
Bayesian Hybrid Automata: A Formal Model of
Justified Belief in Interacting Hybrid Systems
Subject to Imprecise Observation
Paul Kröger #

Carl von Ossietzky Universität Oldenburg, 26111 Oldenburg, Germany

Martin Fränzle #

Carl von Ossietzky Universität Oldenburg, 26111 Oldenburg, Germany

Abstract
Hybrid discrete-continuous system dynamics

arises when discrete actions, e.g. by a decision al-
gorithm, meet continuous behaviour, e.g. due to
physical processes and continuous control. A nat-
ural domain of such systems are emerging smart
technologies which add elements of intelligence, co-
operation, and adaptivity to physical entities, en-
abling them to interact with each other and with
humans as systems of (human-)cyber-physical sys-
tems or (H)CPSes.

Various flavours of hybrid automata have been
suggested as a means to formally analyse CPS dy-
namics. In a previous article, we demonstrated
that all these variants of hybrid automata provide
inaccurate, in the sense of either overly pessim-
istic or overly optimistic, verdicts for engineered
systems operating under imprecise observation of

their environment due to, e.g., measurement er-
ror. We suggested a revised formal model, called
Bayesian hybrid automata, that is able to repres-
ent state tracking and estimation in hybrid systems
and thereby enhances precision of verdicts obtained
from the model in comparison to traditional model
variants.

In this article, we present an extended defini-
tion of Bayesian hybrid automata which incorpor-
ates a new class of guard and invariant functions
that allow to evaluate traditional guards and in-
variants over probability distributions. The res-
ulting framework allows to model observers with
knowledge about the control strategy of an ob-
served agent but with imprecise estimates of the
data on which the control decisions are based.

2012 ACM Subject Classification Computer systems organization → Embedded and cyber-physical
systems
Keywords and Phrases stochastic hybrid systems, Bayesian inference, formal models, cyber-physical
systems
Digital Object Identifier 10.4230/LITES.8.2.5
Funding This research was supported by Deutsche Forschungsgemeinschaft under grant number DFG
GRK 1765 covering the Research Training Group “SCARE: System Correctness under Adverse Condi-
tions”.
Received 2020-10-01 Accepted 2021-11-16 Published 2022-12-07
Editor Alessandro Abate, Uli Fahrenberg, and Martin Fränzle
Special Issue Special Issue on Distributed Hybrid Systems

1 Introduction

Smart cities, automated transportation systems, smart health, and Industry 4.0 are examples of
large-scale applications in which elements of intelligence, cooperation, and adaptivity are added
to physical entities, enabling them to interact with each other and with humans as cyber-physical
systems or, in the latter case, human-cyber-physical systems (CPSes or HCPSes). Due to the
criticality of many of their application domains, such interacting cyber-physical systems call for
rigorous analysis of their emergent dynamic behaviour w.r.t. a variety of design goals ranging from
safety, stability, and liveness properties over performance measures to human-comprehensibility
of their actions and absence of automation surprises. The model of hybrid (discrete-continuous)

© Paul Kröger and Martin Fränzle;
licensed under Creative Commons Attribution 4.0 International (CC BY 4.0)

Leibniz Transactions on Embedded Systems, Vol. 8, Issue 2, Article No. 5, pp. 05:1–05:27
Leibniz Transactions on Embedded Systems

L I T E S Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:paul.kroeger@uni-oldenburg.de
https://orcid.org/0000-0002-0301-3611
mailto:martin.fraenzle@uni-oldenburg.de
https://orcid.org/0000-0002-9138-8340
https://doi.org/10.4230/LITES.8.2.5
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lites
https://www.dagstuhl.de

05:2 Bayesian Hybrid Automata

automata [2, 28, 19], in its various flavours, has traditionally been suggested as a formal model
accurately capturing CPS dynamics and thus facilitating such analysis with mathematical rigour
whenever the pertinent requirements can also be formalised, which applies at least for the safety,
stability, convergence, and liveness properties.

Hybrid automata (HA) provide a mathematical abstraction of the interaction between decision
making, continuous control, and continuous environments. They couple a finite-state control skel-
eton with a continuous state-space spanned by real-valued variables. The continuous state has its
dynamics governed by differential equations selected depending on the current control-skeleton
state (often called a discrete mode or a control location), and vice versa state dynamics of the
control skeleton is controlled by predicates on the continuous state. Various flavours of HA
have been suggested as a means to formally analyse different aspects of hybrid-state dynamical
systems, among them deterministic HA facilitating reasoning about their normative behaviour,
non-deterministic HA [2, 28] under a demonic interpretation supporting worst-case analysis with
respect to disturbances and measurement errors, and stochastic HA enabling quantitative veri-
fication [19, 31, 9, 15, 21, 14, 5]. Encoding the dynamics of an actual cyber-physical system into
one of the aforementioned modelling frameworks is in general considered a tedious, yet mostly
straightforward activity: it is assumed that these frameworks are rich enough to accommodate
adequate models of standard components, like sensors measuring physical quantities and actu-
ators modifying such quantities, as well as standard models of physical dynamics, continuous
control, and mode-switching control.

In this article, which is an extended version of [17], we demonstrate that despite their embra-
cing expressiveness and contrary to the intuition underlying the above modelling pragmatics, all
flavors of hybrid automata fall short of being able to accurately capture the interaction dynamics
of systems of well-engineered, rationally acting CPS designs operating under aleatory uncertainty.
We show that the corresponding verification verdicts obtained on the best possible approxima-
tions of the actual CPS dynamics are across the range of hybrid automata models bound to be
either overly optimistic or overly pessimistic, i.e., imprecise.

We identify inaptness to adequately cover rational decision making under uncertain inform-
ation as the cause of this deficiency of the hybrid-automaton model. As such rational decision
making requires manipulation of environmental state estimates to be embedded into the sys-
tem state itself, necessitating manipulation of state distributions rather than “just” discrete plus
real-vector valued state within the CPS and its corresponding formal model, we suggest an ap-
propriate extension of hybrid automata featuring mixture-based probability distributions in some
of its state variables. It adopts from metrology the concept of processing noisy measurements by
means of filtering and representing the result as a distribution over possible ground truth [20, 29]
and incorporates it into HA models. The resulting hybrid models can in general not be reduced
to traditional HA featuring a finite-dimensional real-valued state vector, such that verification
support remains an open issue that cannot be discharged by appropriate encoding into existing
hybrid-automata verification approaches [13].

Organisation of the paper

In the subsequent section, we discuss related work in order to identify a current lack of models
for hybrid dynamics being able to directly accommodate inference mechanisms about uncertain
state observation. This would, however, not necessarily imply that current models are too weak
for producing precise verdicts on system correctness, as an encoding of pertinent methods for
fusing measurements could well be possible within existing models. In Sect. 3.2, we therefore
demonstrate by means of a running example that traditional hybrid-system models are bound
to fail in providing the expected verification verdicts. This in turn motivates us to introduce

P. Kröger and M. Fränzle 05:3

filtering and state estimation into a revised model of hybrid automata. Section 3.3 demonstrates
that this indeed leads to accurate verdicts adequately reflecting engineering practice, while Sect. 4
shows that an embedding of such environmental state estimation into traditional hybrid automata
featuring real-vector state is in general impossible if the state estimation has to deal with states
of other autonomous agents. Section 5 provides the formal definition of the suggested extension
of hybrid automata before Sect. 6 puts forward ideas on automatic verification support for the
resulting rich class of hybrid automata, and Sect. 7 concludes the paper by shedding light on
related problems in the field of interacting intelligent systems.

2 Related work

An essential characteristic of cyber-physical systems is their hybrid discrete-continuous state-
space, combining a continuous, real-vector state-space with a number of discrete modes determin-
ing the dynamics of the continuous evolution. Hybrid automata (HA) [2, 28] have been suggested
as a formal model permitting the rigorous analysis of such systems. In their deterministic or
demonically nondeterministic form, HA support qualitative reasoning in the sense of exhaust-
ive verification or falsification, over the normative behaviour or the worst-case behaviour of the
system. Probabilistic or stochastic extensions of HA, so-called stochastic hybrid automata [21],
enable deriving quantitative figures about the satisfaction of a safety target by considering prob-
ability distributions over uncertain choices. Several variants of such a quantification have been
studied, e.g., HA with discrete [31, 15] or continuous [14] distributions over discrete transitions
as well as stochastic differential dynamics within a discrete mode [19].

HA models support the qualitative and quantitative analysis of systems subject to noise, yet
lack pertinent means for expressing the effects of state estimation and filtering known to be
central to rational strategies in games of incomplete information [25, Chapters 9-11] and thus in
optimal control under uncertainty. Formal modelling of systems taking rational decisions based
on best estimates of the uncertain and only partially observable state of other agents inherently
requires to incorporate two levels of probabilism: first, in the model of system dynamics as
probabilistic occurrences of sequences of observations; second, as distributions representing the
best estimates the embedded controller can gain about the state of its environment based on
these noisy observations. Formal modelling of rational decision making consequently requires
the estimations to be explicitly available in the state space of the controller for evaluations of
the underlying decisions (e.g., in the evaluation of a transition guard in supervisory control) and
secondly correlated observations have to be fused to obtain best estimates, e.g. in form of Bayes
filters [3, 22, 24]. Such probabilistic filters are widely used in robotics, e.g. for the estimation of
occupancy grids [12, 7], in robust fault detection under noisy environment [6], or for estimating
parameters of stochastic processes in biological tissues or molecular structures [30].

Aiming at approximating Maximum Likelihood Estimates for parameters of non-linear systems
with non-Gaussian noise, Murphy [26] considers state estimation with switching Kálmán filters
in presence of multiple linear dynamic models. In his setting, the time instances for switching
to a certain linear dynamics are unknown up to a known stochastic distribution. In combination
with stochastic state observations, this gives rise to state estimates in form of joint distributions,
approximated by mixtures of Gaussian distributions. However, in addition to limited dynamics,
switching between modes is based on Markovian dynamics, i.e., it is not possible to model switch-
ing based on probabilistic constraints on state estimates as necessary to model rational decisions
about changing a mode as a response to observed states.

This lack of capabilities to model (rational) control decisions including discontinuous updates
of the continuous state space is only partially resolved by the models underlying adaptive control
theory, which is subject to comprehensive research [23, 18, 27]. In this context, the focus is on the
identification of unknown (control) parameters of systems under imperfect observation. However,

LITES

05:4 Bayesian Hybrid Automata

these approaches are not sufficient to analyse the behaviour of interacting intelligent systems
as they are restricted to identifying the correct choice between a set of (possibly time-variant)
dynamical models for the controlled process.

