.2.4
Supplementary Material Software (HABS Simulator Virtual Machine): https://doi.org/10.5281/
zenodo.5973904
Funding This work is partially supported by the FormbaR project, part of AG Signalling/DB RailLab in
the Innovation Alliance of Deutsche Bahn AG and TU Darmstadt. This material is based upon work
supported by AFOSR grant FA9550-16-1-0288.
Received 2020-06-10 Accepted 2022-05-11 Published 2022-12-07
Editor Alessandro Abate, Uli Fahrenberg, and Martin Fränzle
Special Issue Special Issue on Distributed Hybrid Systems

1 Introduction

Networked cyber-physical systems (CPS) are a main driving force of innovation in computing,
from manufacturing to everyday appliances. But to design and model such systems poses
a double challenge: first, their hybrid nature, with both continuous physical dynamics and
complex computations in discrete time steps. Second, their concurrent nature: distributed,
active components (sensors, actuators, controllers) execute simultaneously and communicate
asynchronously. It is notoriously difficult to get CPS models right. Formal modeling languages,
including hybrid automata [5], hybrid process algebra [27], and logics for hybrid programs [65],
can be used to formally verify properties of CPS. Contrary to simulation frameworks, such as
Ptolemy [71] or Simulink, however, these languages were designed for verification and are based on
concepts of the underlying verification technology: automata, algebras, formulas. Their minimalist

© Eduard Kamburjan, Stefan Mitsch, and Reiner Hähnle;
licensed under Creative Commons Attribution 4.0 International (CC BY 4.0)

Leibniz Transactions on Embedded Systems, Vol. 8, Issue 2, Article No. 4, pp. 04:1–04:34
Leibniz Transactions on Embedded Systems

L I T E S Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:eduard@ifi.uio.no
https://orcid.org/0000-0002-0996-2543
mailto:smitsch@cs.cmu.edu
https://orcid.org/0000-0002-3194-9759
mailto:haehnle@cs.tu-darmstadt.de
https://orcid.org/0000-0001-8000-7613
https://doi.org/10.4230/LITES.8.2.4
https://doi.org/10.5281/zenodo.5973904
https://doi.org/10.5281/zenodo.5973904
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lites
https://www.dagstuhl.de

04:2 A Hybrid Programming Language for Formal Modeling and Verification of Hybrid Systems

syntax lacks standard structuring elements of programming languages such as types, scopes,
methods, complex commands, futures, etc. Thus it is hard to adequately represent concurrently
executing, communicating, hybrid components with symbolic data structures and computations,
for example, servers or cloud applications.

Moreover, “low-level” models are hard to validate, i.e. to ensure that a CPS model reflects
the designer’s intention, because these formalisms are not (efficiently) executable. To bridge
the modeling gap we propose a high-level programming-based approach to formal modeling and
verification of hybrid systems.

The basis of our approach is an Active Objects (AO) language [29] called ABS [48]. AO languages
combine OO programming with strong encapsulation as well as asynchronous, parallel execution.
Their concurrency model permits to decompose concurrent execution into sequential execution in
a compositional manner. We chose ABS for its formal semantics, its open source implementation
tool chain, and its demonstrated scaling on massively distributed systems [75], but our approach
is applicable to other AO languages. ABS is efficiently executable via compilation to Erlang and
was used to model complex, real-world systems for cloud processing [3], virtualized services [49],
data processing [56], and railway operations [53]. However, it lacks the capability to model hybrid
systems. The first main contribution of this paper is the design of the Hybrid ABS (HABS) language,
a conservative (syntax and semantics preserving) extension of ABS, generalizing the Active Objects
paradigm to Hybrid Active Objects (HAO): AO with continuous dynamics. Obviously, it is
necessary to accordingly extend the formal semantics of ABS and its runtime environment. This is
our second main contribution. Our third main contribution is the implementation of HABS and a
formal verification tool for it.

Our approach to formal verification of HABS programs is based on reachability-preserving
translation into an existing verification formalism for hybrid programs. We choose differential
dynamic logic (dL) [66, 68, 69], as implemented in the KeYmaera X system [36], because it is
based on an imperative programming language that is a good match for the sequential fragment
of HABS and verification in dL has been demonstrated to scale to realistic systems (e.g., [47]). The
translation from HABS to dL involves to decompose a given HABS verification problem into a set of
independent sequential dL problems. This is possible, because we impose an interaction pattern
for communication on HABS that is less restrictive than available component-based techniques [64],
yet is general enough to permit intuitive and concise modeling of relevant case studies. The
identification of this pattern, the generation of dL verification conditions, and a reachability
preservation theorem constitute our fourth main contribution.

The overall approach is illustrated in Fig. 1: A CPS is modeled as an HABS program with the
aim to analyze its properties statically. One formulates desired properties as invariants that are
formally verified to hold under certain assumptions. Before verification is attempted, the model is
validated by executing it in the runtime environment to ensure that it behaves as intended. A
visualization component helps to analyze behavior over time. Subsequently, the verification claim
is automatically decomposed and translated into a set of dL verification problems discharged in
KeYmaera X (optionally, formally verified runtime monitors [63] and formally verified machine
code is available from KeYmaera X through VeriPhy [18]). Both, unexpected runtime behavior
and failed verification attempts, serve to fix the model and/or the claimed properties.

The paper is structured as follows. Sect. 2 gives an informal example of an HABS model with a
distributed water tank controller. Sect. 3 formally defines syntax and semantics of HABS. Sect. 4
describes modeling patterns. Sect. 5 gives theoretical background on dL, the translation into dL,
the decomposition theorem, and tells how to prove correctness. It also contains a distributed
controller case study. Finally, Sect. 6 discusses related and future work and concludes.

E. Kamburjan, S. Mitsch, and R. Hähnle 04:3

HABS Model

Hybrid Class

Specification
Contracts/Invariants

-proof obligations KeYmaera X

Erlang code
Execution+
Visualization

decomposition

Verification

compilation

Validation
Hybrid Classmodeling

Distributed CPS

Figure 1 Structure of HABS workflow.

2 Distributed Hybrid Systems by Example

Active Objects [29] are objects that realize actor-based concurrency [44] with futures [28] and
cooperative scheduling: Active Objects communicate via asynchronous method calls. On the
caller side, each method invocation generates a future as a handle to retrieve the call’s result,
once it is available. The caller may synchronize on that future, i.e. suspend and wait until it is
resolved. At most one process is running on an Active Object at any time. That process suspends
when it encounters the synchronization statement await on an unresolved future or a false Boolean
condition. Once the guard becomes true, the process may be re-scheduled. All fields are strictly
object-private.

Running a Hybrid Active Objects (HAO) model of a CPS can be pictured as follows: each
object is capable of modeling a physical object, for example, a water tank. It may declare physical
behavior via ordinary differential equations (ODEs) over “physical” fields, as well as discrete
behavior via class and method declarations that can be used to control physical behavior. Once
an HAO starts executing, the values of the physical fields evolve, governed by their ODEs, even
when the controller is idle. This models the intuition that a physical system evolves independently
of any observers and controllers.

Object orientation allows natural modeling of hybrid systems: continuous behavior is attached
to an object, not a process. Processes realize discrete control behavior related to sensors and
controllers. Specifically, the controller methods of an object may wait to execute until a certain
physical state is reached (event-triggered control, for example, “tank is nearly full”). This “sensing”
is modeled with getter methods of physical fields. Obviously, for validation the HABS runtime
system must solve the differential equations in the physical model to determine the time point
when such a waiting controller can start at the earliest; for verification, ODEs need not be solvable;
they are analyzed with invariant-based techniques [67, 70]. Another communication pattern for
controllers – time-triggered control – is provided by fixed sampling durations. More complex
control patterns can be realized by waiting until the result of a subcomputation, i.e. a future, is
ready.

Whenever a control process is activated, it can modify the physical state through actuators
(for example, close a valve). In consequence, there are no timed race conditions, but the physical
state might be changed by any process at the time it is scheduled. Actuation is modeled with
setter methods of physical fields. Execution of control methods is assumed to take no physical
time, unless explicitly modeled to do so.

Generally, a CPS can be modeled by several HAOs that communicate with each other via
asynchronous method calls, for example, modeling a central controller. Often a controller object
has no associated physical behavior; vice versa, an object that models physics, may not contain
any control, but only sensor and actuator methods.

We demonstrate HAOs using three variants of water tank models. The first model, TankMono,
is a single water tank that keeps its water level between two thresholds. It is modeled as a single
object that integrates control and physics. The second model, TankTick, is also a single water tank,

LITES

04:4 A Hybrid Programming Language for Formal Modeling and Verification of Hybrid Systems

but it is modeled with two separate objects for tank and controller. The final model, TankMulti,
is a distributed system of n TankMono tanks that, in addition to the local threshold, maintain a
global threshold over the sum of all local water levels.

2.1 Base System: TankMono

1 interface ISingleTank {
2 /∗@ ensures 3 <= outLevel() <= 10 @∗/
3 Real outLevel();
4 /∗@ ensures −1/2 <= outDrain() <= 1/2 @

∗/
5 Real outDrain();
6 }
7 /∗@ requires 4 <= inVal <= 9 @∗/
8 class CSingleTank(Real inVal)
9 implements ISingleTank {

10 /∗@ invariant
11 3 <= level <= 10
12 & −1/2 <= drain <= 1/2
13 & (drain<0−>level>3)
14 & (drain>0−>level<10) @∗/

15 physical {
16 Real level = inVal : level’ = drain;
17 Real drain = -1/2 : drain’ = 0;
18 }
19 Unit run() { this!ctrl(); }
20 Unit ctrl() {
21 await diff (level<=3 & drain<=0) | (level>=10 & drain>=0);
22 if (level <= 3) drain = 1/2;
23 else drain = -1/2;
24 this.ctrl();
25 }
26 Real outDrain() { return this.drain; }
27 Real outLevel() { return this.level; }
28 }

Figure 2 TankMono: A water tank as a single HAO.

Fig. 2 shows an HAO model of a water tank whose physical section makes it either fill with
1
2 l/sec or drain at the same rate, according to the initial values and governing ODEs of the level
and drain fields. Method ctrl() realizes a control loop that switches the drain field between those
states so that the water level stays between 3l and 10l. The controller ctrl waits until the water
level reaches the upper or lower limit, i.e. until the condition in Fig. 2, Line 21 holds. Depending
on the case, it changes the state and calls itself recursively.

The JML style [20] comments in Fig. 2 contain an assumption on the initial state of inVal
and a conjectured safety invariant and conjectured output guarantees that, in this case, can be
proven: if the initial level is between 4l and 9l, then it always stays between 3l and 10l. Note
that Lines 13–14 express a safety invariant that must be shown to be true, rather than control
conditions. Intuitively, Line 13 expresses the property that the tank won’t drain below a threshold
(level > 3) even if water is leaking from it (drain < 0). Similarly, Line 14 expresses that the tank
won’t overflow (level < 10) even if water is pumped into the tank (drain > 0). Prior to formal
verification of this property one typically runs tests to see whether the model behaves as intended.
Our implementation allows to simulate and visualize an HAO model. The graph in Fig. 3 shows
the behavior of a CSingleTank object instantiated with inVal = 5. In Sect. 5 we show how the
class is translated into dL and how to prove the safety invariant in KeYmaera X for any object
created with a parameter that satisfies the precondition. The only methods exposed to clients in
the interface are outDrain() and outLevel().

2.2 Discrete Controller: TankTick
The ctrl() method in TankMono corresponds to a perfect sensor/controller that physically
reacts to the water level and drain. TankTick splits controller and sensor into two objects and
uses a clock to read the water level at certain intervals. This corresponds to a closed-loop control
system with a discrete-time controller that samples the plant behavior.

Fig. 4 shows a water tank realized by a controller FlowCtrl and a Tank implementation CTank.
The tank has an in-port (setter) method inDrain() and an out-port (getter) method outLevel().
It has no active discrete behavior on its own (the run method is empty), but its state changes
nonetheless due to the continuous physical block. The FlowCtrl controller’s fields drain, level are

E. Kamburjan, S. Mitsch, and R. Hähnle 04:5

time in seconds

level
drain

 0

 2

 4

 6

 8

 10

 0 50 100 150 200

Figure 3 Simulation Output of TankMono with inVal = 5.

1 interface Tank {
2 /∗ requires −1/2 <= newD <= 1/2; ∗/
3 Unit inDrain(Real newD);
4 /∗ ensures 3 <= outLevel() <= 10; ∗/
5 Real outLevel();
6 }
7 class CTank(Real inVal) implements Tank {
8 physical {
9 Real level = inVal : level’ = drain;

10 Real drain = -1/2 : drain’ = 0;
11 }
12 Unit run() { }
13 /∗ requires newD > 0 −> level <= 9.5 ∗/
14 /∗ requires newD < 0 −> level >= 3.5 ∗/
15 /∗ timed_requires inDrain < 1 ∗/
16 Unit inDrain(Real newD) { drain = newD; }
17 Real outLevel() { return level; }
18 }

19 /∗ requires 0 < tick < 1 & inVal > 3.5∗/
20 class FlowCtrl(Tank t, Real tick, Real inVal) {
21 /∗ invariant (drain > 0 −> level <= 9.5)
22 & (drain < 0 −> level >= 3.5) ∗/
23 Real drain = -1/2;
24 Real level = inVal;
25
26 Unit run() { this!ctrlFlow(); }
27
28 Unit ctrlFlow() {
29 await duration(tick,tick);
30 level = t.outLevel();
31 if (level <= 3.5) drain = 1/2;
32 if (level >= 9.5) drain = -1/2;
33 t!inDrain(drain);
34 this.ctrlFlow();
35 }
36 }

Figure 4 TankTick: A water tank modeled as two HAOs. Invariant and precondition of CTank are as
in Fig. 2.

its local copies of the state of the tank: CTank.drain, CTank.level are different fields from FlowCtrl
.drain, FlowCtrl.level, respectively, residing in different objects. The ctrlFlow() method first
updates level, decides on the state of drain, then pushes the (possibly changed) state of drain to
the tank. No time passes in the controller, which ensures that the copied fields are synchronized
at the end of the round. As the Tank’s fields are not directly accessible by the FlowCtrl instance,
it is not possible to wait on the Tank’s level with an await diff statement. Instead, the controller
uses await duration to run every tick seconds: tick is the sampling time of the controller.

The Tank interface specification declares an input requirement and a guarantee on returned
values. The input requirement of the inDrain() specification is a constraint on the input parameter
newD; specifically, it means that the tank can only be instructed to fill if there is sufficient capacity
left (similar for draining). The initial requirement is sufficient to establish the controller’s invariant,
which in turn ensures that the tank’s requirements are met. The timed_requires clause stipulates
that inDrain() is called at least once per second, which suffices for the output guarantee. Fig. 5
shows example output. We stress that all calls to Tank methods are asynchronous.

2.3 Distributed Tank Control: TankMulti
Consider a system where n water tanks are monitored by a central controller that aims to keep
the sum of all water levels between some thresholds. The code in Fig. 6 shows a controller that
monitors a list of ISingleTank (Fig. 2) instances. Each tick seconds the central controller iterates
over the list of tanks and if their combined level is almost at the upper threshold, the controller

LITES

04:6 A Hybrid Programming Language for Formal Modeling and Verification of Hybrid Systems

Figure 5 Simulation Output of TankTick with inVal = 5 for 30s.

drains all water tanks with rising levels (analogously for the lower threshold). Single water tanks
still ensure that their local thresholds are observed. To allow the CControl instance to manipulate
the ISingleTank instances, we add the following method to CSingleTank (and an analogous method
to the interface):

1 /∗ requires newD > 0 −> level < 10 ∗/
2 /∗ requires newD < 0 −> level > 3 ∗/
3 /∗ requires −1/2 <= newD <= 1/2 ∗/
4 Unit inDrain(Real newD) { this.drain = newD; }

Contrary to the contract in TankTick, we do not need to specify how frequently the method
is called, because this information is available in the guard of the ctrl method of the instances.
The recursive call at the end of ctrl ensures that there is always one process executing ctrl for
each instance of FlowCtrl.

The graph in Fig.6 shows the simulation output for four water tanks with different initial
values. The upper thresholds are managed by the distributed controller and the water tanks
cooperatively: Only tanks 1 and 4 reach their local upper thresholds, the others are drained by the
distributed controller to maintain the global threshold. The lower local thresholds are managed
locally, the lower global threshold is never reached.

2.4 Futures

Future-based communication allows to decouple the call of a method from retrieving its result. For
example, consider the code in Fig. 7. Class Node can perform some complex and time consuming
computations on behalf of class Client. To enable load balancing the client has only a reference
to an interface Server, which relays its request. The Server performs basic load balancing by a
round-robin scheduling on a list of nodes. It then returns to the issuing client the future of the
relayed request without having to wait for the computation to finish (Line 17). The client can then
retrieve the future (Line 7) to synchronize on it without blocking the interface server (Line 8).

3 Hybrid Active Objects

An informal description of the intended semantics of Hybrid Abstract Objects in the Hybrid
Abstract Behavioral Specification (HABS) language was provided in Section 2. The present section
gives a formal account of its syntax and semantics. HABS is an extension of the Active Object
language ABS [48]. ABS itself extends standard OO concepts as follows:
Encapsulation. All fields are strictly object-private.

E. Kamburjan, S. Mitsch, and R. Hähnle 04:7

1 class CControl(List<ISingleTank> tanks,
2 Real totalLower,
3 Real totalHigher,
4 Real tick)
5 implements IControl {
6 Unit run() {
7 await duration(tick, tick);
8 Real total = 0;
9 List<ISingleTank> lower = list[];

10 List<ISingleTank> higher = list[];
11 foreach (next in tanks) {
12 Real val = next.outLevel();
13 Real dir = next.outDrain();
14 if (dir < 0 && val > 3)
15 lower = Cons(next, lower);
16 if (dir > 0 && val < 10)
17 higher = Cons(next, higher);
18 total = total + val;
19 }
20 if (total <= totalLower+1)
21 foreach (lnext in lower)
22 lnext!inDrain(1/2);
23 if (total >= totalHigher-1)
24 foreach (hnext in higher)
25 hnext!inDrain(-1/2);
26 this.run();
27 }
28 }

tank1
tank2

tank3
tank4

read total
0

5

10

15

20

25

0 5 10 15 20 25 30 35 40
time in seconds

Figure 6 TankMulti: A controller for n TankMono instances and an example simulation output.
Interface omitted.

Cooperative Scheduling. Active Objects cannot be preempted: a process running in an object may
not be interrupted by other processes, unless the active process suspends itself or terminates.

Asynchronous Calls, Futures. All method calls to other objects are asynchronous. Every call not
only generates a process on the callee side, but a future that points to that process. A process
may pass around a future or synchronize with it to read the return value of the associated
process once it has terminated.

As a Timed Active Object language, HABS also features:
Simulation Time. HABS allows to manipulate simulation time by explicitly advancing (and reading)

an internal clock with specific statements. Simulation time is independent of the wall time.

3.1 Syntax
The syntax of HABS is given by the grammar in Fig. 8 and explained in the following section.
With e we denote standard expressions over fields f, variables v and operators |, &, >=, <=, +, -, *,
/. Types T are all interface names, type-generic futures Fut<T>, lists List<T>, Real, Int, Unit and
Bool. We also assume the usual functions for lists, etc.

A program contains a main method Main, interfaces ID and classes CD. Interfaces are standard,
the main method contains a list of object creations. Classes can have parameters Tf, these are
fields being initialized during object creation. Classes have fields FD, methods Met, an optional
run method Run to start a process, and an optional physical block Phys that declares physical
fields. A declaration of a physical field is a field declaration followed by a differential equation.
A differential equation is an equation between two differential expressions, which are standard
expressions extended with a derivation operator e’ for de

dt . HABS supports explicit autonomous
differential equations. The differential expressions and the field initialization form an initialized
ordinary differential equation, e.g., Real f = 0: f’ = 5-f. Note that f = 0 specifies the initial
value of f, whereas the differential equation f’ = 5-f is phrased in terms of the time-varying value
of f, so models logarithmic growth towards f = 5.

LITES

04:8 A Hybrid Programming Language for Formal Modeling and Verification of Hybrid Systems

1 class Node {
2 Real compute_internal(Real r1, Real r2, Real r3){ ... }
3 }
4 class Client(Server s){
5 Unit run(){
6 Fut<Fut<Real>> ffr = s!compute(1,2);
7 Fut<Real> fr = ffr.get;
8 Real r = fr.get;
9 ...

10 }
11 }
12 class Server(Queue<Node> internal, Real param){
13 Fut<Real> compute(Real r1, Real r2){
14 Node n = internal.pop();
15 Fut<Real> fr = n!compute_internal(r1,r2,param);
16 internal.push(n);
17 return fr;
18 }
19 }

Figure 7 An example for load balancing using futures. Interfaces omitted.

Prgm ::= ID CD Main ID ::= interface I [extends I]?{MS} Programs, Interfaces

Main ::= {s?} Main

CD ::= class C [implements I]? [(T f)]?{Phys? FD Met Run?} Classes

Run ::= Unit run() {s} FD ::= T f = e Run Method and Fields

Phys ::= physical {DED} DED ::= Real f = e : f’ = e Physical Block

MS ::= T m(T v) Met ::= MS {s;return e;} Signatures, Methods

s ::= while (e) {s} | if (e) {s} [else {s}]? | s;s
| await g | [T? e]? = rhs Statements

g ::= duration(e,e) | diff e | e? Guards

rhs ::= e | new C(e) | e.get | e!m(e) RHS Expressions

Figure 8 HABS grammar. T ranges over types, I over interfaces and C over classes. Differential expression
de are normal expressions extended with a derivation operator e’.

Methods and statements are mostly standard, we focus on HAO-specific constructs. Methods
are called asynchronously with e!m(e), i.e., after the call, the caller continues execution without
waiting for the callee to finish. Instead, the caller generates a future. A future identifies the call
and can be passed around by the caller. A process interacts in two ways with a future: either by
awaiting its result with await e? on the guard e?, or by reading its value with e.get. Statements
e.get block the reading object – no other process may run on it. In contrast, statements await g
release the process control over the object while waiting for the guard g to hold. The guard is
either a future guard e?, a differential guard diff e, or a timed guard duration(e1,e2). The future
guard e? awaits the result of future e, the differential guard diff e suspends the process until the

E. Kamburjan, S. Mitsch, and R. Hähnle 04:9

expression e evaluates to true, and the timed guard duration(e1,e2) suspends the process for at
least e1 time units1. The notation T v = o.m() is short for Fut<T> f = o!m(); T v = f.get; (a
call followed by a synchronization).

3.2 Semantics of HABS

HABS extends the structural operational semantics (SOS) for Timed ABS [16] in three aspects:
(i) it includes physical behavior in the object state;
(ii) determines whether a differential guard holds and, if not, when it will at the earliest;
(iii) updates the state whenever time passes.
This affects only expression evaluation and auxiliary functions. No new SOS rule is needed. In
the following we extend the core of the ABS SOS semantics [16] to hybrid systems.

3.2.1 States
The state of an object has three parts:

(i) a store ρ that maps (physical and non-physical) fields to values, and the variables of the
active process2 to values;

(ii) ODE , the differential equations from its physical block;
(iii) F , the set of current solutions of ODE3.

A solution f is a function from time to a store which only contains the physical fields. The set F
may change, because the ODEs are solved as an initial-value problem with the current state of
the physical fields as the initial values. For each f ∈ F and each physical field f the following
holds: f(0)(f) = ρ(f), i.e., the initial value f(0)(f) of physical field f is the current value ρ(f) in
the store ρ. We denote the solutions of ODE with initial values from ρ by sol(ODE , ρ). We define
runtime configurations formally:

tcn ::= clock(e) cn cn ::= cn cn | fut | msg | ob
ob ::= (o, ρ,ODE , F. , prc, prc) msg ::= msg(o, e, f)

prc ::= (τ, f, rs) | ⊥ rs ::= s | suspend;s fut ::= fut(f, e)

Figure 9 Runtime Syntax of HABS.

▶ Definition 1 (Runtime Configuration [16]). The runtime syntax of HABS is summarized in Fig. 9:
f ranges over future identities, o over object identities, ρ, τ over stores, i.e., assignments from
fields or variables to values. A timed configuration has a clock clock with the current time, as
an expression of Real type and an object configuration cn. An object configuration cn consists
of messages msg, futures fut, objects ob, and can be composed cn cn (as usual, composition is
commutative and associative). A message msg(o, e, f) records callee o, passed parameters e and
the generated future f . A future configuration fut(f, e) connects the future f with its return value
e. An object (o, ρ, F,ODE , prc, prc) has an identifier o, an object store ρ, the current solutions F ,
an active process prc and a queue of inactive processes. ODE is taken from the class declaration.

1 The parameter e2 is used by certain scheduling policies [16], and is not relevant for HABS.
2 Recall that the active process executes the ABS methods, it does not relate to physical behavior.
3 The solutions computed relative to the initial values (state) at the last suspension.

LITES

04:10 A Hybrid Programming Language for Formal Modeling and Verification of Hybrid Systems

A process is either terminated ⊥ or has the form (τ, f, rs): the process store τ with current state
of the local variables, its future f , and the statement rs left to execute. The runtime syntax also
allows the suspend statement, which is used to deschedule a process. Dotted underlined elements
are an extension of HABS relative to ABS (also in Fig. 10 below).

Given a process store τ and an object store ρ we use σ = ρ ◦ τ to denote the state of both
fields and local variables. We first define the evaluation of expressions and guards.

3.2.2 Evaluation of Expressions

Expressions e are evaluated with a function JeKF,tσ over a store σ and a set of solutions F at t time
units in the future. The semantics of expressions containing physical fields is as follows.

▶ Definition 2 (Semantics of Expressions). Let F be the set of solutions. Given a store σ, we can
check whether F is a model of an expression e after t time units. Let fp be a physical field and fd
a non-physical field of o. The semantics of fields fp, fd, unary operators ∼ ∈ {!,- } and binary
operators ⊕ ∈ {|, &, >=, <=, +, -, *, /} is defined as follows:

JfdKF,tσ = σ(fd) JfpKF,tσ =
{
v if ∀f ∈ F. v = f(t)(fp)
∞ otherwise

J∼eKF,tσ = ∼JeKF,tσ Je1 ⊕ e2KF,tσ = Je1KF,tσ ⊕ Je2KF,tσ

Outside differential guards, only the evaluation in the current state JeKF,0σ is needed, which is
ρ(fp) from f(0)(fp) and this expression is never ∞. We identify JeKFσ and JeKσwith JeKF,0σ .

3.2.3 Evaluation of Guards

The semantics of an await g statement is to suspend until the guard holds, i.e. until JgKFσ evaluates
to true. For example, a duration guard duration(e1,e2) evaluates to true if Je1KFσ ≤ 0. Defining
the semantics of guards requires two operations: An extension of the evaluation function that
returns true if the guard holds and the maximal time elapse mteFσ returning the time t that may
elapse before the guard evaluates to true, or ∞ if it never does.

First we define mte(e): the maximal time that may elapse without missing an event is the
minimal time needed by the system to evolve into a state where the guard is guaranteed to hold.
This yields also the semantics of the guard itself.

▶ Definition 3 (Semantics of Differential Guards). Let F be the set of solutions of object o in
state σ. Then we define:

mteFσ (diff e) = argmin
t≥0

(
JeKF,tσ = true

)
diff e is evaluated to true if no time advance is needed:

Jdiff eKF,0σ = true ⇐⇒ mteFσ (diff e) = 0

If e contains no continuous variable then the differential guard semantics and the evaluation of
expressions in Def. 2 coincides with condition synchronization and expression evaluation in the
standard ABS semantics [48].

E. Kamburjan, S. Mitsch, and R. Hähnle 04:11

(1)
(
o, ρ,ODE, F

.
, (τ, f,await g;s), q

)
→

(
o, ρ,ODE, F

.
, (τ, f, suspend;await g;s), q

)
(2)

(
o, ρ,ODE, F

.
, (τ, f, suspend;s), q

)
→

(
o, ρ,ODE, sol(ODE, ρ)

.
,⊥, q ◦ (τ, f,s)

)
(3)

(
o, ρ,ODE, F

.
,⊥, q ◦ (τ, f,await g;s)) →

(
o, ρ,ODE, F

.
, (τ, f,s), q

)
if JgKρ◦τ = true

(4)
(
o, ρ,ODE, F

.
, (τ, f,v = e;s), q

)
→

(
o, ρ,ODE, F

.
, (τ [v 7→ JeKρ◦τ], f,s), q

)
if e contains no call or get

(5)
(
o, ρ,ODE, F

.
, (τ, f, return e;), q

)
→

(
o, ρ,ODE, sol(ODE, ρ)

.
,⊥, q

)
fut

(
f, JeKρ◦τ

)
(6)

(
o, ρ,ODE, F

.
, (τ, f,v = e1.get;s), q

)
fut

(
f,e2

)
→

(
o, ρ,ODE, F

.
, (τ, f,v = e2;s), q

)
if Je1Kρ◦τ = f

(7)
(
o, ρ,ODE, F

.
, (τ, f,v = e!m(e1, . . .en;s), q

)
→(

o, ρ,ODE, F
.

, (τ [v 7→ f̃], f,s), q
)

msg
(
JeKρ◦τ , (Je1Kρ◦τ , . . . , JenKρ◦τ), f̃

)
where f̃ is fresh

Figure 10 Selected Rules for HABS objects.

3.2.4 Transition System
Fig. 10 gives the most important rules for the semantics of a single object, the omitted rules are
given in [16]. Rules (1)–(3) define the semantics of process suspension. An await statement suspends
the current process and gives other processes in the queue q a chance to run, even if its guard is
evaluated to true. Suspension is modeled in rule (1) simply by introducing a suspend statement in
front of the await.4 Rule (2) realizes a suspend statement by moving the current process to the
object’s queue. As explained in Sect. 3.2.3, upon reactivation of a suspended process we must
ensure its guard to be true, relative to the solution of ODE with initial values at suspension
time. Therefore, rule (2) also recomputes the solutions F . Rule (3) can then re-activate a process
beginning with an await statement, simply by checking whether its guard evaluates to true at
current time (advancing time in timed configuration is explained below). An analogous rule (not
shown in Fig. 10) activates a process with any other non-await statement. Rule (4) evaluates an
assignment to a local variable. The rule for fields is analogous. Rule (5) realizes a termination
(with solutions of the ODEs) and (6) a future read. Finally, (7) is a method call, the rule for
transforming a message into a process is straightforward.

For configurations, there are two rules, shown in Fig. 11. Rule (i) realizes a step of some object
without advancing time, Only if (i) is not applicable, i.e. all ABS processes are blocked, rule (ii)

can be applied. It computes the global maximal time elapse mte and advances the time in the
clock and all objects. In particular, it decreases syntactically the timed guards.

(i) clock(t) cn cn1 → clock(t) cn2 cn1 with cn → cn2

(ii) clock(t) cn → clock(t+ t̃) adv(cn, t̃) if (i) is not applicable and mte(cn) = t̃ ̸= ∞

Figure 11 Timed Semantics of HABS configurations.

4 We follow the original ABS semantics, where suspension is handled with a separate suspend statement for
reasons of uniformity – in principle, rules (1)+(2) could be combined.

LITES

04:12 A Hybrid Programming Language for Formal Modeling and Verification of Hybrid Systems

Fig. 12 shows the auxiliary functions and includes the full definition of mte. Note that mte
is not applied to the currently active process, because, when (1) is not applicable, it is currently
blocking and, thus, cannot advance time. The characteristic feature of hybrid objects is that their
physical state changes when time advances, even when no process is active. This is expressed in
the semantics by a function adv(σ, t) which takes a state σ, a duration t, and advances σ by t

time units. For non-hybrid Active Objects adv(σ, t) = σ. There, the function is needed only to
modify the process pool of an object for scheduling, not its state, and is used exactly as in [16].

mte(cn1 cn2) = min(mte(cn1),mte(cn2)) mte(msg) = mte(fut) = ∞
mte(o, ρ,ODE , F, prc, q) = Jmin(mte(q),∞)Kρ mte(τ, f, await g;s) = Jmte(g)Kτ

mte(τ, f, s) = ∞ if s ̸= await g;s̃ mte(duration(e1,e2)) = e1

mteFσ (diff e) = argmin
t≥0

(
JeKF,tσ = true

)
mte(e?) = ∞

adv(cn1 cn2, t) = adv(cn1, t) adv(cn2, t)
adv(msg, F, t) = msg adv(fut, F, t) = fut

adv((o, ρ,ODE , F, prc, q), F, t) = (o, adv(ρ, t),ODE , F, adv(prc, F, t), adv(q, F, t))
adv(⊥, F, t) = ⊥

adv((τ, f, s), F, t) = (τ, f, s) if s ̸= await duration(e1,e2);s̃

adv((τ, f, await duration(e1,e2);s), F, t) = (τ, f, await duration(e1+ t,e2+ t);s)

adv(σ, t)(f) =
{
σ(f) if f is not physical
v if ∀f ∈ F. v = f(t)(f)

Figure 12 Auxiliary functions. Lifting to lists is not shown.

The adv auxiliary function handles uniqueness w.r.t. the solutions of the ODE at the points in
time where the solutions are accessed: Note that the solutions are handled as a set F : at time t
function adv checks that all solutions coincide at this point in time. If this is not the case, or if no
solution can be found by the implementation, a runtime error is thrown. Also, all solutions are
computed without restrictions on the time domain (e.g., for how long they exits) because it is
not known for how long the dynamics are followed at this point. Alternatively, one could either
impose restrictions on the ODE to enforce uniqueness or non-deterministically choose one of the
solutions.

We can now define traces of programs and objects.

▶ Definition 4 (Traces). Given a program Prgm, we denote with clock(0) cn0 the initial state
configuration [16]. A run of Prgm is a (possibly infinite) reduction sequence

clock(0) cn0 → clock(t1) cn1 → · · ·

The trace θo of an object o in a run is an assignment from the dense time domain R+ to states.
We say that clock(ti) cni is the final configuration at ti in a run, if any other timed configuration
clock(ti) c̃ni is before it. Fig. 13 gives a formal definition.

For any point in time x, the state of o is taken from the run, if a reduction step was made at
x and o was already created. The third case in the definition is illustrated in Fig. 14: At time
points y and z, discrete steps are done, but none at x. The state θo(x) is extrapolated from the
state θo(y) by following solutions from the last step at point y, if o is created.

E. Kamburjan, S. Mitsch, and R. Hähnle 04:13

θo(x) =

undefined if o is not created yet
ρ if clock(x) cn is the final configuration at x

and ρ is the state of o in cn
adv(ρ, F, x− y) if there is no configuration at clock(x)

and the last configuration was at clock(y)
with state ρ and solutions F

Figure 13 Extraction of a trace θo for an object o from a given run.

time

adv

z

Figure 14 Illustration of the state at time x and two discrete states with clock(y) and clock(z).

3.3 The Component Fragment
We define a sublanguage of HABS called Component HABS (CHABS) to model component-style
architectures with in- and out-ports, as well as dedicated controllers with a read-evaluate-write
cycle. Syntactically, a class is a component if it can be derived from the syntax in Fig. 8 with the
rule for Met replaced by the following:

Met ::= MS [OPort | IPort | Ctrl]
OPort ::= {return this.f;} IPort ::= {this.f = v; return Unit;}

Ctrl ::= {sa; si; sc; so; this.m();}
sa ::= await duration(e,e) | await diff e

si ::= this.f = e.m() | si;si
sc ::= while (e) {sc} | if (e) {sc} [else {sc}]? | sc;sc | T? e = e | e!m(e)

so ::= e!m(this.f) | so;so

Additionally, we demand that the only numerical data types used are Int, Real. Out-ports return
the value of a field and in-ports copy a method parameter into a field. A controller method Ctrl
has a timed or differential guard sa, followed by reads si from the out-port methods of other
objects (recall that this.f = e.m() is a shortcut for an asynchronous call followed by a read, not
a synchronous call), computations sc, and writes so to the in-ports of other objects. In the
component fragment, we realize a component-based controller with a read-compute-write loop
by restricting the run method of Fig. 8 to start a controller with an asynchronous call to an
object’s own controller method Ctrl and each controller ends with a recursive call to itself. The
TankMono and TankTick models are CHABS models, the central controller in TankMulti is
not. A controller method with a differential guard is an event-triggered controller, a controller
with a timed guard a time-triggered controller.

We model instantaneous controllers in CHABS: once controller is scheduled (i.e., after its guards
evaluates to true) no time can pass because all calls in Ctrl are to port methods that cannot block
the caller and neither suspensions nor future reads are allowed.

LITES

04:14 A Hybrid Programming Language for Formal Modeling and Verification of Hybrid Systems

3.4 Simulation
The implementation of HABS extends the ABS compiler [81] to compute solutions for differential
guards, time elapse, and state advance. To compile differential guards correctly, it needs to
compute mteFσ (diff e) (Def. 3).

The ODEs of a class cannot be changed at runtime and are, therefore, represented as a string
in the class table. The simulator uses an external solver to solve initial value problems and
minimize/maximize duration between events.

Solutions To compute solutions F , the ODEs and the current state of the physical fields are passed
to Maxima [61] as an initial value problem. The solution is an equation system or an error. In
its default setting, the simulator neither supports non-unique solutions nor non-solvable ODEs.
The simulator, however, has the infrastructure to use solvers other than Maxima. This allows
us to handle non-linear ODEs: by prefixing the physical block with [1], the modeler can select
the solver ic1 (instead of the default desolve), which can handle non-linear systems.

Time elapse After solving the initial value problem, Maxima is invoked with a minimization
problem: it minimizes the time t with the equation system representing F as the constraints
(this corresponds to eager mode switching in a hybrid automaton). The result is then handled
in the same way as a parameter to a timed guard by the runtime system. Once time has
passed and the suspended process is reactivated, the physical fields are updated according to
F . This uses the Maxima function fmin_cobyla.

State advance To implement the advance function adv, if the state of the object changes any
physical field, the procedure used to compute time elapse is repeated for every currently
suspended differential guard to accumulate the result.

The output files used to visualize a program execution are of the form t1, F1, t1, F2, t2, . . . , Fn, tn.
Here ti are the points in time where the object schedules a process and Fi the function describing
its physical behavior in the previous suspended state. Each time a differential guard is reactivated,
not only its state is updated, but the solution Fi+1 and the reactivation time ti+1 are written to
the output. Each object has its own output file.

A Python script translates output files into a discrete dynamic graph in Maxima format which
in turn calls gnuplot that is responsible for creating the graph. The graphs in this work are slightly
beautified outputs.

4 Modeling with HABS

We give more examples of HABS models and discuss some design decisions in the language, as well
as modeling patterns in HABS for common phenomena in hybrid system control.

4.1 Non-Linear Dynamics
HABS can handle non-linear ODEs and non-linear dynamics to the extent the backends support
it. For an example, consider a resistor attached to an alternating current source that produces a
sine-formed current. This is described by the class in Fig 15.

We use the non-linear solver of Maxima (by annotating [1]). This solver requires the input to
satisfy certain syntax constraints, which entail the slightly awkward specification r’ = 0*t. We
must give an explicit ODE for each non-constant variable for KeYmaera X and as HABS requires
an autonomous system, we add a clock variable time to express sine and cosine.

