
Swarms of Mobile Robots: Towards Versatility with
Safety
Pierre Courtieu #

Conservatoire des arts et métiers, Cédric EA 4629, Paris, France

Lionel Rieg #

VERIMAG, Grenoble INP – UGA, CNRS UMR 5104, Université Grenoble-Alpes, Saint Martin d’Hères,
France

Sébastien Tixeuil #

Sorbonne University, CNRS, LIP6, Paris, France

Xavier Urbain #

Université de Lyon, Université Claude Bernard Lyon 1, CNRS, INSA Lyon, LIRIS, UMR 5205, F-69622
Villeurbanne, France

Abstract
We present Pactole, a formal framework to design
and prove the correctness of protocols (or the im-
possibility of their existence) that target mobile
robotic swarms. Unlike previous approaches, our
methodology unifies in a single formalism the execu-
tion model, the problem specification, the protocol,
and its proof of correctness. The Pactole frame-
work makes use of the Coq proof assistant, and is
specially targeted at protocol designers and problem

specifiers, so that a common unambiguous language
is used from the very early stages of protocol de-
velopment. We stress the underlying framework
design principles to enable high expressivity and
modularity, and provide concrete examples about
how the Pactole framework can be used to tackle
actual problems, some previously addressed by the
Distributed Computing community, but also new
problems, while being certified correct.

2012 ACM Subject Classification Theory of computation → Distributed computing models; Theory of
computation → Self-organization; Theory of computation → Program reasoning; Theory of computation
→ Logic; Software and its engineering → Formal methods
Keywords and Phrases distributed algorithm, mobile autonomous robots, formal proof
Digital Object Identifier 10.4230/LITES.8.2.2
Supplementary Material Software (Coq Formalization): https://pactole.liris.cnrs.fr
Funding This work was partially supported by CNRS peps DiDaSCaL and ANR project SAPPORO
2019-CE25-0005.
Acknowledgements The authors would like to thank the referees whose comments and suggestions
helped improve the presentation of this work.
Received 2020-07-09 Accepted 2022-01-28 Published 2022-12-07
Editor Alessandro Abate, Uli Fahrenberg, and Martin Fränzle
Special Issue Special Issue on Distributed Hybrid Systems

1 Introduction: low cost and high expectations

Swarm Robotics envisions groups of mobile robots self-organizing and cooperating toward the
resolution of common objectives, such as patrolling, exploring and mapping disaster areas, con-
structing ad hoc mobile communication infrastructures to enable communication with rescue
teams, etc. In many cases, such groups of robots are deployed in adverse environments (e.g. space,
deep sea, disaster areas). Thus, a group must be able to self-organize in the absence of any prior
infrastructure and ensure dynamic coordination in spite of the presence of faulty robots as well as
environmental changes. A faulty robot can stop its execution (crash) or start to behave in an

© Pierre Courtieu, Lionel Rieg, Sébastien Tixeuil, and Xavier Urbain;
licensed under Creative Commons Attribution 4.0 International (CC BY 4.0)

Leibniz Transactions on Embedded Systems, Vol. 8, Issue 2, Article No. 2, pp. 02:1–02:36
Leibniz Transactions on Embedded Systems

L I T E S Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:pierre.courtieu@cnam.fr
https://orcid.org/0000-0001-8789-9781
mailto:lionel.rieg@univ-grenoble-alpes.fr
mailto:sebastien.tixeuil@lip6.fr
https://orcid.org/0000-0002-0948-7172
mailto:xavier.urbain@liris.cnrs.fr
https://orcid.org/0000-0001-7442-2538
https://doi.org/10.4230/LITES.8.2.2
https://pactole.liris.cnrs.fr
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lites
https://www.dagstuhl.de

02:2 Swarms of Mobile Robots: Towards Versatility with Safety

arbitrary way either due to some external factors (e.g. electromagnetic fields, attacks) or to some
inaccurate information received by its own sensors.

Sending a single complex expensive robot for example to explore a dangerous area is often
not the best solution, as some environments are likely to destroy robots in a matter of hours.1
Instead, using a large number of cheap simple robots one can afford to lose, but that nonetheless
are able to coordinate to globally solve a given task, is the underlying principle of swarm robotics.

The possibility to have a robot fail being almost certain, the operator has to use cheap robots
to form the swarm, implying that very weak individual sensing and actuating capacities are to be
privileged. Lowering the individual robots’ abilities raises an important theoretical question: which
individual capacities are necessary (and sufficient) to collectively solve a given task? Obviously,
robots with more abilities than necessary to solve a task can still solve it. Conversely if a given task
solvability requires a particular capacity, and that capacity is unavailable to the robots forming
the swarm, no genius algorithm or protocol can come to the rescue.

Another consequence of failure likeliness is that no robot in the swarm should have a particular
role to assume (e.g. a leader from which other robots wait for orders). Indeed, if the particular
robot ceases functioning or starts behaving arbitrarily, the entire swarm fails. Instead, all robots
are to be given the same role, and self-organization is to be used to take collective decisions
regardless of the current situation.

On the other hand, proving task solvability requires to envision all situations, even the most
unlikely ones. A classical setup only considers the system behaviour from a given well-formed
initial state. Proofs written in the context of swarm robotics must consider all possible failure
occurrences, be they at the individual robot level or induced by a catastrophic change in the
environment.

Actual deployment of mobile robotic swarms mandates preliminary theoretical assessments, to
ensure the swarm behaves according to its specification, and to assess its practical feasibility with
respect to expected completion time and used resources. While the latter is typically quantified
through simulations, the former requires a sound mathematical proof of correctness. Most of the
literature makes use, for this purpose, of handwritten proofs. As recent findings show [1, 14, 32, 33],
handwritten proofs are error-prone, and sometimes erroneous, which may compromise the safety
and the correctness of actual deployments. Hence, a recent trend deals with computer-aided
proving of important properties for mobile robotic swarms.

Following this trend, our focus in this paper is to propose a unified formal approach that
permits us to express both the execution model and its variants, and the property specifications
and their proof, relating all that we formally state to the usual model in the Distributed Computing
Community. In more detail, our starting point is the model by Suzuki and Yamashita [65] (who
was recently awarded the Prize for Innovation in Distributed Computing), extended by the many
variants the Distributed Computing developed throughout the years [37], unified in a modular
formal framework developed in Coq.

Our framework is meant to answer legitimate questions that arise when developing protocols
for mobile robotic swarms:
1. Is algorithm A a solution to problem X in model variant Y ?
2. Is problem X solvable using model variant Y ?
3. Which problems are solvable using model variant Y ?
4. What is the weakest model variant that permit to solve problem X?
5. Does the proof for algorithm A remain valid if we switch model variant Y for model variant Z?
6. etc.

1 https://www.theguardian.com/world/2017/mar/09/fukushima-nuclear-cleanup-falters-six-years-after-tsunami

https://www.theguardian.com/world/2017/mar/09/fukushima-nuclear-cleanup-falters-six-years-after-tsunami

P. Courtieu, L. Rieg, S. Tixeuil, and X. Urbain 02:3

The remainder of the paper is organized as follows. Section 2 reviews previous work related to
the use of formal methods in the context of Distributed Computing, as well as an introductory
example. The Pactole library for the Coq proof assistant is presented in Section 3. In Section 4,
we review the structure of model variants used by the Distributed Computing community for
mobile robotic swarms, while its formalization in our framework is presented in Section 5. Several
case studies in Section 6 demonstrate the simplicity and universality of our approach. Finally,
concluding remarks are presented in Section 8.

2 Formal approaches and their complementary uses

Motivations

Models of distributed computations are traditionally presented in natural language. But the
algorithm, even when presented as pseudo-code [49], cannot be understood without the precise
setting in which it is executed. Implicit assumptions [50] are known as folklore but as properties of
distributed algorithms rely on very subtle hypotheses, in most cases a small barely noticeable shift
in the statement of these assumptions may induce dramatic changes in an algorithm behaviour.
Such shifts can still be found in the literature, and have led to erroneous results being published.

Formal methods tackle this difficulty, most notably with the use of tools providing a mathem-
atical language that is non-ambiguous [62]. Given how challenging the task of establishing correct
results in the area of distributed computing is, the simple fact of using a common non-ambiguous
format for definitions constitutes a significant asset.

So far the most popular formal method in the Distributed Computing community has been
model checking. Formal methods however encompass a wide variety of other methods. Formal
proof for instance has little to do with model checking, and in most aspects it can be considered
as its dual: formal provers can be applied to almost any domain of mathematics [55, 42, 41, 2, 67]
but are poorly automated when dealing with higher order properties, whereas model checkers
only apply on decidable (hence less expressive) logics but are highly automated. Model checkers
produce counter-examples whereas theorem provers do not (at least systematically), etc.

Model Checkers

The power and elegance of model checking lie in building an abstraction of the property to prove,
tailored so that its validity can be checked exhaustively by an automated tool. The correctness of
the abstraction being in general proved on paper.

Model checking has been used with impressive success for distributed protocols, both in
proving [14, 34, 35, 54, 51, 43, 28], and disproving [32, 33, 14] their correctness. In some cases, it
was possible to go as far as program synthesis [16, 59, 36, 31] (that is, generating algorithms that
are correct by design using a computer program). It may however be subject to combinatorial
explosion, or become undecidable [4].

Consequently, model checking often deals with instances of a problem rather than with its
full generality. Parameterized model checking sometimes allows for model checking all instances
where an (infinite) parameter varies. For example, Sangnier et al. [64] makes use of Presburger
formulae to express mobile robotic swarms operating on a discrete space (a ring of size n, meant
to be arbitrary, and a parameter of the model). However, a key result of Sangnier et al. [64] in
this context is that non-trivial properties (namely, liveness properties) are undecidable. Those
recent findings command studying complementary techniques like formal proofs.

LITES

02:4 Swarms of Mobile Robots: Towards Versatility with Safety

Formal Proofs

The formal proof approach consists in writing mathematical proofs in a fully explicit way, leaving
absolutely no reasoning detail hidden or implicit. This is (obviously) a very tedious task, and it
cannot really be applied without the help of mechanical tools, called proof assistants, that provide
(1) a language for mathematical definitions and properties;
(2) an interactive system assisting the user in writing all details of the proofs, thus ensuring their

correctness by construction.

Since the proof system is not bound to be fully automatic, very expressive (undecidable) logics
are allowed, making it possible to write virtually any mathematical definition, as witnessed by the
wide range of mathematical results that have been proven using these tools [55, 42, 41, 2, 67, 48].

A drawback of being very expressive is an induced lack of automation. Despite the help of a
variety of decision procedures for decidable sub-logics of the system, developing proofs in a proof
assistant still requires a lot of expertise.

Given its characteristics, one can expect formal proof to be successfully applied in distributed
computing, but in a way that is complementary to the model checking approach. Figure 1 gives
hints on where a proof assistant and model checking are potentially usable in the everyday life of
a researcher in distributed algorithms.

Primarily, it can be used as the underlying non-ambiguous language for all definitions involved
in Distributed Computing: from high-level model specifications to low-level algorithms and all
their properties. This is a specific complementary benefit of proof assistants. For instance in our
setting it is possible to state and prove properties explicitly quantified over continuous spaces like
R2 or the type of all protocols (functions over functions on R2):

∀ r : (robot → R2) → R2 , . . .

or over types populated with infinite objects like demons (infinite streams):

∀ d : Stream demonic_action , . . .

This makes possible to state for instance that a given task is impossible to achieve [6, 23, 12] in
some model, i.e. that for all protocols (even those that cannot be computed with usual operations)
there exists an adversary (demon) that will make the protocol fail.

Even if this part is much more intricate and needs dedicated expertise, the proof assistant can
also be used to prove these properties. It is notably more tedious than writing a pen and paper
proof because of the required level of details, and it requires expertise in the assistant involved.
Expecting an expert in any domain of computer science to become also an expert with a proof
assistant it thus somewhat unrealistic at this time. It also misses the point as the fundamental
first step consists in providing formal definitions, and not proofs.

Finally the architecture of proof assistants allows for building large libraries of shared definitions
for models, problems, protocols, and theorems, ensuring their mutual consistency, and reusability.
In the long run this makes possible new and increasingly intricate but sound results.

To this goal, collaborations between experts of distributed algorithms and formal proof are
needed and the Pactole library is an example of such collaboration, among others [3, 19].

3 The Pactole library for the Coq proof assistant

3.1 The Coq proof assistant
The proof assistant used for this work is Coq [5, 15]. It is based on type theory and its
language for definitions and properties is a very rich typed λ-calculus: the calculus of inductive
constructions [22, 15].

P. Courtieu, L. Rieg, S. Tixeuil, and X. Urbain 02:5

Model checking

Proof Assistant

Computation
ModelOther Model Problem P Protocol p

Inclusion Impossibility Correctness Instance I

I ⊨LT L ϕ?Counter-examples

abstraction

assisted proof assisted proof assisted proof

automated proof

generation

Figure 1 Potential uses of a proof assistant: Definitions, statements of results and their proofs.

