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Abstract
Designing and modeling complex cyber-physical
systems (CPS) faces the double challenge of com-
bined discrete-continuous dynamics and concurrent
behavior. Existing formal modeling and verifica-
tion languages for CPS expose the underlying proof
search technology. They lack high-level structuring
elements and are not efficiently executable. The
ensuing modeling gap renders formal CPS models
hard to understand and to validate. We propose a
high-level programming-based approach to formal

modeling and verification of hybrid systems as a hy-
brid extension of an Active Objects language. Well-
structured hybrid active programs and requirements
allow automatic, reachability-preserving transla-
tion into differential dynamic logic, a logic for hy-
brid (discrete-continuous) programs. Verification is
achieved by discharging the resulting formulas with
the theorem prover KeYmaera X. We demonstrate
the usability of our approach with case studies.

2012 ACM Subject Classification Computing methodologies → Distributed programming languages;
Computing methodologies → Model verification and validation; Theory of computation → Logic and
verification; Theory of computation → Timed and hybrid models
Keywords and Phrases Active Objects, Differential Dynamic Logic, Hybrid Systems
Digital Object Identifier 10.4230/LITES.8.2.4
Supplementary Material Software (HABS Simulator Virtual Machine): https://doi.org/10.5281/
zenodo.5973904
Funding This work is partially supported by the FormbaR project, part of AG Signalling/DB RailLab in
the Innovation Alliance of Deutsche Bahn AG and TU Darmstadt. This material is based upon work
supported by AFOSR grant FA9550-16-1-0288.
Received 2020-06-10 Accepted 2022-05-11 Published 2022-12-07
Editor Alessandro Abate, Uli Fahrenberg, and Martin Fränzle
Special Issue Special Issue on Distributed Hybrid Systems

1 Introduction

Networked cyber-physical systems (CPS) are a main driving force of innovation in computing,
from manufacturing to everyday appliances. But to design and model such systems poses
a double challenge: first, their hybrid nature, with both continuous physical dynamics and
complex computations in discrete time steps. Second, their concurrent nature: distributed,
active components (sensors, actuators, controllers) execute simultaneously and communicate
asynchronously. It is notoriously difficult to get CPS models right. Formal modeling languages,
including hybrid automata [5], hybrid process algebra [27], and logics for hybrid programs [65],
can be used to formally verify properties of CPS. Contrary to simulation frameworks, such as
Ptolemy [71] or Simulink, however, these languages were designed for verification and are based on
concepts of the underlying verification technology: automata, algebras, formulas. Their minimalist
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syntax lacks standard structuring elements of programming languages such as types, scopes,
methods, complex commands, futures, etc. Thus it is hard to adequately represent concurrently
executing, communicating, hybrid components with symbolic data structures and computations,
for example, servers or cloud applications.

Moreover, “low-level” models are hard to validate, i.e. to ensure that a CPS model reflects
the designer’s intention, because these formalisms are not (efficiently) executable. To bridge
the modeling gap we propose a high-level programming-based approach to formal modeling and
verification of hybrid systems.

The basis of our approach is an Active Objects (AO) language [29] called ABS [48]. AO languages
combine OO programming with strong encapsulation as well as asynchronous, parallel execution.
Their concurrency model permits to decompose concurrent execution into sequential execution in
a compositional manner. We chose ABS for its formal semantics, its open source implementation
tool chain, and its demonstrated scaling on massively distributed systems [75], but our approach
is applicable to other AO languages. ABS is efficiently executable via compilation to Erlang and
was used to model complex, real-world systems for cloud processing [3], virtualized services [49],
data processing [56], and railway operations [53]. However, it lacks the capability to model hybrid
systems. The first main contribution of this paper is the design of the Hybrid ABS (HABS) language,
a conservative (syntax and semantics preserving) extension of ABS, generalizing the Active Objects
paradigm to Hybrid Active Objects (HAO): AO with continuous dynamics. Obviously, it is
necessary to accordingly extend the formal semantics of ABS and its runtime environment. This is
our second main contribution. Our third main contribution is the implementation of HABS and a
formal verification tool for it.

Our approach to formal verification of HABS programs is based on reachability-preserving
translation into an existing verification formalism for hybrid programs. We choose differential
dynamic logic (dL) [66, 68, 69], as implemented in the KeYmaera X system [36], because it is
based on an imperative programming language that is a good match for the sequential fragment
of HABS and verification in dL has been demonstrated to scale to realistic systems (e.g., [47]). The
translation from HABS to dL involves to decompose a given HABS verification problem into a set of
independent sequential dL problems. This is possible, because we impose an interaction pattern
for communication on HABS that is less restrictive than available component-based techniques [64],
yet is general enough to permit intuitive and concise modeling of relevant case studies. The
identification of this pattern, the generation of dL verification conditions, and a reachability
preservation theorem constitute our fourth main contribution.

The overall approach is illustrated in Fig. 1: A CPS is modeled as an HABS program with the
aim to analyze its properties statically. One formulates desired properties as invariants that are
formally verified to hold under certain assumptions. Before verification is attempted, the model is
validated by executing it in the runtime environment to ensure that it behaves as intended. A
visualization component helps to analyze behavior over time. Subsequently, the verification claim
is automatically decomposed and translated into a set of dL verification problems discharged in
KeYmaera X (optionally, formally verified runtime monitors [63] and formally verified machine
code is available from KeYmaera X through VeriPhy [18]). Both, unexpected runtime behavior
and failed verification attempts, serve to fix the model and/or the claimed properties.

The paper is structured as follows. Sect. 2 gives an informal example of an HABS model with a
distributed water tank controller. Sect. 3 formally defines syntax and semantics of HABS. Sect. 4
describes modeling patterns. Sect. 5 gives theoretical background on dL, the translation into dL,
the decomposition theorem, and tells how to prove correctness. It also contains a distributed
controller case study. Finally, Sect. 6 discusses related and future work and concludes.
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Figure 1 Structure of HABS workflow.

2 Distributed Hybrid Systems by Example

Active Objects [29] are objects that realize actor-based concurrency [44] with futures [28] and
cooperative scheduling: Active Objects communicate via asynchronous method calls. On the
caller side, each method invocation generates a future as a handle to retrieve the call’s result,
once it is available. The caller may synchronize on that future, i.e. suspend and wait until it is
resolved. At most one process is running on an Active Object at any time. That process suspends
when it encounters the synchronization statement await on an unresolved future or a false Boolean
condition. Once the guard becomes true, the process may be re-scheduled. All fields are strictly
object-private.

Running a Hybrid Active Objects (HAO) model of a CPS can be pictured as follows: each
object is capable of modeling a physical object, for example, a water tank. It may declare physical
behavior via ordinary differential equations (ODEs) over “physical” fields, as well as discrete
behavior via class and method declarations that can be used to control physical behavior. Once
an HAO starts executing, the values of the physical fields evolve, governed by their ODEs, even
when the controller is idle. This models the intuition that a physical system evolves independently
of any observers and controllers.

Object orientation allows natural modeling of hybrid systems: continuous behavior is attached
to an object, not a process. Processes realize discrete control behavior related to sensors and
controllers. Specifically, the controller methods of an object may wait to execute until a certain
physical state is reached (event-triggered control, for example, “tank is nearly full”). This “sensing”
is modeled with getter methods of physical fields. Obviously, for validation the HABS runtime
system must solve the differential equations in the physical model to determine the time point
when such a waiting controller can start at the earliest; for verification, ODEs need not be solvable;
they are analyzed with invariant-based techniques [67, 70]. Another communication pattern for
controllers – time-triggered control – is provided by fixed sampling durations. More complex
control patterns can be realized by waiting until the result of a subcomputation, i.e. a future, is
ready.

Whenever a control process is activated, it can modify the physical state through actuators
(for example, close a valve). In consequence, there are no timed race conditions, but the physical
state might be changed by any process at the time it is scheduled. Actuation is modeled with
setter methods of physical fields. Execution of control methods is assumed to take no physical
time, unless explicitly modeled to do so.

Generally, a CPS can be modeled by several HAOs that communicate with each other via
asynchronous method calls, for example, modeling a central controller. Often a controller object
has no associated physical behavior; vice versa, an object that models physics, may not contain
any control, but only sensor and actuator methods.

We demonstrate HAOs using three variants of water tank models. The first model, TankMono,
is a single water tank that keeps its water level between two thresholds. It is modeled as a single
object that integrates control and physics. The second model, TankTick, is also a single water tank,
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but it is modeled with two separate objects for tank and controller. The final model, TankMulti,
is a distributed system of n TankMono tanks that, in addition to the local threshold, maintain a
global threshold over the sum of all local water levels.

2.1 Base System: TankMono

1 interface ISingleTank {
2 /∗@ ensures 3 <= outLevel() <= 10 @∗/
3 Real outLevel();
4 /∗@ ensures −1/2 <= outDrain() <= 1/2 @

∗/
5 Real outDrain();
6 }
7 /∗@ requires 4 <= inVal <= 9 @∗/
8 class CSingleTank(Real inVal)
9 implements ISingleTank {

10 /∗@ invariant
11 3 <= level <= 10
12 & −1/2 <= drain <= 1/2
13 & (drain<0−>level>3)
14 & (drain>0−>level<10) @∗/

15 physical {
16 Real level = inVal : level’ = drain;
17 Real drain = -1/2 : drain’ = 0;
18 }
19 Unit run() { this!ctrl(); }
20 Unit ctrl() {
21 await diff (level<=3 & drain<=0) | (level>=10 & drain>=0);
22 if (level <= 3) drain = 1/2;
23 else drain = -1/2;
24 this.ctrl();
25 }
26 Real outDrain() { return this.drain; }
27 Real outLevel() { return this.level; }
28 }

Figure 2 TankMono: A water tank as a single HAO.

Fig. 2 shows an HAO model of a water tank whose physical section makes it either fill with
1
2 l/sec or drain at the same rate, according to the initial values and governing ODEs of the level
and drain fields. Method ctrl() realizes a control loop that switches the drain field between those
states so that the water level stays between 3l and 10l. The controller ctrl waits until the water
level reaches the upper or lower limit, i.e. until the condition in Fig. 2, Line 21 holds. Depending
on the case, it changes the state and calls itself recursively.

The JML style [20] comments in Fig. 2 contain an assumption on the initial state of inVal
and a conjectured safety invariant and conjectured output guarantees that, in this case, can be
proven: if the initial level is between 4l and 9l, then it always stays between 3l and 10l. Note
that Lines 13–14 express a safety invariant that must be shown to be true, rather than control
conditions. Intuitively, Line 13 expresses the property that the tank won’t drain below a threshold
(level > 3) even if water is leaking from it (drain < 0). Similarly, Line 14 expresses that the tank
won’t overflow (level < 10) even if water is pumped into the tank (drain > 0). Prior to formal
verification of this property one typically runs tests to see whether the model behaves as intended.
Our implementation allows to simulate and visualize an HAO model. The graph in Fig. 3 shows
the behavior of a CSingleTank object instantiated with inVal = 5. In Sect. 5 we show how the
class is translated into dL and how to prove the safety invariant in KeYmaera X for any object
created with a parameter that satisfies the precondition. The only methods exposed to clients in
the interface are outDrain() and outLevel().