The example has a run method that illustrates validation. We check whether our simple model
is in fact a resistor and adheres to the law R = I/V : Even before visualization, we can use simple
command line output to check I/V by sampling every 1 second. The output for an instance

E. Kamburjan, S. Mitsch, and R. Hähnle 04:15

class Resistor(Real init) {
[1] physical {

/∗ format expected by Maxima ∗/
Real t = 0: t’ = 1;
Real r = init: r’ = 0*t;
Real i = 0: i’ = cos(t);
Real v = 0: v’ = r*cos(t);

}
Unit run() {

await duration(1,1);
println("step: " + toString(now()) +

" with " + toString(v/i));
if (timeValue(now()) < 60) this!run();

}
}

s tep : Time (1) with 5
step : Time (2) with 4286450913523623 /

↪→ 857290182704725
step : Time (3) with 1319812111494398 /

↪→ 263962422298881
step : Time (4) with 1313376056981147 /

↪→ 262675211396229
step : Time (5) with 295788950328081 /

↪→ 59157790065616
step : Time (6) with 723097187038613 /

↪→ 144619437407721
step : Time (7) with 758118670875062 /

↪→ 151623734175013
step : Time (8) with 5
step : Time (9) with 5
. . .

Figure 15 A resistor attached to an AC-circuit and its sine-formed current.

Resistor(5) is shown in Fig. 15, where Time(n) is the symbolic time at the point of time when
now() is evaluated. In the example this corresponds to seconds. As a next step, we can use the
visualization to observe longer trends in Fig. 16, again for a Resistor(5).

current

voltage

-5

 0

 5

 0 10 20 30 40 50 60

Figure 16 Example simulation output of a Resistor(5).

Finally, we can formally verify the behavior with our translation approach to KeYmaera X by
removing the run method and, thus, transforming it into a CHABS component.

4.2 Delays and Imprecision
Communication is imperfect in realistic models. We demonstrate how to model two such imper-
fections, delays and imprecision, in HABS. We use a simple platooning example, where a follower
car wants to follow a lead car at a certain distance. Follower cars are modeled in the CHABS class
FollowerCar in Fig. 17. For simplicity, the minimal (minDist) and maximal distance (maxDist) to
the lead car are independent of the speed and the controller sampling frequency, which means the
follower car will not provably stay in the desired distance interval. The time consuming statement
await duration can be used to model two kinds of delays:

1. Complex computations that take some time to finish.
2. Latency: By adding a time consuming statement as the last statement of a method before the

return, one can model delays in a network.

LITES

04:16 A Hybrid Programming Language for Formal Modeling and Verification of Hybrid Systems

class FollowerCar
(Real inita, Real start,
Real tick, Real minDist,
Real maxDist, ICar leadCar)
implements ICar {

Real next = start + minDist;
physical {

Real a = inita : a’ = 0;
Real v = 0 : v’ = a;
Real x = start : x’ = v;

}
Unit run() {

this!ctrlObserve();
}

Unit ctrlObserve() {
await duration(tick, tick);
next = leadCar.getPosition();
if(next - x <= minDist) a = a/2;
if(next - x >= maxDist) a = a*2;
this.ctrlObserve();

}

Real getPosition() {
return x;

}
}

Figure 17 Simple platooning example for a follower car following safely behind a lead car

For example, we extend getPosition() in FollowerCar to model sensing latency as follows:
Real getPosition() {

Real oldVal = x;
await duration(1/10, 1/10);
return oldVal;

}

Like ABS, HABS has access to a (uniformly distributed) random number generator. There are
functions to generate other statistical distributions. This allows to model imprecision/uncertainty.
The following method adapts getPosition() to model sensor uncertainty:

Real getPosition() {
Real imp = (random(11) + 95)/100; // number between 0.95 and 1.05
return this.level * imp;

}

4.3 Variability Modeling
One of the main advantages of using a mature programming language as a host for hybrid behavior
is that we can use its structuring elements and concepts: HABS inherits the module system with
import/export clauses5, as well as the delta-oriented [73], feature-oriented [14] product line [8, 74]
(DFPL) mechanisms of ABS [25] to model variability.

DFPLs define not a single model, but a set of models which are variants of each other. From a
given core model, so-called code deltas define variants based on syntactic operations: removal,
modification and addition of classes, methods and fields. A variant is obtained from the core
model by applying modifications specified by the deltas to it.

To determine the relevant deltas, each delta has a set of features that activate its application.
A feature of a variant corresponds roughly to one implemented feature of the modified model. A
set of features is called a product. After selecting a product, the corresponding deltas are computed
and applied, resulting in an HABS model without variability.

5 Omitted from the language syntax in Sec. 3 for brevity.

E. Kamburjan, S. Mitsch, and R. Hähnle 04:17

delta Delay;
modifies class Cars.FollowerCar {

modifies Real getPosition() {
Real old = original();
await duration(1/10,1/10);
return old;

}
}
delta Imprecision;
modifies class Cars.FollowerCar {

modifies Real getPosition() {
return original()*(random(11)+95)/100;

}
}

delta CruiseControl;
modifies class Cars.FollowerCar {

adds Real ccTick = this.tick*2;
adds Unit cruise() {

await duration(ccTick, ccTick);
if ((v >= 5 || v <= 0) && a != 0)

{
a = 0;

}
this.cruise();

}
modifies Unit run() {

original();
this!cruise();

}
}

productline PL1;
features FDelay, FImprecision, FCruiseControl;
delta CruiseControl when FCruiseControl;
delta Delay when FDelay;
delta Imprecision after Delay when FImprecision;

Figure 18 Product line based on Fig. 17 for variability in position readings and cruise control.

We refrain from introducing the whole variability layer of ABS and refer to [25] for a detailed
and formal introduction. Instead, we use the platooning example in Fig. 17 to demonstrate
variability modeling in practice. The changes for imprecision and delay, as well as adding a cruise
control system can be modeled as a product line. This allows to select the appropriate car product
for a concrete system, as summarized in Fig. 18. The product line consists of three deltas (Delay,
Imprecision and CruiseControl), three features (FDelay, FImprecision and FCruiseControl) and
a knowledge base that defines which features select which delta (delta D when F) and in which
order deltas are applied if they modify the same method (delta D after D2).

The delta Delay modifies class Cars.FollowerCar6 and its method getPosition(). The modified
method first calls the existing variant of the method via original and then waits before returning
the value. Delta Imprecision is similar. Both deltas modify the same method. There are numerous
desirable properties, and to make the product line outcome deterministic, we must fix the order in
which methods are applied that modify the same method. Here, we demand that Imprecision is
applied after Delay. Delta CruiseControl adds a field and method implementing a simple cruise
control system. Deltas may also remove methods and fields (not shown here). In our example we
represent each delta as a feature, and so any product that refers to a feature invokes its assigned
delta. The deltas are applied syntactically before type checking. As a result, a standard HABS
program is created. For example the product {FDelay} results in the code below.

class FollowerCar (...) implements ICar {
... // as above
Real getPosition_core() { return x; }
Real getPosition() { return this.getPosition_core()*(random(11) + 95)/100; }

}

6 Cars is the module.

LITES

04:18 A Hybrid Programming Language for Formal Modeling and Verification of Hybrid Systems

5 Formal Verification of HABS Models

As a prerequisite for formal verification of HABS, we briefly review differential dynamic logic
(dL) [68, 69] as implemented in the hybrid systems theorem prover KeYmaera X [36]. We then
discuss translation from HABS to dL, and sketch formal verification in dL with sequent proofs.

5.1 Background: Differential Dynamic Logic
Differential dynamic logic expresses the combined discrete and continuous dynamics of hybrid
systems in a sequential imperative programming language called hybrid programs. Its syntax and
informal semantics are in Table 1.

Table 1 Hybrid programs in dL.

Program Informal semantics
?φ Test whether formula φ is true, abort if false
x := θ Assign value of term θ to variable x

x := ∗ Assign any (real) value to variable x

{x′ = θ & H} Evolve ODE system x′ = θ for any duration t≥0
with evolution domain constraint H true throughout

α; β Run α followed by β on resulting state(s)
α ∪ β Run either α or β non-deterministically
α∗ Repeat α n times, for any n ∈ N

Hybrid programs provide the usual discrete statements: assignment (x := θ), non-deterministic
assignment (x := ∗), test (?φ), non-deterministic choice (α ∪ β), sequential composition (α;β),
and non-deterministic repetition (α∗). A typical modeling pattern combines non-deterministic
assignment and test (e.g., “x := ∗; ?H”) to choose any value subject to a dL constraint H. Standard
control structures are expressible, for example:

(i) if H then α else β ≡ (?H;α) ∪ (?¬H;β),
(ii) if H then α ≡ (?H;α) ∪ (?¬H),
(iii) while (H) α ≡ (?H;α)∗; ?¬H.

For continuous dynamics, the notation {x′ = θ&H} represents an ODE system (derivative x′

in time) of the form x′
1 = θ1, . . . , x′

n = θn. Any behavior described by the ODE stays inside the
evolution domain H, i.e. the ODE is followed for a non-deterministic, non-negative period of time,
but stops before H becomes false. For example, a basic model of the water level x in a tank draining
with flow −f is given by the ODE {x′ = −f &x ≥ 0}, where the evolution domain constraint
x ≥ 0 means the tank will not drain to negative water levels. With a careful modeling pattern,
ODEs can be governed by H so that one can react to events, without restricting or influencing
the continuous dynamics modeled in the ODE [72]: The pattern {x′ = θ&H} ∪ {x′ = θ& H̃}
permits control intervention to achieve different behavior triggered by an event H. H̃ is the weak
complement of H: they share exactly their boundary from which both behaviors are possible. For
example, H ≡ x ≤ 0, H̃ ≡ x ≥ 0.

The dL-formulas φ, ψ relevant for this paper are propositional logic operators φ ∧ ψ, φ ∨ ψ,
φ → ψ, ¬φ and comparison expressions θ ∼ η, where ∼ ∈{<, ≤, =, ̸=, ≥, >} and θ, η are real-
valued terms over {+, −, · , /}. In addition, there is the dL modal operator [α]φ. The dL-formula
[α]φ is true iff φ holds in all states reachable by program α. The formal semantics of dL [68, 69] is a
Kripke semantics in which the states of the Kripke model are the states of the hybrid system. The
semantics of a hybrid program α is a relation JαK between its initial and final states. Specifically,
ν |= [α]φ iff ω |= φ for all states (ν, ω) ∈ JαK, so all runs of α from ν are safe relative to φ.

E. Kamburjan, S. Mitsch, and R. Hähnle 04:19

Proofs in dL are sequent calculus proofs on the basis of dL axioms. For example, validity of
the dL formula x ≥ 0 → [x := x+ 1 ∪ x := 2; {x′ = 3}]x ≥ 1 over a simple program that either
increments the value of x or continuously evolves x with a constant slope x′ = 3 after setting the
initial value of the differential equation with x := 2 is shown in the sequent proof below:

⇤
QEx � 0 ` x + 1 � 1
[:=]x � 0 ` [x := x + 1]x � 1

⇤
dI x = 2 ` [{x0 = 3}]x � 1

[:=],hideLx � 0 ` [x := 2][{x0 = 3}]x � 1
[;] x � 0 ` [x := 2; {x0 = 3}]x � 1

[[],^R x � 0 ` [x := x + 1 [x := 2; {x0 = 3}]x � 1
!R ` x � 0 ! [x := x + 1 [x := 2; {x0 = 3}]x � 1

Sequent proofs proceed bottom-up but validity transfers top-down, i.e., from the subgoals
above the horizontal bar, the axiom or proof rule annotated to the left of the bar implies the
sequent below the horizontal bar. In each step, assumptions are listed to the left of the ⊢, and the
alternatives to prove to the right of it. The proof starts with step →R to make the left-hand side
x ≥ 0 of the implication available as an assumption. Next, the non-deterministic choice step [∪]
means that both choices must ensure the postcondition x ≥ 1, so with conjunction splitting ∧R we
get two subgoals: a left subgoal for the increment program x := x+ 1 and a right subgoal for the
differential equation program. On the increment program branch, we execute the assignment in
step [:=] and the result follows by real arithmetic in step QE. On the differential equation branch,
step [;] splits the sequential composition into nested box modalities, and then step [:=],hideL
executes the assignment and weakens the now obsolete assumption x ≥ 0. The branch closes by
differential induction dI (intuitively, the dI step expresses that x ≥ 1 stays true along the flow of
the differential equation, see [67]). This concludes the example proof.

5.2 Formal Verification of Components

1 interface Tank {
2 /∗ requires −1/2 <= newD <= 1/2; ∗/
3 Unit inDrain(Real newD);
4 /∗ ensures 3 <= outLevel <= 10; ∗/
5 Real outLevel();
6 }
7
8 class CTank(Real inVal)
9 implements Tank {

10 /∗ requires newD > 0 −> level <= 9.5 ∗/
11 /∗ requires newD < 0 −> level >= 3.5 ∗/
12 /∗ timed_requires inDrain < 1 ∗/
13 Unit inDrain(Real newD) { ... }
14 ...
15 }
16
17 /∗ requires 0 < tick < 1 & inVal > 3.5∗/
18 class FlowCtrl(Tank t, Real tick,
19 Real inVal) {
20 /∗ invariant (drain > 0 −> level <= 9.5)
21 & (drain < 0 −> level >= 3.5) ∗/
22 ...
23 }

Figure 19 Annotations in the TankTick model, repeated from Fig. 4.

To establish system-wide properties, hybrid active objects must be shown to satisfy their class
invariants, provided that the constraints expressed in the preconditions are met. We make this
precise now. A class specification is a tuple (inv, pre,TReq,Req,Ens), where inv is the class invariant

LITES

04:20 A Hybrid Programming Language for Formal Modeling and Verification of Hybrid Systems

(annotated /∗ invariant ... ∗/, see Fig. 19, lines 20–21), a dL formula over the fields and parameters
of the class; pre is the precondition (annotated to class declarations with /∗ requires ... ∗/, see
Fig. 19, line 17), a dL formula over the initial values of fields and class parameters. TReq is
the set of timed input requirements for in-port methods (annotated with /∗ timed_requires ... ∗/,
see Fig. 19, line 12): dL formulas over a dedicated program variable with the method’s name.
Req is the set of input requirements for in-port methods (annotated with /∗ requires ... ∗/, see
Fig. 19, lines 2, 10–11): dL formulas over fields and method parameters. Ens is the set of output
guarantees for out-port methods (annotated with /∗ ensures ... ∗/, see Fig. 19, line 4): dL formulas
over a dedicated program variable with the method’s name.

To verify a class C against a class specification, both are translated into dL-formula (1) that
expresses safety.

assumptionsC →
[
(codeC; plantC)∗]

safetyC (1)

The placeholders assumptionsC, codeC, plantC, and safetyC (defined formally in Sect. 5.3
below) encode class C and its specification (inv, pre,TReq,Req,Ens) as follows: The formula
assumptionsC is the conjunction of pre and conditions on variables that keep track of time. As
usual in controller verification, the program repeats a control part codeC followed by the continuous
behavior plantC. The condition safetyC must hold after an arbitrary number of iterations. It
combines inv with input requirements of in-port methods of referred objects and guarantees of
own out-port methods.

Even though formula (1) safetyC is a postcondition that must hold only in the final states of
the system, we stress that this means at every real time point during the continuous dynamics,
because ODEs advance for a non-deterministic duration while discrete statements take no time.
The modality, therefore, expresses that whenever codeC executes completely, the invariant holds.
In particular, the invariant holds at the beginning of and throughout the evolution of the continuous
dynamics in plantC. Thus, validity of formula (1) expresses safety of every correctly created
object (with respect to its specification).

The following translation of an HABS class and its specification defines formally how the
placeholders are composed. The translation is fully automatic and verification is compositional:
only classes whose code changed explicitly need re-verification, not the whole system.

5.3 Translation from CHABS to dL
We use two operations on sets of programs P . Operation

∑
P constructs a program that non-

deterministically executes one of the elements. Operation
∏
P constructs all permutations of

sequential element-wise execution. Let |P | = n:∑
P =

∑
{p1, . . . , pn} = p1 ∪ p2 ∪ · · · ∪ pn∏

P = {p1; . . . ; pn | ∀i, j ≤ n. pi, pj ∈ P ∧ (i ̸= j → pi ̸= pj)}

We translate classes C with the following design restrictions:
(1) All controllers update their local caches of other objects before providing information to those

objects (for example, read the current water level before instructing the tank to drain or fill);
local caches, once updated, are not modified later.

(2) In-port methods with a timed input requirement are only called from timed controllers (for
example, a tank that expects to be filled every 5 s is governed by a controller running at a
corresponding frequency).

(3) Duration statements are exact (have two identical parameters).
(4) Local variable names are unique.

E. Kamburjan, S. Mitsch, and R. Hähnle 04:21

trans(f) ≡ f , where f is a dL variable representing field f

trans(v) ≡ v , where v is a dL variable representing variable v

trans(e1 op e2) ≡ trans(e1) op trans(e2)

 expressions e

trans(if(e){s}[else {s}]) ≡ if (trans(e)) then trans(s)[else trans(s)]
trans(while(e){s}) ≡ while(trans(e))trans(s) trans(s1;s2) = trans(s1);trans(s2)

trans([T] v = e) ≡ trans(v) := trans(e) trans(f = e) ≡ trans(f) := trans(e)
trans(e!m()) ≡ ?true trans(f = e.m()) ≡ trans(f) := ∗;?φm

where φm is the postcondition of m, with the method name replaced by trans(f)

statements s

Figure 20 Translation of expressions e and statements s.

The first two constraints fix the interaction pattern between components, the last two simplify
the presentation. For classes following these restrictions, the translation has four phases, each
discussed in detail in subsequent paragraphs:

(i) provision of program variables,
(ii) generation of assumptions and safety condition,
(iii) control code generation,
(iv) provision of ODEs and constraints.

5.3.1 Program Variables
For each field, parameter, and local variable in C we create a program variable with the same
name. For each method m we create a time variable tm, for each in-port method m a tick variable
tickm, both type Real; tickm models the unknown time when an in-port method is called next.
Time variables are local time for each method and determine when a time-triggered controller or
an in-port is executed the next time. We denote the set of all tick variables with Tick and the set
of all time variables with Time.

5.3.2 Assumptions and Safety Condition
The formula assumptionsC (2) is C’s precondition pre plus all initializations init plus conditions
on the time and tick variables: in the beginning, each time variable starts at zero and the tick
variables have an unknown positive value. Each tick variable tick has a method mtick that is
responsible for its generation. We refer to the timed input requirement of this method with
ψ(tick), where the method name mtick has been replaced with tick. The initial value of the tick
variable is also described by the timed input requirement and describes when the method is issued
for the first time at the latest.

assumptionsC ≡ pre ∧
∧
φ∈init

φ ∧
∧

t∈Time
t
.= 0 ∧

∧
tick∈Tick

(
0 < tick ∧ ψ(tick)

)
(2)

The formula safetyC (3) captures the guarantees of class C: we need to show that C
(i) preserves its own invariant inv;
(ii) provides guarantees Ens about own out-port methods (shows what others can rely on);
(iii) respects timed preconditions TReqs; and,
(iv) when writing to in-port methods of callees, respects their input requirements Reqs.
If class C comes with a time-triggered controller with guard duration(e,e), technical constraint
5.3(1) above ensures that at the moment the controller calls an in-port of another object, it
has a correct copy of the callee state. Reqs are input requirements of used in-port methods of

LITES

04:22 A Hybrid Programming Language for Formal Modeling and Verification of Hybrid Systems

other classes than C, where the method parameter is replaced by the field passed to it. Ens are
guarantees of all out-port methods of C. Some special care needs to be taken for timed input
requirements. With TReqs, we denote the set of timed input requirements (constructed over tick,
as above) of all called in-ports where such a clause is given.

safetyC ≡ inv ∧
∧

φ∈Reqs

φ ∧
∧

τ∈TReqs

τ ∧
∧

ψ∈Ens
ψ (3)

The safety condition expresses that the controllers of class C respect the input requirements
when writing to the in-port methods of other components and call in-port methods with a timed
input requirement sufficiently open. The structure of controllers in CHABS per Sect. 3.3 enforces
that these calls occur last in the controller bodies.

5.3.3 Control Code
The translation of ABS statements to hybrid programs is defined in Fig. 20. We discuss the
non-obvious rules: Calls e!m() to in-port methods of other objects are mapped to ?true (i.e. skip),
because there is no effect on the caller object. A read f=e.m() from an out-port method is mapped
to trans(f) := ∗;?φm: a non-deterministic assignment, restricted with a subsequent test for the
guarantee of the called out-port method.

The translation of ports and control methods has the general form
if (check) then {exec; cleanup}. This pattern is instantiated per method type as follows:

Time-triggered controller m with method body await duration(e,e); s; this.m(): check makes
sure the correct duration elapsed and cleanup resets time, so check ≡ tm

.= trans(e), exec ≡
trans(s), cleanup ≡ tm := 0.
Event-triggered controller m with body await diff e; s; this.m(): check tests the guard, so
check ≡ trans(e), exec ≡ trans(s), cleanup ≡ ?true.
In-port method m with body this.f = v, input requirement φ and timed input requirement ψ:
check ensures the correct duration elapsed, so check ≡ tm

.= tickm; exec chooses a value consistent
with φ, so exec ≡ f := ∗; ?φ; finally, cleanup does the same for a new duration consistent with
ψ (method name replaced by tickm), so cleanup ≡ tickm := ∗; ?tickm > 0; ?ψ; tm := 0.
Out-port methods and the run method are not translated. Out-port methods have no effect
on object state and their guarantees (included in (1) in safetyC) must be shown to hold
throughout plant execution. The run method initializes the system and ensures that every
controller can run once before the first plant execution, which is guaranteed in (1) through
sequential composition of codeC; plantC.

Let M be the set of all translations of in-port methods and controllers, then:

codeC ≡
(∑ ∏

M
)

;
(∑

M
)∗

(4)

The controller codeC first executes all controllers in a non-deterministically chosen order
(
∑ ∏

M), then allows each controller/in-port to repeat (
∑
M)∗. The latter replicates eager ABS

behavior on satisfied guards: when an event-triggered controller is triggered and its guard still
holds after its execution, then in ABS the controller is run again.

Note that (
∑
M)∗ safely overapproximates all possible orders, including the behavior of the

first part
∑ ∏

M . However, including
∑ ∏

M in codeC simplifies practical proofs, because in
typical models that disable the check guards at the end of control and in-port method bodies (e.g.,
a time-triggered controller that resets time in cleanup so that it becomes re-enabled only after
some time passes), every method is executed at most once before time advances. The structure of
the controller codeC mirrors this with the first part

∑ ∏
M to simplify practical proofs as follows:

E. Kamburjan, S. Mitsch, and R. Hähnle 04:23

(i) the proof obligations of enabled control and in-port methods (i.e., whose check is true) are
easier because the outer loop is dropped, and additionally the proof obligations of all the
disabled control and in-port methods can be easily disposed of by contradiction with their
check guards;

(ii) finding a loop invariant for the second part (
∑
M)∗ is easy when no method is executed

twice before time advances: in that case, the loop invariant for (
∑
M)∗ must simply imply

that none of the check guards holds.
Further note that

∑ ∏
M does not exclude runs, because the general form

if (check) then {exec; cleanup} of control methods and ports in M ensures that there is
progress through the implicit else ?true even if all controllers and in-ports are disabled.

5.3.4 Plant
The plant of a class C has the form

plantC ≡
∑

{(ode, odet & c) | c ∈ C} , (5)

where ode is the ODE from its physical block, odet describes the time variables, and the constraints
c ∈ C partition the domain of the physical fields. The boundaries of the subdomains overlap
exactly where the differential guards hold.7 This models guards as events in dL, following the
modeling pattern described in Sect. 5.1. To ensure that no differential guard is omitted, it is
necessary that no two differential guards share a program variable. This is not a restriction, as
two controllers can be merged with a disjunction: see the guard in Fig. 2.

To define C let e1, . . . , em be the translations of differential guards in the class and ẽi the weak
complement of ei. Let t1, . . . , tl be all time variables introduced for time-triggered controllers with
eti the expression in the duration statement. Let pt1, . . . , ptk be all time variables introduced for
in-port methods and tickpti the associated tick variable. We set odet ≡ {t′1 = 1, . . . , t′l = 1, pt′1 =
1, . . . , pt′k = 1} and define:

C ≡
(
{e1, ẽ1} × {e2, ẽ2} × · · · × {em, ẽm}

)
∪ {t1 ≤ eti}i≤l ∪ {t1 ≥ eti}i≤l ∪ {pti ≤ tickpti}i≤n ∪ {pti ≥ tickpti}i≤n

5.3.5 On the Random Number Generator
We do not translate the random(i) expression from HABS to dL, because its semantics is that it
returns an integer below i. However, integer arithmetic is undecidable, which is the reason why dL
opts to embed its modality into a decidable first-order logic over the reals [66]. A straightforward
overapproximation with a translation to a variation of random that returns a real value is:

trans
(
f = random(r)

)
≡ trans(f) := ∗; ?

(
0 ≤ trans(f) < trans(r)

)
5.4 Compositional Verification
We can now state our main theorem: If we can prove safety of all classes, i.e., close all proof
obligations, then the whole system is safe, i.e., every class indeed preserves its invariant. Verification
is compositional: if we change the code or invariant of one class, only the proof obligation of this
class has to be reproven. If we change a method precondition, additionally the proof obligations
of all calling classes have to be reproven.

7 Expressions contain only >=, <= , so weak complement ensures a boundary overlap.

LITES

04:24 A Hybrid Programming Language for Formal Modeling and Verification of Hybrid Systems

▶ Theorem 5. Let P be a set of classes, with each C ∈ P associated with φC per formula (1). If
all the φC are valid, then for every main block that creates objects satisfying preC all reachable
states of all objects satisfy invC.

Proof Sketch. Recall that the trace of an HAO is an assignment of time to stores (Def. 4). For
the proof, each store is indexed by its time and the trace starts with 0 (i.e., the possible offset
caused by the delayed object creation is removed):

θo(t) = (ρt)t∈R+ = ρ0 · · ·

We are going to use that there are only countably many discrete steps in a run and partition the
trace into countably many subtraces. Then we show by induction on these discrete steps that the
invariant is always preserved.

Let D be the set of all time points with discrete steps of o in the run that generates θo. Note
that 0 ∈ D and that θo(d) is the last store defined by the SOS semantics, if several such stores
share the same time; further note that this is reflecting the reachability relation of dL.

We define θdo as the subtrace of θo starting with d and ending at the next time point of a
discrete step. Let next(d) be the next time point of a discrete step after d, if such a time point
exists, and ∞ otherwise:

dom
(
θdo

)
=

[
d..next(d)

]
with θdo(t) = θo(t)

We observe that each state in the HABS semantics is also a state in the Kripke structure of
the semantics if all class parameters are removed. We show that trans preserves reachability: if
from a state ρ state ρ′ is reachable by an HABS statement s in the HABS semantics, then state ρ′ is
reachable from state ρ by trans(s). This is justified as follows:

1. The dL program omits no events, because each event is at a boundary of two evolution domain
constraints on a variable and no two events share a variable (each controller has its own time
variable).

2. The evolution domain constraints cover all possible states, so no run is rejected for a domain
being too small.

3. Each test in dL formula φC that discards runs does so using a condition that is provably
guaranteed by other objects. For example, the test that discards all runs of an in-port method
for inputs not satisfying its input requirements is safe, because on the caller side this condition
is part of the safety condition (3).

4. The observation also relies on technical constraint (1) above and the recursive call being at
the end of a controller. Together, this guarantees that at that moment the caller copy of the
callee’s state is consistent with the callee’s actual state.

Let D = (di)i∈N be an enumeration of the discrete time points and θ̂di
o the union of all subtraces

of θo up to di:

dom
(
θ̂di
o

)
=

⋃
j≤i

dom
(
θdj
o

)
with θ̂di

o (t) = θo(t)

We show by induction on i that every state in θ̂di
o is safe, i.e., a model for the invariant invC.

Induction Base: i = 0. It is explicitly checked that θd0
o is safe. By assumption, the object is

created in a state θd0
o such that the precondition preC holds. From axiom I of dL [68] we know

that the safety condition must be true in the beginning of the loop, thus validity of φC implies
validity of preC → invC. Since all the formulas φC are proved in isolated component proofs,
we conclude invC holds for all reachable states of all objects as by the correctness argument
reachability is preserved.

E. Kamburjan, S. Mitsch, and R. Hähnle 04:25

Induction Step. i > 0. This is analogous to the base case, but instead of an explicit check that di
is safe, we use the induction hypothesis that every state in θ̂di−1

o is safe and that the statement
for di is executed in a state at time t ∈ dom

(
θ̂
di−1
o

)
. ◀

▶ Remark. The theorem states soundness of safety properties in dL proof obligations and does not
prove semantic equivalence between the contained dL-program and the HABS class. This approach
stands in the tradition of modular deductive verification of object-oriented software, in particular,
it follows the structure of systems for distributed object-oriented programs [52]. The main reason
to pursue this approach is that the form of proof obligations and the translation of statements
cannot be disentangled: the translation of method calls includes the postcondition of the called
methods: soundness of the translation relies on the fact that all other proof obligations can be
established. This is already the case for discrete, sequential languages [41]. Note that this is not
circular. As the proof of Theorem 5 shows, we can order all method executions in a run such that
we have a well-founded induction on them. The first method execution in every object relies only
on the state precondition which is guarenteed at creation. These in turn are guaranteed in the main
block, which has no assumptions. Another reason is that each dL proof obligation corresponds to
the (symbolic) execution of one object in a class. To model all permissible evolutions of several
method executions in a proof, therefore, it is necessary to encode the scheduler. This requires a
form of proof obligation that assumes the object invariant (which contains scheduling constraints).
This effect is well-known in deductive verification of distributed programs [31, 32, 52].

5.5 Case Study
We illustrate the HABS-to-KeYmaera X translation defined above with the TankTick system in
Fig. 4. The example, the implementation of the translation and the simulation, as well as the
mechanical proofs of the translation are available in the supplementary material.8 We start with
the two-object water tank, whose behavior for an initial level of 5 l is plotted in Fig. 5.

5.5.1 Class CTank

The in-port method inDrain() of the CTank class gives rise to a time variable tinDrain and a tick
variable tickinDrain. Following (2), assumptionsTank is:

assumptionsTank ≡ 4 ≤ inVal ≤ 9
∧ tinDrain

.= 0 ∧ 0 < tickinDrain

∧ level
.= inVal ∧ drain

.= −1/2
(6)

The safety condition says the tank level stays within its limits and that level adheres to its
contract which happen to be identical. No in-port methods of other classes are used, hence:

safetyTank ≡ 3 ≤ level ≤ 10 . (7)

The CTank class has no controller method, so the inDrain method, which has a timed input
requirement, per (4) results in codeTank below

codeTank ≡ p; (p)∗ (8)

8 https://doi.org/10.5281/zenodo.5973904

LITES

https://doi.org/10.5281/zenodo.5973904

04:26 A Hybrid Programming Language for Formal Modeling and Verification of Hybrid Systems

where p ≡ trans(inDrain) below is translated from Fig. 4 using the translation of Fig. 20:

p ≡ if (tinDrain
.= tickinDrain) then

drain := ∗;
?−1/2 ≤ drain ≤ 1/2 ∧ (drain < 0 → level ≥ 3.5)

∧ (drain > 0 → level ≤ 9.5);
tickinDrain := ∗; ?0 < tickinDrain < 1; tinDrain := 0

The plant plantTank, following shape (5), is based on the physical block and the new clock
variable (there are no differential guards), with the evolution domain constraint split along the
new time variable tinDrain. ODEs of the form v′ = 0 are default and omitted.

plantTank ≡ plant≤
Tank ∪ plant≥

Tank

plant≤
Tank ≡ {level′ = drain, t′inDrain = 1 & tinDrain ≤ tickinDrain}

plant≥
Tank ≡ {level′ = drain, t′inDrain = 1 & tinDrain ≥ tickinDrain}

(9)

▶ Lemma 6. Class Tank is safe, i.e., formula φTank – obtained per (1) referring to tank assumptions
assumptionsTank (6), postcondition safetyTank (7), code codeTank (8), and plant plantTank (9) – is
valid.

φTank ≡ assumptionsTank →
[
(codeTank; plantTank)∗]

safetyTank

Proof. See KeYmaera X proofs in the supplementary material. The proof sketch here serves as
an illustration of how sequent proofs in KeYmaera X systematically use the invariant annotations
in HABS. In the proof, we show the inductive loop invariant inv≤

Tank, which expresses that the level
always stays within limits and that the next input will be supplied before exceeding the timed input
requirement as follows: 3 ≤ level ≤ 10 ∧ −1/2 ≤ drain ≤ 1/2 ∧ 3 ≤ level + drain(tickinDrain −
tinDrain) ≤ 10 ∧ tickinDrain ≤ tinDrain.

The proof starts in step →R to make the left-hand side assumptionsTank of the implication
available as assumptions. Next, [∗] uses the loop invariant inv≤

Tank for induction: the base case
in the left-most subgoal and the use case in the right-most subgoal follow by real arithmetic
automation; the induction step in the middle subgoal continues with [;] to split the sequential
composition into nested box modalities.

∗
autoinv<Tank ` [plant≤Tank]inv

≤
Tank

∗
contradictioninv<Tank ` [plant≥Tank]inv

≤
Tank

[∪],∧R inv<Tank ` [plant≤Tank ∪ plant≥Tank]inv
≤
Tank

expand inv<Tank ` [plantTank]inv
≤
Tank

∗
autoinv≤Tank ` [p]inv<Tank

∗
autoinv<Tank ` [p∗]inv<Tank

[;],MR inv≤Tank ` [p ; (p∗)]inv<Tank
expand inv≤Tank ` [codeTank]inv

<
Tank

. . .

inv<Tank ` [plantTank]inv
≤
Tank

MR inv≤Tank ` [codeTank][plantTank]inv
≤
Tank

[;] inv≤Tank ` [codeTank ; plantTank]inv
≤
Tank

∗
autoassumptionsTank ` inv≤Tank

. . .

inv≤Tank ` [codeTank ; plantTank]inv
≤
Tank

∗
autoinv≤Tank ` safetyTank

[∗] assumptionsTank ` [(codeTank ; plantTank)
∗
]safetyTank→R ` assumptionsTank → [(codeTank ; plantTank)

∗
]safetyTank

E. Kamburjan, S. Mitsch, and R. Hähnle 04:27

The main insight now is that codeTank reacts at the latest when tickinDrain = tinDrain and
will reset the timer using tickinDrain := 0, so that the timing requirement tickinDrain ≤ tinDrain
can be strengthened to a strict inequality tickinDrain < tinDrain in the inductive loop invariant.
The resulting intermediate condition inv<Tank is used in step MR to split into two subgoals: in the
left subgoal of MR, we show that codeTank guarantees the intermediate condition inv<Tank. In the
right subgoal of MR we show that plantTank preserves the loop invariant from that intermediate
condition: the plant listens for the event tickinDrain = tinDrain with a choice between two
differential equations, whose evolution domain constraints exactly overlap at the event. On
evolution domain tickinDrain ≤ tinDrain in plant≤

Tank, the differential equation preserves the loop
invariant, whereas on evolution domain tickinDrain ≥ tinDrain in plant≥

Tank the contradiction
shows that the controller reacts such that the plant can never enter this unsafe behavior. ◀

5.5.2 Time-Triggered Controller FlowCtrl

Assumptions assumptionsFlowCtrl of FlowCtrl constructed per (2) and plant plantFlowCtrl con-
structed per (5) are straightforward. The latter is created for the sake of observing time events,
even though no physical block is present:

assumptionsFlowCtrl ≡ 0 < tick < 1 (10)
plantFlowCtrl ≡ {t′ctrlFlow = 1 & tctrlFlow ≥ tick} (11)

∪ {t′ctrlFlow = 1 & tctrlFlow ≤ tick}

The safety condition safetyFlowCtrl constructed per (3) is the timed input requirement of the
called inDrain method and the class invariant (subsumed by the input requirement of inDrain):

safetyFlowCtrl ≡ −1/2 ≤ drain ≤ 1/2 ∧ tick < 1
∧ (drain < 0 → level ≥ 3.5)
∧ (drain > 0 → level ≤ 9.5)

(12)

Finally, the code codeFlowCtrl is translated as

codeFlowCtrl ≡ q; (q)∗ (13)

with

q ≡ if (tctrlFlow
.= tick) then

level := ∗; ?3 ≤ level ≤ 10;
if (level ≤ 3.5) then {drain := 1/2};
if (level ≥ 9.5) then {drain := −1/2};
tctrlFlow := 0

▶ Lemma 7. Class FlowCtrl is safe, i.e., formula φFlowCtrl – obtained per (1) referring to
assumptions assumptionsFlowCtrl (10), postcondition safetyFlowCtrl (12), code codeFlowCtrl (13),
and plant plantFlowCtrl (11) – is valid.

φFlowCtrl ≡ assumptionsFlowCtrl →
[
(codeFlowCtrl; plantFlowCtrl)∗]

safetyFlowCtrl

Proof. See KeYmaera X-proofs in the supplementary material. ◀

LITES

04:28 A Hybrid Programming Language for Formal Modeling and Verification of Hybrid Systems

level
drain

3 10

Figure 21 Avoiding Zeno-behavior in TankMono.

5.5.3 Event-Triggered Controller CSingleTank

Translation of class CSingleTank from Fig. 2 illustrates the handling of event-triggered controllers.
The plant and code interact. The plant separates the evolution domain into two parts, with the
guard of the event-triggered controller (the white areas in Fig. 21) defining their boundary. The
gray areas are larger than the safe region defined by 3 <= level <= 10. This is necessary to avoid
Zeno behavior in the eager execution semantics of HABS: If we used simply the weak complement
of the safe region level <= 3 | level >= 10 as a guard and happen to be in a program state at
the boundary (the lower of the states indicated with a star in Fig. 21), then the controller changes
the state as shown by the arrow. But if the next state is again on the boundary, which is the case
when the safe region is too small, then the guard is triggered, the controller loops back to the first
state, etc., without physical time being able to advance. The guard in Fig. 2 ensures that after
the controller has run, the state is not on the boundary anymore. This behavior is exhibited by
our implementation, see Fig. 3. The code codeCSingleTank has the form r; (r)∗ with r being:

r ≡ if (level≤3 ∧ drain≤0) ∨ (level≥10 ∧ drain≥0) then
if (level ≤ 3) then drain := 1/2 else drain := −1/2

The plant of CSingleTank with sufficiently large regions is as follows:

plantCSingleTank ≡
{level′ = drain & (level ≤ 3 ∧ drain ≤ 0) ∨ (level ≥ 10 ∧ drain ≥ 0)}

∪ {level′ = drain & (level ≥ 3 ∨ drain ≥ 0) ∧ (level ≤ 10 ∨ drain ≤ 0)}

5.6 On Translation into dL
HABS programs can be tested and validated, but the programmer needs to avoid writing programs
that are
1. inherently difficult to interpret and
2. have a high degree of non-determinism.
Both are good programming and software engineering practices, of course, and the fact that HABS
is a programming language enables one to apply standard techniques for discrete programs.

A back-translation from dL to HABS would provide meaningful validation only for deterministic
dL models. While being possible even in the general case, two traits of dL programs prohibit easy
interpretation and simulation:

Highly Non-Deterministic Structure Additionally to non-deterministic assignment, branching
and repetition are both non-deterministic: the – rather non-intuitive – representation of (s)∗

in HABS is a loop that non-deterministically chooses to break out.
1 while(True) {
2 Int i = random(2);
3 if (i == 1) break;
4 s;
5 }

E. Kamburjan, S. Mitsch, and R. Hähnle 04:29

This loop may never terminate, while the semantics of dL loops defines an arbitrary but
countable number of repetitions. A similar pattern has to be employed for branching.

