
Real-Time Verification for Distributed Cyber-Physical
Systems
Hoang-Dung Tran #

University of Nebraska-Lincoln, Lincoln, Nebraska, USA

Luan Viet Nguyen #

University of Dayton, Dayton, Ohio, USA

Patrick Musau
Vanderbilt University, Nashville, Tennessee, USA

Weiming Xiang #

Augusta University, Nashville, Tennessee, USA

Taylor T. Johnson #

Vanderbilt University, Nashville, Tennessee, USA

Abstract
Safety-critical distributed cyber-physical systems
(CPSs) have been found in a wide range of ap-
plications. Notably, they have displayed a great
deal of utility in intelligent transportation, where
autonomous vehicles communicate and cooperate
with each other via a high-speed communication
network. Such systems require an ability to identify
maneuvers in real-time that cause dangerous cir-
cumstances and ensure the implementation always
meets safety-critical requirements. In this paper,
we propose a real-time decentralized reachability
approach for safety verification of a distributed
multi-agent CPS with the underlying assumption
that all agents are time-synchronized with a low de-
gree of error. In the proposed approach, each agent

periodically computes its local reachable set and
exchanges this reachable set with the other agents
with the goal of verifying the system safety. Our
method, implemented in Java, takes advantages of
the timing information and the reachable set inform-
ation that are available in the exchanged messages
to reason about the safety of the whole system in
a decentralized manner. Any particular agent can
also perform local safety verification tasks based
on their local clocks by analyzing the messages it
receives. We applied the proposed method to verify,
in real-time, the safety properties of a group of
quadcopters performing a distributed search mis-
sion.

2012 ACM Subject Classification Computing methodologies → Distributed computing methodologies
Keywords and Phrases Verification, Reachability Analysis, Distributed Cyber-Physical Systems
Digital Object Identifier 10.4230/LITES.8.2.7
Related Version Previous Version: https://doi.org/10.1007/978-3-030-21759-4_15 [31]
Supplementary Material Software (Source Code): https://github.com/verivital/rtreach
Funding The material presented in this paper is based upon work supported by the Air Force Office of
Scientific Research (AFOSR) through contract number FA9550-22-1-0019 and the Defense Advanced
Research Projects Agency (DARPA) through contract number FA8750-18-C-0089. The U.S. Government
is authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright
notation thereon. The views and conclusions contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies or endorsements, either expressed or implied,
of AFOSR or DARPA.
Received 2020-10-22 Accepted 2022-01-28 Published 2022-12-07
Editor Alessandro Abate, Uli Fahrenberg, and Martin Fränzle
Special Issue Special Issue on Distributed Hybrid Systems

© Hoang-Dung Tran, Luan Viet Nguyen, Patrick Musau, Weiming Xiang, and Taylor T. Johnson;
licensed under Creative Commons Attribution 4.0 International (CC BY 4.0)

Leibniz Transactions on Embedded Systems, Vol. 8, Issue 2, Article No. 7, pp. 07:1–07:19
Leibniz Transactions on Embedded Systems

L I T E S Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:trhoangdung@gmail.com
mailto:luanvnguyen.vn@gmail.com
mailto:xiangwming@gmail.com
mailto:taylor.johnson@gmail.com
https://doi.org/10.4230/LITES.8.2.7
https://doi.org/10.1007/978-3-030-21759-4_15
https://github.com/verivital/rtreach
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lites
https://www.dagstuhl.de

07:2 Real-Time Safety Verification for Distributed Cyber-Physical Systems

1 Introduction

The emergence of 5G technology has inspired a massive wave of the research and development in
science and technology in the era of IoT where the communication between computing devices has
become significantly faster with lower latency and power consumption. The power of this modern
communication technology influences and benefits all aspects of Cyber-Physical Systems (CPSs)
such as smart grids, smart homes, intelligent transportation and smart cities. In particular, the
study of autonomous vehicles has become an increasingly popular research field in both academic
and industrial transportation applications. Automotive crashes pose significant financial and
life-threatening risks, and there is an urgent need for advanced and scalable methods that can
efficiently verify a distributed system of autonomous vehicles.

Over the last two decades, although many methods have been developed to conduct reachability
analysis and safety verification of CPS, such as the approaches proposed in [1, 4, 5, 7, 13, 14, 17, 20,
23, 30, 32], applying these techniques to real-time distributed CPS remains a big challenge. This is
due to the fact that, 1) all existing techniques have intensive computation costs and are usually
too slow to be used in a real-time manner and, 2) these techniques target the safety verification
of a single CPS, and therefore they naturally cannot be applied efficiently to a distributed CPS
where clock mismatches and communication between agents (i.e., individual systems) are essential
concerns. Since the future autonomous vehicles systems will work distributively involving effective
communication between each agent, there is an urgent need for an approach that can provide
formal guarantees of the safety of distributed CPS in real-time. More importantly, the safety
information should be defined based on the agents local clocks to allow these agents to perform
“intelligent actions” to escape from the upcoming dangerous circumstances. For example, if an
agent A knows based on its local clock that it will collide with an agent B in the next 5 seconds,
it should perform an action such as stopping or quickly finding a safe path to avoid the collision.

In this paper1, we propose a decentralized real-time reachability approach for safety verification
of a distributed CPS with multiple agents. We are particularly interested in two types of safety
properties. The first one is a local safety property which specifies the local constraints of the agent
operation. For example, each agent is only allowed to move within a specific region, does not hit
any obstacles, and its velocity needs to be limited to a specific range. This type of property does
not require the information of other agents and can be verified locally at run-time. The second
safety property is a global property defined on the states of multiple agents. Particularly, we
consider a peer-to-peer collision free property and a generalized property where we want to verify
if all agents satisfy a set of linear constraints (on the states of all agents) defining the property,
e.g., two agents do not go into the same region at the same time.

Our decentralized real-time reachability approach works as follows. Each agent locally and
periodically computes the local reachable set of states from the current local time to the next
T seconds, and then encodes and broadcasts its reachable set information to the others via a
communication network. When the agent receives a reachable set message, it immediately decodes
the message to read the reachable set information of the sender, and then performs peer-to-peer
collision checking based on its current state and the reachable set of the sender. Verifying a
generalized global property involving the states of N agents is done at the time an agent receives
all needed reachable sets from other agents. Additionally, the local safety property of the agent is
verified simultaneously with the reachable set computation process at run-time. The proposed
verification approach is based on an underlying assumption that is, all agents are time-synchronized
to some level of accuracy. This assumption is reasonable as it can be achieved by using existing

1 This paper is an extension of [31].

H.-D. Tran, L. V. Nguyen, P. Musau, W. Xiang, and T. T. Johnson 07:3

time synchronization protocols such as the Network Time Protocol (NTP). Our approach has
successfully verified in real-time the local safety properties and collision occurrences for a group of
quadcopters conducting a search mission.

The rest of the paper is organized as follows. Section 2 presents briefly the distributed CPS
modeling and its verification problems. Section 3 gives the detail of real-time reachability for single
agent and how to use it for real-time local safety verification. Section 4 addresses the utilization
reachable set messages for checking peer-to-peer collision. Section 5 investigates the global safety
verification problem. Section 6 presents the implementation and evaluation of our approach via a
distributed search application using quadcopters.

2 Problem Formulation

In this paper, we consider a distributed CPS with N agents that can communicate with each
other via an asynchronous communication channel.