2.2 Discrete Controller: TankTick
The ctrl() method in TankMono corresponds to a perfect sensor/controller that physically
reacts to the water level and drain. TankTick splits controller and sensor into two objects and
uses a clock to read the water level at certain intervals. This corresponds to a closed-loop control
system with a discrete-time controller that samples the plant behavior.

Fig. 4 shows a water tank realized by a controller FlowCtrl and a Tank implementation CTank.
The tank has an in-port (setter) method inDrain() and an out-port (getter) method outLevel().
It has no active discrete behavior on its own (the run method is empty), but its state changes
nonetheless due to the continuous physical block. The FlowCtrl controller’s fields drain, level are
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Figure 3 Simulation Output of TankMono with inVal = 5.

1 interface Tank {
2 /∗ requires −1/2 <= newD <= 1/2; ∗/
3 Unit inDrain(Real newD);
4 /∗ ensures 3 <= outLevel() <= 10; ∗/
5 Real outLevel();
6 }
7 class CTank(Real inVal) implements Tank {
8 physical {
9 Real level = inVal : level’ = drain;

10 Real drain = -1/2 : drain’ = 0;
11 }
12 Unit run() { }
13 /∗ requires newD > 0 −> level <= 9.5 ∗/
14 /∗ requires newD < 0 −> level >= 3.5 ∗/
15 /∗ timed_requires inDrain < 1 ∗/
16 Unit inDrain(Real newD) { drain = newD; }
17 Real outLevel() { return level; }
18 }

19 /∗ requires 0 < tick < 1 & inVal > 3.5∗/
20 class FlowCtrl(Tank t, Real tick, Real inVal) {
21 /∗ invariant (drain > 0 −> level <= 9.5)
22 & (drain < 0 −> level >= 3.5) ∗/
23 Real drain = -1/2;
24 Real level = inVal;
25
26 Unit run() { this!ctrlFlow(); }
27
28 Unit ctrlFlow() {
29 await duration(tick,tick);
30 level = t.outLevel();
31 if (level <= 3.5) drain = 1/2;
32 if (level >= 9.5) drain = -1/2;
33 t!inDrain(drain);
34 this.ctrlFlow();
35 }
36 }

Figure 4 TankTick: A water tank modeled as two HAOs. Invariant and precondition of CTank are as
in Fig. 2.

its local copies of the state of the tank: CTank.drain, CTank.level are different fields from FlowCtrl
.drain, FlowCtrl.level, respectively, residing in different objects. The ctrlFlow() method first
updates level, decides on the state of drain, then pushes the (possibly changed) state of drain to
the tank. No time passes in the controller, which ensures that the copied fields are synchronized
at the end of the round. As the Tank’s fields are not directly accessible by the FlowCtrl instance,
it is not possible to wait on the Tank’s level with an await diff statement. Instead, the controller
uses await duration to run every tick seconds: tick is the sampling time of the controller.

The Tank interface specification declares an input requirement and a guarantee on returned
values. The input requirement of the inDrain() specification is a constraint on the input parameter
newD; specifically, it means that the tank can only be instructed to fill if there is sufficient capacity
left (similar for draining). The initial requirement is sufficient to establish the controller’s invariant,
which in turn ensures that the tank’s requirements are met. The timed_requires clause stipulates
that inDrain() is called at least once per second, which suffices for the output guarantee. Fig. 5
shows example output. We stress that all calls to Tank methods are asynchronous.

2.3 Distributed Tank Control: TankMulti
Consider a system where n water tanks are monitored by a central controller that aims to keep
the sum of all water levels between some thresholds. The code in Fig. 6 shows a controller that
monitors a list of ISingleTank (Fig. 2) instances. Each tick seconds the central controller iterates
over the list of tanks and if their combined level is almost at the upper threshold, the controller
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Figure 5 Simulation Output of TankTick with inVal = 5 for 30s.

drains all water tanks with rising levels (analogously for the lower threshold). Single water tanks
still ensure that their local thresholds are observed. To allow the CControl instance to manipulate
the ISingleTank instances, we add the following method to CSingleTank (and an analogous method
to the interface):

1 /∗ requires newD > 0 −> level < 10 ∗/
2 /∗ requires newD < 0 −> level > 3 ∗/
3 /∗ requires −1/2 <= newD <= 1/2 ∗/
4 Unit inDrain(Real newD) { this.drain = newD; }

Contrary to the contract in TankTick, we do not need to specify how frequently the method
is called, because this information is available in the guard of the ctrl method of the instances.
The recursive call at the end of ctrl ensures that there is always one process executing ctrl for
each instance of FlowCtrl.

The graph in Fig.6 shows the simulation output for four water tanks with different initial
values. The upper thresholds are managed by the distributed controller and the water tanks
cooperatively: Only tanks 1 and 4 reach their local upper thresholds, the others are drained by the
distributed controller to maintain the global threshold. The lower local thresholds are managed
locally, the lower global threshold is never reached.

2.4 Futures

Future-based communication allows to decouple the call of a method from retrieving its result. For
example, consider the code in Fig. 7. Class Node can perform some complex and time consuming
computations on behalf of class Client. To enable load balancing the client has only a reference
to an interface Server, which relays its request. The Server performs basic load balancing by a
round-robin scheduling on a list of nodes. It then returns to the issuing client the future of the
relayed request without having to wait for the computation to finish (Line 17). The client can then
retrieve the future (Line 7) to synchronize on it without blocking the interface server (Line 8).

3 Hybrid Active Objects

An informal description of the intended semantics of Hybrid Abstract Objects in the Hybrid
Abstract Behavioral Specification (HABS) language was provided in Section 2. The present section
gives a formal account of its syntax and semantics. HABS is an extension of the Active Object
language ABS [48]. ABS itself extends standard OO concepts as follows:
Encapsulation. All fields are strictly object-private.
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1 class CControl(List<ISingleTank> tanks,
2 Real totalLower,
3 Real totalHigher,
4 Real tick)
5 implements IControl {
6 Unit run() {
7 await duration(tick, tick);
8 Real total = 0;
9 List<ISingleTank> lower = list[];

10 List<ISingleTank> higher = list[];
11 foreach ( next in tanks ) {
12 Real val = next.outLevel();
13 Real dir = next.outDrain();
14 if (dir < 0 && val > 3)
15 lower = Cons(next, lower);
16 if (dir > 0 && val < 10)
17 higher = Cons(next, higher);
18 total = total + val;
19 }
20 if (total <= totalLower+1)
21 foreach ( lnext in lower )
22 lnext!inDrain(1/2);
23 if (total >= totalHigher-1)
24 foreach ( hnext in higher )
25 hnext!inDrain(-1/2);
26 this.run();
27 }
28 }

tank1
tank2

tank3
tank4

read total
0

5

10

15

20

25

0 5 10 15 20 25 30 35 40
time in seconds

Figure 6 TankMulti: A controller for n TankMono instances and an example simulation output.
Interface omitted.

Cooperative Scheduling. Active Objects cannot be preempted: a process running in an object may
not be interrupted by other processes, unless the active process suspends itself or terminates.

Asynchronous Calls, Futures. All method calls to other objects are asynchronous. Every call not
only generates a process on the callee side, but a future that points to that process. A process
may pass around a future or synchronize with it to read the return value of the associated
process once it has terminated.

As a Timed Active Object language, HABS also features:
Simulation Time. HABS allows to manipulate simulation time by explicitly advancing (and reading)

an internal clock with specific statements. Simulation time is independent of the wall time.

3.1 Syntax
The syntax of HABS is given by the grammar in Fig. 8 and explained in the following section.
With e we denote standard expressions over fields f, variables v and operators |, &, >=, <=, +, -, *,
/. Types T are all interface names, type-generic futures Fut<T>, lists List<T>, Real, Int, Unit and
Bool. We also assume the usual functions for lists, etc.

A program contains a main method Main, interfaces ID and classes CD. Interfaces are standard,
the main method contains a list of object creations. Classes can have parameters Tf, these are
fields being initialized during object creation. Classes have fields FD, methods Met, an optional
run method Run to start a process, and an optional physical block Phys that declares physical
fields. A declaration of a physical field is a field declaration followed by a differential equation.
A differential equation is an equation between two differential expressions, which are standard
expressions extended with a derivation operator e’ for de

dt . HABS supports explicit autonomous
differential equations. The differential expressions and the field initialization form an initialized
ordinary differential equation, e.g., Real f = 0: f’ = 5-f. Note that f = 0 specifies the initial
value of f, whereas the differential equation f’ = 5-f is phrased in terms of the time-varying value
of f, so models logarithmic growth towards f = 5.
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1 class Node {
2 Real compute_internal(Real r1, Real r2, Real r3){ ... }
3 }
4 class Client(Server s){
5 Unit run(){
6 Fut<Fut<Real>> ffr = s!compute(1,2);
7 Fut<Real> fr = ffr.get;
8 Real r = fr.get;
9 ...

10 }
11 }
12 class Server(Queue<Node> internal, Real param){
13 Fut<Real> compute(Real r1, Real r2){
14 Node n = internal.pop();
15 Fut<Real> fr = n!compute_internal(r1,r2,param);
16 internal.push(n);
17 return fr;
18 }
19 }

Figure 7 An example for load balancing using futures. Interfaces omitted.

Prgm ::= ID CD Main ID ::= interface I [extends I]?{MS} Programs, Interfaces

Main ::= {s?} Main

CD ::= class C [implements I]? [(T f)]?{Phys? FD Met Run?} Classes

Run ::= Unit run() {s} FD ::= T f = e Run Method and Fields

Phys ::= physical {DED} DED ::= Real f = e : f’ = e Physical Block

MS ::= T m(T v) Met ::= MS {s;return e;} Signatures, Methods

s ::= while (e) {s} | if (e) {s} [else {s}]? | s;s
| await g | [T? e]? = rhs Statements

g ::= duration(e,e) | diff e | e? Guards

rhs ::= e | new C(e) | e.get | e!m(e) RHS Expressions

Figure 8 HABS grammar. T ranges over types, I over interfaces and C over classes. Differential expression
de are normal expressions extended with a derivation operator e’.