A particularity of proof assistants based on type theory is that the definition language is
also used to express proofs. More precisely it makes use of the Curry-Howard correspondence:
types are considered as properties, and a term of a given type is actually a proof of this property.
Checking correctness of proofs therefore amounts to type-checking λ-terms. Since this is a rather
simple task, a small kernel can be written, and proofs accepted by the proof assistant have strong
guarantees of correctness.

The syntax of the Coq language is similar to that of a functional programming language à
la ML. Function types are written in the usual Curryfied way: A → B → C denotes the type of
functions that take a parameter of type A and return a function from B to C, which can also be
seen as the type of functions that take an A and a B, and return a C but can be partially applied to
their first argument. Applying a function f to an argument a is simply denoted by juxtaposition:
f a.

Function definitions and type synonyms are introduced with Definition. New data types
may be defined either by their exhaustive list of constructors with Inductive (and the pattern
matching of such a type is done by the match ... with ... end construction) or as a Record whose
values are of the form {| fld1 := val1;fld2 := val2 ... |}, and fields can be accessed by the
usual dot notation. For example: let x be the record {| f1 := a ; f2 := b |}, the expression
x.(f1) has value a.

A particular construction allows for defining (sub-)types by intention: { x : T | P x } represents
the type of any element x of type T paired with a proof that P holds on x.

Coinductive types (mainly infinite streams in our context) can be easily defined in Coq and
coinductive values are introduced by cofix.

3.2 Pactole
Developed with and for the Coq proof assistant, Pactole is a library gathering definitions and
proofs on a variety of models of robot swarms. It implements the generic seminal model by Suzuki
and Yamashita [65] presented in details in Section 4.1.

Formally proven results are correct by construction and can therefore be highly trusted and
reused. It is worth noting that it is still the responsibility of the experts of a certain domain to
check what those results are the proof of. It is indeed critically important that the definitions

LITES

02:6 Swarms of Mobile Robots: Towards Versatility with Safety

are scrutinized and validated by the community. The proofs themselves, while sometimes worth
sketching, need not to be human-checked.2 In that respect, a focus in Pactole is on the ease to
write and read specifications.

Designed for robots and in particular agents that are mobile, Pactole provides a wide range
of definitions and proofs, from very high level notions to concrete protocols and their properties:

Definitions of models, proofs of relations between models (inclusion, equivalence, etc.);
problem definitions (gathering, exploration, etc.);
protocol definitions and proofs of correctness;
proofs of impossibility.

All these notions are inter-dependent. One of the benefits of proposing the widest range of
notions of the domain is that they share the same underlying definitions. They are therefore
consistent with each other by construction.

For example, when dealing with impossibility results for some problem P , and protocols solving
P under particular assumptions, sharing the definition of P ensure that these results are correctly
linked together.

As another example, when two models m1 and m2 are proven equivalent (any execution
possible in one is also possible in the other), then any proof made using the definition of m1 can
be transferred to m2 without any risk of a shift in the definitions.

In this article

All the results we present in this paper have been fully formalized and proved in Coq and
Pactole. For the sake of clarity a few definitions given in the following have been slightly
stripped of some technical details. The actual formal development is publicly available at
https://pactole.liris.cnrs.fr.

3.3 A tour of formal proof for robotic swarms
A formal semantics of a dynamic system (processor, virtual machine, robot swarm, physical system,
etc) is a mathematical object that mimics perfectly the aspects of the behaviour of the system
under consideration. All possible behaviours of the system must be possible in the model, and any
impossible behaviour of the system must also be impossible in the model. Some things may be left
out of scope of the model, usually on the basis of being irrelevant to the particular problem under
study. For instance, we may ignore thermal radiation from the sun slowly heating up robots, as
in most cases this does not result in any noticeable behavioural change. Or, while modelling a
processor, we may choose not to model its performance counters and their associated instructions.

The mathematical object modelling the system is generally a function3 taking as input the
state of the environment of the system and returning as output the evolution (the new state)
of the system in this environment. In the following we give a series of examples of increasing
complexity showing how we model different systems in robotic swarms.

3.3.1 A simple example
Suppose we want to model a single robot evolving on a ring with only three nodes in the following
way: when reaching a node in the ring, the robot selects the next node clockwise and starts moving
toward this new target.

2 The actual work of reviewing in the context of formal proof is discussed by Bauer and Mahboubi [13, 56].
3 It may be a relation instead, for instance if the system is non-deterministic.

https://pactole.liris.cnrs.fr

P. Courtieu, L. Rieg, S. Tixeuil, and X. Urbain 02:7

West

North

East

If we suppose that the robot cannot be interrupted during its move from one node to another,
it is sufficient to model the topology with three positions North, East and West. A configuration
is then given by a function returning the position of the robot.

Inductive Position : Type := North | East | West .
Definition Configuration := robot → Position .

It may seem silly to model a configuration with a single robot as a function but this representation
generalizes to an arbitrary number of robots, so we choose to use it from the start.

The evolution of the system can then be formalized as a function round that takes the
configuration and returns the new configuration after one round.

Definition round (c : Configuration) : Configuration :=
fun id :robot ⇒

match c id with (* take position of id and compute the next one. *)
| North ⇒ East
| East ⇒ West
| West ⇒ North
end .

We can now define an execution as an infinite stream of configurations obtained by successive
applications of round,4 and it is quite straightforward to prove for instance that in any such
execution starting from a valid configuration (one position occupied by a robot) from any moment
every node is occupied infinitely many times.

Lemma all_pos_occupied_eventually : ∀ (c : Configuration) (p : Position) ,
Stream . eventually (fun str ⇒ (hd str) Robot1 = p) (execute c) .

Proof .
intros c p .
(* by cases on positions and configurations *)
destruct p;destruct (c Robot1) eqn :heq;

try (constructor 1;now auto);
try (constructor 2; constructor 1;

unfold execute , round; simpl;
rewrite heq; reflexivity);

try (constructor 2; constructor 2; constructor 1;
unfold execute , round; simpl;
rewrite heq; reflexivity) .

Qed .

Lemma all_pos_occupied_forever : ∀ (c : Configuration) (p : Position) ,
Stream . forever (Stream . eventually (fun str ⇒ (hd str) Robot1 = p))

(execute c) .

4 See Figure 5 for the coinductive definition of execute in Coq.

LITES

02:8 Swarms of Mobile Robots: Towards Versatility with Safety

Proof .
cofix HI .
constructor .
− apply all_pos_occupied_eventually .
− simpl .

apply HI .
Qed .

The important statement here is that what is true for this function is also true for the
computation model it represents.5 In other words we have reduced the problem of proving
properties of the model to the problem of proving properties of a well defined function; a task
theorem provers are perfectly suited for.6

3.3.2 The local computations
There is however a problem with this formalization. In the round function above, something
important is left implicit: we formalized the decision of the robot without defining the actual
embedded algorithm operation. Instead, we have only formalized a centralized protocol. This is a
serious gap between the model we want to represent (autonomous robots) and our formalization.
Distributed algorithms have very subtle behaviours, in particular because the code is executed on
different devices “viewing” the global system from different perspectives. Any attempt to model
distributed systems that jumps directly to a centralized vision like this would miss the important,
and most difficult part, of distributed systems. In order to represent faithfully the distributed
nature of our model we need to separate the computations done locally by each robot from the
global behaviour of the system they yield.

To illustrate this, we need to define what the perception of the robot is. In this section we
suppose that the robot sees the ring but cannot detect the “real” identity of a node. The robot
sees the whole ring and knows on which node it stands, though it has no knowledge of whether it
is actually North, East or West. The robot enjoys chirality: it can distinguish the node on its
left (clockwise) from its right (counterclockwise). Let us rework our example to represent the
distributed protocol. In the following we distinguish between two notions:

the global configuration: what is really happening in the system, and where; this viewpoint is
called the global frame of reference or the demon’s frame of reference;
the (local) observation: the global configuration as seen by the robot. In our case the observation
is composed of three nodes Me, Left and Right named after their positions relative to the
observing robot. An observation is a function giving the position of all robots relative to the
observing robot. This viewpoint is called the local frame of reference or the robots’s frame of
reference.

Inductive RelativePosition : Type := Me | Left | Right .
Definition Observation : Type := robot → RelativePosition .

The protocol takes as input an observation and produces a decision: where to go next, expressed
in its own frame of reference.

We reformulate the round function with an explicit call to the protocol on the observation by
the robot. More precisely round

5 The fact that the represented model itself is the model accepted by the community needs a validation by
experts.

6 Actually our claim is that humans also take benefit in agreeing that the function is accepted as the actual
true definition of the model, once approved by the community.

P. Courtieu, L. Rieg, S. Tixeuil, and X. Urbain 02:9

(1) establishes the robot’s observation,
(2) passes it as a parameter to the protocol and takes back the returned decision (expressed in

the robot’s own frame of reference), and then
(3) determines where the robot moves in the global frame of reference.
Note that the protocol we consider in our example is very simple: since the robot sees itself at Me,
its target is always the Left node in its own frame of reference.

Denoting by relative_config the “localized” version of the configuration where nodes are
described relatively to an observing robot (eg. in the first figure of Section 3.3.1 where the robot
is at East, East becomes Me, West becomes Left, North becomes Right) and globalise_pos

the converse function mapping local names to global ones, we obtain the simple code:

(* Always go left, since this is clockwise. *)
Definition protocol (o : Observation) : RelativePosition := Left .
Definition round (c : Configuration) :=
fun id : robot ⇒
let pos_id := c id in (* Where is id? *)
let obs := relative_config c pos_id in(*id sees c rotated with id on Me*)
let destination := protocol obs in (* Call protocol on observation *)
globalise_pos pos_r destination . (* Rotate back to global reference *)

It is now provable that this protocol behaves globally like the centralized version described in
Section 3.3.1.

Lemma equiv_centralized :
∀ c : Configuration , execute c ≡ Centralized . execute c .

Proof .
cofix HI .
intros c ; constructor; [simpl;reflexivity | apply HI] .

Qed .

This kind of proof may be quite difficult on realistic protocols. It generally (although not in
this case) relies on the fact that the algorithm consists in operations that are invariant relative to
the frame of reference.

Note that we can consider another distributed algorithm in the same model just by changing
the protocol operations.

3.3.3 Weakening the sensing capabilities of robots
In this section, we change the computation model and the round function to account for more
realistic sensors. In this new model, the robot’s compass may be subject to arbitrary recalibration
at each round and change its chirality, i.e. its Left node may correspond to its clockwise or
counterclockwise neighbour. Clearly the previous algorithm in this model behaves completely
differently and does not satisfy the same properties, because when choosing always Left the robot
may actually go counterclockwise.

The chirality reversal of the robot is not controllable and may change at each round, each
leading to a different possible execution step. To account for this variability of execution we
reformulate the model: round now takes a new parameter: a flip function that selects the
chirality of the robot at the current round. The protocol is now called on the possibly flipped
observation to simulate the new calibration of the sensors.

More generally, the uncontrollable part of the environment, that is the alea the protocol must
be robust to, should be defined as a parameter of round, so that we can reason for all possible
values.

LITES

02:10 Swarms of Mobile Robots: Towards Versatility with Safety

Denoting by mirror_pos/_obs the reversing of Left and Right we obtain the code:

(* flip id = false → robot id has clockwise orientation,
true → counterclockwise orientation *)

Definition round (c : Configuration) (flip : robot → bool) :=
fun id : robot ⇒
let pos_id := c id in
let c_local := relative_config c pos_id in
let obs := if flip id then mirror_obs c_local else c_local in (* flip? *)
let dest := protocol obs in (* Call protocol on observation *)
let dest_swap := if flip id then mirror_pos dest else dest in (*unflip?*)
globalise_pos pos_id dest_swap . (* Rotate back to global reference *)

With this version of the formal model it is now possible to prove that, for example, there
exist executions that never reach, say, node East. It suffices to use an infinite sequence of flip
functions alternating the chirality of the robot, so that it would go alternatively to North and
West.

Lemma exist_never_reaching_East : ∃ c (d : Stream .t (robot → bool)) ,
Stream . forever (fun strm ⇒ hd strm Robot1 ̸= East) (execute d c) .

Proof .
∃ (fun id ⇒ match id with _ ⇒ North end) . (* initial position *)
∃ (alternate (fun x ⇒ true) (fun x ⇒ false)) . (* alternating demon *)
cofix HI . constructor .
− simpl . discriminate .
− simpl . constructor .

+ simpl . discriminate .
+ apply HI .

Qed .

3.3.4 Modeling Concurrency
Until now, our example involved one robot only. To model several distributed agents acting at the
same time we need to determine the level of synchronicity of the agents. In the version above
(Sections 3.3.2 and 3.3.3) we can see that round always applies the protocol at each round: the
output position of any robot is obtained by calling the protocol on its observation. In other words,
if multiple robots are present it activates all robots at each round. This model where all robots
are always active at the same rate is called fully synchronous and is presented in more details
together with others in Section 4.4.

