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Abstract
Networked control systems (NCS) are widely used
in real world applications because of their advant-
ages, such as remote operability and reduced in-
stallation costs. However, they are prone to vari-
ous inaccuracies in execution like delays, packet
dropouts, inaccurate sensing and quantization er-
rors. To ensure safety of NCS, their models have
to be verified under the consideration of aforemen-
tioned uncertainties. In this paper, we tackle the
problem of verifying safety of models of NCS un-
der uncertain sampling time, inaccurate output
measurement or estimation, and unknown disturb-
ance input. Unbounded-time safety verification
requires approximation of reachable sets by invari-
ants, whose computation involves set operations.
For uncertain linear dynamics, two important set op-
erations for invariant computation are linear trans-
formation and Minkowski sum operations. Zono-

topes have the advantage that linear transformation
and Minkowski sum operations can be efficiently
approximated. However, they can not encode direc-
tions of convergence of trajectories along complex
eigenvectors, which is closely related to encoding
invariants. Therefore, we extend zonotopes to the
complex valued domain by a representation called
complex zonotope, which can capture contraction
along complex eigenvectors for determining invari-
ants. We prove a related mathematical result that
in case of accurate feedback sampling, a complex
zonotope will represent an invariant for a stable
NCS. In addition, we propose an algorithm to verify
the general case based on complex zonotopes, when
there is uncertainty in sampling time and in input.
We demonstrate the efficiency of our algorithm on
benchmark examples and compare it with a state-
of-the-art verification tool.

2012 ACM Subject Classification Computer systems organization → Reliability
Keywords and Phrases Safety Verification; Networked Control System; Reachability Analysis; Invariant;
Complex Zonotope
Digital Object Identifier 10.4230/LITES.8.2.1
Received 2020-08-29 Accepted 2021-10-15 Published 2022-12-07
Editor Alessandro Abate, Uli Fahrenberg, and Martin Fränzle
Special Issue Special Issue on Distributed Hybrid Systems

1 Introduction

The computerized control of spatially distributed components through communication channels
is called networked control. The emergence of fast and reliable communication networks has
enabled efficient networked control of many applications in aerospace, automation, manufacturing
and robotics [17,26,34,37,38]. Advantages of networked control systems (NCS) include reduced
installation cost due to absence of wiring and remote operability. However, they are prone to
inaccuracies in execution such as delays, packet dropouts and errors in sensing and quantization.
To mitigate the risk of system failure, we need to verify the safety requirements of NCS in the
presence of such inaccuracies. In this paper, we tackle the problem of verifying unbounded time
safety of linear networked control systems with a uncertain sampling period for feedback input,
inaccurate sensors for output estimation and disturbance input.

Safety verification involves proving that the set of reachable states of the system are contained
within a specified safe set. However, exactly computing the set of reachable states of models
containing linear differential equations with discontinuous switching between states or vector fields,
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called affine hybrid systems, is computationally intractable [13]. Instead, a common approach is
to overapproximate this set of reachable states to prove safety. There has been a lot of research
on overapproximating the set of reachable states of affine hybrid systems in both bounded and
unbounded time [19,32,35]. But networked control systems have time triggered switching which
can be handled accurately by these methods. The reason is explained below.

Challenge of safety verification of NCS

In an NCS, there is time triggered switching of states with uncertainty in the switching time
(sampling time). The approach followed by most techniques [19, 32, 35] to overapproximate
reachable sets of hybrid systems involves computing intersection between reachable sets and
guard conditions by some set representation like polytopes [35], zonotopes [21], ellipsoids [10],
or polynomial sub-level sets like barrier certificates [32]. In the case of NCS, the guard is on
the time of switching, i.e., the clock variable. For very simple hybrid systems having constant
vector fields, there is linear relationship between clock variables and other state variables. Then,
we can expect to reliably overapproximate the intersection of guard on the clock variable and
reachable states containing value of clock variable. But an NCS is more complex involving linear
differential equations with time triggered switching. There is an exponential relationship between
the clock variable and the reachable states in NCS. Such exponential relationship can not be
captured using the well known set representations mentioned above. Instead, a more effective
way is proposed in [8, 16,18,25,31] to handle time triggered switching by dividing the switching
time into very small sub-intervals and using matrix exponentials to map the reachable states
in different sub-intervals. The above methods for stability verification of NCS do not consider
additive input in the dynamics. However, our dynamics is more general where we consider consider
additive disturbance input. The above methods [8,16,18,25,31] use ellipsoids and H-polytopes
which do not efficiently handle additive input in high dimensions. Ellipsoids provide poor accuracy
for approximating Minkowski sum with input sets, which is required in reachability analysis.
Similarly, the complexity of H-polytopes exactly representing Minkowski sums blows up at least
exponentially in the dimension of state space [28]. Therefore, we need better set representations
to accurately overapproximate the reachable sets at various switching times.

Solution: Generalizing zonotope to complex zonotope

In this context, an effective set representation is a zonotope [20], described as a linear combination
of real vectors called generators, whose combining coefficients are bounded in absolute value.
Its advantage is that linear transformation and the Minkowski sum can be efficiently computed.
However, we are required to overapproximate the unbounded time reachable set of NCS that
typically involves computing invariants. Computing invariants by a set representation requires
encoding the directions of convergence of reachable sets towards equilibrium. In NCS, some of the
directions for convergence can be along the eigenvectors of the dynamics, which can be complex
valued vectors (Theorem 7). But (simple) zonotopes, which are confined to the real valued domain,
can fail to capture such complex valued directions of convergence of trajectories. Therefore,
our goal is to extend them to the complex number domain to obtain a new set representation
called complex zonotope. Complex zonotopes retain the merit of usual zonotopes that linear
transformation and the Minkowski sum operations can be computed efficiently. Additionally, they
can capture the contraction of reachable sets based on the complex eigenstructure, which is not
possible using a real valued zonotope. We provide mathematical evidence (Theorem 7) to support
the latter claim. Furthermore, their real projections are geometrically more expressive than usual
zonotopes and can represent some non-polytopic sets.
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Using complex zonotopes, we propose an algorithm to verify linear safety constraints of a
linear NCS with uncertain sampling period, inaccurate output estimation and disturbance input.
The algorithm is a semi-decision procedure which can either terminate when the system is verified
to be safe or fail to terminate. In the latter case, the user can set a threshold number of iterations
for termination to get a bounded time result. Using the algorithm, we successfully applied our
algorithm to verify benchmark examples of NCS [23,29] with high dimensions (≥ 12 dimensions
(including state and controller input variables), while the simple zonotope based version of our
algorithm and a state-of-the-art verification tool [19] both failed to verify them.

In summary, we make the following contributions in this paper.
1. We introduce the complex zonotope set representation, a geometrically more expressive

representation than zonotope, to handle invariant computation in the presence of additive
input and time triggered switching.

2. We propose a theoretical result (Theorem 7) about the existence of complex zonotopic invariants
based on eigenvectors of the NCS dynamics.

3. We extend the previous algorithms for stability verification of NCS [8,16,18,25,31] without
additive input to safety verification in the presence of additive input. We use complex zonotopes
containing eigenvectors for computing invariants of NCS more effectively when there is additive
input.

4. As a proof-of-concept, we compare the performance of our complex zonotope with a real
zonotope containing concatenation of real and imaginary parts of the complex template. We
compare the performance on high dimensional (>9 state space) benchmarks examples in
literature. We show that while our complex zonotope is successful in verification, the real
zonotope either fails to compute an invariant or computes one with very large bounds above
the safety threshold. We also compare with another state-of-the-art tool [19], which also failed
to verify the benchmarks.