Methods and statements are mostly standard, we focus on HAO-specific constructs. Methods
are called asynchronously with e!m(e), i.e., after the call, the caller continues execution without
waiting for the callee to finish. Instead, the caller generates a future. A future identifies the call
and can be passed around by the caller. A process interacts in two ways with a future: either by
awaiting its result with await e? on the guard e?, or by reading its value with e.get. Statements
e.get block the reading object – no other process may run on it. In contrast, statements await g
release the process control over the object while waiting for the guard g to hold. The guard is
either a future guard e?, a differential guard diff e, or a timed guard duration(e1,e2). The future
guard e? awaits the result of future e, the differential guard diff e suspends the process until the
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expression e evaluates to true, and the timed guard duration(e1,e2) suspends the process for at
least e1 time units1. The notation T v = o.m() is short for Fut<T> f = o!m(); T v = f.get; (a
call followed by a synchronization).

3.2 Semantics of HABS

HABS extends the structural operational semantics (SOS) for Timed ABS [16] in three aspects:
(i) it includes physical behavior in the object state;
(ii) determines whether a differential guard holds and, if not, when it will at the earliest;
(iii) updates the state whenever time passes.
This affects only expression evaluation and auxiliary functions. No new SOS rule is needed. In
the following we extend the core of the ABS SOS semantics [16] to hybrid systems.

3.2.1 States
The state of an object has three parts:

(i) a store ρ that maps (physical and non-physical) fields to values, and the variables of the
active process2 to values;

(ii) ODE , the differential equations from its physical block;
(iii) F , the set of current solutions of ODE3.

A solution f is a function from time to a store which only contains the physical fields. The set F
may change, because the ODEs are solved as an initial-value problem with the current state of
the physical fields as the initial values. For each f ∈ F and each physical field f the following
holds: f(0)(f) = ρ(f), i.e., the initial value f(0)(f) of physical field f is the current value ρ(f) in
the store ρ. We denote the solutions of ODE with initial values from ρ by sol(ODE , ρ). We define
runtime configurations formally:

tcn ::= clock(e) cn cn ::= cn cn | fut | msg | ob
ob ::= (o, ρ,ODE , F. . . . . . . . , prc, prc) msg ::= msg(o, e, f)

prc ::= (τ, f, rs) | ⊥ rs ::= s | suspend;s fut ::= fut(f, e)

Figure 9 Runtime Syntax of HABS.

▶ Definition 1 (Runtime Configuration [16]). The runtime syntax of HABS is summarized in Fig. 9:
f ranges over future identities, o over object identities, ρ, τ over stores, i.e., assignments from
fields or variables to values. A timed configuration has a clock clock with the current time, as
an expression of Real type and an object configuration cn. An object configuration cn consists
of messages msg, futures fut, objects ob, and can be composed cn cn (as usual, composition is
commutative and associative). A message msg(o, e, f) records callee o, passed parameters e and
the generated future f . A future configuration fut(f, e) connects the future f with its return value
e. An object (o, ρ, F,ODE , prc, prc) has an identifier o, an object store ρ, the current solutions F ,
an active process prc and a queue of inactive processes. ODE is taken from the class declaration.

1 The parameter e2 is used by certain scheduling policies [16], and is not relevant for HABS.
2 Recall that the active process executes the ABS methods, it does not relate to physical behavior.
3 The solutions computed relative to the initial values (state) at the last suspension.
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A process is either terminated ⊥ or has the form (τ, f, rs): the process store τ with current state
of the local variables, its future f , and the statement rs left to execute. The runtime syntax also
allows the suspend statement, which is used to deschedule a process. Dotted underlined elements
are an extension of HABS relative to ABS (also in Fig. 10 below).

Given a process store τ and an object store ρ we use σ = ρ ◦ τ to denote the state of both
fields and local variables. We first define the evaluation of expressions and guards.

3.2.2 Evaluation of Expressions

Expressions e are evaluated with a function JeKF,tσ over a store σ and a set of solutions F at t time
units in the future. The semantics of expressions containing physical fields is as follows.

▶ Definition 2 (Semantics of Expressions). Let F be the set of solutions. Given a store σ, we can
check whether F is a model of an expression e after t time units. Let fp be a physical field and fd
a non-physical field of o. The semantics of fields fp, fd, unary operators ∼ ∈ {!,- } and binary
operators ⊕ ∈ {|, &, >=, <=, +, -, *, /} is defined as follows:

JfdKF,tσ = σ(fd) JfpKF,tσ =
{
v if ∀f ∈ F. v = f(t)(fp)
∞ otherwise

J∼eKF,tσ = ∼JeKF,tσ Je1 ⊕ e2KF,tσ = Je1KF,tσ ⊕ Je2KF,tσ

Outside differential guards, only the evaluation in the current state JeKF,0σ is needed, which is
ρ(fp) from f(0)(fp) and this expression is never ∞. We identify JeKFσ and JeKσwith JeKF,0σ .

3.2.3 Evaluation of Guards

The semantics of an await g statement is to suspend until the guard holds, i.e. until JgKFσ evaluates
to true. For example, a duration guard duration(e1,e2) evaluates to true if Je1KFσ ≤ 0. Defining
the semantics of guards requires two operations: An extension of the evaluation function that
returns true if the guard holds and the maximal time elapse mteFσ returning the time t that may
elapse before the guard evaluates to true, or ∞ if it never does.

First we define mte(e): the maximal time that may elapse without missing an event is the
minimal time needed by the system to evolve into a state where the guard is guaranteed to hold.
This yields also the semantics of the guard itself.

▶ Definition 3 (Semantics of Differential Guards). Let F be the set of solutions of object o in
state σ. Then we define:

mteFσ (diff e) = argmin
t≥0

(
JeKF,tσ = true

)
diff e is evaluated to true if no time advance is needed:

Jdiff eKF,0σ = true ⇐⇒ mteFσ (diff e) = 0

If e contains no continuous variable then the differential guard semantics and the evaluation of
expressions in Def. 2 coincides with condition synchronization and expression evaluation in the
standard ABS semantics [48].
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(1)
(
o, ρ,ODE, F

. . . . . . . .
, (τ, f,await g;s), q

)
→

(
o, ρ,ODE, F

. . . . . . . .
, (τ, f, suspend;await g;s), q

)
(2)

(
o, ρ,ODE, F

. . . . . . . .
, (τ, f, suspend;s), q

)
→

(
o, ρ,ODE, sol(ODE, ρ)

. . . . . . . . . . . . . . . . . .
,⊥, q ◦ (τ, f,s)

)
(3)

(
o, ρ,ODE, F

. . . . . . . .
,⊥, q ◦ (τ, f,await g;s)) →

(
o, ρ,ODE, F

. . . . . . . .
, (τ, f,s), q

)
if JgKρ◦τ = true

(4)
(
o, ρ,ODE, F

. . . . . . . .
, (τ, f,v = e;s), q

)
→

(
o, ρ,ODE, F

. . . . . . . .
, (τ [v 7→ JeKρ◦τ ], f,s), q

)
if e contains no call or get

(5)
(
o, ρ,ODE, F

. . . . . . . .
, (τ, f, return e;), q

)
→

(
o, ρ,ODE, sol(ODE, ρ)

. . . . . . . . . . . . . . . . . .
,⊥, q

)
fut

(
f, JeKρ◦τ

)
(6)

(
o, ρ,ODE, F

. . . . . . . .
, (τ, f,v = e1.get;s), q

)
fut

(
f,e2

)
→

(
o, ρ,ODE, F

. . . . . . . .
, (τ, f,v = e2;s), q

)
if Je1Kρ◦τ = f

(7)
(
o, ρ,ODE, F

. . . . . . . .
, (τ, f,v = e!m(e1, . . .en;s), q

)
→(

o, ρ,ODE, F
. . . . . . . .

, (τ [v 7→ f̃ ], f,s), q
)

msg
(
JeKρ◦τ , (Je1Kρ◦τ , . . . , JenKρ◦τ ), f̃

)
where f̃ is fresh

Figure 10 Selected Rules for HABS objects.

3.2.4 Transition System
Fig. 10 gives the most important rules for the semantics of a single object, the omitted rules are
given in [16]. Rules (1)–(3) define the semantics of process suspension. An await statement suspends
the current process and gives other processes in the queue q a chance to run, even if its guard is
evaluated to true. Suspension is modeled in rule (1) simply by introducing a suspend statement in
front of the await.4 Rule (2) realizes a suspend statement by moving the current process to the
object’s queue. As explained in Sect. 3.2.3, upon reactivation of a suspended process we must
ensure its guard to be true, relative to the solution of ODE with initial values at suspension
time. Therefore, rule (2) also recomputes the solutions F . Rule (3) can then re-activate a process
beginning with an await statement, simply by checking whether its guard evaluates to true at
current time (advancing time in timed configuration is explained below). An analogous rule (not
shown in Fig. 10) activates a process with any other non-await statement. Rule (4) evaluates an
assignment to a local variable. The rule for fields is analogous. Rule (5) realizes a termination
(with solutions of the ODEs) and (6) a future read. Finally, (7) is a method call, the rule for
transforming a message into a process is straightforward.

For configurations, there are two rules, shown in Fig. 11. Rule (i) realizes a step of some object
without advancing time, Only if (i) is not applicable, i.e. all ABS processes are blocked, rule (ii)

can be applied. It computes the global maximal time elapse mte and advances the time in the
clock and all objects. In particular, it decreases syntactically the timed guards.

(i) clock(t) cn cn1 → clock(t) cn2 cn1 with cn → cn2

(ii) clock(t) cn → clock(t+ t̃) adv(cn, t̃) if (i) is not applicable and mte(cn) = t̃ ̸= ∞

Figure 11 Timed Semantics of HABS configurations.

4 We follow the original ABS semantics, where suspension is handled with a separate suspend statement for
reasons of uniformity – in principle, rules (1)+(2) could be combined.
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Fig. 12 shows the auxiliary functions and includes the full definition of mte. Note that mte
is not applied to the currently active process, because, when (1) is not applicable, it is currently
blocking and, thus, cannot advance time. The characteristic feature of hybrid objects is that their
physical state changes when time advances, even when no process is active. This is expressed in
the semantics by a function adv(σ, t) which takes a state σ, a duration t, and advances σ by t

time units. For non-hybrid Active Objects adv(σ, t) = σ. There, the function is needed only to
modify the process pool of an object for scheduling, not its state, and is used exactly as in [16].

mte(cn1 cn2) = min(mte(cn1),mte(cn2)) mte(msg) = mte(fut) = ∞
mte(o, ρ,ODE , F, prc, q) = Jmin(mte(q),∞)Kρ mte(τ, f, await g;s) = Jmte(g)Kτ

mte(τ, f, s) = ∞ if s ̸= await g;s̃ mte(duration(e1,e2)) = e1

mteFσ (diff e) = argmin
t≥0

(
JeKF,tσ = true

)
mte(e?) = ∞

adv(cn1 cn2, t) = adv(cn1, t) adv(cn2, t)
adv(msg, F, t) = msg adv(fut, F, t) = fut

adv((o, ρ,ODE , F, prc, q), F, t) = (o, adv(ρ, t),ODE , F, adv(prc, F, t), adv(q, F, t))
adv(⊥, F, t) = ⊥

adv((τ, f, s), F, t) = (τ, f, s) if s ̸= await duration(e1,e2);s̃

adv((τ, f, await duration(e1,e2);s), F, t) = (τ, f, await duration(e1+ t,e2+ t);s)

adv(σ, t)(f) =
{
σ(f) if f is not physical
v if ∀f ∈ F. v = f(t)(f)

Figure 12 Auxiliary functions. Lifting to lists is not shown.