The consequential necessity of applying Bayesian filtering within hybrid systems implementing
optimal control was already discovered by Ding et. al. [10]. They present an approach to derive
optimal control policies for partially observable discrete time stochastic hybrid systems, where
optimality is defined in terms of achieving the maximum probability that the system remains
within a set of safe states. In order to be able to apply dynamic programming in search for
an optimal solution, Ding et al. replace the partially observable system by an equivalent perfect
information system via a sufficient statistics in form of a Bayes filter. This is very close to our
approach in mindset, as a sufficient statistics about a Bayesian estimate of the imperfectly known
actual system state is at the heart of rational decisions in control under uncertainty. The main
difference is that we are trying to formulate a general model facilitating the behavioural analysis of
such optimal hybrid control systems, while Ding et al. aim at the construction of such controllers
w.r.t. a given safety goal. The latter facilitates a decomposition of the design problem into
obtaining a Bayesian filtering process and developing a —then scalar-valued— control skeleton.
This renders a direct integration, as pursued in this article, of state distributions and Bayesian
inference mechanisms into the state space of an analytical model unnecessary.

In [16], we already suggested a revised formal model, called Bayesian hybrid automata, that
is able to represent state tracking and estimation in hybrid systems and integrates probability
density functions in its state space thereby enabling modelling of rational decision making under
uncertain information. However, this model was not yet capable of covering hybrid-state dy-
namics of the observed agent when it comes to extrapolation of estimates over time between two
measurement instances. As indicated in [17], this requires mixture distributions dealing with all
possible decision alternatives (including the case that the decision is pending) in the state space
of the model. In this article, we extend our previous work by a formal definition of an exten-
sion of Bayesian hybrid automata incorporating mixture distributions and a semantics covering
hybrid-state dynamics for state-extrapolation.

3 Inadequacy of traditional hybrid-automata models

Hybrid automata have been conceived in [2, 28] as a formal model seamlessly integrating decision
making with control, thus facilitating the modelling and analysis of the joint dynamics of these
two layers pertinent to CPSes: discrete decisions, e.g. between the alternative manoeuvres of
following a lead car or overtaking it in an autonomous car, do dynamically activate and deactiv-
ate continuous control skills, like an automatic distance control implementing the car-following
manoeuvre. In HA, the former are described by a finite automaton featuring transitions guarded
by (and possibly inducing side effects on) continuous state variables of the control path and the
controller, while the latter are governed by differential equations attributed to (and thus changing
in synchrony with) the automaton locations and ranging over the continuous state variables and
thus describing the state dynamics of both the control path and the controller.

In reality, such CPSes have to operate and draw decisions under a variety of uncertainties
stemming from their multi-component nature, as the latter requires mutual state observation
between agents. Such sensing of non-local state inevitably induces uncertainties due to, a.o.,
the measurement inaccuracies inherent to sensor devices. In consequence, the decision making
in real CPSes is bound to be rational decision-making under uncertainties. In this section, we
demonstrate how existing hybrid-automata models fall short in taking account of such rational
decision-making. To showcase the problem, we will in the following exploit a very simple example,
mostly taken from [16], of a rational decision-making problem to be solved by a CPS.

P. Kröger and M. Fränzle 05:5

x

y

0 10 20 30 40 50 60 70 80 90
0

10

20

E
O

xE xO

yO

yE

,
constant,

well-known

,
evolving over time,

well-known

,
constant,

estimated frequently as ŷO

Figure 1 A common traffic situation (taken from [16]): ego vehicle E shall decide between passing the
parked obstacle O or halting.

3.1 An example of a control decision problem
Our example deals with a common traffic situation depicted in Fig. 1. Our own autonomous
car, called the ego vehicle and denoted by E in the sequel, is driving along a road which features
another vehicle O parked further down the road. Despite being parked on the roadside, car O
may extend into the lane used by E. E cannot perform a lateral evasive manoeuvre due to dense
oncoming traffic. E therefore has to decide between passing the car while keeping its lane and an
emergency stop avoiding a collision. It obviously ought to decide for a pass whenever that option
is safe due to a small enough intrusion of O into the lane, and it should stop otherwise.

The geometric situation can be described by four real-valued variables: three rigid variables
xO, yO, and yE describing the static longitudinal position of O and the static lateral positions
of both cars, as well as a flexible, continuously evolving variable xE representing the momentary
longitudinal position of the ego car. For simplicity, we assume that all values except the environ-
mental variable yO are exactly known to the ego car E. The value of yO has to be determined by
sensing the environment via a possibly inaccurate measurement yielding an estimate ŷO for yO.
For the sake of providing a concrete instance, we assume a normally distributed measurement
error, i.e., ŷO ∼ N (yO, σ2), though our findings do not hinge on that particular distribution. As
a further simplification we assume that car E either drives with nominal speed (ẋE = 1) or is
fully stopped (ẋE = 0) and that it switches between these two dynamics instantaneously.

The design goal is to design an ego car that is both safe and live; the corresponding analysis
goal consequently is to prove these two properties. Liveness in this context means that car E
eventually passes car O whenever yE > yO. Safety is defined as the exclusion of the possibility of
a collision, i.e., that xE < xO stays invariant over time whenever yE ≤ yO. These two properties
can be formalised as follows using a straightforward extension of CTL featuring relational atoms
over continuous signals akin to Signal Temporal Logic [11]:

safe := (yE ≤ yO) =⇒ AG (xE < xO) (1a)
live := (yE > yO) =⇒ AF (xE ≥ xO) (1b)

3.2 Hybrid automata models
Dealing with sensory observation of environmental variables and potentially reflecting the per-
tinent measurement inaccuracies within hybrid-automata models is a classical theme. Figure 2
represents the three standard means of dealing with sensory observation in HA models, exem-
plified on the example from the previous section: Automaton Nominal identifies environmental

LITES

05:6 Bayesian Hybrid Automata

Nominal:

run
ẋE = 1 ∧ ċ = 1

yE > ŷO ∧ c < 1

stop
ẋE = 0 ∧ ċ = 1

yE ≤ ŷO ∧ c < 1

yE ≤ ŷO

yE > ŷO

c ≥ 1 ∧ ŷ′
O = yO ∧ c′ = 0 c ≥ 1 ∧ ŷ′

O = yO ∧ c′ = 0

(xE = 0) ∧ (yE = 6.875) ∧ (xO = 73.75) ∧ (ŷO = yO) ∧ (c = 0)

Demonic:

run
ẋE = 1 ∧ ċ = 1

yE > ŷO + δ ∧ c < 1

stop
ẋE = 0 ∧ ċ = 1

yE ≤ ŷO + δ ∧ c < 1

yE ≤ ŷO + δ

yE > ŷO + δ

c ≥ 1 ∧ ŷ′
O = yO + e ∧

c′ = 0 ∧ − ε ≤ e ≤ ε
c ≥ 1 ∧ ŷ′

O = yO + e ∧
c′ = 0 ∧ − ε ≤ e ≤ ε

(xE = 0) ∧ (yE = 6.875) ∧ (xO = 73.75) ∧ (ŷO = yO + e) ∧ (c = 0) ∧ (−ε ≤ e ≤ ε)

Stochastic:

run
ẋE = 1 ∧ ċ = 1

yE > ŷO + δ ∧ c < 1

stop
ẋE = 0 ∧ ċ = 1

yE ≤ ŷO + δ ∧ c < 1

yE ≤ ŷO + δ

yE > ŷO + δ

c ≥ 1 ∧ ŷ′
O ∼ N

(
yO, σ

2) ∧ c′ = 0 c ≥ 1 ∧ ŷ′
O ∼ N

(
yO, σ

2) ∧ c′ = 0

(xE = 0) ∧ (yE = 6.875) ∧ (xO = 73.75) ∧
(
ŷO ∼ N

(
yO, σ

2)) ∧ (c = 0)

Figure 2 Hybrid automata models for the scenario of Fig. 1 (refinements of [16]). Variable c is a clock
variable representing a timer that triggers a measurement every full time unit.

states with their measurements, thereby neglecting measurement error and claiming to draw con-
trol decision based on exact environmental entities. Demonic models measurement error as a
bounded offset e between the actual value yO and its measurement ŷO, with the offset e non-
deterministically chosen afresh upon every take of a measurement. It also employs a safety margin
δ within its decision making, passing only when the distance between yE and ŷO is larger than
the safety margin δ. Stochastic, finally, incorporates the faithful model of measurement noise by
generating the measurement ŷO via a normal distribution N (yO, σ2) centred around yO, where σ

is the standard deviation of the measurement process.
Case analysis reveals that, depending on the relation between yE and yO and the safety margin

δ, satisfaction of the two requirements formulae safe and live by the three models Nominal,
Demonic, and Stochastic varies. Satisfaction applies as shown in Table 1.

None of these results seems particularly convincing. The nominal model, ignoring any meas-
urement error in its analysis, optimistically claims its control to be both absolutely safe and live
despite its decisions not even catering for adversarial measurement error impacting the non-robust
guard yE > yO. The other two models pessimistically claim that it either is impossible to build
any system satisfying any positive safety threshold (P (safe) → 0.0 in Stochastic) or to achieve
any liveness (Demonic ̸|= live). Given that building such controllers and achieving very high
quantitative degrees of, though not absolute, liveness and safety is standard engineering prac-
tice, all the above verdicts are disappointing and show inherent deficiencies in our conventional
hybrid-state models.

P. Kröger and M. Fränzle 05:7

Table 1 Analysis results for the different models. → x denotes probabilities converging to x in the
long-run limit.

(a) Analysis results for automaton Nominal.

safe live
yE > yO trivial sat
yE ≤ yO sat trivial

Optimistic verdict, claiming perfect control pos-
sible despite the in reality inevitable uncertainty
about environmental state.

(b) Automaton Demonic (case 3 arises only under insufficient safety margin δ < ε where |e| ≤ ε).

safe live
yE > yO + δ + max(e) trivial sat
yO + δ + ε ≥ yE > yO trivial unsat
yE ≤ yO < yE − δ + ε unsat trivial
yE − δ + ε ≤ yO sat trivial

Pessimistic verdict, rightfully claiming safety at
risk whenever an inappropriate safety margin is
selected (case 3 in the table), but also claiming
liveness perfectly impossible to achieve.

(c) Analysis results for automaton Stochastic.

P (safe) P (live)
yE > yO 1.0 → 1.0
yE ≤ yO → 0.0 1.0

Pessimistic verdict, claiming achievement of even
marginal safety levels impossible over extended
periods of time.

3.3 Adding Kálmán filtering
The obvious problem is that the above standard hybrid-automata models neglect the fact that
repetition of noisy measurement processes accumulates increasingly better evidence about the true
state of the observed entity, albeit always with a remaining uncertainty. While model Nominal
ignores the impossibility of perfect knowledge, thus yielding inherently optimistic verdicts, models
of the shapes Stochastic or Demonic do not correlate measurements across time series and thus
fail to reflect the steady build-up of increasingly precise evidence about the true position yO
of the obstacle. Any form of truly rational decision-making would, however, take advantage of
the latter fact; vice versa, any formal model neglecting it provides a coarse overapproximation
of actual observational uncertainty resulting in correspondingly pessimistic verification verdicts
relative to standard engineering practice employing filtering of measurements.