This paper is an extended version of part of our work presented in the conferences [1–4] and the
PhD thesis [5]. The extensions and modifications made in this paper are explained in Section 2.

Organization. In Section 2, we review previous research related to our work and draw some
comparison. In Section 3, we formalize NCS with uncertainty in sampling time, inaccurate output
estimation and unknown open loop input. We explain the relation between safety verification
and invariant computation at sampling times for an NCS. In Section 4, we introduce the complex
zonotope representation as a generalization of usual zonotopes to complex valued domain. We
describe a result that shows how a complex zonotope can specify invariants based on eigenstructure.
We discuss operations on complex zonotopes that are later used to verify safety properties. In
Section 5, we describe the procedure for verification using complex zonotopes. The experiments
on some benchmark examples and results are discussed in Section 6. We begin by describing in
the following the mathematical notation used in this paper.

1.1 Notation
The set of real numbers is represented by R, integers by Z, and their positive subsets by R≥0 and
Z≥0, respectively. The set of complex numbers is C. Given a subset S of real or complex numbers
we denote the set of n-dimensional vectors from S as Sn and n ×m matrices from S as Sn×m.
The ith component of a vector x is xi while the element of the ith row and the jth column of a
matrix X is Xij . The numbers of rows of matrix X and size of vector x are rows (X) and rows (x),
respectively. The number of columns of X is cols (X). Given any two real vectors x, y such
that rows (x) = rows (y), we say x ≤ y, if ∀i ∈ {1, . . . , rows (x)}, xi ≤ yi. The diagonal matrix

LITES
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containing a vector x along its diagonal is denoted by D (x). The identity matrix of size n× n is
denoted by In and a vector of ones of size n is denoted by [1]n×1. The real part of a complex
number x is Re (x) and the imaginary part is Im (x). The absolute value of a complex number x

is |x| =
√

Re (x)2 + Im (x)2. The infinity norm of a complex vector x is ∥x∥∞ = maxrows(x)
i=1 |xi|.

For a complex matrix X, |X| is the matrix containing the absolute values of the elements of X,
i.e., |X|ij = |Xij |. For any a, b ∈ R

⋃
{∞,−∞} we use the following notation for intervals.

(a, b) = {x ∈ R | a < x < b} , (a, b] = {x ∈ R | a < x ≤ b}
[a, b) = {x ∈ R | a ≤ x < b} , [a, b] = {x ∈ R | a ≤ x ≤ b}

Given two same dimensional subsets of complex vector space U ∈ Cn and V ∈ Cn, we define their
Minkowski sum as follows.

U ⊕ V = {u + v | u ∈ U, v ∈ V }

Given a complex matrix M ∈ Cn×n and a non-negative real matrix Υ ∈ Rn×n
≥0 , we define a

neighborhood of M whose difference with M is less than Υ, as follows.

M ▽Υ =
{

M + M̂
∣∣∣ M̂ ∈ Cn×n,

∣∣∣M̂ ∣∣∣ ≤ Υ
}

.

2 Related work

This paper is a journal extension of part our work part on safety and stability verification using
complex zonotope presented in the conferences [1–4] and a PhD thesis [5]. The present work adapts
the algorithm used for stability verification [2,4] and tackles the problem of safety verification of
NCS. In this context, we provide a sufficient condition for checking inclusion of a set of complex
zonotopes whose templates are in the neighborhood of a complex zonotope, inside another complex
zonotope. This generalizes inclusion checking between two complex zonotopes from the conference
papers [1, 5] to inclusion checking between a set of complex zonotopes and another complex
zonotope. Our conference paper on safety verification [1] proposes an approximation of intersection
of complex zonotope with linear constraints which can be coarse because complex zonotopes
are not closed under intersection with linear constraints. If using this method for an NCS with
uncertain sampling time, intersection of complex zonotopes with sampling time constraints can be
inaccurately approximated. Instead, in this paper we make use of matrix exponential maps to
compute an invariant.

A number of set representations have also been developed for verification of hybrid systems and
also numerical programs. Linear relationships between state variables can be represented using
polytopes [15] and their variants, such as template polyhedra [35], hypercubes [36], octagons [30],
zonotopes [20] and tropical polyhedra [9]. Non-linear relationships between state variables can
be encoded by ellipsoids [11, 27], polynomial templates [7, 33] and polynomial zonotopes [6, 12].
Similarly, a barrier certificate [32] can be used to separate the reachable set from an unsafe set
using a sub-level set of a suitable function, such as a polynomial.

The efficiency of a set representation in verification depends on the efficiency of computing
common operations used in reachability analysis. For a linear networked control system with
additive uncertainty, linear transformation and the Minkowski sum are the main operations
involved in the computation of the reachable sets. The zonotope representation [20] can be
very efficient for bounded time reachability of a linear networked control system because the
linear transformation and Minkowski sum over zonotopes can be computed efficiently. However,
approximating unbounded time reachable sets typically requires computing invariants. Efficiently
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computing invariants requires encoding directions for convergence of state trajectories, which
can depend on complex valued eigenvectors. But real valued zonotopes can not capture the
convergence along complex valued eigenvectors. Therefore, we generalize zonotopes to complex
zonotopes that can incorporate possibly complex eigenvectors among its generators in a way that
the reachable set approximation can converge along the complex eigenvectors.

This generalization of zonotope to complex zonotope can express some non-polytopic sets in
addition to polytopic zonotopes in the real domain, and hence more expressive. This generalization
is similar in spirit to quadratic zonotope [6] or more generally polynomial zonotope [12] since both
represent constraints on variables. However, while complex zonotope involves a linear combination
of some ellipsoids and line segments, polynomial zonotope involves a non-linear combination of only
line segments. Therefore, both represent very different classes of non-polyhedral sets. Moreover,
we show in this paper that an infinite parametrized family of invariant complex zonotopes can
be represented efficiently for any stable linear system using eigenvectors. However, there is no
known guarantee of existence of invariant polynomial zonotopes, except trivially the equilibrium,
for stable linear systems.

We remark that not many set representations can handle additive disturbance efficiently. Ellips-
oids are not closed under the Minkowski sum [10], which can result in reduction of approximation
accuracy in the presence of additive disturbance. The work of Allamigeon et. al [10] proposed
an over-approximation of the Minkowski sum of ellipsoids based on the Löwner order, still the
exact Minkowski sum can not be represented by an ellipsoid. Although polytopes are closed
under Minkowski sum, there can be exponential blowup of complexity of the resulting half-space
representation [28]. In contrast, zonotope and its extension to complex zonotope can exactly
represent the Minkowski sum and its computation is also very efficient.

We draw inspirations from the algorithms for stability verification of sampled data systems
which compute invariants [8, 16, 18, 25, 31] either as sub-level sets of Lyapunov functions or
polytopes. In our work, we extend the use invariants to verify safety in addition to stability.
Furthermore, our complex zonotope representation can efficiently handle additive disturbance
due to efficient computation of the Minskowski sum. This is an advantage over sub-level sets of
Lyapunov functions where the Minkowski sum can not be represented accurately, and also over
polytopes whose representation is of exponential complexity [28].

3 Networked control systems

In a networked control system (NCS), a controller input is exchanged over a network between
different components as information packets. The controller input is sampled at discrete time
instants, while it remains constant between successive sampling times. But the sensors which
estimate the output may be inaccurate and the sampling period can be uncertain, possibly due to
packet dropouts. In this paper, we consider systems with linear dynamics, linear feedback input
from the controller, uncertainty in sampling period and inaccurate output estimation modeled by
additive error and additive disturbance input. This system can also be categorized as a hybrid
system because of periodic reset of feedback input and constraints on its sampling period.