The adv auxiliary function handles uniqueness w.r.t. the solutions of the ODE at the points in
time where the solutions are accessed: Note that the solutions are handled as a set F : at time t
function adv checks that all solutions coincide at this point in time. If this is not the case, or if no
solution can be found by the implementation, a runtime error is thrown. Also, all solutions are
computed without restrictions on the time domain (e.g., for how long they exits) because it is
not known for how long the dynamics are followed at this point. Alternatively, one could either
impose restrictions on the ODE to enforce uniqueness or non-deterministically choose one of the
solutions.

We can now define traces of programs and objects.

▶ Definition 4 (Traces). Given a program Prgm, we denote with clock(0) cn0 the initial state
configuration [16]. A run of Prgm is a (possibly infinite) reduction sequence

clock(0) cn0 → clock(t1) cn1 → · · ·

The trace θo of an object o in a run is an assignment from the dense time domain R+ to states.
We say that clock(ti) cni is the final configuration at ti in a run, if any other timed configuration
clock(ti) c̃ni is before it. Fig. 13 gives a formal definition.

For any point in time x, the state of o is taken from the run, if a reduction step was made at
x and o was already created. The third case in the definition is illustrated in Fig. 14: At time
points y and z, discrete steps are done, but none at x. The state θo(x) is extrapolated from the
state θo(y) by following solutions from the last step at point y, if o is created.
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θo(x) =



undefined if o is not created yet
ρ if clock(x) cn is the final configuration at x

and ρ is the state of o in cn
adv(ρ, F, x− y) if there is no configuration at clock(x)

and the last configuration was at clock(y)
with state ρ and solutions F

Figure 13 Extraction of a trace θo for an object o from a given run.

time

adv

z

Figure 14 Illustration of the state at time x and two discrete states with clock(y) and clock(z).

3.3 The Component Fragment
We define a sublanguage of HABS called Component HABS (CHABS) to model component-style
architectures with in- and out-ports, as well as dedicated controllers with a read-evaluate-write
cycle. Syntactically, a class is a component if it can be derived from the syntax in Fig. 8 with the
rule for Met replaced by the following:

Met ::= MS [OPort | IPort | Ctrl]
OPort ::= {return this.f;} IPort ::= {this.f = v; return Unit;}

Ctrl ::= {sa; si; sc; so; this.m();}
sa ::= await duration(e,e) | await diff e

si ::= this.f = e.m() | si;si
sc ::= while (e) {sc} | if (e) {sc} [else {sc}]? | sc;sc | T? e = e | e!m(e)

so ::= e!m(this.f) | so;so

Additionally, we demand that the only numerical data types used are Int, Real. Out-ports return
the value of a field and in-ports copy a method parameter into a field. A controller method Ctrl
has a timed or differential guard sa, followed by reads si from the out-port methods of other
objects (recall that this.f = e.m() is a shortcut for an asynchronous call followed by a read, not
a synchronous call), computations sc, and writes so to the in-ports of other objects. In the
component fragment, we realize a component-based controller with a read-compute-write loop
by restricting the run method of Fig. 8 to start a controller with an asynchronous call to an
object’s own controller method Ctrl and each controller ends with a recursive call to itself. The
TankMono and TankTick models are CHABS models, the central controller in TankMulti is
not. A controller method with a differential guard is an event-triggered controller, a controller
with a timed guard a time-triggered controller.

We model instantaneous controllers in CHABS: once controller is scheduled (i.e., after its guards
evaluates to true) no time can pass because all calls in Ctrl are to port methods that cannot block
the caller and neither suspensions nor future reads are allowed.

LITES
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3.4 Simulation
The implementation of HABS extends the ABS compiler [81] to compute solutions for differential
guards, time elapse, and state advance. To compile differential guards correctly, it needs to
compute mteFσ (diff e) (Def. 3).

The ODEs of a class cannot be changed at runtime and are, therefore, represented as a string
in the class table. The simulator uses an external solver to solve initial value problems and
minimize/maximize duration between events.

Solutions To compute solutions F , the ODEs and the current state of the physical fields are passed
to Maxima [61] as an initial value problem. The solution is an equation system or an error. In
its default setting, the simulator neither supports non-unique solutions nor non-solvable ODEs.
The simulator, however, has the infrastructure to use solvers other than Maxima. This allows
us to handle non-linear ODEs: by prefixing the physical block with [1], the modeler can select
the solver ic1 (instead of the default desolve), which can handle non-linear systems.

Time elapse After solving the initial value problem, Maxima is invoked with a minimization
problem: it minimizes the time t with the equation system representing F as the constraints
(this corresponds to eager mode switching in a hybrid automaton). The result is then handled
in the same way as a parameter to a timed guard by the runtime system. Once time has
passed and the suspended process is reactivated, the physical fields are updated according to
F . This uses the Maxima function fmin_cobyla.

State advance To implement the advance function adv, if the state of the object changes any
physical field, the procedure used to compute time elapse is repeated for every currently
suspended differential guard to accumulate the result.

The output files used to visualize a program execution are of the form t1, F1, t1, F2, t2, . . . , Fn, tn.
Here ti are the points in time where the object schedules a process and Fi the function describing
its physical behavior in the previous suspended state. Each time a differential guard is reactivated,
not only its state is updated, but the solution Fi+1 and the reactivation time ti+1 are written to
the output. Each object has its own output file.

A Python script translates output files into a discrete dynamic graph in Maxima format which
in turn calls gnuplot that is responsible for creating the graph. The graphs in this work are slightly
beautified outputs.

4 Modeling with HABS

We give more examples of HABS models and discuss some design decisions in the language, as well
as modeling patterns in HABS for common phenomena in hybrid system control.

4.1 Non-Linear Dynamics
HABS can handle non-linear ODEs and non-linear dynamics to the extent the backends support
it. For an example, consider a resistor attached to an alternating current source that produces a
sine-formed current. This is described by the class in Fig 15.

We use the non-linear solver of Maxima (by annotating [1]). This solver requires the input to
satisfy certain syntax constraints, which entail the slightly awkward specification r’ = 0*t. We
must give an explicit ODE for each non-constant variable for KeYmaera X and as HABS requires
an autonomous system, we add a clock variable time to express sine and cosine.

The example has a run method that illustrates validation. We check whether our simple model
is in fact a resistor and adheres to the law R = I/V : Even before visualization, we can use simple
command line output to check I/V by sampling every 1 second. The output for an instance
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class Resistor(Real init) {
[1] physical {

/∗ format expected by Maxima ∗/
Real t = 0: t’ = 1;
Real r = init: r’ = 0*t;
Real i = 0: i’ = cos(t);
Real v = 0: v’ = r*cos(t);

}
Unit run() {

await duration(1,1);
println("step: " + toString(now()) +

" with " + toString(v/i));
if (timeValue(now()) < 60) this!run();

}
}

s tep : Time ( 1 ) with 5
step : Time ( 2 ) with 4286450913523623 /

↪→ 857290182704725
step : Time ( 3 ) with 1319812111494398 /

↪→ 263962422298881
step : Time ( 4 ) with 1313376056981147 /

↪→ 262675211396229
step : Time ( 5 ) with 295788950328081 /

↪→ 59157790065616
step : Time ( 6 ) with 723097187038613 /

↪→ 144619437407721
step : Time ( 7 ) with 758118670875062 /

↪→ 151623734175013
step : Time ( 8 ) with 5
step : Time ( 9 ) with 5
. . .

Figure 15 A resistor attached to an AC-circuit and its sine-formed current.

Resistor(5) is shown in Fig. 15, where Time(n) is the symbolic time at the point of time when
now() is evaluated. In the example this corresponds to seconds. As a next step, we can use the
visualization to observe longer trends in Fig. 16, again for a Resistor(5).

current

voltage

-5

 0

 5

 0  10  20  30  40  50  60

Figure 16 Example simulation output of a Resistor(5).

Finally, we can formally verify the behavior with our translation approach to KeYmaera X by
removing the run method and, thus, transforming it into a CHABS component.

4.2 Delays and Imprecision
Communication is imperfect in realistic models. We demonstrate how to model two such imper-
fections, delays and imprecision, in HABS. We use a simple platooning example, where a follower
car wants to follow a lead car at a certain distance. Follower cars are modeled in the CHABS class
FollowerCar in Fig. 17. For simplicity, the minimal (minDist) and maximal distance (maxDist) to
the lead car are independent of the speed and the controller sampling frequency, which means the
follower car will not provably stay in the desired distance interval. The time consuming statement
await duration can be used to model two kinds of delays:

1. Complex computations that take some time to finish.
2. Latency: By adding a time consuming statement as the last statement of a method before the

return, one can model delays in a network.
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class FollowerCar
(Real inita, Real start,
Real tick, Real minDist,
Real maxDist, ICar leadCar)
implements ICar {

Real next = start + minDist;
physical {

Real a = inita : a’ = 0;
Real v = 0 : v’ = a;
Real x = start : x’ = v;

}
Unit run() {

this!ctrlObserve();
}

Unit ctrlObserve() {
await duration(tick, tick);
next = leadCar.getPosition();
if(next - x <= minDist) a = a/2;
if(next - x >= maxDist) a = a*2;
this.ctrlObserve();

}

Real getPosition() {
return x;

}
}

Figure 17 Simple platooning example for a follower car following safely behind a lead car

For example, we extend getPosition() in FollowerCar to model sensing latency as follows:
Real getPosition() {

Real oldVal = x;
await duration(1/10, 1/10);
return oldVal;

}

Like ABS, HABS has access to a (uniformly distributed) random number generator. There are
functions to generate other statistical distributions. This allows to model imprecision/uncertainty.
The following method adapts getPosition() to model sensor uncertainty:

Real getPosition() {
Real imp = (random(11) + 95)/100; // number between 0.95 and 1.05
return this.level * imp;

}

4.3 Variability Modeling
One of the main advantages of using a mature programming language as a host for hybrid behavior
is that we can use its structuring elements and concepts: HABS inherits the module system with
import/export clauses5, as well as the delta-oriented [73], feature-oriented [14] product line [8, 74]
(DFPL) mechanisms of ABS [25] to model variability.