In the given case of a static obstacle O, as well as in the more general case of a physical
process subject to purely linear differential dynamics, standard Kálmán filtering [20] manipulating
normal distributions is the method of choice for obtaining best possible estimates of perceived
state from independently normally distributed individual measurements. As normal distributions
can be represented by a fixed number of parameters, namely their mean value and variance, these
can still be incorporated into standard stochastic hybrid-automata models by means of extra
variables: Retaining ŷO as the variable representing the current estimate of the lateral position
of O in the scenario from Fig. 1, one has to add a second variable representing the accuracy of
the current estimate. This could be the standard deviation or the variance of the estimation
error; for simplicity of the update rules it is, however, customary to instead use the precision (i.e.
the reciprocal of the variance). Adding a variable ρ representing the precision, the measurement
transitions thus change according to the usual Kálmán-filter update rules

m ∼ N (yO, 1/ρm) (2a)

ŷ′
O = ρ · ŷO + ρm · m

ρ′ (2b)

ρ′ = ρ + ρm (2c)

where ρm is the precision of an individual measurement process and m the recent measurement.

LITES

05:8 Bayesian Hybrid Automata

run
ẋE = 1 ∧ ċ = 1

yE > ŷO + δ(ρ, θ) ∧ c < 1

stop
ẋE = 0 ∧ ċ = 1

yE ≤ ŷO + δ(ρ, θ) ∧ c < 1

yE ≤ ŷO + δ(ρ, θ)

yE > ŷO + δ(ρ, θ)

c ≥ 1 ∧m ∼ N
(
yO, σ

2)

∧ ŷ′O = ρ·ŷO+ρm·m
ρ′

∧ ρ′ = ρ+ ρm
∧ c′ = 0

c ≥ 1 ∧m ∼ N
(
yO, σ

2)

∧ ŷ′O = ρ·ŷO+ρm·m
ρ′

∧ ρ′ = ρ+ ρm
∧ c′ = 0

(xE = 0) ∧ (yE = 6.875) ∧ (xO = 73.75) ∧
(
m ∼ N

(
yO, σ

2)) ∧ (ŷO = m) ∧ (ρ = ρm) ∧ (c = 0)

Figure 3 A stochastic hybrid automaton incorporating Kálmán filtering for the measurements of O’s
position. δ(ρ, θ) computes a safety margin yielding confidence θ when the precision is ρ, i.e., is defined
by
∫ δ(ρ,θ)

−∞ N (0, 1/ρ)ds = θ.

The guards governing the decision to move to mode run (as well as the invariant of that mode)
change to threshold conditions on the probability mass Px∼N (ŷO,1/ρ)(yE > x) ≥ θ, checking for
sufficient evidence that yE > yO holds and thus confining the risk of erroneously moving the car
forward when in fact yE ≤ yO applies to below 1.0 − θ. The resulting automaton is depicted in
Fig. 3 and reflects the standard engineering practice of Kálmán filtering noisy measurements.

As can be seen from the experimental results reported in Figures 4 and 5, its control perform-
ance significantly exceeds all the verdicts for the standard models stated in Table 1. In these
experiments, we implemented the automata Stochastic and its Kálmán-filtered variant (BHA)
both in a safe situation (Figure 4) where car E is ought to pass car O, and in an unsafe situation
(Figure 5) where car E should stop since O’s sphere overlaps with E’s lane. For both situations,
the blue solid graph shows the average of switching to or remaining in mode run after a meas-
urement (which is taken at every discrete time instance thereby assuming a step size of 1) for
Stochastic. The average is constant for both situations. In contrast, the average of driving on
converges to 1.0 rapidly for the safe situation while it converges fast to 0.0 for the unsafe situation
(illustrated by the green dotted graph). This is where the Bayesian filter’s effect manifests itself:
all decisions in Stochastic are based on the recent (single) measurement thus yielding a constant
probability of making a “bad” decision as neither the distance yE − yO nor the distribution of the
measurement error changes over time. For the BHA, in turn, the integration of all measurement
results leads to an estimate in form of a normal distribution of which the mean ŷO converges to
yO over time while the increasing precision allows for a less conservative safety margin.

The orange dashed-dotted line shows for each discrete time step the probability P (xE ≥ xO)
in Stochastic, i.e. the probability that car E has already passed car O in the safe situation and
that the cars have already collided in the unsafe situation. The red dashed line shows the same for
BHA. As Stochastic moves with constant probability, the probability P (xE ≥ xO) of progressing
beyond the other car’s position converges to 1.0 in Stochastic for both situations. This implies
that car E almost surely eventually passes car O in the safe situation, but also almost surely
eventually collides in the unsafe situation. These results were already predicted in Table 1. As
a consequence of the effect of the filter, the graph for BHA shows for the safe situation that the
probability that car E has passed car O increases significantly earlier than for Stochastic. Most
probably, car E will pass car O quite smoothly after a short while in BHA, while it stutters past O
in Stochastic. For the unsafe situation, in turn, the red dashed graph shows that the probability
of a collision remains very small up to the time horizon.

P. Kröger and M. Fränzle 05:9

0 200 400 600 800 1000 1200 1400
discrete time instance td

0.0

0.2

0.4

0.6

0.8

1.0

av
er

ag
e

m
ov

em
en

t/p
as

sin
g

ov
er

 N
=3

00
0

sa
m

pl
in

g
ru

ns

SHA moved
SHA passed
BHA moved
BHA passed

yE = 9.875 > 8.1 = yO (collision impossible)
condition to move: P(yE > yO) 0.9 =

Figure 4 Simulation results for the traffic example (Fig. 1) comparing automaton Stochastic (labelled
SHA) with its Kálmán-filtered variant (BHA) in a safe situation (yE > yO). BHA moves steadier (dotted
green vs. solid blue line) and passes earlier (red vs. orange).

4 Interacting and cooperating cyber-physical systems

From the above, it might seem that encoding of standard engineering practice into stochastic
hybrid automata well is feasible. Issues do, however, get more involved when the perceived objects
are subject to more complex dynamics than linear differential equations s.t. normal distributions
or other distributions representable by a finite vector of scalar parameters do no longer suffice
for encoding optimal state estimates. This applies for example when the observed agent itself
is a hybrid or cyber-physical system, as we will show in this next section. The above encoding
into a stochastic hybrid automaton with finite-dimensional state becomes infeasible then, instead
requiring to embed complex probability distributions directly into the automaton’s state space.

To demonstrate this problem induced by the cooperation of smart entities, which hinges on
the additional necessity to mutually detect and reason about control decisions of the mutually
other agents based on uncertain behavioural observations, we now move on to a slightly more
complex scenario involving interaction between cyber-physical systems.

4.1 An example of a cooperative control-decision problem
Imagine two ships approaching each other on a narrow channel permitting opposing traffic only
within a designated passing place, as depicted in Fig. 6. The ship reaching the passing place first
(ship O) is allowed1 to draw a decision to which side it turns for mooring while the oncoming
ship E enters the passing place. To complicate the issue, we forbid direct communication between
the ships. In absence of means of negotiation, the ego ship E has to determine O’s ensuing
manoeuvre from observing the current lateral position of ship O and decides to move to a certain
side as soon as its confidence that O will move to the opposite shore is above a specified threshold.

1 Please note that this is a toy example ignoring all maritime rules such as COLREGs.

LITES

05:10 Bayesian Hybrid Automata

0.0 0.2 0.4 0.6 0.8 1.0
discrete time instance td

0.0

0.2

0.4

0.6

0.8

1.0

av
er

ag
e

m
ov

em
en

t/c
ol

lis
io

n
ov

er
 N

=3
00

0
sa

m
pl

in
g

ru
ns

0.90

0.92

0.94

0.96

0.98

1.00 SHA moved
SHA collided
BHA moved
BHA collided

0 200 400 600 800 1000 1200 1400
0.00

0.05

0.10

0.15

yE = 6.875 8.1 = yO (collision possible)
condition to move: P(yE > yO) 0.9 =

Figure 5 Comparison in an unsafe situation (yE < yO) of the traffic example (Fig. 1). The Kálmán-
filtered BHA enhances safety as it almost surely stops (dotted green line) and its collision probability
saturates (dashed red), whereas the latter diverges for the SHA (dash-dotted orange) due to a constant
rate of stuttering movement (solid blue).

We assume that ship O has perfect knowledge about its own longitudinal (xO) and lateral
(yO) position. Ship E, in turn, has perfect knowledge about its own position (xE and yE) while
it maintains estimates x̂O and ŷO of O’s position. The problem for E is to determine, based on
these estimates, to which side O will evade. Filtering w.r.t. a single known dynamics of O is no
longer possible as dynamics depend on O’s decision for which, in turn, E has only a probability
distribution based on the estimate of O’s position. Instead, mixture distributions dealing with all
possible decision alternatives (including the case that the decision is pending) have to be dealt
with. Each mixture component then covers the part of the state space of yO that results in a
certain decision and is subject to the corresponding dynamics within the filter process.

This obviously requires an extension of the stochastic hybrid automaton setting, as the es-
timates no longer constitute Gaussians due to the decision process itself, which is reflected by
chopping the distributions at the thresholds of guards/invariants. That the underlying dynamics
is non-linear only adds to the problem.

x

y

−10 0 10 20 30 40 50 60 70 80 90 100 110

−10

0

10

E O
O

O

Figure 6 Two ships approaching each other on a channel. The red ship (labelled O) decides to move
to the right side of the passing place if its lateral position is larger than 0, and to the left otherwise. The
ego ship (blue, labelled E) tries to determine O’s manoeuvre and to move to the opposite side.

P. Kröger and M. Fränzle 05:11

4.2 Formal modelling of the scenario
Given the complexity of the state estimation and rational decision processes sketched above, a
decomposition of the overall problem into a set of interacting automata with dedicated function-
alities seems appropriate. Figure 7 shows such a decomposition for the —still simple— case of
unilateral observation, i.e., that ship O does not observe ship E and that their control behaviour
consequently is not mutually recursive.

The roles of the various automata are as follows:
Observed automata (OA) represent entities that are observed by the ego system. In the
example, ship O is modelled by an observed automaton. As ship O has perfect knowledge
about its own state (and as its behaviour is independent from E’s in the unilateral case), its
automaton model is a traditional hybrid automaton of the same shape as Nominal in Fig. 2.
Estimate automata (EA) provide estimates of O’s current state to E. They cover the perception
process, i.e. they reflect the (possibly error-afflicted) environmental perception of the ego
system and update quantitative estimates x̂ of the observed parameters x. In simple cases,
they will regularly at sampling intervals take noisy copies m ∼ N (x, 1/ρm) of the observed
physical states and incorporate them into estimates x̂ for refine estimates x̂. In addition,
they extrapolate estimates over time between measurement intervals. The steps involved in
creating and updating the estimates thus are manifold:

1. Temporal extrapolation starts with splitting the current estimate, i.e., state distribution for
the observed entity O according to O’s known mode selection dynamics. In the example,
this would imply splitting the ŷO values of the part of the distribution that is associated
to mode ‘run’ at 0 and associating its negative branch to mode ‘left’ and the non-negative
to mode ‘right’.

