
Equivalence between the Urgency Based Shaper and
Asynchronous Traffic Shaping in Time Sensitive
Networking
Marc Boyer #Ñ

ONERA/DTIS, Université de Toulouse, F-31055 Toulouse, France

Abstract
The Asynchronous Traffic Shaping (ATS) has been
designed by the Time Sensitive Networking (TSN)
group as a reshaping mechanism for real-time data
flows, based on the initial proposition of the Ur-
gency Based Shaper (UBS). Several studies have
exhibited properties and limitations of this solu-

tion, but most of them are based on the model
presented in the UBS definition [20], whereas the
implementation described in the standard uses a
different architecture and algorithm. This paper
presents an equivalence proof between the model
and the standard specification.

2012 ACM Subject Classification Networks → Formal specifications; Networks → Packet-switching
networks; Networks → Cyber-physical networks; Networks → Traffic engineering algorithms
Keywords and phrases TSN, Time Sensitive Networking, ATS, Asynchronous Traffic Shaping, 802.1Qcr
Digital Object Identifier 10.4230/LITES.9.1.1
Received 2022-09-26 Accepted 2023-12-14 Published 2024-04-08

1 Introduction

The Time Sensitive Networking (TSN) group of IEEE aims at defining addenda to extend
Ethernet with real-time properties (this extended Ethernet is commonly called TSN). This is
done, among other things, by adapting or defining new arbitration policies in output ports: the
credit-based shaper (CBS, [1]), the Enhancements for Scheduled Traffic (sometime called “Time
Aware Shaper”, [7]) and last the Asynchronous Traffic Shaping (ATS, [4]), which is the main
subject of this paper.

The initial proposition was called “Urgency-Based Scheduler” (UBS, [20]). It defines a new
scheduling algorithm where flows are re-shaped after reception by a switch before being put in the
output queue. Two kind of reshaping are considered, the Length Rate Quotient (LRQ) and the
Token Bucket Emulation (TBE). This re-shaping requires specific queues (called “shaped queues”
to store frames that need to be delayed), and some active elements (called “regulators”) in charge
of deciding when each head of queue can be forwarded to the output queue. BS has a very strong
property, despite the introduction of delay for some frames in the reshaping phase, it does not
introduce any “additional delay” in the worst case [20, § IV.C] (see Section 4 for details). This
property is commonly know as “reshaping for free” [14].

The TBE version of the mechanism has been standardised as a TSN addendum, under the
name “Asynchronous Traffic Shaping” (ATS, [4]), but with quite a different architecture. Instead
of storing frames and deciding if a frame must be forwarded to the output queue or delayed when
it becomes the head of queue, an algorithm computes, when the frame is received, an “eligibility
time”. The frame is then forwarded to the output queue, but it will be eligible for transmission
only after its eligibility time.

Then, a lot of studies have been done on this mechanism [14, 23, 28, 16], but although
most claim to model ATS, they rely on the UBS description from [20]. This paper proves that
the mechanism specified in the standard model [7] is, up to the reordering of frames with the

© Marc Boyer;
licensed under Creative Commons License CC-BY 4.0

Leibniz Transactions on Embedded Systems, Vol. 9, Issue 1, Article No. 1, pp. 1:1–1:27
Leibniz Transactions on Embedded Systems

L I T E S Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:Marc.Boyer@onera.fr
https://www.onera.fr/staff/marc-boyer
https://orcid.org/0000-0003-0344-6991
https://doi.org/10.4230/LITES.9.1.1
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lites
https://www.dagstuhl.de/lites
https://www.dagstuhl.de

1:2 Equivalence between UBS and ATS in TSN

same eligibility time, equivalent to the TBE version of UBS from [20]. It also shows that some
implementation variability allowed by the standard (the place of some sub-component in the
switch) has an impact on the interactions between ATS and the Frame Replication and Elimination
for Reliability mechanism (FRER, [2]),

In the rest of the paper, the term UBS denotes the TBE version of UBS as described in [20],
and the term ATS denotes the mechanism specified in the standard model [7].

The paper is organised as follows. The first part presents the context: Section 2 presents
UBS, Section 3 presents ATS (with a specific subsection on the integration of UBS in TSN,
Section 3.5), and Section 4 presents the related work. The second part presents the contribution:
the equivalence between UBS and ATS in Section 5, and the interaction between ATS and FRER
positions in TSN architecture in Section 6. Section 7 concludes.

2 Presentation of UBS

This section presents UBS, as defined in [20] (up to some renaming to ease readability, and
considering only the TBE shaping mechanism). It starts with a reminder on the notion of token
bucket in Section 2.1. Then, UBS is presented as the assembly of different elements. Section 2.2
presents the “shaped queue”, a queue that is shared by different token buckets, leading to the
name of “interleaved shaping” (that has been generalised under the name “interleaved regulator”
in [14]). Different shaped queues can be assembled into an “UBS queing system”, as presented
in Section 2.3 (this naming was not in [20] but its introduction eases the presentation). Last,
Section 3.5 shows how such system was designed to be integrated into an UBS switch, and gives a
list of requirements for the flow to queue allocations.

Note that this bottom-up presentation is not the one used in [20]. In [20], the presentation starts
from an Ethernet switch with several priority levels enhanced with a set of shaped queues (also
called “mandatory” queues), some others queues (one per priority level), called “pseudo-queues”
or “optional queues”, and the assembly emerges from an adequate per priority-level mapping.

2.1 Recall on the token bucket

The token bucket is a well known mechanism in network [27] but since there exist several flavors,
and no reference naming, here is proposed a terminology (a discussion takes place in Section 4).

A token bucket is a system with two parameters: a capacity, also known as burst, b (in some
data unit, e.g. bits or frame) and a replenishment rate r (in data unit per time unit). The state
of the bucket is the number of tokens it contains. There are three main evolution rules.
TB1 The bucket is initially full.
TB2 The bucket is continuously replenished at rate r, but is limited to its capacity b.
TB3 When a frame of size s is forwarded, the bucket is decremented either by one (if the data unit

is the frame) or by the size of the frame (if the data unit is the byte, the bit, or an equivalent
unit).

From theses common rules, three kinds of token-bucket-based system can be defined:
traffic-shaping token bucket (sTB): Such a system also involves a queue, and it is designed
to regulate (or shape) a flow. If there are not enough tokens (this number can be 1 if the
token unit is the frame, or the frame size in bits, bytes, etc.), the frame is delayed until the
bucket is replenished with enough tokens. The output is then “shaped” or “regulated”. This is
illustrated in Figure 1.

M. Boyer 1:3

time
1 2 3 4 5 6 7 8 9 10 11 12

bu
ck

et

1

2

3

(A,2)

A

A

(B,2)

B

B

(C,3)

C

C

(D,2),(E,2)

D E

D

E

A B C D E

Legend
(X,n)

Arrival of frame X of length n

of tockens

X
Departure of frame X

X BucketEmptyTime related to X

Figure 1 Illustration of the behaviour of a traffic-shaping token bucket with r = 1, b = 3. – The
BucketEmptyTime will be defined in Section 3.4 – The bucket is initially full. When the frame A of size 2
is received at time 1, there are enough tokens, the frame is delivered and the bucket is decreased by 2.
Then, it is replenished up to time 2, at reception of frame B, that goes through, consuming all tokens.
When frame C is received at time 3, there is only 1 token in the bucket, whereas the size of C is 3. Then,
C is delayed up to time 5. The plateau between times 8 and 9 shows that the replenishment is bounded
by the bucket capacity. Then two frames, D and E, are received at the same instant, but there are enough
tokens only for the first one, and the second is delayed.

policing token bucket (pTB): In policing token bucket, there is no queue. When a frame arrives,
if there are not enough tokens, the frame is dropped. If there are enough tokens, the number
of tokens is updated as for a sTB.
classifier token bucket (cTB): In a classifier, there is no queue. When a frame arrives, if there
are not enough tokens, the frame is marked as “out of contract” with a specific tag (a drop
tag, a red or orange colour [15],...), and forwarded without modification of the bucket state. If
there are enough tokens, the frame is marked with a “nominal” tag (a green colour [15]) and
the number of tokens is updated as for a sTB.

The TBE shaping in UBS relies on traffic-shaping token bucket.

2.2 Shaped queue and interleaved shaping
We first present UBS “in isolation”, i.e. as a mechanism regulating a set of flows, without any
considerations on routing, switching or TSN.

Let us first consider a sub-part, called the “shaped queue” [20, § III.A].
Consider a set of m flows, that we will name “group”, G = {f1, f2, . . . , fm}, a single queue q

(that will be called the “shaped queue”), and a set of m token buckets, the i-th having parameters
(ri, bi). The specific point is that all token buckets share the queue q. This architecture in isolation
is illustrated in Figure 2 with m = 3.

LITES

1:4 Equivalence between UBS and ATS in TSN

Figure 2 Shaped queue: example of a single queue with three token buckets.

The behaviour of the system is the following. Each flow deposits packets in the queue. The
queue is handled in a FIFO way. Each token bucket maintains its own number of tokens, applying
the rules of a traffic-shaping token bucket. When a frame reaches the head of queue, the system
identifies to which flow it belongs (using a “stream identification function” [2]). Then, it asks to
the associated token bucket if they are enough tokens. If yes, the frame is forwarded, applying
rule TB3. If not, the frame is delayed up to point in time when the bucket is replenished with
enough tokens, like a traffic-shaping token bucket. The specific point is that the rest of the queue
is also delayed (due to FIFO rule), even if the next frame has enough tokens in its own bucket.
Keep in mind that if there is always at most one token bucket handling the head of queue, the
others continue to be replenished during this time.