DFPLs define not a single model, but a set of models which are variants of each other. From a
given core model, so-called code deltas define variants based on syntactic operations: removal,
modification and addition of classes, methods and fields. A variant is obtained from the core
model by applying modifications specified by the deltas to it.

To determine the relevant deltas, each delta has a set of features that activate its application.
A feature of a variant corresponds roughly to one implemented feature of the modified model. A
set of features is called a product. After selecting a product, the corresponding deltas are computed
and applied, resulting in an HABS model without variability.

5 Omitted from the language syntax in Sec. 3 for brevity.
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delta Delay;
modifies class Cars.FollowerCar {

modifies Real getPosition() {
Real old = original();
await duration(1/10,1/10);
return old;

}
}
delta Imprecision;
modifies class Cars.FollowerCar {

modifies Real getPosition() {
return original()*(random(11)+95)/100;

}
}

delta CruiseControl;
modifies class Cars.FollowerCar {

adds Real ccTick = this.tick*2;
adds Unit cruise() {

await duration(ccTick, ccTick);
if ((v >= 5 || v <= 0) && a != 0)

{
a = 0;

}
this.cruise();

}
modifies Unit run() {

original();
this!cruise();

}
}

productline PL1;
features FDelay, FImprecision, FCruiseControl;
delta CruiseControl when FCruiseControl;
delta Delay when FDelay;
delta Imprecision after Delay when FImprecision;

Figure 18 Product line based on Fig. 17 for variability in position readings and cruise control.

We refrain from introducing the whole variability layer of ABS and refer to [25] for a detailed
and formal introduction. Instead, we use the platooning example in Fig. 17 to demonstrate
variability modeling in practice. The changes for imprecision and delay, as well as adding a cruise
control system can be modeled as a product line. This allows to select the appropriate car product
for a concrete system, as summarized in Fig. 18. The product line consists of three deltas (Delay,
Imprecision and CruiseControl), three features (FDelay, FImprecision and FCruiseControl) and
a knowledge base that defines which features select which delta (delta D when F) and in which
order deltas are applied if they modify the same method (delta D after D2).

The delta Delay modifies class Cars.FollowerCar6 and its method getPosition(). The modified
method first calls the existing variant of the method via original and then waits before returning
the value. Delta Imprecision is similar. Both deltas modify the same method. There are numerous
desirable properties, and to make the product line outcome deterministic, we must fix the order in
which methods are applied that modify the same method. Here, we demand that Imprecision is
applied after Delay. Delta CruiseControl adds a field and method implementing a simple cruise
control system. Deltas may also remove methods and fields (not shown here). In our example we
represent each delta as a feature, and so any product that refers to a feature invokes its assigned
delta. The deltas are applied syntactically before type checking. As a result, a standard HABS
program is created. For example the product {FDelay} results in the code below.

class FollowerCar (...) implements ICar {
... // as above
Real getPosition_core() { return x; }
Real getPosition() { return this.getPosition_core()*(random(11) + 95)/100; }

}

6 Cars is the module.
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5 Formal Verification of HABS Models

As a prerequisite for formal verification of HABS, we briefly review differential dynamic logic
(dL) [68, 69] as implemented in the hybrid systems theorem prover KeYmaera X [36]. We then
discuss translation from HABS to dL, and sketch formal verification in dL with sequent proofs.

5.1 Background: Differential Dynamic Logic
Differential dynamic logic expresses the combined discrete and continuous dynamics of hybrid
systems in a sequential imperative programming language called hybrid programs. Its syntax and
informal semantics are in Table 1.

Table 1 Hybrid programs in dL.

Program Informal semantics
?φ Test whether formula φ is true, abort if false
x := θ Assign value of term θ to variable x

x := ∗ Assign any (real) value to variable x

{x′ = θ & H} Evolve ODE system x′ = θ for any duration t≥0
with evolution domain constraint H true throughout

α; β Run α followed by β on resulting state(s)
α ∪ β Run either α or β non-deterministically
α∗ Repeat α n times, for any n ∈ N

Hybrid programs provide the usual discrete statements: assignment (x := θ), non-deterministic
assignment (x := ∗), test (?φ), non-deterministic choice (α ∪ β), sequential composition (α;β),
and non-deterministic repetition (α∗). A typical modeling pattern combines non-deterministic
assignment and test (e.g., “x := ∗; ?H”) to choose any value subject to a dL constraint H. Standard
control structures are expressible, for example:

(i) if H then α else β ≡ (?H;α) ∪ (?¬H;β),
(ii) if H then α ≡ (?H;α) ∪ (?¬H),
(iii) while (H) α ≡ (?H;α)∗; ?¬H.

For continuous dynamics, the notation {x′ = θ&H} represents an ODE system (derivative x′

in time) of the form x′
1 = θ1, . . . , x′

n = θn. Any behavior described by the ODE stays inside the
evolution domain H, i.e. the ODE is followed for a non-deterministic, non-negative period of time,
but stops before H becomes false. For example, a basic model of the water level x in a tank draining
with flow −f is given by the ODE {x′ = −f &x ≥ 0}, where the evolution domain constraint
x ≥ 0 means the tank will not drain to negative water levels. With a careful modeling pattern,
ODEs can be governed by H so that one can react to events, without restricting or influencing
the continuous dynamics modeled in the ODE [72]: The pattern {x′ = θ&H} ∪ {x′ = θ& H̃}
permits control intervention to achieve different behavior triggered by an event H. H̃ is the weak
complement of H: they share exactly their boundary from which both behaviors are possible. For
example, H ≡ x ≤ 0, H̃ ≡ x ≥ 0.

The dL-formulas φ, ψ relevant for this paper are propositional logic operators φ ∧ ψ, φ ∨ ψ,
φ → ψ, ¬φ and comparison expressions θ ∼ η, where ∼ ∈{<, ≤, =, ̸=, ≥, >} and θ, η are real-
valued terms over {+, −, · , /}. In addition, there is the dL modal operator [α]φ. The dL-formula
[α]φ is true iff φ holds in all states reachable by program α. The formal semantics of dL [68, 69] is a
Kripke semantics in which the states of the Kripke model are the states of the hybrid system. The
semantics of a hybrid program α is a relation JαK between its initial and final states. Specifically,
ν |= [α]φ iff ω |= φ for all states (ν, ω) ∈ JαK, so all runs of α from ν are safe relative to φ.
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Proofs in dL are sequent calculus proofs on the basis of dL axioms. For example, validity of
the dL formula x ≥ 0 → [x := x+ 1 ∪ x := 2; {x′ = 3}]x ≥ 1 over a simple program that either
increments the value of x or continuously evolves x with a constant slope x′ = 3 after setting the
initial value of the differential equation with x := 2 is shown in the sequent proof below:

⇤
QEx � 0 ` x + 1 � 1
[:=]x � 0 ` [x := x + 1]x � 1

⇤
dI x = 2 ` [{x0 = 3}]x � 1

[:=],hideLx � 0 ` [x := 2][{x0 = 3}]x � 1
[; ] x � 0 ` [x := 2; {x0 = 3}]x � 1

[[],^R x � 0 ` [x := x + 1 [ x := 2; {x0 = 3}]x � 1
!R ` x � 0 ! [x := x + 1 [ x := 2; {x0 = 3}]x � 1

Sequent proofs proceed bottom-up but validity transfers top-down, i.e., from the subgoals
above the horizontal bar, the axiom or proof rule annotated to the left of the bar implies the
sequent below the horizontal bar. In each step, assumptions are listed to the left of the ⊢, and the
alternatives to prove to the right of it. The proof starts with step →R to make the left-hand side
x ≥ 0 of the implication available as an assumption. Next, the non-deterministic choice step [∪]
means that both choices must ensure the postcondition x ≥ 1, so with conjunction splitting ∧R we
get two subgoals: a left subgoal for the increment program x := x+ 1 and a right subgoal for the
differential equation program. On the increment program branch, we execute the assignment in
step [:=] and the result follows by real arithmetic in step QE. On the differential equation branch,
step [; ] splits the sequential composition into nested box modalities, and then step [:=],hideL
executes the assignment and weakens the now obsolete assumption x ≥ 0. The branch closes by
differential induction dI (intuitively, the dI step expresses that x ≥ 1 stays true along the flow of
the differential equation, see [67]). This concludes the example proof.

5.2 Formal Verification of Components

1 interface Tank {
2 /∗ requires −1/2 <= newD <= 1/2; ∗/
3 Unit inDrain(Real newD);
4 /∗ ensures 3 <= outLevel <= 10; ∗/
5 Real outLevel();
6 }
7
8 class CTank(Real inVal)
9 implements Tank {

10 /∗ requires newD > 0 −> level <= 9.5 ∗/
11 /∗ requires newD < 0 −> level >= 3.5 ∗/
12 /∗ timed_requires inDrain < 1 ∗/
13 Unit inDrain(Real newD) { ... }
14 ...
15 }
16
17 /∗ requires 0 < tick < 1 & inVal > 3.5∗/
18 class FlowCtrl(Tank t, Real tick,
19 Real inVal) {
20 /∗ invariant (drain > 0 −> level <= 9.5)
21 & (drain < 0 −> level >= 3.5) ∗/
22 ...
23 }

Figure 19 Annotations in the TankTick model, repeated from Fig. 4.

To establish system-wide properties, hybrid active objects must be shown to satisfy their class
invariants, provided that the constraints expressed in the preconditions are met. We make this
precise now. A class specification is a tuple (inv, pre,TReq,Req,Ens), where inv is the class invariant
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(annotated /∗ invariant ... ∗/, see Fig. 19, lines 20–21), a dL formula over the fields and parameters
of the class; pre is the precondition (annotated to class declarations with /∗ requires ... ∗/, see
Fig. 19, line 17), a dL formula over the initial values of fields and class parameters. TReq is
the set of timed input requirements for in-port methods (annotated with /∗ timed_requires ... ∗/,
see Fig. 19, line 12): dL formulas over a dedicated program variable with the method’s name.
Req is the set of input requirements for in-port methods (annotated with /∗ requires ... ∗/, see
Fig. 19, lines 2, 10–11): dL formulas over fields and method parameters. Ens is the set of output
guarantees for out-port methods (annotated with /∗ ensures ... ∗/, see Fig. 19, line 4): dL formulas
over a dedicated program variable with the method’s name.