2. Reflecting possible sequences of instantaneous discrete jumps of O’s control automaton
before time elapses, repeat step 1 until a fixed-point is reached which indicates that no
further discrete jump is possible.

3. For each mode, extrapolate these “fragments” of the distribution associated to the mode
along the pertinent mode dynamics, which is followed for the duration of a single time
step.2

4. Take the resulting extrapolated distribution of O’s state, which now reflects the estimate of
O’s state at the next measurement sampling time3, and pursue a Bayesian update of each
of the individual fragments of the “dissected” distribution with a fresh measurement.

2 For simplicity, we are assuming a discrete-time model here.
3 We assume that the size of the discrete time step equals the inter-sample time. Otherwise repeat from step 1

until the inter-sample duration is reached.

OA
Observed

Automaton
(S)HA repre-

senting ship O

xo

EA
Estimate

Automaton
holds estimate

of ship O

xo, x̂

CA
Controller
Automaton

models controller
of ship E

x̂, xc

imperfect

observation
estimate

mimicks

sharing xo sharing x̂

Figure 7 Interplay between different automata modelling unilateral observation. Lowermost section
lists types of variables accessed by the automata: xo for system variables of the observed entity O, x̂ for
state estimate variables associated to xo within entity E, and xc for system variables of the ego entity E.

LITES

05:12 Bayesian Hybrid Automata

left
ẏO = −1

right
ẏO = 1

run
ẏO = 0

stop
ẏO = 0

ŷO ≤ −5 ŷO ≥ 5

ŷO ≤ 0 ŷO > 0

(a) Control automaton of
the observed ship O.

left
ẏO = −1

right
ẏO = 1

run
ẏO = 0

stop
ẏO = 0

ŷO ≤ −5 ŷO ≥ 5

ŷO ≤ 0 ŷO > 0

(b) A first noisy posi-
tion measurement enter-
ing the estimation auto-
maton EA.

left
ẏO = −1

right
ẏO = 1

run
ẏO = 0

stop
ẏO = 0

ŷO ≤ −5 ŷO ≥ 5

ŷO ≤ 0 ŷO > 0

(c) EA estimating O’s
next state via a lifting of
O’s next-state relation.

left
ẏO = −1

right
ẏO = 1

run
ẏO = 0

stop
ẏO = 0

ŷO ≤ −5 ŷO ≥ 5

ŷO ≤ 0 ŷO > 0

(d) EA iterating the lifted
next-state relation until
fixed-point is reached.

Figure 8 Estimating the observed ship’s state within an estimation automaton: A noisy position
measurement corresponds to a distribution of possible positions for O (b), each of which would drive O’s
control automaton (a) to a specific state. The EA reflects this by synchronously computing its estimate
of O’s hybrid state via a lifting of O’s next-state relation to estimate distributions (c–d).

5. Build the mixture of the resulting posterior “fragments” paired with their corresponding
modes.

For a simple case, where the prior distribution merely stems from a single noisy measurement,
steps 1 and 2 of the state extrapolation process are illustrated in Fig. 8b–8d.
Controller automata (CA) represent the controller of the ego system, i.e. of ship E in the
example. Such a CA accesses estimate variables provided by EA if control decisions to be
drawn involve estimated parameters. The corresponding decisions are “rational” in so far
as safety-critical mode switches are based on sufficient confidence that the corresponding
guard property is satisfied. Confidence here again relates to the probability that the guard
condition gc holds true w.r.t. the estimated distributions: a critical transition is only taken
if Px∼µ(gc) ≥ θ, where θ denotes the required confidence and µ the mixture representing the
current estimate of O’s state. A safe alternative action (including a stay in the current mode
iff its invariant bears sufficient evidence of being satisfied) has to be taken whenever no critical
action can be justified with sufficient confidence.

For the sake of a concise presentation, we assume that there is a single measurement process
or sensor for each observed parameter which is reflected within the estimate automaton. More
differentiated observation processes are possible by, e.g., introducing another class of automata,
possibly called perception automata, explicitly being responsible for measurements as suggested
in [17]. Such an automaton could be a traditional stochastic hybrid automaton being located
between OA and EA in Fig. 7 providing a noisy copy the observed physical state to the estimate
automaton where the measurement process then depends on the perception automaton’s internal
state which, in turn, might change w.r.t., i.a., the internal state of the estimate automaton and
the controller automaton.

Without digging into further detail of the above automata, it should be obvious that they
go well beyond what can be encoded within hybrid automata models with their discrete plus
finite-dimensional real-valued state-space:

P. Kröger and M. Fränzle 05:13

1. As controller automata have to draw inferences about mixtures (representing state estimates)
in order to evaluate their guards and invariants, such mixtures must be part of the state-space
that controllers can observe.

2. As the state estimation by estimate automata involves active manipulation of such mixtures,
these mixtures have to be part of their dynamic state.

State distributions therefore become first class members of the dynamic state themselves. As
such state distributions can only rarely be encoded by finite-dimensional vectorial state (e.g., if
they are bound to stay within a class of distributions featuring a description by a fixed set of
parameters, like with normal distributions), this requires a completely fresh —and much more
complex— set-up of the theory of hybrid automata extending beyond finite-dimensional vectorial
state towards distributions as states. That this complication is necessary for obtaining accurate
verdicts on control performance is witnessed by Figures 4 and 5.

5 Formal definition of the composite model

In the previous section, we presented a concept of formally modelling hybrid automata com-
prising Bayesian filter techniques for estimates of states of observed entities as well as mixture
distributions representing those estimates. In this section, we introduce the formal models of ob-
served automata, estimate automata, controller automata, and their combination into Bayesian
hybrid automata. The resulting model is an extension of Bayesian hybrid automata suggested
in [16] which were not yet capable of covering hybrid-state dynamics of observed entities within
estimates.

5.1 Observed automaton
From an abstract perspective, an observed automaton might be an (almost) arbitrary flavour
of traditional hybrid automaton. The assumption of perfect knowledge for observed automata
as well as the assumption of unilateral observation allow to restrict the definition of observed
automaton to deterministic variants. Aiming at a Gaussian character of estimates, we make two
further assumptions which are a result of the fact that arbitrary continuous dynamics would
lead to a “deformation” of probability density functions as well as arbitrary updates on discrete
transitions would do. We hence assume that
1. the continuous dynamics of OA are constant for each mode, and
2. all updates of the continuous state of OA on a discrete transition is a shift by a constant.

In this article, we distinguish different types of Boolean predicates each of which represents
a type of conditions on the continuous state space of a hybrid automaton enabling or disabling
discrete control decisions, i.e. a type of transition guards and mode invariants. The first type
is the traditional condition which essentially is equivalent to guard and invariant conditions of
traditional hybrid automata.

▶ Definition 1 (Traditional condition). Let X be a set of n real-valued variables. A traditional
condition is a predicate ct : Rn → {true, false}. We denote the set of all traditional conditions
by Ct.

We now define observed automata akin to the definition of Kowalewski et al. [21] with the
restrictions mentioned above as follows:

▶ Definition 2 (Syntax of observed automata). An observed automaton is a tuple OA = (Lo, X o,

do, io, ∆o, go, uo, Io) where

LITES

05:14 Bayesian Hybrid Automata

Lo = {ℓo
1, · · · , ℓo

lo} is a finite set of discrete control modes a.k.a. control locations of the
automaton which is the discrete state space of OA,
X o = (xo

1, · · · , xo
no) is an ordered finite set of continuous system variables conventionally

represented as vector xo and spanning the continuous state space of OA s.t. a pair (ℓo, xo) ∈
Lo × Rno is a state of the automaton with xo : X o → R being a variable valuation which is
synonymously used for a concrete vector in Rno ,
do : Lo → Rno is a mode-dependent dynamics defining the evolution of the continuous system
variables xo in relation to the control mode by specifying a differential equation ẋo = d(ℓo),
io : Lo → Ct is a function describing the invariants per control mode, i.e. the part of the
continuous state space for which OA may remain in the corresponding control mode,
∆o ⊆ Lo × Lo is a discrete transition relation between modes,
go : ∆o → Ct is a guard function decorating each discrete transition with a traditional
condition defining the part of the continuous state space for which the corresponding transition
is enabled s.t. ∆o is rendered deterministic,
uo : ∆o → (Rno → Rno) is an update function decorating each discrete transition with a
function x 7→ x + c with c ∈ Rno updating xo when the transition is taken, and
Io ∈ Lo × Rno is the initial state of OA.

We denote the set of all states of OA by Σo.

▶ Definition 3 (Semantics of observed automata). A run of an observed automaton is a sequence
⟨σo

0 , σo
1 , · · ·⟩ of states σo

i ∈ Σo with σo
0 = Io according to rule InitOA which is defined as

InitOA
σ0 = Io

and for all i ∈ N>0 we have a transition σo
i−1 −→StepOA σo

i where the successor state is derived
according to rule StepOA which essentially is the concatenation of a discrete transition with a
subsequent (discrete) time step. Rule StepOA is defined as follows:

σi−1 ∃σ, σi ∈ Σo : σi−1
JumpOA−−−−−→ σ

TimeOA−−−−−→ σi StepOA
σi

Rule JumpOA reflects a sequence of discrete jumps of OA. Since OA is deterministic and
jumps are carried out instantaneously without consuming time, possible jumps enabled after a
preceding jump have to be executed before a time step is possible. Hence, rule JumpOA is
basically the repeated application of taking a discrete transition, i.e. the repeated application of
rule JumpOA∗, until a fixed-point is reached:

σ

∃σ1, · · · , σk ∈ Σo : σ
JumpOA∗
−−−−−−→ σ1 JumpOA∗

−−−−−−→ · · · JumpOA∗
−−−−−−→ σk−1 JumpOA∗

−−−−−−→ σk

σk−1 = σk

JumpOA
σk

Rule JumpOA∗ reflects a single discrete transition of OA. If a discrete transition
(
ℓo, ℓo′) is

enabled, the update of the continuous state maps xo to xo′, and xo′ satisfies the invariant of ℓo′,
a jump from (ℓo, xo) to

(
ℓo′, xo′) is possible:

P. Kröger and M. Fränzle 05:15

(ℓo, xo)(
ℓo, ℓo′) ∈ ∆o

go((ℓo, ℓo′))(xo) ≡ true
uo((ℓo, ℓo′))(xo) = xo′

io
((

ℓo′))(xo′) ≡ true
JumpOA∗(

ℓo′, xo′)

Assume there is a solution X : [0, t] → Rno to the ordinary differential equation dxo
/dt = do(ℓo).