An example of behaviour is illustrated in Figure 3.
This systems where several shapers share the same queue is called “interleaved shaping” [20,

§III.C], and generalised as “interleaved regulators” in [14].

2.3 UBS queuing system

The next system is based on the assembly of several shaped queues.
Consider a set of n groups, G1, . . . , Gn, each group Gi being a set of mi flows, i.e. Gi =

{fi,1, fi,2, . . . , fi,mi
}, sharing a shaped queue qi with token bucket parameters ri,j , bi,j . Each flow

belongs to only one queue (∀i, j : Gi ∩ Gj = ∅). To this system is also associated a queue, that we
call the “ready queue”, the output of all token buckets, as illustrated in Figure 4.

We found no explicit name for such a assembly of one ready queue and its associated shaped
queues, so we call it an “UBS queuing system”.

The first presentation of UBS, in [20], suggests to have an implementation different from the
full UBS model. It suggests that the implementation does not require a ready queue (and the
ready queue is called “pseudo-queue” in [20]), but only add to ready frames a time tag, that stores
the instant when this frame has been accepted for forwarding by its queuing token bucket. Then,
instead of selecting the head of queue of the ready queue, one may simply select the head of queue
of the shaped queues with the smallest ready time tag.

We will not give more details on this simplification here. The interested reader may find details
in [20].

M. Boyer 1:5

time
1 2 3 4 5 6 7 8 9

sT
B

-1

1

2

time
1 2 3 4 5 6 7 8 9

sT
B

-2

1

2

(A,2)

A

(X,1)

X

(B,2)(Y,1)

B,Y

Figure 3 Illustration of behaviour of an interleaved shaper with two token bucket shapers, sTB-1 and
sTB-2 with r1 = 1/2, r2 = 1, b1 = b2 = 2, the first one shaping frames A, B from flow 1, and the second
shaping frames X, Y from flow 2. Both buckets are initially full. When the frame A of size 2 is received at
time 2, there are enough tokens is sTB-1, the frame is delivered and the bucket is decreased by 2. Then, it
is replenished at rate 1/2. The frame X of size 1 is received at time 2, there are enough tokens in sTB-2
bucket, the frame is delivered and the bucket is decreased by 1. This illustrates the fact that each flow
uses its own bucket. When the frame B of size 2 is received at time 4, there are not enough tokens in
sTB-1, the frame is delayed. But when the frame Y of size 1 is received at time 5, there are enough tokens
in sTB-2, but Y is not the head of queue. Then, Y has to wait until the departure of B (at time 6). At
this instant, the scheduler can test its bucket, consume one token and deliver Y.

Figure 4 An UBS “queuing system”: several shaped queues and one ready queue.

LITES

1:6 Equivalence between UBS and ATS in TSN

Figure 5 Architecture of a UBS output port (with 8 ready queues, each ready queue of priority i

having ni shaped queues).

2.4 An UBS output port
In an Ethernet or TSN switch, an Ethernet frame can have a priority level, in 0..7 (7 being the
highest priority), and there are 8 traffic classes1. To each class, in each output port, is associated
a queue.

The UBS proposal consists in adding a dedicated set of shaped queues before each queue, per
priority level, as illustrated in Figure 5 (with renaming the Ethernet “queues” to “ready queues”).

To get the full benefit of the mechanism (i.e. a “reshaping for free”, the fact that the delay
introduced by the interleaved regulator does not increase the worst delay), some segregation
between flows in queues must be respected [20], [14]. In fact, three conditions are given in [20,
§ III.B]:
QAR1 [two frames] are not allowed to share a [shaped] queue if both are received from different

switches,
QAR2 [two frames] are not allowed to share a queue if both are sent by the same switch in

different priority levels,
QAR3 [two frames] are not allowed to share a queue if both are sent by [the local switch] in

different priority levels.

In fact, if a switch has n (input) ports, if all switches in the network have m priority levels
(m ≤ 8 in Ethernet), each output port can receive frames from at most n switches. If moreover,
each switch does not change the priority level of the frame, the set of constraints QAR1–QAR3

1 In fact, it may exist less, but for sake of simplicity, we keep this assumption here.

M. Boyer 1:7

can be trivially satisfied with n shaped queue per ready queue, one ready queue per priority level
(i.e. in Figure 5, ∀j ∈ 0 . . . m : nj = n), requiring mn shaped queues, storing frames from input
port i with priority level p in the shaped queue p-i.

In this case, an UBS output port requires mn shaped queues plus m ready queues.
But for routing reasons, some shaped queues may be unused (if they are only nj switches

sending data with priority j, then nj shaped queues are sufficient.
In the general case, the allocation of shaped queues to ready queues and data flows must

respect constraints QAR1–QAR3.
So, one drawback of UBS is that it may require a large number of queues (up to m(n + 1)).

As presented at end of Section 2.3, it is suggested in [20] that an implementation may not use the
“ready queues” (then called “pseudo-queues”) if the static priority scheduler is able to directly
look in shaped queues, using only up to mn queues. As will be presented in next section, ATS
proposes an “equivalent” mechanism without any shaped queues, using only m ready queues (plus
some eligibility time mechanism).

3 Presentation of ATS

3.1 TSN output port (pre-ATS)
Let first present the architecture of a TSN output port (depicted in Figure 6), before the
introduction of ATS.

In a TSN switch, an Ethernet frame can have a priority level, in 0..7 (7 being the highest
priority), and there are 8 traffic classes2. To each class, in each output port, is associated a
“queuing system”3.

To each traffic class is associated a “Transmission selection algorithm” (TSA), that can be
either “Strict priority”, “Credit-based shaper” (CBS), “Enhanced Transmission Selection” (ETS),
“ATS Transmission Selection” or some vendor specific value [4, Table 8-6]. This TSA is sometimes
called a “shaper”.

Each traffic class is also controlled by a gate, which is open or closed, depending on the clock
value and a configuration table (the Gate Control List – GCL). A static priority arbiter always
selects the frame in the highest priority traffic class (if it has a frame ready for transmission).

That is to say, the head of queue is selected for transmission by the output port only if is TSA
has released it (each TSA having it own conditions), if the gate allows it (it is open, and there is
sufficient time to send the frame before the next closing event), if there is no higher priority class
with a frame ready for transmission (including its own TSA and gate conditions), and if there is
no lower priority frame using the link (up to some fragmentation condition [6]).

Figure 6 illustrates the architecture of a TSN output port, with 8 traffic classes, without any
details on the transmission selection algorithm.

3.2 Insertion of ATS in the forwarding process
In a TSN switch, once a frame is received in a reception port, it goes to an “Active topology
enforcement” process, in charge of some routing activities, then to a sequence of filtering processes
(“Ingress filtering”, “Frame filtering” and “Egress filtering”), mainly in charge of discarding frames

2 In fact, it may exist less, but for sake of simplicity, we keep this assumption here.
3 In this report, we will use the term “queuing system” whereas the standard use the term “queue”, but with

the following note “A queue in this context is not necessarily a single FIFO data structure. A queue is a
record of all frames of a given traffic class awaiting transmission on a given Bridge Port.” [4, § 8.6.6, Note 3]

LITES

1:8 Equivalence between UBS and ATS in TSN

Figure 6 Architecture of a TSN output port.

that should not go this route, and then a “Flow metering” process, before the “Queuing frame”
process, in charge of copying each frame in the queues of the output ports corresponding to the
adequate routing (cf. [3, Figure 8-12] for an overview of the process).

The Flow metering has been enhanced first by the Per-Stream Filtering and Policing amend-
ment [8]. PSFP mainly added a classification of flows (“Stream filtering”), and, based on this
classification

the ability to discard frames based on their size (“Maximum SDU Size Filtering”),
a “Stream gating” capability that is a time-driven table, that allows

to drop frames if the gate is “closed” at this instant,
to set an Internal Priority Value (IPV) to the frame, that will be used to select the traffic
class of the frame (overloading the frame own priority value),

and a “Flow metering”, that checks if flows respects a token bucket specification, and can
mark out-of-contract frames.

The ATS amendment adds the “ATS Eligibility Time Assignment” (also named “ATS scheduler”
at the end of this chain), which is in charge of computing an “eligibility time” for each ATS
frame (ie. each frame that will be forwarded to a class whose TSA is ATS). The details of this
computation will be presented in Section 3.4.

This eligibility time assignment is of course the core of the ATS behaviour, but the ability to
set the IPV is also of importance in order to forward ATS frames to an ATS traffic class.

The behaviour of an ATS TSA (i.e. a transmission selection algorithm that implements the
asynchronous traffic-shaping scheduling) consists in selecting the frame with the oldest eligibility
time earlier than the current time (if any).