Communication Model

The communication between agents is implemented by the actions of sending and receiving
messages over an asynchronous communication channel. We formally model this communication
model as a single automaton, Channel, which stores the set of in-flight messages that have been
sent, but are yet to be delivered. When an agent sends a message m, it invokes a send(m) action.
This action adds m to the in-flight set. At any arbitrary time, the Channel chooses a message in
the in-flight set to either delivers it to its recipient or removes it from the set. All messages are
assumed to be unique and each message contains its sender and recipient identities. Let M be the
set of all possible messages used in communication between agents. The sending and receiving
messages by agent i are denoted by Mi,∗ and M∗,i, respectively.

Agent Model

The ith agent is modeled as a hybrid automaton [16, 27] defined by the tuple ⟨Ai = Vi, Ai,Di, Ti⟩,
where:
a) Vi is a set of variables consisting of the following:

i) a set of continuous variables Xi including a special variable clki which records the agent’s
local time, and

ii) a set of discrete variables Yi including the special variable msghisti that records all sent
and received messages. A valuation vi is a function that associates each vi ∈ Vi to a value
in its type. We write val(Vi) for the set of all possible valuations of Vi. We abuse the
notion of vi to denote a state of Ai, which is a valuation of all variables in Vi.

The set Qi
∆= val(Vi) is called the set of states.

b) Ai is a set of actions consisting of the following subsets:
i) a set {sendi(m) | m ∈ Mi,∗} of send actions (i.e., output actions),
ii) a set {receivei(m) | m ∈ M∗,i} of receive actions (i.e., input actions), and
iii) a set Hi of other, ordinary actions.

c) Di ⊆ val(Vi) × Ai × val(Vi) is called the set of transitions. For a transition (vi, ai,v′
i) ∈ Di,

we write vi
ai→ v′

i in short.
i) If ai = sendi(m) or receivei(m), then all the components of vi and v′

i are identical except
that m is added to msghist in v′

i. That is, the agent’s other states remain the same
on message sends and receives. Furthermore, for every state vi and every receive action
ai, there must exist a v′

i such that vi
ai→ v′

i, i.e., the automaton must have well-defined
behavior for receiving any message in any state.

ii) If ai ∈ Hi, then vi.msghist = v′
i.msghist.

LITES

07:4 Real-Time Safety Verification for Distributed Cyber-Physical Systems

d) Ti is a collection of trajectories for Xi. Each trajectory of Xi is a function mapping an interval
of time [0, t], t ≥ 0 to val(Vi), following a flow rate that specifies how a real variable xi ∈ Xi

evolving over time. We denote the duration of a trajectory as τdur, which is the right end-point
of the interval t.

Agent Semantics

The behavior of each agent can be defined based on the concept of an execution which is a
particular run of the agent. Given an initial state v0

i , an execution αi of an agent Ai is a sequence
of states starting from v0

i , defined as αi = v0
i ,v1

i , . . ., and for each index j in the sequence, the
state update from vj

i to vj+1
i is either a transition or trajectory. A state vj

i is reachable if there
exists an executing that ends in vj

i . We denote Reach(Ai) as the reachable set of agent Ai.

System Model

The formal model of the complete system, denoted as System, is a network of hybrid automata that
is obtained by parallel composing the agent’s models and the communication channel. Formally,
we can write, System ∆= A1∥ . . .AN ∥Channel. Informally, the agent Ai and the communication
channel Channel are synchronized through sending and receiving actions. When the agent Ai

sends a message m ∈ Mi,j to the agent Aj , it triggers the sendi(m) action. At the same time, this
action is synchronized in the Channel automaton by putting the message m in the in-flight set.
After that, the Channel will trigger (non-deterministically) the receivej(m) action. This action is
synchronized in the agent Aj by putting the message m into the message history msghistj .

In this paper, we investigate three real-time safety verification problems for distributed cyber-
physical systems as defined in the following.

▶ Problem 1 (Local safety verification in real-time). The real-time local safety verification problem
is to compute online the reachable set Reach(Ai) of the agent and verify if it violates the local
safety property, i.e., checking Reach(Ai) ∩ Ui = ∅?, where Ui ≜ {xi|Cixi ≤ di, xi ∈ Xi} is the
unsafe set of the agent.

▶ Problem 2 (Decentralized real-time collision verification). The decentralized real-time collision
verification problem is to reason in real-time whether an agent Ai will collide with other agents
from its current local time tic to the computable, safe time instance in the future Tsafe based on

i) the clock mismatches, and
ii) the exchanging reachable set messages between agents.

Formally, we require that ∀ tic ≤ t ≤ Tsafe, dij(t) ≥ l, where dij(t) is the distance between agents
Ai and Aj at the time t of the agent Ai local clock, and l is the allowable safe distance between
agents.

▶ Problem 3 (Decentralized real-time global safety verification). The decentralized real-time global
safety verification problem is to construct online (at each agent) the reachable set of all agents
globalReach and verify if it violates the global safety property, i.e., checking globalReach∩ U = ∅,
where U ≜ Cx ≤ d, x = [xT

1 , . . . , x
T
N]T , xi ∈ Xi, is the unsafe set of the whole system.

3 Real-Time Local Safety Verification

The first important step in our approach is, each agent Ai computes forwardly its reachable set of
states from the current local time ti to the next (ti + T) seconds which is defined by Ri[ti, ti + T].
Since there are many variables used in the agent modeling that are irrelevant in safety verification,
we only need to compute the reachable set of state that is related to the agent’s physical dynamics

H.-D. Tran, L. V. Nguyen, P. Musau, W. Xiang, and T. T. Johnson 07:5

(so called as motion dynamics) which is defined by a nonlinear ODE ẋi = f(xi, ui), where xi ∈ Rn

is state vector and ui ∈ Rm is the control input vector. The agent can switch from one mode to
the another mode via discrete transitions, and in each mode, the control law may be different.
When the agent computes its reachable set, the only information it needs are its current set of
states xi(ti) and the current control input ui(ti). It should be clarified that although the control
law may be different among modes, the control signal ui is updated with the same control period
T i

c . Consequently, ui is a constant vector in each control period.
Assuming that the agent’s current time is tij = j × Tc, using its local sensors and GPS, we

have the current state of the agent xi. Note that the local sensors and the provided GPS can only
provide the information of interest to some accuracy, therefore the actual state of the agent is in a
set xi ∈ Ii. The control signal ui is computed based on the state xi and a reference signal, e.g., a
set point denoting where the agent needs to go to, and then computed control signal is applied to
the actuator to control the motion of the agent. From the current set of states Ii and the control
signal ui, we can compute the forward reachable set of the agent for the next tij + T seconds. This
reachable set computation needs to be completed after an amount of time T i

runtime < T i
c because

if T i
runtime ≥ T i

c , a new ui will be updated. The control period T i
c is chosen based on the agent’s

motion dynamics, and thus to control an agent with fast dynamics, the control period T i
c needs

to be sufficiently small. This is the source of the requirement that the allowable run-time for
reachable set computation be small.

To compute the reachable set of an agent in real-time, we use the well-known face-lifting
method [6, 9] and a hyper-rectangle to represent the reachable set. This method is useful for
short-time reachability analysis of real-time systems. It allows users to define an allowable run-time
T i

runtime, and has no dynamic data structures, recursion, and does not depend on complex external
libraries as in other reachability analysis methods. More importantly, the accuracy of the reachable
set computation can be iteratively improved based on the remaining allowable run-time.