We can relax this constraint to obtain a more loosely synchronized model: for some reason
robots may not be all activated at each round. Similarly to chirality flips in the previous section,
the subset of robots activated at each round is not controllable. Thus, in the same fashion that
the flip parameter allows for quantifying on the uncontrollable variability of the sensors, a new
parameter is added to account for the variability of scheduling. To avoid multiplying parameters we
group uncontrollable parameters into a single record argument. This argument is called demonic
action in the following in reference to the view of the environment as an adversary trying to make
the protocol’s task fail.

Record Demonic_action : Type := {
activate : robot → bool; (* activated at his round? *)
chirality : robot → bool; (* inverted chirality at this round? *)

} .
Definition round (da : Demonic_action) (c : Configuration) :=

P. Courtieu, L. Rieg, S. Tixeuil, and X. Urbain 02:11

fun id : robot ⇒
if negb (da . (activate) id) then c id (* if not activated, don’t move *)
else (* else move according to protocol and chirality *)
let pos_id := c id in
let c_local := relative_config c pos_id in
let obs := if da . (chirality) id then mirror_obs c_local else c_local in
let dest := protocol obs in
let dest_swap := if da . (chirality) id then mirror_pos dest else dest in
globalise_pos pos_id dest_swap .

In this version of the model, most provable properties depend upon a hypothesis on the fairness
of the scheduler, i.e. constraints on the successive values of activate in the demonic action. See
Section 4.4.

3.3.5 Other refinements
In the Pactole library, we model all the variants of the model described above and a few others.

The demonic action encompasses all external effects altering the operation of our robots. For
example, the ground may be slippery and although robots try to reach a different node, some
of them may simply not move. In this case, instead of reaching their target, the new locations
of the robots depend on another Boolean function provided by the demonic action, say reach,
expressing whether robots stay on their current location or reach their targets. Another example:
a form of asynchronicity can be modelled by considering that robots may be activated while other
have not yet reached their destination, etc.

One does not have to keep extending the definitions of demonic action and round for each
additional environmental effect: there is a general version that can encompass a wide range of
external forces and is explained in Section 5.1. In order to get to this point, we must first present
the seminal model by Suzuki and Yamashita [65] and the corresponding lattice of models.

4 A lattice of models

Research in Distributed Computing has traditionally considered three complementary approaches:
complexity-driven when a particular problem can be solved in a particular model, it becomes

interesting to reduce the complexity of the solutions. Various metrics can be considered, such
as memory, time, number and size of exchanged messages, size of a causal chain of events, etc.

model-driven when a particular model is designed for distributed computations (usually mimicking
actual networks or systems), it becomes interesting to characterize the set of problems that
are solvable in this model.

problem-driven when a particular problem is considered important in a general setting, it becomes
interesting to characterize the models that enable solutions of the problem, and the models
that make the problem impossible to solve.

The domain of mobile robotic swarms is mostly problem-driven. The focus of past efforts have
thus consisted in characterizing which hypotheses are necessary and sufficient to solve a particular
problem. Since the various hypotheses considered are sometimes unrelated, it becomes difficult
to compare two different models with different sets of hypotheses. However, some particular
hypotheses can be ordered, inducing a partial ordering among models. This partial ordering is
important for two reasons: (i) if a model X is “weaker” than another model Y (in the sense that
fewer computations are possible in model X than in model Y), then a solution to a problem
considering model Y is also a solution to the problem considering model X, and (ii) if a given

LITES

02:12 Swarms of Mobile Robots: Towards Versatility with Safety

F G

A B

H I

C

ED

Figure 2 A lattice of models, with proofs on models B and H carrying to other models in the lattice.

problem admits no solution in model X, then it also admits no solution in model Y . Since the
ordering between models is only partial, it is possible that two distinct models are both necessary
and sufficient for solving a particular problem, albeit being unrelated with respect to the partial
order.

Figure 2 depicts a possible partial order of models, where X ← Y denotes the fact that X is a
weaker model than Y . For a given problem, one was able to prove that a solution exists assuming
model B, but that no solution exists assuming model H. Hence, from the partial hierarchy of
models, it is possible to deduce that the problem is also solvable in models A, G, and F (that are
weaker than B), and impossible to solve in models I, C, and E (that are stronger than H). From
the current results, it remains unknown whether the problem is solvable assuming model D.

Hypotheses about the model span across various dimensions. The main ones are:
synchronization relates to the fact that mobile robots have independent control flow, and may

thus execute their protocol at different paces;
memory relates to the fact that robots may make use of persistent memory, and may want to

store various kinds of data (e.g. bits or Euclidean positions);
sensors relates to the fact that robots may have limited sensing capabilities, or limited ability to

receive messages from other robots;
actuators relates to the fact that robots may have unreliable motion actuators;
faults relates to the fact that robot may follow their prescribed protocol or deviate from it [29].

The rest of the section presents the main relevant hypotheses that have been considered since
the paper of Suzuki and Yamashita, and their induced order.

4.1 The Suzuki and Yamashita model
The seminal paper for studying robotic swarms from a Distributed Computing perspective is due
to Suzuki and Yamashita [65]. They introduce, in this paper, a mathematical model for studying
geometric pattern formation by swarms of possibly oblivious robots. The motivation for studying
oblivious robots (that is, robots that do not retain history of past actions) is resilience to faults.
For example, if a robot crashes, after rebooting it should not trust the content of its memory,
either because it might be corrupted, or because it refers to an outdated view of the system.
Ignoring past actions forces the design of algorithms that are simply more versatile.

P. Courtieu, L. Rieg, S. Tixeuil, and X. Urbain 02:13

In the Suzuki and Yamashita initial model, robots are represented as dimensionless points
evolving in a bidimensional Euclidean space (that is, R2), and can accumulate on the same
location. They operate in Look-Compute-Move cycles. In each cycle, a robot “Looks” at its
surroundings and obtains (in its own coordinate system) a snapshot containing some information
about the locations of all robots. Based on this visual information, the robot “Computes” a
destination location (still in its own coordinate system), and then “Moves” towards the computed
location. When the robots are oblivious, the computed destination in each cycle only depends
on the snapshot obtained in the current cycle (and not on the past history of actions). The
visual snapshots obtained by the robots are not necessarily consistently oriented in any manner.
Then, an execution of a distributed algorithm by a robotic swarm consists in having every robot
repeatedly execute its Look-Compute-Move cycle. In general, executions are infinite (even if
robots do not move after a while, they still look, compute and decide not to move) and fair (every
robot executes an infinite number of Look-Compute-Move cycles).

Although this mathematical model is perfectly precise, it allows a great number of variants
(developed over a period of 20 years by different research teams [37]), according to the various
dimensions described above, namely: sensors, memory, actuators, synchronization, and faults,
which we investigate now. This flurry of subtly different models makes reasoning very error-prone
as it can easily happen that one designs a protocol in a model, and derives its proof in a slightly
different one, without noticing the difference. A summary of all model variants explored in this
section in depicted on Figure 4. In order to remain readable, we present all the dimensions
separately, so that the overall lattice must be understood as the Cartesian product of all these
smaller lattices.

4.2 Sensors

Robots perceive their surroundings through sensors, whose abilities have strong impact on task
solvability. The most commonly considered types of sensors vary along several capabilities,
described below. Obviously, one can think of other kinds of sensors not described here. For
instance, in a completely opaque environment, one may imagine that the only available information
is by direct contact through bumpers.

4.2.1 Range

The most obvious parameter of sensors is their range, that denotes how far a robot can sense
another robot’s location:
full visibility robots are able to sense every other robot’s location, regardless of distance;
limited visibility there exists λ > 0 such that robots are able to sense every other robot’s location

if their distance to the observing robot is less than λ, and are unable to sense the locations of
other robots [38];

k-random there exists λ > 0 such that robots are able to sense every other robot’s location if
their distance to the observing robot is less than λ, and up to k robots at distance more than λ,
chosen uniformly at random, cannot be sensed (the other “distant” robots can be sensed) [45];

k-enemy there exists λ > 0 such that robots are able to sense every other robot’s location if their
distance to the observing robot is less than λ, and up to k robots at distance more than λ,
chosen by an adversary, cannot be sensed (the other “distant” robots can be sensed) [45].

Note that in general, robots are not aware of λ. Obviously, a protocol assuming limited visibility
is strictly more powerful than one that requires full visibility.

LITES

02:14 Swarms of Mobile Robots: Towards Versatility with Safety

4.2.2 Multiplicity detection
Multiplicity refers to the ability of robots to distinguish (to some extent) the number of robots
sharing a given location. There are three variants about the accuracy, ordered by decreasing
strength:
no multiplicity detection sensors can only distinguish occupied and unoccupied location, but any

estimation about the number of robots present remains unknown;
weak multiplicity detection sensors can distinguish between a single robot or more than one

robots at a location, but not their precise number [47];
strong multiplicity detection sensors can accurately count the number of robot at a location.

Another axis for variants is related to the range of the multiplicity detection:
local multiplicity detection indicates that weak or strong multiplicity information is only ob-

servable for the position of the observing robot (that is, a robot can only obtain multiplicity
information about its own location) [46];

global multiplicity detection indicates that weak or strong multiplicity information can be ob-
tained for all observed positions (that is, a robot can obtain multiplicity information about all
locations in its viewing range).

Overall, we thus have five variants for multiplicity: no multiplicity, weak local multiplicity,
weak global multiplicity, strong local multiplicity, and strong global multiplicity. Obviously, an
algorithm assuming no multiplicity detection is more powerful than one requiring any of the other
assumptions. However, some assumptions are uncomparable, e.g. weak global multiplicity and
strong local multiplicity.

4.2.3 Orientation
This refers to the ability of robots to share some common notion of direction or orientation. Again,
there are many variants:
common direction the robots have the same North-South and/or East-West axes, but the direction

along these axes may be inverted (this is also called two-axes direction) [40];
common orientation in addition to having the same two axes direction, robots may also share

orientation on either one axis (e.g. North only) or two axes (e.g. North and West);
common chirality robots have the same notion of left and right [39].

Notice that it is entirely possible to have common chirality without sharing a common direction.
When having common direction, orientation on one axis, and chirality, robots are said to have full
compass. Note that orientation on one axis and chirality amounts to having orientation on two
axes.

4.3 Memory/Communication
The benefit of using oblivious robots is that they easily recover from crashes and memory corruption.
Nevertheless, several extensions with memory have been proposed, ordered from strongest to
weakest:
oblivious only volatile memory is available. Memory is reset at the beginning of each Look-

Compute-Move cycle. Robots thus have no memory of past actions. Practically, robots only
use their current snapshot in the compute phase.

finite memory robots may have persistent memory between Look-Compute-Move cycles. Sev-
eral variants of this model called the luminous model [26, 66, 44, 27, 25] have been investigated
(see below).

P. Courtieu, L. Rieg, S. Tixeuil, and X. Urbain 02:15

Round 1 Round 2 Round 3 Round 4

(a) The FSYNC model.

Round 1 Round 2 Round 3 Round 4

(b) The SSYNC model.
Round 1 Round 2 Round 3 Round 4

(c) The centralized model.

· · ·

(d) The ASYNC model.

Figure 3 Synchronization hypotheses in models.

infinite memory robots may make use of an infinite amount of memory. It allows robots to
remember a full observation, as the position of robots may have to be encoded as actual real
numbers (in the ego-centred observation).

Since robots are assumed to be anonymous, there is no way of performing point-to-point
communication with a particular neighbour. Therefore, communication is handled through
broadcast, which is described as the robots having lights whose color may be adjusted during the
compute phase. In addition to the number of available colours for a robot light (hence the amount
of states of information transmitted), there are three kinds of lights:
internal lights are only visible by the emitting robot itself, thus actually represent finite memory

(the robot communicates with itself);
external lights are only visible by other robots but not the emitting root, thus they represent

communication without memory [60];
full lights combine internal and external lights: they are visible by all robots.

4.4 Synchronicity and fairness
The considered model is based on discrete logical time, that is, on a sequence of events, an event
being any change in the state of any robot.

The possible interleavings of those events define the synchronicity level of an execution.
If the Look-Compute-Move cycles are considered atomic, that is no event can occur during

a cycle, the model is said to be semi-synchronous (SSYNC): a subset of the robots enter (and
finish) their cycle and each phase within it simultaneously while the others are idle, hence the
notion of round. In the constrained version of SSYNC where no robot is idle, that is where all
robots are activated simultaneously, the execution is said to be fully-synchronous (FSYNC). In the
case where the cycles are not atomic and may overlap, the execution is said to be asynchronous
(ASYNC) [40]. Clearly, ASYNC is the strongest model and FSYNC is the weakest.

A fourth synchronicity model exists: the centralized one, where only a single robot moves every
round. It is a particular case of the SSYNC model (thus it is weaker) but it is incomparable to
the FSYNC one.

Figure 3 illustrates these synchronicity hypotheses.
These synchronicity hypotheses between the Look-Compute-Move cycles of robots are of

paramount importance for proofs. Many proofs made in weak synchronization models were claimed
to hold also under stronger synchronization models but turned out to be incorrect. This is actually
the main source of errors in the literature.

LITES

02:16 Swarms of Mobile Robots: Towards Versatility with Safety

In the FSYNC, SSYNC, and centralized models, the actual duration of each phase does not
matter since no observation occurs while a robot is moving, which justifies using discrete logical
time. On the opposite, the ASYNC model represents the complete lack of synchronization between
robots, and duration is important here, as a robot may observe others while they are moving.