Tests The test ?φ discards a run based on a dL-guard. Translation would require
1. to evaluate dL formulas, as opposed to Boolean expressions, and
2. a mechanism to abort the program.
This can be emulated by exceptions, but it obfuscates the semantics.

6 Related & Future Work, Conclusion

6.1 Related Work
Previous work on hybrid programming concentrated on purely sequential languages: HybCore [39]
is a while-language with hybrid behavior and a simulator [40], but lacks formal verification
techniques. Its extensional semantics is not able to express the timed properties needed for our
distributed controller. Whiledt [77] is also a while-language and uses infinitesimals instead of ODEs
to model continuous dynamics. It has a simple verification system based on Hoare triples [42], but
is not executable.

Hybrid Rebeca (HR) [46] proposes to embed hybrid automata directly into the actor language
Rebeca. In contrast to HABS, no simulation is available and verification is not object-modular: the
whole model is translated to a single monolithic hybrid automaton. Because of this, a number
of boundedness constraints have to be imposed. The translation is also the semantics: HR has
no semantics beyond this translation and is mainly a frontend for Hybrid Automata tools. The
verification backend of HR does not support non-linear ODEs (our examples are linear, but HABS,
KeYmaera X, and Maxima, support non-linear ODEs; HABS models with non-linear ODEs are
found in the online supplement).

Recent efforts [58, 64] split the verification task in dL into manageable pieces by modularizing
deductive hybrid systems verification with component-based modeling and verification techniques,
but impose strict structural requirements on components and communication. The Sphinx
modeling tool [62] for dL represents non-distributed hybrid programs with UML class and activity
diagrams, but for verification purposes it translates these model artifacts into a single monolothic
hybrid program.

The Architecture Analysis and Design Language (AADL), a language to model hardware and
software components in embedded systems, has a hybrid extension [2], which uses the HHL [80]
theorem prover as its verification backend [1]. HHL is based on Hoare triples over hybrid CSP
programs and duration calculus formulas [57]. Hybrid AADL offers structuring elements for
components and their connections on the architecture level. The semantics of hybrid AADL is
given as a translation of the synchronous fragment of AADL into hybrid CSP, while we extend
the semantics of the actor-based programming language ABS to combine reasoning about the
asynchronous behavior of communicating components in ABS with reasoning about the internal
combined discrete and continuous component behavior in differential dynamic logic. As a side
effect, the extended semantics enables proving the correctness of the translation to differential
dynamic logic, as well as translating HABS to other formal languages.

A similar approach based on Stateflow/Simulink is implemented in the MARS toolkit [22]. The
MARS approach is orthogonal to HABS: MARS connects a verification toolkit around a simulation
language (which is a daunting task given the missing formal semantics of Stateflow/Simulink),
while HABS is designed specifically to enable verification and simulation through its languages
features. This is reflected in the soundness proof, which is based on a bidirectional translation.

Another approach based on CSP and the duration calculus combines these formalisms with
Object-Z [45]. This enables model-checking for real-time systems (clocks with resets), while
we support hybrid systems theorem proving with (non-linear) differential equations. A further
integration of Object-Z and (Timed) CSP was investigated by Mahony & Dong [60].

LITES

04:30 A Hybrid Programming Language for Formal Modeling and Verification of Hybrid Systems

Hybrid Event-B [12, 13] extends Event-B refinement reasoning with continuous behavior
between the usual discrete Event-B events. A more lightweight approach [76, 21] models hybrid
systems in an abstract way as action systems without differential equations directly in Event-B,
and complements analysis in Event-B with simulation in Matlab. Similarly, Dupont et al. [34]
use Event-B for a correct-by-construction approach to hybrid systems. They embed the ODEs
used for continuous modeling by declaring them as a special theory within Event-B instead of
extending the core language itself.

Integrated tools such as Ptolemy [71], Stateflow/Simulink except the aforementioned MARS
toolkit, and Modelica, all emphasize simulation, reachability analysis (e.g., Charon [6, 7], Ariadne
[15]), or testing (e.g., [30]). As supporting techniques, they provide modeling notation for timing
aspects, signals, and data flow between heterogeneous models. Formal verification of hybrid
systems with reachability analysis and model checking tools (SpaceEx [35], CORA [4], Flow* [23])
support modularity [33] based on hybrid I/O automata [59], assume-guarantee reasoning [17, 43],
and hybridization [24]. However, they work best for finite-horizon analysis and finite regions
(because over-approximations stay tight only for bounded time and from small starting regions).
Similar restrictions apply to dReal/dReach [37, 55].

Dynamic I/O automata [9] for modeling dynamic systems introduce a notion of externally
visible behavior, the ability to create and destroy automata and change their signature dynamically;
those features are all naturally available in our object-oriented approach and do not need special
extension like automata-based modeling tools. Our work contrasts with all mentioned simulation
and verification approaches by providing a uniform modeling language, validation by simulation,
modular infinite-horizon and infinite-region theorem proving through translation from HABS to dL.

Translation among hybrid system languages so far centers around hybrid automata as a
unifying concept [11, 79]. Others focus on the discrete fragment [38]. Our translation from HABS
to dL translates complete hybrid system models written in a programming language, including
annotations (preconditions, invariants, etc.). It is sound relative to the formal semantics of HABS
and dL.

Hybrid systems validation through simulation is addressed with translation to Stateflow/Sim-
ulink [10]; with a combination of discrete-event and numerical methods [19]; and with co-simulation
between control software and dedicated physics simulators [26, 78, 82]. Here, we focus on safety
verification, the distributed aspect of HABS models, and take a pragmatic first step for simulating
continuous models.

In summary, HABS is designed for modular deductive verification (unlike simulation-centric
tools), infinite-horizon analysis on infinite regions (unlike reachability analysis and model checking
tools), without sacrificing high-level programming language features (unlike hybrid systems
modularization techniques and assume-guarantee reasoning).

6.2 Future Work
The present work lifts the research on formal semantics of programming languages for hybrid
systems from verification-centric minimalistic languages to distributed object-oriented languages.
Carrying over techniques, ideas, and analyses from programming language research to hybrid
systems programming, presents an intriguing research direction. Our ongoing work on larger
case studies with HABS, in particular in connection with co-simulation [54], is expected to reveal
additional challenges.

We plan to combine the verification of CHABS presented here with the more modular approach
based on post-regions [51], which does not support timed input requirements yet. Future research
avenues include investigating how the static analyses for ABS, in particular the deadlock analysis for

E. Kamburjan, S. Mitsch, and R. Hähnle 04:31

boolean guards [50], can be extended for HABS, extending approximate simulation of non-solvable
differential equations, experimenting with various computer algebra systems, and supporting
guards with non-urgent semantics.

6.3 Conclusion
Distributed hybrid systems are not only difficult to verify formally, it is equally hard to validate a
formal model of them, especially with components using symbolic computations, such as servers.
Both activities have conflicting demands, so we propose a translation-based approach: modeling is
guided by patterns over hybrid programs and class specifications in HABS, a hybrid extension of
the concurrent active-object language ABS. These are automatically decomposed and translated
(Thm. 5) into sequential proof obligations of the verification-oriented differential dynamic logic dL
and discharged by the hybrid theorem prover KeYmaera X.

We illustrated the viability of our approach by a case study that features many complications:
concurrent behavior, possible non-termination, correctness depending on timing constants, multi-
dimensional domain, time lag in sensing, etc.

References
1 Ehsan Ahmad, Yunwei Dong, Shuling Wang, Naijun

Zhan, and Liang Zou. Adding formal meanings to
AADL with hybrid annex. In Ivan Lanese and Eric
Madelaine, editors, Formal Aspects of Component
Software - 11th International Symposium, FACS
2014, Bertinoro, Italy, September 10-12, 2014, Re-
vised Selected Papers, volume 8997 of Lecture Notes
in Computer Science, pages 228–247. Springer,
2014. doi:10.1007/978-3-319-15317-9_15.

2 Ehsan Ahmad, Brian R. Larson, Stephen C. Barrett,
Naijun Zhan, and Yunwei Dong. Hybrid annex: an
AADL extension for continuous behavior and cyber-
physical interaction modeling. In Michael Feldman
and S. Tucker Taft, editors, Proceedings of the 2014
ACM SIGAda annual conference on High integrity
language technology, HILT 2014, Portland, Ore-
gon, USA, October 18-21, 2014, pages 29–38. ACM,
2014. doi:10.1145/2663171.2663178.

3 Elvira Albert, Frank S. de Boer, Reiner Hähnle,
Einar Broch Johnsen, Rudolf Schlatte, Silvia Liz-
eth Tapia Tarifa, and Peter Y. H. Wong. Formal
modeling and analysis of resource management for
cloud architectures: an industrial case study using
real-time ABS. Service Oriented Computing and
Applications, 8(4):323–339, 2014.

4 M. Althoff. An introduction to CORA 2015. In
Proc. of the Workshop on Applied Verification for
Continuous and Hybrid Systems, 2015.

5 Rajeev Alur, Costas Courcoubetis, Thomas A. Hen-
zinger, and Pei Hsin Ho. Hybrid automata: An
algorithmic approach to the specification and verific-
ation of hybrid systems. In Hybrid Systems, volume
736 of LNCS, pages 209–229, Berlin, Heidelberg,
1993. Springer.

6 Rajeev Alur, Thao Dang, Joel M. Esposito, Ra-
fael B. Fierro, Yerang Hur, Franjo Ivancic, Vijay
Kumar, Insup Lee, Pradyumna Mishra, George J.
Pappas, and Oleg Sokolsky. Hierarchical hybrid
modeling of embedded systems. In Thomas A. Hen-
zinger and Christoph M. Kirsch, editors, Embed-
ded Software, First International Workshop, EM-

SOFT 2001, Tahoe City, CA, USA, October, 8-10,
2001, Proceedings, volume 2211 of Lecture Notes
in Computer Science, pages 14–31. Springer, 2001.
doi:10.1007/3-540-45449-7_2.

7 Rajeev Alur, Radu Grosu, Yerang Hur, Vijay Ku-
mar, and Insup Lee. Modular specification of hy-
brid systems in CHARON. In Nancy A. Lynch and
Bruce H. Krogh, editors, Hybrid Systems: Compu-
tation and Control, Third International Workshop,
HSCC 2000, Pittsburgh, PA, USA, March 23-25,
2000, Proceedings, volume 1790 of Lecture Notes
in Computer Science, pages 6–19. Springer, 2000.
doi:10.1007/3-540-46430-1_5.

8 Sven Apel, Don S. Batory, Christian Kästner, and
Gunter Saake. Feature-Oriented Software Product
Lines - Concepts and Implementation. Springer,
2013.

9 Paul C. Attie and Nancy A. Lynch. Dynamic in-
put/output automata: A formal and compositional
model for dynamic systems. Inf. Comput., 249:28–
75, 2016. doi:10.1016/j.ic.2016.03.008.

10 Stanley Bak, Omar Ali Beg, Sergiy Bogomolov,
Taylor T. Johnson, Luan Viet Nguyen, and Chris-
tian Schilling. Hybrid automata: from verification
to implementation. STTT, 21(1):87–104, 2019.

11 Stanley Bak, Sergiy Bogomolov, and Taylor T.
Johnson. HYST: a source transformation and trans-
lation tool for hybrid automaton models. In Ant-
oine Girard and Sriram Sankaranarayanan, editors,
HSCC’15, pages 128–133. ACM, 2015.

12 Richard Banach, Michael J. Butler, Shengchao
Qin, Nitika Verma, and Huibiao Zhu. Core hy-
brid Event-B I: single hybrid Event-B machines.
Sci. Comput. Program., 105:92–123, 2015. doi:
10.1016/j.scico.2015.02.003.

13 Richard Banach, Michael J. Butler, Shengchao Qin,
and Huibiao Zhu. Core hybrid Event-B II: mul-
tiple cooperating hybrid Event-B machines. Sci.
Comput. Program., 139:1–35, 2017. doi:10.1016/
j.scico.2016.12.003.

LITES

https://doi.org/10.1007/978-3-319-15317-9_15
https://doi.org/10.1145/2663171.2663178
https://doi.org/10.1007/3-540-45449-7_2
https://doi.org/10.1007/3-540-46430-1_5
https://doi.org/10.1016/j.ic.2016.03.008
https://doi.org/10.1016/j.scico.2015.02.003
https://doi.org/10.1016/j.scico.2015.02.003
https://doi.org/10.1016/j.scico.2016.12.003
https://doi.org/10.1016/j.scico.2016.12.003

04:32 A Hybrid Programming Language for Formal Modeling and Verification of Hybrid Systems

14 Don S. Batory, Jacob Neal Sarvela, and Axel
Rauschmayer. Scaling step-wise refinement. IEEE
Trans. Software Eng., 30(6):355–371, 2004.

15 Luca Benvenuti, Davide Bresolin, Pieter Collins,
Alberto Ferrari, Luca Geretti, and Tiziano Villa.
Assume–guarantee verification of nonlinear hybrid
systems with Ariadne. International Journal of
Robust and Nonlinear Control, 24(4):699–724, 2014.
doi:10.1002/rnc.2914.

16 Joakim Bjørk, Frank S. de Boer, Einar Broch
Johnsen, Rudolf Schlatte, and Silvia Lizeth Tapia
Tarifa. User-defined schedulers for real-time concur-
rent objects. Innovations in Systems and Software
Engineering, 9(1):29–43, 2013.

17 Sergiy Bogomolov, Goran Frehse, Marius Greit-
schus, Radu Grosu, Corina S. Pasareanu, Andreas
Podelski, and Thomas Strump. Assume-guarantee
abstraction refinement meets hybrid systems. In
Eran Yahav, editor, Hardware and Software: Veri-
fication and Testing - 10th International Haifa
Verification Conference, HVC 2014, Haifa, Israel,
November 18-20, 2014. Proceedings, volume 8855 of
Lecture Notes in Computer Science, pages 116–131.
Springer, 2014. doi:10.1007/978-3-319-13338-6_
10.

18 Brandon Bohrer, Yong Kiam Tan, Stefan Mitsch,
Magnus O. Myreen, and André Platzer. VeriPhy:
Verified controller executables from verified cyber-
physical system models. In Dan Grossman, ed-
itor, PLDI, pages 617–630. ACM, 2018. doi:
10.1145/3192366.3192406.

19 Christopher X. Brooks, Edward A. Lee, David
Lorenzetti, Thierry S. Nouidui, and Michael Wet-
ter. CyPhySim: a cyber-physical systems simu-
lator. In Antoine Girard and Sriram Sankaranaray-
anan, editors, HSCC’15, pages 301–302. ACM, 2015.
doi:10.1145/2728606.2728641.

20 Lilian Burdy, Yoonsik Cheon, David R. Cok, Mi-
chael D. Ernst, Joseph R. Kiniry, Gary T. Leavens,
K. Rustan M. Leino, and Erik Poll. An over-
view of JML tools and applications. International
Journal on Software Tools for Technology Transfer,
7(3):212–232, 2005.

21 Michael J. Butler, Jean-Raymond Abrial, and
Richard Banach. Modelling and refining hybrid
systems in Event-B and Rodin. In Luigia Petre
and Emil Sekerinski, editors, From Action Sys-
tems to Distributed Systems - The Refinement
Approach, pages 29–42. Chapman and Hall/CRC,
2016. doi:10.1201/b20053-5.

22 Mingshuai Chen, Xiao Han, Tao Tang, Shuling
Wang, Mengfei Yang, Naijun Zhan, Hengjun Zhao,
and Liang Zou. MARS: A toolchain for model-
ling, analysis and verification of hybrid systems.
In Michael G. Hinchey, Jonathan P. Bowen, and
Ernst-Rüdiger Olderog, editors, Provably Correct
Systems, NASA Monographs in Systems and Soft-
ware Engineering, pages 39–58. Springer, 2017.
doi:10.1007/978-3-319-48628-4_3.

23 Xin Chen, Erika Ábrahám, and Sriram Sank-
aranarayanan. Flow*: An analyzer for non-linear
hybrid systems. In Natasha Sharygina and Helmut
Veith, editors, Computer Aided Verification - 25th
International Conference, CAV 2013, Saint Peters-
burg, Russia, July 13-19, 2013. Proceedings, volume
8044 of Lecture Notes in Computer Science, pages

258–263. Springer, 2013. doi:10.1007/978-3-642-
39799-8_18.

24 Xin Chen and Sriram Sankaranarayanan. Decom-
posed reachability analysis for nonlinear systems. In
2016 IEEE Real-Time Systems Symposium, RTSS
2016, Porto, Portugal, November 29 - December 2,
2016, pages 13–24. IEEE Computer Society, 2016.
doi:10.1109/RTSS.2016.011.

25 Dave Clarke, Radu Muschevici, José Proença, Ina
Schaefer, and Rudolf Schlatte. Variability mod-
elling in the ABS language. In FMCO, volume
6957 of Lecture Notes in Computer Science, pages
204–224. Springer, 2010.

26 Fabio Cremona, Marten Lohstroh, David Broman,
Edward A. Lee, Michael Masin, and Stavros Tripa-
kis. Hybrid co-simulation: it’s about time. Soft-
ware and Systems Modeling, 18(3):1655–1679, 2019.
doi:10.1007/s10270-017-0633-6.

27 P.J.L. Cuijpers and M.A. Reniers. Hybrid process
algebra. J. of Logic and Algebraic Programming,
62(2):191–245, 2005.

28 Frank S. de Boer, Dave Clarke, and Einar Broch
Johnsen. A complete guide to the future. In ESOP,
volume 4421 of Lecture Notes in Computer Science,
pages 316–330. Springer, 2007.

29 Frank S. de Boer, Vlad Serbanescu, Reiner Hähnle,
Ludovic Henrio, Justine Rochas, Crystal Chang
Din, Einar Broch Johnsen, Marjan Sirjani, Eh-
san Khamespanah, Kiko Fernandez-Reyes, and Al-
bert Mingkun Yang. A survey of active object
languages. ACM Computíng Surveys, 50(5):1–39,
2017.

30 Ankush Desai, Amar Phanishayee, Shaz Qadeer,
and Sanjit A. Seshia. Compositional programming
and testing of dynamic distributed systems. Proc.
ACM Program. Lang., 2(OOPSLA):159:1–159:30,
2018. doi:10.1145/3276529.

31 Crystal Chang Din, Reiner Hähnle, Einar Broch
Johnsen, Ka I Pun, and Silvia Lizeth Tapia
Tarifa. Locally abstract, globally concrete se-
mantics of concurrent programming languages. In
Renate A. Schmidt and Cláudia Nalon, editors,
Automated Reasoning with Analytic Tableaux and
Related Methods - 26th International Conference,
TABLEAUX 2017, Brasília, Brazil, September 25-
28, 2017, Proceedings, volume 10501 of Lecture
Notes in Computer Science, pages 22–43. Springer,
2017. doi:10.1007/978-3-319-66902-1_2.

32 Crystal Chang Din and Olaf Owe. Compositional
reasoning about active objects with shared fu-
tures. Formal Asp. Comput., 27(3):551–572, 2015.
doi:10.1007/s00165-014-0322-y.

33 Alexandre Donzé and Goran Frehse. Modular, hier-
archical models of control systems in SpaceEx. In
European Control Conference, ECC 2013, Zurich,
Switzerland, July 17-19, 2013, pages 4244–4251.
IEEE, 2013. URL: http://ieeexplore.ieee.org/
xpl/freeabs_all.jsp?arnumber=6669815, doi:10.
23919/ECC.2013.6669815.

34 Guillaume Dupont, Yamine Aït Ameur, Neeraj Ku-
mar Singh, and Marc Pantel. Event-B hybrid-
ation: A proof and refinement-based framework
for modelling hybrid systems. ACM Trans. Em-
bed. Comput. Syst., 20(4):35:1–35:37, 2021. doi:
10.1145/3448270.

https://doi.org/10.1002/rnc.2914
https://doi.org/10.1007/978-3-319-13338-6_10
https://doi.org/10.1007/978-3-319-13338-6_10
https://doi.org/10.1145/3192366.3192406
https://doi.org/10.1145/3192366.3192406
https://doi.org/10.1145/2728606.2728641
https://doi.org/10.1201/b20053-5
https://doi.org/10.1007/978-3-319-48628-4_3
https://doi.org/10.1007/978-3-642-39799-8_18
https://doi.org/10.1007/978-3-642-39799-8_18
https://doi.org/10.1109/RTSS.2016.011
https://doi.org/10.1007/s10270-017-0633-6
https://doi.org/10.1145/3276529
https://doi.org/10.1007/978-3-319-66902-1_2
https://doi.org/10.1007/s00165-014-0322-y
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=6669815
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=6669815
https://doi.org/10.23919/ECC.2013.6669815
https://doi.org/10.23919/ECC.2013.6669815
https://doi.org/10.1145/3448270
https://doi.org/10.1145/3448270

E. Kamburjan, S. Mitsch, and R. Hähnle 04:33

35 Goran Frehse, Colas Le Guernic, Alexandre Donzé,
Scott Cotton, Rajarshi Ray, Olivier Lebeltel, Ro-
dolfo Ripado, Antoine Girard, Thao Dang, and
Oded Maler. SpaceEx: Scalable verification of
hybrid systems. In Ganesh Gopalakrishnan and
Shaz Qadeer, editors, Computer Aided Verifica-
tion - 23rd International Conference, CAV 2011,
Snowbird, UT, USA, July 14-20, 2011. Proceedings,
volume 6806 of Lecture Notes in Computer Science,
pages 379–395. Springer, 2011. doi:10.1007/978-
3-642-22110-1_30.

36 Nathan Fulton, Stefan Mitsch, Jan-David Quesel,
Marcus Völp, and André Platzer. KeYmaera X:
an axiomatic tactical theorem prover for hybrid
systems. In Amy P. Felty and Aart Middeldorp,
editors, CADE’25, volume 9195 of LNCS, pages
527–538. Springer, 2015. doi:10.1007/978-3-319-
21401-6_36.

37 Sicun Gao, Soonho Kong, and Edmund M. Clarke.
dReal: An SMT solver for nonlinear theories over
the reals. In Maria Paola Bonacina, editor, Auto-
mated Deduction - CADE-24 - 24th International
Conference on Automated Deduction, Lake Placid,
NY, USA, June 9-14, 2013. Proceedings, volume
7898 of Lecture Notes in Computer Science, pages
208–214. Springer, 2013. doi:10.1007/978-3-642-
38574-2_14.

38 Luis Garcia, Stefan Mitsch, and André Platzer.
HyPLC: hybrid programmable logic controller pro-
gram translation for verification. In ICCPS’19,
pages 47–56, 2019.

39 Sergey Goncharov and Renato Neves. An adequate
while-language for hybrid computation. CoRR,
abs/1902.07684, 2019.

40 Sergey Goncharov, Renato Neves, and José Proença.
Implementing hybrid semantics: From functional
to imperative. In Violet Ka I Pun, Volker Stolz,
and Adenilso Simão, editors, Theoretical Aspects of
Computing - ICTAC 2020 - 17th International Col-
loquium, Macau, China, November 30 - December 4,
2020, Proceedings, volume 12545 of Lecture Notes in
Computer Science, pages 262–282. Springer, 2020.
doi:10.1007/978-3-030-64276-1_14.

41 Daniel Grahl, Richard Bubel, Wojciech Mostowski,
Peter H. Schmitt, Mattias Ulbrich, and Benjamin
Weiß. Modular specification and verification. In
Wolfgang Ahrendt, Bernhard Beckert, Richard Bu-
bel, Reiner Hähnle, Peter H. Schmitt, and Mattias
Ulbrich, editors, Deductive Software Verification -
The KeY Book - From Theory to Practice, volume
10001 of Lecture Notes in Computer Science, pages
289–351. Springer, 2016. doi:10.1007/978-3-319-
49812-6_9.

42 Ichiro Hasuo and Kohei Suenaga. Exercises in
nonstandard static analysis of hybrid systems. In
P. Madhusudan and Sanjit A. Seshia, editors, Com-
puter Aided Verification - 24th International Con-
ference, CAV 2012, Berkeley, CA, USA, July 7-13,
2012 Proceedings, volume 7358 of Lecture Notes in
Computer Science, pages 462–478. Springer, 2012.
doi:10.1007/978-3-642-31424-7_34.

43 Thomas A. Henzinger, Marius Minea, and
Vinayak S. Prabhu. Assume-guarantee reasoning for
hierarchical hybrid systems. In Maria Domenica Di
Benedetto and Alberto L. Sangiovanni-Vincentelli,
editors, Hybrid Systems: Computation and Control,

4th International Workshop, HSCC 2001, Rome,
Italy, March 28-30, 2001, Proceedings, volume 2034
of Lecture Notes in Computer Science, pages 275–
290. Springer, 2001. doi:10.1007/3-540-45351-2_
24.

44 Carl Hewitt, Peter Bishop, and Richard Steiger. A
universal modular ACTOR formalism for artificial
intelligence. In IJCAI’73, pages 235–245, 1973.

45 Jochen Hoenicke and Ernst-Rüdiger Olderog. Com-
bining specification techniques for processes, data
and time. In Michael Butler, Luigia Petre, and
Kaisa Sere, editors, Integrated Formal Methods,
pages 245–266, Berlin, Heidelberg, 2002. Springer
Berlin Heidelberg.

46 Iman Jahandideh, Fatemeh Ghassemi, and Marjan
Sirjani. Hybrid Rebeca: modeling and analyzing
of cyber-physical systems. CoRR, abs/1901.02597,
2019. arXiv:1901.02597.

47 Jean-Baptiste Jeannin, Khalil Ghorbal, Yanni
Kouskoulas, Aurora Schmidt, Ryan Gardner, Stefan
Mitsch, and André Platzer. A formally verified
hybrid system for safe advisories in the next-
generation airborne collision avoidance system.
STTT, 19(6):717–741, 2017. doi:10.1007/s10009-
016-0434-1.

48 Einar Broch Johnsen, Reiner Hähnle, Jan Schäfer,
Rudolf Schlatte, and Martin Steffen. ABS: A core
language for abstract behavioral specification. In
Bernhard K. Aichernig, Frank S. de Boer, and Mar-
cello M. Bonsangue, editors, FMCO’10, volume
6957 of LNCS, pages 142–164. Springer, 2010.

49 Einar Broch Johnsen, Ka I Pun, and Silvia Lizeth
Tapia Tarifa. A formal model of cloud-deployed
software and its application to workflow processing.
In Dinko Begusic, Nikola Rozic, Josko Radic, and
Matko Saric, editors, SoftCOM’17, pages 1–6.
IEEE, 2017.

50 Eduard Kamburjan. Detecting deadlocks in formal
system models with condition synchronization.
ECEASST, 76, 2018. doi:10.14279/tuj.eceasst.
76.1070.

51 Eduard Kamburjan. From post-conditions to post-
region invariants: Deductive verification of hybrid
objects. In HSCC. ACM, 2021.

52 Eduard Kamburjan, Crystal Chang Din, Reiner
Hähnle, and Einar Broch Johnsen. Behavioral con-
tracts for cooperative scheduling. In 20 Years of
KeY, volume 12345 of Lecture Notes in Computer
Science, pages 85–121. Springer, 2020.

53 Eduard Kamburjan, Reiner Hähnle, and Sebastian
Schön. Formal modeling and analysis of railway op-
erations with Active Objects. Science of Computer
Programming, 166:167–193, November 2018.

54 Eduard Kamburjan, Rudolf Schlatte, Einar Broch
Johnsen, and S. Lizeth Tapia Tarifa. Designing
distributed control with hybrid active objects. In
ISoLA, volume 12479 of LNCS. Springer, 2020.

55 Soonho Kong, Sicun Gao, Wei Chen, and Ed-
mund M. Clarke. dReach: δ-reachability analysis
for hybrid systems. In Christel Baier and Cesare
Tinelli, editors, Tools and Algorithms for the Con-
struction and Analysis of Systems - 21st Interna-
tional Conference, TACAS 2015, Held as Part of
the European Joint Conferences on Theory and
Practice of Software, ETAPS 2015, London, UK,
April 11-18, 2015. Proceedings, volume 9035 of

LITES

https://doi.org/10.1007/978-3-642-22110-1_30
https://doi.org/10.1007/978-3-642-22110-1_30
https://doi.org/10.1007/978-3-319-21401-6_36
https://doi.org/10.1007/978-3-319-21401-6_36
https://doi.org/10.1007/978-3-642-38574-2_14
https://doi.org/10.1007/978-3-642-38574-2_14
https://doi.org/10.1007/978-3-030-64276-1_14
https://doi.org/10.1007/978-3-319-49812-6_9
https://doi.org/10.1007/978-3-319-49812-6_9
https://doi.org/10.1007/978-3-642-31424-7_34
https://doi.org/10.1007/3-540-45351-2_24
https://doi.org/10.1007/3-540-45351-2_24
http://arxiv.org/abs/1901.02597
https://doi.org/10.1007/s10009-016-0434-1
https://doi.org/10.1007/s10009-016-0434-1
https://doi.org/10.14279/tuj.eceasst.76.1070
https://doi.org/10.14279/tuj.eceasst.76.1070

04:34 A Hybrid Programming Language for Formal Modeling and Verification of Hybrid Systems

Lecture Notes in Computer Science, pages 200–205.
Springer, 2015. doi:10.1007/978-3-662-46681-0_
15.

56 Jia-Chun Lin, Ingrid Chieh Yu, Einar Broch
Johnsen, and Ming-Chang Lee. ABS-YARN: A
formal framework for modeling hadoop YARN
clusters. In Perdita Stevens and Andrzej Wasowski,
editors, FASE’16, volume 9633 of LNCS, pages
49–65. Springer, 2016.

57 Jiang Liu, Jidong Lv, Zhao Quan, Naijun Zhan,
Hengjun Zhao, Chaochen Zhou, and Liang Zou.
A calculus for hybrid CSP. In Kazunori Ueda,
editor, Programming Languages and Systems -
8th Asian Symposium, APLAS 2010, Shanghai,
China, November 28 - December 1, 2010. Pro-
ceedings, volume 6461 of Lecture Notes in Com-
puter Science, pages 1–15. Springer, 2010. doi:
10.1007/978-3-642-17164-2_1.

58 Simon Lunel, Stefan Mitsch, Benoît Boyer, and
Jean-Pierre Talpin. Parallel composition and mod-
ular verification of computer controlled systems in
differential dynamic logic. In Maurice H. ter Beek,
Annabelle McIver, and José N. Oliveira, editors,
Formal Methods, The Next 30 Years, Third World
Congress, FM, Porto, Portugal, volume 11800 of
LNCS, pages 354–370. Springer, 2019.

59 Nancy A. Lynch, Roberto Segala, and Frits W.
Vaandrager. Hybrid I/O automata. Inf. Com-
put., 185(1):105–157, 2003. doi:10.1016/S0890-
5401(03)00067-1.

60 Brendan P. Mahony and Jin Song Dong. Deep
semantic links of TCSP and Object-Z: TCOZ ap-
proach. Formal Aspects Comput., 13(2):142–160,
2002. doi:10.1007/s001650200004.

61 Maxima Manual, 5.43.0 edition, 2019. URL:
maxima.sourceforge.net.

62 Stefan Mitsch, Grant Olney Passmore, and André
Platzer. Collaborative verification-driven engineer-
ing of hybrid systems. Math. Comput. Sci., 8(1):71–
97, 2014. doi:10.1007/s11786-014-0176-y.

63 Stefan Mitsch and André Platzer. ModelPlex: Veri-
fied runtime validation of verified cyber-physical
system models. Form. Methods Syst. Des., 49(1):33–
74, 2016.

64 Andreas Müller, Stefan Mitsch, Werner Retschitzeg-
ger, Wieland Schwinger, and André Platzer. Tac-
tical contract composition for hybrid system com-
ponent verification. STTT, 20(6):615–643, 2018.
Special issue for selected papers from FASE’17.

65 André Platzer. Differential-algebraic dynamic logic
for differential-algebraic programs. J. of Logic and
Computation, 20(1):309–352, 2010.

66 André Platzer. The complete proof theory of hybrid
systems. In LICS, pages 541–550. IEEE, 2012.

67 André Platzer. The structure of differential in-
variants and differential cut elimination. Logical
Methods in Computer Science, 8(4):1–38, 2012.
doi:10.2168/LMCS-8(4:16)2012.

68 André Platzer. A complete uniform substitution cal-
culus for differential dynamic logic. J. Automated
Reasoning, 59(2):219–265, 2017.

69 André Platzer. Logical Foundations of Cyber-
Physical Systems. Springer, 2018.

70 André Platzer and Yong Kiam Tan. Differen-
tial equation invariance axiomatization. J. ACM,
67(1):6:1–6:66, 2020. doi:10.1145/3380825.

71 Claudius Ptolemaeus, editor. System Design,
Modeling, and Simulation using Ptolemy II.
Ptolemy.org, 2014.

72 Jan-David Quesel, Stefan Mitsch, Sarah Loos, Nikos
Aréchiga, and André Platzer. How to model
and prove hybrid systems with KeYmaera: A tu-
torial on safety. STTT, 18(1):67–91, 2016. doi:
10.1007/s10009-015-0367-0.

73 Ina Schaefer, Lorenzo Bettini, Viviana Bono, Fer-
ruccio Damiani, and Nico Tanzarella. Delta-
oriented programming of software product lines.
In SPLC, volume 6287 of Lecture Notes in Com-
puter Science, pages 77–91. Springer, 2010.

74 Ina Schaefer, Rick Rabiser, Dave Clarke, Lorenzo
Bettini, David Benavides, Goetz Botterweck,
Animesh Pathak, Salvador Trujillo, and Karina
Villela. Software diversity: state of the art and
perspectives. STTT, 14(5):477–495, 2012.

75 Rudolf Schlatte, Einar Broch Johnsen, Jacopo
Mauro, Silvia Lizeth Tapia Tarifa, and Ingrid Chieh
Yu. Release the beasts: When formal methods meet
real world data. In It’s All About Coordination,
volume 10865 of Lecture Notes in Computer Sci-
ence, pages 107–121. Springer, 2018.

76 Wen Su, Jean-Raymond Abrial, and Huibiao Zhu.
Formalizing hybrid systems with Event-B and the
Rodin platform. Sci. Comput. Program., 94:164–
202, 2014. doi:10.1016/j.scico.2014.04.015.

77 Kohei Suenaga and Ichiro Hasuo. Programming
with infinitesimals: A while-language for hybrid
system modeling. In ICALP (2), volume 6756 of
Lecture Notes in Computer Science, pages 392–403.
Springer, 2011.

78 Casper Thule, Kenneth Lausdahl, Cláudio Gomes,
Gerd Meisl, and Peter Gorm Larsen. Maestro: The
INTO-CPS co-simulation framework. Simulation
Modelling Practice and Theory, 92:45–61, 2019.
doi:10.1016/j.simpat.2018.12.005.

79 D. A. van Beek, Michel A. Reniers, Ramon R. H.
Schiffelers, and J. E. Rooda. Foundations of a com-
positional interchange format for hybrid systems.
In Alberto Bemporad, Antonio Bicchi, and Gior-
gio C. Buttazzo, editors, HSCC’07, volume 4416 of
LNCS, pages 587–600. Springer, 2007.

80 Shuling Wang, Naijun Zhan, and Liang Zou. An
improved HHL prover: An interactive theorem
prover for hybrid systems. In Michael Butler,
Sylvain Conchon, and Fatiha Zaïdi, editors, Formal
Methods and Software Engineering, pages 382–399,
Cham, 2015. Springer International Publishing.

81 Peter Y. H. Wong, Elvira Albert, Radu Muschev-
ici, José Proença, Jan Schäfer, and Rudolf Sch-
latte. The ABS tool suite: modelling, executing
and analysing distributed adaptable object-oriented
systems. STTT, 14(5):567–588, 2012.

82 Zhenkai Zhang, Emeka Eyisi, Xenofon D. Kout-
soukos, Joseph Porter, Gabor Karsai, and Janos
Sztipanovits. A co-simulation framework for design
of time-triggered automotive cyber physical sys-
tems. Simulation Modelling Practice and Theory,
43:16–33, 2014.

https://doi.org/10.1007/978-3-662-46681-0_15
https://doi.org/10.1007/978-3-662-46681-0_15
https://doi.org/10.1007/978-3-642-17164-2_1
https://doi.org/10.1007/978-3-642-17164-2_1
https://doi.org/10.1016/S0890-5401(03)00067-1
https://doi.org/10.1016/S0890-5401(03)00067-1
https://doi.org/10.1007/s001650200004
maxima.sourceforge.net
https://doi.org/10.1007/s11786-014-0176-y
https://doi.org/10.2168/LMCS-8(4:16)2012
https://doi.org/10.1145/3380825
https://doi.org/10.1007/s10009-015-0367-0
https://doi.org/10.1007/s10009-015-0367-0
https://doi.org/10.1016/j.scico.2014.04.015
https://doi.org/10.1016/j.simpat.2018.12.005

Bayesian Hybrid Automata: A Formal Model of
Justified Belief in Interacting Hybrid Systems
Subject to Imprecise Observation
Paul Kröger #

Carl von Ossietzky Universität Oldenburg, 26111 Oldenburg, Germany

Martin Fränzle #

Carl von Ossietzky Universität Oldenburg, 26111 Oldenburg, Germany

Abstract
Hybrid discrete-continuous system dynamics

arises when discrete actions, e.g. by a decision al-
gorithm, meet continuous behaviour, e.g. due to
physical processes and continuous control. A nat-
ural domain of such systems are emerging smart
technologies which add elements of intelligence, co-
operation, and adaptivity to physical entities, en-
abling them to interact with each other and with
humans as systems of (human-)cyber-physical sys-
tems or (H)CPSes.

Various flavours of hybrid automata have been
suggested as a means to formally analyse CPS dy-
namics. In a previous article, we demonstrated
that all these variants of hybrid automata provide
inaccurate, in the sense of either overly pessim-
istic or overly optimistic, verdicts for engineered
systems operating under imprecise observation of

their environment due to, e.g., measurement er-
ror. We suggested a revised formal model, called
Bayesian hybrid automata, that is able to repres-
ent state tracking and estimation in hybrid systems
and thereby enhances precision of verdicts obtained
from the model in comparison to traditional model
variants.

In this article, we present an extended defini-
tion of Bayesian hybrid automata which incorpor-
ates a new class of guard and invariant functions
that allow to evaluate traditional guards and in-
variants over probability distributions. The res-
ulting framework allows to model observers with
knowledge about the control strategy of an ob-
served agent but with imprecise estimates of the
data on which the control decisions are based.