This means that was is depicted as a queue in the port architecture of Figure 7 is not a FIFO
queue in the implementation. For example, the switch may receive at time t1 = 10 a frame,
compute an eligibility time e1 = 20, and forward it to an ATS “queue” q at time t′

1 = 11. It can

M. Boyer 1:9

Figure 7 Illustration of the global TSN forwarding process architecture.

then receive at time t2 = 15 another frame, computes an eligibility time e2 = 18, and forward it
to the same ATS “queue” q at time t′

2 = 16. If the medium becomes free at time t = 19, the ATS
transmission selection algorithm must select for transmission the second frame, the one whose
eligibility time is 18. Then, the ATS “queue” is not a FIFO queue. Then, we will use in this
report the term “queuing system”, whereas the standard use the term “queue”.

The equivalence between UBS and ATS relies on the fact that the ATS eligibility time
corresponds to the instant when the frame would have been forwarded to the ready queue in UBS.

The ATS architecture is depicted in Figure 7 (with a single input port and a single output
port, for readability).

Note that this figure relies on the assumption that the switch is build as an assembly of input
ports, doing metering, and output ports, doing queuing and arbitration, connected by a switching
fabric. But other architectures may exist, like having a global memory for the entire switch, or
having a metering hardware component shared by all input ports, etc.

In particular, Note 3 in [4, § 8.6.5.6] states that the computation of the eligibility time can be
done in the input or the output port (“Whether ATS scheduler instances, ATS scheduler group
instances, the scheduler instance table, and the scheduler group instance table are located in
reception ports or in transmission ports is implementation specific.”).

Such difference may have an impact, in particular when using both ATS and the Frame
Replication and Elimination for Reliability addenda (FRER, [2]), as will be shown in Section 6.

Note that some other terms may induce confusion for a novice reader of TSN documents. A
full list of abbreviations is presented in [3, § 4] but Table 1 gives a short list of some confusing
ones.

3.3 ATS scheduler groups

ATS schedulers are grouped in “ATS scheduler groups”. There is one group per reception port
and per upstream traffic class. All ATS schedulers handling frames from the same reception port
and the same upstream traffic class are in the same ATS scheduler group.

That is to say, there is one scheduler group in ATS for each shaped queue in UBS.
Each group has:
an identifier (an integer value),
a MaximumResidenceTime, which is a parameter that “limits the duration for which frames
can reside in a Bridge” [4, § 8.6.11.3.13], that should be set at configuration,
and a “group eligibility time”, a variable shared by all ATS schedulers in the group, used in
the computation of the eligibility time of each ATS frame.

LITES

1:10 Equivalence between UBS and ATS in TSN

Table 1 Some “confusing” acronyms in TSN.

ATS Asynchronous Traffic Shaping: Mechanism defined in [4], using per
flow token bucket regulation and shared queues.

TAS Time Aware Shaper: Name used in the literature to reference the
implementation of a Time-Triggered scheduling using [7] addendum. This
acronyms is never used in the IEEE addenda.

TSA Transmission Selection Algorithm: Generic name for the mechanisms
that allows one frame in a traffic class queue to be selected for transmission.
Current possible values are listed in Section 3.5. They are sometimes called
“shapers”.

CBS Credit-based Shaper: A TSA introduced in [1], in the context of Audio-
Video Bridging (AVB).

CBS Committed Burst Size: Size of the burst (capacity) of the token bucket
used to regulate flows in ATS.

3.4 Computation of the eligibility time

The previous sections has presented the global architecture, and this one presents the details of
the ATS scheduler.

Each scheduler has two parameters: a Committed Burst Size parameter (CBS, same acronym
as the Credit Based Shaper defined in [1]), and a Committed Information Rate parameter (CIR).
Each scheduler is also linked to an “ATS scheduler group” (cf. Section 3.3), that has a “Maximum
Residence Time” parameter, as mentioned in Section 3.3.

The main role of the scheduler is to compute the eligibility time of each frame.
To ease reproducibility of results, the algorithms are presented using the Python language,

whereas obviously the standard does not impose any language.
The data structure related to the architecture is presented in Program 1 and the computation

itself is in Program 2.
Consider the same example of frame arrival as in Figure 1. As expected, the Eligibility Time

computed by the ATS processFrame algorithm is equal to the delivery time of the token bucket.
The sequence of BucketEmptyTime is also represented in Figure 1. When the letter B in a circle
stands at time 2, it means that after processing frame B, the BucketEmptyTime value is equal to 2.
We have represented the sequence this way to show the graphical relation between the number of
tokens and this variable: the BucketEmptyTime after the delivery of frame X is the intersection
between the abscissa line and the line with slope r passing through the value of the bucket after
the delivery of frame X (the exact relation is the core of the equivalence relation, it will be given
in eq. (26)).

Also note that BucketEmptyTime is described as “A state variable that contains the most
recent instant of time at which the token bucket of the ATS scheduler instance was empty, in
seconds.” [4, § 8.6.11.3.3], but such definition does not match the trace in Figure 1. For example,
after handling of frame D, the BucketEmptyTime value is 8, whereas the token bucket was empty
at instant 5 for the last time. It is also described as “the time when there are no tokens existing in
the bucket” [30, § 3.3], which also does not match since they are tokens at time 8 in the trace. In
the 2022 version of the standard, the description is simply “A variable that embodies the current
state of the ATS scheduler instance” [5].

M. Boyer 1:11

Program 1 Data structure (and initial values) for illustrating the computation of eligibility time in
ATS.

class Frame :
" " "A frame i s simply c a r a c t e r i s e d by i t s length , arrivalTime time and
e l i g i b i l i t y T i m e " " "
def __init__ (s e l f , name , arr ivalTime , l e n g t h) :

s e l f . name= name # For p r i n t & debug
s e l f . a r r iva lTime= arr iva lTime
s e l f . l e n g t h= l e n g t h
s e l f . e l i g i b i l i t y T i m e= None

class Queue :
" " "A queuing system of an output port i s simply represented by a l i s t
of Frames " " "
def __init__ (s e l f) :

s e l f . queue= []

class ATSgroup :
" " "An ATS group i s l i n k e d to an output queuing system , and has a
MaxResidenceTime parameter . I t a l s o maintains a GroupEl ig ib i l i tyTime
value , shared by a l l ATS s h e d u l e r s of the group . " " "
def __init__ (s e l f , MaxResidenceTime , queue) :

s e l f . MaxResidenceTime= MaxResidenceTime
s e l f . queue= queue

Assume i n i t time i s 0
s e l f . G r o u p E l i g i b i l i t y T i m e= 0

class ATSscheduler :
" " "An ATS schedu ler be longs to an ATS group . I t has two parameters
(CIR and CBS) and maintains a BucketEmptyTime value " " "
def __init__ (s e l f , CommittedInformationRate , CommittedBurstSize , atsGroup) :

s e l f . CommittedInformationRate= CommittedInformationRate
s e l f . CommittedBurstSize= CommittedBurstSize
s e l f . group= atsGroup

Assume i n i t time i s 0
s e l f . BucketEmptyTime= − (CommittedBurstSize / CommittedInformationRate)

Program 2 Algorithm computing the eligibility time of an ATS frame.

class ATSscheduler :

def processFrame (s e l f , frame) :
lengthRecoveryDurat ion= frame . l e n g t h / s e l f . CommittedInformationRate
emptyToFullDuration= s e l f . CommittedBurstSize / s e l f . CommittedInformationRate
s c h e d u l e r E l i g i b i l i t y T i m e= s e l f . BucketEmptyTime + lengthRecoveryDurat ion
bucketFullTime= s e l f . BucketEmptyTime + emptyToFullDuration ;
e l i g i b i l i t y T i m e = max(frame . arr ivalTime , \

s e l f . group . GroupEl ig ib i l i tyTime , \
s c h e d u l e r E l i g i b i l i t y T i m e)

i f (e l i g i b i l i t y T i m e <= frame . arr iva lTime + s e l f . group . MaxResidenceTime) :
s e l f . group . G r o u p E l i g i b i l i t y T i m e = e l i g i b i l i t y T i m e
i f e l i g i b i l i t y T i m e < bucketFullTime :

s e l f . BucketEmptyTime = s c h e d u l e r E l i g i b i l i t y T i m e
else :

s e l f . BucketEmptyTime = s c h e d u l e r E l i g i b i l i t y T i m e \
+ e l i g i b i l i t y T i m e − bucketFullTime

frame . e l i g i b i l i t y T i m e= e l i g i b i l i t y T i m e
s e l f . group . queue . queue . append (frame)

else :
pass # Discard i n v a l i d frame

LITES

1:12 Equivalence between UBS and ATS in TSN

Figure 8 Architecture of a TSN output port with one UBS scheduler.

3.4.1 Tie breaker for same eligibility time

In case of frames with the same eligibility time, the queuing system must still respect some
conditions already existing in previous version of the standard. The transmission order must be
preserved for frames coming from the same input port and having the same “VID, priority, flow
hash, destination address and source address” for unicast frames, and same “VID, priority, flow
hash and destination address” for multicast frames [3, § 8.6.6].

3.4.2 Difference between ATS scheduling and ATS selection clocks

The computation of the eligibility time is done by the ATS scheduler, whereas the selection for
transmission is done by the ATS transmission selection element. And both refer to a notion of
current time, based on the access to a clock. In a given hardware, the ATS scheduler (can be
placed in the input port) and the ATS transmission selection element (should be in the output
port) may access two different clocks, having different values at the same instant. The standard
formalises the differences between these clocks in [4, § 8.6.11.2], but for sake of simplicity, this
report does not consider these differences. It does not consider clock drifts either. Such analysis is
left for further work.