Fairness

In all models except FSYNC where all robots are active at all times, the subset of active robots is
chosen by the environment. In all generality, nothing prevents the environment, a.k.a the demon,
from starving some or all robots. Obviously, most tasks are infeasible if some robots never get
opportunities to act. Thus, there are fairness constraints on demons: a demon is said fair if every
robot gets activated infinitely often. This is equivalent to saying that at any point of the execution,
every robot is eventually activated.

Although fairness is usually enough for most protocols, it does not give any guarantee on the
relative rates of robot activations: a robot may be activated arbitrarily more often than another.
To remedy this situation, one can use the stronger fairness condition of k-fairness:7 every robot is
activated at least once for every k activations of any other robot.

4.5 Rigid/Flexible Movement
The atomicity of cycles does not imply that the computed destination is actually reached by a
robot before the start of its new cycle: the robot may be interrupted during its move by the
environment.

An execution where all robots always reach the destination returned by the protocol is said to
be rigid. Conversely, if robots can start a new cycle before they completed their scheduled journey,
the execution is flexible. In such a case, so as to avoid Zeno-like counter-examples, it is assumed
that robots travel at least some minimal non-null distance δ towards the expected destination
before being subject to restart. In particular, a journey shorter than δ is always completed. This
minimal uninterruptable distance is unknown to robots;8 they may however take into account
that such a minimum exists.

4.6 Faults
In an adversarial environment, faults must be considered, either because malicious agents are
present or because one of our own agent has been corrupted.

The most common fault hypotheses made in models are (from strongest to weakest):
byzantine faults some robots do not follow the protocol and are controlled by an adversary;
crash some robots may crash and stop acting forever;
no fault correct robots follow the protocol forever.

Notice that the faults described here are permanent, that is, they span the entire execution
once they occur.

7 Early literature introduced k-bounded: between two activations of a robot, there are at most k activations of
any other robot. This is not equivalent to k-fairness since it is vacuously satisfied if a robot is never activated:
there are no two activations we should count activations of other robots between. Furthermore, one can prove
that k-bounded and fair is equivalent to k-fair, making k-fairness the useful notion.

8 It would however make little sense to base an algorithm on such an absolute δ as it is possible that robots do
not share frames of reference.

P. Courtieu, L. Rieg, S. Tixeuil, and X. Urbain 02:17

Range

Multiplicity

Orientation

Memory/Lights

Synchronicity

Fairness

Rigidity/Flexibility

Faults

Full
visibility k-random k-enemy Limited

visibility

Strong global
multiplicity

Weak global
multiplicity

Strong local
multiplicity

Weak local
multiplicity

No multiplicity

Full
compass

Shared 1-axis
orientation

Shared
direction Disoriented

Shared
chirality

Infinite memory

Full lights

Internal lights

External lights

Obliviousness

FSYNC

Centralized

SSYNC ASYNC

k-fair Fair

Rigid Flexible

No fault Crash Byzantine

Figure 4 The model lattice for robot swarms, as the Cartesian product of smaller lattices.

LITES

02:18 Swarms of Mobile Robots: Towards Versatility with Safety

5 The formalization of the Suzuki, Yamashita model

The formalization of a computation model in a proof assistant consists of a body of mathematical
definitions linked together. The main statement defines the set of correct computations in this
model. This definition must be inspected very carefully to ensure it complies exactly with what
specialists have in mind. It is however not rare that on the occasion of a formalization one
realizes that different specialists have slightly different models in mind. Formalization is thus
the occasion of clarifying things, either by proving equivalence of models or by establishing more
subtle correspondences between them.

The computational model introduced by Suzuki and Yamashita states basically that robots
move in space according to their observation of the environment. In order to complete a formal
description of this model, we hence have to provide a Coq encoding of the relevant space, and
of course a way to characterize robots and their sensors (that is the way the environment is
perceived).

Implementing robot capabilities and instantiating the universe the robots move in must be
generic, abstract, and (relatively) user-friendly. This is crucial, as this is where the developer
clarifies assumptions and removes ambiguities and the expert validates definitions. It is a sine qua
non for a broad acceptance of a formal framework.

We must also formalize the Look-Compute-Move cycles and their possible interleavings:
i.e. the core of the model and its synchronicity level. While the latter is still a parameter chosen
by the user, the core itself is agnostic to assumptions about the environment. It is modelled in
the framework by a function, round, that the developer never has to look at, except maybe for
reassurance that it actually encodes Suzuki and Yamashita’s robotic swarms model.

We hence shall describe first how round simulates the evolution of the system, with completely
abstract parameters. Then we explore how various flavours of Suzuki and Yamashita’s robots
can or cannot solve fundamental tasks, and how to instantiate those variants within our formal
framework.

5.1 Structure of the model, abstractions
So as to keep the core of the model as generic as possible, we provide the description of the
environment as parameters. This way, those specifications and assumptions are kept abstract in
the core, that is the actual description of how the system evolves.

The environment may be defined with several straightforward settings: the space where robots
are moving, the level of synchronicity, the characteristics and capabilities of robots and their
sensors (for example their accuracy or range), etc. Figure 6 and Section 5.4 show in details the
structure of all parameters that must be instantiated.

Following Figure 6 we consider being given:
a topology with its usual operations,
the definition of a robot’s state that includes its location (the position in space it is at), and a
way of accessing it for all robots,
a notion of observation that only considers what is allowed by the relevant variant, and finally
an embedded algorithm : the protocol.

Usual operations regarding the space and its topology typically include a decidable equality on
locations and change of frame operators.

A state describes, typically as a record, the internal state of robots, including in certain cases
of synchronicity (namely ASYNC) their computed destination. Its access is ensured through the
configuration: a function that takes a robot identifier as argument, and returns its state.

P. Courtieu, L. Rieg, S. Tixeuil, and X. Urbain 02:19

The configuration cannot generally be used as an observation of the robots as it may include
private information about internal states, and thus may display what should not be observed by
other robots. It is the case for example if local sensors have a limited range, or cannot get robots’
ids, or even cannot detect multiplicity (i.e., the exact number of robots inhabiting a location
in space), etc. Forbidden/private information is thus pruned from the configuration to get an
observation. That observation is the one and only allowed input for a robot to compute its next
destination; examples of its instantiation are given in section 5.3.2.

The protocol, that is the embedded algorithm that returns a path to a destination 9, based on
an observation, is shared by all robots. It consists of the actual function mapping observations to
(path-containing) states, and some properties (though irrelevant to round) ensuring, for example,
that two equivalent observations produce equivalent paths and destinations, or on a graph that
there is an actual arc towards the targeted node.

While the Pactole library can express all of the synchronicity hypotheses, namely ASYNC,
SSYNC, centralized, and FSYNC, we shall focus in the following on the description of SSYNC
executions (of which FSYNC executions are a particular case).

Modelling flexible executions simply amounts to allowing for a restart of any robot at any
ratio of its trajectory, providing the effectively travelled distance is at least the minimal one δ.
The new state is returned accordingly.

5.2 The function round

We describe the evolution of the system, following Suzuki and Yamashita’s model, with a function:
round.

5.2.1 Inputs
We want to design a function that, from a configuration, and given an embedded algorithm,
returns the next configuration. Two obvious parameters for round are thus:
1. the configuration, and
2. the shared algorithm driving the robots: the protocol.
However, what happens in a step of execution depends also on some choice made by the demon,
akin to Maxwell’s: which robots are activated, what the new frames are, what distances are
effectively travelled. . . We consider those choices as the results of a demonic action, which is given
as an extra argument to round:
3. a demonic action.
We may find in a demonic action:

the indication that a robot of a given id is activated, that is a function activate returning a
Boolean when given an id as argument, in the special case of an FSYNC execution, its result
is always true.
a function for conversion of frames of references, say change_frame,10

the actual function returning relevant choices on the entry of any robot’s id. That function is
a parameter of the model, it is hereafter referred to as choose_update.

9 Observe that simply assuming robots move toward the destination along a straight line precludes the use of
our framework for e.g. proving the correctness of existing algorithms that make use of non-linear paths, such
as parametric paths used by Defago et al. [30]. Hence, to preserve generality of the framework, we assume
protocols return a path.

10 As it is constrained by the robot under consideration (recall that frames are self-centred) this function takes
also a robot as argument.

LITES

02:20 Swarms of Mobile Robots: Towards Versatility with Safety

Depending on assumptions, robots may also undergo Byzantine failures. As the movements of
Byzantine robots is, by definition, not determined by the algorithm, demonic actions must in
that case include:
a function that chooses the next destination of each Byzantine robot, hereafter referred to as
relocate_byz.
Finally, one needs a set of properties ensuring that the choices are coherent, for example that
robots do not go past their computed destination, do not follow non-existing paths, etc.

The infinite sequence of demonic actions characterizes the choices for the whole execution, and
constitutes the demon of the execution.

Finally, we have to be able to express flexible executions. Recall that in those, robots may be
interrupted/restarted before they reach the end of their planned journey, but after they travelled
at least an absolute distance δ. While the value of δ is unknown to robots, it is used in enforcing
that the execution fulfils the aforementioned constraints. It has thus to be provided to round:
4. a minimal travel length δ.

It is worth noticing that the formal development allows for comparison of demons; it provides
in particular proofs that demons with rigid movements are equivalent to demons with flexible
movements and movement ratio 1, in the sense that any execution for one can be also obtained
for the other.

We shall now describe the evolution of the system, following Suzuki and Yamashita’s model,
by devising our function round.

5.2.2 Operation
For the sake of simplicity, we focus on SSYNC flexible executions, of which FSYNC flexible
executions are the particular case where all robots are selected to be activated by every demonic
action.

In the remainder of this section, we shall denote the four formal parameters for round as
follows :

δ obviously represents δ,
r represents the protocol,
da represents the used demonic action,
c represents the configuration.

The result of round is a configuration, that is a function. The body of round δ r da c is hence
a functional object taking an identifier, say id, as unique parameter, and returning its (new) state.
We just have to describe this new state.

The first step is to figure out if the robot is activated, that is susceptible to undergo any
change. This is a decision of the demon, and as so is stated in the demonic action. In an SSYNC
context, da.(activate) id can either return false,11 in which case the new state is the previous
one: c id; or return true in which case choices and changes may apply for robot id: usually some
change of frame function together with a travel ratio.

Note that this information is irrelevant if id is Byzantine. Should it be the case, its new state
would be arbitrarily chosen by the demon, using da.(relocate_byz).

Otherwise, if id refers to a correct robot, the new state depends on the protocol that requires
an observation for id.

11 Recall that this is never the case in an FSYNC execution.

P. Courtieu, L. Rieg, S. Tixeuil, and X. Urbain 02:21

1. The configuration is thus expressed from id’s point of view using its new frame of reference
provided/chosen by the demonic action da. One obtains id’s observation by pruning the now
translated configuration from illegitimate information.

2. The protocol may now be applied on that observation.
The results contains in particular a path to a destination location, but is this local target
reached before a new cycle starts? That depends of a choice of the demon, and is constrained
by the ratio provided in da.(choose_update) id.
Any destination location, in the local targeted state, closer than δ is reached, otherwise the
location attained along the path is the one determined by the chosen ratio, the chosen target.

3. The demon-chosen target state is computed from the local target state by applying in particular
the travel ratio.

4. As the distance between the current location of the robot and the chosen target is to be
compared to the absolute δ, coordinates have to be translated back to the demon’s frame of
reference. The actual update with the new state can now be obtained from the result of this
comparison: either the new location corresponds to the target locally computed or to the
(demon-) chosen one.

5.3 Model specialization

As the core of the model is set once and for all, we may consider the many variants of Suzuki and
Yamashita’s robots. A slight modification of the robots, in their sensor capabilities for example,
can dramatically change the feasibility of any given task. We shall review some of those, and
describe how to instantiate the formal model accordingly.

5.3.1 Space

In this paper, we mainly consider the Euclidean plane R2 [24, 11]. Nevertheless, the formal model
is not tied to this choice and we can consider any other space such as the real 3D space (R3), the
real line (R) [6, 23], discrete ones such as a ring (Z/nZ) or an arbitrary graph [12], possibly with
robots moving continuously on edges [7], or even more exotic ones.

Providing a space in the formal framework amounts to define a type of locations where the
robots are, and the necessary operations to compute: distances, the actual operations of the
protocol, and changes of frames of references.

The computations by the protocol usually involve basic arithmetics; this is for example the
case in Courtieu et al. [24] or Balabonski et al. [11] where all the necessary machinery to compute
barycentres is provided with the instantiation of R2.

Conversions into different frames of references can be as simple as rotations and homothetic
transformations in a Euclidean space. They are however subtler when the considered space is a
graph, and may then involve permutations of the node names.

To allow for a comfortable use of graphs in Pactole, Balabonski et al. [12] define a (light-
weight12) template to be instantiated as desired by the user. The relevant interface is designed to
link up with the general signature for spaces; it provides also a specialised version for rings.