Algorithm 3.1 describes the real-time reachability analysis for one agent. The Algorithm works
as follows. The time period [ti, ti + T] is divided by M steps. The reach time step is defined by
hi = T/M . Using the reach time step and the current set Ii, the face-lifting method performs
a single-face-lifting operation. The results of this step are a new reachable set and a remaining
reach time T i

remainReachT ime < T . This step is iteratively called until the reachable set for the
whole time period of interest [ti, ti + T] is constructed completely, i.e., the remaining reach time
is equal to zero. Interestingly, with the reach time step size hi defined above, the face-lifting
algorithm may be finished quickly after an amount of time which is smaller than the allowable
run-time T i

runtime specified by user, i.e., there is still an amount of time called remaining run
time T i

remainRunT ime < T i
runtime that is available for us to recall the face-lifting algorithm with a

smaller reach time step size, for example, we can recall the face-lifting algorithm with a new reach
time step hi/2. By doing this, the conservativeness of the reachable set can be iteratively improved.
The core step of face-lifting method is the single-face-lifting operation. We refer the readers to [6]
for further detail. As mentioned earlier, the local safety property of each agent can be verified at
run-time simultaneously with the reachable set computation process. Precisely, let Ui ≜ Cixi ≤ di

be the unsafe region of the ith agent, the agent is said to be safe from ti to ti + t ≤ ti + T if
Ri[ti, ti + t] ∩ Ui = ∅. Since the reachable set Ri[ti, ti + t] is given by the face-lifting method at
run-time, the local safety verification problem for each agent can be solved at run-time. Since
Algorithm 3.1 computes an over-approximation of the reachable set of each agent in a short time
interval, it guarantees the soundness of the result as described in the following lemma.

▶ Lemma 1 ([6, 9]). The real-time reachability analysis algorithm is sound, i.e., the computed
reachable set contains all possible trajectories of agent Ai from ti to ti + T .

LITES

07:6 Real-Time Safety Verification for Distributed Cyber-Physical Systems

Algorithm 3.1 Real-time reachability analysis for agent Ai.

Input: Ii, ui, ti, T , hi, T i
runtime, Ui

Output: Ri[ti, ti + T], safe = true or safe = uncertain

1: procedure Initialization
2: step = hi % Reach time step
3: T i

1 = T i
runtime % Remaining run-time

4: procedure Reachability Analysis
5: while (T i

1 > 0) do
6: CR = Ii % Current reachable set
7: safe = true

8: T i
2 = T % Remaining reach time

9: while T i
2 > 0 do

10: % Do Single Face Lifting
11: R, T ′ = SF L(CR, step, T i

2 , ui)
12: CR = R % Update reach set
13: T i

2 = T ′ % Update remaining reach time
14: if (CR ∩ Ui ̸= ∅) then: safe = uncertain

15: Ri[ti, ti + T] = CR
16: % Update remaining runtime
17: T i

1 = T i
1 − (Ai.currentT ime() − ti)

18: if T i
1 ≤ 0 then break

19: else
20: step = hi/2 % Reduce reach time step
21: return Ri[ti, ti + T] = CR, safe

4 Decentralized Real-Time Collision Verification

Our collision verification scheme is performed based on the exchanged reachable set messages
between agents. For every control period Tc, each agent executes the real-time reachability analysis
algorithm to check if it is locally safe and to obtain its current reachable set with respect to
its current control input. When the current reachable set is available, the agent encodes the
reachable set in a message and then broadcasts this message to its cooperative agents and listens
to the upcoming messages sent from these agents. When a reachable set message arrives, the
agent immediately decodes the message to construct the current reachable set of the sender and
then performs peer-to-peer collision detection. The process of computing, encoding, transferring,
decoding of the reachable set along with collision checking is illustrated in Figure 1 based on the
agent’s local clock.

Let tirs, tie, titf , tid, and tic respectively be the instants at which we compute, encode, transfer,
decode the reachable set and do collision checking on the agent Ai. Note that these time instants
are based on the agent Ai’s local clock. The actual run-times are defined as follows.

τ i
rs = tie − tirs,% reachable set computation time,
τ i

e = titf − tie,% encoding time,

τ i
tf ≈ tjd − titf ,% transferring time,
τ i

d = tic − tid,% decoding time.

Note that we do not know the exact transfer time τ i
tf since it depends on two different local

time clocks. The above transfer time formula describes its approximate value when neglecting the
mismatch between the two local clocks. The actual reachable set computation time is close to the

H.-D. Tran, L. V. Nguyen, P. Musau, W. Xiang, and T. T. Johnson 07:7

Agent A
i
 ’s

(local) time line

Global time

Agent A
j
’s

(local) time line

≤δ j

C
o

m
p

u
te

 re
ac

h
 se

t

F
in

ish
 co

m
p

u
ta

tio
n

E
n

co
d

e
 re

ac
h

 s
e

t

≤δi

F
in

is
h

 en
co

d
in

g
B

ro
ad

ca
s

t rea
c

h
 s

e
t

R
e

c
eiv

e rea
ch

 s
et

D
e

co
d

e
 re

ac
h

 s
e

t

F
in

is
h

 d
ec

o
d

in
g

C
h

e
ck

 c
o

llis
io

n

Reach set
 computation time

τrs
i

Reach set
computation time

τrs
j

Encoding
 time

τe
i

Encoding
time

τe
j

Reach set
transferring time

τtf
j

Reach set
transferring time

τtf
i

Decoding
 time

τd
j

Decoding time

τd
i+1

t rs
i

trs

t e
i t tf

i t d
i t c

i

t e t tf t d t c

t rs
j t e

j t tf
j

t d
j t c

j

Elapsed time between computing reachable set and checking collision of agent A
j

τelapsed
j

τelapsed
i

Elapsed time between computing reach set and checking collision of agent A
i

Figure 1 Timeline for reachable set computing, encoding, transferring, decoding and collision checking.
The timeline for these core steps in verification is plotted in parallel with the virtual global time under
the assumption that the agent’s clock is synchronized with the global time within an error between −δ∗

and δ∗.

allowable run-time chosen by user, i.e., τ i
rs ≈ T i

runtime. We will see later that the encoding time
and decoding time are fairly small in comparison with the transferring time, i.e., τ i

e ≈ τ i
d ≪ τ i

tf .
All of these run-times provide useful information for selecting an appropriate control period Tc for
an agent. However, for collision checking purposes, we only need to consider the time instants
that an agent starts computing reachable set tirs and collision checking tic.

A reachable set message contains three pieces of information: the reachable set which is a list
of intervals, the time period (based on the local clock) in which this reachable set is valid, i.e.,
the start time tirs and the end time tirs + T and the time instant that this message is sent. Based
on the timing information of the reachable set and the time-synchronization errors, an agent can
examine whether or not a received reachable set contains information about the future behavior
of the sent agent which is useful for collision checking. The usefulness of the reachable sets used
in collision checking is defined as follows.