3.5 UBS as a TSN class

Whereas UBS has been initially defined for switches with only UBS scheduler, the aim was to
include it into a TSN switch. This integration is straightforward and most papers focused on ATS
in TSN consider implicitly a TSN switch with UBS scheduler.

For completeness, such an architecture is depicted in Figure 8.

M. Boyer 1:13

4 State of the art

On token bucket

The idea of a data-flow regulation based on tokens in a bucket seems to appear first in [27], under
the term “leaky bucket”: “Perhaps the simplest approach is the so-called ‘leaky bucket’ method.
A counter associated with each user transmitting on a connection is incremented whenever the
user sends a packet and is decremented periodically. If the counter exceeds a threshold upon being
incremented, the network discards the packet. The user specifies the rate at which the counter is
decremented (this determines the average bandwidth) and the value of the threshold (a measure of
burstiness).” This is a “policing” regulation, packets arriving when the counter is too small are
dropped, not stored and delayed.

This leaky-bucket model is referenced by [19], but to model a traffic-shaping element, and the
release of a packet decreases the number of tokens by the number of bits of the packets. Then,
despite the name, it correspond to what is currently called a token bucket.

The term “token bucket filter” is introduced by [10] in its modern sense “A token bucket filter
is characterized by two parameters, a rate r and a depth b. One can think of the token bucket as
filling up with tokens continuously at a rate r, with b being its maximal depth. Every time a packet
is generated p tokens are removed from the bucket, where p is the size of the packet.” It also gives
the formal definition of “the number of tokens residing in the bucket after the i’th packet leaves” as

n0 = b ∀i > 0 : ni = min {b, ni−1 + (ti − ti−1)r − pi} (1)

with ti and pi respectively the release time and the size of the i-th packet. Up to variable names,
and the delay introduced by the interleaving of flows, it corresponds to eq. (7).

A discussion between “leaky bucket” and “token bucket” can be found in [21, pp. 407 – 411].

On ATS algorithm

The initial proposition of a per-flow shaper for TSN has been done in [20], under the name Urgency
Based Shaped (UBS).

An algorithm for the per-flow token bucket emulator (TBE) is given in [20, Listing 2]. Its expres-
sion is very similar to our modelling of the token-bucket-based interleaved regulator (Section 5.3),
since it maintains the number of tokens during the bucket lifetime.

But the ATS standard main algorithm, the ProcessFrame function, given in [4, § 8.6.11.3],
maintains another variable, the BucketEmptyTime, without any reference to the algorithm in [20,
Listing 2]. It only refers to [21, pp. 407 – 411] but this reference presents the token bucket only
with natural language and provides no explicit algorithm.

Then, in order to do a formal proof of equivalence, we have redone the token bucket interleaved
regulator model from scratch, not by re-using [20, Listing 2].

Both the algorithms of TBE and ProcessFrame are presented in [30], but nothing is said
on their differences and relations. This work presents ATS and a Paternoster algorithms, and
provides some simulations to compare their mean delays, buffer occupancy and loss rates.

On ATS performances

Some delay bounds provided by UBS are provided in [20]. It also shows that the reshaping
mechanism does not introduce any “additional delay” in the worst case [20, § IV.C], if conditions
QAR1, QAR2, QAR3 are satisfied. This “reshaping for free” property is well-known “was well
known for per-flow shapers and per-flow service curve elements” [14] but the significant fact is
that it still hold whereas UBS uses a interleaved shaping.

LITES

1:14 Equivalence between UBS and ATS in TSN

The interleaved regulator has been modelled and generalised under the notion of Π-regulator
in [14]. It also generalises the “reshaping-for-free” property. It states that, under reasonable
routing assumptions (inspired by QAR1, QAR2, QAR3), if a flow respects a traffic shape at the
network input, then the Π-regulation that re-shapes the flow in each hop does not increase the
worst per hop delay.

It is shown in [24] that an interleaved regulators can not be modelled the service curve of the
network calculus theory [22].

The impact of nonideal clocks has been studied in [23], but on UBS, that is to say, without
considering the difference between the clock used to compute the eligibility time and the one used
to release frames whose eligibility time is not less than the current time (cf. Section 3.4.2).

The reshaping of ATS can be used to cut cyclic dependencies in the network analysis: an
algorithm to minimise the number of ATS queues, LCAN, has been introduced in [25].

A simplified version of ATS has been studied in [12], in the context of inconsistent CBS/CIR
parameters. It considers only one ATS instance per ATS group (there is no GroupEligibilityTime
in the ATS algorithms). This corresponds to the case where there is a single token-bucket shaper
per shaped queue, there is no “interleaved shaping”, and ATS becomes a “greedy shaper” [9, 13].
The criteria is the bound on worst delay computed with a network calculus model.

A new flow control strategy, Gate Controlled Asynchronous Traffic Shaping (GCATS) that
dynamically adapts the Gate Control List based on the ATS eligibility time, is proposed in [11].
Like in [12], it considers only one ATS instance per ATS group. The Gate mechanism does
not require a global clock synchronisation (whereas TAS does) and the experiments show an
improvement of worst delay with regards to TAS for the flows of priority 7 and 6. The criteria is
the worst delay measured by simulation.

A model of a TSN switch with 1) a high priority queue (called Control-Data Traffic, CDT)
and 2) two queues of priority 6 and 5 (called queues A and B, using the AVB naming [1]) shaped
by a sequence of ATS and CBS is presented in [17]. The ATS model is based on the interleaved
regulator model from [14]. This proposal of sequence of ATS and CBS shapers is natural when
considering the UBS architecture, where the UBS interleaved shaping is done after the shaped
queues, and a CBS TSA can be introduced after the ready queue and before the gate (cf. Figure 8).
But TSN allows only one TSA per class, so one can not put both an ATS and a CBS TSA on a
single queue.

A comparison of the performances of various TSN transmission selection algorithm (called
“TSN shapers”): TAS, CBS and ATS/UBS, and also combinations of such mechanisms can be found
in [28]. This paper also investigates the combinations of different “shapers” on the same queue.
In particular, like [17], it studies the performances of the combination of ATS and CBS on the
same queue (“Even though ATS+CBS on the same queue is not supported by the standards, their
combination is still worthwhile to be investigated from a research perspective.”). The performance
criteria is the bound on worst delay computed with a network calculus model.

A comparison of CBS, TAS and ATS based on simulation of an automotive case study is done
in [29]. On the considered case study, ATS appears as the best trade-off.

TAS and ATS are compared in [18]. A limited version of TAS is considered with only two
entries in the GCL list (i.e. two lines in the GCL illustrated in Figure 6), where a protected window
of fixed size, devoted to high priority traffic, alternate with another window, with it own fixed
size, devoted to best effort traffic. A mechanisms, called “Adaptive Bandwidth Sharing/Adaptive
Slotted Window” (ABS/AWS), can dynamically update the sizes of the two windows. TAS,
ABS/AWS and ATS are compared on a ring made of six nodes. The performance criteria are the
mean and maximal packet delay measured during the simulation.

M. Boyer 1:15

Based on the results of [14], the relations between FRER and ATS in the case on non ideal
clocks has been studied in [26], under the assumption that FRER duplicates discarding is put
before ATS. But our current understanding is that discarding is done after the computation of
the eligibility time, as presented in Section 6.

Note that all works considering bounds on worst-case delay are based on UBS, even if they
mainly use the name “ATS” (except [12] that uses ATS). The studies based on simulation use the
standard ATS algorithm (with a simplification due to the single ATS instance per ATS group
in [11]).

5 Equivalence between the theoretical and the standard models

To prove that UBS and ATS models are equivalent, we are going to prove that the eligibility time
computed by the ATS for a frame is the same that the date when this frame would have been
forwarded to the ready queue in UBS.

5.1 Partial equivalence
This is not a complete equivalence since UBS assumes a FIFO behavior of each shaped queue
and of the ready queue. Then, it has to maintain the reception order between frames having the
same release dates, whereas the ATS transmission selection must select the frame with the smaller
eligibility time but in case of equality, its tiebreaker (presented in Section 3.4.1) allows to invert
the order between two frames coming from the same input port but with different destination
addresses.

Moreover, the token-bucket algorithm assigns an infinite release time to a frame whose size is
larger than the burst size, whereas the ATS algorithm computes a finite eligibility time in this
case.

Last, ATS associates to each group a MaximumResidenceTime, used to drop frames whose
waiting time would be too large, whereas this does not exist for a token bucket.

5.2 Building the equivalence
The equivalence is not straightforward since the common presentation of the token bucket [20,
Listing 2], [21, pp. 407 – 411] is based on a variable representing the number of tokens, whereas
the algorithm in [7] maintains another variable, the BucketEmptyTime.

The core of the contribution relies on the exhibition of the relation between these variables,
already illustrated in Figure 1.

The working plan is the following: we are going to consider one single shaped queue. Let An

be the arrival date of the n-th message in the queue, Fn the flow it belongs to, and Ln its length.
Then, we can define Dn the departure instant when it is forwarded in the ready queue, and eTn

the eligibility time computed by the ATS scheduler. The aim is to prove that ∀n : Dn = eTn (the
notations are inspired from [14] to ease comparison and further works).