2012 ACM Subject Classification Computer systems organization → Embedded and cyber-physical
systems
Keywords and Phrases stochastic hybrid systems, Bayesian inference, formal models, cyber-physical
systems
Digital Object Identifier 10.4230/LITES.8.2.5
Funding This research was supported by Deutsche Forschungsgemeinschaft under grant number DFG
GRK 1765 covering the Research Training Group “SCARE: System Correctness under Adverse Condi-
tions”.
Received 2020-10-01 Accepted 2021-11-16 Published 2022-12-07
Editor Alessandro Abate, Uli Fahrenberg, and Martin Fränzle
Special Issue Special Issue on Distributed Hybrid Systems

1 Introduction

Smart cities, automated transportation systems, smart health, and Industry 4.0 are examples of
large-scale applications in which elements of intelligence, cooperation, and adaptivity are added
to physical entities, enabling them to interact with each other and with humans as cyber-physical
systems or, in the latter case, human-cyber-physical systems (CPSes or HCPSes). Due to the
criticality of many of their application domains, such interacting cyber-physical systems call for
rigorous analysis of their emergent dynamic behaviour w.r.t. a variety of design goals ranging from
safety, stability, and liveness properties over performance measures to human-comprehensibility
of their actions and absence of automation surprises. The model of hybrid (discrete-continuous)

© Paul Kröger and Martin Fränzle;
licensed under Creative Commons Attribution 4.0 International (CC BY 4.0)

Leibniz Transactions on Embedded Systems, Vol. 8, Issue 2, Article No. 5, pp. 05:1–05:27
Leibniz Transactions on Embedded Systems

L I T E S Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:paul.kroeger@uni-oldenburg.de
https://orcid.org/0000-0002-0301-3611
mailto:martin.fraenzle@uni-oldenburg.de
https://orcid.org/0000-0002-9138-8340
https://doi.org/10.4230/LITES.8.2.5
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lites
https://www.dagstuhl.de

05:2 Bayesian Hybrid Automata

automata [2, 28, 19], in its various flavours, has traditionally been suggested as a formal model
accurately capturing CPS dynamics and thus facilitating such analysis with mathematical rigour
whenever the pertinent requirements can also be formalised, which applies at least for the safety,
stability, convergence, and liveness properties.

Hybrid automata (HA) provide a mathematical abstraction of the interaction between decision
making, continuous control, and continuous environments. They couple a finite-state control skel-
eton with a continuous state-space spanned by real-valued variables. The continuous state has its
dynamics governed by differential equations selected depending on the current control-skeleton
state (often called a discrete mode or a control location), and vice versa state dynamics of the
control skeleton is controlled by predicates on the continuous state. Various flavours of HA
have been suggested as a means to formally analyse different aspects of hybrid-state dynamical
systems, among them deterministic HA facilitating reasoning about their normative behaviour,
non-deterministic HA [2, 28] under a demonic interpretation supporting worst-case analysis with
respect to disturbances and measurement errors, and stochastic HA enabling quantitative veri-
fication [19, 31, 9, 15, 21, 14, 5]. Encoding the dynamics of an actual cyber-physical system into
one of the aforementioned modelling frameworks is in general considered a tedious, yet mostly
straightforward activity: it is assumed that these frameworks are rich enough to accommodate
adequate models of standard components, like sensors measuring physical quantities and actu-
ators modifying such quantities, as well as standard models of physical dynamics, continuous
control, and mode-switching control.

In this article, which is an extended version of [17], we demonstrate that despite their embra-
cing expressiveness and contrary to the intuition underlying the above modelling pragmatics, all
flavors of hybrid automata fall short of being able to accurately capture the interaction dynamics
of systems of well-engineered, rationally acting CPS designs operating under aleatory uncertainty.
We show that the corresponding verification verdicts obtained on the best possible approxima-
tions of the actual CPS dynamics are across the range of hybrid automata models bound to be
either overly optimistic or overly pessimistic, i.e., imprecise.

We identify inaptness to adequately cover rational decision making under uncertain inform-
ation as the cause of this deficiency of the hybrid-automaton model. As such rational decision
making requires manipulation of environmental state estimates to be embedded into the sys-
tem state itself, necessitating manipulation of state distributions rather than “just” discrete plus
real-vector valued state within the CPS and its corresponding formal model, we suggest an ap-
propriate extension of hybrid automata featuring mixture-based probability distributions in some
of its state variables. It adopts from metrology the concept of processing noisy measurements by
means of filtering and representing the result as a distribution over possible ground truth [20, 29]
and incorporates it into HA models. The resulting hybrid models can in general not be reduced
to traditional HA featuring a finite-dimensional real-valued state vector, such that verification
support remains an open issue that cannot be discharged by appropriate encoding into existing
hybrid-automata verification approaches [13].

Organisation of the paper

In the subsequent section, we discuss related work in order to identify a current lack of models
for hybrid dynamics being able to directly accommodate inference mechanisms about uncertain
state observation. This would, however, not necessarily imply that current models are too weak
for producing precise verdicts on system correctness, as an encoding of pertinent methods for
fusing measurements could well be possible within existing models. In Sect. 3.2, we therefore
demonstrate by means of a running example that traditional hybrid-system models are bound
to fail in providing the expected verification verdicts. This in turn motivates us to introduce

P. Kröger and M. Fränzle 05:3

filtering and state estimation into a revised model of hybrid automata. Section 3.3 demonstrates
that this indeed leads to accurate verdicts adequately reflecting engineering practice, while Sect. 4
shows that an embedding of such environmental state estimation into traditional hybrid automata
featuring real-vector state is in general impossible if the state estimation has to deal with states
of other autonomous agents. Section 5 provides the formal definition of the suggested extension
of hybrid automata before Sect. 6 puts forward ideas on automatic verification support for the
resulting rich class of hybrid automata, and Sect. 7 concludes the paper by shedding light on
related problems in the field of interacting intelligent systems.

2 Related work

An essential characteristic of cyber-physical systems is their hybrid discrete-continuous state-
space, combining a continuous, real-vector state-space with a number of discrete modes determin-
ing the dynamics of the continuous evolution. Hybrid automata (HA) [2, 28] have been suggested
as a formal model permitting the rigorous analysis of such systems. In their deterministic or
demonically nondeterministic form, HA support qualitative reasoning in the sense of exhaust-
ive verification or falsification, over the normative behaviour or the worst-case behaviour of the
system. Probabilistic or stochastic extensions of HA, so-called stochastic hybrid automata [21],
enable deriving quantitative figures about the satisfaction of a safety target by considering prob-
ability distributions over uncertain choices. Several variants of such a quantification have been
studied, e.g., HA with discrete [31, 15] or continuous [14] distributions over discrete transitions
as well as stochastic differential dynamics within a discrete mode [19].

HA models support the qualitative and quantitative analysis of systems subject to noise, yet
lack pertinent means for expressing the effects of state estimation and filtering known to be
central to rational strategies in games of incomplete information [25, Chapters 9-11] and thus in
optimal control under uncertainty. Formal modelling of systems taking rational decisions based
on best estimates of the uncertain and only partially observable state of other agents inherently
requires to incorporate two levels of probabilism: first, in the model of system dynamics as
probabilistic occurrences of sequences of observations; second, as distributions representing the
best estimates the embedded controller can gain about the state of its environment based on
these noisy observations. Formal modelling of rational decision making consequently requires
the estimations to be explicitly available in the state space of the controller for evaluations of
the underlying decisions (e.g., in the evaluation of a transition guard in supervisory control) and
secondly correlated observations have to be fused to obtain best estimates, e.g. in form of Bayes
filters [3, 22, 24]. Such probabilistic filters are widely used in robotics, e.g. for the estimation of
occupancy grids [12, 7], in robust fault detection under noisy environment [6], or for estimating
parameters of stochastic processes in biological tissues or molecular structures [30].

Aiming at approximating Maximum Likelihood Estimates for parameters of non-linear systems
with non-Gaussian noise, Murphy [26] considers state estimation with switching Kálmán filters
in presence of multiple linear dynamic models. In his setting, the time instances for switching
to a certain linear dynamics are unknown up to a known stochastic distribution. In combination
with stochastic state observations, this gives rise to state estimates in form of joint distributions,
approximated by mixtures of Gaussian distributions. However, in addition to limited dynamics,
switching between modes is based on Markovian dynamics, i.e., it is not possible to model switch-
ing based on probabilistic constraints on state estimates as necessary to model rational decisions
about changing a mode as a response to observed states.

This lack of capabilities to model (rational) control decisions including discontinuous updates
of the continuous state space is only partially resolved by the models underlying adaptive control
theory, which is subject to comprehensive research [23, 18, 27]. In this context, the focus is on the
identification of unknown (control) parameters of systems under imperfect observation. However,

LITES

05:4 Bayesian Hybrid Automata

these approaches are not sufficient to analyse the behaviour of interacting intelligent systems
as they are restricted to identifying the correct choice between a set of (possibly time-variant)
dynamical models for the controlled process.

The consequential necessity of applying Bayesian filtering within hybrid systems implementing
optimal control was already discovered by Ding et. al. [10]. They present an approach to derive
optimal control policies for partially observable discrete time stochastic hybrid systems, where
optimality is defined in terms of achieving the maximum probability that the system remains
within a set of safe states. In order to be able to apply dynamic programming in search for
an optimal solution, Ding et al. replace the partially observable system by an equivalent perfect
information system via a sufficient statistics in form of a Bayes filter. This is very close to our
approach in mindset, as a sufficient statistics about a Bayesian estimate of the imperfectly known
actual system state is at the heart of rational decisions in control under uncertainty. The main
difference is that we are trying to formulate a general model facilitating the behavioural analysis of
such optimal hybrid control systems, while Ding et al. aim at the construction of such controllers
w.r.t. a given safety goal. The latter facilitates a decomposition of the design problem into
obtaining a Bayesian filtering process and developing a —then scalar-valued— control skeleton.
This renders a direct integration, as pursued in this article, of state distributions and Bayesian
inference mechanisms into the state space of an analytical model unnecessary.

In [16], we already suggested a revised formal model, called Bayesian hybrid automata, that
is able to represent state tracking and estimation in hybrid systems and integrates probability
density functions in its state space thereby enabling modelling of rational decision making under
uncertain information. However, this model was not yet capable of covering hybrid-state dy-
namics of the observed agent when it comes to extrapolation of estimates over time between two
measurement instances. As indicated in [17], this requires mixture distributions dealing with all
possible decision alternatives (including the case that the decision is pending) in the state space
of the model. In this article, we extend our previous work by a formal definition of an exten-
sion of Bayesian hybrid automata incorporating mixture distributions and a semantics covering
hybrid-state dynamics for state-extrapolation.

3 Inadequacy of traditional hybrid-automata models

Hybrid automata have been conceived in [2, 28] as a formal model seamlessly integrating decision
making with control, thus facilitating the modelling and analysis of the joint dynamics of these
two layers pertinent to CPSes: discrete decisions, e.g. between the alternative manoeuvres of
following a lead car or overtaking it in an autonomous car, do dynamically activate and deactiv-
ate continuous control skills, like an automatic distance control implementing the car-following
manoeuvre. In HA, the former are described by a finite automaton featuring transitions guarded
by (and possibly inducing side effects on) continuous state variables of the control path and the
controller, while the latter are governed by differential equations attributed to (and thus changing
in synchrony with) the automaton locations and ranging over the continuous state variables and
thus describing the state dynamics of both the control path and the controller.

In reality, such CPSes have to operate and draw decisions under a variety of uncertainties
stemming from their multi-component nature, as the latter requires mutual state observation
between agents. Such sensing of non-local state inevitably induces uncertainties due to, a.o.,
the measurement inaccuracies inherent to sensor devices. In consequence, the decision making
in real CPSes is bound to be rational decision-making under uncertainties. In this section, we
demonstrate how existing hybrid-automata models fall short in taking account of such rational
decision-making. To showcase the problem, we will in the following exploit a very simple example,
mostly taken from [16], of a rational decision-making problem to be solved by a CPS.

P. Kröger and M. Fränzle 05:5

x

y

0 10 20 30 40 50 60 70 80 90
0

10

20

E
O

xE xO

yO

yE

,
constant,

well-known

,
evolving over time,

well-known

,
constant,

estimated frequently as ŷO

Figure 1 A common traffic situation (taken from [16]): ego vehicle E shall decide between passing the
parked obstacle O or halting.

3.1 An example of a control decision problem
Our example deals with a common traffic situation depicted in Fig. 1. Our own autonomous
car, called the ego vehicle and denoted by E in the sequel, is driving along a road which features
another vehicle O parked further down the road. Despite being parked on the roadside, car O
may extend into the lane used by E. E cannot perform a lateral evasive manoeuvre due to dense
oncoming traffic. E therefore has to decide between passing the car while keeping its lane and an
emergency stop avoiding a collision. It obviously ought to decide for a pass whenever that option
is safe due to a small enough intrusion of O into the lane, and it should stop otherwise.

The geometric situation can be described by four real-valued variables: three rigid variables
xO, yO, and yE describing the static longitudinal position of O and the static lateral positions
of both cars, as well as a flexible, continuously evolving variable xE representing the momentary
longitudinal position of the ego car. For simplicity, we assume that all values except the environ-
mental variable yO are exactly known to the ego car E. The value of yO has to be determined by
sensing the environment via a possibly inaccurate measurement yielding an estimate ŷO for yO.
For the sake of providing a concrete instance, we assume a normally distributed measurement
error, i.e., ŷO ∼ N (yO, σ2), though our findings do not hinge on that particular distribution. As
a further simplification we assume that car E either drives with nominal speed (ẋE = 1) or is
fully stopped (ẋE = 0) and that it switches between these two dynamics instantaneously.

The design goal is to design an ego car that is both safe and live; the corresponding analysis
goal consequently is to prove these two properties. Liveness in this context means that car E
eventually passes car O whenever yE > yO. Safety is defined as the exclusion of the possibility of
a collision, i.e., that xE < xO stays invariant over time whenever yE ≤ yO. These two properties
can be formalised as follows using a straightforward extension of CTL featuring relational atoms
over continuous signals akin to Signal Temporal Logic [11]:

safe := (yE ≤ yO) =⇒ AG (xE < xO) (1a)
live := (yE > yO) =⇒ AF (xE ≥ xO) (1b)

3.2 Hybrid automata models
Dealing with sensory observation of environmental variables and potentially reflecting the per-
tinent measurement inaccuracies within hybrid-automata models is a classical theme. Figure 2
represents the three standard means of dealing with sensory observation in HA models, exem-
plified on the example from the previous section: Automaton Nominal identifies environmental

LITES

05:6 Bayesian Hybrid Automata

Nominal:

run
ẋE = 1 ∧ ċ = 1

yE > ŷO ∧ c < 1

stop
ẋE = 0 ∧ ċ = 1

yE ≤ ŷO ∧ c < 1

yE ≤ ŷO

yE > ŷO

c ≥ 1 ∧ ŷ′
O = yO ∧ c′ = 0 c ≥ 1 ∧ ŷ′

O = yO ∧ c′ = 0

(xE = 0) ∧ (yE = 6.875) ∧ (xO = 73.75) ∧ (ŷO = yO) ∧ (c = 0)

Demonic:

run
ẋE = 1 ∧ ċ = 1

yE > ŷO + δ ∧ c < 1

stop
ẋE = 0 ∧ ċ = 1

yE ≤ ŷO + δ ∧ c < 1

yE ≤ ŷO + δ

yE > ŷO + δ

c ≥ 1 ∧ ŷ′
O = yO + e ∧

c′ = 0 ∧ − ε ≤ e ≤ ε
c ≥ 1 ∧ ŷ′

O = yO + e ∧
c′ = 0 ∧ − ε ≤ e ≤ ε

(xE = 0) ∧ (yE = 6.875) ∧ (xO = 73.75) ∧ (ŷO = yO + e) ∧ (c = 0) ∧ (−ε ≤ e ≤ ε)

Stochastic:

run
ẋE = 1 ∧ ċ = 1

yE > ŷO + δ ∧ c < 1

stop
ẋE = 0 ∧ ċ = 1

yE ≤ ŷO + δ ∧ c < 1

yE ≤ ŷO + δ

yE > ŷO + δ

c ≥ 1 ∧ ŷ′
O ∼ N

(
yO, σ

2) ∧ c′ = 0 c ≥ 1 ∧ ŷ′
O ∼ N

(
yO, σ

2) ∧ c′ = 0

(xE = 0) ∧ (yE = 6.875) ∧ (xO = 73.75) ∧
(
ŷO ∼ N

(
yO, σ

2)) ∧ (c = 0)

Figure 2 Hybrid automata models for the scenario of Fig. 1 (refinements of [16]). Variable c is a clock
variable representing a timer that triggers a measurement every full time unit.

states with their measurements, thereby neglecting measurement error and claiming to draw con-
trol decision based on exact environmental entities. Demonic models measurement error as a
bounded offset e between the actual value yO and its measurement ŷO, with the offset e non-
deterministically chosen afresh upon every take of a measurement. It also employs a safety margin
δ within its decision making, passing only when the distance between yE and ŷO is larger than
the safety margin δ. Stochastic, finally, incorporates the faithful model of measurement noise by
generating the measurement ŷO via a normal distribution N (yO, σ2) centred around yO, where σ

is the standard deviation of the measurement process.
Case analysis reveals that, depending on the relation between yE and yO and the safety margin

δ, satisfaction of the two requirements formulae safe and live by the three models Nominal,
Demonic, and Stochastic varies. Satisfaction applies as shown in Table 1.

None of these results seems particularly convincing. The nominal model, ignoring any meas-
urement error in its analysis, optimistically claims its control to be both absolutely safe and live
despite its decisions not even catering for adversarial measurement error impacting the non-robust
guard yE > yO. The other two models pessimistically claim that it either is impossible to build
any system satisfying any positive safety threshold (P (safe) → 0.0 in Stochastic) or to achieve
any liveness (Demonic ̸|= live). Given that building such controllers and achieving very high
quantitative degrees of, though not absolute, liveness and safety is standard engineering prac-
tice, all the above verdicts are disappointing and show inherent deficiencies in our conventional
hybrid-state models.

P. Kröger and M. Fränzle 05:7

Table 1 Analysis results for the different models. → x denotes probabilities converging to x in the
long-run limit.

(a) Analysis results for automaton Nominal.

safe live
yE > yO trivial sat
yE ≤ yO sat trivial

Optimistic verdict, claiming perfect control pos-
sible despite the in reality inevitable uncertainty
about environmental state.

(b) Automaton Demonic (case 3 arises only under insufficient safety margin δ < ε where |e| ≤ ε).

safe live
yE > yO + δ + max(e) trivial sat
yO + δ + ε ≥ yE > yO trivial unsat
yE ≤ yO < yE − δ + ε unsat trivial
yE − δ + ε ≤ yO sat trivial

Pessimistic verdict, rightfully claiming safety at
risk whenever an inappropriate safety margin is
selected (case 3 in the table), but also claiming
liveness perfectly impossible to achieve.

(c) Analysis results for automaton Stochastic.

P (safe) P (live)
yE > yO 1.0 → 1.0
yE ≤ yO → 0.0 1.0

Pessimistic verdict, claiming achievement of even
marginal safety levels impossible over extended
periods of time.

3.3 Adding Kálmán filtering
The obvious problem is that the above standard hybrid-automata models neglect the fact that
repetition of noisy measurement processes accumulates increasingly better evidence about the true
state of the observed entity, albeit always with a remaining uncertainty. While model Nominal
ignores the impossibility of perfect knowledge, thus yielding inherently optimistic verdicts, models
of the shapes Stochastic or Demonic do not correlate measurements across time series and thus
fail to reflect the steady build-up of increasingly precise evidence about the true position yO
of the obstacle. Any form of truly rational decision-making would, however, take advantage of
the latter fact; vice versa, any formal model neglecting it provides a coarse overapproximation
of actual observational uncertainty resulting in correspondingly pessimistic verification verdicts
relative to standard engineering practice employing filtering of measurements.

In the given case of a static obstacle O, as well as in the more general case of a physical
process subject to purely linear differential dynamics, standard Kálmán filtering [20] manipulating
normal distributions is the method of choice for obtaining best possible estimates of perceived
state from independently normally distributed individual measurements. As normal distributions
can be represented by a fixed number of parameters, namely their mean value and variance, these
can still be incorporated into standard stochastic hybrid-automata models by means of extra
variables: Retaining ŷO as the variable representing the current estimate of the lateral position
of O in the scenario from Fig. 1, one has to add a second variable representing the accuracy of
the current estimate. This could be the standard deviation or the variance of the estimation
error; for simplicity of the update rules it is, however, customary to instead use the precision (i.e.
the reciprocal of the variance). Adding a variable ρ representing the precision, the measurement
transitions thus change according to the usual Kálmán-filter update rules

m ∼ N (yO, 1/ρm) (2a)

ŷ′
O = ρ · ŷO + ρm · m

ρ′ (2b)

ρ′ = ρ + ρm (2c)

where ρm is the precision of an individual measurement process and m the recent measurement.

LITES

05:8 Bayesian Hybrid Automata

run
ẋE = 1 ∧ ċ = 1

yE > ŷO + δ(ρ, θ) ∧ c < 1

stop
ẋE = 0 ∧ ċ = 1

yE ≤ ŷO + δ(ρ, θ) ∧ c < 1

yE ≤ ŷO + δ(ρ, θ)

yE > ŷO + δ(ρ, θ)

c ≥ 1 ∧m ∼ N
(
yO, σ

2)

∧ ŷ′O = ρ·ŷO+ρm·m
ρ′

∧ ρ′ = ρ+ ρm
∧ c′ = 0

c ≥ 1 ∧m ∼ N
(
yO, σ

2)

∧ ŷ′O = ρ·ŷO+ρm·m
ρ′

∧ ρ′ = ρ+ ρm
∧ c′ = 0

(xE = 0) ∧ (yE = 6.875) ∧ (xO = 73.75) ∧
(
m ∼ N

(
yO, σ

2)) ∧ (ŷO = m) ∧ (ρ = ρm) ∧ (c = 0)

Figure 3 A stochastic hybrid automaton incorporating Kálmán filtering for the measurements of O’s
position. δ(ρ, θ) computes a safety margin yielding confidence θ when the precision is ρ, i.e., is defined
by
∫ δ(ρ,θ)

−∞ N (0, 1/ρ)ds = θ.

The guards governing the decision to move to mode run (as well as the invariant of that mode)
change to threshold conditions on the probability mass Px∼N (ŷO,1/ρ)(yE > x) ≥ θ, checking for
sufficient evidence that yE > yO holds and thus confining the risk of erroneously moving the car
forward when in fact yE ≤ yO applies to below 1.0 − θ. The resulting automaton is depicted in
Fig. 3 and reflects the standard engineering practice of Kálmán filtering noisy measurements.

As can be seen from the experimental results reported in Figures 4 and 5, its control perform-
ance significantly exceeds all the verdicts for the standard models stated in Table 1. In these
experiments, we implemented the automata Stochastic and its Kálmán-filtered variant (BHA)
both in a safe situation (Figure 4) where car E is ought to pass car O, and in an unsafe situation
(Figure 5) where car E should stop since O’s sphere overlaps with E’s lane. For both situations,
the blue solid graph shows the average of switching to or remaining in mode run after a meas-
urement (which is taken at every discrete time instance thereby assuming a step size of 1) for
Stochastic. The average is constant for both situations. In contrast, the average of driving on
converges to 1.0 rapidly for the safe situation while it converges fast to 0.0 for the unsafe situation
(illustrated by the green dotted graph). This is where the Bayesian filter’s effect manifests itself:
all decisions in Stochastic are based on the recent (single) measurement thus yielding a constant
probability of making a “bad” decision as neither the distance yE − yO nor the distribution of the
measurement error changes over time. For the BHA, in turn, the integration of all measurement
results leads to an estimate in form of a normal distribution of which the mean ŷO converges to
yO over time while the increasing precision allows for a less conservative safety margin.

The orange dashed-dotted line shows for each discrete time step the probability P (xE ≥ xO)
in Stochastic, i.e. the probability that car E has already passed car O in the safe situation and
that the cars have already collided in the unsafe situation. The red dashed line shows the same for
BHA. As Stochastic moves with constant probability, the probability P (xE ≥ xO) of progressing
beyond the other car’s position converges to 1.0 in Stochastic for both situations. This implies
that car E almost surely eventually passes car O in the safe situation, but also almost surely
eventually collides in the unsafe situation. These results were already predicted in Table 1. As
a consequence of the effect of the filter, the graph for BHA shows for the safe situation that the
probability that car E has passed car O increases significantly earlier than for Stochastic. Most
probably, car E will pass car O quite smoothly after a short while in BHA, while it stutters past O
in Stochastic. For the unsafe situation, in turn, the red dashed graph shows that the probability
of a collision remains very small up to the time horizon.

P. Kröger and M. Fränzle 05:9

0 200 400 600 800 1000 1200 1400
discrete time instance td

0.0

0.2

0.4

0.6

0.8

1.0

av
er

ag
e

m
ov

em
en

t/p
as

sin
g

ov
er

 N
=3

00
0

sa
m

pl
in

g
ru

ns

SHA moved
SHA passed
BHA moved
BHA passed

yE = 9.875 > 8.1 = yO (collision impossible)
condition to move: P(yE > yO) 0.9 =

Figure 4 Simulation results for the traffic example (Fig. 1) comparing automaton Stochastic (labelled
SHA) with its Kálmán-filtered variant (BHA) in a safe situation (yE > yO). BHA moves steadier (dotted
green vs. solid blue line) and passes earlier (red vs. orange).

4 Interacting and cooperating cyber-physical systems

From the above, it might seem that encoding of standard engineering practice into stochastic
hybrid automata well is feasible. Issues do, however, get more involved when the perceived objects
are subject to more complex dynamics than linear differential equations s.t. normal distributions
or other distributions representable by a finite vector of scalar parameters do no longer suffice
for encoding optimal state estimates. This applies for example when the observed agent itself
is a hybrid or cyber-physical system, as we will show in this next section. The above encoding
into a stochastic hybrid automaton with finite-dimensional state becomes infeasible then, instead
requiring to embed complex probability distributions directly into the automaton’s state space.

To demonstrate this problem induced by the cooperation of smart entities, which hinges on
the additional necessity to mutually detect and reason about control decisions of the mutually
other agents based on uncertain behavioural observations, we now move on to a slightly more
complex scenario involving interaction between cyber-physical systems.

4.1 An example of a cooperative control-decision problem
Imagine two ships approaching each other on a narrow channel permitting opposing traffic only
within a designated passing place, as depicted in Fig. 6. The ship reaching the passing place first
(ship O) is allowed1 to draw a decision to which side it turns for mooring while the oncoming
ship E enters the passing place. To complicate the issue, we forbid direct communication between
the ships. In absence of means of negotiation, the ego ship E has to determine O’s ensuing
manoeuvre from observing the current lateral position of ship O and decides to move to a certain
side as soon as its confidence that O will move to the opposite shore is above a specified threshold.

1 Please note that this is a toy example ignoring all maritime rules such as COLREGs.

LITES

05:10 Bayesian Hybrid Automata

0.0 0.2 0.4 0.6 0.8 1.0
discrete time instance td

0.0

0.2

0.4

0.6

0.8

1.0

av
er

ag
e

m
ov

em
en

t/c
ol

lis
io

n
ov

er
 N

=3
00

0
sa

m
pl

in
g

ru
ns

0.90

0.92

0.94

0.96

0.98

1.00 SHA moved
SHA collided
BHA moved
BHA collided

0 200 400 600 800 1000 1200 1400
0.00

0.05

0.10

0.15

yE = 6.875 8.1 = yO (collision possible)
condition to move: P(yE > yO) 0.9 =

Figure 5 Comparison in an unsafe situation (yE < yO) of the traffic example (Fig. 1). The Kálmán-
filtered BHA enhances safety as it almost surely stops (dotted green line) and its collision probability
saturates (dashed red), whereas the latter diverges for the SHA (dash-dotted orange) due to a constant
rate of stuttering movement (solid blue).

We assume that ship O has perfect knowledge about its own longitudinal (xO) and lateral
(yO) position. Ship E, in turn, has perfect knowledge about its own position (xE and yE) while
it maintains estimates x̂O and ŷO of O’s position. The problem for E is to determine, based on
these estimates, to which side O will evade. Filtering w.r.t. a single known dynamics of O is no
longer possible as dynamics depend on O’s decision for which, in turn, E has only a probability
distribution based on the estimate of O’s position. Instead, mixture distributions dealing with all
possible decision alternatives (including the case that the decision is pending) have to be dealt
with. Each mixture component then covers the part of the state space of yO that results in a
certain decision and is subject to the corresponding dynamics within the filter process.

This obviously requires an extension of the stochastic hybrid automaton setting, as the es-
timates no longer constitute Gaussians due to the decision process itself, which is reflected by
chopping the distributions at the thresholds of guards/invariants. That the underlying dynamics
is non-linear only adds to the problem.

x

y

−10 0 10 20 30 40 50 60 70 80 90 100 110

−10

0

10

E O
O

O

Figure 6 Two ships approaching each other on a channel. The red ship (labelled O) decides to move
to the right side of the passing place if its lateral position is larger than 0, and to the left otherwise. The
ego ship (blue, labelled E) tries to determine O’s manoeuvre and to move to the opposite side.

P. Kröger and M. Fränzle 05:11

4.2 Formal modelling of the scenario
Given the complexity of the state estimation and rational decision processes sketched above, a
decomposition of the overall problem into a set of interacting automata with dedicated function-
alities seems appropriate. Figure 7 shows such a decomposition for the —still simple— case of
unilateral observation, i.e., that ship O does not observe ship E and that their control behaviour
consequently is not mutually recursive.

The roles of the various automata are as follows:
Observed automata (OA) represent entities that are observed by the ego system. In the
example, ship O is modelled by an observed automaton. As ship O has perfect knowledge
about its own state (and as its behaviour is independent from E’s in the unilateral case), its
automaton model is a traditional hybrid automaton of the same shape as Nominal in Fig. 2.
Estimate automata (EA) provide estimates of O’s current state to E. They cover the perception
process, i.e. they reflect the (possibly error-afflicted) environmental perception of the ego
system and update quantitative estimates x̂ of the observed parameters x. In simple cases,
they will regularly at sampling intervals take noisy copies m ∼ N (x, 1/ρm) of the observed
physical states and incorporate them into estimates x̂ for refine estimates x̂. In addition,
they extrapolate estimates over time between measurement intervals. The steps involved in
creating and updating the estimates thus are manifold:

1. Temporal extrapolation starts with splitting the current estimate, i.e., state distribution for
the observed entity O according to O’s known mode selection dynamics. In the example,
this would imply splitting the ŷO values of the part of the distribution that is associated
to mode ‘run’ at 0 and associating its negative branch to mode ‘left’ and the non-negative
to mode ‘right’.

2. Reflecting possible sequences of instantaneous discrete jumps of O’s control automaton
before time elapses, repeat step 1 until a fixed-point is reached which indicates that no
further discrete jump is possible.

3. For each mode, extrapolate these “fragments” of the distribution associated to the mode
along the pertinent mode dynamics, which is followed for the duration of a single time
step.2

4. Take the resulting extrapolated distribution of O’s state, which now reflects the estimate of
O’s state at the next measurement sampling time3, and pursue a Bayesian update of each
of the individual fragments of the “dissected” distribution with a fresh measurement.

2 For simplicity, we are assuming a discrete-time model here.
3 We assume that the size of the discrete time step equals the inter-sample time. Otherwise repeat from step 1

until the inter-sample duration is reached.

OA
Observed

Automaton
(S)HA repre-

senting ship O

xo

EA
Estimate

Automaton
holds estimate

of ship O

xo, x̂

CA
Controller
Automaton

models controller
of ship E

x̂, xc

imperfect

observation
estimate

mimicks

sharing xo sharing x̂

Figure 7 Interplay between different automata modelling unilateral observation. Lowermost section
lists types of variables accessed by the automata: xo for system variables of the observed entity O, x̂ for
state estimate variables associated to xo within entity E, and xc for system variables of the ego entity E.

LITES

05:12 Bayesian Hybrid Automata

left
ẏO = −1

right
ẏO = 1

run
ẏO = 0

stop
ẏO = 0

ŷO ≤ −5 ŷO ≥ 5

ŷO ≤ 0 ŷO > 0

(a) Control automaton of
the observed ship O.

left
ẏO = −1

right
ẏO = 1

run
ẏO = 0

stop
ẏO = 0

ŷO ≤ −5 ŷO ≥ 5

ŷO ≤ 0 ŷO > 0

(b) A first noisy posi-
tion measurement enter-
ing the estimation auto-
maton EA.

left
ẏO = −1

right
ẏO = 1

run
ẏO = 0

stop
ẏO = 0

ŷO ≤ −5 ŷO ≥ 5

ŷO ≤ 0 ŷO > 0

(c) EA estimating O’s
next state via a lifting of
O’s next-state relation.

left
ẏO = −1

right
ẏO = 1

run
ẏO = 0

stop
ẏO = 0

ŷO ≤ −5 ŷO ≥ 5

ŷO ≤ 0 ŷO > 0

(d) EA iterating the lifted
next-state relation until
fixed-point is reached.

Figure 8 Estimating the observed ship’s state within an estimation automaton: A noisy position
measurement corresponds to a distribution of possible positions for O (b), each of which would drive O’s
control automaton (a) to a specific state. The EA reflects this by synchronously computing its estimate
of O’s hybrid state via a lifting of O’s next-state relation to estimate distributions (c–d).

5. Build the mixture of the resulting posterior “fragments” paired with their corresponding
modes.

For a simple case, where the prior distribution merely stems from a single noisy measurement,
steps 1 and 2 of the state extrapolation process are illustrated in Fig. 8b–8d.
Controller automata (CA) represent the controller of the ego system, i.e. of ship E in the
example. Such a CA accesses estimate variables provided by EA if control decisions to be
drawn involve estimated parameters. The corresponding decisions are “rational” in so far
as safety-critical mode switches are based on sufficient confidence that the corresponding
guard property is satisfied. Confidence here again relates to the probability that the guard
condition gc holds true w.r.t. the estimated distributions: a critical transition is only taken
if Px∼µ(gc) ≥ θ, where θ denotes the required confidence and µ the mixture representing the
current estimate of O’s state. A safe alternative action (including a stay in the current mode
iff its invariant bears sufficient evidence of being satisfied) has to be taken whenever no critical
action can be justified with sufficient confidence.

For the sake of a concise presentation, we assume that there is a single measurement process
or sensor for each observed parameter which is reflected within the estimate automaton. More
differentiated observation processes are possible by, e.g., introducing another class of automata,
possibly called perception automata, explicitly being responsible for measurements as suggested
in [17]. Such an automaton could be a traditional stochastic hybrid automaton being located
between OA and EA in Fig. 7 providing a noisy copy the observed physical state to the estimate
automaton where the measurement process then depends on the perception automaton’s internal
state which, in turn, might change w.r.t., i.a., the internal state of the estimate automaton and
the controller automaton.

Without digging into further detail of the above automata, it should be obvious that they
go well beyond what can be encoded within hybrid automata models with their discrete plus
finite-dimensional real-valued state-space:

P. Kröger and M. Fränzle 05:13

1. As controller automata have to draw inferences about mixtures (representing state estimates)
in order to evaluate their guards and invariants, such mixtures must be part of the state-space
that controllers can observe.

2. As the state estimation by estimate automata involves active manipulation of such mixtures,
these mixtures have to be part of their dynamic state.

State distributions therefore become first class members of the dynamic state themselves. As
such state distributions can only rarely be encoded by finite-dimensional vectorial state (e.g., if
they are bound to stay within a class of distributions featuring a description by a fixed set of
parameters, like with normal distributions), this requires a completely fresh —and much more
complex— set-up of the theory of hybrid automata extending beyond finite-dimensional vectorial
state towards distributions as states. That this complication is necessary for obtaining accurate
verdicts on control performance is witnessed by Figures 4 and 5.

5 Formal definition of the composite model

In the previous section, we presented a concept of formally modelling hybrid automata com-
prising Bayesian filter techniques for estimates of states of observed entities as well as mixture
distributions representing those estimates. In this section, we introduce the formal models of ob-
served automata, estimate automata, controller automata, and their combination into Bayesian
hybrid automata. The resulting model is an extension of Bayesian hybrid automata suggested
in [16] which were not yet capable of covering hybrid-state dynamics of observed entities within
estimates.

5.1 Observed automaton
From an abstract perspective, an observed automaton might be an (almost) arbitrary flavour
of traditional hybrid automaton. The assumption of perfect knowledge for observed automata
as well as the assumption of unilateral observation allow to restrict the definition of observed
automaton to deterministic variants. Aiming at a Gaussian character of estimates, we make two
further assumptions which are a result of the fact that arbitrary continuous dynamics would
lead to a “deformation” of probability density functions as well as arbitrary updates on discrete
transitions would do. We hence assume that
1. the continuous dynamics of OA are constant for each mode, and
2. all updates of the continuous state of OA on a discrete transition is a shift by a constant.

In this article, we distinguish different types of Boolean predicates each of which represents
a type of conditions on the continuous state space of a hybrid automaton enabling or disabling
discrete control decisions, i.e. a type of transition guards and mode invariants. The first type
is the traditional condition which essentially is equivalent to guard and invariant conditions of
traditional hybrid automata.

▶ Definition 1 (Traditional condition). Let X be a set of n real-valued variables. A traditional
condition is a predicate ct : Rn → {true, false}. We denote the set of all traditional conditions
by Ct.

We now define observed automata akin to the definition of Kowalewski et al. [21] with the
restrictions mentioned above as follows:

▶ Definition 2 (Syntax of observed automata). An observed automaton is a tuple OA = (Lo, X o,

do, io, ∆o, go, uo, Io) where

LITES

05:14 Bayesian Hybrid Automata

Lo = {ℓo
1, · · · , ℓo

lo} is a finite set of discrete control modes a.k.a. control locations of the
automaton which is the discrete state space of OA,
X o = (xo

1, · · · , xo
no) is an ordered finite set of continuous system variables conventionally

represented as vector xo and spanning the continuous state space of OA s.t. a pair (ℓo, xo) ∈
Lo × Rno is a state of the automaton with xo : X o → R being a variable valuation which is
synonymously used for a concrete vector in Rno ,
do : Lo → Rno is a mode-dependent dynamics defining the evolution of the continuous system
variables xo in relation to the control mode by specifying a differential equation ẋo = d(ℓo),
io : Lo → Ct is a function describing the invariants per control mode, i.e. the part of the
continuous state space for which OA may remain in the corresponding control mode,
∆o ⊆ Lo × Lo is a discrete transition relation between modes,
go : ∆o → Ct is a guard function decorating each discrete transition with a traditional
condition defining the part of the continuous state space for which the corresponding transition
is enabled s.t. ∆o is rendered deterministic,
uo : ∆o → (Rno → Rno) is an update function decorating each discrete transition with a
function x 7→ x + c with c ∈ Rno updating xo when the transition is taken, and
Io ∈ Lo × Rno is the initial state of OA.

We denote the set of all states of OA by Σo.

▶ Definition 3 (Semantics of observed automata). A run of an observed automaton is a sequence
⟨σo

0 , σo
1 , · · ·⟩ of states σo

i ∈ Σo with σo
0 = Io according to rule InitOA which is defined as

InitOA
σ0 = Io

and for all i ∈ N>0 we have a transition σo
i−1 −→StepOA σo

i where the successor state is derived
according to rule StepOA which essentially is the concatenation of a discrete transition with a
subsequent (discrete) time step. Rule StepOA is defined as follows:

σi−1 ∃σ, σi ∈ Σo : σi−1
JumpOA−−−−−→ σ

TimeOA−−−−−→ σi StepOA
σi

Rule JumpOA reflects a sequence of discrete jumps of OA. Since OA is deterministic and
jumps are carried out instantaneously without consuming time, possible jumps enabled after a
preceding jump have to be executed before a time step is possible. Hence, rule JumpOA is
basically the repeated application of taking a discrete transition, i.e. the repeated application of
rule JumpOA∗, until a fixed-point is reached:

σ

∃σ1, · · · , σk ∈ Σo : σ
JumpOA∗
−−−−−−→ σ1 JumpOA∗

−−−−−−→ · · · JumpOA∗
−−−−−−→ σk−1 JumpOA∗

−−−−−−→ σk

σk−1 = σk

JumpOA
σk

Rule JumpOA∗ reflects a single discrete transition of OA. If a discrete transition
(
ℓo, ℓo′) is

enabled, the update of the continuous state maps xo to xo′, and xo′ satisfies the invariant of ℓo′,
a jump from (ℓo, xo) to

(
ℓo′, xo′) is possible:

P. Kröger and M. Fränzle 05:15

(ℓo, xo)(
ℓo, ℓo′) ∈ ∆o

go((ℓo, ℓo′))(xo) ≡ true
uo((ℓo, ℓo′))(xo) = xo′

io
((

ℓo′))(xo′) ≡ true
JumpOA∗(

ℓo′, xo′)

Assume there is a solution X : [0, t] → Rno to the ordinary differential equation dxo
/dt = do(ℓo).