If X starts in xo and ends in xo′ and all points in the image of X satisfy the invariant of ℓo, then
a time step of length t from (ℓo, xo) to

(
ℓo, xo′) is possible:

(ℓo, xo) X(0) = xo X(t) = xo′ ∀t′ ∈ [0, t] : io(ℓo)(X(t′)) ≡ true
TimeOA(

ℓo, xo′)

We assume t ∈ R>0 to be arbitrary but fixed.

The components of the observed automaton for our maritime example from Figure 6 could be
defined as follows:

Lo := {straighto, lefto, righto, stopo} (3a)
X o := (xO, yO) (3b)

do(ℓo) :=

[ẋO = −1, ẏO = 0]T iff ℓo = straighto

[ẋO = −1, ẏO = −1]T iff ℓo = lefto

[ẋO = −1, ẏO = 1]T iff ℓo = righto

[ẋO = 0, ẏO = 0]T iff ℓo = stopo

(3c)

io(ℓo) :=

xO ≥ 85 iff ℓo = straighto

yO ≥ −5 iff ℓo = lefto

yO ≤ 5 iff ℓo = righto

true iff ℓo = stopo

(3d)

∆o := {(straighto, lefto) , (straighto, righto) , (lefto, stopo) , (righto, stopo)} (3e)

go(δ) :=

xO ≤ 85 ∧ yO < 0 iff δ = (straighto, lefto)
xO ≤ 85 ∧ yO ≥ 0 iff δ = (straighto, righto)
yO ≤ −5 iff δ = (lefto, stopo)
yO ≥ 5 iff δ = (righto, stopo)

(3f)

uo(xO, yO) := (xO, yO) for all δ ∈ ∆o (3g)
Io := (straighto, (xO = 100, yO = 0)) (3h)

The automaton is illustrated in Figure 9.

5.2 Estimate automaton
Estimate automata govern the estimate of the observed system variables which are, essentially,
a combination of information from a history of measurement results according to Bayes’ the-
orem [29]. Estimate automata reflect the process of taking possibly error-afflicted measurements
and applying the Bayes filter.

LITES

05:16 Bayesian Hybrid Automata

straighto

ẋO = −1 ∧ ẏO = 0
xO ≥ 85lefto

ẋO = −1 ∧ ẏO = −1
yO ≥ −5

righto

ẋO = −1 ∧ ẏO = 1
yO ≤ 5stopo

ẋO = 0 ∧ ẏO = 0

xO ≤ 85 ∧ yO < 0 xO ≤ 85 ∧ yO ≥ 0

yO ≤ −5 yO ≤ −5

xO = 100 ∧ yO = 0

Figure 9 Observed automaton for example from Fig. 6. Ship O switches to mode ‘lefto’ if its lateral
position is smaller than zero when entering the passing place, and to mode ‘righto’ otherwise. It stops
when it reaches a shore.

An essential part of such a filter is to extrapolate the estimate along the continuous dynamics
between two measurements. An estimate can be considered as a set of states each of which can
be regarded to be the true state with some likelihood. Each of these states has to be evolved
along the correct dynamics. Unfortunately, in the hybrid automata setting, this is not necessarily
the same dynamics for all states as already indicated in Sect. 4.2: assume a set A ⊂ R enabling
a discrete transition (ℓ, ℓ′) while for B = R \ A the transition is not enabled. Then, the observed
automaton may switch to ℓ′ for all x ∈ A while it has to remain in ℓ for all x ∈ B. Consequently,
the dynamics of mode ℓ has to be applied to x ∈ A as well as the differential equations of mode
ℓ′ govern extrapolations of trajectories starting in B.

This setting can be taken into account by interpreting estimates within estimate automata
as a list of sets of continuous states annotated by their likelihood to be the true state in form of
probability density functions as well as the control mode they are governed by. Such a list is then
basically a mixture distribution where each mixture component is annotated by a control mode.
In the example above, a discrete jump would lead to two mixture components x̂ℓ and x̂ℓ′ for ℓ

and ℓ′ where the support of the (re-normalised) estimate x̂ℓ is restricted to A while the support
of x̂ℓ′ is restricted to B. We call such an extended mixture distribution a mixture estimate.

We now formally introduce components used by estimate automata including mixture estim-
ates before providing the definition of the estimate automaton itself.

▶ Definition 4 (Mixture estimate). A mixture estimate µ = (µ1, · · · , µk) is a finite ordered set
of mixture components where each component is an n-variate probability density function µi :
Rn → R and is labelled by an automata location and the weight of the component, i.e. we have
labelling functions λℓ : P(Rn) → L and λP : P(Rn) → (0, 1] s.t.

∑k
i=0 λP (x̂i) = 1.0 where P(Rn)

is the set of all probability density functions over Rn.
A mixture estimate can be considered as a probability density function which is defined as

the weighted sum of its components, i.e.

µ(x) =
k∑

i=1
µi(x) · λP (µi) (4)

where
∑k

i=1 λP (µi) = 1.0. We denote the set of all mixture estimates over Rn by M(Rn).

P. Kröger and M. Fränzle 05:17

Uncertain conditions allow to model traditional conditions in the control strategy of the ob-
served entity from the observer’s perspective where a control decision is made with uncertainty
since the continuous state satisfying or unsatisfying the corresponding condition is only estim-
ated. However, they are rather a function than a predicate: for a given estimate p ∈ P(Rn) and a
traditional condition ct ∈ Ct, an uncertain condition returns a normalised copy p’ of p for which
the support supp(p′) is restricted to those values satisfying ct.

▶ Definition 5 (Uncertain condition). An uncertain condition is a function cu : P(Rn) × Ct →
P(Rn) with cu(p, ct) 7→ p′ where the partial estimate over those values x ∈ Rn that satisfy ct is
defined as

p′′(x) =
{

p(x) iff ct(x) ≡ true
0 otherwise

(5)

and lifted to a probability density function

p′(x) = p′′(x) · 1
β

(6)

by re-normalisation based on the branch probability

β =
∫

p′′(x) dx (7)

which describes the probability that ct is satisfied.

An uncertain jump then describes the effect of the discrete transition relation of the observed
automaton to the observer’s mixture estimate.

▶ Definition 6 (Uncertain jump). Assume a hybrid automaton with a discrete transition re-
lation ∆, a guard function g, and an update function u. An uncertain jump is a function
cm

u : M(Rn) → M(Rn) that takes a mixture estimate and applies the uncertain condition on
all mixture components before the discrete jump of the continuous state space is applied to the
resulting components, thereby generating a new mixture estimate:

µ 7→
⋃

µi∈µ

⋃

δ∈∆
uo(δ)(cu(µi, go(δ)))︸ ︷︷ ︸

=µ′
i

 ∪

{
cu

(
µi, ¬

∨

δ∈∆
go(δ)

)}

︸ ︷︷ ︸
=µ′′

i

(8)

where µ′
i are those components obtained from following a discrete transition, µ′′

i is the component
obtained from that part of the continuous state space for which no transition is enabled, δ is an
outbound transition of the mode annotated to µi (i.e. δ = (ℓ, ℓ′) : λℓ(µi) = ℓ), and uo(δ)(µj(x)) =
µj(2x −uo(δ)(x)) is the lifting of the discontinuous update of the continuous state when a discrete
transition is taken to probability density functions. The new mixture components are labelled
with the target location of the corresponding transition, i.e. λℓ(µ′

i) = ℓ′ and λℓ(µ′′
i) = λℓ(ℓ) for

the mixture component representing states remaining the in source location. Furthermore, each
mixture component is labelled by a weight which is the probability that the new component is
the true estimate, i.e. that the run of the observed automaton follows the sequence of discrete
transitions from which the component is obtained. We consequently have λP (x̂′) = λP (µi) · β

(and λP (x̂′′) = λP (µi) · β, respectively) where β is calculated during evaluation of cu according
to Equation 7. In order to avoid a division by zero, components with β = 0.0 (hence components
obtained from impossible discrete transitions) are simply dropped.

LITES

05:18 Bayesian Hybrid Automata

Perception is usually via sensors which, in general, is afflicted by errors. We model the process
of drawing a measurement by a sensor function.

▶ Definition 7 (Sensor). Let e ∈ Rn be a random measurement error drawn according to an error
distribution ê ∈ P(Rn), denoted by e ∼ ê. A sensor is a function s : Rn → Rn with x 7→ x + e

and e ∼ ê.

Bayes filters provide a recursive calculation of estimates combining “knowledge” from a se-
quence of measurements. In case of purely linear dynamics and a normally distributed measure-
ment error, i.e. e ∼ N (x, σ2), a Kálmán-filter would be an instance of a Bayes filter yielding best
estimates of the observed parameters. Such a dynamics and error model facilitates the imple-
mentation of concrete instances. However, as our findings do not hinge on that particular setup,
we describe the application of such a filter in a very general manner by applying Bayes’ rule:

▶ Definition 8 (Filter). Let rk ∈ Rn be the k-th measurement result obtained from a sensor s

while pk(x) = p(x | rk, · · · , r1) is the estimate of x ∈ Rn after k measurements. Furthermore, r̂ is
the conditional probability distribution r̂(r | x) = ê(r + x) of measurement results given x is the
true parameter. By filter we denote a function f : P(Rn) × Rn → P(Rn) with

(pk−1, rk) 7→ pk(x | rk, · · · , r1) = r̂(rk | x) · pk−1(x | rk−1, · · · , r1)
r̂R(rk) (9)

where r̂R(rk) =
∫

r̂(rk | x∗) · pk−1(x∗ | rk−1, · · · , r1)dx∗.

Now that we have sensors and filters, we can define a measurement function as the combination
of a sensor and a filter.

▶ Definition 9 (Measurement action). Let s be a sensor while f is a filter function. A measurement
action is a function m : M(Rn) × Rn → M(Rn) with (µ, x) 7→ {f(µi, r) | µi ∈ µ} for a r = s(x)
fixed for all components µi of µ.

An estimate automaton is, essentially, a copy of the observed automaton augmented by meas-
urement actions, estimate variables accommodating mixture estimates, and a filter function as
well as a semantics in form of sequences of estimates.

▶ Definition 10 (Syntax of estimate automata). An estimate automaton is a tuple EA = (Le, X o,

X̂ , m, de, ie, ∆e, ge, ue, Ie) where the elements annotated with e are copies of the corresponding
elements of OA. The set X o of system variables is read-only shared with OA, i.e. a state change
of X o in EA is directly passed through to X o in EA. Furthermore,

X̂ = (x̂1, · · · , x̂no) is an ordered finite set of estimate variables conventionally represented by a
vector x̂ spanning the stochastic state space of EA s.t. x̂ is a state of EA where x̂ : X̂ → M(R)
is the corresponding variable valuation specifying the marginal distributions of a mixture
estimate in M(Rno) for which x̂ is synonymously used and x̂i is associated to xo

i in the sense
that x̂i accommodates an estimate of xo

i in OA for all i ∈ {1, · · · , no}, and
m is a measurement action.