The two first steps consists in building the sequences Dn (Section 5.3) and eTn (Section 5.4).
The equivalence itself is given in Section 5.5.

5.3 Modelling the interleaved shaper
Let first model a token bucket, with parameter (r, b). As recalled in Section 2.1, a shaping token
bucket allows a frame to be forwarded at instant t if the number of tokens at time t is not less than
the frame size. So, one need to model this number. Since the bucket is replenished continuously,

LITES

1:16 Equivalence between UBS and ATS in TSN

Table 2 Main notations.

UBS related notations (interleaved shaping)

An Arrival date of the n-th message
Fn Flow of the n-th message
Ln Length of the n-th message
Dn Departure of the n-th message

n ⊖ 1 Index of the previous frame of the same flow, cf. eq. (2)
Bf

n Number of tokens in the bucket devoted to f just after the departure of the n-frame.

ATS related notations (Program 2)

lRDn value of lengthRecoveryDuration at n-th call
eTFDn value of emptyToFullDuration at n-th call
sETn value of schedulerEligibilityTime at n-th call
bFTn value of bucketFullTime at n-th call
eTn value of eligibilityTime at n-th call

GETn value of GroupEligibilityTime at n-th call
BETn value of BucketEmptyTime at n-th call

Table 3 Illustration of the ⊖1 operator on a sequence of 8 frames belonging to flows 10 and 20.

i 0 1 2 3 4 5 6 7
Fi 10 10 20 20 10 10 10 20

i ⊖ 1 0 0 0 2 1 4 5 3

we may propose to model the number of tokens as a functions of time. But when a frame is
selected for transmission, it instantaneously consumes the tokens. Then, it is more convenient to
build the number of tokens as a sequence, depending on arrival instants, departure instants and
frames sizes.

Consider an instant t when a frame arrives at head of queue. Let B denote the number of
tokens in the bucket just after the last departure of a frame, occurred at time D. Then, the
current number of tokens is B + r(t − D) and the frame can be released if L ≤ B + r(t − D).
Otherwise, it has to wait up to time t′ = min {u > t L ≥ B + r(t − D)} i.e. t′ = L−B

r + D.
Now, we can define the departure sequence Dn as a function of An, Ln and Fn.
Note that the model presented here, including the notations (A, L, F, D), comes from [14]. The

evolution rules that will be given as text in IR1-IR6 and mathematical expressions in eq. (4)–(7)
are a specific case of the evolution rules given in the more generic context of [14]. All these rules
are given for completeness.

Let Bf
n the number of tokens in the bucket devoted to the flow f just after the departure of

the n-frame.
Let also introduce a notation ⊖1, that given an index n returns the previous index of a packet

of the same flow, defined as

n ⊖ 1 = sup {n′ < n Fn′ = Fn} (2)

with the convention that sup ∅ = 0. For example, if the queue receives two messages of flow 10,
then two messages of flow 20, and one last message of flow 1, then F0 = F1 = 10, F2 = F3 = 20,
F4 = 10, and 0 ⊖ 1 = 0, 1 ⊖ 1 = 0, 2 ⊖ 1 = 0, 3 ⊖ 1 = 2, 4 ⊖ 1 = 1. More can be found in Table 3.

M. Boyer 1:17

Then, the behaviour of an interleaved regulator regulating each flow f with rate rf and burst
bf can be given using six rules, the first fours ones considering the transmission time, the last two
ones managing the number of tokens in the bucket.
IR1 If the n-th frame arrives (at An) in an empty queue, and there are enough tokens at this

instant, then it is immediately forwarded,
IR2 If the n-th frame arrives (at An) in an empty queue, and there are not enough tokens at this

instant, then it has to wait until its bucket is replenished up to having enough tokens,
IR3 If a frame arrives in a non empty queue n-th, it will becomes the head of queue at time Dn−1,

and if there are enough tokens at this instant, then it is forwarded at this instant,
IR4 If a frame arrives in a non empty queue n-th, it will becomes the head of queue at time Dn−1,

and if there are not enough tokens at this instant, then it has to wait until its bucket is enough
replenished,

IR5 Each buffer replenishes at its rate up to the maximal burst.
IR6 When a frame is emitted, the number of tokens is decreased by the frame size.

For the following, keep in mind that, if r > 0

L ≥ B + r(t − D) ⇐⇒ t ≥ L − B

r
+ D. (3)

Then the condition “there are enough tokens at time t for a frame of size L” can be expressed as
t ≥ L−B

r + D if D is the last departure instant for this token bucket, and if B was the number of
tokens after the departure.

Then, the behaviour of an interleaved regulator regulating each flow f with rate rf and burst
bf can be defined as

∀f : Bf
0 = bf (4)

D0 = 0 (5)

∀n > 0 : Dn =

An if An ≥ Dn−1, An ≥ Ln−BFn
⊖1

rFn
+ Dn⊖1

Ln−BFn
n⊖1

rFn
+ Dn⊖1 if An ≥ Dn−1, An <

Ln−BFn
⊖1

rFn
+ Dn⊖1

Dn−1 if An < Dn−1, Dn−1 ≥ Ln−BFn
⊖1

rFn
+ Dn⊖1

Ln−BFn
n⊖1

rFn
+ Dn⊖1 if An < Dn−1, Dn−1 <

Ln−BFn
⊖1

rFn
+ Dn⊖1

(6)

BFn
n = min

{
bFn , BFn

n⊖1 + rFn(Dn − Dn⊖1)
}

− Ln. (7)

Equation (6) is a re-writing of the rules IR1-IR4 (if An ≥ Dn−1, the n-th message arrived after
the departure of the previous message, ie. it arrives in an empty queue – the “enough token”
condition comes from eq. (3)). Equation (7) is based on rules IR5-IR6, but the replenishment is
not given for all instants, only from departure to departure.

Now, notice that the expression “x = u if u ≥ v, v otherwise” is a definition of a maximum, so
Equation (6) can be simplified into

Dn = max
{

An, Dn−1,
Ln − BFn

n⊖1
rFn

+ Dn⊖1

}
. (8)

The expression in eq. (8) is a specific case of the generic rule [14, eq. (44)], for a token-bucket
shaper. A difference is that eq. (8) explicitly considers the number of tokens in the bucket, whereas
it is implicitly defined using the full arrival history in [14, eq. (30)], leading to [14, eq. (47)]. In
fact, eq. (8) is based on a practical implementation of a token bucket shaper, whereas [14, eq. (47)]
is the max-plus equation, easier “to derive formal properties of such shapers” [14, § IV.C].

LITES

1:18 Equivalence between UBS and ATS in TSN

5.4 Modelling the eligibility time algorithm

The computation of eligibility time given in Program 2 can be also modelled as a sequence
quite easily since each variable is assigned only once per call. The code related to the Maximum
Residence Time will be ignored. We also assume that there is no parallelism between the schedulers
of the same group and that the functions calls are made in the order of arrival, i.e. the n-th frame
(with parameters An, Ln) is handled in the n-th call of the function.

So, to each variable will be assigned a sequence, where the n-th value corresponds to the n-th
call of the function. For notation simplicity, the sequence associated to a variable is made of its
first letter and the sequence of capital letters (e.g. lengthRecoveryDuration becomes lRD).

To make the equivalence clearer, the frame length, CommittedInformationRate and
CommittedBurstSize will be respectively denoted L, r, b.

We also assume that there is bijection between flows and ATS scheduler instances. So, the flow
name will be used as an exponent for parameters of variables related to ATS scheduler instances.
For example, self.CommittedBurstSize becomes bf for the instance associated to flow f . And
since Fn is the flow of the n-frame, corresponding to the n-th call of the function, it becomes bFn

in the sequence.
Also note that there are only two variables that are kept from one call to another:

BucketEmptyTime, which is local to an ATS scheduler, and each instance will have its flow
name as exponent and GroupEligibilityTime which is global to the group.

The BucketEmptyTime is “initialized with a time earlier than CommittedBurstSize/ Com-
mittedInformationRate in the past, as perceived by the ATS Scheduler Clock.” [4, § 8.6.11.3.3].
We assume that the ATS clock gives always positive value, and use -CommittedBurstSize/
CommittedInformationRate as initialisation value.

The GroupEligibilityTime “is initialized with a time earlier or equal to the current time, as
perceived by the ATS scheduler clock.” [4, § 8.6.11.3.10]. We use 0 as initialisation value.

Then, Program 2 can be transformed into the following sequence:

lRDn
def= Ln

rFn
(9)

eTFDn
def= bFn

rFn
(10)

sETn
def= BETFn

n−1 + lRDn (11)

bFTn
def= BETFn

n−1 + eTFDn (12)

eTn
def= max {An, GETn−1, sETn} (13)

GETn
def= eTn (14)

BETFn
n

def=
{

sETn if eTn < bFTn

sETn + eTn − bFTn otherwise.
(15)

Now, we can do a first simplification: each variable Xf is modified only when self correspond to
the flow f , i.e. by a call such that Fn = f , and between two calls, it keeps the previous value:
∀n, ∀m : n > m ≥ n ⊖ 1 =⇒ XFn

m = XFn
n⊖1. In particular, XFn

n−1 = XFn
n⊖1.