The system is modeled as follows. The state of the entire system at time t ∈ [0,∞) is xt ∈ Rn,
the feedback input exchanged between components is ut ∈ Rm, disturbance input is vt ∈ V ⊆ Rm,
output is yt ∈ Rp, additive error estimation is wt ∈W ⊆ Rp, τmin is a lower bound on feedback
sampling period, τmax is an upper bound on sampling time, the set of initial states is Ω and
A ∈ Rn×n, B ∈ Rm×n, C ∈ Rp×n, D ∈ Rp×m, F ∈ Rm×p are real matrices related to the system
dynamics described below.

LITES
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∃ (tk)∞
k=0 , ∀k ∈ Z≥0tk ∈ R≥0

∀t /∈
∞⋃

k=0
{tk} ,

∂xt

∂t
= Axt + But,

∂ut

∂t
= 0 (1)

∀k ∈ Z≥0, ytk
= Cxtk

+ Dutk
+ wtk

(2)
utk

= Fytk
+ vtk

(3)
(tk+1 − tk) ∈ [τmin, τmax], t0 = 0, x0 ∈ Ω (4)

We denote the combined vector of the state of the plant and controller input at any time t as
zt =

[
xT

t , uT
t

]T . We call a sequence of combined states at sampling times (ztk
)∞
k=0 as a sampling

time trajectory which, by simple manipulation of the above equations, can be shown to be
equivalently governed by the following dynamics.

ztk+1 = R(tk+1−tk)ztk
+ J1vtk+1 + J2wtk+1 where

∀τ ∈ [τmin, τmax], Rτ = Ar exp (Acτ) ,

Ar =
[
In 0
FC FD

]
, Ac =

[
A B

0 0

]
, J1 =

[
0
Im

]
, J2 =

[
0
F

]
(5)

▶ Example 1 (Damped harmonic oscillator). We consider a damped harmonic oscillator where the
feedback driving force is communicated over a network. The negative feedback driving force is
−x1 where x1 is the position of the oscillator. In this case, we we have the following matrices for
the dynamics.

A =
[
0 1
0 −0.5

]
B =

[
0
1

]
C =

[
1 0

]
D = 0 F = −1

Then the equivalent matrices for the dynamics of combined states, i.e., Ac, Ar, J1, J2 and Rt for
any t ∈ [0,∞) are the following.

Ac =

0 1 0
0 −0.5 1
0 0 0

 Ar =

 1 0 0
0 1 0
−1 0 0


J1 =

0
0
1

 J2 =

 0
0
−1

 Rt =

 1 0 0
0 1 0
−1 0 0

 exp

0 t 0
0 −0.5t t

0 0 0


3.1 Safety of NCS
Given a set of safe states S ⊆ Rn+m, we say that an NCS is safe if the state of plant, controller
and feedback input of every trajectory at all times lies within S. In other words, the set Γ of all
reachable states defined as follows should lie within S.

Γ =
{[

xτ

uτ

] ∣∣∣∣ τ ∈ [0,∞), (xt, ut)t∈[0,∞) satisfies (1)-(4)
}

We shall show below that the safety of an NCS is guaranteed by the existence of an invariant
set at sampling times that obeys certain conditions. We will later use this result to develop an
algorithm for NCS safety verification.
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▶ Definition 2 (Sampling time invariant set). A set Ψ of states is called a sampling time invariant if

∀t ∈ [τmin, τmax], RtΨ⊕ J1V ⊕ J2W ⊆ Ψ.

▶ Theorem 3 (Relation between safety and sampling time invariant). For any S ⊆ Rn+m, we have
the reachable set Γ is included in S, if there exists a sampling time invariant Ψ such that the
following is true

∀τ ∈ [0, τmax], exp (Acτ) Ψ ⊆ S (6)
Ω ⊆ Ψ (7)

Proof. Let us consider that at some sampling time tk, a state ztk
∈ Ψ. Then at the next sampling

time tk+1, we get the following based on (5):

ztk+1 ∈ R(tk+1−tk)Ψ⊕ J1V ⊕ J2W

We have (tk+1 − tk) ∈ [τmin, τmax] according to the dynamics of NCS. Therefore, according to the
Definition 2 of sampling time invariant, we get ztk+1 ∈ Ψ. This means that any state originating
inside Ψ will remain inside Ψ at every sampling time. Since the initial set is contained in Ψ, i.e.,
Ω ⊆ Ψ, we get that for all possible trajectories of the system, the state remains within Ψ at the
sampling time. Now, we have to prove that between any two sampling times, the state remains
within the safe set.

Let t = tk + τ be any time point where tk is the latest sampling time before t, that is,
τ ∈ [0, τmax]. Then the combined state reached at tk + τ is given by

zt = exp (Acτ) ztk
.

As we have shown that ztk
∈ Ψ, we get zt ∈ exp (Acτ) Ψ. It follows from (6), we get zt ∈ S, which

proves the theorem. ◀

According to the above theorem, the safety of NCS can be verified by finding a sampling time
invariant satisfying (6). The eigenstructure of the dynamics is closely related to sampling time
invariants, which will be explained later in Theorem 7. Therefore, we introduce complex zonotope
as a set representation in the next section, which enables us to use eigenvectors of the dynamics
to find invariants. Complex zonotope also has other advantages, such as efficient computation of
linear transformation and the Minkowski sum.

4 Complex zonotope

A simple zonotope is a set of points which are linear combinations of real vectors such that the
combination coefficients are bounded in absolute values. Under this representation, the linear
transformation and Minkowski sum can be exactly and quickly computed. This is useful for
efficient bounded time reachability of a linear system as discussed in Girard et al. [20]. The
mathematical definition of a simple zonotope or a real zonotope is as follows:

▶ Definition 4 (Simple/Real zonotope). Let P be a real valued matrix and c ∈ Rrows(P ) be a real
vector. The following is a real zonotope centered at c.

Z (P, c) =
{

Pζ + c
∣∣∣ ζ ∈ Rcols(P ), ∀i ∈ {1, . . . , cols (P )} |ζi| ≤ 1

}

LITES
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We have discussed in the previous section that unbounded time safety verification of NCS is
related to computing sampling time invariants. For a stable NCS with real eigenvectors, a set
contracts along its eigenvectors. By incorporating such eigenvectors among the generators of a
zonotope, we can find sampling time invariants. However, when the eigenvectors are complex
valued, real zonotopes may not be able to represent the directions for convergence among its
generators. Therefore, we extend real zonotopes to the complex number domain to represent
complex valued eigenvectors among their generators to find positive invariants. We show in a later
lemma that incorporating complex eigenvectors allows representing invariants for a stable linear
system with possibly complex eigenvalues.

▶ Definition 5 (Complex zonotope). Let P ∈ Crows(P )×cols(P ) be a complex matrix, c ∈ Rrows(P ) be
a real vector and s ∈ Rcols(P )

≥0 be a non-negative real vector. The following is a complex zonotope
centered at c with template P and scale vector s.

Z (P, c, s) =
{

Pζ + c
∣∣∣ ζ ∈ Ccols(P ), |ζ| ≤ s

}
While real zonotopes are a subclass of polytopes, real projections of complex zonotopes are more
general and include non-polytopic sets in addition to polytopic zonotopes. Geometrically speaking,
real projections of complex zonotopes are the Minkowski sum of some embedded ellipses and line
segments.