We denote the set of all states of EA by Σe.

▶ Definition 11 (Semantics of estimate automata). A run of an estimate automaton is a sequence
⟨x̂0, x̂1, · · ·⟩ of mixture estimates where x̂0 is deduced via rule InitEA which allows to derive the
initial state of x̂ given the initial state σo

0 = Ie of OA:

σo
0 = (ℓo

0, xo
0) r0 = s(xo

0) x̂ = µ(x | r0) = {µ1(x | r0) = ê(r0 − xo
0)}

InitEAx̂

with λℓ(x̂) = ℓo
0 and λP (x̂) = 1.0 where s is the sensor of m and ê is the error distribution of s.

P. Kröger and M. Fränzle 05:19

For all i ∈ N>0 we then have a transition x̂i−1 −→StepEA x̂i where the successor estimate is
derived according to rule StepEA which essentially is the concatenation of a discrete transition
with a subsequent (discrete) time step:

x̂i−1 ∃x̂∗, x̂i : x̂i−1
JumpEA−−−−−→ x̂∗ TimeEA−−−−−→ x̂i StepEAx̂i

Rule JumpEA is an abbreviation for two steps:
1. updating the mixture estimate via rule Measure and
2. applying the discrete dynamics via rule TransEA until a fixed-point is reached (akin to rule

JumpOA).
x̂

∃x̂0 : x̂ Measure−−−−−→ x̂0

∃x̂1, · · · , x̂k : x̂0 TransEA−−−−−−→ x̂1 TransEA−−−−−−→ · · · TransEA−−−−−−→ x̂k−1 TransEA−−−−−−→ x̂k

x̂k−1 = x̂k

JumpEA
x̂k

Rule Measure updates the estimate according by applying the measurement action m to
each component of the mixture estimate:

xo x̂ x̂′ = m(x̂, xo)
Measure

x̂′

Rule TransEA reflects the effect of OA’s control laws on the mixture estimate according to
an uncertain jump.

x̂ x̂′ = cm
u (x̂)

TransEA
x̂′

The rule TimeEA describes a discrete time step, i.e. the application of the continuous dy-
namics of OA (and EA, respectively) for t time units to the carrier of each mixture component:

x̂ x̂′ = {µi(2x̂ − x̂∗) | µi ∈ x̂}
TimeEA

x̂′

where for x̂∗ there is a solution solution X : [0, t] → Rno to the ordinary differential equation
dx/dt = do(λℓ(x̂)) with X(0) = x and X(t) = x∗ and io(λℓ(x))(X(t′)) = true for all t′ ∈ [0, t]. We
assume t ∈ R>0 to be arbitrary but fixed.

For our maritime example from Figure 6, the estimate automaton would be a copy of the
observed automaton defined in (3) extended by a set X̂ of estimate variables and measurement
action m as follows:

X̂ := (ŷO) with ŷO = {µ1, · · · , µk} as defined in Def. 4 and µi is a normal (10i)
distribution over R

m(ŷO, r) := {f(µi, r) | µi ∈ ŷO} where f is a Kálmán filter , and r is a measurement (10j)
result obtained by a sensor s as defined in Def. 7 where the
measurement error is normally distributed, i.e. ê = N (0, 1)

Note that the main difference between observed automaton and estimate automaton is its inter-
pretation, i.e. within the semantics (see Def. 11). Its graphical representation consequently is
identical to Fig. 9.

LITES

05:20 Bayesian Hybrid Automata

5.3 Controller automaton
A controller automaton models the controller of the ego system which accesses the estimates of
the estimate automaton in order to make rational decisions in the sense that mode switches based
on estimated parameters are executed only in case of sufficient confidence that the corresponding
guard property is satisfied. In this context, confidence is the probability that the guard property
is satisfied w.r.t. the current mixture estimate, i.e. the probability distribution representing the
belief about the state of the observed entity. We denote the class of predicates for such control
decisions by “rational conditions”.

▶ Definition 12 (Rational condition). Let X be a set of n system variables while X̂ is the set of n

estimate variables s.t. x̂i accommodates an estimate of the value of xi. Furthermore, let ct ∈ Ct
be a traditional condition. A rational condition is a predicate cr : M(Rn) → {true, false} s.t.

cr(µ) ≡
{

true iff Px̂(ct ≡ true) ⋊⋉ ε, and
false otherwise

(11)

with ⋊⋉∈ {≥, >}, ct ∈ Ct, and ε ∈ [0, 1] and

Px̂(ct ≡ true) =
∫

1ct(x) · µ(x) dx (12)

where

1ct(x) =
{

1 iff ct(x) ≡ true, and
0 otherwise.

(13)

Hence, a rational condition is satisfied iff the corresponding traditional condition ct is satisfied
with a probability larger than (or equal to) ε w.r.t. mixture estimate µ. We denote the set of all
rational conditions by Cr.

As controller automata are not observed in the current setting, we can relax the restrictions we
made for observed automata and allow non-determinism and arbitrary continuous dynamics and
updates. However, for the sake of a more concise presentation, we perpetuate those restrictions.

▶ Definition 13 (Syntax of controller automata). A controller automaton is a a tuple CA =
(Lc, X c, dc, ic, ∆c, gc, uc, Ic) where

Lc = {ℓc
1, · · · , ℓc

lc} with Lc ∩ Lo = ∅ is a finite set of discrete control modes a.k.a. control
locations of the automaton which is the discrete state space of CA,
X c = (xc

1, · · · , xc
nc) with X c ∩ X o = ∅ is an ordered finite set of continuous system variables

conventionally represented as vector xc and spanning the continuous state space of CA s.t.
a pair (ℓc, xc) ∈ Lc × Rnc is a state of the automaton with xc : X c → R being a variable
valuation which is synonymously used for a concrete vector in Rnc ,
X̂ = (x̂1, · · · , x̂no) is an ordered finite set of estimate variables as defined in Def. 10 and
read-only shared with EA, i.e. a state change of X̂ in EA is directly passed through to X̂ in
CA,
dc : Lc → Rnc is a mode-dependent dynamics defining the evolution of the continuous system
variables xc in relation to the control mode by specifying a differential equation ẋc = d(ℓc),
ic : Lc → Ct × Cr is a function describing the invariants per control mode, i.e. the part of the
continuous state space including the estimates for which CA may remain in the corresponding
control mode,
∆ ⊆ Lc × Lc is a discrete transition relation between modes,

P. Kröger and M. Fränzle 05:21

gc : ∆c → Ct × Cr is a guard function decorating each discrete transition with a traditional
condition or a rational condition defining the part of the stochastic state space of EA as well as
the part of the continuous state space of CA for which the corresponding transition is enabled
s.t. ∆c is rendered deterministic,

uc : ∆c → (Rnc → Rnc) is an update function decorating each discrete transition with a
function x 7→ x + c with c ∈ Rnc updating xc when the transition is taken, and

and I ∈ Lc × Rnc is the initial state of CA.
We denote the set of all states of CA by Σc.

▶ Definition 14 (Semantics of controller automata). A run of an estimate automaton is a sequence
⟨σc

0, σc
1, · · ·⟩ of states σc

i ∈ Σc obeying deduction rules defined analogously to Def. 3 except for rules
incorporating guards and invariants. We hence assume rules InitCA, StepCA, and JumpCA to
be adopted straightforwardly from the semantics of the observed automaton where JumpCA refers
to JumpCA∗ which respect both traditional and rational conditions for guards and invariants:

(ℓc, xc)
x̂(

ℓc, ℓc′) ∈ ∆c

γ
((

ℓc, ℓc′))(xc, x̂) ≡ true
uc((ℓc, ℓc′))(xc) = xc′

ι
(
ℓc′)(xc′, x̂

)
≡ true

JumpCA∗(
ℓc′, xc′)

where

γ(δ)(xc, x̂) ≡ ct(xc) ∧ cr(x̂) with gc(δ) = (ct, cr) (14)

and

ι(ℓ)(xc, x̂) ≡ ct(xc) ∧ cr(x̂) with ic(δ) = (ct, cr) (15)

lift guard and invariant conditions to predicates Rnc × M(Rno) → {true, false}.
Analogously, rule TimeCA reflects a (discrete) time step using predicates ι(ℓ):

(ℓc, xc) x̂ X(0) = xc X(t) = xc′ ∀t′ ∈ [0, t] : ι(ℓc)(X(t′) , x̂) ≡ true
TimeCA(

ℓc, xc′)

for an arbitrary but fixed t ∈ R>0.

A controller automaton for ship E in our example from Fig. 6 is shown in Fig. 10. At position
xE = 15 it makes its decision to turn to a shore when it has sufficient confidence that for O the
opposite shore is closer (and thus that O is turning to that shore). We assume that E performs
an emergency stop if no sufficient confidence has been built up at that point. The corresponding
automaton components are defined as follows:

LITES

05:22 Bayesian Hybrid Automata

straightc

ẋE = 1 ∧ ẏE = 0
xE ≤ 15

leftc

ẋE = 1 ∧ ẏE = 1
yE ≤ 5

rightc

ẋE = 1 ∧ ẏE = −1
yE ≥ −5

stopc

ẋE = 0 ∧ ẏE = 0

xE ≥ 15 ∧ P (yO < 0) ≥ 0.8 xE ≥ 15 ∧ P (yO ≥ 0) ≥ 0.8

yE ≥ 5

xE ≥ 15 ∧
P (yO < 0) < 0.8 ∧
P (yO ≥ 0) < 0.8

yE ≤ −5

xE = 0 ∧ yE = 0

Figure 10 Controller automaton for the maritime example in Fig. 6. Ship E switches to mode ‘leftc’
when entering the passing place if it has sufficient confidence that ship O turns to the right shore (from
E’s perspective), and to mode ‘rightc’ if it has sufficient confidence, that O turns to the left shore. E
stops if none of the two options have sufficient confidence. It also stops when reaching a shore.

Lc := {straightc, leftc, rightc, stopc} (16a)
X c := (xE, yE) (16b)

dc(ℓc) :=

[ẋE = 1, ẏE = 0]T iff ℓe = straightc

[ẋE = 1, ẏE = 1]T iff ℓc = leftc

[ẋE = 1, ẏE = −1]T iff ℓc = rightc

[ẋE = 0, ẏE = 0]T iff ℓc = stopc

(16c)

ic(ℓc) :=

(xE ≤ 15, true) iff ℓc = straightc

(yE ≤ 5, true) iff ℓc = leftc

(yE ≥ −5, true) iff ℓc = rightc

(true, true) iff ℓc = stopc

(16d)

∆c := {(straightc, leftc) , (straightc, rightc) , (leftc, stopc) , (rightc, stopc) , (straightc, stopc)}
(16e)

gc(δ) :=

(xE ≥ 15, P (yO < 0) ≥ 0.8) iff δ = (straightc, leftc)
(xE ≥ 15, P (yO ≥ 0) ≥ 0.8) iff δ = (straightc, rightc)
(xE ≥ 15, P (yO < 0) < 0.8 ∧ P (yO ≥ 0) < 0.8) iff δ = (straightc, stopc)
(yE ≥ 5, true) iff δ = (leftc, stopc)
(yE ≤ −5, true) iff δ = (rightc, stopc)

(16f)

uc(xE, yE) := (xE, yE) for all δ ∈ ∆c (16g)
Ic := (straightc, (xE = 0, yE = 0)) (16h)

5.4 Bayesian hybrid automaton
▶ Definition 15 (Bayesian hybrid automaton). A Bayesian hybrid automaton is a tuple BHA =
(OA, EA, CA) where

OA is an observed automaton as defined in Def. 2,
EA is an estimate automaton as defined in Def. 10, and
CA is a controller automaton as defined in Def. 13.