By applying this relation, and by replacing lRDn, eTFDn, and sETn by their definition, the
sequences can be simplified into:

M. Boyer 1:19

∀f : BETf
0 = − bf

rf
(16)

GET0 = 0 (17)

∀n > 0 : bFTn = BETFn
n⊖1 + bFn

rFn
(18)

eTn = max
{

An, eTn−1, BETFn
n⊖1 + Ln

rFn

}
(19)

GETn = eTn (20)

BETFn
n =

{
BETFn

n⊖1 + Ln

rFn
if eTn < bFTn

eTn + Ln−bFn

rFn
otherwise

(21)

= Ln

rFn
+

{
BETFn

n⊖1 if eTn < BETFn
n⊖1 + bFn

rFn

eTn − bFn

rFn
otherwise

(22)

= Ln

rFn
+

{
BETFn

n⊖1 if eTn − bFn

rFn
< BETFn

n⊖1

eTn − bFn

rFn
otherwise

(23)

= Ln

rFn
+ max

{
BETFn

n⊖1, eTn − bFn

rFn

}
. (24)

5.5 Equivalence between UBS and ATS

Here comes the main result. Keep in mind that, in this context, UBS denotes only the Token
Bucket Emulation version of the Urgency-Based Scheduler, as told in the introduction.

▶ Theorem 1 (Equivalence between UBS and ATS). Let G be a set of flows, and for each flow
f ∈ G, let rf , bf ∈ R+, rf > 0, bf > 0. Let An, Ln, Fn be infinite sequences with An ≥ 0, Fn ∈ G,
bFn ≥ Ln > 0.

Then, the sequences Bn, Dn defined in equations (4), (6), (7), and the sequences eTn, GETn,
BETn defined in equations (19), (20), (24) satisfy

∀n > 0 : Dn = eTn. (25)

The proof relies on the relation between the BucketEmptyTime, the EligibilityTime, the
rate and the bucket value, as illustrated in Figure 1 and explained in Section 3.4. The formal
relation is presented in eq. (26).

The model used in this theorem assume perfect clocks, no frame loss due to buffer overflow,
and does not model the MaximumResidenceTime.

Proof. The proof is made by induction, and will use a stronger assumption, involving not only
the equality between departure dates and eligibility time but also between the bucket state and
the BucketEmptyTime

∀n > 0 : Dn = eTn, BETFn
n = eTn − BFn

n

rFn
. (26)

LITES

1:20 Equivalence between UBS and ATS in TSN

1. Base case: n = 1. Consider first the token bucket sequence.

D1 = max
{

A1, 0,
Ln − BFn

n⊖1
rF1

+ 0
}

= max
{

A1, 0,
Ln − bFn

rF1
+ 0

}
(27)

= A1 since bFn ≥ Ln (28)

BF1
1 = min

{
bFn , BFn

n⊖1 + rF1(D1 − D0)
}

− Ln (29)

= min
{

bFn , bFn + rF1(D1 − D0)
}

− Ln (30)
= bF1 − L1. (31)

Now, the ATS sequence gives:

eT1 = max
{

A1, GET0, BETF1
0 + L1

rF1

}
(32)

(16),(17)= max {A1, 0, 0} = A1 (33)
GET1 = eT1 = A1 (34)

BETF1
1 = L1

rF1
+ max

{
BETFn

0 , eTn − bFn

rFn

}
(35)

= L1

rF1
+ max

{
− bF1

rF1
, A1 − bF1

rF1

}
(36)

= A1 − bF1 − L1

rF1
. (37)

This allow to verify the property in eq. (26) at base case n = 1.

D1 = A1 = eT1 BETFn
n = A1 − bF1 − L1

rF1
= eT1 − BF1

n

rFn
.

2. Induction step: assume the eq. 26 holds for any index up to n − 1, with n > 2. In fact,
we need to consider two cases: either n ⊖ 1 = 0, meaning that this is the first packet of the flow
Fn, or n ⊖ 1 > 0.

2.1 Assume n ⊖ 1 = 0. It is very similar to the base case. Consider first the token bucket.

Dn = max
{

An, Dn−1,
Ln − BFn

n⊖1
rFn

+ Dn⊖1

}
= max

{
An, Dn−1,

Ln − bFn

rFn
+ 0

}
(38)

= max {An, Dn−1} since bFn ≥ Ln (39)

BFn
n = min

{
bFn , BFn

n⊖1 + rFn(Dn − Dn⊖1)
}

− Ln (40)

= min
{

bFn , bFn + rFn(Dn − D0)
}

− Ln (41)
= bFn − Ln. (42)

Now turn to the ATS function.

eTn = max
{

An, eTn−1, BETFn
n⊖1 + Ln

rFn

}
(43)

M. Boyer 1:21

by induction, eTn−1 = Dn−1, and in this sub-case, BETFn
n⊖1 = BETFn

0 = − bFn

rFn

eTn = max
{

An, Dn−1, − bFn

rFn
+ Ln

rFn

}
(44)

= max {An, Dn−1} (45)

BETFn
n = Ln

rFn
+ max

{
BETFn

n⊖1, eTn − bFn

rFn

}
(46)

= Ln

rFn
+ max

{
− bFn

rFn
, eTn − bFn

rFn

}
(47)

= eTn − bFn − Ln

rFn
. (48)

This allow to verify the property in eq. (26) in this sub-case:

Dn = max {An, Dn−1} = eTn BETFn
n = eTn − bFn − Ln

rFn
= eTn − BFn

n

rFn

2.2 Assume n ⊖ 1 ̸= 0. Let first consider Dn and eTn:

Dn = max
{

An, Dn−1,
Ln − BFn

n⊖1
rFn

+ Dn⊖1

}
(49)

eTn = max
{

An, eTn−1, BETFn
n⊖1 + Ln

rFn

}
. (50)

The induction step states that ∀m < n : eTm = Dm and BETFm
m = eTm − BFm

m

rFm
. Now, notice

that, by definition of k ⊖ 1, for any k, Fk = Fk⊖1, so

BETFn
n⊖1 = BETFn⊖1

n⊖1 (51)

= eTn⊖1 −
B

Fn⊖1
n⊖1

rFn⊖1
by induction hypothesis (52)

= eTn⊖1 −
BFn

n⊖1
rFn

. (53)

By substitution of this expression into eq. (50)

eTn = max
{

An, eTn−1, eTn⊖1 −
BFn

n⊖1
rFn

+ Ln

rFn

}
(54)

= max
{

An, Dn−1,
Ln − BFn

n⊖1
rFn

+ Dn⊖1

}
= Dn. (55)

Now that the first part of the induction relation is proved, we have to prove that BETFn
n =

eTn − BFn
n

rFn
. Let start with BETFn

n .

BETFn
n

(24)= Ln

rFn
+ max

{
BETFn

n⊖1, eTn − bFn

rFn

}
(56)

(19)= Ln

rFn
+ max

{
BETFn

n⊖1, max
{

An, eTn−1, BETFn
n⊖1 + Ln

rFn

}
− bFn

rFn

}
(57)

= Ln

rFn
+ max

{
BETFn

n⊖1, An − bFn

rFn
, eTn−1 − bFn

rFn
, BETFn

n⊖1 + Ln

rFn
− bFn

rFn

}
(58)

LITES

1:22 Equivalence between UBS and ATS in TSN

Since each frame is smaller than the burst size, Ln ≤ bFn , so the fourth term of the max is not
greater than the first, leading to

BETFn
n = max

{
BETFn

n⊖1, An − bFn

rFn
, eTn−1 − bFn

rFn

}
(59)

= max
{

Dn⊖1 −
BFn

n⊖1
rFn

, An − bFn

rFn
, Dn−1 − bFn

rFn

}
by induction. (60)

And now, we will reduce eTn − BFn
n

rFn
to the same expression.

eTn − BFn
n

rFn

(7)= eTn −
min

{
bFn , BFn

n⊖1 + rFn(Dn − Dn⊖1)
}

− Ln

rFn
(61)

= Ln

rFn
+ eTn + max

{
− bFn

rFn
, −

BFn
n⊖1

rFn
+ Dn⊖1 − Dn

}
(62)

(19)= Ln

rFn
+ max

An

eTn−1

BETFn
n⊖1 + Ln

rFn

+ max

− bFn

rFn

− BFn
n⊖1

rFn
+ Dn⊖1 − Dn.

(63)

By induction hypothesis, apply eq. (26).