12 This template is not intended to be as powerful as a specialised development on graphs, like for instance the
LoCo library for local computation on graphs [19].

LITES

02:22 Swarms of Mobile Robots: Towards Versatility with Safety

Definition round δ r da c :=
(** for a given robot, we compute the new configuration *)
fun id ⇒

let state := c id in (* state: id’s state as seen by demon *)
if da . (activate) id (** Is the robot activated? *)
then match id with (** Byzantine or correct? *)

| Byz b ⇒ da . (relocate_byz) b (* Demon relocates Byzantine *)
| Good g ⇒ (* Config. expressed in the frame of g: PHASE 1 *)
let frame_conv := da . (change_frame) c id in
let local_config := map_config frame_conv c in
let obs := obs_from_config local_config id in

(* APPLY r ON OBSERVATION: PHASE 2 *)
let local_target_state := r obs in

(* Demon chooses a point on the path to the target *)
let chosen_target_state := da . (choose_update) (* PHASE 3 *)

id
local_config
local_target_state in

(update (* Actual update: PHASE 4 *)
δ (* (including comparison) *)
local_config
id
frame_conv −1

loc_target_state
chosen_target_state)

end
else state . (** Inactive robots stay unchanged *)

(** [execute r d config] returns an (infinite stream) execution from an
initial global configuration config, a demon d and a protocol r
running on each good robot. Each configuration being the result of
round applied to the previous configuration (and the corresponding
demonic_action). *)

Definition execute r : demon → configuration → execution :=
cofix execute d c :=

Stream .cons c (execute (Stream .tl d) (round δ r (Stream .hd d) c)) .

Figure 5 The round function, core of the formal simulator, and the execute function that produces
an infinite execution from it.

P. Courtieu, L. Rieg, S. Tixeuil, and X. Urbain 02:23

5.3.2 Sensors
One of the key concepts in Suzuki and Yamashita’s model is the one of observation, that is the
way to get some snapshot about the environment. The sensor capabilities can indeed change
dramatically what is achievable in any given model. A very simple example of that is perception
with a limited range: if robots are far enough apart to the point of not being aware of the others,
there is no hope of cooperation of any kind!

Even seemingly minor differences may change the impossibility frontier: Gathering is im-
possible in general [23], but becomes possible with either a common compass [40] or detection of
multiplicity [24] (that is, when robots can count the number of robots on a location instead of
just detecting that the location is inhabited).13

Sensor capabilities are modelled through the way the configuration is perceived, that is
transformed into an actual observation. The fact that states of robots may include some internal
states, and thus may display information that should not be observed by other robots, prevents
them to be used directly as an observation.

Depending on the variant one is interested in, assumptions may indeed require that local
sensors cannot tell robots apart (anonymity), or detect whether they are correct or Byzantine, or
are endorsed with multiplicity detection, etc.

These restrictions can be defined and encapsulated in the notion of observation, which charac-
terizes what a robot’s sensors can perceive of the global system.

To obtain the observation, that is the only input to the protocol, all forbidden information
must be pruned from the configuration. To that goal, a function obs_from_config is devised to
return an observation when given the actual configuration. This function takes also the internal
state of the observer, as the actual perception may depend on characteristics of its own sensors.14

Sensor capabilities are thus characterized through:
the datatype for observation, and
the operation of obs_from_config.

5.3.2.1 Anonymity, multiplicity

Modelling capabilities through the type definition is straightforward as the type has to describe
only the public information.

Let us say one wants to model anonymous robots, equipped with sensors that can “see” the
whole universe, and detect the number of robots inhabiting any location (strong multiplicity). A
convenient datatype for the observation in that case may be simply a multiset of the inhabited
locations, the detection of multiplicity (number of robots in a place) being directly expressed by
multiplicities of elements (number of times a location appears as the location of a robot).

This is not tied to the underlying space: in the case of a discrete graph where no node naming
or origin is shared between robots, one would have a multiset of nodes, with one node marked as
the location of the observing robot.

In the case the anonymous robots cannot distinguish between different inhabitants, detecting
only that the location is inhabited, the observation datatype may then be just a set of inhabited
locations. Again, this would work just as well on a graph rather than the Euclidean plane.

For non-anonymous robots, observations may be sets of pairs consisting of a robot identifier
and the location where this robot is.

13 Constraints on the starting configuration may be necessary, like the forbidding of a bivalent configuration.
14 Of course, that does implies presence of (parts of) the internal state in the result of obs_from_config,

which depends on what is allowed by the variant.

LITES

02:24 Swarms of Mobile Robots: Towards Versatility with Safety

5.3.2.2 Accuracy, range limits

It is possible to represent bounded accuracy of sensors, or limited vision, in the sense that the
whole space is not perceivable by a single robot. Those are variants that are taken care of in the
function rather than in the datatype definition directly.

Bounded accuracy can be obtained by rounding values in the configuration to the adequate
level before entering them in the observation. It is for example possible to introduce noise, or
even map actual locations to an underlying discrete version of the space, where robots perform
their computations.

Limited perception is obtained by deleting from a “total” observation the robots that are
out of range for the observer under consideration. Note the use of the internal state, given as
a parameter, in that case where location and range of detection are at play to determine the
observable ball.

5.3.2.3 Colours, memory

In the robots with lights variant, robots are equipped with coloured lights that they can turn on
and off. Colours can have a dramatic impact on possibility results, as they introduce a form of
communication and, when self-perceived, a certain kind of memory.

Let us consider that the observation for a variant without colours is, say, a multiset of n-
tuples (location, id, etc.). Adding colours to that variant basically consists in adding the colour
information to that observation, that is considering a multiset of n + 1-tuples including the colour.
An additional tuple that represents the observing robot itself must be added if it can detect its
own colour. It must be absent from the observation otherwise, as it introduces some memorized
information about the robot’s previous state.

Should robots be endowed with unbounded memory, being able to remember all previous
observations for example, adding the list of previous observations as an internal state in the
definition of the robots suffices. The relevant information from this list would then be included in
the observation by obs_from_config.

5.4 Formal Parameters of the model

Figure 6 shows all the parameters needed to instantiate a particular model. The main parameters
are:

the location and more generally the State of the robot;
the observation of the robot;
the characterization of a demonic_action;
the way the robots move (update_function), given the decisions of the robot and of the
demon.

These parameters are themselves parameterized by types (Names, etc).

6 Examples

Examples provided in this section contain only a small subset of certified results obtained with
the Pactole framework. For completeness, we summarize published results based on Pactole
in Table 1.

P. Courtieu, L. Rieg, S. Tixeuil, and X. Urbain 02:25

State

Location,state

+get_location

demonic_action

(Names, TframeChoice, TrobotChoice, TactiveChoice)

+activate: ident → bool
+relocate: config → B → state
+change_frame: config → G → Tframe
+chose_update: config → G → TrobotChoice → TactiveChoice

update_function

Names TframeChoice TrobotChoice
TactiveChoice

+update

Observation

Names,observation

+obs_from_config: configuration → state → observation
+obs_is_ok: observation→ configuration → state → Prop

Model

+round:
protocol
→ demonic_action
→ config
→ config

Figure 6 Parameters needed for a model.

6.1 Gathering
Robotic swarms are mostly a problem-driven domain, and as such focus on a few paradigmatic
problems, some being fundamental, as for instance Gathering. This problem has been extensively
studied, in particular by Principe [63], and in a formal setting by Balabonski et al. [10].

In its commonly shared definition, solving Gathering consists in having, within finite time, all
correct (non-Byzantine) robots to stand on the same location, unknown beforehand, and to stay
there indefinitely.

To describe Gathering formally, one has to define static (depending only on the configuration)
and dynamic (depending on the demon) properties characterizing:
1. a configuration with all correct robots located at the same position, say p,
2. an execution with all correct robots staying at the same position indefinitely,
3. an execution consisting of a finite number of evolution steps (the actual gathering movements),

followed by what is an execution fulfilling the description of item 2.

The first item is easily modelled by a definition gathered_at stating that, given a configuration
c and a location p, for any robot identifier, if that robot is correct, then its location is p in c.

Definition gathered_at (p : location) (c : configuration) : Prop :=
∀ id , good id → get_location (c id) = p .

The second item characterizes an execution e with a location p: at each step in e, that is for
each configuration c in e,15 gathered_at p c holds. Let us call this property of p and e: Gather
p e.

15 Recall that executions are streams of configurations, so that a property P on the head of a stream e must be
projected by Stream.instant P e.

LITES

02:26 Swarms of Mobile Robots: Towards Versatility with Safety

Table 1 Certified results based on Pactole

Problem Type of result Setting References LoC

Framework
Core All 1 000
Spaces R, R2, rings, grids, graphs 5 176
Observation multiset, sets 626

Gathering
Impossibility R, R2, SSYNC [23] 1 109
Correctness R, R2, not bivalent, SSYNC [24] 2 307
Correctness R2, FSYNC, flexible [11] 609

Convergence Impossibility R, 1/3 Byzantine [6] 578
Correctness R, FSYNC 170

Exploration Impossibility Ring, FSYNC, n|k [12] 474
with stop Necessary condition Ring, FSYNC 203
Life-line Correctness R2, FSYNC [8, 9] 1592

Model equivalence Graph, ASYNC [7] 1187
Model equivalence ASYNC, flexible/rigid 275

Definition Gather (p : location) (e : execution) : Prop :=
Stream . forever (Stream . instant (gathered_at p)) e .

The third item states a location p exists such that the Gather p status is reached in finite time
for an execution e. WillGather e is directly an inductive property over streams, that is holding
from a point in the stream accessible/reachable in finite time.

Definition WillGather (e : execution) : Prop :=
Stream . eventually (fun ex ⇒ ∃ p , Gather p ex) e .

A protocol r achieves Gathering for a demon d if from any starting configuration c, all correct
robots are eventually gathered forever in the execution obtained from r and d, that is :

Definition FullSolGathering r d : Prop :=
∀ c , WillGather (execute r d c) .

Expressing now that a given protocol r is a solution to Gathering is simply stating that for
every demon d, FullSolGathering r d holds.16

Conversely, expressing that Gathering is unsolvable (under certain assumptions) is simply
stating that for any protocol r, it does not hold that r solves Gathering for every demon.

6.1.1 A model where gathering is proven impossible
In this section we give an example of a model where gathering is proved impossible. This is a well
known fact [65, 63], of which a generalized version has been formally proved [23].

Instantiating the model

Let us have an arbitrary even number of robots, say n, of which none is Byzantine, moving on the
Euclidean plane (note the use of Variable and Hypothesis for parameters left abstract).

16 This can be constrained to demons fulfilling the assumptions of the considered variant: synchronicity, fairness,
etc.).

P. Courtieu, L. Rieg, S. Tixeuil, and X. Urbain 02:27

Variable n : nat .
Hypothesis even_nG : Nat .Even n .
Definition MyRobots : Names := Robots n 0 .
Definition Loc : Location := make_Location R2 .

Movements are rigid (that is: robots always reach their destination before the next round).
No demon interference is applied on robot’s choice, and all operations deal with locations only:

Definition rchoice : Trobotchoice := location .
Definition state : State location := OnlyLocation .
Definition dchoice : Tactivechoice := unit .
Instance UpdFun : update_function := RigidUpdate .

Robots have multiplicity detection but cannot distinguish one robot from another. To model
this limitation in sensing capabilities, we define the observation of a robot as a multiset of
locations: the multiplicity of a location p gives the number of robots present at p, but robots
are not identifiable. We give here the instantiation of the Observation model parameter. It is a
record containing:
(1) the logical definition of what the observation of a configuration must be: obs_is_ok, which is

what is used in future proofs;
(2) the definition of the function obs_from_config that computes the observation, from the

configuration, and that is used in round (see figure 5)
(3) the proof of correctness of obs_from_config with reference to the characteristic property

obs_is_ok.

Definition multiset_observation : Observation := { |
observation := multiset location;
(* Characteristic property of the observation of a config. *)
obs_is_ok obs (c :config) st :=

∀ loc , multiplicity obs loc
= countA_occ loc (map c MyRobots);

(* Function computing the observation from config *)
obs_from_config c st := make_multiset (map c MyRobots) ;
(* Proof that obs_from_config satisfies characteristic property *)
obs_from_config_spec c st : obs_is_ok (obs_from_config c st) c st :=

. . .
|} .

Note that in this example, the assumptions on the sensors are completely global, unrelated to the
internal state of the observer. Thus, obs_from_config does not use this state, even though it
receives it as a parameter.

Stating the result

We call a position invalid if all robots are on two towers of the same height, that is: evenly
distributed on exactly two distinct locations. Such a position is known as bivalent.

Definition invalid (config : configuration) :=
∃ pt1 pt2 : location , pt1 =/= pt2

∧ multiplicity pt1 (obs_from_config config origin) = nG / 2
∧ multiplicity pt2 (obs_from_config config origin) = nG / 2 .