P. Kröger and M. Fränzle 05:23

A state of BHA is a tuple σb = (σo, σe, σc) with σo ∈ Σo, σe ∈ Σe, and σc ∈ Σc. By Σb we
denote the set of all states of BHA.

▶ Definition 16 (Semantics of Bayesian hybrid automaton). A run of a Bayesian hybrid automaton
is a sequence ⟨σb

0 , σb
1 , · · ·⟩ of states which is obtained by a step of the observed automaton followed

by a step of the estimate automaton and finally a step of the controller automaton. Hence, the
initial state σb

0 is derived by the following rule:

⊢InitOA σo {σo} ⊢InitEA σe ⊢InitCA σc
InitBHA

(σo, σe, σc)

For all i ∈ N>1 we have a step according to rule StepBHA:
(
σo

i−1, σe
i−1, σc

i−1
) {

σo
i−1
}

⊢StepOA σo
i

{
σe

i−1, σo
i

}
⊢StepEA σe

i

{
σc

i−1, σe
i

}
⊢StepCA σc

i StepBHA
(σo

i , σe
i , σc

i)

5.5 Reduction of the mixture estimate size

The above semantics of estimate automata is based on, i.a., splitting probability density functions
along discrete dynamics of the automaton. Thus the number of mixture components grows
exponentially with the number of steps in the worst case. The reason for splitting and generating
mixtures is to apply different continuous dynamics on specific parts of the continuous state space
during extrapolation. We consequently can merge mixture components µi and µj by exploiting
Eqn. (4) if they are labelled with the same discrete state, i.e., if λℓ(µi) = λℓ(µj). In order to
integrate such a merge of components, rule TransEA has to be modified s.t. it uses an uncertain
jump with merger instead of the previously defined uncertain jump. The modified rule obviously
requires that there exists a concise representation of the result which not explicitly itemises the
individual summands. Such a representation is not inherently available.

▶ Definition 17 (Uncertain jump with merger). Assume a hybrid automaton with a set of modes
L, a discrete transition relation ∆, a guard function g, and an update function u. An uncertain
jump with reduction is a function cM

u : M(Rn) → M(Rn) that applies an uncertain jump and
reduces the number of mixture components according to Eqn. (4), i.e.

µ 7→
⋃

ℓ∈L
{µℓ} (17)

where

µℓ(x) =

 ∑

µi∈Mℓ

µi(x) · λP (µi)

 · 1

λP (µℓ)
(18)

with λℓ(µℓ) = ℓ and the weight of the merged mixture component is

λP (µℓ) =
∑

µi∈Mℓ

λP (µi) (19)

and the set of all mixture components in the result of an uncertain jump labelled by location ℓ is

Mℓ = {µi | µi ∈ cm
u (µ) and λℓ(µi) = ℓ} . (20)

LITES

05:24 Bayesian Hybrid Automata

6 Automated verification

While there is a strong body of research concerning state-exploratory methods for hybrid-system
verification or falsification (for an overview cf. [13]), all of these methods are currently confined to
finite-dimensional, hybrid discrete-continuous state. With complex, mixture-type distributions
becoming part of the state-space of the system itself, these methods are no longer applicable:
State-exploratory methods for stochastic hybrid automata [31, 15, 1, 14] do, of course, manipulate
complex mixtures over hybrid state, but as these stem from the stochastic transition dynamics
rather than from the state-space itself, state-exploratory methods covering estimate automata
inherently have to add another layer of mixtures (due to the iterated transition dynamics of
estimate automata) ranging over state mixtures (themselves being part of the state of estimate
automata). To the best of our knowledge, neither a comprehensive tool nor data structures
facilitating such an analysis do currently exist.

Simulation faithfully reflecting the arising distributions in a frequentistic sense, however, seems
feasible. This would facilitate rigorous statistical model-checking [32]. As mixtures of hybrid
states are part of the state-space itself due to the hybrid-state estimation process (see Fig. 8),
the underlying simulator, however, has to manipulate the corresponding mixtures as part of its
state-space.

If all mixtures arising are linear combinations of interval-restrictions of normal distributions,
as in Fig. 8, a length-unbounded list of such interval-restrictions suffices for representing the
mixture part of the state space, which then has to be combined with the usual discrete and real-
vector-valued states of hybrid automata. Each individual interval restriction of a (scaled) normal
distribution can be represented by a five-tuple (b, e, m, σ, α) of real numbers encoding the density

p(b,e,m,σ,α)(x) =
{

α · N (m, σ2) iff b ≤ x ≤ e,

0 otherwise,

thus facilitating a computational representation of the corresponding mixtures as lists of such
tuples. Evaluation of simple rational guards Px∼M (x ⋊⋉ k) ≥ θ over such a mixture M represented
as a finite list, where k is a constant and ⋊⋉ denotes an inequality, is also computationally feasible.
Hence, a probabilistic simulator could be built provided the distributions arising in the estimate
automata remain mixtures of interval-restrictions of normal distributions, which, however, would
severely confine the admissible dynamics of the observed processes: non-linear dynamics, deform-
ing the (interval-restrictions of) normal distributions, would have to be excluded, and even affine
rotations are cumbersome to deal with.

An obvious alternative is the approximation of the mixtures arising as states in the estimation
automata by a set of particles, as in particle-filtering [4]. As the effect of the state extrapolation
within the estimation process on each of these particles can be computed whenever the state dy-
namics of the observed process O can be computed, due to the extrapolation concerning a single
particle coinciding exactly with O’s state dynamics, simulation using such a particle approxim-
ation of the estimation mixtures is feasible even with non-linear dynamics. It should be noted,
however, that extrapolation of the state of particles occurs at a different place here than in clas-
sical analysis of stochastic systems by particle-based simulation: within each state advancement
step of a single simulation run of the overall system, we have to advance all particles representing
the estimation component of the overall state-space.

Development of this technology for simulation and statistical model-checking is currently
commencing in our group.

P. Kröger and M. Fränzle 05:25

7 Summary

In the above, we have used two examples to argue that traditional hybrid-automata models, be
they deterministic, nondeterministic, or stochastic, are insufficient for obtaining precise verdicts
on the safety and liveness, etc., of interacting cyber-physical systems. We identified inaptness
to represent rational decision-making under uncertain information as the cause of this deficiency.
One may, however, argue that there might be other cures to the problem than the introduction
of state estimation into the observing CPS and consequently also into its formal model, the latter
necessitating a significant extension and complication of the model of hybrid automata and its
related formal analysis techniques.

One such cure could be the introduction of communication within systems of interacting
CPSes: the need for state estimation for an observed agent would vanish if all agents would
actively communicate the local measurements that their decisions are based on (and optionally
also communicate the decisions themselves) rather than having to estimate these from imprecisely
observed physical behaviour. This is true, but does not provide a panacea. Not only may the
mere cost as well as all kinds of reasons for data privacy and protection render such an approach
undesirable, it is also bound to fail when we face socio-technical interaction within human-cyber-
physical systems, as humans will neither be able nor willing to communicate a sufficiently complete
representation of their perception to the CPS components. HCPSes will inherently have to rely
on state estimation permitting technical systems to obtain an image of the humans’ states and
plans based on behavioural observations, neurophysiological measurements, etc. [8].

Another apparent cure would be the introduction of machine-learned components into the
CPS for the sake of estimating (and possibly extrapolating into reasonable future) the state of
observed entities. This would, however, not fundamentally change the problems induced to ana-
lysis and verification of such systems: the example of deep neural networks used for classification
tasks indicates that such machine-learned state estimators manipulate “probabilities”4 too, neces-
sitating a very similar treatment in models and analysis engines when trying to reason rigorously
about the interactive behaviour of mutually coupled systems featuring DNN components within
environmental state assessment.

We conclude that the introduction of state estimation processes, with their associated complex
state spaces, is a necessary addendum to the hybrid-automata framework in order render them
ripe for the modelling and analysis demands of the era of interacting intelligent systems. The
development of corresponding automatic verification technology, though constituting a mostly
unsolved scientific challenge, is of utmost societal importance.

References
1 Alessandro Abate, Joost-Pieter Katoen, John Ly-

geros, and Maria Prandini. Approximate model
checking of stochastic hybrid systems. Eur. J.
Control, 16(6):624–641, 2010. doi:10.3166/ejc.
16.624-641.

2 Rajeev Alur, Costas Courcoubetis, Thomas A.
Henzinger, and Pei-Hsin Ho. Hybrid automata:
An algorithmic approach to the specification and
verification of hybrid systems. In Robert L. Gross-
man, Anil Nerode, Anders P. Ravn, and Hans
Rischel, editors, Hybrid Systems, volume 736 of
Lecture Notes in Computer Science, pages 209–

229. Springer, 1992. doi:10.1007/3-540-57318-
6_30.

3 David Barber. Bayesian Reasoning and Machine
Learning. Cambride University Press, 2012. doi:
10.1017/CBO9780511804779.

4 Karl Berntorp and Stefano Di Cairano. Particle
filtering for automotive: A survey. In 22th Inter-
national Conference on Information Fusion, pages
1–8, July 2019. URL: https://www.merl.com/
publications/TR2019-069.

5 L.M. Bujorianu and J. Lygeros. Toward a general
theory of stochastic hybrid systems. In Stochastic

4 We are adding quotes here, as the “probability” assigned to a given label by a DNN classifier does not con-
stitute a probability in a frequentistic sense or according to other conventional interpretations of probability
theory.

LITES

https://doi.org/10.3166/ejc.16.624-641
https://doi.org/10.3166/ejc.16.624-641
https://doi.org/10.1007/3-540-57318-6_30
https://doi.org/10.1007/3-540-57318-6_30
https://doi.org/10.1017/CBO9780511804779
https://doi.org/10.1017/CBO9780511804779
https://www.merl.com/publications/TR2019-069
https://www.merl.com/publications/TR2019-069

05:26 Bayesian Hybrid Automata

Hybrid Systems: Theory and Safety Critical Ap-
plications, volume 337 of LNCIS, pages 3–30.
Springer-Verlag, 2006. doi:10.1007/11587392_1.