▶ Example 6. Let us consider a complex zonotope Z (P, c, s) where

P =
[
1 + 2ι 1 2 + ι

1− 2ι 1 2− ι

]
, c =

[
0
0

]
, s =

[
1
1

]
.

The real projection generated of Z
([

1 + 2ι

1− 2ι

]
,

[
0
0

]
, 1

)
is the ellipse{

(x, y) ∈ R2
∣∣∣ (x + y)2 + (x−y)2

4 ≤ 4
}

, real projection of Z
([

2 + ι

2− ι

]
,

[
0
0

]
, 1

)
is the ellipse{

(x, y) ∈ R2
∣∣∣ (x− y)2 + (x+y)2

4 ≤ 4
}

and the real projection of Z
([

1
1

]
,

[
0
0

]
, 1

)
is the line

segment
{

(x, y) ∈ R2 | −2 ≤ x + y ≤ 2
}

. So, the non-polytopic real projection of Z (P, c, s) in
this example is the Minkowski sum of the two ellipses and one line segment as shown in Figure 1.

Figure 1 Complex zonotope as the Minkowski sum of two ellipsoids and a line segment

The following theorem states that when the sampling time period is certain, there is no additive
disturbance input and the sampling time transformation matrix Rτmin is stable, we can find
different sampling time invariant complex zonotopes by incorporating eigenvectors of the sampling
time dynamics in its template and arbitrarily varying the scale factors.
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▶ Theorem 7 (Invariance based on eigenstructure). Let us consider that τmin = τmax = t, V = {0}
and W = {0}. Let E ∈ C(n+m)×(n+m) contain the eigenvectors of Rt as its columns whose
corresponding complex eigenvalues are e ∈ C(n+m). If 0 < ∥e∥∞ ≤ 1, then for any scale vector
s ∈ Rn

≥0, the complex zonotope Z (E, 0, s) is a sampling time invariant.

Proof. Let x ∈ Z (E, 0, s). Based on the complex zonotope representation, there exists ζ ∈
Cn, |ζ| < s such that x = Eζ. It then follows that

Rtx = RtEζ = ED (e) ζ (8)

Let α = D (e) ζ. So Rtx = Eα where we derive the following bound on th magnitude of αi for
any i ∈ {1, . . . , n}.

|αi| = |eiζi| = |ei| |ζi|

and since ∥e∥∞ ≤ 1, we have
|αi| ≤ |ζi| ≤ si.

As |α| ≤ s, we get Rtx = Eα ∈ Z (E, 0, s). Since this is true for all x ∈ Z (E, 0, s), we can
establish that RtZ (E, 0, s) ⊆ Z (E, 0, s). ◀

▶ Remark (Advantage of complex zonotope over real zonotope). The above theorem is true for
complex zonotopes but not for real zonotopes because real zonotopes can not have complex valued
vectors as generators. Let us consider that the dynamics with constant sampling time has complex
eigenstructure where the rank of eigenvectors is the total dimension n + m. The above theorem
means that using complex zonotopes we can find a sampling time invariant set containing any
initial set. However, using real zonotopes, we may not be able to find such a sampling time
invariant set because real zonotopes capture contraction along complex eigenvectors. This is one
main advantage of using complex zonotopes apart from being geometrically more expressive than
real zonotopes. The below example illustrates how a complex zonotope sampling time invariant
can be found by using the complex eigenvectors as generators. But a real zonotope invariant
containing an initial set can not be found by using imaginary and real parts of eigenvectors and
the coordinate directions as generators.

▶ Example 8. Let us consider the damped harmonic oscillator NCS in Example 1. Let us
consider an initial set Ω = [−0.85, 0.85] × [0, 0]. Let us consider a complex matrix P = −0.5774 −0.5774 −0.0051

0.1298− 0.5626ι 0.1298 + 0.5626ι 0.1020
0.5774 0.5774 −0.9948

. For s =

29
0.8
0.8

, we get that Z
(

P,

[
0
0

]
, s

)
is a sampling time invariant of the NCS such that Ω ⊆ Z (P, c, s). Now let us take the real matrix
G =

[
Re (P ) Im (P ) I3

]
, which contains the real and imaginary parts of the complex matrix P

as real generators and also the identity matrix. We used convex optimization (Algorithm 1) to
search for a scaling factor h and center c such that the real zonotope Z (G, c, h) is a sampling
time invariant containing the initial set. But our search failed to find it. Similarly, we tested with
5 uniformly randomly generated real valued templates, but all those real templates also could
not be successful in finding an invariant. This illustrates that using complex zonotope containing
eigenvectors as generators can let us find invariants in examples where real zonotopes may fail.

The result in Theorem 7 is only true when there is no uncertainty in sampling period. To handle a
more general case where there is uncertainty in sampling period, we can incorporate eigenvectors
of multiple matrices Rt for different values of t ∈ [τmin, τmax]. Then optimization can be used to
find an appropriate scale factor that guarantees invariance, which we shall explain in Section 5.
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As mentioned earlier, like real zonotopes, complex zonotopes are also closed under linear
transformation and the Minkowski sum and they can be computed efficiently. This property is
useful for efficiently representing sets of successor states of an NCS and is exploited in computing
the operations used in our proposed NCS safety verification algorithm, namely Algorithm 1.

▶ Lemma 9 (Linear transformation and the Minkowski sum). Let us consider complex zonotopes
Z (P, c, s) ⊆ Cn and Z (Q, e, r) ⊆ Cn and real matrices A, B ∈ Rn×n. Then the following is
true:

AZ (P, c, s)⊕BZ (Q, e, r) = Z
([

AP BQ
]

, Ac + Be,

[
s

r

])
. (9)

Proof. Let us consider x ∈ Z (P, c, s) and y ∈ Z (Q, e, r). Then there exist ζ, α ∈ Cn such that
|ζ| ≤ s, |α| ≤ r, x = Pζ + c and y = Qα + e. We derive the following:

Ax + By = APζ + Ac + BQα + Be[
AP BQ

] [
ζ

α

]
+ (Ac + Be) .

We have
∣∣∣∣[ζ

α

]∣∣∣∣ ≤ [
s

r

]
. Therefore, Ax + By ∈ Z

([
AP BQ

]
, Ac + Be,

[
s

r

])
. Since this is true

for all x ∈ Z (P, c, s) and y ∈ Z (Q, e, r), we obtain (9). ◀

In order to verify sampling time invariance of a complex zonotope given an interval of uncertainty,
we need to check inclusion of a set of complex zonotopes (obtained by applying a sequence of
transformations) inside the original complex zonotope, based on the Definition 2 of invariance. In
this regard, we define a set of complex zonotopes whose templates lie in the neighborhood of a
given template as follows. Let us consider a real matrix with positive entries Υ ∈ Rrows(Q)×cols(Q)

≥0
where Q is a complex matrix and a real vector ρ ∈ Rcols(e) where e is a real vector.

Z (Q▽Υ, e▽ ρ, r) =
{
Z

(
Q + Q̂, e + u, r

) ∣∣∣ |Q| ≤ Υ, |u| ≤ ρ
}

The following relation is a sufficient condition for checking the required inclusion which is proved
later in Lemma 11.