To verify a class C against a class specification, both are translated into dL-formula (1) that
expresses safety.

assumptionsC →
[
(codeC; plantC)∗]

safetyC (1)

The placeholders assumptionsC, codeC, plantC, and safetyC (defined formally in Sect. 5.3
below) encode class C and its specification (inv, pre,TReq,Req,Ens) as follows: The formula
assumptionsC is the conjunction of pre and conditions on variables that keep track of time. As
usual in controller verification, the program repeats a control part codeC followed by the continuous
behavior plantC. The condition safetyC must hold after an arbitrary number of iterations. It
combines inv with input requirements of in-port methods of referred objects and guarantees of
own out-port methods.

Even though formula (1) safetyC is a postcondition that must hold only in the final states of
the system, we stress that this means at every real time point during the continuous dynamics,
because ODEs advance for a non-deterministic duration while discrete statements take no time.
The modality, therefore, expresses that whenever codeC executes completely, the invariant holds.
In particular, the invariant holds at the beginning of and throughout the evolution of the continuous
dynamics in plantC. Thus, validity of formula (1) expresses safety of every correctly created
object (with respect to its specification).

The following translation of an HABS class and its specification defines formally how the
placeholders are composed. The translation is fully automatic and verification is compositional:
only classes whose code changed explicitly need re-verification, not the whole system.

5.3 Translation from CHABS to dL
We use two operations on sets of programs P . Operation

∑
P constructs a program that non-

deterministically executes one of the elements. Operation
∏
P constructs all permutations of

sequential element-wise execution. Let |P | = n:∑
P =

∑
{p1, . . . , pn} = p1 ∪ p2 ∪ · · · ∪ pn∏

P = {p1; . . . ; pn | ∀i, j ≤ n. pi, pj ∈ P ∧ (i ̸= j → pi ̸= pj)}

We translate classes C with the following design restrictions:
(1) All controllers update their local caches of other objects before providing information to those

objects (for example, read the current water level before instructing the tank to drain or fill);
local caches, once updated, are not modified later.

(2) In-port methods with a timed input requirement are only called from timed controllers (for
example, a tank that expects to be filled every 5 s is governed by a controller running at a
corresponding frequency).

(3) Duration statements are exact (have two identical parameters).
(4) Local variable names are unique.
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trans(f) ≡ f , where f is a dL variable representing field f

trans(v) ≡ v , where v is a dL variable representing variable v

trans(e1 op e2) ≡ trans(e1) op trans(e2)

 expressions e

trans(if(e){s}[else {s}]) ≡ if (trans(e)) then trans(s)[else trans(s)]
trans(while(e){s}) ≡ while(trans(e))trans(s) trans(s1;s2) = trans(s1);trans(s2)

trans([T] v = e) ≡ trans(v) := trans(e) trans(f = e) ≡ trans(f) := trans(e)
trans(e!m()) ≡ ?true trans(f = e.m()) ≡ trans(f) := ∗;?φm

where φm is the postcondition of m, with the method name replaced by trans(f)


statements s

Figure 20 Translation of expressions e and statements s.

The first two constraints fix the interaction pattern between components, the last two simplify
the presentation. For classes following these restrictions, the translation has four phases, each
discussed in detail in subsequent paragraphs:

(i) provision of program variables,
(ii) generation of assumptions and safety condition,
(iii) control code generation,
(iv) provision of ODEs and constraints.

5.3.1 Program Variables
For each field, parameter, and local variable in C we create a program variable with the same
name. For each method m we create a time variable tm, for each in-port method m a tick variable
tickm, both type Real; tickm models the unknown time when an in-port method is called next.
Time variables are local time for each method and determine when a time-triggered controller or
an in-port is executed the next time. We denote the set of all tick variables with Tick and the set
of all time variables with Time.

5.3.2 Assumptions and Safety Condition
The formula assumptionsC (2) is C’s precondition pre plus all initializations init plus conditions
on the time and tick variables: in the beginning, each time variable starts at zero and the tick
variables have an unknown positive value. Each tick variable tick has a method mtick that is
responsible for its generation. We refer to the timed input requirement of this method with
ψ(tick), where the method name mtick has been replaced with tick. The initial value of the tick
variable is also described by the timed input requirement and describes when the method is issued
for the first time at the latest.

assumptionsC ≡ pre ∧
∧
φ∈init

φ ∧
∧

t∈Time
t
.= 0 ∧

∧
tick∈Tick

(
0 < tick ∧ ψ(tick)

)
(2)

The formula safetyC (3) captures the guarantees of class C: we need to show that C
(i) preserves its own invariant inv;
(ii) provides guarantees Ens about own out-port methods (shows what others can rely on);
(iii) respects timed preconditions TReqs; and,
(iv) when writing to in-port methods of callees, respects their input requirements Reqs.
If class C comes with a time-triggered controller with guard duration(e,e), technical constraint
5.3(1) above ensures that at the moment the controller calls an in-port of another object, it
has a correct copy of the callee state. Reqs are input requirements of used in-port methods of
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other classes than C, where the method parameter is replaced by the field passed to it. Ens are
guarantees of all out-port methods of C. Some special care needs to be taken for timed input
requirements. With TReqs, we denote the set of timed input requirements (constructed over tick,
as above) of all called in-ports where such a clause is given.

safetyC ≡ inv ∧
∧

φ∈Reqs

φ ∧
∧

τ∈TReqs

τ ∧
∧

ψ∈Ens
ψ (3)

The safety condition expresses that the controllers of class C respect the input requirements
when writing to the in-port methods of other components and call in-port methods with a timed
input requirement sufficiently open. The structure of controllers in CHABS per Sect. 3.3 enforces
that these calls occur last in the controller bodies.

5.3.3 Control Code
The translation of ABS statements to hybrid programs is defined in Fig. 20. We discuss the
non-obvious rules: Calls e!m() to in-port methods of other objects are mapped to ?true (i.e. skip),
because there is no effect on the caller object. A read f=e.m() from an out-port method is mapped
to trans(f) := ∗;?φm: a non-deterministic assignment, restricted with a subsequent test for the
guarantee of the called out-port method.

The translation of ports and control methods has the general form
if (check) then {exec; cleanup}. This pattern is instantiated per method type as follows:

Time-triggered controller m with method body await duration(e,e); s; this.m(): check makes
sure the correct duration elapsed and cleanup resets time, so check ≡ tm

.= trans(e), exec ≡
trans(s), cleanup ≡ tm := 0.
Event-triggered controller m with body await diff e; s; this.m(): check tests the guard, so
check ≡ trans(e), exec ≡ trans(s), cleanup ≡ ?true.
In-port method m with body this.f = v, input requirement φ and timed input requirement ψ:
check ensures the correct duration elapsed, so check ≡ tm

.= tickm; exec chooses a value consistent
with φ, so exec ≡ f := ∗; ?φ; finally, cleanup does the same for a new duration consistent with
ψ (method name replaced by tickm), so cleanup ≡ tickm := ∗; ?tickm > 0; ?ψ; tm := 0.
Out-port methods and the run method are not translated. Out-port methods have no effect
on object state and their guarantees (included in (1) in safetyC) must be shown to hold
throughout plant execution. The run method initializes the system and ensures that every
controller can run once before the first plant execution, which is guaranteed in (1) through
sequential composition of codeC; plantC.

Let M be the set of all translations of in-port methods and controllers, then:

codeC ≡
(∑ ∏

M
)

;
(∑

M
)∗

(4)

The controller codeC first executes all controllers in a non-deterministically chosen order
(
∑ ∏

M), then allows each controller/in-port to repeat (
∑
M)∗. The latter replicates eager ABS

behavior on satisfied guards: when an event-triggered controller is triggered and its guard still
holds after its execution, then in ABS the controller is run again.

Note that (
∑
M)∗ safely overapproximates all possible orders, including the behavior of the

first part
∑ ∏

M . However, including
∑ ∏

M in codeC simplifies practical proofs, because in
typical models that disable the check guards at the end of control and in-port method bodies (e.g.,
a time-triggered controller that resets time in cleanup so that it becomes re-enabled only after
some time passes), every method is executed at most once before time advances. The structure of
the controller codeC mirrors this with the first part

∑ ∏
M to simplify practical proofs as follows:
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(i) the proof obligations of enabled control and in-port methods (i.e., whose check is true) are
easier because the outer loop is dropped, and additionally the proof obligations of all the
disabled control and in-port methods can be easily disposed of by contradiction with their
check guards;

(ii) finding a loop invariant for the second part (
∑
M)∗ is easy when no method is executed

twice before time advances: in that case, the loop invariant for (
∑
M)∗ must simply imply

that none of the check guards holds.
Further note that

∑ ∏
M does not exclude runs, because the general form

if (check) then {exec; cleanup} of control methods and ports in M ensures that there is
progress through the implicit else ?true even if all controllers and in-ports are disabled.

5.3.4 Plant
The plant of a class C has the form

plantC ≡
∑

{(ode, odet & c) | c ∈ C} , (5)

where ode is the ODE from its physical block, odet describes the time variables, and the constraints
c ∈ C partition the domain of the physical fields. The boundaries of the subdomains overlap
exactly where the differential guards hold.7 This models guards as events in dL, following the
modeling pattern described in Sect. 5.1. To ensure that no differential guard is omitted, it is
necessary that no two differential guards share a program variable. This is not a restriction, as
two controllers can be merged with a disjunction: see the guard in Fig. 2.

To define C let e1, . . . , em be the translations of differential guards in the class and ẽi the weak
complement of ei. Let t1, . . . , tl be all time variables introduced for time-triggered controllers with
eti the expression in the duration statement. Let pt1, . . . , ptk be all time variables introduced for
in-port methods and tickpti the associated tick variable. We set odet ≡ {t′1 = 1, . . . , t′l = 1, pt′1 =
1, . . . , pt′k = 1} and define:

C ≡
(
{e1, ẽ1} × {e2, ẽ2} × · · · × {em, ẽm}

)
∪ {t1 ≤ eti}i≤l ∪ {t1 ≥ eti}i≤l ∪ {pti ≤ tickpti}i≤n ∪ {pti ≥ tickpti}i≤n

5.3.5 On the Random Number Generator
We do not translate the random(i) expression from HABS to dL, because its semantics is that it
returns an integer below i. However, integer arithmetic is undecidable, which is the reason why dL
opts to embed its modality into a decidable first-order logic over the reals [66]. A straightforward
overapproximation with a translation to a variation of random that returns a real value is:

trans
(
f = random(r)

)
≡ trans(f) := ∗; ?

(
0 ≤ trans(f) < trans(r)

)
5.4 Compositional Verification
We can now state our main theorem: If we can prove safety of all classes, i.e., close all proof
obligations, then the whole system is safe, i.e., every class indeed preserves its invariant. Verification
is compositional: if we change the code or invariant of one class, only the proof obligation of this
class has to be reproven. If we change a method precondition, additionally the proof obligations
of all calling classes have to be reproven.