If X starts in xo and ends in xo′ and all points in the image of X satisfy the invariant of ℓo, then
a time step of length t from (ℓo, xo) to

(
ℓo, xo′) is possible:

(ℓo, xo) X(0) = xo X(t) = xo′ ∀t′ ∈ [0, t] : io(ℓo)(X(t′)) ≡ true
TimeOA(

ℓo, xo′)

We assume t ∈ R>0 to be arbitrary but fixed.

The components of the observed automaton for our maritime example from Figure 6 could be
defined as follows:

Lo := {straighto, lefto, righto, stopo} (3a)
X o := (xO, yO) (3b)

do(ℓo) :=

[ẋO = −1, ẏO = 0]T iff ℓo = straighto

[ẋO = −1, ẏO = −1]T iff ℓo = lefto

[ẋO = −1, ẏO = 1]T iff ℓo = righto

[ẋO = 0, ẏO = 0]T iff ℓo = stopo

(3c)

io(ℓo) :=

xO ≥ 85 iff ℓo = straighto

yO ≥ −5 iff ℓo = lefto

yO ≤ 5 iff ℓo = righto

true iff ℓo = stopo

(3d)

∆o := {(straighto, lefto) , (straighto, righto) , (lefto, stopo) , (righto, stopo)} (3e)

go(δ) :=

xO ≤ 85 ∧ yO < 0 iff δ = (straighto, lefto)
xO ≤ 85 ∧ yO ≥ 0 iff δ = (straighto, righto)
yO ≤ −5 iff δ = (lefto, stopo)
yO ≥ 5 iff δ = (righto, stopo)

(3f)

uo(xO, yO) := (xO, yO) for all δ ∈ ∆o (3g)
Io := (straighto, (xO = 100, yO = 0)) (3h)

The automaton is illustrated in Figure 9.

5.2 Estimate automaton
Estimate automata govern the estimate of the observed system variables which are, essentially,
a combination of information from a history of measurement results according to Bayes’ the-
orem [29]. Estimate automata reflect the process of taking possibly error-afflicted measurements
and applying the Bayes filter.

LITES

05:16 Bayesian Hybrid Automata

straighto

ẋO = −1 ∧ ẏO = 0
xO ≥ 85lefto

ẋO = −1 ∧ ẏO = −1
yO ≥ −5

righto

ẋO = −1 ∧ ẏO = 1
yO ≤ 5stopo

ẋO = 0 ∧ ẏO = 0

xO ≤ 85 ∧ yO < 0 xO ≤ 85 ∧ yO ≥ 0

yO ≤ −5 yO ≤ −5

xO = 100 ∧ yO = 0

Figure 9 Observed automaton for example from Fig. 6. Ship O switches to mode ‘lefto’ if its lateral
position is smaller than zero when entering the passing place, and to mode ‘righto’ otherwise. It stops
when it reaches a shore.

An essential part of such a filter is to extrapolate the estimate along the continuous dynamics
between two measurements. An estimate can be considered as a set of states each of which can
be regarded to be the true state with some likelihood. Each of these states has to be evolved
along the correct dynamics. Unfortunately, in the hybrid automata setting, this is not necessarily
the same dynamics for all states as already indicated in Sect. 4.2: assume a set A ⊂ R enabling
a discrete transition (ℓ, ℓ′) while for B = R \ A the transition is not enabled. Then, the observed
automaton may switch to ℓ′ for all x ∈ A while it has to remain in ℓ for all x ∈ B. Consequently,
the dynamics of mode ℓ has to be applied to x ∈ A as well as the differential equations of mode
ℓ′ govern extrapolations of trajectories starting in B.

This setting can be taken into account by interpreting estimates within estimate automata
as a list of sets of continuous states annotated by their likelihood to be the true state in form of
probability density functions as well as the control mode they are governed by. Such a list is then
basically a mixture distribution where each mixture component is annotated by a control mode.
In the example above, a discrete jump would lead to two mixture components x̂ℓ and x̂ℓ′ for ℓ

and ℓ′ where the support of the (re-normalised) estimate x̂ℓ is restricted to A while the support
of x̂ℓ′ is restricted to B. We call such an extended mixture distribution a mixture estimate.

We now formally introduce components used by estimate automata including mixture estim-
ates before providing the definition of the estimate automaton itself.

▶ Definition 4 (Mixture estimate). A mixture estimate µ = (µ1, · · · , µk) is a finite ordered set
of mixture components where each component is an n-variate probability density function µi :
Rn → R and is labelled by an automata location and the weight of the component, i.e. we have
labelling functions λℓ : P(Rn) → L and λP : P(Rn) → (0, 1] s.t.

∑k
i=0 λP (x̂i) = 1.0 where P(Rn)

is the set of all probability density functions over Rn.
A mixture estimate can be considered as a probability density function which is defined as

the weighted sum of its components, i.e.

µ(x) =
k∑

i=1
µi(x) · λP (µi) (4)

where
∑k

i=1 λP (µi) = 1.0. We denote the set of all mixture estimates over Rn by M(Rn).

P. Kröger and M. Fränzle 05:17

Uncertain conditions allow to model traditional conditions in the control strategy of the ob-
served entity from the observer’s perspective where a control decision is made with uncertainty
since the continuous state satisfying or unsatisfying the corresponding condition is only estim-
ated. However, they are rather a function than a predicate: for a given estimate p ∈ P(Rn) and a
traditional condition ct ∈ Ct, an uncertain condition returns a normalised copy p’ of p for which
the support supp(p′) is restricted to those values satisfying ct.

▶ Definition 5 (Uncertain condition). An uncertain condition is a function cu : P(Rn) × Ct →
P(Rn) with cu(p, ct) 7→ p′ where the partial estimate over those values x ∈ Rn that satisfy ct is
defined as

p′′(x) =
{

p(x) iff ct(x) ≡ true
0 otherwise

(5)

and lifted to a probability density function

p′(x) = p′′(x) · 1
β

(6)

by re-normalisation based on the branch probability

β =
∫

p′′(x) dx (7)

which describes the probability that ct is satisfied.

An uncertain jump then describes the effect of the discrete transition relation of the observed
automaton to the observer’s mixture estimate.

▶ Definition 6 (Uncertain jump). Assume a hybrid automaton with a discrete transition re-
lation ∆, a guard function g, and an update function u. An uncertain jump is a function
cm

u : M(Rn) → M(Rn) that takes a mixture estimate and applies the uncertain condition on
all mixture components before the discrete jump of the continuous state space is applied to the
resulting components, thereby generating a new mixture estimate:

µ 7→
⋃

µi∈µ

⋃

δ∈∆
uo(δ)(cu(µi, go(δ)))︸ ︷︷ ︸

=µ′
i

 ∪

{
cu

(
µi, ¬

∨

δ∈∆
go(δ)

)}

︸ ︷︷ ︸
=µ′′

i

(8)

where µ′
i are those components obtained from following a discrete transition, µ′′

i is the component
obtained from that part of the continuous state space for which no transition is enabled, δ is an
outbound transition of the mode annotated to µi (i.e. δ = (ℓ, ℓ′) : λℓ(µi) = ℓ), and uo(δ)(µj(x)) =
µj(2x −uo(δ)(x)) is the lifting of the discontinuous update of the continuous state when a discrete
transition is taken to probability density functions. The new mixture components are labelled
with the target location of the corresponding transition, i.e. λℓ(µ′

i) = ℓ′ and λℓ(µ′′
i) = λℓ(ℓ) for

the mixture component representing states remaining the in source location. Furthermore, each
mixture component is labelled by a weight which is the probability that the new component is
the true estimate, i.e. that the run of the observed automaton follows the sequence of discrete
transitions from which the component is obtained. We consequently have λP (x̂′) = λP (µi) · β

(and λP (x̂′′) = λP (µi) · β, respectively) where β is calculated during evaluation of cu according
to Equation 7. In order to avoid a division by zero, components with β = 0.0 (hence components
obtained from impossible discrete transitions) are simply dropped.

LITES

05:18 Bayesian Hybrid Automata

Perception is usually via sensors which, in general, is afflicted by errors. We model the process
of drawing a measurement by a sensor function.

▶ Definition 7 (Sensor). Let e ∈ Rn be a random measurement error drawn according to an error
distribution ê ∈ P(Rn), denoted by e ∼ ê. A sensor is a function s : Rn → Rn with x 7→ x + e

and e ∼ ê.

Bayes filters provide a recursive calculation of estimates combining “knowledge” from a se-
quence of measurements. In case of purely linear dynamics and a normally distributed measure-
ment error, i.e. e ∼ N (x, σ2), a Kálmán-filter would be an instance of a Bayes filter yielding best
estimates of the observed parameters. Such a dynamics and error model facilitates the imple-
mentation of concrete instances. However, as our findings do not hinge on that particular setup,
we describe the application of such a filter in a very general manner by applying Bayes’ rule:

▶ Definition 8 (Filter). Let rk ∈ Rn be the k-th measurement result obtained from a sensor s

while pk(x) = p(x | rk, · · · , r1) is the estimate of x ∈ Rn after k measurements. Furthermore, r̂ is
the conditional probability distribution r̂(r | x) = ê(r + x) of measurement results given x is the
true parameter. By filter we denote a function f : P(Rn) × Rn → P(Rn) with

(pk−1, rk) 7→ pk(x | rk, · · · , r1) = r̂(rk | x) · pk−1(x | rk−1, · · · , r1)
r̂R(rk) (9)

where r̂R(rk) =
∫

r̂(rk | x∗) · pk−1(x∗ | rk−1, · · · , r1)dx∗.

Now that we have sensors and filters, we can define a measurement function as the combination
of a sensor and a filter.

▶ Definition 9 (Measurement action). Let s be a sensor while f is a filter function. A measurement
action is a function m : M(Rn) × Rn → M(Rn) with (µ, x) 7→ {f(µi, r) | µi ∈ µ} for a r = s(x)
fixed for all components µi of µ.

An estimate automaton is, essentially, a copy of the observed automaton augmented by meas-
urement actions, estimate variables accommodating mixture estimates, and a filter function as
well as a semantics in form of sequences of estimates.

▶ Definition 10 (Syntax of estimate automata). An estimate automaton is a tuple EA = (Le, X o,

X̂ , m, de, ie, ∆e, ge, ue, Ie) where the elements annotated with e are copies of the corresponding
elements of OA. The set X o of system variables is read-only shared with OA, i.e. a state change
of X o in EA is directly passed through to X o in EA. Furthermore,

X̂ = (x̂1, · · · , x̂no) is an ordered finite set of estimate variables conventionally represented by a
vector x̂ spanning the stochastic state space of EA s.t. x̂ is a state of EA where x̂ : X̂ → M(R)
is the corresponding variable valuation specifying the marginal distributions of a mixture
estimate in M(Rno) for which x̂ is synonymously used and x̂i is associated to xo

i in the sense
that x̂i accommodates an estimate of xo

i in OA for all i ∈ {1, · · · , no}, and
m is a measurement action.

We denote the set of all states of EA by Σe.

▶ Definition 11 (Semantics of estimate automata). A run of an estimate automaton is a sequence
⟨x̂0, x̂1, · · ·⟩ of mixture estimates where x̂0 is deduced via rule InitEA which allows to derive the
initial state of x̂ given the initial state σo

0 = Ie of OA:

σo
0 = (ℓo

0, xo
0) r0 = s(xo

0) x̂ = µ(x | r0) = {µ1(x | r0) = ê(r0 − xo
0)}

InitEAx̂

with λℓ(x̂) = ℓo
0 and λP (x̂) = 1.0 where s is the sensor of m and ê is the error distribution of s.

P. Kröger and M. Fränzle 05:19

For all i ∈ N>0 we then have a transition x̂i−1 −→StepEA x̂i where the successor estimate is
derived according to rule StepEA which essentially is the concatenation of a discrete transition
with a subsequent (discrete) time step:

x̂i−1 ∃x̂∗, x̂i : x̂i−1
JumpEA−−−−−→ x̂∗ TimeEA−−−−−→ x̂i StepEAx̂i

Rule JumpEA is an abbreviation for two steps:
1. updating the mixture estimate via rule Measure and
2. applying the discrete dynamics via rule TransEA until a fixed-point is reached (akin to rule

JumpOA).
x̂

∃x̂0 : x̂ Measure−−−−−→ x̂0

∃x̂1, · · · , x̂k : x̂0 TransEA−−−−−−→ x̂1 TransEA−−−−−−→ · · · TransEA−−−−−−→ x̂k−1 TransEA−−−−−−→ x̂k

x̂k−1 = x̂k

JumpEA
x̂k

Rule Measure updates the estimate according by applying the measurement action m to
each component of the mixture estimate:

xo x̂ x̂′ = m(x̂, xo)
Measure

x̂′

Rule TransEA reflects the effect of OA’s control laws on the mixture estimate according to
an uncertain jump.

x̂ x̂′ = cm
u (x̂)

TransEA
x̂′

The rule TimeEA describes a discrete time step, i.e. the application of the continuous dy-
namics of OA (and EA, respectively) for t time units to the carrier of each mixture component:

x̂ x̂′ = {µi(2x̂ − x̂∗) | µi ∈ x̂}
TimeEA

x̂′

where for x̂∗ there is a solution solution X : [0, t] → Rno to the ordinary differential equation
dx/dt = do(λℓ(x̂)) with X(0) = x and X(t) = x∗ and io(λℓ(x))(X(t′)) = true for all t′ ∈ [0, t]. We
assume t ∈ R>0 to be arbitrary but fixed.

For our maritime example from Figure 6, the estimate automaton would be a copy of the
observed automaton defined in (3) extended by a set X̂ of estimate variables and measurement
action m as follows:

X̂ := (ŷO) with ŷO = {µ1, · · · , µk} as defined in Def. 4 and µi is a normal (10i)
distribution over R

m(ŷO, r) := {f(µi, r) | µi ∈ ŷO} where f is a Kálmán filter , and r is a measurement (10j)
result obtained by a sensor s as defined in Def. 7 where the
measurement error is normally distributed, i.e. ê = N (0, 1)

Note that the main difference between observed automaton and estimate automaton is its inter-
pretation, i.e. within the semantics (see Def. 11). Its graphical representation consequently is
identical to Fig. 9.

LITES

05:20 Bayesian Hybrid Automata

5.3 Controller automaton
A controller automaton models the controller of the ego system which accesses the estimates of
the estimate automaton in order to make rational decisions in the sense that mode switches based
on estimated parameters are executed only in case of sufficient confidence that the corresponding
guard property is satisfied. In this context, confidence is the probability that the guard property
is satisfied w.r.t. the current mixture estimate, i.e. the probability distribution representing the
belief about the state of the observed entity. We denote the class of predicates for such control
decisions by “rational conditions”.

▶ Definition 12 (Rational condition). Let X be a set of n system variables while X̂ is the set of n

estimate variables s.t. x̂i accommodates an estimate of the value of xi. Furthermore, let ct ∈ Ct
be a traditional condition. A rational condition is a predicate cr : M(Rn) → {true, false} s.t.

cr(µ) ≡
{

true iff Px̂(ct ≡ true) ⋊⋉ ε, and
false otherwise

(11)

with ⋊⋉∈ {≥, >}, ct ∈ Ct, and ε ∈ [0, 1] and

Px̂(ct ≡ true) =
∫

1ct(x) · µ(x) dx (12)

where

1ct(x) =
{

1 iff ct(x) ≡ true, and
0 otherwise.

(13)

Hence, a rational condition is satisfied iff the corresponding traditional condition ct is satisfied
with a probability larger than (or equal to) ε w.r.t. mixture estimate µ. We denote the set of all
rational conditions by Cr.

As controller automata are not observed in the current setting, we can relax the restrictions we
made for observed automata and allow non-determinism and arbitrary continuous dynamics and
updates. However, for the sake of a more concise presentation, we perpetuate those restrictions.

▶ Definition 13 (Syntax of controller automata). A controller automaton is a a tuple CA =
(Lc, X c, dc, ic, ∆c, gc, uc, Ic) where

Lc = {ℓc
1, · · · , ℓc

lc} with Lc ∩ Lo = ∅ is a finite set of discrete control modes a.k.a. control
locations of the automaton which is the discrete state space of CA,
X c = (xc

1, · · · , xc
nc) with X c ∩ X o = ∅ is an ordered finite set of continuous system variables

conventionally represented as vector xc and spanning the continuous state space of CA s.t.
a pair (ℓc, xc) ∈ Lc × Rnc is a state of the automaton with xc : X c → R being a variable
valuation which is synonymously used for a concrete vector in Rnc ,
X̂ = (x̂1, · · · , x̂no) is an ordered finite set of estimate variables as defined in Def. 10 and
read-only shared with EA, i.e. a state change of X̂ in EA is directly passed through to X̂ in
CA,
dc : Lc → Rnc is a mode-dependent dynamics defining the evolution of the continuous system
variables xc in relation to the control mode by specifying a differential equation ẋc = d(ℓc),
ic : Lc → Ct × Cr is a function describing the invariants per control mode, i.e. the part of the
continuous state space including the estimates for which CA may remain in the corresponding
control mode,
∆ ⊆ Lc × Lc is a discrete transition relation between modes,

P. Kröger and M. Fränzle 05:21

gc : ∆c → Ct × Cr is a guard function decorating each discrete transition with a traditional
condition or a rational condition defining the part of the stochastic state space of EA as well as
the part of the continuous state space of CA for which the corresponding transition is enabled
s.t. ∆c is rendered deterministic,

uc : ∆c → (Rnc → Rnc) is an update function decorating each discrete transition with a
function x 7→ x + c with c ∈ Rnc updating xc when the transition is taken, and

and I ∈ Lc × Rnc is the initial state of CA.
We denote the set of all states of CA by Σc.

▶ Definition 14 (Semantics of controller automata). A run of an estimate automaton is a sequence
⟨σc

0, σc
1, · · ·⟩ of states σc

i ∈ Σc obeying deduction rules defined analogously to Def. 3 except for rules
incorporating guards and invariants. We hence assume rules InitCA, StepCA, and JumpCA to
be adopted straightforwardly from the semantics of the observed automaton where JumpCA refers
to JumpCA∗ which respect both traditional and rational conditions for guards and invariants:

(ℓc, xc)
x̂(

ℓc, ℓc′) ∈ ∆c

γ
((

ℓc, ℓc′))(xc, x̂) ≡ true
uc((ℓc, ℓc′))(xc) = xc′

ι
(
ℓc′)(xc′, x̂

)
≡ true

JumpCA∗(
ℓc′, xc′)

where

γ(δ)(xc, x̂) ≡ ct(xc) ∧ cr(x̂) with gc(δ) = (ct, cr) (14)

and

ι(ℓ)(xc, x̂) ≡ ct(xc) ∧ cr(x̂) with ic(δ) = (ct, cr) (15)

lift guard and invariant conditions to predicates Rnc × M(Rno) → {true, false}.
Analogously, rule TimeCA reflects a (discrete) time step using predicates ι(ℓ):

(ℓc, xc) x̂ X(0) = xc X(t) = xc′ ∀t′ ∈ [0, t] : ι(ℓc)(X(t′) , x̂) ≡ true
TimeCA(

ℓc, xc′)

for an arbitrary but fixed t ∈ R>0.

A controller automaton for ship E in our example from Fig. 6 is shown in Fig. 10. At position
xE = 15 it makes its decision to turn to a shore when it has sufficient confidence that for O the
opposite shore is closer (and thus that O is turning to that shore). We assume that E performs
an emergency stop if no sufficient confidence has been built up at that point. The corresponding
automaton components are defined as follows:

LITES

05:22 Bayesian Hybrid Automata

straightc

ẋE = 1 ∧ ẏE = 0
xE ≤ 15

leftc

ẋE = 1 ∧ ẏE = 1
yE ≤ 5

rightc

ẋE = 1 ∧ ẏE = −1
yE ≥ −5

stopc

ẋE = 0 ∧ ẏE = 0

xE ≥ 15 ∧ P (yO < 0) ≥ 0.8 xE ≥ 15 ∧ P (yO ≥ 0) ≥ 0.8

yE ≥ 5

xE ≥ 15 ∧
P (yO < 0) < 0.8 ∧
P (yO ≥ 0) < 0.8

yE ≤ −5

xE = 0 ∧ yE = 0

Figure 10 Controller automaton for the maritime example in Fig. 6. Ship E switches to mode ‘leftc’
when entering the passing place if it has sufficient confidence that ship O turns to the right shore (from
E’s perspective), and to mode ‘rightc’ if it has sufficient confidence, that O turns to the left shore. E
stops if none of the two options have sufficient confidence. It also stops when reaching a shore.

Lc := {straightc, leftc, rightc, stopc} (16a)
X c := (xE, yE) (16b)

dc(ℓc) :=

[ẋE = 1, ẏE = 0]T iff ℓe = straightc

[ẋE = 1, ẏE = 1]T iff ℓc = leftc

[ẋE = 1, ẏE = −1]T iff ℓc = rightc

[ẋE = 0, ẏE = 0]T iff ℓc = stopc

(16c)

ic(ℓc) :=

(xE ≤ 15, true) iff ℓc = straightc

(yE ≤ 5, true) iff ℓc = leftc

(yE ≥ −5, true) iff ℓc = rightc

(true, true) iff ℓc = stopc

(16d)

∆c := {(straightc, leftc) , (straightc, rightc) , (leftc, stopc) , (rightc, stopc) , (straightc, stopc)}
(16e)

gc(δ) :=

(xE ≥ 15, P (yO < 0) ≥ 0.8) iff δ = (straightc, leftc)
(xE ≥ 15, P (yO ≥ 0) ≥ 0.8) iff δ = (straightc, rightc)
(xE ≥ 15, P (yO < 0) < 0.8 ∧ P (yO ≥ 0) < 0.8) iff δ = (straightc, stopc)
(yE ≥ 5, true) iff δ = (leftc, stopc)
(yE ≤ −5, true) iff δ = (rightc, stopc)

(16f)

uc(xE, yE) := (xE, yE) for all δ ∈ ∆c (16g)
Ic := (straightc, (xE = 0, yE = 0)) (16h)

5.4 Bayesian hybrid automaton
▶ Definition 15 (Bayesian hybrid automaton). A Bayesian hybrid automaton is a tuple BHA =
(OA, EA, CA) where

OA is an observed automaton as defined in Def. 2,
EA is an estimate automaton as defined in Def. 10, and
CA is a controller automaton as defined in Def. 13.

P. Kröger and M. Fränzle 05:23

A state of BHA is a tuple σb = (σo, σe, σc) with σo ∈ Σo, σe ∈ Σe, and σc ∈ Σc. By Σb we
denote the set of all states of BHA.

▶ Definition 16 (Semantics of Bayesian hybrid automaton). A run of a Bayesian hybrid automaton
is a sequence ⟨σb

0 , σb
1 , · · ·⟩ of states which is obtained by a step of the observed automaton followed

by a step of the estimate automaton and finally a step of the controller automaton. Hence, the
initial state σb

0 is derived by the following rule:

⊢InitOA σo {σo} ⊢InitEA σe ⊢InitCA σc
InitBHA

(σo, σe, σc)

For all i ∈ N>1 we have a step according to rule StepBHA:
(
σo

i−1, σe
i−1, σc

i−1
) {

σo
i−1
}

⊢StepOA σo
i

{
σe

i−1, σo
i

}
⊢StepEA σe

i

{
σc

i−1, σe
i

}
⊢StepCA σc

i StepBHA
(σo

i , σe
i , σc

i)

5.5 Reduction of the mixture estimate size

The above semantics of estimate automata is based on, i.a., splitting probability density functions
along discrete dynamics of the automaton. Thus the number of mixture components grows
exponentially with the number of steps in the worst case. The reason for splitting and generating
mixtures is to apply different continuous dynamics on specific parts of the continuous state space
during extrapolation. We consequently can merge mixture components µi and µj by exploiting
Eqn. (4) if they are labelled with the same discrete state, i.e., if λℓ(µi) = λℓ(µj). In order to
integrate such a merge of components, rule TransEA has to be modified s.t. it uses an uncertain
jump with merger instead of the previously defined uncertain jump. The modified rule obviously
requires that there exists a concise representation of the result which not explicitly itemises the
individual summands. Such a representation is not inherently available.

▶ Definition 17 (Uncertain jump with merger). Assume a hybrid automaton with a set of modes
L, a discrete transition relation ∆, a guard function g, and an update function u. An uncertain
jump with reduction is a function cM

u : M(Rn) → M(Rn) that applies an uncertain jump and
reduces the number of mixture components according to Eqn. (4), i.e.

µ 7→
⋃

ℓ∈L
{µℓ} (17)

where

µℓ(x) =

 ∑

µi∈Mℓ

µi(x) · λP (µi)

 · 1

λP (µℓ)
(18)

with λℓ(µℓ) = ℓ and the weight of the merged mixture component is

λP (µℓ) =
∑

µi∈Mℓ

λP (µi) (19)

and the set of all mixture components in the result of an uncertain jump labelled by location ℓ is

Mℓ = {µi | µi ∈ cm
u (µ) and λℓ(µi) = ℓ} . (20)

LITES

05:24 Bayesian Hybrid Automata

6 Automated verification

While there is a strong body of research concerning state-exploratory methods for hybrid-system
verification or falsification (for an overview cf. [13]), all of these methods are currently confined to
finite-dimensional, hybrid discrete-continuous state. With complex, mixture-type distributions
becoming part of the state-space of the system itself, these methods are no longer applicable:
State-exploratory methods for stochastic hybrid automata [31, 15, 1, 14] do, of course, manipulate
complex mixtures over hybrid state, but as these stem from the stochastic transition dynamics
rather than from the state-space itself, state-exploratory methods covering estimate automata
inherently have to add another layer of mixtures (due to the iterated transition dynamics of
estimate automata) ranging over state mixtures (themselves being part of the state of estimate
automata). To the best of our knowledge, neither a comprehensive tool nor data structures
facilitating such an analysis do currently exist.

Simulation faithfully reflecting the arising distributions in a frequentistic sense, however, seems
feasible. This would facilitate rigorous statistical model-checking [32]. As mixtures of hybrid
states are part of the state-space itself due to the hybrid-state estimation process (see Fig. 8),
the underlying simulator, however, has to manipulate the corresponding mixtures as part of its
state-space.

If all mixtures arising are linear combinations of interval-restrictions of normal distributions,
as in Fig. 8, a length-unbounded list of such interval-restrictions suffices for representing the
mixture part of the state space, which then has to be combined with the usual discrete and real-
vector-valued states of hybrid automata. Each individual interval restriction of a (scaled) normal
distribution can be represented by a five-tuple (b, e, m, σ, α) of real numbers encoding the density

p(b,e,m,σ,α)(x) =
{

α · N (m, σ2) iff b ≤ x ≤ e,

0 otherwise,

thus facilitating a computational representation of the corresponding mixtures as lists of such
tuples. Evaluation of simple rational guards Px∼M (x ⋊⋉ k) ≥ θ over such a mixture M represented
as a finite list, where k is a constant and ⋊⋉ denotes an inequality, is also computationally feasible.
Hence, a probabilistic simulator could be built provided the distributions arising in the estimate
automata remain mixtures of interval-restrictions of normal distributions, which, however, would
severely confine the admissible dynamics of the observed processes: non-linear dynamics, deform-
ing the (interval-restrictions of) normal distributions, would have to be excluded, and even affine
rotations are cumbersome to deal with.

An obvious alternative is the approximation of the mixtures arising as states in the estimation
automata by a set of particles, as in particle-filtering [4]. As the effect of the state extrapolation
within the estimation process on each of these particles can be computed whenever the state dy-
namics of the observed process O can be computed, due to the extrapolation concerning a single
particle coinciding exactly with O’s state dynamics, simulation using such a particle approxim-
ation of the estimation mixtures is feasible even with non-linear dynamics. It should be noted,
however, that extrapolation of the state of particles occurs at a different place here than in clas-
sical analysis of stochastic systems by particle-based simulation: within each state advancement
step of a single simulation run of the overall system, we have to advance all particles representing
the estimation component of the overall state-space.

Development of this technology for simulation and statistical model-checking is currently
commencing in our group.

P. Kröger and M. Fränzle 05:25

7 Summary

In the above, we have used two examples to argue that traditional hybrid-automata models, be
they deterministic, nondeterministic, or stochastic, are insufficient for obtaining precise verdicts
on the safety and liveness, etc., of interacting cyber-physical systems. We identified inaptness
to represent rational decision-making under uncertain information as the cause of this deficiency.
One may, however, argue that there might be other cures to the problem than the introduction
of state estimation into the observing CPS and consequently also into its formal model, the latter
necessitating a significant extension and complication of the model of hybrid automata and its
related formal analysis techniques.

One such cure could be the introduction of communication within systems of interacting
CPSes: the need for state estimation for an observed agent would vanish if all agents would
actively communicate the local measurements that their decisions are based on (and optionally
also communicate the decisions themselves) rather than having to estimate these from imprecisely
observed physical behaviour. This is true, but does not provide a panacea. Not only may the
mere cost as well as all kinds of reasons for data privacy and protection render such an approach
undesirable, it is also bound to fail when we face socio-technical interaction within human-cyber-
physical systems, as humans will neither be able nor willing to communicate a sufficiently complete
representation of their perception to the CPS components. HCPSes will inherently have to rely
on state estimation permitting technical systems to obtain an image of the humans’ states and
plans based on behavioural observations, neurophysiological measurements, etc. [8].

Another apparent cure would be the introduction of machine-learned components into the
CPS for the sake of estimating (and possibly extrapolating into reasonable future) the state of
observed entities. This would, however, not fundamentally change the problems induced to ana-
lysis and verification of such systems: the example of deep neural networks used for classification
tasks indicates that such machine-learned state estimators manipulate “probabilities”4 too, neces-
sitating a very similar treatment in models and analysis engines when trying to reason rigorously
about the interactive behaviour of mutually coupled systems featuring DNN components within
environmental state assessment.

We conclude that the introduction of state estimation processes, with their associated complex
state spaces, is a necessary addendum to the hybrid-automata framework in order render them
ripe for the modelling and analysis demands of the era of interacting intelligent systems. The
development of corresponding automatic verification technology, though constituting a mostly
unsolved scientific challenge, is of utmost societal importance.

References
1 Alessandro Abate, Joost-Pieter Katoen, John Ly-

geros, and Maria Prandini. Approximate model
checking of stochastic hybrid systems. Eur. J.
Control, 16(6):624–641, 2010. doi:10.3166/ejc.
16.624-641.

2 Rajeev Alur, Costas Courcoubetis, Thomas A.
Henzinger, and Pei-Hsin Ho. Hybrid automata:
An algorithmic approach to the specification and
verification of hybrid systems. In Robert L. Gross-
man, Anil Nerode, Anders P. Ravn, and Hans
Rischel, editors, Hybrid Systems, volume 736 of
Lecture Notes in Computer Science, pages 209–

229. Springer, 1992. doi:10.1007/3-540-57318-
6_30.

3 David Barber. Bayesian Reasoning and Machine
Learning. Cambride University Press, 2012. doi:
10.1017/CBO9780511804779.

4 Karl Berntorp and Stefano Di Cairano. Particle
filtering for automotive: A survey. In 22th Inter-
national Conference on Information Fusion, pages
1–8, July 2019. URL: https://www.merl.com/
publications/TR2019-069.

5 L.M. Bujorianu and J. Lygeros. Toward a general
theory of stochastic hybrid systems. In Stochastic

4 We are adding quotes here, as the “probability” assigned to a given label by a DNN classifier does not con-
stitute a probability in a frequentistic sense or according to other conventional interpretations of probability
theory.

LITES

https://doi.org/10.3166/ejc.16.624-641
https://doi.org/10.3166/ejc.16.624-641
https://doi.org/10.1007/3-540-57318-6_30
https://doi.org/10.1007/3-540-57318-6_30
https://doi.org/10.1017/CBO9780511804779
https://doi.org/10.1017/CBO9780511804779
https://www.merl.com/publications/TR2019-069
https://www.merl.com/publications/TR2019-069

05:26 Bayesian Hybrid Automata

Hybrid Systems: Theory and Safety Critical Ap-
plications, volume 337 of LNCIS, pages 3–30.
Springer-Verlag, 2006. doi:10.1007/11587392_1.

6 C. Combastel. Merging Kalman filtering and zono-
topic state bounding for robust fault detection
under noisy environment. IFAC-PapersOnLine,
48(21):289–295, 2015. 9th IFAC Symposium on
Fault Detection, Supervision and Safety for Tech-
nical Processes SAFEPROCESS 2015. doi:10.
1016/j.ifacol.2015.09.542.

7 Christophe Coué, Cédric Pradalier, Christian
Laugier, Thierry Fraichard, and Pierre Bessiere.
Bayesian occupancy filtering for multitarget track-
ing: an automotive application. International
Journal of Robotics Research, 25(1):19–30, Janu-
ary 2006. doi:10.1177/0278364906061158.

8 Werner Damm, Martin Fränzle, Andreas Lüdtke,
Jochem W. Rieger, Alexander Trende, and
Anirudh Unni. Integrating neurophysiological
sensors and driver models for safe and perform-
ant automated vehicle control in mixed traffic. In
2019 IEEE Intelligent Vehicles Symposium, pages
82–89. IEEE, 2019. URL: https://ieeexplore.
ieee.org/xpl/conhome/8792328/proceeding.

9 M.H.A. Davis. Markov Models and Optimization.
Chapman & Hall, London, 1993.

10 J. Ding, A. Abate, and C. Tomlin. Optimal con-
trol of partially observable discrete time stochastic
hybrid systems for safety specifications. In 2013
American Control Conference, pages 6231–6236,
June 2013. doi:10.1109/ACC.2013.6580815.

11 Alexandre Donzé and Oded Maler. Robust sat-
isfaction of temporal logic over real-valued sig-
nals. In Krishnendu Chatterjee and Thomas A.
Henzinger, editors, Formal Modeling and Ana-
lysis of Timed Systems - 8th International Con-
ference, FORMATS 2010, Klosterneuburg, Aus-
tria, September 8-10, 2010. Proceedings, volume
6246 of Lecture Notes in Computer Science, pages
92–106. Springer, 2010. doi:10.1007/978-3-642-
15297-9_9.

12 Alberto Elfes. Using occupancy grids for mo-
bile robot perception and navigation. Computer,
22(6):46–57, June 1989. doi:10.1109/2.30720.

13 Martin Fränzle, Mingshuai Chen, and Paul Kröger.
In memory of Oded Maler: automatic reachability
analysis of hybrid-state automata. SIGLOG News,
6(1):19–39, 2019. doi:10.1145/3313909.3313913.

14 Martin Fränzle, Ernst Moritz Hahn, Holger Her-
manns, Nicolás Wolovick, and Lijun Zhang. Meas-
urability and safety verification for stochastic hy-
brid systems. In Marco Caccamo, Emilio Frazzoli,
and Radu Grosu, editors, Proceedings of the 14th
ACM International Conference on Hybrid Sys-
tems: Computation and Control, HSCC 2011,
Chicago, IL, USA, April 12-14, 2011, pages 43–
52. ACM, 2011. doi:10.1145/1967701.1967710.

15 Martin Fränzle, Holger Hermanns, and Tino Teige.
Stochastic satisfiability modulo theory: A novel
technique for the analysis of probabilistic hybrid
systems. In Magnus Egerstedt and Bud Mishra,
editors, Hybrid Systems: Computation and Con-
trol, 11th International Workshop, HSCC 2008,
St. Louis, MO, USA, April 22-24, 2008. Pro-
ceedings, volume 4981 of Lecture Notes in Com-

puter Science, pages 172–186. Springer, 2008. doi:
10.1007/978-3-540-78929-1_13.

16 Martin Fränzle and Paul Kröger. The demon, the
gambler, and the engineer – reconciling hybrid-
system theory with metrology. In Cliff Jones,
Ji Wang, and Naijun Zhan, editors, Symposium on
Real-Time and Hybrid Systems, volume 11180 of
Theoretical Computer Science and General Issues,
pages 165–185, Cham, 2018. Springer International
Publishing. doi:10.1007/978-3-030-01461-2_9.

17 Martin Fränzle and Paul Kröger. Guess what I’m
doing! Rendering formal verification methods ripe
for the era of interacting intelligent systems. In
Tiziana Margaria and Bernhard Steffen, editors,
Leveraging Applications of Formal Methods, Veri-
fication and Validation: Applications, pages 255–
272, Cham, 2020. Springer International Publish-
ing.

18 Adrian Gambier. Multivariable adaptive state-
space control: A survey. In 2004 5th Asian Control
Conference (IEEE Cat. No.04EX904), volume 1,
pages 185–191 Vol.1, July 2004.

19 J. Hu, J. Lygeros, and S. Sastry. Towards a
theory of stochastic hybrid systems. In Hybrid
Systems: Computation and Control, volume 1790
of LNCS, pages 160–173. Springer-Verlag, 2000.
doi:10.1007/3-540-46430-1_16.

20 Rudolph Emil Kálmán. A new approach to lin-
ear filtering and prediction problems. Transac-
tions of the ASME–Journal of Basic Engineer-
ing, 82(Series D):35–45, 1960. doi:10.1115/1.
3662552.

21 S. Kowalewski, M. Garavello, H. Guéguen, G. Her-
berich, R. Langerak, B. Piccoli, J. W. Polderman,
and C. Weise. Hybrid automata, pages 57–86.
Cambridge University Press, 2009. doi:10.1017/
CBO9780511807930.004.

22 Helge Langseth, Thomas D. Nielsen, Rafael Rumí,
and Antonio Salmerón. Inference in hybrid
bayesian networks. Reliability Engineering & Sys-
tem Safety, 94(10):1499–1509, 2009. doi:10.1016/
j.ress.2009.02.027.

23 Eugene Lavretsky. Robust and adaptive control
methods for aerial vehicles. In Kimon P. Va-
lavanis and George J. Vachtsevanos, editors, Hand-
book of Unmanned Aerial Vehicles, pages 675–
710, Dordrecht, 2015. Springer Netherlands. doi:
10.1007/978-90-481-9707-1_50.

24 R. P. S. Mahler. Multitarget Bayes filtering via
first-order multitarget moments. IEEE Trans-
actions on Aerospace and Electronic Systems,
39(4):1152–1178, October 2003. doi:10.1109/
TAES.2003.1261119.

25 Michael Maschler, Eilon Solan, and Shmuel Zamir.
Game Theory. Cambridge University Press, 2013.
doi:10.1017/cbo9780511794216.