LITES

02:28 Swarms of Mobile Robots: Towards Versatility with Safety

The final lemma states that for any protocol, if one starts in an invalid configuration then
there exists a demon that makes the protocol fail, i.e. that prevents the system to reach a gathered
position.
Theorem noGathering : ∀ r : protocol , ∀ c : configuration ,
invalid c →

∃ d , SSYNC d ∧ Fair d ∧ ¬ WillGather (execute r d c) .

A remark on the dual property

Adding as a condition on the initial configuration that it is not invalid (not bivalent) suffices
to get a universal algorithm solving Gathering. Developed in Pactole, the solution given by
Courtieu et al. [24] uses the exact same specifications of the model and the environment, thus
eliminating any risk of shift, and closing the problem under those assumptions: Fair-SSYNC
Gathering of oblivious rigid anonymous robots in R2 is impossible, unless the initial configuration
is not bivalent, in which case a protocol is proven correct.

6.1.2 A model where gathering is proven possible
It is however possible to achieve gathering when different capabilities for sensors are assumed. For
the sake of the example, we assume now, as in the works of Balabonski et al. [11], that sensors
cannot detect multiplicity. It should be stressed here that the formal definition of the problem is
strictly the same as before, preventing any shift or bias in its definition.

Instantiating the model

Let us have an arbitrary number n (more than 1) of robots (0 Byzantine) moving on the Euclidean
plane.
Variable n : nat .
Hypothesis H_nG : n >= 2 .
Definition MyRobots : Names := Robots n 0 .
Definition Loc : Location := make_Location R2 .

Movements are flexible (i.e. robots may not reach their destination before the next round).
Let us have an arbitrary δ representing the minimal distance (in the global reference) a robot
moves between two rounds, unless its destination is attained. The only choice made by the demon
after a robot’s decision is the ratio of the path toward its target the robot actually reaches.
Variable δ : R .
Definition ratio : Tactivechoice := {x : R | 0 ≤ x ≤ 1} .
Definition rchoice : Trobotchoice := path location .
Definition FlexChoice : update_choice := Flexible . OnlyFlexible .
Instance UpdFun : update_function rchoice location ratio := FlexibleUpdate δ .

As robots cannot detect multiplicity, observations may be reduced to a set of (inhabited)
positions, as remarked in section 5.3.2.1.
Definition set_observation : Observation := { |

observation := set location;
obs_is_ok s c pt := ∀ l , In l s ↔ In l (map c MyRobots);
obs_from_config c pt := make_set (map c MyRobots);
obs_from_config_spec c st : obs_is_ok (obs_from_config c st) c st :=

. . .
|} .

P. Courtieu, L. Rieg, S. Tixeuil, and X. Urbain 02:29

Stating the result

The main theorem of Balabonski et al. [11] states that the protocol ffgatherR2, given below,
solves the gathering for any fully synchronous demon and any starting configuration.

Definition ffgatherR2_pgm (s : observation) : path :=
paths_in_R2 (isobarycenter (elements s)) .

Theorem FSGathering_in_R2 :
∀ d , δ > 0 → FSYNC d → FullSolGathering ffgatherR2 d .

And with strong detection of multiplicity?

The framework is generic enough to provide also a formal certification for a result by Cohen and
Peleg [20, 21] when robot sensors are this time endowed with detection of multiplicity. The only
noticeable difference in the two approaches is the definition of the observation: a multiset for
Cohen and Peleg’s, and a set for Balabonski et al.’s. The proof argument is similar, and only a
few technical steps to take into account the new type for observation are required [11].

6.2 Exploration
An interesting benchmarking problem when dealing with robots on graphs is the one of exploration,
in particular with stop. Exploration with stop (also known as Terminating Exploration) requires
to ensure that:
1. all nodes are visited by a robot at some point during the execution, and
2. all robots eventually stop moving once all nodes have been visited.

There are thus 2 properties to formalize: for the space to be explored, and for the system to
stop evolving.

For a node, say v, being eventually visited (inhabited) by a robot is simply an inductive (that
is finitely reachable) property on the execution, say e: at some accessible point along e, the
configuration returns a state displaying v as the current location.17 This is a basic property about
streams.

Definition Will_be_visited v e :=
Stream . eventually (Stream . instant (is_visited v)) e .

The second property, the halting, is built in three steps:
firstly, one defines what is it for an execution to have two consecutive identical configurations,
namely that it stalls. It is simply a call to the equivalence relation on configurations

Definition Stall e :=
Config .eq (Stream .hd e) (Stream .hd (Stream .tl e)) .

secondly, the stall has to hold indefinitely

Definition Stopped e := Stream . forever Stall e .

and finally the point where the execution is Stopped is reached within a finite number of steps;
this is property Will_stop.

17 Recall that, an execution being a stream of configurations, a property P on the head of a stream e is projected
by Stream.instant P e.

LITES

02:30 Swarms of Mobile Robots: Towards Versatility with Safety

Definition Will_stop e := Stream . eventually Stopped e .

Let execute r d c be the execution obtained by running a protocol r with a demon d from an
initial configuration c. Protocol r achieves Exploration with stop for a demon d if from every initial
configuration c, Will_be_visited v (execute r d c) holds for every node v (the exploration part),
AND this execution stops, that is Will_stop (execute r d c) holds.

Definition FullSolExplorationStop r d :=
∀ c , (∀ v , Will_be_visited v (execute r d c))

∧ Will_stop (execute r d c) .

Similarly to what has been done for Gathering, expressing that a given protocol r is a solution
to Exploration with stop is simply stating that for every demon d, FullSolExplorationStop r

d holds.18

Conversely, expressing that the problem is unsolvable (under certain assumptions) is simply
stating that for any protocol r, it does not hold that r is a solution.

6.2.1 A model where Exploration with stop is proven impossible
We want to prove that Exploration with stop on a ring is not possible if the number of robots
divides the size of the ring. We proceed along the lines of Balabonski et al. [12].

Instantiating the model

A ring is a special case of finite graph, already defined by the function Ring taking as input the
size, which must be an integer greater than 1.

Variable ring_size : nat .
Hypothesis ring_size_spec : 1 < ring_size .
Instance Ring_space : FiniteGraph := Ring ring_size ring_size_spec .

Let us have an arbitrary number kG of robots (of which none is Byzantine) moving on our
ring. We assume that kG divides the size ring_size of the ring and remove two corner cases:
kG = 1 and kG = ring_size.

Variable kG : nat .
Instance Robots : Names := Robots kG 0 .
Hypothesis kdn : ring_size mod kG = 0 .
Hypothesis k_bounds : 1 < kG < ring_size .

As in the first example, robots contain no more information than their locations, robots’
observations are the multiset of locations, and the demon does not interfere with the robot’s
choice, that is, movements are rigid.

Definition state : State location := OnlyLocation .
Instance RobotObs : Observation := multiset_observation .
Definition dchoice : Tactivechoice := unit .

18 That is where constraints on the demon should appear, of the form for all demons verifying such given
property, FullSolExplorationStop r d holds, as detailed in Section 6.2.1.

P. Courtieu, L. Rieg, S. Tixeuil, and X. Urbain 02:31

The local frame is the one described in the introductory examples of Section 3.3, which amounts to
a translation along the ring (relative locations) and potentially a symmetry (for chirality change).

The difference with these earlier examples is that robots do not choose a new node of the ring
to move to, they only pick a direction. The update function is still rigid, and it simply applies the
function move_along that returns the node reached by following the chosen direction from the
robot’s current location.

Inductive direction := Forward | Backward | SelfLoop .
Definition rchoice : Trobotchoice := direction .
Instance UpdFun : update_function := move_along .

Stating the result

The final theorem states that for any protocol r, there is a FSYNC demon d against which r does
not solve exploration with stop, that is, there exists a configuration c such that the execution
following r and d starting from c either does not terminate or does not explore the ring.

Theorem no_exploration :
∀ r : protocol , ∃ d : demon , FSYNC d ∧ ¬ FullSolExplorationStop r d .

7 Related work

Numerous formalizations and verification tools have been designed and used to account for cor-
rectness in distributed computing. The formal treatment of mobile robotic swarms nevertheless
requires specific tooling (w.r.t. “classical” distributed computing), as there is no direct transforma-
tion of “classical” shared memory or message passing models into models suitable to study mobile
robotic entities. A naive transformation from the shared memory model would be to consider that
the “values” shared by the robots are their positions, that observing other robots’s positions is
similar to reading a shared variable, and that moving to a new position is similar to writing a new
value in a shared variable. However, some aspects prevent formal solutions for the shared memory
model to also apply to the mobile robots model.

First, the notion of “local observation” is quite specific to mobile robots: a robot has only
access to a degraded view of its neighbourhood (according to its visual sensors), and the view
is obtained in its local (i.e. ego centred) coordinate system. So, the same robot may appear at
two different positions at the exact same time in the execution (by two different robots that have
different coordinate systems), and, in the same execution, the same robot may appear or not
appear at a given observing robot (depending on the location and sensing abilities of the observing
robot). Second, in the more interesting ASYNC model, a robot can observe other robots while
they move, resulting in getting any intermediate position the observed robot may reach during
its movement. This is a strictly weaker setting than the classical “atomic” and “regular” shared
memory registers popularized by Lamport [52, 53] (where reads may only return the “before-write”
or the “after-write” value), and yet strictly stronger than the classical “safe” register [52, 53]
(where any value in the domain could be returned by a read) if we make the reasonable assumption
that robots cannot cover an infinite surface in a single move. Last: the position of a robot may
belong to a continuous (dense) set, while a shared register is typically a discrete value.

This last concern makes model checking mobile robot algorithms quite difficult. If one wants a
direct translation of the Suzuki and Yamashita model, one has to consider discrete (i.e. graphs)
locations [14, 33, 35]. While this approach is suitable for checking problem instances, it cannot
scale as when the number of locations becomes a parameter, interesting properties become

LITES

02:32 Swarms of Mobile Robots: Towards Versatility with Safety

undecidable [64], even if the graph representing locations is as simple as a ring. Hence, the current
hope on the model-checking side is to consider more abstract models, in the spirit of the recent
approach by Defago et al. [28]. However, more abstract models yield two significant issues. First,
models are likely to target a single problem rather than being generic, with no hint earned as
how to handle other problems in the same setting. Second, one has to prove that properties
obtained mechanically by model-checking for the abstract model echo in interesting properties for
the original model (in the approach of Defago et al. [28], this part is handwritten, hindering a
fully mechanized checkability of the approach).

From the methodology perspective, Pactole is close to Ivy [61, 58] and LoE [57]: they are
based on a master model designed in a proof assistant and a methodology is designed to prove
specific protocols in these model.

8 Conclusion

The mathematical description of mobile robotic swarms by Suzuki and Yamashita proved to be
a fertile ground19 of research, with many model variants developed throughout the years, and
many applicative domains envisioned by research teams all over the world (see the book edited by
Flocchini et al. [37] for a recent survey).

When robotic swarm protocols are developed for critical applications, with lives at stake,
reasoning about the model requires the foundations of a formal framework and methodology aimed
at mobile robot protocol designers, to enable the certification of tentative robot protocols for any
property related to their spatio-temporal behaviour that is useful in practice, or to demonstrate
the impossibility of such designs.

A first step in that direction has been proposed with the Pactole framework, which allows so
far working formally with:

Euclidean spaces with geometrical constructs (barycentres, smallest enclosing circles, etc.,
together with their relevant properties) ; Graphs, either discrete or with continuous movement
along the edges,
Rigid/flexible moves, SSYNC/FSYNC/ASYNC, various properties on demons (flavours of
fairness), equivalences between demons, and means for the theoretical study of their lattice,
Common notions of observation depending on the capabilities of robots,

including many cases studies, e.g. exploration, gathering, convergence. . .
Pactole is publicly available to the community at https://pactole.liris.cnrs.fr.
Three main axes of development are worth considering.
The first one addresses the issue of probabilistic behaviours. Probabilistic arguments are

indeed commonly used in recent results regarding mobile robotic swarms, e.g. to break symmetries
in configurations [18, 17, 68]. Probabilistic behaviours may also occur outside protocols, in the
environment. Including probabilistic behaviours on the autonomous robot side (that is, robots are
able to take actions based on some probabilistic source) and on the environment side (that is, the
scheduling decisions are based on some probability distribution) in the Pactole framework is
thus an important task.

The second one is to ensure that certified developments remain accessible to a non-specialist
of formal proof, and to ease the proof burden as much as possible. This amounts to building
manageable libraries with clear independent modules, definitions that can be shared and proof
steps that can be reused. Fundamental results must be gathered into a formal library, with each
relevant notion properly specified in the formal model, and each reusable property receiving a
corresponding formal proof.

19 Masafumi Yamashita was awarded the 2016 Prize for Innovation in Distributed Computing for this seminal
work.

https://pactole.liris.cnrs.fr

P. Courtieu, L. Rieg, S. Tixeuil, and X. Urbain 02:33

Automation is expected wherever possible in this building process. Certifying properties of an
algorithm in a proof assistant amounts to developing mechanical techniques matching the proof
structures brought to the fore. Developing automation in that context is two-fold. On the one
hand it involves high-level tactics to relieve the user from tedious and repetitive proof steps. On
the other hand it must help in exhibiting certain properties and obtaining as a result a formal
proof of it. In doing this, inputs from model checking approaches are precious due to their capacity
to exhibit counter-examples, thus helping the developer, and to discharge automatically some base
cases prior to induction steps.