▶ Definition 2 (Useful reachable sets). Let δi and δj respectively be the time-synchronization
errors of agent Ai and Aj in comparison with the virtual global time t, i.e, t − δi ≤ ti ≤ t + δi

and t− δj ≤ tj ≤ t+ δj , where ti and tj are current local times of Ai and Aj respectively. The
reachable sets Ri[tirs, t

i
rs + T] and Rj [tjrs, t

j
rs + T] of the agent Aj that are available at the agent

Ai at time tic are useful for collision checking between Ai and Aj if:

tic < tjrs + T − δi − δj ,

tic < tirs + T. (1)

Assume that we are at a time instant where the agent Ai checks if a collision occurs. This means
that the current local time is tic. Note that agent Ai and Aj are synchronized to the global
time with errors δi and δj respectively. The reachable set Rj [tjrs, t

j
rs + T] is useful if it contains

information about the future behavior of agent Aj under the view of the agent Ai based on its

LITES

07:8 Real-Time Safety Verification for Distributed Cyber-Physical Systems

Agent i ’s
(local) time line

Global time

Agent j’s
(local) time line

trs
i

t rs
t c
i

t c

t rs
j t c

j

 Useful reach set R
i

t rs
i
+T

Useless reach set L
i

t rs
i
+T>tc

i

trs
i
+T≤tc

i

 Useful reach set R
j

t rs
j
+T

Useless reach set L
j t rs

j
+T≤tc

j

t rs
j
+T>tc

j

Future timePast time

Future time Past time

Figure 2 Useful reachable sets. An exchanged reachable set is useful for real-time verification if and
only if it contains the estimation of all possible trajectories of an agent in a time period in the future.

Algorithm 4.2 Decentralized Real-Time Collision Verification at Agent Ai.

Input: l, % safe distance between agents
Output: collision, Tsafe % collision flag and safe time interval in the future

1: procedure Peer-to-Peer Collision Detection
2: if new message Rj [tj

rs, tj
rs + T] arrive then

3: decode message
4: ti

c = Ai.current_time() % current time
5: ti

rs = Ri.t
i
rs % current reachable set start time

6: if ti
c < tj

rs + T − δi − δj and ti
c < ti

rs + T then % check usefulness
7: compute possible minimum distance dmin between two agents
8: if dmin > l then
9: Collision = false

10: Tsafe = min(tj
rs + T − δi − δj , ti

rs + T)
11: else
12: Collision = uncertain, Tsafe = []
13: store the message

local clock. This can be guaranteed if we have: tjrs + T ≥ tirs − δj + T > tic + δi. Additionally, the
current reachablet set of agent Ai contains information about its future behavior if tic < tirs + T

as depicted in Figure 2. We can see that if tic > tjrs + T + δi + δj , then the reachable set of Aj

contains a past information, and thus it is useless for collision checking. One interesting case is
when tjrs + T − δi − δj < tic < tjrs + T + δi + δj . In this case, we do not know whether the received
reachable set is useful or not.
▶ Remark. We note that the proposed approach does not rely on the concept of Lamport’s
happens-before relation [22] to compute the local reachable set of each agent. If the agent could
not receive reachable messages from others until a requested time-stamp expires, it still calculates
the local reachable set based on its current state and the state information of other agents in the
messages it received previously. In other words, our method does not require the reachable set of
each agent to be computed corresponding to the ordering of the events (sending or receiving a
message) in the system, but only relies on the local clock period and the time-synchronization errors
between agents. Such implementation ensures that the computation process can be accomplished
in real-time, and is not affected by the message transmission delay.

The peer-to-peer collision checking procedure depicted in Algorithm 4.2 works as follows: when
a new reachable set message arrives, the receiving agent decodes the message and checks the
usefulness of the received reachable set and its current reachable set. Then, the agent combines

H.-D. Tran, L. V. Nguyen, P. Musau, W. Xiang, and T. T. Johnson 07:9

its current reachable set and the received reachable set to compute the minimum possible distance
between two agents. If the distance is larger than an allowable threshold l, there is no collision
between two agents in some known time interval in the future, i.e., Tsafe.

▶ Lemma 3. The decentralized real-time collision verification algorithm is sound.

Proof. From Lemma 1, we know that the received reachable set Rj [tjrs, t
j
rs + T] contains all

possible trajectories of the agent Aj from tjrs to tjrs + T . Also, the current reachable set of the
agent Ai, Ri[tirs, t

i
rs + T], contains all possible trajectories of the agent from tirs to tirs + T . If

those reachable sets are useful, then they contains all possible trajectories of two agents from tic
to sometime Tsafe = min(tjrs + T − δi − δj , t

i
rs + T) in the future based on the agent Ai clock.

Therefore, the minimum distance dmin between two agents computed from two reachable sets is
the smallest distance among all possible distances in the time interval [tic, Tsafe]. Consequently,
the collision free guarantee is sound in the time interval [tic, Tsafe]. ◀

We have studied how to use exchanged reachable sets to do peer-to-peer collision detection.
Next, we consider how to verify online the global behavior of a distributed CPS in decentralized
manner.

5 Decentralized Real-Time Global Safety Verification

▶ Definition 4 (Globally useful reachable set.). Consider a distributed CPS with N agents with
time synchronization errors δi, i = 1, 2, . . . , N , a globally useful reachable set of the whole system
under the view of agent Ai based on its current local time clock tic is defined below:

globalReach =
N∧

i=1
Ri[tirs, t

i
rs + T] ∧ T ,

T ∆= (tic ≤ t ≤ T +min{tirs − δi − δj}, j ̸= i, 1 ≤ j ≤ N). (2)

For any time t such that tic ≤ t ≤ T + min{tirs − δi − δj} for ∀ 1 ≤ j ≤ N, i ̸= j, we have
Ri(t) ⊆ Ri[tirs, t

i
rs + T],∀i. In other words, globalReach contains all possible trajectories of all

agents from the current local time tic of agent Ai to the future time defined by T +min{tirs − δi −
δj}, j ̸= i, 1 ≤ j ≤ N . The globally useful reachable set is a collection of all useful reachable sets
(defined in the previous section) received and decoded at an agent Ai under its current local clock
tic. The inner intersection determines that at the time that all reachable sets have been received
and decoded at the agent Ai, i.e., tic, only a portion of each received reachable set Rj [tjrs, t

j
rs + T]

between [tic, T +min{tirs − δi − δj]} is useful for checking collision.
It should be noted that to construct a global reachable set, an agent needs to wait for all

messages arrive and then decodes all these messages. This process may have an expensive
computation cost, especially when the number of agents increases. Since this global reachable
set is only valid in an interval of time, the amount of time that is available for verify the global
property may be small and not enough for the agent to perform the global safety verification.
Having additional hardware for handling in parallel the processes of receiving/decoding messages
is a good solution to overcome this challenge.

Using the globally useful reachable set, the global safety verification problem is equivalent
to checking whether the globally useful reachable set intersects with the global unsafe region
defined by U ∆= Cx ≤ d, where x = [xT

1 , x
T
2 , · · · , xT

N]T and xi is the state vector of agent Ai. The
procedure for global safety verification is summarized in Algorithm 5.3.

▶ Lemma 5. The decentralized real-time global safety verification algorithm is sound.

LITES

07:10 Real-Time Safety Verification for Distributed Cyber-Physical Systems

Algorithm 5.3 Decentralized Real-Time Global Safety Verification for Agent Ai.