▶ Definition 10 (Relation for checking inclusion). Let P be a complex matrix such that P T P is a
square invertible matrix. Let Υ > 0 be a real matrix with only positive elements. We define the
relation

Z (Q▽Υ, e▽ ρ, r) ⊑ Z (P, c, s)

if all of the following conditions are verified:

∃X, ∆ ∈ Ccols(P )×cols(Q), y ∈ Ccols(P ) :
PX = QD (r) , ∆ =

∣∣P †∣∣ ΥD (r) , (e− c) = Py, δ =
∣∣P †∣∣ ρ (10)

∀i ∈ {1, . . . , rows (X)} |yi|+ δi +
cols(X)∑

j=1
|Xij |+ ∆ij ≤ si (11)

▶ Lemma 11 (Checking inclusion). If Z (Q▽Υ, e▽ ρ, r) ⊑ Z (P, c, s) is true for Υ, ρ > 0,
then the subset inclusion Z (Q▽Υ, e▽ ρ, r) ⊆ Z (P, c, s) is true.
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Proof. Let us assume that Z (Q▽Υ, e▽ ρ, r) ⊑ Z (P, c, s) is true. Hence, there exist matrices
X, ∆ and complex vectors y, ρ such that all the equations in (11) are true. Let us consider any
x ∈ Z (Q▽Υ, e, R). Based on the definition of a complex zonotope, there exists ζ ∈ Ccols(P )

such that |ζ| ≤ s and x =
(

Q + Q̂
)

ζ + e + u,
∣∣∣Q̂∣∣∣ ≤ Υ and |u| ≤ ρ. We now have to show that

x ∈ Z (P, c, s).
Let us consider a vector α ∈ Ccols(ζ) such that for any i ∈ {1, . . . , cols (ζ)}, the following is

true:

αi = ζi/ri if ri > 0, αi = 0 if ri = 0 (12)

Since |ζ| ≤ r, it follows from the above definition that |α| ≤ 1 and ζ = D (r) α. Then we derive
the following.

x =
(

Q + Q̂
)

ζ + e + u =
(

Q + Q̂
)
D (r) α + e + u

=
(

Q + Q̂
)
D (r) α + (e− c) + c + u

and from (10)

x = P
(

Xα + P †Q̂D (r) α + y + P †u
)

+ c (13)

We derive the following for any i ∈ {1, . . . , rows (X)}∣∣∣Xα + P †Q̂D (r) α + y + P †u
∣∣∣
i

≤ |y|i +
∣∣P †∣∣ |u|+ cols(X)∑

j=1

(
|X|ij +

(∣∣P †∣∣ ∣∣∣Q̂∣∣∣D (r)
)

ij

)
|α|j

≤ |y|i + δi +
cols(X)∑

j=1
|X|ij + ∆ij

≤ si. (14)

The above second inequality is true because |α| ≤ 1,
∣∣∣Q̂∣∣∣ ≤ Υ, ∆ =

∣∣P †
∣∣ ΥD (r), |u| ≤ ρ and

P †ρ = δ, and the last inequality is deduced from (11).
From (13) and (14), we get that x ∈ Z (P, c, s). As this is true for any x ∈ Z (Q, e, r), the

inclusion Z (Q, e, r) ⊆ Z (P, c, s) is true. ◀

We can algebraically compute bounds on the real projection of a complex zonotope along any
direction, that is, the support function, as follows.

▶ Lemma 12 (Computing support function). Let us consider a complex zonotope Z (P, c, s) and
a vector w ∈ Rcols(c). We have the following equality:

max
x∈Z(P, c, s)

Re
(
wT x

)
= wT c +

∣∣wT P
∣∣ s (15)

Proof. First we prove that

max
x∈Z(P, c, s)

wT x ≤ wT c +
∣∣wT P

∣∣ s (16)
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Let us consider x ∈ Z (P, c, s). So, there exists ζ ∈ Ccols(P ) such that |ζ| ≤ s and x = Pζ + c.
We derive the following:

Re
(
wT x

)
= wT c + Re

(
wT Pζ

)
≤ wT c +

∣∣wT P
∣∣ s (17)

The inequality in the above formula is deduced from the fact that |ζ| ≤ s. As the above is true for
all x ∈ Z (P, c, s), it proves (16).

Next we prove the following:

max
x∈Z(P, c, s)

wT x ≥ wT c +
∣∣wT P

∣∣ s (18)

Let us consider x = Pζ + c where ζ ∈ Ccols(P ) is defined as follows.

ζi = si if Re
(
wT P i

)
≥ 0, ζi = −si otherwise (19)

Then we get the following:

Re
(
wT x

)
= Re

(
wT Pζ

)
+ wT c

=
∣∣wT P

∣∣ s + wT c

The second equality in the above is obtained by using (19). This proves (18). From the inequalities
(16) and (18), we get (15). ◀

The relation for checking inclusion ((10) and (11)) consists of a set of convex constraints
on the variables X, ∆, s, r, e and c when the templates Q and P are fixed (constants). In fact,
they constitute a class of convex constraints called second order conic constraints (SOCC) [14].
The SOCC constraints can be solved efficiently up to high numerical precision using convex
optimization techniques and many solvers are available for the same [22].

5 Using complex zonotopes for verification

In this section, we describe an algorithm based on operations on complex zonotopes to verify
safety of NCS. Our algorithm finds a complex zonotope which is a sampling time invariant and
satisfies the other required condition (6) for safety. The algorithm has two parts.
1. We find a complex zonotope that is a sampling time invariant, i.e., is invariant with respect to

the transformation at all sampling times t ∈ [τmin, τmax].
2. Next we verify that the the reachable set of the complex zonotope by continuous evolution,

without reset, within the interval [0, τmax] remains within the safe set (6).
The detailed procedure is explained in Algorithm 1 and its correctness is proved in Theorem 17. A
safe set is specified by linear constraints and an open input set, disturbance input set and initial
set bounded by complex zonotopes, as follows.

S =
{

x ∈ Rn+m | Hx ≤ d
}

, V ⊆ Z (QV , cV , sV ) , W ⊆ Z (QW , cW , sW )
Ω ⊆ Z (Qinit, cinit, sinit)
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Algorithm 1 Verifying safety of NCS.

k ← 3;
P ←

[
Ek In+m Rτmax J1QV J2QW

]
;

Remove repeated columns and zero columns of P ;
% Find sampling time invariant candidate complex zonotope:
N ← 10;
Feasible← False;
while Feasible = False do

Feasible← True;
for t ∈ TN do

for M ∈ Θ
(

t, Et
τmax−τmin

N

)
do

if Feasible = True then
Solve for s, c by convex optimization satisfying (24)–(25);
if (24)–(25) is feasible then

Feasible← True;
else

Feasible← False;
N ← 2 ∗N ;

end
end

end
end

end
end

% Verify Safety:
Verified← False;
while Verified = False do

Choose small ϵ > 0;
if (26) is true then

Verified← True;
Return: “NCS is safe”

end
else

ϵ← ϵ/2;
end

end

5.1 Finding sampling time invariant

We first fix the template of a complex zonotope based on the eigenvectors of the dynamics and
then the templates of the input sets. We can also add arbitrary vectors to the template to increase
precision. Next we derive a set of convex constraints on center, scale factor and other auxiliary
variables of a complex zonotope such that the complex zonotope is a sampling time invariant. We
solve for the scale factor and center using convex optimization.

LITES
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Let us choose a positive integer k > 0 and denote by Ek the matrix containing all independent
unit eigenvectors of the matrices Rt for all t ∈ Tk where

Tk =
{

t = τmin + i
τmax − τmin

k

∣∣∣∣ t ∈ [τmin, τmax]
}

The template P of the complex zonotope consists of these eigenvectors, the templates of inputs
sets J1QV , J2QW , their transformations RτmaxJ1QV , RτmaxJ2QW .