7 Expressions contain only >=, <= , so weak complement ensures a boundary overlap.
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▶ Theorem 5. Let P be a set of classes, with each C ∈ P associated with φC per formula (1). If
all the φC are valid, then for every main block that creates objects satisfying preC all reachable
states of all objects satisfy invC.

Proof Sketch. Recall that the trace of an HAO is an assignment of time to stores (Def. 4). For
the proof, each store is indexed by its time and the trace starts with 0 (i.e., the possible offset
caused by the delayed object creation is removed):

θo(t) = (ρt)t∈R+ = ρ0 · · ·

We are going to use that there are only countably many discrete steps in a run and partition the
trace into countably many subtraces. Then we show by induction on these discrete steps that the
invariant is always preserved.

Let D be the set of all time points with discrete steps of o in the run that generates θo. Note
that 0 ∈ D and that θo(d) is the last store defined by the SOS semantics, if several such stores
share the same time; further note that this is reflecting the reachability relation of dL.

We define θdo as the subtrace of θo starting with d and ending at the next time point of a
discrete step. Let next(d) be the next time point of a discrete step after d, if such a time point
exists, and ∞ otherwise:

dom
(
θdo

)
=

[
d..next(d)

]
with θdo(t) = θo(t)

We observe that each state in the HABS semantics is also a state in the Kripke structure of
the semantics if all class parameters are removed. We show that trans preserves reachability: if
from a state ρ state ρ′ is reachable by an HABS statement s in the HABS semantics, then state ρ′ is
reachable from state ρ by trans(s). This is justified as follows:

1. The dL program omits no events, because each event is at a boundary of two evolution domain
constraints on a variable and no two events share a variable (each controller has its own time
variable).

2. The evolution domain constraints cover all possible states, so no run is rejected for a domain
being too small.

3. Each test in dL formula φC that discards runs does so using a condition that is provably
guaranteed by other objects. For example, the test that discards all runs of an in-port method
for inputs not satisfying its input requirements is safe, because on the caller side this condition
is part of the safety condition (3).

4. The observation also relies on technical constraint (1) above and the recursive call being at
the end of a controller. Together, this guarantees that at that moment the caller copy of the
callee’s state is consistent with the callee’s actual state.

Let D = (di)i∈N be an enumeration of the discrete time points and θ̂di
o the union of all subtraces

of θo up to di:

dom
(
θ̂di
o

)
=

⋃
j≤i

dom
(
θdj
o

)
with θ̂di

o (t) = θo(t)

We show by induction on i that every state in θ̂di
o is safe, i.e., a model for the invariant invC.

Induction Base: i = 0. It is explicitly checked that θd0
o is safe. By assumption, the object is

created in a state θd0
o such that the precondition preC holds. From axiom I of dL [68] we know

that the safety condition must be true in the beginning of the loop, thus validity of φC implies
validity of preC → invC. Since all the formulas φC are proved in isolated component proofs,
we conclude invC holds for all reachable states of all objects as by the correctness argument
reachability is preserved.



E. Kamburjan, S. Mitsch, and R. Hähnle 04:25

Induction Step. i > 0. This is analogous to the base case, but instead of an explicit check that di
is safe, we use the induction hypothesis that every state in θ̂di−1

o is safe and that the statement
for di is executed in a state at time t ∈ dom

(
θ̂
di−1
o

)
. ◀

▶ Remark. The theorem states soundness of safety properties in dL proof obligations and does not
prove semantic equivalence between the contained dL-program and the HABS class. This approach
stands in the tradition of modular deductive verification of object-oriented software, in particular,
it follows the structure of systems for distributed object-oriented programs [52]. The main reason
to pursue this approach is that the form of proof obligations and the translation of statements
cannot be disentangled: the translation of method calls includes the postcondition of the called
methods: soundness of the translation relies on the fact that all other proof obligations can be
established. This is already the case for discrete, sequential languages [41]. Note that this is not
circular. As the proof of Theorem 5 shows, we can order all method executions in a run such that
we have a well-founded induction on them. The first method execution in every object relies only
on the state precondition which is guarenteed at creation. These in turn are guaranteed in the main
block, which has no assumptions. Another reason is that each dL proof obligation corresponds to
the (symbolic) execution of one object in a class. To model all permissible evolutions of several
method executions in a proof, therefore, it is necessary to encode the scheduler. This requires a
form of proof obligation that assumes the object invariant (which contains scheduling constraints).
This effect is well-known in deductive verification of distributed programs [31, 32, 52].

5.5 Case Study
We illustrate the HABS-to-KeYmaera X translation defined above with the TankTick system in
Fig. 4. The example, the implementation of the translation and the simulation, as well as the
mechanical proofs of the translation are available in the supplementary material.8 We start with
the two-object water tank, whose behavior for an initial level of 5 l is plotted in Fig. 5.

5.5.1 Class CTank

The in-port method inDrain() of the CTank class gives rise to a time variable tinDrain and a tick
variable tickinDrain. Following (2), assumptionsTank is:

assumptionsTank ≡ 4 ≤ inVal ≤ 9
∧ tinDrain

.= 0 ∧ 0 < tickinDrain

∧ level
.= inVal ∧ drain

.= −1/2
(6)

The safety condition says the tank level stays within its limits and that level adheres to its
contract which happen to be identical. No in-port methods of other classes are used, hence:

safetyTank ≡ 3 ≤ level ≤ 10 . (7)

The CTank class has no controller method, so the inDrain method, which has a timed input
requirement, per (4) results in codeTank below

codeTank ≡ p; (p)∗ (8)

8 https://doi.org/10.5281/zenodo.5973904
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where p ≡ trans(inDrain) below is translated from Fig. 4 using the translation of Fig. 20:

p ≡ if (tinDrain
.= tickinDrain) then

drain := ∗;
?−1/2 ≤ drain ≤ 1/2 ∧ (drain < 0 → level ≥ 3.5)

∧ (drain > 0 → level ≤ 9.5);
tickinDrain := ∗; ?0 < tickinDrain < 1; tinDrain := 0

The plant plantTank, following shape (5), is based on the physical block and the new clock
variable (there are no differential guards), with the evolution domain constraint split along the
new time variable tinDrain. ODEs of the form v′ = 0 are default and omitted.

plantTank ≡ plant≤
Tank ∪ plant≥

Tank

plant≤
Tank ≡ {level′ = drain, t′inDrain = 1 & tinDrain ≤ tickinDrain}

plant≥
Tank ≡ {level′ = drain, t′inDrain = 1 & tinDrain ≥ tickinDrain}

(9)

▶ Lemma 6. Class Tank is safe, i.e., formula φTank – obtained per (1) referring to tank assumptions
assumptionsTank (6), postcondition safetyTank (7), code codeTank (8), and plant plantTank (9) – is
valid.

φTank ≡ assumptionsTank →
[
(codeTank; plantTank)∗]

safetyTank

Proof. See KeYmaera X proofs in the supplementary material. The proof sketch here serves as
an illustration of how sequent proofs in KeYmaera X systematically use the invariant annotations
in HABS. In the proof, we show the inductive loop invariant inv≤

Tank, which expresses that the level
always stays within limits and that the next input will be supplied before exceeding the timed input
requirement as follows: 3 ≤ level ≤ 10 ∧ −1/2 ≤ drain ≤ 1/2 ∧ 3 ≤ level + drain(tickinDrain −
tinDrain) ≤ 10 ∧ tickinDrain ≤ tinDrain.

The proof starts in step →R to make the left-hand side assumptionsTank of the implication
available as assumptions. Next, [∗] uses the loop invariant inv≤

Tank for induction: the base case
in the left-most subgoal and the use case in the right-most subgoal follow by real arithmetic
automation; the induction step in the middle subgoal continues with [; ] to split the sequential
composition into nested box modalities.

∗
autoinv<Tank ` [plant≤Tank]inv

≤
Tank

∗
contradictioninv<Tank ` [plant≥Tank]inv

≤
Tank

[∪],∧R inv<Tank ` [plant≤Tank ∪ plant≥Tank]inv
≤
Tank

expand inv<Tank ` [plantTank]inv
≤
Tank

∗
autoinv≤Tank ` [p]inv<Tank

∗
autoinv<Tank ` [p∗]inv<Tank

[; ],MR inv≤Tank ` [p ; (p∗)]inv<Tank
expand inv≤Tank ` [codeTank]inv

<
Tank

. . .

inv<Tank ` [plantTank]inv
≤
Tank

MR inv≤Tank ` [codeTank][plantTank]inv
≤
Tank

[; ] inv≤Tank ` [codeTank ; plantTank]inv
≤
Tank

∗
autoassumptionsTank ` inv≤Tank

. . .

inv≤Tank ` [codeTank ; plantTank]inv
≤
Tank

∗
autoinv≤Tank ` safetyTank

[∗] assumptionsTank ` [(codeTank ; plantTank)
∗
]safetyTank→R ` assumptionsTank → [(codeTank ; plantTank)

∗
]safetyTank
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The main insight now is that codeTank reacts at the latest when tickinDrain = tinDrain and
will reset the timer using tickinDrain := 0, so that the timing requirement tickinDrain ≤ tinDrain
can be strengthened to a strict inequality tickinDrain < tinDrain in the inductive loop invariant.
The resulting intermediate condition inv<Tank is used in step MR to split into two subgoals: in the
left subgoal of MR, we show that codeTank guarantees the intermediate condition inv<Tank. In the
right subgoal of MR we show that plantTank preserves the loop invariant from that intermediate
condition: the plant listens for the event tickinDrain = tinDrain with a choice between two
differential equations, whose evolution domain constraints exactly overlap at the event. On
evolution domain tickinDrain ≤ tinDrain in plant≤

Tank, the differential equation preserves the loop
invariant, whereas on evolution domain tickinDrain ≥ tinDrain in plant≥

Tank the contradiction
shows that the controller reacts such that the plant can never enter this unsafe behavior. ◀

5.5.2 Time-Triggered Controller FlowCtrl

Assumptions assumptionsFlowCtrl of FlowCtrl constructed per (2) and plant plantFlowCtrl con-
structed per (5) are straightforward. The latter is created for the sake of observing time events,
even though no physical block is present:

assumptionsFlowCtrl ≡ 0 < tick < 1 (10)
plantFlowCtrl ≡ {t′ctrlFlow = 1 & tctrlFlow ≥ tick} (11)

∪ {t′ctrlFlow = 1 & tctrlFlow ≤ tick}

The safety condition safetyFlowCtrl constructed per (3) is the timed input requirement of the
called inDrain method and the class invariant (subsumed by the input requirement of inDrain):

safetyFlowCtrl ≡ −1/2 ≤ drain ≤ 1/2 ∧ tick < 1
∧ (drain < 0 → level ≥ 3.5)
∧ (drain > 0 → level ≤ 9.5)

(12)

Finally, the code codeFlowCtrl is translated as

codeFlowCtrl ≡ q; (q)∗ (13)

with

q ≡ if (tctrlFlow
.= tick) then

level := ∗; ?3 ≤ level ≤ 10;
if (level ≤ 3.5) then {drain := 1/2};
if (level ≥ 9.5) then {drain := −1/2};
tctrlFlow := 0

▶ Lemma 7. Class FlowCtrl is safe, i.e., formula φFlowCtrl – obtained per (1) referring to
assumptions assumptionsFlowCtrl (10), postcondition safetyFlowCtrl (12), code codeFlowCtrl (13),
and plant plantFlowCtrl (11) – is valid.