Input: U , % global unsafe constraints
Output: global_safe, Tglobal_safe % global safe flag and safe time interval in the future

1: procedure Initialization
2: global_safe = true % global safety flag
3: procedure Global Safety Verification
4: if all useful messages are available then
5: ti

c = Ai.current_time()
6: recheck if all messages are still useful
7: construct globally useful reach set globalReach

8: if (globalReach ∩ U ≠ ∅) then
9: global_safe = uncertain

10: Tglobal_safe = []
11: else
12: global_safe = true

13: Tglobal_safe = T + min{ti
rs − δi − δj}, j ̸= i, 1 ≤ j ≤ N

Proof. Similar to Lemma 3, the soundness of the verification algorithm is guaranteed because of
the soundness of the globally useful reachable set containing all possible trajectories of all agents
at any time t ∈ T , where T ∆= (tic ≤ t ≤ T +min{tirs − δi − δj}, j ̸= i, 1 ≤ j ≤ N). ◀

6 Case study

The decentralized real-time safety verification for distributed CPS proposed in this paper is
implemented in Java as a package called drreach. This package is currently integrated as a library
in StarL, which is a novel platform-independent framework for programming reliable distributed
robotics applications on Android [24]. StarL is specifically suitable for controlling a distributed
network of robots over WiFi since it provides many useful functions and sophisticated algorithms
for distributed applications. In our approach, we use the reliable communication network of StarL
which is assumed to be asynchronous and peer-to-peer. There may be message dropouts and
transmission delays; however, every message that an agent tries to send is eventually delivered with
some time guarantees. All experimental results of our approach are reproducible and available
online at: http://www.verivital.com/rtreach/.

6.1 Experiment setup

We evaluate the proposed approach via a distributed search application using quadcopters2 in
which each quadcopter executes its search mission provided by users as a list of way-points depicted
in Figure 3. These quadcopters follow the way-points to search for some specific objects. For
safety reasons, they are required to work only in a specific region defined by users. In this case
study, the quadcopters are controlled to operate at the same constant altitude. It has been shown
from the experiments that the proposed approach is promisingly scalable as it works well for a
different number of quadcopters. We choose to present in this section the experimental results for
the distributed search application with eight quadcopters.

2 A video recording is available at: https://youtu.be/YC_7BChsIf0

http://www.verivital.com/rtreach/
https://youtu.be/YC_7BChsIf0

H.-D. Tran, L. V. Nguyen, P. Musau, W. Xiang, and T. T. Johnson 07:11

𝓐𝟏

𝓐𝟐

𝓐𝟔

𝓐𝟕

𝓐𝟖

𝓐𝟑

𝓐𝟓

𝓐𝟒𝓐𝟏

𝓐𝟐

𝓐𝟑

𝓐𝟒

𝓐𝟓

𝓐𝟔

𝓐𝟖

𝓐𝟕

Figure 3 Distributed Search Application Using Quadcopters.

The first step in our approach is locally computing the reachable set of each quadcopter using
the face-lifting method [6,9,18]. The quadcopter has nonlinear motion dynamics given in Equation
3 in which θ, ϕ, and ψ are the pitch, roll, and yaw angles, f = Σ4

i=1Ti is the sum of the propeller
forces, m is the mass of the quadcopter and g = 9.81m/s2 is the gravitational acceleration constant.
As the quadcopter is set to operate on a constant altitude, we have z̈ = 0 which yields the following
constraint: f = mg

cos(θ) cos(ϕ) . Let vx and vy be the velocities of a quadcopter along with x- and
y- axes. Using the constraint on the total force, the motion dynamics of the quadcopter can be
rewritten as a 4-dimensional nonlinear ODE as depicted in Equation 4.

ẍ = f

m
(sin(ψ) sin(ϕ) + cos(ψ) sin(θ) cos(ϕ)),

ÿ = f

m
(sin(ψ) sin(θ) cos(ϕ) − sin(ϕ) cos(ψ)),

z̈ = f

m
cos(θ) cos(ϕ) − g, (3)

ẋ = vx,

v̇x = g tan(θ),
ẏ = vy,

v̇y = g
tan(ϕ)
cos(θ) . (4)

A PID controller (a proportional-integral-derivative controller widely used in industrial control
systems [2]) is designed to control the quadcopter to move from its current position to desired
way-points. Details about the controller parameters can be found in the available source code. The
PID controller has a control period of Tc = 200 milliseconds. In every control period, the control
inputs pitch (θ) and roll (ϕ) are computed based on the current positions of the quadcopter and
the current target position (i.e., the current way-point it needs to go). Using the control inputs,
the current positions and velocities given from GPS and the motion dynamics of the quadcopter,
the real-time reachable set computation algorithm (Algorithm 3.1) is executed inside the controller.
This algorithm computes the reachable set of a quadcopter from its current local time to the next
T = 2 seconds. The allowable run-time for this algorithm is Truntime = 10 milliseconds. The local
safety property is verified by the real-time reachable set computation algorithm at run-time. The
computed reachable set is then encoded and sent to another quadcopter. When a reachable set
message arrives, the quadcopter decodes the message to reconstruct the current reachable set of
the sender. The GPS error is assumed to be 2%. The time-synchronization error between the

LITES

07:12 Real-Time Safety Verification for Distributed Cyber-Physical Systems

Figure 4 A sample of events for verifying the local safety property and collision occurrence.

quadcopters is δ = 3 milliseconds. We want to verify in real-time: 1) local safety property for
each quadcopter; 2) collision occurrence; and 3) geospatial free property. The local safety property
is defined by vx ≤ 500, i.e., the maximum allowable velocities along the x-axis of two arbitrary
quadcopters are not larger than 500m/s. The collision is checked using the minimum allowable
distance between two arbitrary quadcopters dmin = 100. The geospatial free property requires
that the some quadcopters never go into a specific region at the same time.

6.2 Verifying local safety property and collision occurrence
Figure 4 presents a sample of a sequence of events happening in the distributed search application.
One can see that each quadcopter can determine based on its local clocks if there is no collision
to some known time in the future. In addition, the local safety property can also be verified at
run-time. For example, in the figure, the quadcopter 1 receives a reachable set message from the
quadcopter 0 which is valid from 17 : 29 : 49.075 to 17 : 29 : 51.074 of the quadcopter 0’s clock.
After decoding this message, taking into account the time-synchronization error δ, quadcopter 1
realizes that the received reachable set message is useful for checking collision for the next 1.645
seconds of its clock. After checking collision, quadcopter 1 knows that it will not collide with the
quadcopter 0 in the next 1.645 seconds (based on its clock).

It should be noted that we can intuitively verify the collision occurrences by observing the
intermediate reachable sets of all quadcopters and their interval hulls. The intermediate reachable
sets of the quadcopters in every [0, 2s] time interval computed by the real-time reachable set

H.-D. Tran, L. V. Nguyen, P. Musau, W. Xiang, and T. T. Johnson 07:13

Figure 5 One sample of the reachable sets of eight quadcopters in an [0, 2s] time interval and their
interval hulls.

Table 1 The average encoding time τe, decoding time τd, transferring time τtf , collision checking time
τc and total verification time V T of the quadcopters.

Time Quad. 1 Quad. 2 Quad. 3 Quad. 4 Quad. 5 Quad. 6 Quad. 7 Quad. 8

Encoding Time τe (ms) 0.058 0.055 0.0553 0.0525 0.0557 0.0583 0.0584 0.0597

Decoding Time τd (ms) 0.0169 0.0193 0.0197 0.019 0.0210 0.0181 0.0177 0.022

Transferring Time τtf (ms) 2.64 2.48 1.42 1.11 1.12 1.08 1.05 1.13

Collision Checking Time τc (ms) 0.04 0.05 0.07 0.05 0.03 0.07 0.07 0.14

Total Verification Time V T (ms) 28.9363 27.9 20.6232 18.3055 18.2527 18.235 18.0223 19.1037

computation algorithm (i.e., Algorithm 3.1) is described in Figure 5. The zoom plot within the
figure presents a very short-time interval reachable set of the quadcopters. We note that the
intermediate reachable set of a quadcopter is represented as a list of hyper-rectangles and is used
for verifying the local safety property at run-time. The reachable set that is sent to another
quadcopter is the interval hull of these hyper-rectangles. The intermediate reachable set cannot be
transferred via a network since it is very large (i.e., hundreds of hyper-rectangles). The interval hull
of all hyper-rectangles contained in the intermediate reachable set covers all possible trajectories
of a quadcopter in the time interval of [0, 2s]. Therefore, it can be used for safety verification.
One may question why we use the interval hull instead of using the convex hull of the reachable
set since the former one results in a more conservative result. The reason is that the convex hull
of hundreds of hyper-rectangles is a time-consuming operation that cannot be used in a real-time
setting. Therefore, in the real-time setting, interval hull operation is a suitable solution. From the
figure, we can see that the interval hulls of the reachable set of all quadcopters do not intersect
with each other. Therefore, there is no collision occurrence (in the next 2 seconds of global time).