= Ln

rFn
+ max

An

Dn−1

Dn⊖1 − BFn
n⊖1

rFn
+ Ln

rFn

+ max

− bFn

rFn

− BFn
n⊖1

rFn
+ Dn⊖1 − Dn

(64)

= Ln

rFn
+ max

An − bFn

rFn

Dn−1 − bFn

rFn

Dn⊖1 − BFn
n⊖1

rFn
+ Ln

rFn
− bFn

rFn

An − BFn
n⊖1

rFn
+ Dn⊖1 − Dn

Dn−1 − BFn
n⊖1

rFn
+ Dn⊖1 − Dn

Dn⊖1 − BFn
n⊖1

rFn
+ Ln

rFn
− BFn

n⊖1
rFn

+ Dn⊖1 − Dn

(65)

= Ln

rFn
+ max

An − bFn

rFn

Dn−1 − bFn

rFn

Dn⊖1 − BFn
n⊖1

rFn
+

(
Ln

rFn
− bFn

rFn

)
Dn⊖1 − BFn

n⊖1
rFn

− Dn + An

Dn⊖1 − BFn
n⊖1

rFn
− Dn + Dn−1

Dn⊖1 − BFn
n⊖1

rFn
− Dn + Ln

rFn
− BFn

n⊖1
rFn

+ Dn⊖1

(66)

= Ln

rFn
+ max

An − bFn

rFn

Dn−1 − bFn

rFn

Dn⊖1 − BFn
n⊖1

rFn
+

(
Ln

rFn
− bFn

rFn

)
Dn⊖1 − BFn

n⊖1
rFn

− Dn + max

An

Dn−1

Ln

rFn
− BFn

n⊖1
rFn

+ Dn⊖1

(67)

M. Boyer 1:23

Figure 9 Illustration of FRER configuration: frames A, B are duplicated in the first switch, the B
frame is lost on the upper path, and the recovery function removes one A duplicate.

Notice that max
{

An, Dn−1, Ln

rFn
− BFn

n⊖1
rFn

+ Dn⊖1

}
is equal to Dn, cf. eq (8), so

eTn − BFn
n

rFn
= Ln

rFn
+ max

An − bFn

rFn

Dn−1 − bFn

rFn

Dn⊖1 − BFn
n⊖1

rFn
+

(
Ln

rFn
− bFn

rFn

)
Dn⊖1 − BFn

n⊖1
rFn

+ 0

(68)

Since each frame is smaller than the burst size, Ln ≤ bFn

eTn − BFn
n

rFn
= Ln

rFn
+ max

An − bFn

rFn

Dn−1 − bFn

rFn

Dn⊖1 − BFn
n⊖1

rFn

(69)

This ends the induction steps: from eq. (60) and (69), BETFn
n = eTn − BFn

n

rFn
. ◀

6 On ATS and FRER

Theorem 1 has proved that the eligibility times computed by ATS are the same as the release times
of UBS. Nevertheless, it does not mean that one may neglect the implementation architecture.
In particular, the place of the ATS scheduler in the forwarding process may interfere with other
mechanisms. Here is reported an impact on Frame Replication and Elimination for Reliability
addenda (FRER, [2]).

FRER allows to duplicate frames in the network, in order to improve the reliability, and to
remove duplicates at joining points (as illustrated in Figure 9). We focus here on the relative
position of the ATS scheduler (that computes the eligibility time) and the FRER recovery function
(that remove duplicates) in the forwarding function of a switch.

If the recovery function is set before the ATS scheduler, the ATS scheduler will handle only
the remaining frames. But since the duplicates may come from different input ports, its is not
easy to implement it in input ports, since it requires to exchange some information, as illustrated
in Figure 11. And if the recovery is in the output port, also is the ATS scheduler.

If the recovery function is set after the ATS scheduler (as in Figure 12), the ATS scheduler
will compute the eligibility time of all frames, without knowing which one is going to be kept and
which one is going to be discarded. Then, the frames that are kept will be delayed by discarded
frames. In this case, the ATS scheduler can be put in the input ports.

Both architecture have the same functional behaviour, but the timing behaviour is not the
same since both do not consume the same number of tokens.

LITES

1:24 Equivalence between UBS and ATS in TSN

Figure 10 Inclusion in the global forwarding process of FRER (left) and ATS (right), inspired from [2,
Fig. 8-2] and [4, Fig. 8-13].

Figure 11 Setting FRER before ATS in forwarding process, and equivalent model.

Figure 12 Setting FRER after ATS in forwarding process, and equivalent model.

M. Boyer 1:25

Our understanding, based on the comparison of [2, Fig. 8-2] and [4, Fig. 8-13], reported
side-by-side in Figure 10, is that the computation of the eligibility time is done before the
discarding (§ 8.6.5.2 being a sub-part of § 8.6.5, considering that the block “Flow metering (IEEE
802.1Q 8.6.5)” is an abbreviation of the full name of paragraph 8.6.5 “Flow classification and
metering”). As reported in Section 4, this would invalidates the results in [26] that does the
opposite assumption.

To sum up, the ATS mechanism is implemented with three elements: the ATS scheduler, that
computes eligibility time, the ATS queuing system and the ATS transmission selection, that selects
in the ATS queuing system the frames whose eligibility time is less than the current time. The
relative order between theses elements and the FRER recovery functions has an impact on the
global sequence behaviour, matching different UBS models. Thus, the Note 3 in [4, § 8.6.5.6] that
allows ATS scheduler to be implemented in input or output port has strong implications.

7 Conclusion

The Asynchronous Traffic Shaping (ATS) is one promising TSN mechanism, and a lot of research
have been made to evaluate its benefits and limits. Nevertheless, most formal studies have been
done on the initial proposition, UBS, whose architecture and algorithm are different from the
implementation described in the ATS standard. They all were assuming that ATS is an equivalent
implementation of UBS.

This paper presents both and formally proves an equivalence relation between both (the
equality between the release time of frames in the theoretical model and the eligibility time
computed by the standard algorithm).

This equivalence was made under the assumption that the theoretical clock and the implement-
ation ones have the same behaviour. Since they are in fact two clocks in an ATS implementation
(one for computing eligibility time at frame arrival, and one for testing eligibility time for frame
departure), a further work may consider nonideal clocks, as in [23].

This paper also shows that, when ATS and the reliability mechanism FRER are both used
in a switch, the order between the different elements leads to different behaviours. It may be of
interest to redo the analysis of [26] when the ATS scheduler is executed before the FRER recovery.

References
1 Virtual Bridged Local Area Networks Amend-

ment 12: Forwarding and Queuing Enhancements
for Time-Sensitive Streams, 2010. doi:10.1109/
IEEESTD.2009.5375704.

2 IEEE standard for local and metropolitan area
networks – frame replication and elimination for
reliability, September 2017. doi:10.1109/IEEESTD.
2017.8091139.

3 IEEE standard for local and metropolitan area
networks – bridges and bridged networks, 2018.
doi:10.1109/IEEESTD.2018.8403927.

4 IEEE standard for local and metropolitan area net-
works – asynchronous traffic shaping, September
2020. doi:10.1109/IEEESTD.2020.9253013.

5 IEEE standard for local and metropolitan area net-
works – bridges and bridged networks, 2022.

6 IEEE standard for local and metropolitan area
networks – bridges and bridged networks – amend-
ment 26: Frame preemption, 2016. doi:10.1109/
IEEESTD.2016.7553415.

7 IEEE standard for local and metropolitan
area networks–bridges and bridged networks–
amendment 25: Enhancements for scheduled traffic,
2015. doi:10.1109/IEEESTD.2016.8613095.

8 IEEE standard for local and metropolitan
area networks–bridges and bridged networks–
amendment 28: Per-stream filtering and policing,
2017. doi:10.1109/IEEESTD.2017.8064221.

9 Cheng-Shang Chang. A filtering theory for de-
terministic traffic regulation. In INFOCOM ’97.
Sixteenth Annual Joint Conference of the IEEE
Computer and Communications Societies. Driving
the Information Revolution., Proceedings IEEE,
volume 2, pages 436–443 vol.2, April 1997. doi:
10.1109/INFCOM.1997.644492.

10 David D. Clark, Scott Shenker, and Lixia Zhang.
Supporting real-time applications in an integ-
rated services packet network: Architecture and
mechanism. SIGCOMM Comput. Commun. Rev.,
22(4):1426, October 1992. doi:10.1145/144191.
144199.

LITES

https://doi.org/10.1109/IEEESTD.2009.5375704
https://doi.org/10.1109/IEEESTD.2009.5375704
https://doi.org/10.1109/IEEESTD.2017.8091139
https://doi.org/10.1109/IEEESTD.2017.8091139
https://doi.org/10.1109/IEEESTD.2018.8403927
https://doi.org/10.1109/IEEESTD.2020.9253013
https://doi.org/10.1109/IEEESTD.2016.7553415
https://doi.org/10.1109/IEEESTD.2016.7553415
https://doi.org/10.1109/IEEESTD.2016.8613095
https://doi.org/10.1109/IEEESTD.2017.8064221
https://doi.org/10.1109/INFCOM.1997.644492
https://doi.org/10.1109/INFCOM.1997.644492
https://doi.org/10.1145/144191.144199
https://doi.org/10.1145/144191.144199

1:26 Equivalence between UBS and ATS in TSN

11 Jiaying Feng, Qiao Li, and Bingwu Fang. A design
of token bucket shaper aided with gate control list
in time-sensitive networks. In 2022 IEEE/AIAA
41st Digital Avionics Systems Conference (DASC),
pages 1–9, 2022. doi:10.1109/DASC55683.2022.
9925843.

12 Hao Hu, Qiao Li, Huagang Xiong, and Bingwu
Fang. The delay bound analysis based on net-
work calculus for asynchronous traffic shaping un-
der parameter inconsistency. In 2020 IEEE 20th
International Conference on Communication Tech-
nology (ICCT), pages 908–915, 2020. doi:10.1109/
ICCT50939.2020.9295939.

13 Jean-Yves Le Boudec. Some properties of variable
length packet shapers. ACM/IEEE Transactions
on Networking, August 2002.