26 Kevin P. Murphy. Switching Kalman filters, 1998.
27 Kumpati S. Narendra and Zhuo Han. Adapt-

ive control using collective information obtained
from multiple models. IFAC Proceedings Volumes,
44(1):362–367, 2011. 18th IFAC World Congress.
doi:10.3182/20110828-6-IT-1002.02237.

28 Anil Nerode and Wolf Kohn. Models for hybrid
systems: Automata, topologies, controllability, ob-
servability. In Robert L. Grossman, Anil Ner-
ode, Anders P. Ravn, and Hans Rischel, editors,

https://doi.org/10.1007/11587392_1
https://doi.org/10.1016/j.ifacol.2015.09.542
https://doi.org/10.1016/j.ifacol.2015.09.542
https://doi.org/10.1177/0278364906061158
https://ieeexplore.ieee.org/xpl/conhome/8792328/proceeding
https://ieeexplore.ieee.org/xpl/conhome/8792328/proceeding
https://doi.org/10.1109/ACC.2013.6580815
https://doi.org/10.1007/978-3-642-15297-9_9
https://doi.org/10.1007/978-3-642-15297-9_9
https://doi.org/10.1109/2.30720
https://doi.org/10.1145/3313909.3313913
https://doi.org/10.1145/1967701.1967710
https://doi.org/10.1007/978-3-540-78929-1_13
https://doi.org/10.1007/978-3-540-78929-1_13
https://doi.org/10.1007/978-3-030-01461-2_9
https://doi.org/10.1007/3-540-46430-1_16
https://doi.org/10.1115/1.3662552
https://doi.org/10.1115/1.3662552
https://doi.org/10.1017/CBO9780511807930.004
https://doi.org/10.1017/CBO9780511807930.004
https://doi.org/10.1016/j.ress.2009.02.027
https://doi.org/10.1016/j.ress.2009.02.027
https://doi.org/10.1007/978-90-481-9707-1_50
https://doi.org/10.1007/978-90-481-9707-1_50
https://doi.org/10.1109/TAES.2003.1261119
https://doi.org/10.1109/TAES.2003.1261119
https://doi.org/10.1017/cbo9780511794216
https://doi.org/10.3182/20110828-6-IT-1002.02237

P. Kröger and M. Fränzle 05:27

Hybrid Systems, volume 736 of Lecture Notes in
Computer Science, pages 317–356. Springer, 1992.
doi:10.1007/3-540-57318-6_35.

29 Simo Särkkä. Bayesian Filtering and Smoothing.
Cambridge University Press, New York, NY, USA,
2013.

30 C. Sherlock, A. Golightly, and C. S. Gillespie.
Bayesian inference for hybrid discrete-continuous
stochastic kinetic models. Inverse Problems,
30(11):114005, November 2014. doi:10.1088/
0266-5611/30/11/114005.

31 Jeremy Sproston. Decidable model checking of
probabilistic hybrid automata. In Formal Tech-

niques in Real-Time and Fault-Tolerant Systems
(FTRTFT 2000), volume 1926 of LNCS, pages 31–
45. Springer, 2000. doi:10.1007/3-540-45352-0_
5.

32 Håkan L. S. Younes and Reid G. Simmons. Prob-
abilistic verification of discrete event systems us-
ing acceptance sampling. In Ed Brinksma and
Kim Guldstrand Larsen, editors, Computer Aided
Verification, 14th International Conference, CAV
2002,Copenhagen, Denmark, July 27-31, 2002,
Proceedings, volume 2404 of Lecture Notes in Com-
puter Science, pages 223–235. Springer, 2002. doi:
10.1007/3-540-45657-0_17.

LITES

https://doi.org/10.1007/3-540-57318-6_35
https://doi.org/10.1088/0266-5611/30/11/114005
https://doi.org/10.1088/0266-5611/30/11/114005
https://doi.org/10.1007/3-540-45352-0_5
https://doi.org/10.1007/3-540-45352-0_5
https://doi.org/10.1007/3-540-45657-0_17
https://doi.org/10.1007/3-540-45657-0_17

From Dissipativity Theory to Compositional
Construction of Control Barrier Certificates
Ameneh Nejati #

Department of Electrical Engineering, Technical University of Munich, Germany
Department of Computer Science, LMU Munich, Germany

Majid Zamani #

Department of Computer Science, University of Colorado Boulder, USA
Department of Computer Science, LMU Munich, Germany

Abstract
This paper proposes a compositional framework
based on dissipativity approaches to construct con-
trol barrier certificates for networks of continuous-
time stochastic hybrid systems. The proposed
scheme leverages the structure of the interconnec-
tion topology and a notion of so-called control stor-
age certificates to construct control barrier certific-
ates compositionally. By utilizing those certificates,
one can compositionally synthesize state-feedback
controllers for interconnected systems enforcing
safety specifications over a finite-time horizon. In
particular, we leverage dissipativity-type compos-
itionality conditions to construct control barrier
certificates for interconnected systems based on cor-

responding control storage certificates computed
for subsystems. Using those constructed control
barrier certificates, one can quantify upper bounds
on probabilities that interconnected systems reach
certain unsafe regions in finite-time horizons. We
employ a systematic technique based on the sum-of-
squares optimization program to search for storage
certificates of subsystems together with their cor-
responding safety controllers. We demonstrate our
proposed results by applying them to a temperat-
ure regulation in a circular building containing 1000
rooms. To show the applicability of our approaches
to dense networks, we also apply our proposed tech-
niques to a fully-interconnected network.

2012 ACM Subject Classification Computer systems organization → Embedded and cyber-physical
systems; Mathematics of computing → Stochastic processes; Theory of computation → Timed and
hybrid models
Keywords and Phrases Compositional barrier certificates, Stochastic hybrid systems, Dissipativity
theory, Large-scale networks, Formal controller synthesis
Digital Object Identifier 10.4230/LITES.8.2.6
Funding This work was supported in part by the H2020 ERC Starting Grant AutoCPS (grant agreement
No. 804639) and the NSF under Grant CNS-2145184.
Received 2020-08-31 Accepted 2022-02-11 Published 2022-12-07
Editor Alessandro Abate, Uli Fahrenberg, and Martin Fränzle
Special Issue Special Issue on Distributed Hybrid Systems

1 Introduction

Motivations. Formal methods are becoming a promising scheme to design controllers for complex
stochastic systems against high-level logic properties, e.g., those expressed as linear temporal logic
(LTL) formulae [25]. Since the closed-form characterization of synthesized policies for continuous-
time continuous-space stochastic systems is not available in general, formal policy synthesis for
those complex systems is naturally very challenging due to their continuous state sets.

To mitigate the encountered computational complexity, one potential direction is to approximate
original models by simpler ones with finite state sets (a.k.a., finite Markov decision processes
(MDPs)). However, due to discretizing the state and input sets, the finite-abstraction based
techniques suffer severely from the curse of dimensionality problem. To alleviate this issue,
compositional techniques have been introduced in the past few years to construct finite MDPs of
interconnected systems based on constructing finite MDPs of smaller subsystems [11, 12, 13, 14,
15, 16, 19, 20].

© Ameneh Nejati and Majid Zamani;
licensed under Creative Commons Attribution 4.0 International (CC BY 4.0)

Leibniz Transactions on Embedded Systems, Vol. 8, Issue 2, Article No. 6, pp. 06:1–06:17
Leibniz Transactions on Embedded Systems

L I T E S Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:amy.nejati@tum.de
https://orcid.org/0000-0002-9065-1282
mailto:majid.zamani@colorado.edu
https://orcid.org/0000-0001-6608-3708
https://doi.org/10.4230/LITES.8.2.6
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lites
https://www.dagstuhl.de

06:2 From Dissipativity Theory to Compositional Construction of Control Barrier Certificates

Although the proposed compositional frameworks in the setting of finite abstractions can
mitigate the effects of the state-explosion problem, the curse of dimensionality may still occur
in the level of subsystems given their range of state and input sets. These challenges motivate
the need to employ control barrier certificates as a discretization-free approach for synthesizing
controllers for complex stochastic systems. In this respect, discretization-free techniques based on
barrier certificates for stochastic hybrid systems are initially proposed in [26]. Stochastic safety
verification using barrier certificates for switched diffusion processes and classes of stochastic hybrid
systems is, respectively, proposed in [29] and [8]. Verification of MDPs using barrier certificates
is proposed in [1]. Temporal logic synthesis of stochastic systems via control barrier certificates
is presented in [9]. Compositional construction of control barrier certificates for discrete-time
stochastic control and switched systems is respectively proposed in [2, 17].

Contributions. This paper proposes a compositional scheme based on dissipativity approaches
for the construction of control barrier certificates for a class of continuous-time continuous-space
stochastic hybrid systems, namely, jump-diffusion systems. Particularly, we compositionally
construct control barrier certificates of interconnected jump-diffusion systems based on so-called
control storage certificates of subsystems by leveraging dissipativity-type compositionality reasoning.
The proposed compositionality condition can enjoy the structure of the interconnection topology
and may not require any constraints on the number or even gains of subsystems (cf. Remark 6 and
the case study). Using those constructed control barrier certificates, one can quantify upper bounds
on probabilities that interconnected systems reach certain unsafe regions in finite-time horizons. We
finally utilize a systematic technique based on the sum-of-squares (SOS) optimization program [24]
to search for control storage certificates of subsystems. We illustrate the effectiveness of our
proposed results by applying them to a temperature regulation in a circular building containing
1000 rooms by compositionally synthesizing safety controllers (together with the corresponding
control storage certificates) regulating the temperature of each room in a comfort zone within a
bounded-time horizon. We also apply our proposed techniques to a fully-interconnected network
to show their applicabilities to non-sparse interconnection topologies.

Recent Works. Compositional construction of control barrier certificates for continuous-time
stochastic systems is also proposed in [18], but using a different compositionality scheme, namely,
based on small-gain conditions. Our proposed compositionality approach here is potentially less
conservative than the one presented in [18] since the dissipativity-type compositional reasoning,
proposed in this work, can enjoy the structure of the interconnection topology and may not require
any constraints on the number or gains of the subsystems (cf. Remark 6). Furthermore, the
provided results in [18] ask an additional condition (i.e., [18, condition (3)]) which is required
for the satisfaction of small-gain type compositionality conditions, while we do not need such
an extra condition in our setting. Besides, we enlarge the class of systems here to a fragment of
continuous-time stochastic hybrid ones by adding Poisson processes to the dynamics, whereas the
results in [18] only deal with systems described by stochastic differential equations without jumps.

Control barrier functions for stochastic systems in the presence of process and measurement
noises are presented in [5]. Although the proposed results in [5] are also for continuous-time
stochastic systems, they are only presented in a monolithic framework and dealing only with
Brownian motions as sources of the noise. In comparison, we propose here a compositional
approach for the construction of barrier functions for networks of stochastic systems affected by
both Brownian motions and Poisson processes. The results in [5] propose a rather qualitative
satisfaction of safety specification in which the safety property is either satisfied with the probability
1 or not satisfied. As a result, the proposed approach there is very conservative and the proposed

A. Nejati and M. Zamani 06:3

optimization problem is not going to be feasible for many scenarios depending on different dynamics
and safety specifications. In contrast, our work proposes a quantitative version of satisfaction in
which one can get a lower bound on the probability of satisfaction which is less than one.

2 Continuous-Time Stochastic Hybrid Systems

2.1 Notation and Preliminaries
The following notation is utilized throughout the paper. We denote sets of nonnegative and positive
integers by N0 := {0, 1, 2, . . .} and N := {1, 2, 3, . . .}, respectively. The symbols R, R>0, and R≥0
denote sets of real, positive, and nonnegative real numbers, respectively. We use Rn to denote
an n-dimensional Euclidean space and Rn×m to denote the space of real matrices with n rows
and m columns. We denote by diag(a1, . . . , aN) and blkdiag(a1, . . . , aN), respectively, a diagonal
matrix in RN×N with diagonal scalar and matrix entries a1, . . . , aN starting from the upper left
corner. Given a matrix A ∈ Rn×m, Tr(A) represents the trace of A which is the sum of all its
diagonal elements. We employ x = [x1; . . . ;xN] to denote the corresponding vector of a dimension∑
i ni, given N vectors xi ∈ Rni , ni ∈ N, and i ∈ {1, . . . , N}. Given a vector x ∈ Rn, ∥x∥ denotes

the Euclidean norm of x. Given functions fi : Xi → Yi, for any i ∈ {1, . . . , N}, their Cartesian
product

∏N
i=1 fi :

∏N
i=1 Xi →

∏N
i=1 Yi is defined as (

∏N
i=1 fi)(x1, . . . , xN) = [f1(x1); . . . ; fN (xN)].

The identity matrix in Rn×n is denoted by In. A function γ : R≥0 → R≥0, is said to be a class K
function if it is continuous, strictly increasing, and γ(0) = 0. A class K function γ(·) is said to be
a class K∞ if γ(r) → ∞ as r → ∞.

We consider a probability space (Ω,FΩ,PΩ), where Ω is the sample space, FΩ is a sigma-algebra
on Ω comprising subsets of Ω as events, and PΩ is a probability measure that assigns probabilities to
events. We assume that triple (Ω,FΩ,PΩ) is endowed with a filtration F = (Fs)s≥0 satisfying the
usual conditions of completeness and right continuity. Let (Ws)s≥0 be a b-dimensional F-Brownian
motion and (Ps)s≥0 be an r-dimensional F-Poisson process. We assume that the Poisson process
and Brownian motion are independent of each other. The Poisson process Ps = [P1

s; · · · ;Pr
s]

models r events whose occurrences are assumed to be independent of each other.

2.2 Continuous-Time Stochastic Hybrid Systems
We consider a class of continuous-time stochastic hybrid systems (ct-SHS) as formalized in the
following definition.

▶ Definition 1. A continuous-time stochastic hybrid system (ct-SHS) in this work is characterized
by the tuple

Σ = (X,U,W,U ,W, f, σ, ρ, Y1, Y2, h1, h2), (1)

where:
X ⊆ Rn is the state set of the system;
U ⊆ Rm is the external input set of the system;
W ⊆ Rp is the internal input set of the system;
U and W are respectively subsets of sets of all F-progressively measurable processes taking
values in Rm and Rp;
f : X × U × W → Rn is the drift term which is globally Lipschitz continuous: there exist
constants Lx,Lν ,Lw ∈ R≥0 such that ∥f(x, ν, w) − f(x′, ν′, w′)∥ ≤ Lx∥x − x′∥ + Lν∥ν −
ν′∥ + Lw∥w − w′∥ for all x, x′ ∈ X, for all ν, ν′ ∈ U , and for all w,w′ ∈ W ;
σ : Rn → Rn×b is the diffusion term which is globally Lipschitz continuous with the Lipschitz
constant Lσ;

LITES

06:4 From Dissipativity Theory to Compositional Construction of Control Barrier Certificates

ρ : Rn → Rn×r is the reset term which is globally Lipschitz continuous with the Lipschitz
constant Lρ;
Y1 ⊆ Rq1 is the external output set of the system;
Y2 ⊆ Rq2 is the internal output set of the system;
h1 : X → Y1 is the external output map;
h2 : X → Y2 is the internal output map.

A continuous-time stochastic hybrid system Σ satisfies

Σ :

dξ(t) = f(ξ(t), ν(t), w(t))dt+ σ(ξ(t))dWt + ρ(ξ(t))dPt,
ζ1(t) = h1(ξ(t)),
ζ2(t) = h2(ξ(t)),

(2)

P-almost surely (P-a.s.) for any ν ∈ U and any w ∈ W , where stochastic processes ξ : Ω×R≥0 → X,
ζ1 : Ω × R≥0 → Y1, and ζ2 : Ω × R≥0 → Y2 are, respectively, called the solution process and the
external and internal output trajectories of Σ. We also use ξaνw(t) to denote the value of the
solution process at the time t ∈ R≥0 under input trajectories ν and w from an initial condition
ξaνw(0) = a P-a.s., where a is a random variable that is F0-measurable. We also denote by
ζ1aνw and ζ2aνw the external and internal output trajectories corresponding to the solution process
ξaνw. Here, we assume that the Poisson processes Pẑs, for any ẑ ∈ {1, . . . , r}, have rates λ̄ẑ. We
emphasize that the postulated assumptions on f, σ, and ρ ensure existence, uniqueness, and strong
Markov property of the solution process [22].

Given the ct-SHS in (1), we are interested in Markov policies to control the system as defined
in the next definition.

▶ Definition 2. A Markov policy for the ct-SHS Σ in (1) is a map ϱ : B(U) ×X × R≥0 → [0, 1],
with B(U) being the Borel sigma-algebra on the external input space, such that ϱ(·

∣∣ · , t) is a
universally measurable stochastic kernel for all t ∈ R≥0 [27]. For any state x ∈ X at time t, the
input ν(t) is chosen according to the probability measure ϱ(·

∣∣x, t).
Although we define continuous-time stochastic hybrid systems with outputs, we assume the

full-state information is available for the sake of controller synthesis. The role of outputs are
mainly for the sake of interconnecting systems as explained in detail in Section 4.

Given the main contribution of this work which is developing a compositional approach
for the construction of control barrier certificates, we are ultimately interested in investigating
interconnected systems without having internal signals. In this case, the tuple (1) reduces to
(X,U,U , f, σ, ρ, Y, h) with f : X × U → Rn, and ct-SHS (2) can be re-written as

Σ :
{

dξ(t) = f(ξ(t), ν(t)) dt+ σ(ξ(t)) dWt + ρ(ξ(t)) dPt,
ζ(t) = h(ξ(t)).

In the next sections, we propose an approach for the compositional construction of control
barrier certificates for interconnected ct-SHS. To do so, we define, in the next section, notions of
control storage and barrier certificates for ct-SHS and interconnected versions, respectively.

3 Control Storage and Barrier Certificates

In this section, we first introduce a notion of control storage certificates (CSC) for ct-SHS with
both internal and external signals. We then define a notion of control barrier certificates (CBC) for
ct-SHS with only external signals. We leverage the former notion to compositionally construct the
latter one for interconnected systems. We then employ the latter notion to quantify upper bounds
on the probability that the interconnected system reaches certain unsafe regions in finite-time
horizons.

A. Nejati and M. Zamani 06:5

▶ Definition 3. Consider a ct-SHS Σ = (X,U,W,U ,W, f, σ, ρ, Y1, Y2, h1, h2). Let X0, X1 ⊆ X be
initial and unsafe sets of the system, respectively. A twice differentiable function B : X → R≥0
is called a control storage certificate (CSC) for Σ if there exist κ ∈ K∞, γ, λ, ψ ∈ R≥0, and a
symmetric matrix X̄ with conformal block partitions X̄zz̄, z, z̄ ∈ {1, 2}, where X̄22 ⪯ 0, such that

∀x ∈ X0,

B(x) ≤ γ, (3)

∀x ∈ X1,

B(x) ≥ λ, (4)

and ∀x ∈ X, ∃ν ∈ U , such that ∀w ∈ W ,

LB(x) ≤ −κ(B(x)) + ψ +
[

w

h2(x)

]T[
X̄11 X̄12

X̄21 X̄22

]
︸ ︷︷ ︸

X̄:=

[
w

h2(x)

]
, (5)

where LB is the infinitesimal generator of the stochastic process acting on the function B [21],
as defined in the next remark.

▶ Remark 1. Note that the infinitesimal generator L of the process ξ(t) acting on the function
B : X → R≥0 is defined as

LB(x) = ∂xB(x)f(x, ν, w) + 1
2Tr(σ(x)σ(x)T∂x,xB(x)) +

r∑
j=1

λ̄j(B(x+ ρ(x)er
j) − B(x)), (6)

where ∂xB(x) =
[∂B(x)
∂xi

]
i

is a row vector, ∂x,xB(x) =
[∂2B(x)
∂xi∂xj

]
i,j
, λ̄j is the rate of Poisson process,

and er
j denotes an r-dimensional vector with 1 on the j-th entry and 0 elsewhere.

▶ Remark 2. Since the control input ν in condition (5) is independent of internal inputs w (i.e.,
state information of other subsystems), the employed quantifier in (5) implicitly implies that one
can synthesize decentralized controllers for Σ . However, one can design distributed control policies
by changing the sequence of the quantifier in (5) to ∀x ∈ X,∀w ∈ W, ∃ν ∈ U . In this case, the
chance of finding control storage certificates gets increased; however, one needs to measure the
state information of other subsystems to deploy the synthesized controllers.

▶ Remark 3. Note that a local storage certificate captures the role of w (i.e., the effect of interaction
between subsystems in the interconnected topology) using the quadratic term in the right-hand
side of (5). This term is interpreted in dissipativity theory as the supply rate of the system [3]
which is initially used to show the stability of a network based on stabilities of its subsystems.
Here, we choose this function to be quadratic which results in tractable compositional conditions
later in the form of linear matrix inequalities (cf. (13)).

Now we modify the above notion for the interconnected ct-SHS without internal signals. This
notion will be utilized in Theorem 5 for quantifying upper bounds on the probability that the
interconnected system (without internal signals) reaches certain unsafe regions in a finite-time
horizon.

▶ Definition 4. Consider the (interconnected) system Σ = (X,U,U , f, σ, ρ, Y, h), and X0, X1 ⊆ X

as respectively initial and unsafe sets of the interconnected system. A twice differentiable function
B : X → R≥0 is called a control barrier certificate (CBC) for Σ if

LITES

06:6 From Dissipativity Theory to Compositional Construction of Control Barrier Certificates

∀x ∈ X0,

B(x) ≤ γ (7)

∀x ∈ X1,

B(x) ≥ λ (8)

and ∀x ∈ X, ∃ν ∈ U such that

LB(x) ≤ −κ(B(x)) + ψ, (9)

for some κ ∈ K∞, γ, λ, ψ ∈ R≥0, with λ > γ.

▶ Remark 4. Note that stochastic storage certificates satisfying conditions (3)-(5) are not useful
on their own to ensure the safety of the corresponding subsystems and the interconnected system
as a whole. Stochastic storage certificates are some appropriate tools used to construct overall
control barrier certificates given that some compositionality conditions are satisfied (cf. (13),(14)).
The safety of the system can then be verified via Theorem 5 only using the constructed control
barrier certificate.

The next theorem shows the usefulness of CBC to quantify upper bounds on the probability
that the interconnected system reaches certain unsafe regions in a finite-time horizon.

▶ Theorem 5. Let Σ = (X,U,U , f, σ, ρ, Y, h) be an (interconnected) ct-SHS without internal
signals. Suppose B is a CBC for Σ as in Definition 4, and there exists a constant κ̂ ∈ R>0 such
that the function κ ∈ K∞ in (9) satisfies κ(s) ≥ κ̂s, ∀s ∈ R≥0. Then the probability that the
solution process of Σ starts from any initial state ξ(0) = x0 ∈ X0 and reaches X1 under the policy
ν(·) within a time horizon [0, Td] ⊆ R≥0 is formally quantified as

Px0
ν

{
ξ(t) ∈ X1 for some 0 ≤ t ≤ Td

∣∣ ξ(0) = x0

}
≤

1 − (1 − γ
λ)e−ψTd

λ , if λ ≥ ψ
κ̂ ,

κ̂γ+(eκ̂Td−1)ψ
κ̂λeκ̂Td

, if λ ≤ ψ
κ̂ .

(10)

The proof of Theorem 5 is provided in Appendix.

▶ Remark 5. In Section 5, we reformulate conditions of Definition 4 as an optimization problem
such that one can minimize values of γ and ψ in order to obtain a better upper bound that is as
tight as possible.

In the next section, we analyze networks of stochastic hybrid subsystems and show under
which conditions one can construct a CBC of an interconnected system utilizing the corresponding
CSC of subsystems.

4 Compositional Construction of CBC

In this section, we analyze networks of stochastic hybrid subsystems, i ∈ {1, . . . , N},

Σi = (Xi, Ui,Wi,Ui,Wi, fi, σi, ρi, Y1i , Y2i , h1i , h2i), (11)

and discuss how to construct a CBC of the interconnected system based on CSC of subsystems
using dissipativity-type compositional conditions. We first formally define the interconnected
stochastic hybrid systems.

A. Nejati and M. Zamani 06:7

▶ Definition 6. Consider N ∈ N stochastic hybrid subsystems Σi = (Xi, Ui,Wi,Ui,Wi, fi, σi, ρi,

Y1i , Y2i , h1i , h2i), i ∈ {1, . . . , N}, and a matrix M defining the coupling between these subsystems.
We require the condition M

∏N
i=1 Y2i ⊆

∏N
i=1 Wi to have a well-posed interconnection. The inter-

connection of Σi, ∀i ∈ {1, . . . , N}, is the ct-SHS Σ = (X,U,U , f, σ, Y, h), denoted by I(Σ1, . . . ,ΣN),
such that X :=

∏N
i=1 Xi, U :=

∏N
i=1 Ui, f :=

∏N
i=1 fi, σ := blkdiag(σ1(x1), . . . , σN (xN)),

ρ := blkdiag(ρ1(x1), . . . , ρN (xN)), Y :=
∏N
i=1 Y1i, and h =

∏N
i=1 h1i, with the internal inputs

constrained according to

[w1; · · · ;wN] = M [h21(x1); · · · ;h2N (xN)].

We assume that for hybrid subsystems Σi, i ∈ {1, . . . , N}, there exist CSC Bi as defined
in Definition 3 with the corresponding functions, constant, and matrices denoted by κi ∈ K∞,
γi, λi, ψi ∈ R≥0, X̄i, X̄11

i , X̄12
i , X̄21

i , and X̄22
i . In the next theorem, we compositionally construct

a control barrier certificate for the interconnected system Σ as in Definition 4.

▶ Theorem 7. Consider an interconnected stochastic hybrid system Σ = I(Σ1, . . . ,ΣN) induced by
N ∈ N stochastic hybrid subsystems Σi and the coupling matrix M . Suppose that each subsystem
Σi admits a CSC Bi as defined in Definition 3 with the corresponding initial and unsafe sets X0i
and X1i , respectively. Then

B(x) :=
N∑
i=1

µiBi(xi) (12)

is a CBC for the interconnected system Σ = I(Σ1, . . . ,ΣN) with the corresponding initial and
unsafe sets X0 :=

∏N
i=1 X0i , X1 :=

∏N
i=1 X1i , respectively, if there exist µi > 0, i ∈ {1, . . . , N},

such that[
M

Iq̃

]T
X̄cmp

[
M

Iq̃

]
⪯ 0, (13)

N∑
i=1

µiλi >

N∑
i=1

µiγi, (14)

where

X̄cmp :=

µ1X̄
11
1 µ1X̄

12
1

.
µN X̄

11
N µN X̄

12
N

µ1X̄
21
1 µ1X̄

22
1

.
µN X̄

21
N µN X̄

22
N

, (15)

and q̃ =
∑N
i=1 q2i with q2i being dimensions of the internal output of subsystems Σi.

The proof of Theorem 7 is provided in Appendix.
▶ Remark 6. Condition (13) is similar to the LMI appeared in [3] as a compositional stability
condition based on the dissipativity theory. It is shown in [3] that this condition holds independently
of the number of subsystems in many physical applications with particular interconnection
topologies, e.g., skew symmetric.
▶ Remark 7. Note that the condition (14) in general is not very restrictive since constants µi
in (12) play a significant role in rescaling CSC for subsystems while normalizing the effect of
internal gains of other subsystems. One can expect that condition (14) holds in many applications
due to this rescaling.

LITES

06:8 From Dissipativity Theory to Compositional Construction of Control Barrier Certificates

5 Computation of CSC

In this section, we formulate the proposed conditions in Definition 3 as a sum-of-squares (SOS)
optimization problem [24] and provide a systematic approach for computing CSC and corresponding
control policies for subsystems Σi. The SOS optimization technique relies on the fact that a
polynomial is non-negative if it can be written as a sum of squares of different polynomials. In
order to utilize an SOS optimization, we raise the following assumption.

▶ Assumption 1. Subsystem Σi has a continuous state set Xi ⊆ Rni and continuous external and
internal input sets Ui ⊆ Rmi and Wi ⊆ Rpi . Moreover, the drift term fi : Xi ×Ui ×Wi → Rni is a
polynomial function of the state xi and external and internal inputs νi, wi. Furthermore, diffusion
and reset terms σi : Rni → Rni×bi and ρi : Rni → Rni×ri are polynomial functions of the state xi.

Under Assumption 1, one can reformulate the proposed conditions in Definition 3 as an SOS
optimization problem to search for a polynomial CSC Bi(·), and a polynomial control policy νi(·).
The following lemma provides a set of sufficient conditions for the existence of such CSC required
in Definition 3, which can be solved now as an SOS optimization problem.

▶ Lemma 8. Suppose Assumption 1 holds and sets X0i , X1i , Xi, Ui,Wi can be defined by vectors
of polynomial inequalities X0i = {xi ∈ Rni | g0i(xi) ≥ 0}, X1i = {xi ∈ Rni | g1i(xi) ≥ 0},
Xi = {xi ∈ Rni | gi(xi) ≥ 0}, Ui = {νi ∈ Rmi | gνi(νi) ≥ 0}, and Wi = {wi ∈ Rpi | gwi(wi) ≥ 0},
where the inequalities are defined element-wise. Suppose there exist a sum-of-square polynomial
Bi(xi), constants γi, λi, ψi ∈ R≥0, functions κi ∈ K∞, a symmetric matrix X̄i with conformal block
partitions X̄zz̄

i , z, z̄ ∈ {1, 2}, where X̄22
i ⪯ 0, polynomials lνji(x) corresponding to the jth input

in νi = [ν1i ; ν2i ; . . . ; νmi] ∈ Ui ⊆ Rmi , and vectors of sum-of-squares polynomials l0i(xi), l1i(xi),
li(xi, νi, wi), lνi(xi, νi, wi), and lwi(xi, νi, wi) of appropriate dimensions such that the following
expressions are sum-of-squares polynomials:

−Bi(xi) − lT0i(xi)g0i(xi) + γi (16)
Bi(xi) − lT1i(xi)g1i(xi) − λi (17)

−LBi(xi) − κi(Bi(xi)) +
[

wi
h2i(xi)

]T[
X̄11
i X̄12

i

X̄21
i X̄22

i

][
wi

h2i(xi)

]
+ ψi−

mi∑
j=1

(νji−lνji(xi))−lTi (xi, νi, wi)gi(xi)−lTνi(xi, νi, wi)gνi(νi)−lTwi(xi, νi, wi)gwi(wi).

(18)

Then, Bi(xi) satisfies conditions (3)-(5) in Definition 3 and νi = [lν1i
(xi); . . . ; lνmi (xi)], i ∈

{1, . . . , N}, is the corresponding safety controller.

The proof of Lemma 8 is provided in Appendix.

▶ Remark 8. Note that function κi(·) in (18) can cause nonlinearity on unknown parameters of Bi.
A possible way to avoid this issue is to consider a linear function κi(s) = κ̂is,∀s ∈ R≥0, with some
given constant κ̂i ∈ R>0. Then one can employ bisection method to minimize the value of κ̂i.

▶ Remark 9. Note that for computing the sum-of-squares polynomial Bi(xi) fulfilling reformulated
conditions (16)-(18), one can readily employ existing software tools available in the literature such
as SOSTOOLS [23] together with a semi-definite programming (SDP) solver such as SeDuMi [28].

A. Nejati and M. Zamani 06:9

Σ1

Σ2

Σ3 Σ4

Σ5

Σ1000

Figure 1 A circular building in a network of 1000 rooms.

6 Case Studies

6.1 Room Temperature Network
To illustrate the effectiveness of the proposed results, we first apply our approaches to a temperature
regulation in a network of 1000 rooms, each equipped with a heater and connected circularly
as depicted in Figure 1. We compute the CSC of each room while compositionally synthesizing
safety controllers to regulate the temperature of each room in a comfort zone for a bounded-time
horizon.

The model of this case study is borrowed from [6] by including stochasticity in the model. The
evolution of the temperature T (·) can be described by the interconnected jump-diffusion

Σ :
{

dT (t) = (AT (t) + θThν(t) + βTE)dt+GdWt +RdPt,
ζ(t) = T (t),

where A is a matrix with diagonal elements aii = −2η − β − θνi(t), i ∈ {1, . . . , n}, off-diagonal
elements ai,i+1 = ai+1,i = a1,n = an,1 = η, i ∈ {1, . . . , n − 1}, and all other elements are
identically zero. Parameters η = 0.005, β = 0.06, and θ = 0.156 are conduction factors,
respectively, between rooms i ± 1 and i, the external environment and the room i, and the
heater and the room i. Moreover, G = R = 0.1In, TE = [Te1 ; . . . ;Ten], T (t) = [T1(t); . . . ;Tn(t)],
and ν(t) = [ν1(t); . . . ; νn(t)]. Outside temperatures are the same for all rooms: Tei = −15 ◦C,
∀i ∈ {1, . . . , n}, and the heater temperature is Th = 48 ◦C. We consider the rates of Poisson
processes as λ̄i = 0.1,∀i ∈ {1, . . . , n}. Now by considering the individual rooms as Σi described by

Σi :

dTi(t) = (aiiTi(t) + θThνi(t) + ηwi(t) + βTei)dt+ 0.1dWti + 0.1dPti ,
ζ1i(t) = Ti(t),
ζ2i(t) = Ti(t),

(19)

one can readily verify that Σ = I(Σ1, . . . ,ΣN) where the coupling matrix M is defined as
mi,i+1 = mi+1,i = m1,n = mn,1 = 1, i ∈ {1, . . . , n− 1}, and all other elements are identically zero.

The regions of interest in this example areXi = [1 50], X0i = [19.5 20], X1i = [1 17]∪[23 50],∀i ∈
{1, . . . , n}. The main goal is to find a CBC for the interconnected system, using which a safety
controller is synthesized for Σ maintaining the temperatures of rooms in the comfort zone
W = [17 23]1000. The idea here is to search for CSC and accordingly design local controllers for
subsystems Σi. Consequently, the controller for the interconnected system Σ is simply a vector
such that its ith component is the controller for subsystem Σi. We employ the software tool
SOSTOOLS [23] and the SDP solver SeDuMi [28] to compute CSC as described in Section 5.
According to Lemma 8, we compute CSC of order 2 as Bi(Ti) = 0.3112T 2

i − 12.3035Ti + 121.59906

LITES

06:10 From Dissipativity Theory to Compositional Construction of Control Barrier Certificates

and the corresponding safety controller νi(Ti) = −0.0120155Ti+0.7 for all i ∈ {1, . . . , n}. Moreover,
the corresponding constants and functions in Definition 3 satisfying conditions (3)-(5) are quantified
as γi = 0.08, λi = 2.7, κi(s) = κ̂is,∀s ∈ R≥0 with κ̂i = 10−7, ψi = 5 × 10−3, and

X̄i =
[
κ̂ie

−4η2 0
0 −κ̂ie−4θ2T 2

h

]
. (20)

We now proceed with Theorem 7 to construct a CBC for the interconnected system using CSC
of subsystems. By selecting µi = 1,∀i ∈ {1, . . . , n}, and utilizing X̄i in (20), the matrix X̄cmp in
(15) reduces to

X̄cmp =
[
κ̂ie

−4η2In 0
0 −κ̂ie−4θ2T 2

hIn

]
,

and condition (13) is reduced to[
M

In

]T
X̄cmp

[
M

In

]
= κ̂ie

−4η2MTM − κ̂ie
−4θ2T 2

hIn ⪯ 0,

without requiring any restrictions on the number or gains of subsystems. We used M = MT, and
4κ̂ie−4η2 − κ̂ie

−4θ2T 2
h ⪯ 0 by employing Gershgorin circle theorem [4] to show the above LMI.

Moreover, the compositionality condition (14) is also met since λi > γi,∀i ∈ {1, . . . , n}. Then by
employing the results of Theorem 7, one can conclude that B(T) =

∑1000
i=1 (0.3112T 2

i − 12.3035Ti +
121.59906) is a CBC for the interconnected system Σ with γ = 80, λ = 2700, κ(s) = 10−7s,∀s ∈
R≥0, and ψ = 5. Accordingly, ν(T) = [−0.0120155T1 + 0.7; . . . ; −0.0120155T1000 + 0.7] is the
overall safety controller for the interconnected system.

By employing Theorem 5, one can guarantee that the temperature of the interconnected system
Σ starting from initial conditions inside X0 = [19.5 20]1000 remains in the safe set [17 23]1000

during the time horizon Td = 10 with the probability of at least 96%, i.e.,

Px0
ν

{
ξ(t) /∈ X1 | ξ(0) = x0, ∀t ∈ [0, 10]

}
≥ 0.96 . (21)

Closed-loop state trajectories of a representative room with 10 different noise realizations are
illustrated in Figure 2.

With the assumption that all dynamics and barrier certificates are polynomial types, the
computational complexity of using SOS in our setting is linear with respect to the number of
subsystems. Whereas, if one is interested in solving the problem in a monolithic manner, the
complexity will be polynomial in terms of the number of subsystems [30]. In the worst-case
scenario, the computational complexity in the monolithic manner will be exponential in terms of
the number of subsystems if the underlying dynamics and barrier certificates are not polynomial.

Importance of Compositionality Conditions. In order to demonstrate the importance of the
compositionality conditions, we raise the following counter example. Consider a network of two
rooms each equipped with a heater and connected circularly, as illustrated in Figure 3, with
dynamics as in (19) with Tei = −100,∀i ∈ {1, 2}. One can readily verify that Σ = I(Σ1,Σ2)

where the coupling matrix M is defined as M =
[
0 1
1 0

]
. Let regions of interest be the same as

before. We compute CSC of order 2 as Bi(Ti) = 0.76484T 2
i − 30.18033Ti + 297.73079 and its

corresponding controller νi(Ti) = 0.0120155Ti + 0.7 for all i ∈ {1, 2}, with

X̄i =
[
4 × 10−4 20

20 5 × 10−4

]
.

A. Nejati and M. Zamani 06:11

Figure 2 Closed-loop state trajectories of a representative room with 10 noise realizations in a network
of 1000 rooms.

I(Σ1,Σ2)

Σ1: Room 1

Σ2: Room 2

ζ11ν1

ζ12
ν2

ζ21

w2 ζ22

w1

Figure 3 Interconnection of two rooms Σ1 and Σ2.

We now select µi = 1,∀i ∈ {1, 2}, and construct the matrix X̄cmp in (15) as

X̄cmp =

4 × 10−4 0 20 0

0 4 × 10−4 0 20
20 0 5 × 10−4 0
0 20 0 5 × 10−4

.

Now we check the compositionality condition in (13) as

[
M

In

]T
X̄cmp

[
M

In

]
⪯̸ 0,

with eigenvalues equal to −39.9991 and 40.0009. Since the compositionality condition is violated,
one cannot automatically conclude that B(T) = B1(T1) + B2(T2) is a barrier certificate for the
overall system. To show this issue, we employ B(T) = 0.76484T 2

1 − 30.18033T1 + 297.73079 +
0.76484T 2

2 − 30.18033T2 + 297.73079 and check the corresponding conditions for the overall barrier
certificate (i.e., conditions (7)-(9)) with γ = γ1 + γ2, λ = λ1 + λ2, ψ = ψ1 + ψ2. As it can
be observed from Figures 4-6, although conditions (7),(8) are satisfied for the overall barrier
certificates B(T) = B1(T1) + B2(T2), condition (9) is violated since it is positive at some ranges of
X1 ×X2.

Then one can readily verify that B(T) = B1(T1) + B2(T2) is not necessarily a barrier certificate
for the overall network ensuring its safety even though all the rooms are the same and storage
certificates are input independent.