Since we implement the decentralized real-time safety verification algorithm inside the quad-
copter’s controller, it is important to analyze whether or not the verification procedure affects the
control performance of the controller. To reason about this, we measure the average encoding,

LITES

07:14 Real-Time Safety Verification for Distributed Cyber-Physical Systems

decoding, transferring and collision checking times for all quadcopters using 100 samples which are
presented in Table 1. We note that the transferring time τtf is the average time for one message
transferred from other quadcopters to the ith quadcopter. It can be seen that the encoding,
decoding and collision checking times at each quadcopter constitute a tiny amount of time. The
total verification time is the sum of the reachable set computation, encoding, transferring, decoding
and collision checking times. Note that the allowable runtime for reachable set computation
algorithm is specified by users as Truntime = 10 milliseconds. Therefore, the (average) total time
for the safety verification procedure on each quadcopter is

V Ti = Truntime + τ i
e + (N − 1) × (τ i

tf + τ i
d + τ i

c), (5)

where i = 1, 2, . . . , N , and N is the number of quadcopters. As shown in Table 1, the (average)
total verification time for each quadcopter is small (< 30 milliseconds), compared to the control
period Tc = 200 milliseconds. Besides, from the experiment, we observe that the computation
time for the control signal of the PID controller τ i

control (not presented in the table) is also small,
i.e., from 5 to 10 milliseconds. Since V Ti + τ i

control < Tc/4 = 50 milliseconds, we can conclude
that the verification procedure does not affect the control performance of the controller.

Interestingly, from the verification time formula (5), we can estimate the range of the number of
agents that the decentralized real-time verification procedure can deal with. The idea is that, in each
control period Tc, after computing the control signal, the remaining time bandwidth Tc − τcontrol

can be used for verification. Let τ̄e(τe), τ̄tf (τ tf), τ̄d(τd), τ̄c(τ c) be the maximum (minimum)
encoding, transferring, decoding and collision checking times on a quadcopter, τ̄control(τ control)
be the maximum (minimum) control signal computation time for each control period Tc, then
the number of agents that the decentralized real-time safety verification procedure can deal with
(with assumption that the communication network works well) satisfies the following constraint:

Tc − τ̄control − Truntime − τ̄e

τ̄tf + τ̄d + τ̄c
+ 1 ≤ N ≤ Tc − τ control − Truntime − τe

τ tf + τd + τ c

+ 1. (6)

Let consider our case study, from the Table, we assume that τ̄e = 0.0597, τe = 0.0525,
τ̄tf = 2.64, τ tf = 1.05, τ̄d = 0.022, τd = 0.0169, τ̄c = 0.14, τ c = 0.03 milliseconds. Also, we
assume that τ̄control = 10 and τ control = 5 milliseconds. We can theoretically estimate the number
of quadcopters that our verification approach can deal with is 64 ≤ N ≤ 168.

6.3 Verifying the geospatial free property
To illustrate how our approach verifies the global behavior of a distributed CPS, we consider
the geospatial free property which requires that the some (or all) quadcopters never go into
a specific region at the same time. For simplification, we reconsider the distributed search
application with two quadcopters (quad 1 and quad 2) whose forbidden region is defined by
900 < x0 < 1200 ∧ 900 < x1 < 1200. Figure 6 describes a sample of events describing that the
quadcopter 2 can verify (based on its local clock) that it will not collide with the quadcopter 1
and the global geospatial free property is guaranteed in the next 1.838 seconds.

7 Discussion

Software architecture. The current implementation of our approach deploys the safety verifier of
each agent inside the controller, and a single thread is used to execute the control and verification
tasks. The main drawback of this implementation is that it may decrease the overall performance
of the controller and even cause the controller to crash. To prevent that happens, in practice,

H.-D. Tran, L. V. Nguyen, P. Musau, W. Xiang, and T. T. Johnson 07:15

quadcopter0 computes it reach set from 2019-09-16 17:26:20.957 to 2019-09-16 17:26:22.956
quadcopter0 encodes its reach set to send out in 0.017749 milliseconds
quadcopter0 broadcasts its reach set to others
quadcopter0 may violates its local safety specification at time 2019-09-16 17:26:22.956
quadcopter1 receives reach set (hull) from quadcopter0
Time for transferring this reach set over network is around (not considering clock mismatch) 66
milliseconds
Decoding message from quadcopter0 takes 0.029057 milliseconds
Reach set (hull) of quadcopter0 that is valid from 2019-09-16 17:26:20.957 to 2019-09-16
17:26:22.956 of its local time is:
dim = 0 -> [89.18, 280.21]
dim = 1 -> [39.31, 58.43]
dim = 2 -> [804.58, 1240.06]
dim = 3 -> [91.37, 126.26]
Current reach set (hull) of quadcopter1 that is valid from 2019-09-16 17:26:20.119 to 2019-09-16
17:26:22.118 of its local time is:
dim = 0 -> [1946.28, 2060.66]
dim = 1 -> [25.17, 33.29]
dim = 2 -> [787.92, 1566.04]
dim = 3 -> [184.97, 203.86]
Current local time of quadcopter1 is 2019-09-16 17:26:21.112
Useful time for checking collision and global safety property is 1838 milliseconds
The received reachable set from quadcopter0 is useful
quadcopter1 will not collide with quadcopter0 in the next 1.838 seconds
The geospatial free property is guarantee in the next 1.838 seconds

Figure 6 A sample of events for verifying the geospatial free property.

Complex
Controller

Verifier

Planer

Plant

Sensing

Safe Controller

Map

Decision Maker

Actuator
Commands

Encoder Decoder Safety Checker

D
ecode r 1

...

D
ecode r 2

D
ecode r N

Broadcast Reach
Set messages

Coming Reach
Set Messages

C
hecke r 1

C
hecke r 2

C
hecke r N

...

G
lobal C

hecke r

Reachable Set
Calculator

Local C
hecker

Global Safety
Specifications

Local Safety
Specifications Collision

Checkers

Figure 7 Software architecture for deploying decentralized real-time safety verification approach on a
real platform.

LITES

07:16 Real-Time Safety Verification for Distributed Cyber-Physical Systems

the controller and verifier should be implemented in two separate software components. In this
case, the computation burden for safety checks in the verifier does not affect the performance of
the controller. The control task and the verification task can be executed efficiently in parallel
as depicted in Figure 7. More importantly, this software architecture adopts the architecture of
a fault-tolerant system [15] to prevent the propagation of failure from one component to others.
It also benefits the use of a simplex-architecture for safety control in the case of dangerous
circumstances.