14 Jean-Yves Le Boudec. A theory of traffic reg-
ulators for deterministic networks with applica-
tion to interleaved regulators. IEEE-ACM Trans-
actions On Networking, 26(6):2721–2733, 2018.
doi:10.1109/TNET.2018.2875191.

15 MEF. Subscriber ethernet service attributes.
Technical Report MEF 10.4, MEF Forum,
2018. URL: http://www.mef.net/resources/
technical-specifications.

16 Ehsan Mohammadpour, Eleni Stai, and Jean-Yves
Le Boudec. Improved credit bounds for the credit-
based shaper in time-sensitive networking. IEEE
Networking Letters, 1(3):136–139, September 2019.
doi:10.1109/LNET.2019.2925176.

17 Ehsan Mohammadpour, Eleni Stai, Maaz Mohi-
uddin, and Jean-Yves Le Boudec. Latency and
backlog bounds in time-sensitive networking with
credit based shapers and asynchronous traffic shap-
ing. In 30th International Teletraffic Congress
(ITC 30), volume 02, pages 1–6, 2018. doi:
10.1109/ITC30.2018.10053.

18 Ahmed Nasrallah, Akhilesh S. Thyagaturu, Ziyad
Alharbi, Cuixiang Wang, Xing Shao, Martin Re-
isslein, and Hesham Elbakoury. Performance com-
parison of IEEE 802.1 TSN time aware shaper
(TAS) and asynchronous traffic shaper (ATS).
IEEE Access, 7:44165–44181, 2019. doi:10.1109/
ACCESS.2019.2908613.

19 A. Parekh and R. Gallager. A generalised processor
sharing approach to flow control in integrated ser-
vices networks: the single-node case. IEEE trans-
actions on networking, June 1993. doi:10.1109/
INFCOM.1992.263509.

20 Johannes Specht and Soheil Samii. Urgency-based
scheduler for time-sensitive switched ethernet net-
works. In Proc. of the 28th Euromicro Confer-

ence on Real-Time Systems (ECRTS 2016), 2016.
doi:10.1109/ECRTS.2016.27.

21 A. S. Tanenbaum and D. J. Wetherall. Computer
Networks, 5th ed. New Jersey: Prentice Hall, 2010.

22 Ludovic Thomas and Jean-Yves Le Boudec.
Network-calculus service curves of the interleaved
regulator, 2023. arXiv:2305.18036.

23 Ludovic Thomas and Jean-Yves Le Boudec. On
time synchronization issues in time-sentive net-
works with regulators and nonideal clocks. Proc. of
the ACM on Measurement and Analysis of Com-
puting Systems, 4(27), June 2020. doi:10.1145/
3392145.

24 Ludovic Thomas and Jean-Yves Le Boudec.
Network-calculus service curves of the interleaved
regulator. In Proc. of the 35th international tele-
traffic congress (ITC 35th), Turin, Italy, October
2023.

25 Ludovic Thomas, Jean-Yves Le Boudec, and Ahlem
Mifdaoui. On cyclic dependencies and regulators in
time-sensitive networks. In 2019 IEEE Real-Time
Systems Symposium (RTSS), pages 299–311. IEEE,
2019. doi:10.1109/RTSS46320.2019.00035.

26 Ludovic Thomas, Ahlem Mifdaoui, and Jean-
Yves Le Boudec. Worst-case delay bounds in time-
sensitive networks with packet replication and elim-
ination. IEEE/ACM Transactions on Network-
ing, pages 1–15, 2022. doi:10.1109/TNET.2022.
3180763.

27 J. Turner. New directions in communications
(or which way to the information age?). IEEE
Communications Magazine, 20(10), 1986. doi:
10.1109/MCOM.2002.1006972.

28 Luxi Zhao, Paul Pop, and Sebastian Steinhorst.
Quantitative performance comparison of various
traffic shapers in time-sensitive networking. IEEE
Transactions on Network and Service Management,
19(3):2899–2928, 2022. doi:10.1109/TNSM.2022.
3180160.

29 Zifan Zhou, Juho Lee, Michael Stübert Berger,
Sungkwon Park, and Ying Yan. Simulating tsn
traffic scheduling and shaping for future automot-
ive ethernet. Journal of Communications and Net-
works, 23(1):53–62, 2021. doi:10.23919/JCN.2021.
000001.

30 Zifan Zhou, Michael Stübert Berger, and Ying
Ruepp, Sarah Renée annd Yan. Insight into the
IEEE 802.1 Qcr asynchronous traffic shaping in
time sensitive network. Advances in Science, Tech-
nology and Engineering Systems Journal, 4(1):292–
301, 2019. doi:10.25046/aj040128.

https://doi.org/10.1109/DASC55683.2022.9925843
https://doi.org/10.1109/DASC55683.2022.9925843
https://doi.org/10.1109/ICCT50939.2020.9295939
https://doi.org/10.1109/ICCT50939.2020.9295939
https://doi.org/10.1109/TNET.2018.2875191
http://www.mef.net/resources/technical-specifications
http://www.mef.net/resources/technical-specifications
https://doi.org/10.1109/LNET.2019.2925176
https://doi.org/10.1109/ITC30.2018.10053
https://doi.org/10.1109/ITC30.2018.10053
https://doi.org/10.1109/ACCESS.2019.2908613
https://doi.org/10.1109/ACCESS.2019.2908613
https://doi.org/10.1109/INFCOM.1992.263509
https://doi.org/10.1109/INFCOM.1992.263509
https://doi.org/10.1109/ECRTS.2016.27
https://arxiv.org/abs/2305.18036
https://doi.org/10.1145/3392145
https://doi.org/10.1145/3392145
https://doi.org/10.1109/RTSS46320.2019.00035
https://doi.org/10.1109/TNET.2022.3180763
https://doi.org/10.1109/TNET.2022.3180763
https://doi.org/10.1109/MCOM.2002.1006972
https://doi.org/10.1109/MCOM.2002.1006972
https://doi.org/10.1109/TNSM.2022.3180160
https://doi.org/10.1109/TNSM.2022.3180160
https://doi.org/10.23919/JCN.2021.000001
https://doi.org/10.23919/JCN.2021.000001
https://doi.org/10.25046/aj040128

M. Boyer 1:27

A Code usage

Some supplementary code that can be used to test the ATS processFrame function is given in
Programs 3 and 4.

Program 3 Pretty print of Frame object.

class Frame :

def __repr__(s e l f) :
i f s e l f . e l i g i b i l i t y T i m e == None :

return " Frame (" + s e l f . name + " , " + str (s e l f . a r r iva lTime) + " , " + \
str (s e l f . l e n g t h) +") "

else :
return " Frame (" + s e l f . name + " , " + str (s e l f . a r r iva lTime) + " , " + \

str (s e l f . l e n g t h) +")−>" + str (s e l f . e l i g i b i l i t y T i m e)

Program 4 Examples of tests.

i f __name__ == "__main__" :
S i n g l e f low in queue
queue= Queue ()
ats_group= ATSgroup (100000 , queue)
ats_sched= ATSscheduler (1 , 3 , ats_group)
ats_sched . processFrame (Frame ("A" , 1 , 2))
ats_sched . processFrame (Frame ("B" , 2 , 2))
ats_sched . processFrame (Frame ("C" , 3 , 3))
ats_sched . processFrame (Frame ("D" , 9 , 2))
ats_sched . processFrame (Frame ("E" , 9 , 2))
print (queue . queue)

ATS with two queues
queue= Queue ()
ats_group= ATSgroup (100000 , queue)
ats_schedA= ATSscheduler (50 ,100 , ats_group)
ats_schedB= ATSscheduler (50 ,100 , ats_group)

F i r s t frame A: d e l i v e r e d as soon as arrived , take a l l tokens
ats_schedA . processFrame (Frame ("A1" , 0 , 100))
Second frame A, has to wait D_2 = A_1 +1 = 2
ats_schedA . processFrame (Frame ("A2" , 1 , 100))
F i r s t frame B, enough tokens , but has to wait A2
ats_schedB . processFrame (Frame ("B1" , 1 , 50))
Second frame B, enough tokens , d e l i v e r e d as soon as arrived , take a l l tokens
ats_schedB . processFrame (Frame ("B2" , 2 , 50))
Third frame B, has to wait
ats_schedB . processFrame (Frame ("B3" , 2 , 100))
Third frame A, s i z e l a r g e r than CBS
ats_schedA . processFrame (Frame ("B3" , 10 , 1000))

LITES

	1 Introduction
	2 Presentation of UBS
	2.1 Recall on the token bucket
	2.2 Shaped queue and interleaved shaping
	2.3 UBS queuing system
	2.4 An UBS output port

	3 Presentation of ATS
	3.1 TSN output port (pre-ATS)
	3.2 Insertion of ATS in the forwarding process
	3.3 ATS scheduler groups
	3.4 Computation of the eligibility time
	3.4.1 Tie breaker for same eligibility time
	3.4.2 Difference between ATS scheduling and ATS selection clocks

	3.5 UBS as a TSN class

	4 State of the art
	5 Equivalence between the theoretical and the standard models
	5.1 Partial equivalence
	5.2 Building the equivalence
	5.3 Modelling the interleaved shaper
	5.4 Modelling the eligibility time algorithm
	5.5 Equivalence between UBS and ATS

	6 On ATS and FRER
	7 Conclusion
	A Code usage