LITES

06:12 From Dissipativity Theory to Compositional Construction of Control Barrier Certificates

Figure 4 Satisfaction of condition (7). As observed, this condition is negative for all ranges of x1 ∈ X01

and x2 ∈ X02 .

Figure 5 Satisfaction of condition (8). The condition is negative for all ranges of x1 ∈ X11 and
x2 ∈ X12 .

Figure 6 Violation of condition (9). As observed, this condition is positive for some ranges of x1 ∈ X1

and x2 ∈ X2.

A. Nejati and M. Zamani 06:13

6.2 Fully-Interconnected Network
To show the applicability of our approach to strongly connected networks, we consider intercon-
nected linear ct-SHS

Σ :
{

dξ(t) = (Ḡξ(t) +Bν(t))dt+GdWt +RdPt,
ζ(t) = ξ(t),

with matrix Ḡ= (−In − L) ∈ Rn×n, where L is the Laplacian matrix of a complete graph [7]:

L =

n− 1 −1 · · · · · · −1
−1 n− 1 −1 · · · −1
−1 −1 n− 1 · · · −1
...

.
...

−1 · · · · · · −1 n− 1

n×n

.

We partition ξ(t) = [ξ1(t); . . . ; ξn(t)], and ν(t) = [ν1(t); . . . ; νn(t)]. Moreover, B = 0.15In and
G = R = 0.1In. We also consider rates of Poisson processes as λ̄i = 0.1,∀i ∈ {1, . . . , n}. Now by
considering the individual subsystems as

Σi :

dξi(t) = (−ξi(t) + 0.15νi(t) + wi(t))dt+ 0.1dWti + 0.1dPti ,
ζ1i(t) = ξi(t),
ζ2i(t) = ξi(t),

one can readily verify that Σ = I(Σ1, . . . ,ΣN) where the coupling matrix M is defined as M = −L.
The regions of interest in this example are Xi = [2 6], X0i = [2 4], X1i = [5 6],∀i ∈ {1, . . . , n}.

For the sake of simulation, we fix n = 15. The main goal is to find a CBC for the interconnected
system and design its corresponding safety controller Σ maintaining the state of the interconnected
system in the safe set W = [2 5]15. According to Lemma 8, we compute CSC of order 4
as Bi(xi) = 0.0002x4

i − 0.0024x3
i + 0.0109x2

i − 0.0207xi + 0.0146 and the corresponding safety
controller νi(xi) = −5.1465x2

i + 60.3564 for all i ∈ {1, . . . , 15}. The corresponding constants
and functions in Definition 3 satisfying conditions (3)-(5) are computed as γi = 10−4, λi =
2 × 10−3, κi(s) = κ̂is,∀s ∈ R≥0 with κ̂i = 10−7, ψi = 10−6, and

X̄i =
[
10−6 10−2

10−2 −5 × 10−4

]
. (22)

We now proceed with Theorem 7 to construct a CBC for the interconnected system using CSC
of subsystems. By selecting µi = 1,∀i ∈ {1, . . . , n}, and utilizing X̄i in (22), the matrix X̄cmp in
(15) is reduced to

X̄cmp =
[
10−6In 10−2In
10−2In −5 × 10−4In

]
,

and condition (13) is reduced to[
−L
In

]T
X̄cmp

[
−L
In

]
= 10−6LTL− 10−2(L+ LT) − 5 × 10−4In ⪯ 0,

which is always satisfied without requiring any restrictions on the number or gains of subsystems.
In order to show the above LMI, we used L = LT ⪰ 0 which is always true for Laplacian
matrices of undirected graphs. Moreover, the compositionality condition (14) is also satisfied
since λi > γi,∀i ∈ {1, . . . , n}. Then by employing Theorem 7, one can conclude that B(x) =

LITES

06:14 From Dissipativity Theory to Compositional Construction of Control Barrier Certificates

∑15
i=1(0.0002x4

i − 0.0024x3
i + 0.0109x2

i − 0.0207xi + 0.0146) is a CBC for the interconnected
system Σ with γ = 0.0015, λ = 0.03, κ(s) = 10−7s,∀s ∈ R≥0, and ψ = 1.5 × 10−5. Accordingly,
ν(x) = [−5.1465x2

1 + 60.3564; . . . ; −5.1465x2
15 + 60.3564] is the overall safety controller for the

interconnected system.
By leveraging Theorem 5, one can guarantee that the state of the interconnected system Σ

starting from initial conditions inside X0 = [2 4]15 remains in the safe set [2 5]15 during the time
horizon Td = 10 with the probability of at least 95%, i.e.,

Px0
ν

{
ξ(t) /∈ X1 | ξ(0) = x0, ∀t ∈ [0, 10]

}
≥ 0.95 .

Closed-loop state trajectories of a representative subsystem with 10 different noise realizations are
illustrated in Figure 7.

Figure 7 Closed-loop state trajectories of a representative subsystem with 10 noise realizations.

7 Conclusion

In this work, we proposed a compositional scheme based on dissipativity approaches for constructing
control barrier certificates of large-scale continuous-time continuous-space stochastic hybrid systems
while providing upper bounds on the probability that interconnected systems reach certain unsafe
regions in finite-time horizons. The main goal was to synthesize control policies satisfying safety
properties for interconnected systems by utilizing control storage certificates of subsystems. We
constructed control barrier certificates for interconnected stochastic systems using control storage
certificates of subsystems as long as some dissipativity-type compositional conditions hold. We
employed a systematic approach based on the sum-of-squares optimization program and computed
control storage certificates of subsystems. We illustrated our proposed results on two case studies
with circular and fully-interconnected topologies.

References
1 M. Ahmadi, B. Wu, H. Lin, and U. Topcu. Privacy

verification in POMDPs via barrier certificates. In
Proceedings of the 57th IEEE Conference on De-
cision and Control (CDC), pages 5610–5615, 2018.

2 M. Anand, A. Lavaei, and M. Zamani. Com-
positional construction of control barrier certific-
ates for large-scale interconnected stochastic sys-
tems. Proceedings of the 21st IFAC World Congress,
53(2):1862–1867, 2020.

3 M. Arcak, C. Meissen, and A. Packard. Networks
of dissipative systems. SpringerBriefs in Electrical
and Computer Engineering. Springer, 2016.

4 H. E. Bell. Gershgorin’s theorem and the zeros of
polynomials. The American Mathematical Monthly,
72(3):292–295, 1965.

5 A. Clark. Control barrier functions for complete
and incomplete information stochastic systems. In
Proceedings of the American Control Conference
(ACC), pages 2928–2935, 2019.

A. Nejati and M. Zamani 06:15

6 A. Girard, G. Gössler, and S. Mouelhi. Safety con-
troller synthesis for incrementally stable switched
systems using multiscale symbolic models. IEEE
Transactions on Automatic Control, 61(6):1537–
1549, 2016.

7 C. Godsil and G. Royle. Algebraic graph theory.
Graduate Texts in Mathematics. Springe, 2001.

8 C. Huang, X. Chen, W. Lin, Z. Yang, and X. Li.
Probabilistic safety verification of stochastic hybrid
systems using barrier certificates. ACM Transac-
tions on Embedded Computing Systems (TECS),
16(5s):186, 2017.

9 P. Jagtap, S. Soudjani, and M. Zamani. Formal
synthesis of stochastic systems via control barrier
certificates. IEEE Transactions on Automatic Con-
trol, 66(7):3097–3110, 2020.

10 H. J. Kushner. Stochastic Stability and Control.
Mathematics in Science and Engineering. Elsevier
Science, 1967.

11 A. Lavaei. Automated Verification and Control
of Large-Scale Stochastic Cyber-Physical Systems:
Compositional Techniques. PhD thesis, Technische
Universität München, Germany, 2019.

12 A. Lavaei, S. Soudjani, A. Abate, and M. Zamani.
Automated verification and synthesis of stochastic
hybrid systems: A survey. Automatica, 2022.

13 A. Lavaei, S. Soudjani, and M. Zamani. Com-
positional construction of infinite abstractions for
networks of stochastic control systems. Automatica,
107:125–137, 2019.

14 A. Lavaei, S. Soudjani, and M. Zamani. Composi-
tional abstraction-based synthesis for networks of
stochastic switched systems. Automatica, 114, 2020.

15 A. Lavaei, S. Soudjani, and M. Zamani. Composi-
tional abstraction of large-scale stochastic systems:
A relaxed dissipativity approach. Nonlinear Ana-
lysis: Hybrid Systems, 36, 2020.

16 A. Lavaei, S. Soudjani, and M. Zamani. Compos-
itional (in)finite abstractions for large-scale inter-
connected stochastic systems. IEEE Transactions
on Automatic Control, 65(12):5280–5295, 2020.

17 A. Nejati, S. Soudjani, and M. Zamani. Compos-
itional construction of control barrier certificates
for large-scale stochastic switched systems. IEEE
Control Systems Letters, 4(4):845–850, 2020.

18 A. Nejati, S. Soudjani, and M. Zamani. Composi-
tional construction of control barrier functions for

networks of continuous-time stochastic systems.
Proceedings of the 21st IFAC World Congress,
53(2):1856–1861, 2020.

19 A. Nejati, S. Soudjani, and M. Zamani. Composi-
tional abstraction-based synthesis for continuous-
time stochastic hybrid systems. European Journal
of Control, 57:82–94, 2021.

20 A. Nejati and M. Zamani. Compositional construc-
tion of finite MDPs for continuous-time stochastic
systems: A dissipativity approach. Proceedings of
the 21st IFAC World Congress, 53(2):1962–1967,
2020.

21 B. Oksendal. Stochastic differential equations: an
introduction with applications. Springer Science &
Business Media, 2013.

22 B. K. Øksendal and A. Sulem. Applied stochastic
control of jump diffusions, volume 498. Springer,
2005.

23 A. Papachristodoulou, J. Anderson, G. Valmorbida,
S. Prajna, P. Seiler, and P. Parrilo. SOSTOOLS
version 3.00 sum of squares optimization toolbox
for MATLAB. arXiv:1310.4716, 2013.

24 P. A. Parrilo. Semidefinite programming relaxa-
tions for semialgebraic problems. Mathematical
programming, 96(2):293–320, 2003.

25 A. Pnueli. The temporal logic of programs. In Pro-
ceedings of the 18th Annual Symposium on Found-
ations of Computer Science, pages 46–57, 1977.

26 S. Prajna, A. Jadbabaie, and G. J. Pappas. A frame-
work for worst-case and stochastic safety verifica-
tion using barrier certificates. IEEE Transactions
on Automatic Control, 52(8):1415–1428, 2007.

27 K. Ross. Stochastic control in continuous time. Lec-
ture Notes on Continuous Time Stochastic Control,
pages P33–P37, 2008.

28 J. F. Sturm. Using sedumi 1.02, a matlab toolbox
for optimization over symmetric cones. Optimiza-
tion methods and software, 11(1-4):625–653, 1999.

29 R. Wisniewski and M. L. Bujorianu. Stochastic
safety analysis of stochastic hybrid systems. In
Proceedings of the 56th IEEE Conference on De-
cision and Control, pages 2390–2395, 2017.

30 T. Wongpiromsarn, U. Topcu, and A. Lamperski.
Automata theory meets barrier certificates: Tem-
poral logic verification of nonlinear systems. IEEE
Transactions on Automatic Control, 61(11):3344–
3355, 2015.

8 Appendix

Proof of Theorem 5. Based on condition (8), we have X1 ⊆ {x ∈ X
∣∣ B(x) ≥ λ}. Then one has

Px0
ν

{
ξ(t) ∈ X1 for some 0 ≤ t ≤ Td

∣∣ ξ(0) = x0

}
≤ Px0

ν

{
sup

0≤t≤Td
B(ξ(t)) ≥ λ

∣∣ ξ(0) = x0

}
.

(23)

One can acquire the upper bound in (10) by applying [10, Theorem 1, Chapter III] to (23) and
respectively utilizing conditions (9) and (7). ◀

Proof of Theorem 7. We first show that conditions (7) and (8) in Definition 4 hold. For any
x := [x1; . . . ;xN] ∈ X0 =

∏N
i=1 X0i and from (3)

LITES

06:16 From Dissipativity Theory to Compositional Construction of Control Barrier Certificates

B(x) =
N∑
i=1

µiBi(xi) ≤
N∑
i=1

µiγi = γ,

and similarly for any x := [x1; . . . ;xN] ∈ X1 =
∏N
i=1 X1i and from (4)

B(x) =
N∑
i=1

µiBi(xi) ≥
N∑
i=1

µiλi = λ,

satisfying conditions (7) and (8) with γ =
∑N
i=1 µiγi and λ =

∑N
i=1 µiλi. Note that λ > γ

according to (14). Now, we show that the condition (9) holds, as well. One can obtain the chain
of inequalities in (24) using condition (13) and by defining κ(·), ψ as

κ(s) := min
{ N∑
i=1

µiκi(si)
∣∣ si≥ 0,

N∑
i=1

µisi = s
}
,

ψ :=
N∑
i=1

µiψi.

Then B is a CBC for Σ, which completes the proof. ◀

Proof of Lemma 8. Since condition (16) is sum-of-squares, we have 0 ≤ Bi(xi) − lT0i(xi)gi(xi) −
γi. Since the term lT0i(xi)g0i(xi) is non-negative over X0, the new condition (16) implies the
condition (3) in Definition 3. Similarly, one can show that (17) implies condition (4) in Definition 3.
Now we show that condition (18) implies (5), as well. By selecting external inputs νji = lνji(xi)
and since terms lTi (xi, νi, wi)gi(xi), lTνi(xi, νi, wi)gνi(νi), l

T
wi(xi, νi, wi)gwi(wi) are non-negative over

the set X, we have

LBi(xi) ≤ −κi(Bi(xi)) + ψi +
[

wi
h2i(xi)

]T[
X̄11
i X̄12

i

X̄21
i X̄22

i

][
wi

h2i(xi)

]
,

which implies that the function Bi(xi) is a CSC and completes the proof. ◀

A. Nejati and M. Zamani 06:17

LB(x) = L
N∑
i=1

µiBi(xi) =
N∑
i=1

µiLBi(xi)

≤
N∑
i=1

µi
(

− κi(Bi(xi)) + ψi +
[

wi
h2i(xi)

]T [
X̄11
i X̄12

i

X̄21
i X̄22

i

] [
wi

h2i(xi)

])
=

N∑
i=1

−µiκi(Bi(xi)) +
N∑
i=1

µiψi

+

w1
...
wN

h21(x1)
...

h2N (xN)

T

µ1X̄
11
1 µ1X̄

12
1

.
µN X̄

11
N µN X̄

12
N

µ1X̄
21
1 µ1X̄

22
1

.
µN X̄

21
N µN X̄

22
N

w1
...
wN

h21(x1)
...

h2N (xN)

=

N∑
i=1

−µiκi(Bi(xi)) +
N∑
i=1

µiψi

+

M

 h21(x1)
...

h2N (xN)

h21(x1)

...
h2N (xN)

T

µ1X̄
11
1 µ1X̄

12
1

.
µN X̄

11
N µN X̄

12
N

µ1X̄
21
1 µ1X̄

22
1

.
µN X̄

21
N µN X̄

22
N

M

 h21(x1)
...

h2N (xN)

h21(x1)

...
h2N (xN)

=

N∑
i=1

−µiκi(Bi(xi)) +
N∑
i=1

µiψi

+

 h21(x1)
...

h2N (xN)

T[
M

Iq̃

]T

µ1X̄
11
1 µ1X̄

12
1

.
µN X̄

11
N µN X̄

12
N

µ1X̄
21
1 µ1X̄

22
1

.
µN X̄

21
N µN X̄

22
N

[
M

Iq̃

] h21(x1)
...

h2N (xN)

≤
N∑
i=1

−µiκi(Bi(xi)) +
N∑
i=1

µiψi ≤ −κ(B(x)) + ψ. (24)

LITES

Real-Time Verification for Distributed Cyber-Physical
Systems
Hoang-Dung Tran #

University of Nebraska-Lincoln, Lincoln, Nebraska, USA

Luan Viet Nguyen #

University of Dayton, Dayton, Ohio, USA

Patrick Musau
Vanderbilt University, Nashville, Tennessee, USA

Weiming Xiang #

Augusta University, Nashville, Tennessee, USA

Taylor T. Johnson #

Vanderbilt University, Nashville, Tennessee, USA

Abstract
Safety-critical distributed cyber-physical systems
(CPSs) have been found in a wide range of ap-
plications. Notably, they have displayed a great
deal of utility in intelligent transportation, where
autonomous vehicles communicate and cooperate
with each other via a high-speed communication
network. Such systems require an ability to identify
maneuvers in real-time that cause dangerous cir-
cumstances and ensure the implementation always
meets safety-critical requirements. In this paper,
we propose a real-time decentralized reachability
approach for safety verification of a distributed
multi-agent CPS with the underlying assumption
that all agents are time-synchronized with a low de-
gree of error. In the proposed approach, each agent

periodically computes its local reachable set and
exchanges this reachable set with the other agents
with the goal of verifying the system safety. Our
method, implemented in Java, takes advantages of
the timing information and the reachable set inform-
ation that are available in the exchanged messages
to reason about the safety of the whole system in
a decentralized manner. Any particular agent can
also perform local safety verification tasks based
on their local clocks by analyzing the messages it
receives. We applied the proposed method to verify,
in real-time, the safety properties of a group of
quadcopters performing a distributed search mis-
sion.

2012 ACM Subject Classification Computing methodologies → Distributed computing methodologies
Keywords and Phrases Verification, Reachability Analysis, Distributed Cyber-Physical Systems
Digital Object Identifier 10.4230/LITES.8.2.7
Related Version Previous Version: https://doi.org/10.1007/978-3-030-21759-4_15 [31]
Supplementary Material Software (Source Code): https://github.com/verivital/rtreach
Funding The material presented in this paper is based upon work supported by the Air Force Office of
Scientific Research (AFOSR) through contract number FA9550-22-1-0019 and the Defense Advanced
Research Projects Agency (DARPA) through contract number FA8750-18-C-0089. The U.S. Government
is authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright
notation thereon. The views and conclusions contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies or endorsements, either expressed or implied,
of AFOSR or DARPA.
Received 2020-10-22 Accepted 2022-01-28 Published 2022-12-07
Editor Alessandro Abate, Uli Fahrenberg, and Martin Fränzle
Special Issue Special Issue on Distributed Hybrid Systems

© Hoang-Dung Tran, Luan Viet Nguyen, Patrick Musau, Weiming Xiang, and Taylor T. Johnson;
licensed under Creative Commons Attribution 4.0 International (CC BY 4.0)

Leibniz Transactions on Embedded Systems, Vol. 8, Issue 2, Article No. 7, pp. 07:1–07:19
Leibniz Transactions on Embedded Systems

L I T E S Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:trhoangdung@gmail.com
mailto:luanvnguyen.vn@gmail.com
mailto:xiangwming@gmail.com
mailto:taylor.johnson@gmail.com
https://doi.org/10.4230/LITES.8.2.7
https://doi.org/10.1007/978-3-030-21759-4_15
https://github.com/verivital/rtreach
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lites
https://www.dagstuhl.de

07:2 Real-Time Safety Verification for Distributed Cyber-Physical Systems

1 Introduction

The emergence of 5G technology has inspired a massive wave of the research and development in
science and technology in the era of IoT where the communication between computing devices has
become significantly faster with lower latency and power consumption. The power of this modern
communication technology influences and benefits all aspects of Cyber-Physical Systems (CPSs)
such as smart grids, smart homes, intelligent transportation and smart cities. In particular, the
study of autonomous vehicles has become an increasingly popular research field in both academic
and industrial transportation applications. Automotive crashes pose significant financial and
life-threatening risks, and there is an urgent need for advanced and scalable methods that can
efficiently verify a distributed system of autonomous vehicles.

Over the last two decades, although many methods have been developed to conduct reachability
analysis and safety verification of CPS, such as the approaches proposed in [1, 4, 5, 7, 13, 14, 17, 20,
23, 30, 32], applying these techniques to real-time distributed CPS remains a big challenge. This is
due to the fact that, 1) all existing techniques have intensive computation costs and are usually
too slow to be used in a real-time manner and, 2) these techniques target the safety verification
of a single CPS, and therefore they naturally cannot be applied efficiently to a distributed CPS
where clock mismatches and communication between agents (i.e., individual systems) are essential
concerns. Since the future autonomous vehicles systems will work distributively involving effective
communication between each agent, there is an urgent need for an approach that can provide
formal guarantees of the safety of distributed CPS in real-time. More importantly, the safety
information should be defined based on the agents local clocks to allow these agents to perform
“intelligent actions” to escape from the upcoming dangerous circumstances. For example, if an
agent A knows based on its local clock that it will collide with an agent B in the next 5 seconds,
it should perform an action such as stopping or quickly finding a safe path to avoid the collision.

In this paper1, we propose a decentralized real-time reachability approach for safety verification
of a distributed CPS with multiple agents. We are particularly interested in two types of safety
properties. The first one is a local safety property which specifies the local constraints of the agent
operation. For example, each agent is only allowed to move within a specific region, does not hit
any obstacles, and its velocity needs to be limited to a specific range. This type of property does
not require the information of other agents and can be verified locally at run-time. The second
safety property is a global property defined on the states of multiple agents. Particularly, we
consider a peer-to-peer collision free property and a generalized property where we want to verify
if all agents satisfy a set of linear constraints (on the states of all agents) defining the property,
e.g., two agents do not go into the same region at the same time.

Our decentralized real-time reachability approach works as follows. Each agent locally and
periodically computes the local reachable set of states from the current local time to the next
T seconds, and then encodes and broadcasts its reachable set information to the others via a
communication network. When the agent receives a reachable set message, it immediately decodes
the message to read the reachable set information of the sender, and then performs peer-to-peer
collision checking based on its current state and the reachable set of the sender. Verifying a
generalized global property involving the states of N agents is done at the time an agent receives
all needed reachable sets from other agents. Additionally, the local safety property of the agent is
verified simultaneously with the reachable set computation process at run-time. The proposed
verification approach is based on an underlying assumption that is, all agents are time-synchronized
to some level of accuracy. This assumption is reasonable as it can be achieved by using existing

1 This paper is an extension of [31].

H.-D. Tran, L. V. Nguyen, P. Musau, W. Xiang, and T. T. Johnson 07:3

time synchronization protocols such as the Network Time Protocol (NTP). Our approach has
successfully verified in real-time the local safety properties and collision occurrences for a group of
quadcopters conducting a search mission.

The rest of the paper is organized as follows. Section 2 presents briefly the distributed CPS
modeling and its verification problems. Section 3 gives the detail of real-time reachability for single
agent and how to use it for real-time local safety verification. Section 4 addresses the utilization
reachable set messages for checking peer-to-peer collision. Section 5 investigates the global safety
verification problem. Section 6 presents the implementation and evaluation of our approach via a
distributed search application using quadcopters.

2 Problem Formulation

In this paper, we consider a distributed CPS with N agents that can communicate with each
other via an asynchronous communication channel.

Communication Model

The communication between agents is implemented by the actions of sending and receiving
messages over an asynchronous communication channel. We formally model this communication
model as a single automaton, Channel, which stores the set of in-flight messages that have been
sent, but are yet to be delivered. When an agent sends a message m, it invokes a send(m) action.
This action adds m to the in-flight set. At any arbitrary time, the Channel chooses a message in
the in-flight set to either delivers it to its recipient or removes it from the set. All messages are
assumed to be unique and each message contains its sender and recipient identities. Let M be the
set of all possible messages used in communication between agents. The sending and receiving
messages by agent i are denoted by Mi,∗ and M∗,i, respectively.

Agent Model

The ith agent is modeled as a hybrid automaton [16, 27] defined by the tuple ⟨Ai = Vi, Ai,Di, Ti⟩,
where:
a) Vi is a set of variables consisting of the following:

i) a set of continuous variables Xi including a special variable clki which records the agent’s
local time, and

ii) a set of discrete variables Yi including the special variable msghisti that records all sent
and received messages. A valuation vi is a function that associates each vi ∈ Vi to a value
in its type. We write val(Vi) for the set of all possible valuations of Vi. We abuse the
notion of vi to denote a state of Ai, which is a valuation of all variables in Vi.

The set Qi
∆= val(Vi) is called the set of states.

b) Ai is a set of actions consisting of the following subsets:
i) a set {sendi(m) | m ∈ Mi,∗} of send actions (i.e., output actions),
ii) a set {receivei(m) | m ∈ M∗,i} of receive actions (i.e., input actions), and
iii) a set Hi of other, ordinary actions.

c) Di ⊆ val(Vi) × Ai × val(Vi) is called the set of transitions. For a transition (vi, ai,v′
i) ∈ Di,

we write vi
ai→ v′

i in short.
i) If ai = sendi(m) or receivei(m), then all the components of vi and v′

i are identical except
that m is added to msghist in v′

i. That is, the agent’s other states remain the same
on message sends and receives. Furthermore, for every state vi and every receive action
ai, there must exist a v′

i such that vi
ai→ v′

i, i.e., the automaton must have well-defined
behavior for receiving any message in any state.

ii) If ai ∈ Hi, then vi.msghist = v′
i.msghist.

LITES

07:4 Real-Time Safety Verification for Distributed Cyber-Physical Systems

d) Ti is a collection of trajectories for Xi. Each trajectory of Xi is a function mapping an interval
of time [0, t], t ≥ 0 to val(Vi), following a flow rate that specifies how a real variable xi ∈ Xi

evolving over time. We denote the duration of a trajectory as τdur, which is the right end-point
of the interval t.

Agent Semantics

The behavior of each agent can be defined based on the concept of an execution which is a
particular run of the agent. Given an initial state v0

i , an execution αi of an agent Ai is a sequence
of states starting from v0

i , defined as αi = v0
i ,v1

i , . . ., and for each index j in the sequence, the
state update from vj

i to vj+1
i is either a transition or trajectory. A state vj

i is reachable if there
exists an executing that ends in vj

i . We denote Reach(Ai) as the reachable set of agent Ai.

System Model

The formal model of the complete system, denoted as System, is a network of hybrid automata that
is obtained by parallel composing the agent’s models and the communication channel. Formally,
we can write, System ∆= A1∥ . . .AN ∥Channel. Informally, the agent Ai and the communication
channel Channel are synchronized through sending and receiving actions. When the agent Ai

sends a message m ∈ Mi,j to the agent Aj , it triggers the sendi(m) action. At the same time, this
action is synchronized in the Channel automaton by putting the message m in the in-flight set.
After that, the Channel will trigger (non-deterministically) the receivej(m) action. This action is
synchronized in the agent Aj by putting the message m into the message history msghistj .

In this paper, we investigate three real-time safety verification problems for distributed cyber-
physical systems as defined in the following.

▶ Problem 1 (Local safety verification in real-time). The real-time local safety verification problem
is to compute online the reachable set Reach(Ai) of the agent and verify if it violates the local
safety property, i.e., checking Reach(Ai) ∩ Ui = ∅?, where Ui ≜ {xi|Cixi ≤ di, xi ∈ Xi} is the
unsafe set of the agent.

▶ Problem 2 (Decentralized real-time collision verification). The decentralized real-time collision
verification problem is to reason in real-time whether an agent Ai will collide with other agents
from its current local time tic to the computable, safe time instance in the future Tsafe based on

i) the clock mismatches, and
ii) the exchanging reachable set messages between agents.

Formally, we require that ∀ tic ≤ t ≤ Tsafe, dij(t) ≥ l, where dij(t) is the distance between agents
Ai and Aj at the time t of the agent Ai local clock, and l is the allowable safe distance between
agents.

▶ Problem 3 (Decentralized real-time global safety verification). The decentralized real-time global
safety verification problem is to construct online (at each agent) the reachable set of all agents
globalReach and verify if it violates the global safety property, i.e., checking globalReach∩ U = ∅,
where U ≜ Cx ≤ d, x = [xT

1 , . . . , x
T
N]T , xi ∈ Xi, is the unsafe set of the whole system.

3 Real-Time Local Safety Verification

The first important step in our approach is, each agent Ai computes forwardly its reachable set of
states from the current local time ti to the next (ti + T) seconds which is defined by Ri[ti, ti + T].
Since there are many variables used in the agent modeling that are irrelevant in safety verification,
we only need to compute the reachable set of state that is related to the agent’s physical dynamics

H.-D. Tran, L. V. Nguyen, P. Musau, W. Xiang, and T. T. Johnson 07:5

(so called as motion dynamics) which is defined by a nonlinear ODE ẋi = f(xi, ui), where xi ∈ Rn

is state vector and ui ∈ Rm is the control input vector. The agent can switch from one mode to
the another mode via discrete transitions, and in each mode, the control law may be different.
When the agent computes its reachable set, the only information it needs are its current set of
states xi(ti) and the current control input ui(ti). It should be clarified that although the control
law may be different among modes, the control signal ui is updated with the same control period
T i

c . Consequently, ui is a constant vector in each control period.
Assuming that the agent’s current time is tij = j × Tc, using its local sensors and GPS, we

have the current state of the agent xi. Note that the local sensors and the provided GPS can only
provide the information of interest to some accuracy, therefore the actual state of the agent is in a
set xi ∈ Ii. The control signal ui is computed based on the state xi and a reference signal, e.g., a
set point denoting where the agent needs to go to, and then computed control signal is applied to
the actuator to control the motion of the agent. From the current set of states Ii and the control
signal ui, we can compute the forward reachable set of the agent for the next tij + T seconds. This
reachable set computation needs to be completed after an amount of time T i

runtime < T i
c because

if T i
runtime ≥ T i

c , a new ui will be updated. The control period T i
c is chosen based on the agent’s

motion dynamics, and thus to control an agent with fast dynamics, the control period T i
c needs

to be sufficiently small. This is the source of the requirement that the allowable run-time for
reachable set computation be small.

To compute the reachable set of an agent in real-time, we use the well-known face-lifting
method [6, 9] and a hyper-rectangle to represent the reachable set. This method is useful for
short-time reachability analysis of real-time systems. It allows users to define an allowable run-time
T i

runtime, and has no dynamic data structures, recursion, and does not depend on complex external
libraries as in other reachability analysis methods. More importantly, the accuracy of the reachable
set computation can be iteratively improved based on the remaining allowable run-time.

Algorithm 3.1 describes the real-time reachability analysis for one agent. The Algorithm works
as follows. The time period [ti, ti + T] is divided by M steps. The reach time step is defined by
hi = T/M . Using the reach time step and the current set Ii, the face-lifting method performs
a single-face-lifting operation. The results of this step are a new reachable set and a remaining
reach time T i

remainReachT ime < T . This step is iteratively called until the reachable set for the
whole time period of interest [ti, ti + T] is constructed completely, i.e., the remaining reach time
is equal to zero. Interestingly, with the reach time step size hi defined above, the face-lifting
algorithm may be finished quickly after an amount of time which is smaller than the allowable
run-time T i

runtime specified by user, i.e., there is still an amount of time called remaining run
time T i

remainRunT ime < T i
runtime that is available for us to recall the face-lifting algorithm with a

smaller reach time step size, for example, we can recall the face-lifting algorithm with a new reach
time step hi/2. By doing this, the conservativeness of the reachable set can be iteratively improved.
The core step of face-lifting method is the single-face-lifting operation. We refer the readers to [6]
for further detail. As mentioned earlier, the local safety property of each agent can be verified at
run-time simultaneously with the reachable set computation process. Precisely, let Ui ≜ Cixi ≤ di

be the unsafe region of the ith agent, the agent is said to be safe from ti to ti + t ≤ ti + T if
Ri[ti, ti + t] ∩ Ui = ∅. Since the reachable set Ri[ti, ti + t] is given by the face-lifting method at
run-time, the local safety verification problem for each agent can be solved at run-time. Since
Algorithm 3.1 computes an over-approximation of the reachable set of each agent in a short time
interval, it guarantees the soundness of the result as described in the following lemma.

▶ Lemma 1 ([6, 9]). The real-time reachability analysis algorithm is sound, i.e., the computed
reachable set contains all possible trajectories of agent Ai from ti to ti + T .

LITES

07:6 Real-Time Safety Verification for Distributed Cyber-Physical Systems

Algorithm 3.1 Real-time reachability analysis for agent Ai.

Input: Ii, ui, ti, T , hi, T i
runtime, Ui

Output: Ri[ti, ti + T], safe = true or safe = uncertain

1: procedure Initialization
2: step = hi % Reach time step
3: T i

1 = T i
runtime % Remaining run-time

4: procedure Reachability Analysis
5: while (T i

1 > 0) do
6: CR = Ii % Current reachable set
7: safe = true

8: T i
2 = T % Remaining reach time

9: while T i
2 > 0 do

10: % Do Single Face Lifting
11: R, T ′ = SF L(CR, step, T i

2 , ui)
12: CR = R % Update reach set
13: T i

2 = T ′ % Update remaining reach time
14: if (CR ∩ Ui ̸= ∅) then: safe = uncertain

15: Ri[ti, ti + T] = CR
16: % Update remaining runtime
17: T i

1 = T i
1 − (Ai.currentT ime() − ti)

18: if T i
1 ≤ 0 then break

19: else
20: step = hi/2 % Reduce reach time step
21: return Ri[ti, ti + T] = CR, safe

4 Decentralized Real-Time Collision Verification

Our collision verification scheme is performed based on the exchanged reachable set messages
between agents. For every control period Tc, each agent executes the real-time reachability analysis
algorithm to check if it is locally safe and to obtain its current reachable set with respect to
its current control input. When the current reachable set is available, the agent encodes the
reachable set in a message and then broadcasts this message to its cooperative agents and listens
to the upcoming messages sent from these agents. When a reachable set message arrives, the
agent immediately decodes the message to construct the current reachable set of the sender and
then performs peer-to-peer collision detection. The process of computing, encoding, transferring,
decoding of the reachable set along with collision checking is illustrated in Figure 1 based on the
agent’s local clock.

Let tirs, tie, titf , tid, and tic respectively be the instants at which we compute, encode, transfer,
decode the reachable set and do collision checking on the agent Ai. Note that these time instants
are based on the agent Ai’s local clock. The actual run-times are defined as follows.

τ i
rs = tie − tirs,% reachable set computation time,
τ i

e = titf − tie,% encoding time,

τ i
tf ≈ tjd − titf ,% transferring time,
τ i

d = tic − tid,% decoding time.

Note that we do not know the exact transfer time τ i
tf since it depends on two different local

time clocks. The above transfer time formula describes its approximate value when neglecting the
mismatch between the two local clocks. The actual reachable set computation time is close to the

H.-D. Tran, L. V. Nguyen, P. Musau, W. Xiang, and T. T. Johnson 07:7

Agent A
i
 ’s

(local) time line

Global time

Agent A
j
’s

(local) time line

≤δ j

C
o

m
p

u
te

 re
ac

h
 se

t

F
in

ish
 co

m
p

u
ta

tio
n

E
n

co
d

e
 re

ac
h

 s
e

t

≤δi

F
in

is
h

 en
co

d
in

g
B

ro
ad

ca
s

t rea
c

h
 s

e
t

R
e

c
eiv

e rea
ch

 s
et

D
e

co
d

e
 re

ac
h

 s
e

t

F
in

is
h

 d
ec

o
d

in
g

C
h

e
ck

 c
o

llis
io

n

Reach set
 computation time

τrs
i

Reach set
computation time

τrs
j

Encoding
 time

τe
i

Encoding
time

τe
j

Reach set
transferring time

τtf
j

Reach set
transferring time

τtf
i

Decoding
 time

τd
j

Decoding time

τd
i+1

t rs
i

trs

t e
i t tf

i t d
i t c

i

t e t tf t d t c

t rs
j t e

j t tf
j

t d
j t c

j

Elapsed time between computing reachable set and checking collision of agent A
j

τelapsed
j

τelapsed
i

Elapsed time between computing reach set and checking collision of agent A
i

Figure 1 Timeline for reachable set computing, encoding, transferring, decoding and collision checking.
The timeline for these core steps in verification is plotted in parallel with the virtual global time under
the assumption that the agent’s clock is synchronized with the global time within an error between −δ∗

and δ∗.

allowable run-time chosen by user, i.e., τ i
rs ≈ T i

runtime. We will see later that the encoding time
and decoding time are fairly small in comparison with the transferring time, i.e., τ i

e ≈ τ i
d ≪ τ i

tf .
All of these run-times provide useful information for selecting an appropriate control period Tc for
an agent. However, for collision checking purposes, we only need to consider the time instants
that an agent starts computing reachable set tirs and collision checking tic.

A reachable set message contains three pieces of information: the reachable set which is a list
of intervals, the time period (based on the local clock) in which this reachable set is valid, i.e.,
the start time tirs and the end time tirs + T and the time instant that this message is sent. Based
on the timing information of the reachable set and the time-synchronization errors, an agent can
examine whether or not a received reachable set contains information about the future behavior
of the sent agent which is useful for collision checking. The usefulness of the reachable sets used
in collision checking is defined as follows.

▶ Definition 2 (Useful reachable sets). Let δi and δj respectively be the time-synchronization
errors of agent Ai and Aj in comparison with the virtual global time t, i.e, t − δi ≤ ti ≤ t + δi

and t− δj ≤ tj ≤ t+ δj , where ti and tj are current local times of Ai and Aj respectively. The
reachable sets Ri[tirs, t

i
rs + T] and Rj [tjrs, t

j
rs + T] of the agent Aj that are available at the agent

Ai at time tic are useful for collision checking between Ai and Aj if:

tic < tjrs + T − δi − δj ,

tic < tirs + T. (1)

Assume that we are at a time instant where the agent Ai checks if a collision occurs. This means
that the current local time is tic. Note that agent Ai and Aj are synchronized to the global
time with errors δi and δj respectively. The reachable set Rj [tjrs, t

j
rs + T] is useful if it contains

information about the future behavior of agent Aj under the view of the agent Ai based on its

LITES

07:8 Real-Time Safety Verification for Distributed Cyber-Physical Systems

Agent i ’s
(local) time line

Global time

Agent j’s
(local) time line

trs
i

t rs
t c
i

t c

t rs
j t c

j

 Useful reach set R
i

t rs
i
+T

Useless reach set L
i

t rs
i
+T>tc

i

trs
i
+T≤tc

i

 Useful reach set R
j

t rs
j
+T

Useless reach set L
j t rs

j
+T≤tc

j

t rs
j
+T>tc

j

Future timePast time

Future time Past time

Figure 2 Useful reachable sets. An exchanged reachable set is useful for real-time verification if and
only if it contains the estimation of all possible trajectories of an agent in a time period in the future.

Algorithm 4.2 Decentralized Real-Time Collision Verification at Agent Ai.