P =
[
Ek In+m Rτmax J1QV J2QW

]
(20)

If P contains repeated columns or zero columns, they are removed.
▶ Remark (Choice of template). Firstly, we add the eigenvectors EK of the transformation operators
at various sampling times. This heuristic is based on Theorem 7 which says that incorporating
eigenvectors in the complex zonotope is closely related to finding sampling time invariants. We
also include the identity matrix inside the zonotope to capture bounds along the coordinate
directions. Next, we get from Lemma 9 that the resulting complex zonotopes from applying the
linear transformation Rt at time t is RtIn+m and RtEk. Since Ek contains eigenvectors of the
dynamics at various sampling times, the directions of RtEk may not be very different from Ek.
So, we do not include RtEk for any t. However, we include the other template RtIn+m = Rt

at maximum sampling time tmax obtained by transforming the identity template. Next, by
summing the additive disturbance and open input sets, we get the template

[
J1QV J2QW

]
in a

transformed complex zonotope after the switching at sampling time, by Lemma 9 . Therefore,
this template is also concatenated to Pk. Furthermore, adding any arbitrary generator will only
increase the accuracy because our optimization will adjust the scaling factors corresponding to
the generators. So, we can increase the value of K to increase the accuracy of verification.

▶ Example 13. Let us consider the NCS in Example 1. We consider an lower bound 0.1s and
upper bound 0.3s on the sampling time. We consider the safe set S =

{
z ∈ R3 | [100]z ≤ 1

}
,

initial set Ω = [0.85, 0.85]× [0, 0]× [0, 0], open input set V = [−0.2, 0.2] and bounds on disturbance
input set W = [−0.2, 0.2]. For k = 3, we compute Ek as the concatenation of eigenvectors of
R0.1 = Ar exp (0.1Ac), R0.2 = Ar exp (0.2Ac) and R0.3 = Ar exp (0.3Ac) where Ar and Ac are
given in Example 1.

Next we have to find the center and scale factor, for the given template Pk such that we get a
sampling time invariant. Before we describe the algorithm for this, we derive the prerequisite
mathematical results.

We can expand a transformation operator Rt+δ with δ > 0 in a neighborhood of sampling
time t using the Taylor expansion as follows.

Rt+δ = Ar exp (Act) exp (Acδ) = Rt + RtAcδ + RtAcδ2/2 + Λδ (21)
where |Λδ| ≤ Et

δ = |Rt| |exp (Act)| |Ac|δ3/3.

We use the following lemma, which is proved in [24] to bound all matrices{
Rt + RtAcδ + RtAcδ2/2 | δ ≤ ϵ

}
for any ϵ > 0 by the convex hull of a finite set of matrices.

▶ Lemma 14 ([25]). Let L0, L1, ..., Lr be a finite sequence of real matrices and Uj (δ) =
∑j

i=1 Liδ
i.

If 0 ≤ δ < ϵ, then Ur (δ) ∈ Conv (U0 (ϵ) , . . . , Ur (ϵ)).

Proof. This lemma is proved in [24]. ◀
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Let us denote the set of finite matrices Θ (t, ϵ) =
{∑j

i=1 RtAcϵi | j = 0, 1, 2
}

. Then using
Lemma 14, we have the following set inclusion:{

Rt + RtAcδ + RtAcδ2/2 | δ ≤ ϵ
}
⊆ Conv (Θ (t, ϵ)) (22)

Therefore, using the expansion (21) and the above result (22), we get that for any ϵ > 0 and
0 ≤ δ ≤ ϵ,

Rt+δ ∈ Conv
({

M ▽ Et
ϵ |M ∈ Θ (t, ϵ)

})
. (23)

In order to verify sampling time invariance of Z (P, c, s), it is sufficient to divide the time interval
[τmin, τmax] into small intervals of a chosen size and verify invariance within each of the time
intervals. This is explained in the following lemma.

▶ Lemma 15. If there exists N > 0 such that ∀t ∈ TN , ∀M ∈ Θ
(

t,
τmax − τmin

N

)
all of the

following is true, then Z (P, c, s) is sampling time invariant.

∃ρ ∈ Rcols(c)
≥0 : Et

τmax−τmin
N

|c| ≤ ρ (24)

Z

[
MP J1 J2

]
▽

[
Et

τmax−τmin
N

|P | 0 0
]

, (Mc + J1cv + J2cw)▽ ρ,

 s

cv

cw


⊑ Z (P, c, s) (25)

Proof. Let us consider any τ ∈ [τmin, τmax]. There exists t ∈ TN , δ ∈
[
0,

τmax − τmin

N

]
such that

τ = t + δ. Then we derive the following.

Rτ Z (P, c, s) ⊕ J1Z (QV , cV , sV ) ⊕ J2Z (QW , cW , sW )

= Z
([

Rτ P J1QV J2QW

]
, Rτ c + J1cv + J2cW ,

[
s sv sW

]T
)

% By (23), ∃M ∈ Θ
(

t,
τmax − τmin

N

)
, ∃M̂ ∈ 0 ▽ Et

τmax−τmin
N

: Rτ = M + M̂

= Z
([

MP J1 J2
]

+
[
M̂ 0 0

]
, Mc + M̂c + J1cv + J2cw,

[
s sv sW

]T
)

% As M̂ ∈ 0 ▽ Et
τmax−τmin

N

and Et
τmax−τmin

N

|c| ≤ ρ where Et
τmax−τmin

N

≥ 0

⊆ Z

[
MP J1 J2

]
▽

[
Et

τmax−τmin
N

|P | 0 0
]

, (Mc + J1cv + J2cw) ▽ ρ,

 s

cv

cw


% By (25) and Lemma 11 for inclusion checking
⊆ Z (P, c, s) .

Since the above is true for any τ ∈ [τmin, τmax], we get that Z (P, c, s) is a sampling time invariant
set. ◀

5.2 Safety verification
After finding a sampling time invariant containing the initial set, we have to verify that the
condition (6) that the reachable set of Z (P, c, s) by continuous evolution within [0, τmax] is
contained within the safe set. This can be verified by checking a sequence of linear inequalities as
described in the following.
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▶ Lemma 16. For all t ∈ [0, τmax], we get exp (Act)Z (P, c, s) ⊆ S if there exists ϵ > 0 such
that the following are true:

∀k ∈ Z≥0 : k ≤ τmax

ϵ
, ∀i ∈ {1, . . . , rows (H)} , βi (P, c, s) ≤ d where

βi (P, c, s) = |Hi exp (Ackϵ) P | s + Hi exp (Ackϵ) c

+ ∥Hi∥ exp (∥Ac∥ ϵ) ∥exp (Ackϵ)∥ ϵ (∥c∥+ ∥P∥ ∥s∥) (26)

Proof. Let us consider any t ∈ [0, τmax]. There exists some k ∈ Z, t = kϵ + ρ, ρ ≤ ϵ. We can write
for ρ ∈ [0, ϵ],

exp (Acρ) =
n∑

i=0

Ai
cρi

i
= In+m + AcρM :

M ∈ R(n+m)×(n+m), ∥M∥ ≤ exp (∥Ac∥ ϵ) (27)

We derive the following:

Hi exp (Act)Z (P, c, s) = HiZ (exp (Act) P, exp (Act) c, s)
% By Lemma 12

≤ |Hi exp (Act) P | s + Hi exp (Act) c

% By (27)
= |Hi exp (Ackϵ) P | s + Hi exp (Ackϵ) c + |HiMP | s + Mc

% Substituting the bound from (27)
≤ |Hi exp (Ackϵ) P | s + Hi exp (Ackϵ) c

+ ∥Hi∥ exp (∥Ac∥ ϵ) ∥exp (Ackϵ)∥ ∥Ac∥ ϵ (∥c∥+ ∥P∥ ∥s∥) ≤ di

Therefore, exp (Act)Z (P, c, s) ⊆ {x ∈ Rn+m | Hx ≤ d} = S, which proves the lemma. ◀

The following theorem summarizes the overall sufficient condition for verifying safety based on
complex zonotopes, which can be checked by the procedure described in Algorithm 1.