φFlowCtrl ≡ assumptionsFlowCtrl →
[
(codeFlowCtrl; plantFlowCtrl)∗]

safetyFlowCtrl

Proof. See KeYmaera X-proofs in the supplementary material. ◀
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level
drain

3           10

Figure 21 Avoiding Zeno-behavior in TankMono.

5.5.3 Event-Triggered Controller CSingleTank

Translation of class CSingleTank from Fig. 2 illustrates the handling of event-triggered controllers.
The plant and code interact. The plant separates the evolution domain into two parts, with the
guard of the event-triggered controller (the white areas in Fig. 21) defining their boundary. The
gray areas are larger than the safe region defined by 3 <= level <= 10. This is necessary to avoid
Zeno behavior in the eager execution semantics of HABS: If we used simply the weak complement
of the safe region level <= 3 | level >= 10 as a guard and happen to be in a program state at
the boundary (the lower of the states indicated with a star in Fig. 21), then the controller changes
the state as shown by the arrow. But if the next state is again on the boundary, which is the case
when the safe region is too small, then the guard is triggered, the controller loops back to the first
state, etc., without physical time being able to advance. The guard in Fig. 2 ensures that after
the controller has run, the state is not on the boundary anymore. This behavior is exhibited by
our implementation, see Fig. 3. The code codeCSingleTank has the form r; (r)∗ with r being:

r ≡ if (level≤3 ∧ drain≤0) ∨ (level≥10 ∧ drain≥0) then
if (level ≤ 3) then drain := 1/2 else drain := −1/2

The plant of CSingleTank with sufficiently large regions is as follows:

plantCSingleTank ≡
{level′ = drain & (level ≤ 3 ∧ drain ≤ 0) ∨ (level ≥ 10 ∧ drain ≥ 0)}

∪ {level′ = drain & (level ≥ 3 ∨ drain ≥ 0) ∧ (level ≤ 10 ∨ drain ≤ 0)}

5.6 On Translation into dL
HABS programs can be tested and validated, but the programmer needs to avoid writing programs
that are
1. inherently difficult to interpret and
2. have a high degree of non-determinism.
Both are good programming and software engineering practices, of course, and the fact that HABS
is a programming language enables one to apply standard techniques for discrete programs.

A back-translation from dL to HABS would provide meaningful validation only for deterministic
dL models. While being possible even in the general case, two traits of dL programs prohibit easy
interpretation and simulation:

Highly Non-Deterministic Structure Additionally to non-deterministic assignment, branching
and repetition are both non-deterministic: the – rather non-intuitive – representation of (s)∗

in HABS is a loop that non-deterministically chooses to break out.
1 while(True) {
2 Int i = random(2);
3 if ( i == 1 ) break;
4 s;
5 }
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This loop may never terminate, while the semantics of dL loops defines an arbitrary but
countable number of repetitions. A similar pattern has to be employed for branching.

Tests The test ?φ discards a run based on a dL-guard. Translation would require
1. to evaluate dL formulas, as opposed to Boolean expressions, and
2. a mechanism to abort the program.
This can be emulated by exceptions, but it obfuscates the semantics.

6 Related & Future Work, Conclusion

6.1 Related Work
Previous work on hybrid programming concentrated on purely sequential languages: HybCore [39]
is a while-language with hybrid behavior and a simulator [40], but lacks formal verification
techniques. Its extensional semantics is not able to express the timed properties needed for our
distributed controller. Whiledt [77] is also a while-language and uses infinitesimals instead of ODEs
to model continuous dynamics. It has a simple verification system based on Hoare triples [42], but
is not executable.

Hybrid Rebeca (HR) [46] proposes to embed hybrid automata directly into the actor language
Rebeca. In contrast to HABS, no simulation is available and verification is not object-modular: the
whole model is translated to a single monolithic hybrid automaton. Because of this, a number
of boundedness constraints have to be imposed. The translation is also the semantics: HR has
no semantics beyond this translation and is mainly a frontend for Hybrid Automata tools. The
verification backend of HR does not support non-linear ODEs (our examples are linear, but HABS,
KeYmaera X, and Maxima, support non-linear ODEs; HABS models with non-linear ODEs are
found in the online supplement).

Recent efforts [58, 64] split the verification task in dL into manageable pieces by modularizing
deductive hybrid systems verification with component-based modeling and verification techniques,
but impose strict structural requirements on components and communication. The Sphinx
modeling tool [62] for dL represents non-distributed hybrid programs with UML class and activity
diagrams, but for verification purposes it translates these model artifacts into a single monolothic
hybrid program.

The Architecture Analysis and Design Language (AADL), a language to model hardware and
software components in embedded systems, has a hybrid extension [2], which uses the HHL [80]
theorem prover as its verification backend [1]. HHL is based on Hoare triples over hybrid CSP
programs and duration calculus formulas [57]. Hybrid AADL offers structuring elements for
components and their connections on the architecture level. The semantics of hybrid AADL is
given as a translation of the synchronous fragment of AADL into hybrid CSP, while we extend
the semantics of the actor-based programming language ABS to combine reasoning about the
asynchronous behavior of communicating components in ABS with reasoning about the internal
combined discrete and continuous component behavior in differential dynamic logic. As a side
effect, the extended semantics enables proving the correctness of the translation to differential
dynamic logic, as well as translating HABS to other formal languages.

A similar approach based on Stateflow/Simulink is implemented in the MARS toolkit [22]. The
MARS approach is orthogonal to HABS: MARS connects a verification toolkit around a simulation
language (which is a daunting task given the missing formal semantics of Stateflow/Simulink),
while HABS is designed specifically to enable verification and simulation through its languages
features. This is reflected in the soundness proof, which is based on a bidirectional translation.

Another approach based on CSP and the duration calculus combines these formalisms with
Object-Z [45]. This enables model-checking for real-time systems (clocks with resets), while
we support hybrid systems theorem proving with (non-linear) differential equations. A further
integration of Object-Z and (Timed) CSP was investigated by Mahony & Dong [60].

LITES
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Hybrid Event-B [12, 13] extends Event-B refinement reasoning with continuous behavior
between the usual discrete Event-B events. A more lightweight approach [76, 21] models hybrid
systems in an abstract way as action systems without differential equations directly in Event-B,
and complements analysis in Event-B with simulation in Matlab. Similarly, Dupont et al. [34]
use Event-B for a correct-by-construction approach to hybrid systems. They embed the ODEs
used for continuous modeling by declaring them as a special theory within Event-B instead of
extending the core language itself.

Integrated tools such as Ptolemy [71], Stateflow/Simulink except the aforementioned MARS
toolkit, and Modelica, all emphasize simulation, reachability analysis (e.g., Charon [6, 7], Ariadne
[15]), or testing (e.g., [30]). As supporting techniques, they provide modeling notation for timing
aspects, signals, and data flow between heterogeneous models. Formal verification of hybrid
systems with reachability analysis and model checking tools (SpaceEx [35], CORA [4], Flow* [23])
support modularity [33] based on hybrid I/O automata [59], assume-guarantee reasoning [17, 43],
and hybridization [24]. However, they work best for finite-horizon analysis and finite regions
(because over-approximations stay tight only for bounded time and from small starting regions).
Similar restrictions apply to dReal/dReach [37, 55].

Dynamic I/O automata [9] for modeling dynamic systems introduce a notion of externally
visible behavior, the ability to create and destroy automata and change their signature dynamically;
those features are all naturally available in our object-oriented approach and do not need special
extension like automata-based modeling tools. Our work contrasts with all mentioned simulation
and verification approaches by providing a uniform modeling language, validation by simulation,
modular infinite-horizon and infinite-region theorem proving through translation from HABS to dL.

Translation among hybrid system languages so far centers around hybrid automata as a
unifying concept [11, 79]. Others focus on the discrete fragment [38]. Our translation from HABS
to dL translates complete hybrid system models written in a programming language, including
annotations (preconditions, invariants, etc.). It is sound relative to the formal semantics of HABS
and dL.

Hybrid systems validation through simulation is addressed with translation to Stateflow/Sim-
ulink [10]; with a combination of discrete-event and numerical methods [19]; and with co-simulation
between control software and dedicated physics simulators [26, 78, 82]. Here, we focus on safety
verification, the distributed aspect of HABS models, and take a pragmatic first step for simulating
continuous models.

In summary, HABS is designed for modular deductive verification (unlike simulation-centric
tools), infinite-horizon analysis on infinite regions (unlike reachability analysis and model checking
tools), without sacrificing high-level programming language features (unlike hybrid systems
modularization techniques and assume-guarantee reasoning).

6.2 Future Work
The present work lifts the research on formal semantics of programming languages for hybrid
systems from verification-centric minimalistic languages to distributed object-oriented languages.
Carrying over techniques, ideas, and analyses from programming language research to hybrid
systems programming, presents an intriguing research direction. Our ongoing work on larger
case studies with HABS, in particular in connection with co-simulation [54], is expected to reveal
additional challenges.

We plan to combine the verification of CHABS presented here with the more modular approach
based on post-regions [51], which does not support timed input requirements yet. Future research
avenues include investigating how the static analyses for ABS, in particular the deadlock analysis for
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boolean guards [50], can be extended for HABS, extending approximate simulation of non-solvable
differential equations, experimenting with various computer algebra systems, and supporting
guards with non-urgent semantics.

6.3 Conclusion
Distributed hybrid systems are not only difficult to verify formally, it is equally hard to validate a
formal model of them, especially with components using symbolic computations, such as servers.
Both activities have conflicting demands, so we propose a translation-based approach: modeling is
guided by patterns over hybrid programs and class specifications in HABS, a hybrid extension of
the concurrent active-object language ABS. These are automatically decomposed and translated
(Thm. 5) into sequential proof obligations of the verification-oriented differential dynamic logic dL
and discharged by the hybrid theorem prover KeYmaera X.

We illustrated the viability of our approach by a case study that features many complications:
concurrent behavior, possible non-termination, correctness depending on timing constants, multi-
dimensional domain, time lag in sensing, etc.
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