Input: l, % safe distance between agents
Output: collision, Tsafe % collision flag and safe time interval in the future

1: procedure Peer-to-Peer Collision Detection
2: if new message Rj [tj

rs, tj
rs + T] arrive then

3: decode message
4: ti

c = Ai.current_time() % current time
5: ti

rs = Ri.t
i
rs % current reachable set start time

6: if ti
c < tj

rs + T − δi − δj and ti
c < ti

rs + T then % check usefulness
7: compute possible minimum distance dmin between two agents
8: if dmin > l then
9: Collision = false

10: Tsafe = min(tj
rs + T − δi − δj , ti

rs + T)
11: else
12: Collision = uncertain, Tsafe = []
13: store the message

local clock. This can be guaranteed if we have: tjrs + T ≥ tirs − δj + T > tic + δi. Additionally, the
current reachablet set of agent Ai contains information about its future behavior if tic < tirs + T

as depicted in Figure 2. We can see that if tic > tjrs + T + δi + δj , then the reachable set of Aj

contains a past information, and thus it is useless for collision checking. One interesting case is
when tjrs + T − δi − δj < tic < tjrs + T + δi + δj . In this case, we do not know whether the received
reachable set is useful or not.
▶ Remark. We note that the proposed approach does not rely on the concept of Lamport’s
happens-before relation [22] to compute the local reachable set of each agent. If the agent could
not receive reachable messages from others until a requested time-stamp expires, it still calculates
the local reachable set based on its current state and the state information of other agents in the
messages it received previously. In other words, our method does not require the reachable set of
each agent to be computed corresponding to the ordering of the events (sending or receiving a
message) in the system, but only relies on the local clock period and the time-synchronization errors
between agents. Such implementation ensures that the computation process can be accomplished
in real-time, and is not affected by the message transmission delay.

The peer-to-peer collision checking procedure depicted in Algorithm 4.2 works as follows: when
a new reachable set message arrives, the receiving agent decodes the message and checks the
usefulness of the received reachable set and its current reachable set. Then, the agent combines

H.-D. Tran, L. V. Nguyen, P. Musau, W. Xiang, and T. T. Johnson 07:9

its current reachable set and the received reachable set to compute the minimum possible distance
between two agents. If the distance is larger than an allowable threshold l, there is no collision
between two agents in some known time interval in the future, i.e., Tsafe.

▶ Lemma 3. The decentralized real-time collision verification algorithm is sound.

Proof. From Lemma 1, we know that the received reachable set Rj [tjrs, t
j
rs + T] contains all

possible trajectories of the agent Aj from tjrs to tjrs + T . Also, the current reachable set of the
agent Ai, Ri[tirs, t

i
rs + T], contains all possible trajectories of the agent from tirs to tirs + T . If

those reachable sets are useful, then they contains all possible trajectories of two agents from tic
to sometime Tsafe = min(tjrs + T − δi − δj , t

i
rs + T) in the future based on the agent Ai clock.

Therefore, the minimum distance dmin between two agents computed from two reachable sets is
the smallest distance among all possible distances in the time interval [tic, Tsafe]. Consequently,
the collision free guarantee is sound in the time interval [tic, Tsafe]. ◀

We have studied how to use exchanged reachable sets to do peer-to-peer collision detection.
Next, we consider how to verify online the global behavior of a distributed CPS in decentralized
manner.

5 Decentralized Real-Time Global Safety Verification

▶ Definition 4 (Globally useful reachable set.). Consider a distributed CPS with N agents with
time synchronization errors δi, i = 1, 2, . . . , N , a globally useful reachable set of the whole system
under the view of agent Ai based on its current local time clock tic is defined below:

globalReach =
N∧

i=1
Ri[tirs, t

i
rs + T] ∧ T ,

T ∆= (tic ≤ t ≤ T +min{tirs − δi − δj}, j ̸= i, 1 ≤ j ≤ N). (2)

For any time t such that tic ≤ t ≤ T + min{tirs − δi − δj} for ∀ 1 ≤ j ≤ N, i ̸= j, we have
Ri(t) ⊆ Ri[tirs, t

i
rs + T],∀i. In other words, globalReach contains all possible trajectories of all

agents from the current local time tic of agent Ai to the future time defined by T +min{tirs − δi −
δj}, j ̸= i, 1 ≤ j ≤ N . The globally useful reachable set is a collection of all useful reachable sets
(defined in the previous section) received and decoded at an agent Ai under its current local clock
tic. The inner intersection determines that at the time that all reachable sets have been received
and decoded at the agent Ai, i.e., tic, only a portion of each received reachable set Rj [tjrs, t

j
rs + T]

between [tic, T +min{tirs − δi − δj]} is useful for checking collision.
It should be noted that to construct a global reachable set, an agent needs to wait for all

messages arrive and then decodes all these messages. This process may have an expensive
computation cost, especially when the number of agents increases. Since this global reachable
set is only valid in an interval of time, the amount of time that is available for verify the global
property may be small and not enough for the agent to perform the global safety verification.
Having additional hardware for handling in parallel the processes of receiving/decoding messages
is a good solution to overcome this challenge.

Using the globally useful reachable set, the global safety verification problem is equivalent
to checking whether the globally useful reachable set intersects with the global unsafe region
defined by U ∆= Cx ≤ d, where x = [xT

1 , x
T
2 , · · · , xT

N]T and xi is the state vector of agent Ai. The
procedure for global safety verification is summarized in Algorithm 5.3.

▶ Lemma 5. The decentralized real-time global safety verification algorithm is sound.

LITES

07:10 Real-Time Safety Verification for Distributed Cyber-Physical Systems

Algorithm 5.3 Decentralized Real-Time Global Safety Verification for Agent Ai.

Input: U , % global unsafe constraints
Output: global_safe, Tglobal_safe % global safe flag and safe time interval in the future

1: procedure Initialization
2: global_safe = true % global safety flag
3: procedure Global Safety Verification
4: if all useful messages are available then
5: ti

c = Ai.current_time()
6: recheck if all messages are still useful
7: construct globally useful reach set globalReach

8: if (globalReach ∩ U ≠ ∅) then
9: global_safe = uncertain

10: Tglobal_safe = []
11: else
12: global_safe = true

13: Tglobal_safe = T + min{ti
rs − δi − δj}, j ̸= i, 1 ≤ j ≤ N

Proof. Similar to Lemma 3, the soundness of the verification algorithm is guaranteed because of
the soundness of the globally useful reachable set containing all possible trajectories of all agents
at any time t ∈ T , where T ∆= (tic ≤ t ≤ T +min{tirs − δi − δj}, j ̸= i, 1 ≤ j ≤ N). ◀

6 Case study

The decentralized real-time safety verification for distributed CPS proposed in this paper is
implemented in Java as a package called drreach. This package is currently integrated as a library
in StarL, which is a novel platform-independent framework for programming reliable distributed
robotics applications on Android [24]. StarL is specifically suitable for controlling a distributed
network of robots over WiFi since it provides many useful functions and sophisticated algorithms
for distributed applications. In our approach, we use the reliable communication network of StarL
which is assumed to be asynchronous and peer-to-peer. There may be message dropouts and
transmission delays; however, every message that an agent tries to send is eventually delivered with
some time guarantees. All experimental results of our approach are reproducible and available
online at: http://www.verivital.com/rtreach/.

6.1 Experiment setup

We evaluate the proposed approach via a distributed search application using quadcopters2 in
which each quadcopter executes its search mission provided by users as a list of way-points depicted
in Figure 3. These quadcopters follow the way-points to search for some specific objects. For
safety reasons, they are required to work only in a specific region defined by users. In this case
study, the quadcopters are controlled to operate at the same constant altitude. It has been shown
from the experiments that the proposed approach is promisingly scalable as it works well for a
different number of quadcopters. We choose to present in this section the experimental results for
the distributed search application with eight quadcopters.

2 A video recording is available at: https://youtu.be/YC_7BChsIf0

http://www.verivital.com/rtreach/
https://youtu.be/YC_7BChsIf0

H.-D. Tran, L. V. Nguyen, P. Musau, W. Xiang, and T. T. Johnson 07:11

𝓐𝟏

𝓐𝟐

𝓐𝟔

𝓐𝟕

𝓐𝟖

𝓐𝟑

𝓐𝟓

𝓐𝟒𝓐𝟏

𝓐𝟐

𝓐𝟑

𝓐𝟒

𝓐𝟓

𝓐𝟔

𝓐𝟖

𝓐𝟕

Figure 3 Distributed Search Application Using Quadcopters.

The first step in our approach is locally computing the reachable set of each quadcopter using
the face-lifting method [6,9,18]. The quadcopter has nonlinear motion dynamics given in Equation
3 in which θ, ϕ, and ψ are the pitch, roll, and yaw angles, f = Σ4

i=1Ti is the sum of the propeller
forces, m is the mass of the quadcopter and g = 9.81m/s2 is the gravitational acceleration constant.
As the quadcopter is set to operate on a constant altitude, we have z̈ = 0 which yields the following
constraint: f = mg

cos(θ) cos(ϕ) . Let vx and vy be the velocities of a quadcopter along with x- and
y- axes. Using the constraint on the total force, the motion dynamics of the quadcopter can be
rewritten as a 4-dimensional nonlinear ODE as depicted in Equation 4.

ẍ = f

m
(sin(ψ) sin(ϕ) + cos(ψ) sin(θ) cos(ϕ)),

ÿ = f

m
(sin(ψ) sin(θ) cos(ϕ) − sin(ϕ) cos(ψ)),

z̈ = f

m
cos(θ) cos(ϕ) − g, (3)

ẋ = vx,

v̇x = g tan(θ),
ẏ = vy,

v̇y = g
tan(ϕ)
cos(θ) . (4)

A PID controller (a proportional-integral-derivative controller widely used in industrial control
systems [2]) is designed to control the quadcopter to move from its current position to desired
way-points. Details about the controller parameters can be found in the available source code. The
PID controller has a control period of Tc = 200 milliseconds. In every control period, the control
inputs pitch (θ) and roll (ϕ) are computed based on the current positions of the quadcopter and
the current target position (i.e., the current way-point it needs to go). Using the control inputs,
the current positions and velocities given from GPS and the motion dynamics of the quadcopter,
the real-time reachable set computation algorithm (Algorithm 3.1) is executed inside the controller.
This algorithm computes the reachable set of a quadcopter from its current local time to the next
T = 2 seconds. The allowable run-time for this algorithm is Truntime = 10 milliseconds. The local
safety property is verified by the real-time reachable set computation algorithm at run-time. The
computed reachable set is then encoded and sent to another quadcopter. When a reachable set
message arrives, the quadcopter decodes the message to reconstruct the current reachable set of
the sender. The GPS error is assumed to be 2%. The time-synchronization error between the

LITES

07:12 Real-Time Safety Verification for Distributed Cyber-Physical Systems

Figure 4 A sample of events for verifying the local safety property and collision occurrence.

quadcopters is δ = 3 milliseconds. We want to verify in real-time: 1) local safety property for
each quadcopter; 2) collision occurrence; and 3) geospatial free property. The local safety property
is defined by vx ≤ 500, i.e., the maximum allowable velocities along the x-axis of two arbitrary
quadcopters are not larger than 500m/s. The collision is checked using the minimum allowable
distance between two arbitrary quadcopters dmin = 100. The geospatial free property requires
that the some quadcopters never go into a specific region at the same time.

6.2 Verifying local safety property and collision occurrence
Figure 4 presents a sample of a sequence of events happening in the distributed search application.
One can see that each quadcopter can determine based on its local clocks if there is no collision
to some known time in the future. In addition, the local safety property can also be verified at
run-time. For example, in the figure, the quadcopter 1 receives a reachable set message from the
quadcopter 0 which is valid from 17 : 29 : 49.075 to 17 : 29 : 51.074 of the quadcopter 0’s clock.
After decoding this message, taking into account the time-synchronization error δ, quadcopter 1
realizes that the received reachable set message is useful for checking collision for the next 1.645
seconds of its clock. After checking collision, quadcopter 1 knows that it will not collide with the
quadcopter 0 in the next 1.645 seconds (based on its clock).

It should be noted that we can intuitively verify the collision occurrences by observing the
intermediate reachable sets of all quadcopters and their interval hulls. The intermediate reachable
sets of the quadcopters in every [0, 2s] time interval computed by the real-time reachable set

H.-D. Tran, L. V. Nguyen, P. Musau, W. Xiang, and T. T. Johnson 07:13

Figure 5 One sample of the reachable sets of eight quadcopters in an [0, 2s] time interval and their
interval hulls.

Table 1 The average encoding time τe, decoding time τd, transferring time τtf , collision checking time
τc and total verification time V T of the quadcopters.

Time Quad. 1 Quad. 2 Quad. 3 Quad. 4 Quad. 5 Quad. 6 Quad. 7 Quad. 8

Encoding Time τe (ms) 0.058 0.055 0.0553 0.0525 0.0557 0.0583 0.0584 0.0597

Decoding Time τd (ms) 0.0169 0.0193 0.0197 0.019 0.0210 0.0181 0.0177 0.022

Transferring Time τtf (ms) 2.64 2.48 1.42 1.11 1.12 1.08 1.05 1.13

Collision Checking Time τc (ms) 0.04 0.05 0.07 0.05 0.03 0.07 0.07 0.14

Total Verification Time V T (ms) 28.9363 27.9 20.6232 18.3055 18.2527 18.235 18.0223 19.1037

computation algorithm (i.e., Algorithm 3.1) is described in Figure 5. The zoom plot within the
figure presents a very short-time interval reachable set of the quadcopters. We note that the
intermediate reachable set of a quadcopter is represented as a list of hyper-rectangles and is used
for verifying the local safety property at run-time. The reachable set that is sent to another
quadcopter is the interval hull of these hyper-rectangles. The intermediate reachable set cannot be
transferred via a network since it is very large (i.e., hundreds of hyper-rectangles). The interval hull
of all hyper-rectangles contained in the intermediate reachable set covers all possible trajectories
of a quadcopter in the time interval of [0, 2s]. Therefore, it can be used for safety verification.
One may question why we use the interval hull instead of using the convex hull of the reachable
set since the former one results in a more conservative result. The reason is that the convex hull
of hundreds of hyper-rectangles is a time-consuming operation that cannot be used in a real-time
setting. Therefore, in the real-time setting, interval hull operation is a suitable solution. From the
figure, we can see that the interval hulls of the reachable set of all quadcopters do not intersect
with each other. Therefore, there is no collision occurrence (in the next 2 seconds of global time).

Since we implement the decentralized real-time safety verification algorithm inside the quad-
copter’s controller, it is important to analyze whether or not the verification procedure affects the
control performance of the controller. To reason about this, we measure the average encoding,

LITES

07:14 Real-Time Safety Verification for Distributed Cyber-Physical Systems

decoding, transferring and collision checking times for all quadcopters using 100 samples which are
presented in Table 1. We note that the transferring time τtf is the average time for one message
transferred from other quadcopters to the ith quadcopter. It can be seen that the encoding,
decoding and collision checking times at each quadcopter constitute a tiny amount of time. The
total verification time is the sum of the reachable set computation, encoding, transferring, decoding
and collision checking times. Note that the allowable runtime for reachable set computation
algorithm is specified by users as Truntime = 10 milliseconds. Therefore, the (average) total time
for the safety verification procedure on each quadcopter is

V Ti = Truntime + τ i
e + (N − 1) × (τ i

tf + τ i
d + τ i

c), (5)

where i = 1, 2, . . . , N , and N is the number of quadcopters. As shown in Table 1, the (average)
total verification time for each quadcopter is small (< 30 milliseconds), compared to the control
period Tc = 200 milliseconds. Besides, from the experiment, we observe that the computation
time for the control signal of the PID controller τ i

control (not presented in the table) is also small,
i.e., from 5 to 10 milliseconds. Since V Ti + τ i

control < Tc/4 = 50 milliseconds, we can conclude
that the verification procedure does not affect the control performance of the controller.

Interestingly, from the verification time formula (5), we can estimate the range of the number of
agents that the decentralized real-time verification procedure can deal with. The idea is that, in each
control period Tc, after computing the control signal, the remaining time bandwidth Tc − τcontrol

can be used for verification. Let τ̄e(τe), τ̄tf (τ tf), τ̄d(τd), τ̄c(τ c) be the maximum (minimum)
encoding, transferring, decoding and collision checking times on a quadcopter, τ̄control(τ control)
be the maximum (minimum) control signal computation time for each control period Tc, then
the number of agents that the decentralized real-time safety verification procedure can deal with
(with assumption that the communication network works well) satisfies the following constraint:

Tc − τ̄control − Truntime − τ̄e

τ̄tf + τ̄d + τ̄c
+ 1 ≤ N ≤ Tc − τ control − Truntime − τe

τ tf + τd + τ c

+ 1. (6)

Let consider our case study, from the Table, we assume that τ̄e = 0.0597, τe = 0.0525,
τ̄tf = 2.64, τ tf = 1.05, τ̄d = 0.022, τd = 0.0169, τ̄c = 0.14, τ c = 0.03 milliseconds. Also, we
assume that τ̄control = 10 and τ control = 5 milliseconds. We can theoretically estimate the number
of quadcopters that our verification approach can deal with is 64 ≤ N ≤ 168.

6.3 Verifying the geospatial free property
To illustrate how our approach verifies the global behavior of a distributed CPS, we consider
the geospatial free property which requires that the some (or all) quadcopters never go into
a specific region at the same time. For simplification, we reconsider the distributed search
application with two quadcopters (quad 1 and quad 2) whose forbidden region is defined by
900 < x0 < 1200 ∧ 900 < x1 < 1200. Figure 6 describes a sample of events describing that the
quadcopter 2 can verify (based on its local clock) that it will not collide with the quadcopter 1
and the global geospatial free property is guaranteed in the next 1.838 seconds.

7 Discussion

Software architecture. The current implementation of our approach deploys the safety verifier of
each agent inside the controller, and a single thread is used to execute the control and verification
tasks. The main drawback of this implementation is that it may decrease the overall performance
of the controller and even cause the controller to crash. To prevent that happens, in practice,

H.-D. Tran, L. V. Nguyen, P. Musau, W. Xiang, and T. T. Johnson 07:15

quadcopter0 computes it reach set from 2019-09-16 17:26:20.957 to 2019-09-16 17:26:22.956
quadcopter0 encodes its reach set to send out in 0.017749 milliseconds
quadcopter0 broadcasts its reach set to others
quadcopter0 may violates its local safety specification at time 2019-09-16 17:26:22.956
quadcopter1 receives reach set (hull) from quadcopter0
Time for transferring this reach set over network is around (not considering clock mismatch) 66
milliseconds
Decoding message from quadcopter0 takes 0.029057 milliseconds
Reach set (hull) of quadcopter0 that is valid from 2019-09-16 17:26:20.957 to 2019-09-16
17:26:22.956 of its local time is:
dim = 0 -> [89.18, 280.21]
dim = 1 -> [39.31, 58.43]
dim = 2 -> [804.58, 1240.06]
dim = 3 -> [91.37, 126.26]
Current reach set (hull) of quadcopter1 that is valid from 2019-09-16 17:26:20.119 to 2019-09-16
17:26:22.118 of its local time is:
dim = 0 -> [1946.28, 2060.66]
dim = 1 -> [25.17, 33.29]
dim = 2 -> [787.92, 1566.04]
dim = 3 -> [184.97, 203.86]
Current local time of quadcopter1 is 2019-09-16 17:26:21.112
Useful time for checking collision and global safety property is 1838 milliseconds
The received reachable set from quadcopter0 is useful
quadcopter1 will not collide with quadcopter0 in the next 1.838 seconds
The geospatial free property is guarantee in the next 1.838 seconds

Figure 6 A sample of events for verifying the geospatial free property.

Complex
Controller

Verifier

Planer

Plant

Sensing

Safe Controller

Map

Decision Maker

Actuator
Commands

Encoder Decoder Safety Checker

D
ecode r 1

...

D
ecode r 2

D
ecode r N

Broadcast Reach
Set messages

Coming Reach
Set Messages

C
hecke r 1

C
hecke r 2

C
hecke r N

...

G
lobal C

hecke r

Reachable Set
Calculator

Local C
hecker

Global Safety
Specifications

Local Safety
Specifications Collision

Checkers

Figure 7 Software architecture for deploying decentralized real-time safety verification approach on a
real platform.

LITES

07:16 Real-Time Safety Verification for Distributed Cyber-Physical Systems

the controller and verifier should be implemented in two separate software components. In this
case, the computation burden for safety checks in the verifier does not affect the performance of
the controller. The control task and the verification task can be executed efficiently in parallel
as depicted in Figure 7. More importantly, this software architecture adopts the architecture of
a fault-tolerant system [15] to prevent the propagation of failure from one component to others.
It also benefits the use of a simplex-architecture for safety control in the case of dangerous
circumstances.

As shown in Figure 7, the verifier component consists of four sub-components including a
reachable set calculator, a encoder, a decoder, and a safety checker. These sub-components should
also be implemented conveniently for parallel execution. The local safety property is verified
inside the reachable set calculator at runtime. As the number of reachable set messages that
need to be decoded increases with the number of participating agents, it is necessary to have
multiple decoders working in parallel. These decoders listen to upcoming reachable set messages
on different ports assigned to them by the verifier and immediately decode any arrived message.
This parallel decoding helps to reduce the decoding time significantly. The decoded reachable
sets are then sent to the safety checker containing multiple checkers run in parallel in which each
checker is responsible for checking collision between the agent with another. The ith checker and
the ith decoder is a pair worker, i.e., the checker only waits for the decoded reachable set of its
corresponding co-worker. Therefore, the pair to pair collision detection task can be done very
quickly. The safety checker also has a global checker which is responsible for checking global
properties. The global checker is only triggered when the decoder component finishes decoding all
arrived reachable set messages. For this reason, having parallel working decoders is essential to
speed up the overall verification time which is required to be very small to work in the real-time
setting.

Let τ̄rs, τ̄e, τ̄tf and τ̄d respectively be the worst case times of reachable set computation,
encoding, transferring and decoding, τ̄cc and τ̄gc be the worst case times of peer-to-peer collision
detection and global safety verification. For a system with N agents, the total worst-case
verification time is τ̄total = τ̄rs + τ̄e + τ̄tf + τ̄d + τ̄cc + τ̄gc. If we do the verification in sequential
way, i.e., using only one port for reachable set communication and one checker for all peer-
to-peer collision detection and global safety verification, the total worst-case verification is:
τ̄∗

total = τ̄rs + τ̄e + τ̄tf +Nτ̄d +Nτ̄cc + τ̄gc >> τ̄total.

Scalability. From the above discussion, one can see that the software architecture plays an
important role when we implement our approach in a real platform. In practice, if each participating
agent has the powerful hardware for communication and computation, and the software for our
approach is implemented in a parallel manner as proposed above, then the worst-case verification
time does not depend on the number of agents in the system. Therefore, our decentralized
real-time safety verification approach is scalable for systems with a large number of agents. Also,
the proposed software architecture is especially useful in the case that there are losses of reachable
set messages. In this hazardous situation, the agent still has some partial information to check if
a collision occurs based on the available, reachable set messages. Therefore, the planner still can
re-perform path planning algorithm based on the current information and past information it has
to find the safest path for the agent for this incomplete information situation.

Effect of time synchronization error. The time synchronization error directly affects the ability
to receive useful reachable sets and globally useful reachable sets for verification. If the time
synchronization error is too large, all exchanged reachable sets may not be useful for verification.
In this case, we cannot verify the collision avoidance and global safety properties. For example, in

H.-D. Tran, L. V. Nguyen, P. Musau, W. Xiang, and T. T. Johnson 07:17

the definition of the globally useful reachable set, it is required that after all exchanged reachable
sets have been received and decoded at an agent Ai at time local current time tic, each received
reachable set is only useful if and only if T + min{tirs − δi − δj} > tic. One can see that if
the time synchronization error is too large, then the related requirement cannot be satisfied.
Therefore, the maximum tolerance for the time synchronization error can be estimated roughly as
T +min{tirs − 2δmax} >> tic =⇒ δmax << (T + tirs − tic)/2.

8 Related Work

Our work is inspired by the static and dynamic analysis of timed distributed traces [11] and the
real-time reachability analysis for verified simplex design [6]. The former one proposes a sound
method of constructing a global reachable set for a distributed CPS based on the recorded traces
and time synchronization errors of participating agents. Then the global reachable set is used to
verify a global property using Z3 [10]. This method can be considered to be a centralized analysis
where the reachable set of the whole system is constructed and verified by one analyzer. Such
a verification approach is offline which is fundamentally different from our approach as we deal
with online verification in a decentralized manner. Our real-time verification method borrows the
face-lifting technique developed in [6] and applies it to a distributed CPS.

Another interesting aspect of real-time monitoring for linear systems was recently published
in [8]. In this work, the authors proposed an approach that combines offline and online computation
to decide if a given plant model has entered an uncontrollable state which is a state that no control
strategy can be applied to prevent the plant go to the unsafe region. This method is useful for a
single real-time CPS, but not a distributed CPS with multiple agents.

Additionally, there has been other significant works for verifying distributed CPS. Authors
of [12, 29, 33] presented a real-time software for distributed CPS but did not perform a safety
verification of individual components and a whole system. The works presented in [3,19,21] can be
used to verify distributed CPS, but they do not consider a real-time aspect. An interesting work
proposed in [26] can formally model and verify a distributed car control system against several
safety objectives such as collision avoidance for an arbitrary number of cars. However, it does not
address the verification problem of distributed CPS in a real-time manner. The novelty of our
approach is that it can over-approximate of the reachable set of each agent whose dynamics are
non-linear with a high precision degree in real-time.

The most related work to our scheme was recently introduced in [25]. The authors proposed
an online verification using reachability analysis that can guarantee safe motion of mobile robots
with respective to walking pedestrians modeled as hybrid systems. This work utilizes CORA
toolbox [1] to perform reachability analysis while our work uses a face-lifting technique. However,
this work does not consider the time-elapse for encoding, transferring and decoding the reachable
set messages between each agent, which play an important role in distributed systems.

9 Conclusion and Future Work

We have proposed a decentralized real-time safety verification method for distributed cyber-
physical systems. By utilizing the timing information and the reachable set information from
exchanged reachable set messages, a sound guarantee about the safety of the whole system is
obtained for each participant based on its local time. Our method has been successfully applied
for a distributed search application using quadcopters built upon the StarL framework. The main
benefit of our approach is that it allows participants to take advantages of formal guarantees
available locally in real-time to perform intelligent actions in dangerous situations. This work is a

LITES

07:18 Real-Time Safety Verification for Distributed Cyber-Physical Systems

fundamental step in dealing with real-time safe motion/path planing for distributed robots. For
future work, we seek to deploy this method on a distributed autonomous driving testbed using
the F1Tenth racing platform [28] and extend it to distributed CPS with heterogeneous agents
where the agents can have different motion dynamics and thus they have different control periods.
In addition, the scalability of the proposed method can be improved by exploiting the benefit
of parallel processing, i.e., each agent handles multiple reachable set messages and checks for
collisions in parallel.

References
1 Matthias Althoff. An introduction to cora 2015. In

Proc. of the Workshop on Applied Verification for
Continuous and Hybrid Systems, 2015.

2 Karl Johan Aström, Tore Hägglund, and Karl J As-
trom. Advanced PID control, volume 461. ISA-The
Instrumentation, Systems, and Automation Society,
2006.

3 Kyungmin Bae, Joshua Krisiloff, José Meseguer,
and Peter Csaba Ölveczky. Designing and verifying
distributed cyber-physical systems using multir-
ate pals: An airplane turning control system case
study. Science of Computer Programming, 103:13–
50, 2015.

4 Stanley Bak and Parasara Sridhar Duggirala. Hy-
laa: A tool for computing simulation-equivalent
reachability for linear systems. In Proceedings of
the 20th International Conference on Hybrid Sys-
tems: Computation and Control, pages 173–178.
ACM, 2017.

5 Stanley Bak and Parasara Sridhar Duggirala.
Simulation-equivalent reachability of large linear
systems with inputs. In International Conference
on Computer Aided Verification, pages 401–420.
Springer, 2017.

6 Stanley Bak, Taylor T Johnson, Marco Caccamo,
and Lui Sha. Real-time reachability for verified
simplex design. In Real-Time Systems Symposium
(RTSS), 2014 IEEE, pages 138–148. IEEE, 2014.

7 Xin Chen, Erika Ábrahám, and Sriram Sank-
aranarayanan. Flow*: An analyzer for non-
linear hybrid systems. In International Conference
on Computer Aided Verification, pages 258–263.
Springer, 2013.

8 Xin Chen and Sriram Sankaranarayanan. Model
predictive real-time monitoring of linear systems.
In Real-Time Systems Symposium (RTSS), 2017
IEEE, pages 297–306. IEEE, 2017.

9 Thao Dang and Oded Maler. Reachability analysis
via face lifting. In Hybrid Systems: Computation
and Control (HSCC ’98), pages 96–109. Springer,
1998. LNCS 1386.

10 Leonardo De Moura and Nikolaj Bjørner. Z3: An
efficient smt solver. In International conference
on Tools and Algorithms for the Construction and
Analysis of Systems, pages 337–340. Springer, 2008.

11 Parasara Sridhar Duggirala, Taylor T Johnson,
Adam Zimmerman, and Sayan Mitra. Static and dy-
namic analysis of timed distributed traces. In Real-
Time Systems Symposium (RTSS), 2012 IEEE
33rd, pages 173–182. IEEE, 2012.

12 John C Eidson, Edward A Lee, Slobodan Matic,
Sanjit A Seshia, and Jia Zou. Distributed real-time
software for cyber–physical systems. Proceedings
of the IEEE, 100(1):45–59, 2012.

13 Goran Frehse, Colas Le Guernic, Alexandre Donzé,
Scott Cotton, Rajarshi Ray, Olivier Lebeltel, Ro-
dolfo Ripado, Antoine Girard, Thao Dang, and
Oded Maler. Spaceex: Scalable verification of
hybrid systems. In Computer Aided Verification,
pages 379–395. Springer, 2011.

14 Antoine Girard, Colas Le Guernic, and Oded Maler.
Efficient computation of reachable sets of linear
time-invariant systems with inputs. In Hybrid Sys-
tems: Computation and Control, pages 257–271.
Springer, 2006.

15 Alwyn E Goodloe and Lee Pike. Monitoring dis-
tributed real-time systems: A survey and future
directions, 2010.

16 T. A. Henzinger. The theory of hybrid automata. In
IEEE Symposium on Logic in Computer Science
(LICS), page 278, Washington, DC, USA, 1996.
IEEE Computer Society.

17 Thomas A Henzinger, Pei-Hsin Ho, and Howard
Wong-Toi. Hytech: A model checker for hybrid
systems. In Computer aided verification, pages
460–463. Springer, 1997.

18 Taylor T. Johnson, Stanley Bak, Marco Caccamo,
and Lui Sha. Real-time reachability for verified sim-
plex design. ACM Trans. Embed. Comput. Syst.,
15(2), February 2016. doi:10.1145/2723871.

19 Taylor T Johnson and Sayan Mitra. Parametrized
verification of distributed cyber-physical systems:
An aircraft landing protocol case study. In Cyber-
Physical Systems (ICCPS), 2012 IEEE/ACM
Third International Conference on, pages 161–170.
IEEE, 2012.

20 Soonho Kong, Sicun Gao, Wei Chen, and Edmund
Clarke. dReach: δ-Reachability Analysis for Hybrid
Systems, pages 200–205. Springer, 2015.

21 Pratyush Kumar, Dip Goswami, Samarjit
Chakraborty, Anuradha Annaswamy, Kai Lampka,
and Lothar Thiele. A hybrid approach to cyber-
physical systems verification. In Proceedings of
the 49th Annual Design Automation Conference,
pages 688–696. ACM, 2012.

22 Leslie Lamport. Time, clocks, and the ordering of
events in a distributed system. Communications
of the ACM, 21(7):558–565, 1978.

23 Colas Le Guernic and Antoine Girard. Reachability
analysis of hybrid systems using support functions.
In Computer Aided Verification, pages 540–554.
Springer, 2009.

24 Yixiao Lin and Sayan Mitra. Starl: Towards a
unified framework for programming, simulating
and verifying distributed robotic systems. CoRR,
abs/1502.06286, 2015. arXiv:1502.06286.

25 Stefan B Liu, Hendrik Roehm, Christian Heinze-
mann, Ingo Lütkebohle, Jens Oehlerking, and Mat-
thias Althoff. Provably safe motion of mobile robots

https://doi.org/10.1145/2723871
http://arxiv.org/abs/1502.06286

H.-D. Tran, L. V. Nguyen, P. Musau, W. Xiang, and T. T. Johnson 07:19

in human environments. In Intelligent Robots and
Systems (IROS), 2017 IEEE/RSJ International
Conference on, pages 1351–1357. IEEE, 2017.

26 Sarah M Loos, André Platzer, and Ligia Nistor.
Adaptive cruise control: Hybrid, distributed, and
now formally verified. In International Symposium
on Formal Methods, pages 42–56. Springer, 2011.

27 Nancy Lynch, Roberto Segala, Frits Vaandrager,
and Henri B Weinberg. Hybrid i/o automata.
Springer, 1996.

28 Matthew O’Kelly, Hongrui Zheng, Dhruv Karthik,
and Rahul Mangharam. F1tenth: An open-source
evaluation environment for continuous control and
reinforcement learning. Proceedings of Machine
Learning Research, 123, 2020.

29 Qinghui Tang, Sandeep KS Gupta, and Georgios
Varsamopoulos. A unified methodology for schedul-
ing in distributed cyber-physical systems. ACM
Transactions on Embedded Computing Systems
(TECS), 11(S2):57, 2012.

30 Hoang-Dung Tran, Luan Viet Nguyen, Nathaniel
Hamilton, Weiming Xiang, and Taylor T. Johnson.
Reachability analysis for high-index linear differ-

ential algebraic equations (daes). In 17th Interna-
tional Conference on Formal Modeling and Ana-
lysis of Timed Systems (FORMATS’19). Springer
International Publishing, August 2019.

31 Hoang-Dung Tran, Luan Viet Nguyen, Patrick Mu-
sau, Weiming Xiang, and Taylor T. Johnson. De-
centralized real-time safety verification for distrib-
uted cyber-physical systems. In Jorge A. Pérez
and Nobuko Yoshida, editors, Formal Techniques
for Distributed Objects, Components, and Systems
(FORTE’19), pages 261–277, Cham, June 2019.
Springer International Publishing.

32 Hoang-Dung Tran, Luan Viet Nguyen, Weiming
Xiang, and Taylor T Johnson. Order-reduction ab-
stractions for safety verification of high-dimensional
linear systems. Discrete Event Dynamic Systems,
27(2):443–461, 2017.

33 Yuanfang Zhang, Christopher Gill, and Chenyang
Lu. Reconfigurable real-time middleware for dis-
tributed cyber-physical systems with aperiodic
events. In Distributed Computing Systems, 2008.
ICDCS’08. The 28th International Conference on,
pages 581–588. IEEE, 2008.

LITES

	lites-v008-i002-a000-foreword
	1 Papers in this special issue
	2 Conclusion

	lites-v008-i002-a001-adimoolam
	1 Introduction
	1.1 Notation

	2 Related work
	3 Networked control systems
	3.1 Safety of NCS

	4 Complex zonotope
	5 Using complex zonotopes for verification
	5.1 Finding sampling time invariant
	5.2 Safety verification

	6 Experimental results
	6.1 Networked platoon of vehicles
	6.2 Self-balancing two wheeled robot

	7 Conclusion

	lites-v008-i002-a002-courtieu
	1 Introduction: low cost and high expectations
	2 Formal approaches and their complementary uses
	3 The Pactole library for the Coq proof assistant
	3.1 The Coq proof assistant
	3.2 Pactole
	3.3 A tour of formal proof for robotic swarms
	3.3.1 A simple example
	3.3.2 The local computations
	3.3.3 Weakening the sensing capabilities of robots
	3.3.4 Modeling Concurrency
	3.3.5 Other refinements

	4 A lattice of models
	4.1 The Suzuki and Yamashita model
	4.2 Sensors
	4.2.1 Range
	4.2.2 Multiplicity detection
	4.2.3 Orientation

	4.3 Memory/Communication
	4.4 Synchronicity and fairness
	4.5 Rigid/Flexible Movement
	4.6 Faults

	5 The formalization of the Suzuki, Yamashita model
	5.1 Structure of the model, abstractions
	5.2 The function round
	5.2.1 Inputs
	5.2.2 Operation

	5.3 Model specialization
	5.3.1 Space
	5.3.2 Sensors

	5.4 Formal Parameters of the model

	6 Examples
	6.1 Gathering
	6.1.1 A model where gathering is proven impossible
	6.1.2 A model where gathering is proven possible

	6.2 Exploration
	6.2.1 A model where Exploration with stop is proven impossible

	7 Related work
	8 Conclusion

	lites-v008-i002-a003-fahrenberg
	1 Introduction
	2 Preliminaries
	2.1 Higher-Dimensional Automata
	2.2 Timed Automata

	3 Higher-Dimensional Timed Automata
	4 One-Dimensional Timed Automata
	5 Reachability for HDTA is PSPACE-Complete
	6 Zone-Based Reachability
	7 Parallel Composition of HDTA
	8 Higher-Dimensional Hybrid Automata
	9 Conclusion and Further Work

	lites-v008-i002-a004-kamburjan
	1 Introduction
	2 Distributed Hybrid Systems by Example
	2.1 Base System: TankMono
	2.2 Discrete Controller: TankTick
	2.3 Distributed Tank Control: TankMulti
	2.4 Futures

	3 Hybrid Active Objects
	3.1 Syntax
	3.2 Semantics of HABS
	3.2.1 States
	3.2.2 Evaluation of Expressions
	3.2.3 Evaluation of Guards
	3.2.4 Transition System

	3.3 The Component Fragment
	3.4 Simulation

	4 Modeling with HABS
	4.1 Non-Linear Dynamics
	4.2 Delays and Imprecision
	4.3 Variability Modeling

	5 Formal Verification of HABS Models
	5.1 Background: Differential Dynamic Logic
	5.2 Formal Verification of Components
	5.3 Translation from CHABS to dL
	5.3.1 Program Variables
	5.3.2 Assumptions and Safety Condition
	5.3.3 Control Code
	5.3.4 Plant
	5.3.5 On the Random Number Generator

	5.4 Compositional Verification
	5.5 Case Study
	5.5.1 Class CTank
	5.5.2 Time-Triggered Controller FlowCtrl
	5.5.3 Event-Triggered Controller CSingleTank

	5.6 On Translation into dL

	6 Related & Future Work, Conclusion
	6.1 Related Work
	6.2 Future Work
	6.3 Conclusion

	lites-v008-i002-a005-kroeger
	1 Introduction
	2 Related work
	3 Inadequacy of traditional hybrid-automata models
	3.1 An example of a control decision problem
	3.2 Hybrid automata models
	3.3 Adding Kálmán filtering

	4 Interacting and cooperating cyber-physical systems
	4.1 An example of a cooperative control-decision problem
	4.2 Formal modelling of the scenario

	5 Formal definition of the composite model
	5.1 Observed automaton
	5.2 Estimate automaton
	5.3 Controller automaton
	5.4 Bayesian hybrid automaton
	5.5 Reduction of the mixture estimate size

	6 Automated verification
	7 Summary

	lites-v008-i002-a006-nejati
	1 Introduction
	2 Continuous-Time Stochastic Hybrid Systems
	2.1 Notation and Preliminaries
	2.2 Continuous-Time Stochastic Hybrid Systems

	3 Control Storage and Barrier Certificates
	4 Compositional Construction of CBC
	5 Computation of CSC
	6 Case Studies
	6.1 Room Temperature Network
	6.2 Fully-Interconnected Network

	7 Conclusion
	8 Appendix

	lites-v008-i002-a007-tran
	1 Introduction
	2 Problem Formulation
	3 Real-Time Local Safety Verification
	4 Decentralized Real-Time Collision Verification
	5 Decentralized Real-Time Global Safety Verification
	6 Case study
	6.1 Experiment setup
	6.2 Verifying local safety property and collision occurrence
	6.3 Verifying the geospatial free property

	7 Discussion
	8 Related Work
	9 Conclusion and Future Work