Finally, it is fundamental to provide the prototype of an environment for proof and development
of trustworthy distributed protocols for mobile robots, by linking together the results obtained
with reference to the formal model, libraries, proof automation and management techniques, etc.
Such an environment should allow the user to specify the algorithm, and to certify its properties,
using generated verification conditions and proof constructs with the help of decision procedures.
To reach this goal, one key challenge is to devise an annotation language rich enough to specify
properties in the scope of our studies, but still convenient to use by designers of robot protocols.
To ensure protocol validation, it must also integrate proof mechanisms allowing both assisted or
automated certification, thus defining a complete certification chain that should be easy enough
to use, even for a non specialist.

References
1 Jordan Adamek, Mikhail Nesterenko, and Sébas-

tien Tixeuil. Evaluating and optimizing stabilizing
dining philosophers. In 11th European Dependable
Computing Conference, EDCC 2015, Paris, France,
September 7-11, 2015, pages 233–244. IEEE, 2015.

2 José Bacelar Almeida, Manuel Barbosa, Endre
Bangerter, Gilles Barthe, Stephan Krenn, and San-
tiago Zanella Béguelin. Full Proof Cryptography:
Verifiable Compilation of Efficient Zero-Knowledge
Protocols. In ACM Conference on Computer and
Communications Security, pages 488–500, 2012.

3 Karine Altisen, Pierre Corbineau, and Stéphane De-
vismes. A framework for certified self-stabilization.
In Elvira Albert and Ivan Lanese, editors, Formal
Techniques for Distributed Objects, Components,
and Systems - 36th IFIP WG 6.1 International
Conference, FORTE 2016, Held as Part of the 11th
International Federated Conference on Distributed
Computing Techniques, DisCoTec 2016, Heraklion,
Crete, Greece, June 6-9, 2016, Proceedings, volume
9688 of Lecture Notes in Computer Science, pages
36–51. Springer-Verlag, 2016.

4 Krzysztof R. Apt and Dexter C. Kozen. Limits
for automatic verification of finite-state concurrent
systems. Information Processing Letters, 22(6):307–
309, 1986.

5 The Coq Proof Assistant. https://coq.inria.fr/.
6 Cédric Auger, Zohir Bouzid, Pierre Courtieu, Sé-

bastien Tixeuil, and Xavier Urbain. Certified Im-
possibility Results for Byzantine-Tolerant Mobile
Robots. In Teruo Higashino, Yoshiaki Katayama,
Toshimitsu Masuzawa, Maria Potop-Butucaru, and
Masafumi Yamashita, editors, Stabilization, Safety,
and Security of Distributed Systems - 15th Inter-
national Symposium (SSS 2013), volume 8255 of
Lecture Notes in Computer Science, pages 178–186,
Osaka, Japan, November 2013. Springer-Verlag.

7 Thibaut Balabonski, Pierre Courtieu, Robin Pelle,
Lionel Rieg, Sébastien Tixeuil, and Xavier Urbain.
Continuous vs. discrete asynchronous moves: A
certified approach for mobile robots. In Mo-
hamed Faouzi Atig and Alexander A. Schwarzmann,
editors, Networked Systems - 7th International
Conference, (NETYS 2019), Revised Selected Pa-
pers, volume 11704 of Lecture Notes in Computer
Science, pages 93–109, Marrakech, Morocco, June
2019. Springer-Verlag.

8 Thibaut Balabonski, Pierre Courtieu, Robin Pelle,
Lionel Rieg, Sébastien Tixeuil, and Xavier Urbain.
Brief Announcement: Computer Aided Formal
Design of Swarm Robotics Algorithms. In Colette
Johnen and Stefan Schmid, editors, Stabilization,
Safety, and Security of Distributed Systems - 23th
International Symposium, (SSS 2021), Virtual con-
ference, November 2021.

9 Thibaut Balabonski, Pierre Courtieu, Robin Pelle,
Lionel Rieg, Sébastien Tixeuil, and Xavier Urbain.
Computer aided formal design of swarm robotics
algorithms. CoRR, abs/2101.06966, 2021.

10 Thibaut Balabonski, Pierre Courtieu, Lionel Rieg,
Sébastien Tixeuil, and Xavier Urbain. Certified
gathering of oblivious mobile robots: Survey of re-
cent results and open problems. In Laure Petrucci,
Cristina Seceleanu, and Ana Cavalcanti, editors,
Critical Systems: Formal Methods and Automated
Verification - Joint 22nd International Workshop
on Formal Methods for Industrial Critical Systems
- and - 17th International Workshop on Automated
Verification of Critical Systems, (FMICS-AVoCS
2017), volume 10471 of Lecture Notes in Computer
Science, pages 165–181, Turin, Italy, September
2017. Springer-Verlag.

11 Thibaut Balabonski, Amélie Delga, Lionel Rieg,
Sébastien Tixeuil, and Xavier Urbain. Synchron-
ous gathering without multiplicity detection: A

LITES

https://coq.inria.fr/

02:34 Swarms of Mobile Robots: Towards Versatility with Safety

certified algorithm. Theory of Computing Sys-
tems, pages 200–218, 2019. https://doi.org/10.1007/
s00224-017-9828-z.

12 Thibaut Balabonski, Robin Pelle, Lionel Rieg, and
Sébastien Tixeuil. A foundational framework for
certified impossibility results with mobile robots
on graphs. In Paolo Bellavista and Vijay K. Garg,
editors, Proceedings of the 19th International Con-
ference on Distributed Computing and Networking,
ICDCN 2018, Varanasi, India, January 4-7, 2018,
pages 5:1–5:10. ACM, 2018.

13 Andrej Bauer. How to review formalized math-
ematics. http://math.andrej.com/2013/08/19/how-to-
review-formalized-mathematics/, August 2013.

14 Béatrice Bérard, Pascal Lafourcade, Laure Millet,
Maria Potop-Butucaru, Yann Thierry-Mieg, and Sé-
bastien Tixeuil. Formal verification of mobile robot
protocols. Distributed Computing, 29(6):459–487,
2016.

15 Yves Bertot and Pierre Castéran. Interactive The-
orem Proving and Program Development. Coq’Art:
The Calculus of Inductive Constructions. Texts
in Theoretical Computer Science. Springer-Verlag,
2004.

16 François Bonnet, Xavier Défago, Franck Petit,
Maria Potop-Butucaru, and Sébastien Tixeuil. Dis-
covering and assessing fine-grained metrics in robot
networks protocols. In 33rd IEEE International
Symposium on Reliable Distributed Systems Work-
shops, SRDS Workshops 2014, Nara, Japan, Octo-
ber 6-9, 2014, pages 50–59. IEEE, 2014.

17 Quentin Bramas and Sébastien Tixeuil. Brief An-
nouncement: Probabilistic Asynchronous Arbitrary
Pattern Formation. In George Giakkoupis, editor,
35th ACM Symposium on Principles of Distributed
Computing (PODC 2016), pages 443–445, Chicago,
IL, USA, July 2016. ACM.

18 Quentin Bramas and Sébastien Tixeuil. The Ran-
dom Bit Complexity of Mobile Robots Scattering.
International Journal of Foundations of Computer
Science, 28(2):111–134, 2017.

19 Pierre Castéran, Vincent Filou, and Mohamed Mos-
bah. Certifying Distributed Algorithms by Embed-
ding Local Computation Systems in the Coq Proof
Assistant. In Adel Bouhoula and Tetsuo Ida, ed-
itors, Symbolic Computation in Software Science
(SCSS’09), 2009.

20 Reuven Cohen and David Peleg. Robot Conver-
gence via Center-of-Gravity Algorithms. In Ras-
tislav Kralovic and Ondrej Sýkora, editors, Struc-
tural Information and Communication Complexity
- 11th International Colloquium (SIROCCO 2004),
volume 3104 of Lecture Notes in Computer Science,
pages 79–88, Smolenice Castle, Slowakia, June 2004.
Springer-Verlag.

21 Reuven Cohen and David Peleg. Convergence Prop-
erties of the Gravitational Algorithm in Asynchron-
ous Robot Systems. SIAM Journal of Computing,
34(6):1516–1528, 2005.

22 Thierry Coquand and Christine Paulin-Mohring.
Inductively Defined Types. In Per Martin-Löf and
Grigori Mints, editors, International Conference on
Computer Logic (Colog’88), volume 417 of Lecture
Notes in Computer Science, pages 50–66. Springer-
Verlag, 1990.

23 Pierre Courtieu, Lionel Rieg, Sébastien Tixeuil,
and Xavier Urbain. Impossibility of Gathering,
a Certification. Information Processing Letters,
115:447–452, 2015.

24 Pierre Courtieu, Lionel Rieg, Sébastien Tixeuil,
and Xavier Urbain. Certified universal gathering al-
gorithm in R2 for oblivious mobile robots. In Cyril
Gavoille and David Ilcinkas, editors, Distributed
Computing - 30th International Symposium, (DISC
2016), volume 9888 of Lecture Notes in Computer
Science, pages 187–200, Paris, France, September
2016. Springer-Verlag.

25 Shantanu Das, Paola Flocchini, Giuseppe Prencipe,
and Nicola Santoro. Forming sequences of patterns
with luminous robots. IEEE Access, 8:90577–90597,
2020.

26 Shantanu Das, Paola Flocchini, Giuseppe Pren-
cipe, Nicola Santoro, and Masafumi Yamashita.
Autonomous mobile robots with lights. Theor.
Comput. Sci., 609:171–184, 2016.

27 Xavier Défago, Adam Heriban, Sébastien Tixeuil,
and Koichi Wada. Brief announcement: Model
checking rendezvous algorithms for robots with
lights in euclidean space. In Jukka Suomela, editor,
33rd International Symposium on Distributed Com-
puting, DISC 2019, October 14-18, 2019, Budapest,
Hungary, volume 146 of LIPIcs, pages 41:1–41:3.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2019.

28 Xavier Défago, Adam Heriban, Sébastien Tixeuil,
and Koichi Wada. Using model checking to formally
verify rendezvous algorithms for robots with lights
in euclidean space. In International Symposium on
Reliable Distributed Systems, SRDS 2020, Shang-
hai, China, September 21-24, 2020, pages 113–122.
IEEE, 2020.

29 Xavier Défago, Maria Potop-Butucaru, and Sébas-
tien Tixeuil. Fault-tolerant mobile robots. In Paola
Flocchini, Giuseppe Prencipe, and Nicola Santoro,
editors, Distributed Computing by Mobile Entit-
ies, Current Research in Moving and Computing,
volume 11340 of Lecture Notes in Computer Sci-
ence, pages 234–251. Springer, 2019.

30 Xavier Défago and Samia Souissi. Non-uniform
circle formation algorithm for oblivious mobile ro-
bots with convergence toward uniformity. Theor.
Comput. Sci., 396(1-3):97–112, 2008.

31 Carole Delporte-Gallet, Hugues Fauconnier, Yan
Jurski, François Laroussinie, and Arnaud Sangnier.
Towards synthesis of distributed algorithms with
SMT solvers. In Mohamed Faouzi Atig and Alex-
ander A. Schwarzmann, editors, Networked Sys-
tems - 7th International Conference, NETYS 2019,
Marrakech, Morocco, June 19-21, 2019, Revised
Selected Papers, volume 11704 of Lecture Notes in
Computer Science, pages 200–216. Springer, 2019.

32 Ha Thi Thu Doan, François Bonnet, and Kazuhiro
Ogata. Model checking of a mobile robots per-
petual exploration algorithm. In Shaoying Liu,
Zhenhua Duan, Cong Tian, and Fumiko Nagoya,
editors, Structured Object-Oriented Formal Lan-
guage and Method - 6th International Workshop,
SOFL+MSVL 2016, Tokyo, Japan, November 15,
2016, Revised Selected Papers, volume 10189 of
Lecture Notes in Computer Science, pages 201–219,
2016.

https://doi.org/10.1007/s00224-017-9828-z
https://doi.org/10.1007/s00224-017-9828-z
http://math.andrej.com/2013/08/19/how-to-review-formalized-mathematics/
http://math.andrej.com/2013/08/19/how-to-review-formalized-mathematics/

P. Courtieu, L. Rieg, S. Tixeuil, and X. Urbain 02:35

33 Ha Thi Thu Doan, François Bonnet, and Kazuhiro
Ogata. Model checking of robot gathering. In James
Aspnes and Pascal Felber, editors, Principles of
Distributed Systems - 21th International Confer-
ence (OPODIS 2017), Leibniz International Pro-
ceedings in Informatics (LIPIcs), Lisbon, Portugal,
December 2017. Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik.

34 Ha Thi Thu Doan, Kazuhiro Ogata, and François
Bonnet. Specifying a distributed snapshot al-
gorithm as a meta-program and model checking it
at meta-level. In Kisung Lee and Ling Liu, editors,
37th IEEE International Conference on Distrib-
uted Computing Systems, ICDCS 2017, Atlanta,
GA, USA, June 5-8, 2017, pages 1586–1596. IEEE
Computer Society, 2017.