▶ Theorem 17. We have Γ ⊆ S if there exist c ∈ Rn, s ∈ Rcols(P )
≥0 , ϵ > 0 and N ∈ Z≥0 such that

all of the following conditions are true.
1. Z (Qinit, cinit, sinit) ⊑ Z (P, c, s).
2. (24)–(25) are true ∀t ∈ TN , ∀M ∈ Θ (t, ϵ).
3. (26) is true.

Proof. By ((24)-(25)) and Lemma 15, we prove that Ψ = Z (P, c, s) is a sampling time invari-
ant. By the first condition Z (Qinit, cinit, sinit) ⊑ Z (P, c, s), we get that the initial set Ω is
contained inside the sampling time invariant Ψ. By (26) and Lemma 16, we prove that for all
t ∈ [0, τmax], exp (Act)Z (P, c, s) ⊆ S. Then based on Theorem 3, we get Γ ⊆ S. ◀

Based on Theorem 17, we propose a semi-decision procedure in Algorithm 1 to verify safety. The
algorithm is a semi-decision procedure because if it returns that the NCS is safe, then the NCS is
indeed safe as proved in Theorem 17. However, the algorithm is not guaranteed to terminate. So,
the user can choose to terminate the algorithm in any threshold number of iterations possibly
with inconclusive result. In this context, we note NCS is a hybrid system and it is known that
verification of reachability of very simple classes of hybrid systems is undecidable [13]. So, it is
unlikely that we can not come up with a sure shot decision procedure to verify safety of NCS.
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▶ Example 18. Let us the NCS in Example 13. We took K = 3 and ran our algorithm using the
template matrix containing complex eigenvectors as shown in Equation 20, without any random
matrix, i.e., Π = 0. Then we could verify that the x1 bounds on the unbounded time reachable
set is |x1| ≤ 2.22.

Comparison with real zonotope. Next, we concatenated the real and imaginary parts of Pk into
a real matrix G where repeated column vectors were removed. We ran our algorithm to find a real
zonotope invariant containing the real template G, but our algorithm failed. We also considered
5 uniformly randomly generated real valued templates to run our algorithm, but the search for
sampling time invariant failed. Thus, complex zonotope based on eigenstructure is shown to be
the better choice for verification on this example.

6 Experimental results

We implemented our algorithms and tested them on benchmark examples of NCS. We drew
comparison with simple zonotope, i.e., having real valued generators and also the state-of-the-art
tool SpaceEx [19]. For comparison with simple zonotope, we took the real template as the
concatenation of real and imaginary parts of our complex template without repeated columns, and
ran the same algorithm. In SpaceEx [19], the verification is performed by step-by-step forward
reachability computation. In SpaceEx, we modeled NCS with uncertain sampling time as a hybrid
system with linear guards and linear transitions. For convex optimization, we used CVX (version
2.2) with MOSEK solver (version 7.1) and Matlab 2020a on a computer with 1.4 GHz Intel Core
i5 processor and 4 GB 1600 MHz DDR3. The precision of the solver is set to the default precision
of CVX.

6.1 Networked platoon of vehicles

This example is adapted from a model of a networked cooperative platoon of vehicles, which is
presented as a benchmark in the ARCH workshop [29]. The platoon consists of three follower
vehicles M1, M2 and M3 along with a leader board ahead M4. Each of the vehicles receives
feedback input added to the acceleration, which depends on the communication of their relative
distances, velocities and accelerations over a WLAN. The distance between a vehicle Mi and its
next vehicle Mi+1, relative to a reference distances dref

i , is denoted by ei. The acceleration of the
leader vehicle is aL which ranges between [−9, 1](m/s). The state of the system is denoted by
a 9-dimensional vector x = [e1, ė1, ë1, e2, ė2, ë2, e3, ė3, ë3], which is the reference distance minus
relative distances, the relative velocities and relative accelerations of the vehicles.

The disturbance input is the acceleration aL ∈ [−9, 1](m/s2) of the leader board. In our
adaptation, we consider that there can be uncertainty in the sampling period of the feedback
input. The matrices of the NCS model are given below.
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A =



0 1.0000 0 0 0 0 0 0 0
0 0 −1.0000 0 0 0 0 0 0

1.6050 4.8680 −3.5754 0 0 0 0 0 0
0 0 0 0 1.0000 0 0 0 0
0 0 1.0000 0 0 −1.0000 0 0 0
0 0 0 1.1936 3.6258 −3.2396 0 0 0
0 0 0 0 0 0 0 1.0000 0
0 0 0 0 0 1.0000 0 0 −1.0000

0.7132 3.5730 −0.0964 0.8472 3.2568 −0.0876 1.2726 3.0720 −3.1356



B =



0 0 0
0 0 1
1 0 0
0 0 0
0 0 0
0 1 0
0 0 0
0 0 0
0 0 0

 C = I9 D = 0

F =

[
0 0 0 −0.8198 0.4270 −0.0450 −0.1942 0.3626v − 0.0946

0.8718 3.8140 −0.0754 0 0 0 −0.5950 0.1294 −0.0796
0 0 0 0 0 0 0 0 0

]
V =

{[
0
0
x

]
| x ∈ [−9, 1]

}
, i.e., Re

(
Z

([
0 0 1

]T
,

[
0 0 −4

]T
, 5

))
W = 0

Verification problem

For a given uncertainty of sampling period, the goal is to find the minimum possible reference
distances dref ∈ R3 such that the vehicles should not collide, that is, −ei ≤ dref

i ∀i ∈ {1, 2, 3}.
For our experiment, we fix the lower bound on sampling period as 0.01(s) and verify the minimum
possible bounds for various values of τmax ∈ {0.012, 0.014, 0.016, 0.018s, 0.02} s. We used our
Algorithm 1 to verify the bounds taking K = 3. We then used repeated the same algorithm
with simple real valued zonotope containing concatenation of real and imaginary parts of the
complex template. We also used SpaceEx to verify the bounds and draw a comparison based on
the smallest value of the bound verified.

Results

For the different values of τmax ∈ {0.012, 0.014, 0.016, 0.018, 0.02} s, we could verify finite values
for

[
dref

1 , dref
2 , dref

3

]
such that −e ≤ dref using our complex algorithm with complex zonotopes.

The verified bounds are given in Table 1. The computation time is less than 310s for every bound
and sampling time interval below. On the other hand, the simple zonotope version of our algorithm
was unsuccessful in finding finite bounds. SpaceEx terminated unsuccessfully without being able
to find any bounds on the reachable set.

Effect of increasing number of sampling times for eigenvectors. We increased K to 5 and got
the following smaller bounds for τmax = 0.2s: dref

1 = 40m, dref
2 = 29m and dref

3 = 19m. But the
computation time increased to 656s.

Remarks

In a continuous feedback model without switching based on digital sampling, the SpaceEx
verification found the bounds dref = (30, 30, 16) as reported in [29]. However, when there is
intermittent switching of feedback input with uncertainty in the sampling time, SpaceEx could
not find bounds in our experiment. Possibly the inductive step-by-step reachability algorithm
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Table 1 Verified bounds for vehicle platoon.