As shown in Figure 7, the verifier component consists of four sub-components including a
reachable set calculator, a encoder, a decoder, and a safety checker. These sub-components should
also be implemented conveniently for parallel execution. The local safety property is verified
inside the reachable set calculator at runtime. As the number of reachable set messages that
need to be decoded increases with the number of participating agents, it is necessary to have
multiple decoders working in parallel. These decoders listen to upcoming reachable set messages
on different ports assigned to them by the verifier and immediately decode any arrived message.
This parallel decoding helps to reduce the decoding time significantly. The decoded reachable
sets are then sent to the safety checker containing multiple checkers run in parallel in which each
checker is responsible for checking collision between the agent with another. The ith checker and
the ith decoder is a pair worker, i.e., the checker only waits for the decoded reachable set of its
corresponding co-worker. Therefore, the pair to pair collision detection task can be done very
quickly. The safety checker also has a global checker which is responsible for checking global
properties. The global checker is only triggered when the decoder component finishes decoding all
arrived reachable set messages. For this reason, having parallel working decoders is essential to
speed up the overall verification time which is required to be very small to work in the real-time
setting.

Let τ̄rs, τ̄e, τ̄tf and τ̄d respectively be the worst case times of reachable set computation,
encoding, transferring and decoding, τ̄cc and τ̄gc be the worst case times of peer-to-peer collision
detection and global safety verification. For a system with N agents, the total worst-case
verification time is τ̄total = τ̄rs + τ̄e + τ̄tf + τ̄d + τ̄cc + τ̄gc. If we do the verification in sequential
way, i.e., using only one port for reachable set communication and one checker for all peer-
to-peer collision detection and global safety verification, the total worst-case verification is:
τ̄∗

total = τ̄rs + τ̄e + τ̄tf +Nτ̄d +Nτ̄cc + τ̄gc >> τ̄total.

Scalability. From the above discussion, one can see that the software architecture plays an
important role when we implement our approach in a real platform. In practice, if each participating
agent has the powerful hardware for communication and computation, and the software for our
approach is implemented in a parallel manner as proposed above, then the worst-case verification
time does not depend on the number of agents in the system. Therefore, our decentralized
real-time safety verification approach is scalable for systems with a large number of agents. Also,
the proposed software architecture is especially useful in the case that there are losses of reachable
set messages. In this hazardous situation, the agent still has some partial information to check if
a collision occurs based on the available, reachable set messages. Therefore, the planner still can
re-perform path planning algorithm based on the current information and past information it has
to find the safest path for the agent for this incomplete information situation.

Effect of time synchronization error. The time synchronization error directly affects the ability
to receive useful reachable sets and globally useful reachable sets for verification. If the time
synchronization error is too large, all exchanged reachable sets may not be useful for verification.
In this case, we cannot verify the collision avoidance and global safety properties. For example, in

H.-D. Tran, L. V. Nguyen, P. Musau, W. Xiang, and T. T. Johnson 07:17

the definition of the globally useful reachable set, it is required that after all exchanged reachable
sets have been received and decoded at an agent Ai at time local current time tic, each received
reachable set is only useful if and only if T + min{tirs − δi − δj} > tic. One can see that if
the time synchronization error is too large, then the related requirement cannot be satisfied.
Therefore, the maximum tolerance for the time synchronization error can be estimated roughly as
T +min{tirs − 2δmax} >> tic =⇒ δmax << (T + tirs − tic)/2.

8 Related Work

Our work is inspired by the static and dynamic analysis of timed distributed traces [11] and the
real-time reachability analysis for verified simplex design [6]. The former one proposes a sound
method of constructing a global reachable set for a distributed CPS based on the recorded traces
and time synchronization errors of participating agents. Then the global reachable set is used to
verify a global property using Z3 [10]. This method can be considered to be a centralized analysis
where the reachable set of the whole system is constructed and verified by one analyzer. Such
a verification approach is offline which is fundamentally different from our approach as we deal
with online verification in a decentralized manner. Our real-time verification method borrows the
face-lifting technique developed in [6] and applies it to a distributed CPS.

Another interesting aspect of real-time monitoring for linear systems was recently published
in [8]. In this work, the authors proposed an approach that combines offline and online computation
to decide if a given plant model has entered an uncontrollable state which is a state that no control
strategy can be applied to prevent the plant go to the unsafe region. This method is useful for a
single real-time CPS, but not a distributed CPS with multiple agents.

Additionally, there has been other significant works for verifying distributed CPS. Authors
of [12, 29, 33] presented a real-time software for distributed CPS but did not perform a safety
verification of individual components and a whole system. The works presented in [3,19,21] can be
used to verify distributed CPS, but they do not consider a real-time aspect. An interesting work
proposed in [26] can formally model and verify a distributed car control system against several
safety objectives such as collision avoidance for an arbitrary number of cars. However, it does not
address the verification problem of distributed CPS in a real-time manner. The novelty of our
approach is that it can over-approximate of the reachable set of each agent whose dynamics are
non-linear with a high precision degree in real-time.

The most related work to our scheme was recently introduced in [25]. The authors proposed
an online verification using reachability analysis that can guarantee safe motion of mobile robots
with respective to walking pedestrians modeled as hybrid systems. This work utilizes CORA
toolbox [1] to perform reachability analysis while our work uses a face-lifting technique. However,
this work does not consider the time-elapse for encoding, transferring and decoding the reachable
set messages between each agent, which play an important role in distributed systems.

9 Conclusion and Future Work

We have proposed a decentralized real-time safety verification method for distributed cyber-
physical systems. By utilizing the timing information and the reachable set information from
exchanged reachable set messages, a sound guarantee about the safety of the whole system is
obtained for each participant based on its local time. Our method has been successfully applied
for a distributed search application using quadcopters built upon the StarL framework. The main
benefit of our approach is that it allows participants to take advantages of formal guarantees
available locally in real-time to perform intelligent actions in dangerous situations. This work is a

LITES

07:18 Real-Time Safety Verification for Distributed Cyber-Physical Systems

fundamental step in dealing with real-time safe motion/path planing for distributed robots. For
future work, we seek to deploy this method on a distributed autonomous driving testbed using
the F1Tenth racing platform [28] and extend it to distributed CPS with heterogeneous agents
where the agents can have different motion dynamics and thus they have different control periods.
In addition, the scalability of the proposed method can be improved by exploiting the benefit
of parallel processing, i.e., each agent handles multiple reachable set messages and checks for
collisions in parallel.

References
1 Matthias Althoff. An introduction to cora 2015. In

Proc. of the Workshop on Applied Verification for
Continuous and Hybrid Systems, 2015.

2 Karl Johan Aström, Tore Hägglund, and Karl J As-
trom. Advanced PID control, volume 461. ISA-The
Instrumentation, Systems, and Automation Society,
2006.

3 Kyungmin Bae, Joshua Krisiloff, José Meseguer,
and Peter Csaba Ölveczky. Designing and verifying
distributed cyber-physical systems using multir-
ate pals: An airplane turning control system case
study. Science of Computer Programming, 103:13–
50, 2015.

4 Stanley Bak and Parasara Sridhar Duggirala. Hy-
laa: A tool for computing simulation-equivalent
reachability for linear systems. In Proceedings of
the 20th International Conference on Hybrid Sys-
tems: Computation and Control, pages 173–178.
ACM, 2017.

5 Stanley Bak and Parasara Sridhar Duggirala.
Simulation-equivalent reachability of large linear
systems with inputs. In International Conference
on Computer Aided Verification, pages 401–420.
Springer, 2017.