35 Ha Thi Thu Doan, Adrián Riesco, and Kazuhiro
Ogata. An environment for specifying and model
checking mobile ring robot algorithms. In Mohsen
Ghaffari, Mikhail Nesterenko, Sébastien Tixeuil,
Sara Tucci, and Yukiko Yamauchi, editors, Stabiliz-
ation, Safety, and Security of Distributed Systems
- 21st International Symposium, SSS 2019, Pisa,
Italy, October 22-25, 2019, Proceedings, volume
11914 of Lecture Notes in Computer Science, pages
111–126. Springer, 2019.

36 Fathiyeh Faghih, Borzoo Bonakdarpour, Sébastien
Tixeuil, and Sandeep S. Kulkarni. Automated syn-
thesis of distributed self-stabilizing protocols. Lo-
gical Methods in Computer Science, 14(1), 2018.

37 Paola Flocchini, Giuseppe Prencipe, and Nicola
Santoro, editors. Distributed Computing by Mobile
Entities, volume 11340 of Lecture Notes in Com-
puter Science, Theoretical Computer Science and
General Issues. Springer Nature, 2019.

38 Paola Flocchini, Giuseppe Prencipe, Nicola Santoro,
and Peter Widmayer. Gathering of asynchronous
oblivious robots with limited visibility. In Afonso
Ferreira and Horst Reichel, editors, STACS 2001,
18th Annual Symposium on Theoretical Aspects
of Computer Science, Dresden, Germany, Febru-
ary 15-17, 2001, Proceedings, volume 2010 of Lec-
ture Notes in Computer Science, pages 247–258.
Springer, 2001.

39 Paola Flocchini, Giuseppe Prencipe, Nicola San-
toro, and Peter Widmayer. Pattern formation by
anonymous robots without chirality. In Francesc
Comellas, Josep Fàbrega, and Pierre Fraigniaud,
editors, SIROCCO 8, Proceedings of the 8th In-
ternational Colloquium on Structural Information
and Communication Complexity, Vall de Núria,
Girona-Barcelona, Catalonia, Spain, 27-29 June,
2001, volume 8 of Proceedings in Informatics, pages
147–162. Carleton Scientific, 2001.

40 Paola Flocchini, Giuseppe Prencipe, Nicola Santoro,
and Peter Widmayer. Arbitrary pattern forma-
tion by asynchronous, anonymous, oblivious robots.
Theoretical Computer Science, 407(1-3):412–447,
2008.

41 Georges Gonthier. Formal Proof—The Four-Color
Theorem. Notices of the AMS, 55(11):1382–1393,
December 2008.

42 Georges Gonthier. Engineering Mathematics: the
Odd Order Theorem Proof. In Roberto Giaco-
bazzi and Radhia Cousot, editors, POPL, pages
1–2. ACM, 2013.

43 Rachid Guerraoui, Thomas A. Henzinger, Barbara
Jobstmann, and Vasu Singh. Model checking trans-
actional memories. In Rajiv Gupta and Saman P.
Amarasinghe, editors, Proceedings of the ACM SIG-
PLAN 2008 Conference on Programming Language
Design and Implementation, Tucson, AZ, USA,
June 7-13, 2008, pages 372–382. ACM, 2008.

44 Adam Heriban, Xavier Défago, and Sébastien
Tixeuil. Optimally gathering two robots. In Paolo
Bellavista and Vijay K. Garg, editors, Proceedings
of the 19th International Conference on Distrib-
uted Computing and Networking, ICDCN 2018,
Varanasi, India, January 4-7, 2018, pages 3:1–3:10.
ACM, 2018.

45 Adam Heriban and Sébastien Tixeuil. Mobile ro-
bots with uncertain visibility sensors. In Keren
Censor-Hillel and Michele Flammini, editors, Struc-
tural Information and Communication Complexity
- 26th International Colloquium, (SIROCCO 2019),
volume 11639 of Lecture Notes in Computer Sci-
ence, pages 349–352, L’Aquila, Italy, July 2019.
Springer-Verlag.

46 Taisuke Izumi, Tomoko Izumi, Sayaka Kamei, and
Fukuhito Ooshita. Randomized gathering of mobile
robots with local-multiplicity detection. In Rachid
Guerraoui and Franck Petit, editors, Stabilization,
Safety, and Security of Distributed Systems, 11th
International Symposium, SSS 2009, Lyon, France,
November 3-6, 2009. Proceedings, volume 5873 of
Lecture Notes in Computer Science, pages 384–398.
Springer, 2009.

47 Tomoko Izumi, Taisuke Izumi, Sayaka Kamei, and
Fukuhito Ooshita. Mobile robots gathering al-
gorithm with local weak multiplicity in rings. In
Boaz Patt-Shamir and Tínaz Ekim, editors, Struc-
tural Information and Communication Complexity,
17th International Colloquium, SIROCCO 2010,
Sirince, Turkey, June 7-11, 2010. Proceedings,
volume 6058 of Lecture Notes in Computer Sci-
ence, pages 101–113. Springer, 2010.

48 Gerwin Klein, June Andronick, Kevin Elphinstone,
Gernot Heiser, David Cock, Philip Derrin, Dham-
mika Elkaduwe, Kai Engelhardt, Rafal Kolanski,
Michael Norrish, Thomas Sewell, Harvey Tuch, and
Simon Winwood. seL4: Formal verification of an
operating system kernel. Communications of the
ACM, 53(6):107–115, 2010.

49 Igor Konnov, Helmut Veith, and Josef Widder. Who
is afraid of model checking distributed algorithms?
Unpublished to: CAV Workshop (EC)2, July 2012.

50 Philipp Küfner, Uwe Nestmann, and Christina
Rickmann. Formal Verification of Distributed Al-
gorithms - From Pseudo Code to Checked Proofs.
In Jos C. M. Baeten, Thomas Ball, and Frank S.
de Boer, editors, IFIP TCS, volume 7604 of Lecture
Notes in Computer Science, pages 209–224, Amster-
dam, The Netherlands, September 2012. Springer-
Verlag.

51 Sandeep S. Kulkarni, Borzoo Bonakdarpour, and
Ali Ebnenasir. Mechanical verification of automatic
synthesis of fault-tolerant programs. In Sandro
Etalle, editor, Logic Based Program Synthesis and
Transformation, 14th International Symposium,
LOPSTR 2004, Verona, Italy, August 26-28, 2004,
Revised Selected Papers, volume 3573 of Lecture

LITES

02:36 Swarms of Mobile Robots: Towards Versatility with Safety

Notes in Computer Science, pages 36–52. Springer,
2004.

52 Leslie Lamport. On interprocess communication.
part I: basic formalism. Distributed Comput.,
1(2):77–85, 1986.

53 Leslie Lamport. On interprocess communication.
part II: algorithms. Distributed Comput., 1(2):86–
101, 1986.

54 Leslie Lamport and Stephan Merz. Specifying and
verifying fault-tolerant systems. In Formal Tech-
niques in Real-Time and Fault-Tolerant Systems,
volume 863 of Lecture Notes in Computer Science,
pages 41–76. Springer-Verlag, 1994.

55 Xavier Leroy. A Formally Verified Compiler Back-
End. Journal of Automated Reasoning, 43(4):363–
446, 2009.

56 Assia Mahboubi. Checking machine-checked proofs.
https://project.inria.fr/coqexchange/checking-
machine-checked-proofs/, July 2017.

57 Vincent Rahli Mark Bickford, Robert L. Constable.
Logic of events, a framework to reason about distrib-
uted systems. In 2012 Languages for Distributed
Algorithms Workshop, Philadelphia, PA, 2012.

58 Kenneth L. McMillan and Oded Padon. Ivy: A
multi-modal verification tool for distributed al-
gorithms. In Shuvendu K. Lahiri and Chao Wang,
editors, Computer Aided Verification - 32nd In-
ternational Conference, CAV 2020, Los Angeles,
CA, USA, July 21-24, 2020, Proceedings, Part II,
volume 12225 of Lecture Notes in Computer Sci-
ence, pages 190–202. Springer, 2020.

59 Laure Millet, Maria Potop-Butucaru, Nathalie
Sznajder, and Sébastien Tixeuil. On the synthesis
of mobile robots algorithms: The case of ring gath-
ering. In Pascal Felber and Vijay K. Garg, ed-
itors, Stabilization, Safety, and Security of Dis-
tributed Systems - 16th International Symposium,
(SSS 2014), volume 8756 of Lecture Notes in Com-
puter Science, pages 237–251, Paderborn, Germany,
September 2014. Springer-Verlag.

60 Takashi Okumura, Koichi Wada, and Xavier Défago.
Optimal rendezvous l-algorithms for asynchronous
mobile robots with external-lights. In Jiannong
Cao, Faith Ellen, Luis Rodrigues, and Bernardo
Ferreira, editors, 22nd International Conference on
Principles of Distributed Systems, OPODIS 2018,
December 17-19, 2018, Hong Kong, China, volume
125 of LIPIcs, pages 24:1–24:16. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2018.

61 Oded Padon, Kenneth L. McMillan, Aurojit Panda,
Mooly Sagiv, and Sharon Shoham. Ivy: safety veri-
fication by interactive generalization. In Chandra
Krintz and Emery Berger, editors, Proceedings of
the 37th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, PLDI
2016, Santa Barbara, CA, USA, June 13-17, 2016,
pages 614–630. ACM, 2016.

62 Maria Potop-Butucaru, Nathalie Sznajder, Sébas-
tien Tixeuil, and Xavier Urbain. Formal methods
for mobile robots. In Paola Flocchini, Giuseppe
Prencipe, and Nicola Santoro, editors, Distributed
Computing by Mobile Entities, Current Research
in Moving and Computing, volume 11340 of Lec-
ture Notes in Computer Science, pages 278–313.
Springer, 2019.

63 Giuseppe Prencipe. Impossibility of gathering by
a set of autonomous mobile robots. Theoretical
Computer Science, 384(2-3):222–231, 2007.

64 Arnaud Sangnier, Nathalie Sznajder, Maria Potop-
Butucaru, and Sébastien Tixeuil. Parameterized
verification of algorithms for oblivious robots on
a ring. Formal Methods Syst. Des., 56(1):55–89,
2020.

65 Ichiro Suzuki and Masafumi Yamashita. Distrib-
uted Anonymous Mobile Robots: Formation of
Geometric Patterns. SIAM Journal of Computing,
28(4):1347–1363, 1999.

66 Giovanni Viglietta. Rendezvous of two robots with
visible bits. In Paola Flocchini, Jie Gao, Evangelos
Kranakis, and Friedhelm Meyer auf der Heide, ed-
itors, Algorithms for Sensor Systems - 9th Interna-
tional Symposium on Algorithms and Experiments
for Sensor Systems, Wireless Networks and Dis-
tributed Robotics, ALGOSENSORS 2013, Sophia
Antipolis, France, September 5-6, 2013, Revised
Selected Papers, volume 8243 of Lecture Notes in
Computer Science, pages 291–306. Springer-Verlag,
2013.

67 Vladimir Voevodsky. An experimental library of
formalized mathematics based on the univalent
foundations. Mathematical Structures in Computer
Science, 25(5):1278–1294, 2015.

68 Yukiko Yamauchi and Masafumi Yamashita. Ran-
domized Pattern Formation Algorithm for Asyn-
chronous Oblivious Mobile Robots. In Fabian Kuhn,
editor, Distributed Computing - 28th International
Symposium, (DISC 2014), volume 8784 of Lecture
Notes in Computer Science, pages 137–151, Austin,
USA, October 2014. Springer-Verlag.

https://project.inria.fr/coqexchange/checking-machine-checked-proofs/
https://project.inria.fr/coqexchange/checking-machine-checked-proofs/

	1 Introduction: low cost and high expectations
	2 Formal approaches and their complementary uses
	3 The Pactole library for the Coq proof assistant
	3.1 The Coq proof assistant
	3.2 Pactole
	3.3 A tour of formal proof for robotic swarms
	3.3.1 A simple example
	3.3.2 The local computations
	3.3.3 Weakening the sensing capabilities of robots
	3.3.4 Modeling Concurrency
	3.3.5 Other refinements

	4 A lattice of models
	4.1 The Suzuki and Yamashita model
	4.2 Sensors
	4.2.1 Range
	4.2.2 Multiplicity detection
	4.2.3 Orientation

	4.3 Memory/Communication
	4.4 Synchronicity and fairness
	4.5 Rigid/Flexible Movement
	4.6 Faults

	5 The formalization of the Suzuki, Yamashita model
	5.1 Structure of the model, abstractions
	5.2 The function round
	5.2.1 Inputs
	5.2.2 Operation

	5.3 Model specialization
	5.3.1 Space
	5.3.2 Sensors

	5.4 Formal Parameters of the model

	6 Examples
	6.1 Gathering
	6.1.1 A model where gathering is proven impossible
	6.1.2 A model where gathering is proven possible

	6.2 Exploration
	6.2.1 A model where Exploration with stop is proven impossible

	7 Related work
	8 Conclusion