6 C. Combastel. Merging Kalman filtering and zono-
topic state bounding for robust fault detection
under noisy environment. IFAC-PapersOnLine,
48(21):289–295, 2015. 9th IFAC Symposium on
Fault Detection, Supervision and Safety for Tech-
nical Processes SAFEPROCESS 2015. doi:10.
1016/j.ifacol.2015.09.542.

7 Christophe Coué, Cédric Pradalier, Christian
Laugier, Thierry Fraichard, and Pierre Bessiere.
Bayesian occupancy filtering for multitarget track-
ing: an automotive application. International
Journal of Robotics Research, 25(1):19–30, Janu-
ary 2006. doi:10.1177/0278364906061158.

8 Werner Damm, Martin Fränzle, Andreas Lüdtke,
Jochem W. Rieger, Alexander Trende, and
Anirudh Unni. Integrating neurophysiological
sensors and driver models for safe and perform-
ant automated vehicle control in mixed traffic. In
2019 IEEE Intelligent Vehicles Symposium, pages
82–89. IEEE, 2019. URL: https://ieeexplore.
ieee.org/xpl/conhome/8792328/proceeding.

9 M.H.A. Davis. Markov Models and Optimization.
Chapman & Hall, London, 1993.

10 J. Ding, A. Abate, and C. Tomlin. Optimal con-
trol of partially observable discrete time stochastic
hybrid systems for safety specifications. In 2013
American Control Conference, pages 6231–6236,
June 2013. doi:10.1109/ACC.2013.6580815.

11 Alexandre Donzé and Oded Maler. Robust sat-
isfaction of temporal logic over real-valued sig-
nals. In Krishnendu Chatterjee and Thomas A.
Henzinger, editors, Formal Modeling and Ana-
lysis of Timed Systems - 8th International Con-
ference, FORMATS 2010, Klosterneuburg, Aus-
tria, September 8-10, 2010. Proceedings, volume
6246 of Lecture Notes in Computer Science, pages
92–106. Springer, 2010. doi:10.1007/978-3-642-
15297-9_9.

12 Alberto Elfes. Using occupancy grids for mo-
bile robot perception and navigation. Computer,
22(6):46–57, June 1989. doi:10.1109/2.30720.

13 Martin Fränzle, Mingshuai Chen, and Paul Kröger.
In memory of Oded Maler: automatic reachability
analysis of hybrid-state automata. SIGLOG News,
6(1):19–39, 2019. doi:10.1145/3313909.3313913.

14 Martin Fränzle, Ernst Moritz Hahn, Holger Her-
manns, Nicolás Wolovick, and Lijun Zhang. Meas-
urability and safety verification for stochastic hy-
brid systems. In Marco Caccamo, Emilio Frazzoli,
and Radu Grosu, editors, Proceedings of the 14th
ACM International Conference on Hybrid Sys-
tems: Computation and Control, HSCC 2011,
Chicago, IL, USA, April 12-14, 2011, pages 43–
52. ACM, 2011. doi:10.1145/1967701.1967710.

15 Martin Fränzle, Holger Hermanns, and Tino Teige.
Stochastic satisfiability modulo theory: A novel
technique for the analysis of probabilistic hybrid
systems. In Magnus Egerstedt and Bud Mishra,
editors, Hybrid Systems: Computation and Con-
trol, 11th International Workshop, HSCC 2008,
St. Louis, MO, USA, April 22-24, 2008. Pro-
ceedings, volume 4981 of Lecture Notes in Com-

puter Science, pages 172–186. Springer, 2008. doi:
10.1007/978-3-540-78929-1_13.

16 Martin Fränzle and Paul Kröger. The demon, the
gambler, and the engineer – reconciling hybrid-
system theory with metrology. In Cliff Jones,
Ji Wang, and Naijun Zhan, editors, Symposium on
Real-Time and Hybrid Systems, volume 11180 of
Theoretical Computer Science and General Issues,
pages 165–185, Cham, 2018. Springer International
Publishing. doi:10.1007/978-3-030-01461-2_9.

17 Martin Fränzle and Paul Kröger. Guess what I’m
doing! Rendering formal verification methods ripe
for the era of interacting intelligent systems. In
Tiziana Margaria and Bernhard Steffen, editors,
Leveraging Applications of Formal Methods, Veri-
fication and Validation: Applications, pages 255–
272, Cham, 2020. Springer International Publish-
ing.

18 Adrian Gambier. Multivariable adaptive state-
space control: A survey. In 2004 5th Asian Control
Conference (IEEE Cat. No.04EX904), volume 1,
pages 185–191 Vol.1, July 2004.

19 J. Hu, J. Lygeros, and S. Sastry. Towards a
theory of stochastic hybrid systems. In Hybrid
Systems: Computation and Control, volume 1790
of LNCS, pages 160–173. Springer-Verlag, 2000.
doi:10.1007/3-540-46430-1_16.

20 Rudolph Emil Kálmán. A new approach to lin-
ear filtering and prediction problems. Transac-
tions of the ASME–Journal of Basic Engineer-
ing, 82(Series D):35–45, 1960. doi:10.1115/1.
3662552.

21 S. Kowalewski, M. Garavello, H. Guéguen, G. Her-
berich, R. Langerak, B. Piccoli, J. W. Polderman,
and C. Weise. Hybrid automata, pages 57–86.
Cambridge University Press, 2009. doi:10.1017/
CBO9780511807930.004.

22 Helge Langseth, Thomas D. Nielsen, Rafael Rumí,
and Antonio Salmerón. Inference in hybrid
bayesian networks. Reliability Engineering & Sys-
tem Safety, 94(10):1499–1509, 2009. doi:10.1016/
j.ress.2009.02.027.

23 Eugene Lavretsky. Robust and adaptive control
methods for aerial vehicles. In Kimon P. Va-
lavanis and George J. Vachtsevanos, editors, Hand-
book of Unmanned Aerial Vehicles, pages 675–
710, Dordrecht, 2015. Springer Netherlands. doi:
10.1007/978-90-481-9707-1_50.

24 R. P. S. Mahler. Multitarget Bayes filtering via
first-order multitarget moments. IEEE Trans-
actions on Aerospace and Electronic Systems,
39(4):1152–1178, October 2003. doi:10.1109/
TAES.2003.1261119.

25 Michael Maschler, Eilon Solan, and Shmuel Zamir.
Game Theory. Cambridge University Press, 2013.
doi:10.1017/cbo9780511794216.

26 Kevin P. Murphy. Switching Kalman filters, 1998.
27 Kumpati S. Narendra and Zhuo Han. Adapt-

ive control using collective information obtained
from multiple models. IFAC Proceedings Volumes,
44(1):362–367, 2011. 18th IFAC World Congress.
doi:10.3182/20110828-6-IT-1002.02237.

28 Anil Nerode and Wolf Kohn. Models for hybrid
systems: Automata, topologies, controllability, ob-
servability. In Robert L. Grossman, Anil Ner-
ode, Anders P. Ravn, and Hans Rischel, editors,

https://doi.org/10.1007/11587392_1
https://doi.org/10.1016/j.ifacol.2015.09.542
https://doi.org/10.1016/j.ifacol.2015.09.542
https://doi.org/10.1177/0278364906061158
https://ieeexplore.ieee.org/xpl/conhome/8792328/proceeding
https://ieeexplore.ieee.org/xpl/conhome/8792328/proceeding
https://doi.org/10.1109/ACC.2013.6580815
https://doi.org/10.1007/978-3-642-15297-9_9
https://doi.org/10.1007/978-3-642-15297-9_9
https://doi.org/10.1109/2.30720
https://doi.org/10.1145/3313909.3313913
https://doi.org/10.1145/1967701.1967710
https://doi.org/10.1007/978-3-540-78929-1_13
https://doi.org/10.1007/978-3-540-78929-1_13
https://doi.org/10.1007/978-3-030-01461-2_9
https://doi.org/10.1007/3-540-46430-1_16
https://doi.org/10.1115/1.3662552
https://doi.org/10.1115/1.3662552
https://doi.org/10.1017/CBO9780511807930.004
https://doi.org/10.1017/CBO9780511807930.004
https://doi.org/10.1016/j.ress.2009.02.027
https://doi.org/10.1016/j.ress.2009.02.027
https://doi.org/10.1007/978-90-481-9707-1_50
https://doi.org/10.1007/978-90-481-9707-1_50
https://doi.org/10.1109/TAES.2003.1261119
https://doi.org/10.1109/TAES.2003.1261119
https://doi.org/10.1017/cbo9780511794216
https://doi.org/10.3182/20110828-6-IT-1002.02237

P. Kröger and M. Fränzle 05:27

Hybrid Systems, volume 736 of Lecture Notes in
Computer Science, pages 317–356. Springer, 1992.
doi:10.1007/3-540-57318-6_35.

29 Simo Särkkä. Bayesian Filtering and Smoothing.
Cambridge University Press, New York, NY, USA,
2013.

30 C. Sherlock, A. Golightly, and C. S. Gillespie.
Bayesian inference for hybrid discrete-continuous
stochastic kinetic models. Inverse Problems,
30(11):114005, November 2014. doi:10.1088/
0266-5611/30/11/114005.

31 Jeremy Sproston. Decidable model checking of
probabilistic hybrid automata. In Formal Tech-

niques in Real-Time and Fault-Tolerant Systems
(FTRTFT 2000), volume 1926 of LNCS, pages 31–
45. Springer, 2000. doi:10.1007/3-540-45352-0_
5.

32 Håkan L. S. Younes and Reid G. Simmons. Prob-
abilistic verification of discrete event systems us-
ing acceptance sampling. In Ed Brinksma and
Kim Guldstrand Larsen, editors, Computer Aided
Verification, 14th International Conference, CAV
2002,Copenhagen, Denmark, July 27-31, 2002,
Proceedings, volume 2404 of Lecture Notes in Com-
puter Science, pages 223–235. Springer, 2002. doi:
10.1007/3-540-45657-0_17.

LITES

https://doi.org/10.1007/3-540-57318-6_35
https://doi.org/10.1088/0266-5611/30/11/114005
https://doi.org/10.1088/0266-5611/30/11/114005
https://doi.org/10.1007/3-540-45352-0_5
https://doi.org/10.1007/3-540-45352-0_5
https://doi.org/10.1007/3-540-45657-0_17
https://doi.org/10.1007/3-540-45657-0_17

	1 Introduction
	2 Related work
	3 Inadequacy of traditional hybrid-automata models
	3.1 An example of a control decision problem
	3.2 Hybrid automata models
	3.3 Adding Kálmán filtering

	4 Interacting and cooperating cyber-physical systems
	4.1 An example of a cooperative control-decision problem
	4.2 Formal modelling of the scenario

	5 Formal definition of the composite model
	5.1 Observed automaton
	5.2 Estimate automaton
	5.3 Controller automaton
	5.4 Bayesian hybrid automaton
	5.5 Reduction of the mixture estimate size

	6 Automated verification
	7 Summary