6 Stanley Bak, Taylor T Johnson, Marco Caccamo,
and Lui Sha. Real-time reachability for verified
simplex design. In Real-Time Systems Symposium
(RTSS), 2014 IEEE, pages 138–148. IEEE, 2014.

7 Xin Chen, Erika Ábrahám, and Sriram Sank-
aranarayanan. Flow*: An analyzer for non-
linear hybrid systems. In International Conference
on Computer Aided Verification, pages 258–263.
Springer, 2013.

8 Xin Chen and Sriram Sankaranarayanan. Model
predictive real-time monitoring of linear systems.
In Real-Time Systems Symposium (RTSS), 2017
IEEE, pages 297–306. IEEE, 2017.

9 Thao Dang and Oded Maler. Reachability analysis
via face lifting. In Hybrid Systems: Computation
and Control (HSCC ’98), pages 96–109. Springer,
1998. LNCS 1386.

10 Leonardo De Moura and Nikolaj Bjørner. Z3: An
efficient smt solver. In International conference
on Tools and Algorithms for the Construction and
Analysis of Systems, pages 337–340. Springer, 2008.

11 Parasara Sridhar Duggirala, Taylor T Johnson,
Adam Zimmerman, and Sayan Mitra. Static and dy-
namic analysis of timed distributed traces. In Real-
Time Systems Symposium (RTSS), 2012 IEEE
33rd, pages 173–182. IEEE, 2012.

12 John C Eidson, Edward A Lee, Slobodan Matic,
Sanjit A Seshia, and Jia Zou. Distributed real-time
software for cyber–physical systems. Proceedings
of the IEEE, 100(1):45–59, 2012.

13 Goran Frehse, Colas Le Guernic, Alexandre Donzé,
Scott Cotton, Rajarshi Ray, Olivier Lebeltel, Ro-
dolfo Ripado, Antoine Girard, Thao Dang, and
Oded Maler. Spaceex: Scalable verification of
hybrid systems. In Computer Aided Verification,
pages 379–395. Springer, 2011.

14 Antoine Girard, Colas Le Guernic, and Oded Maler.
Efficient computation of reachable sets of linear
time-invariant systems with inputs. In Hybrid Sys-
tems: Computation and Control, pages 257–271.
Springer, 2006.

15 Alwyn E Goodloe and Lee Pike. Monitoring dis-
tributed real-time systems: A survey and future
directions, 2010.

16 T. A. Henzinger. The theory of hybrid automata. In
IEEE Symposium on Logic in Computer Science
(LICS), page 278, Washington, DC, USA, 1996.
IEEE Computer Society.

17 Thomas A Henzinger, Pei-Hsin Ho, and Howard
Wong-Toi. Hytech: A model checker for hybrid
systems. In Computer aided verification, pages
460–463. Springer, 1997.

18 Taylor T. Johnson, Stanley Bak, Marco Caccamo,
and Lui Sha. Real-time reachability for verified sim-
plex design. ACM Trans. Embed. Comput. Syst.,
15(2), February 2016. doi:10.1145/2723871.

19 Taylor T Johnson and Sayan Mitra. Parametrized
verification of distributed cyber-physical systems:
An aircraft landing protocol case study. In Cyber-
Physical Systems (ICCPS), 2012 IEEE/ACM
Third International Conference on, pages 161–170.
IEEE, 2012.

20 Soonho Kong, Sicun Gao, Wei Chen, and Edmund
Clarke. dReach: δ-Reachability Analysis for Hybrid
Systems, pages 200–205. Springer, 2015.

21 Pratyush Kumar, Dip Goswami, Samarjit
Chakraborty, Anuradha Annaswamy, Kai Lampka,
and Lothar Thiele. A hybrid approach to cyber-
physical systems verification. In Proceedings of
the 49th Annual Design Automation Conference,
pages 688–696. ACM, 2012.

22 Leslie Lamport. Time, clocks, and the ordering of
events in a distributed system. Communications
of the ACM, 21(7):558–565, 1978.

23 Colas Le Guernic and Antoine Girard. Reachability
analysis of hybrid systems using support functions.
In Computer Aided Verification, pages 540–554.
Springer, 2009.

24 Yixiao Lin and Sayan Mitra. Starl: Towards a
unified framework for programming, simulating
and verifying distributed robotic systems. CoRR,
abs/1502.06286, 2015. arXiv:1502.06286.

25 Stefan B Liu, Hendrik Roehm, Christian Heinze-
mann, Ingo Lütkebohle, Jens Oehlerking, and Mat-
thias Althoff. Provably safe motion of mobile robots

https://doi.org/10.1145/2723871
http://arxiv.org/abs/1502.06286

H.-D. Tran, L. V. Nguyen, P. Musau, W. Xiang, and T. T. Johnson 07:19

in human environments. In Intelligent Robots and
Systems (IROS), 2017 IEEE/RSJ International
Conference on, pages 1351–1357. IEEE, 2017.

26 Sarah M Loos, André Platzer, and Ligia Nistor.
Adaptive cruise control: Hybrid, distributed, and
now formally verified. In International Symposium
on Formal Methods, pages 42–56. Springer, 2011.

27 Nancy Lynch, Roberto Segala, Frits Vaandrager,
and Henri B Weinberg. Hybrid i/o automata.
Springer, 1996.

28 Matthew O’Kelly, Hongrui Zheng, Dhruv Karthik,
and Rahul Mangharam. F1tenth: An open-source
evaluation environment for continuous control and
reinforcement learning. Proceedings of Machine
Learning Research, 123, 2020.

29 Qinghui Tang, Sandeep KS Gupta, and Georgios
Varsamopoulos. A unified methodology for schedul-
ing in distributed cyber-physical systems. ACM
Transactions on Embedded Computing Systems
(TECS), 11(S2):57, 2012.

30 Hoang-Dung Tran, Luan Viet Nguyen, Nathaniel
Hamilton, Weiming Xiang, and Taylor T. Johnson.
Reachability analysis for high-index linear differ-

ential algebraic equations (daes). In 17th Interna-
tional Conference on Formal Modeling and Ana-
lysis of Timed Systems (FORMATS’19). Springer
International Publishing, August 2019.

31 Hoang-Dung Tran, Luan Viet Nguyen, Patrick Mu-
sau, Weiming Xiang, and Taylor T. Johnson. De-
centralized real-time safety verification for distrib-
uted cyber-physical systems. In Jorge A. Pérez
and Nobuko Yoshida, editors, Formal Techniques
for Distributed Objects, Components, and Systems
(FORTE’19), pages 261–277, Cham, June 2019.
Springer International Publishing.

32 Hoang-Dung Tran, Luan Viet Nguyen, Weiming
Xiang, and Taylor T Johnson. Order-reduction ab-
stractions for safety verification of high-dimensional
linear systems. Discrete Event Dynamic Systems,
27(2):443–461, 2017.

33 Yuanfang Zhang, Christopher Gill, and Chenyang
Lu. Reconfigurable real-time middleware for dis-
tributed cyber-physical systems with aperiodic
events. In Distributed Computing Systems, 2008.
ICDCS’08. The 28th International Conference on,
pages 581–588. IEEE, 2008.

LITES

	1 Introduction
	2 Problem Formulation
	3 Real-Time Local Safety Verification
	4 Decentralized Real-Time Collision Verification
	5 Decentralized Real-Time Global Safety Verification
	6 Case study
	6.1 Experiment setup
	6.2 Verifying local safety property and collision occurrence
	6.3 Verifying the geospatial free property

	7 Discussion
	8 Related Work
	9 Conclusion and Future Work