τmin = 0.01s

τmax dref
1 dref

2 dref
3

0.012s 35m 26m 17m

0.014s 38m 27m 18m

0.016s 40m 29m 19m

0.018s 40 29m 19m

0.02s 44m 33m 22m

used in SpaceEx could not overapproximate the reachable set resulting from switching of states
in sampling time interval. Also, the simple zonotope version of our algorithm could not find a
sampling time invariant. On the other hand, our complex zonotope containing eigenvectors in
its template is able to represent a finite invariant for various levels of uncertainty in sampling
time. Furthermore, the fact that use of simple zonotope failed to compute invariant but complex
zonotope containing complex eigenvectors is successful shows that use of complex eigenvectors
increases the chance of finding invariant in the presence of complex eigenstructure.

6.2 Self-balancing two wheeled robot
This example concerns a verification problem for the model of a self-balancing two wheeled robot
called NXTway-GS11 by Yorihisa Yamamoto, which was presented in the ARCH workshop [23].
We consider the linearized networked control system model from the paper. The state of the
plant is represented by a 6-dimensional vector xp = (θ̇, θ, ρ̇, ρ, ϕ̇, ϕ)T , where θ is the average angle
of the left and right wheel, ρ is the body pitch angle, ϕ is the body yaw angle, and the rest
coordinates are their respective angular velocities. The output of the plant is represented by
a 3-dimensional vector (ρ̇out, θm1 , θmr )T such that yp = Cpxp. The input to the plant up is a
2dimensional vector. The plant gets feedback input from a controller whose state is a 5-dimensional
vector xc =

(
θerr, θref , θ̇ref_lpf , ρ, θlpf

)
. The variable θerr is integration of error between θ̇ and

θref , and integration of θ̇ref is θref . The low pass filter applied to θ̇ref is θ̇ref_lpf , body pitch
angle is ρ, and the low pass filter applied to average valued of left/right motor angle is θlpf . The
output of the controller is a 2-dimensional vector which is used to compute the feedback input.
There is also a 2-dimensional unknown disturbance input.

In the benchmark paper [23], the output of the controller is sampled at 4ms to update the
feedback input. In our experiment, we also consider the case where there is uncertainty in sampling
period a possible disturbance in estimated output due to inaccurate sensors. The original model
has an eleven dimensional continuous state of the plant (6) and controller (5) and 5-dimensional
input. The trajectories of the system were unbounded along a 3-dimensional subspace of the system
which can be found by diagonalization. We decoupled these unbounded directions and performed
model reduction to obtain a lower dimensional system. For performing this decoupling, we used
linear transformation of the state space based on block diagonalization. The transformed system
has an eight dimensional continuous state, 2-dimensional controller output and four dimensional

1 http://www.mathworks.com/matlabcentral/fileexchange/
19147-nxtway-gs-self-balancing-two-wheeled-robot-controller-design
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input. The matrices of the transformed NCS, disturbance input and output error sets are given
below.

A =


0.0000 0.0000 0.1241 0.5638 0.5774 −0.0000 0.0066 0.5774

−0.0000 −92.4135 0.0000 0.0000 0.0000 −0.0000 −0.0000 0.0000
−363.0957 0.0000 −127.3488 112.2606 85.8204 −0.0714 −2.2691 89.4013
256.3623 0.0000 64.4048 −77.3066 −45.5575 −0.3242 −17.1890 −29.2897
172.3365 0.0000 34.5588 −51.1441 −26.0550 0.6640 −17.2627 −9.3837

0 0 0 0 0 −1.0000 0 0
2.9915 0.0000 0.8811 −0.3305 0.0320 −0.0038 −0.1829 0.2342

122.3365 0.0000 45.3074 −2.8986 −26.0550 −0.3320 33.3025 −59.3837



B =


−0.0000 −0.0000 0 0

−51.3265 51.3265 0 0
144.4698 144.4698 0 0
−76.6947 −76.6947 0 0
−43.8551 −43.8551 0 0

0 0 0 0
−0.8985 −0.8985 0 0

−43.8551 −43.8551 0 0

 D = 0

C = 1000 ×
[

−0.6895 0.0000 0.1537 0.6846 0.0151 −0.0135 1.1696 −0.6538
−0.6895 0.0000 0.1537 0.6846 0.0151 −0.0135 1.1696 −0.6538

]
F =

[0.0809 0
0 0.0809
0 0
0 0

]
V = [−100, 100] × [−100, 100] W = [−1, 1]

Verification problem

The safety requirement is that the body pitch angle ρ of the robot should be bounded within[
−π

2 , π
2

]
. The verification problem for NCS we consider in this paper is to find the largest

value of upper bound τmax on sampling time such that the system is safe, given a lower bound
τmin = 0.1(ms) and the safe set ρ ∈ [−π

2 , π
2 ]. We used Algorithm 1 to verify safety bounds and

subsequently find results for the above challenges based on complex zonotope. The same algorithm
is repeated with a simple zonotope containing the concatenation of real and imaginary parts of
our complex template. Concerning the experiment with SpaceEx using support functions, we
tested with the octagon template and a template with 400 uniformly sampled support vectors
distributed uniformly.

Results

Our algorithm based on complex zonotope could verify safety for τmax = 2ms, given τmin = 0.1ms.
But SpaceEx could not find finite bounds on the reachable set for any value of uncertainty in
sampling time. The simple zonotope based algorithm found a sampling time invariant, but its
bounds were far over the threshold of safety, i.e., ρ ∈ [−5.1π/2, 5.1π/2]. The computation time
for complex zonotope based algorithm is 153s. We increased K to 7, but could not find any larger
verified sampling time interval.

Remarks

The step-by-step reachability algorithm in SpaceEx possibly could not overapproximate resulting
set of states from switching over the sampling time interval, due to which it failed to find bounds
on reachable set. On the other hand, our complex zonotope containing eigenvectors in its template
found bounded invariant which is within the limits of the safe set. Regarding the simple zonotope,
although a sampling time invariant was found, the bounds were far over the threshold of safety.
The reason complex zonotope is far more accurate than simple zonotope on this example is possibly
that complex zonotope is geometrically more expressive, being able to encode nonlinear boundaries
of invariants.
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We saw that increasing K did not allow verification in a larger time interval. So, the strategy of
sampling more time stamps for eigenvector template may not be the best strategy for improving the
accuracy of verification. The problem remains open how to select sub-matrices for concatenation
to the template to improve the accuracy of verification.

7 Conclusion

Given the pervasiveness of networked control systems with safety-critical applications, it is essential
to develop verification algorithms for such systems in the presence of various possible inaccuracies
in their execution. In this paper, we developed an algorithm to verify unbounded time safety
of NCS with uncertain feedback sampling period, inaccurate output sensing and disturbance
input. Our algorithm uses a novel set representation called complex zonotope that can capture
convergence of forward reachable sets along eigenvectors and represent invariants. Complex
zonotope is essentially an extension of simple zonotopes to the complex domain so as to efficiently
compute invariants required by safety verification. Geometrically, their real projections represent
a wider class of sets including some non-polytopic sets, while they retain the advantage of usual
zonotope that the Minkowski sum and linear transformation can be computed efficiently. The
practicality of our algorithm is demonstrated by successfully verifying benchmark examples with
high dimensions (≥ 12 state+controller input variables), which the simple zonotope and another
state-of-the-art tool failed to verify. An important direction for extension of this research is
verifying NCS with non-linear differential equations and feedback. In this context, we need to find
complex zonotope approximation of non-linear transformations and also conditions for checking
invariance under non-linear transformation.
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