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Abstract
There is a lack of multilingual data to support
applications in a large number of languages, es-
pecially for low-resource languages. Knowledge
graphs (KG) could contribute to closing the gap
of language support by providing easily accessible,
machine-readable, multilingual linked data, which
can be reused across applications. In this paper, we
provide an overview of work in the domain of multi-
lingual KGs with a focus on low-resource languages.
We review the current state of multilingual KGs

along with the different aspects that are crucial for
creating KGs with language coverage in mind. Spe-
cial consideration is given to challenges particular to
low-resource languages in KGs. We further provide
an overview of applications that yield multilingual
KG information as well as downstream applications
reusing such multilingual data. Finally, we explore
open problems regarding multilingual KGs with a
focus on low-resource languages.
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1 Introduction

For a wide range of applications, including chatbots and search engines, it is important to support
a large variety of languages, as this enables more people to access these applications in their native
language. However, currently, many applications only provide support for a highly restricted
number of languages. While there are over 7,000 languages spoken in the world2, applications
such as Amazon Alexa or Google Home support 8 or 16, respectively, at the time of writing.3

1 Corresponding author
2 https://www.ethnologue.com/
3 Link to Amazon Alexa; Link to Google Home.
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10:2 Multilingual Knowledge Graphs

This drastically limits the accessibility for speakers of languages not among this small set of
languages. Providing access to information across languages may be crucial whenever one wishes
to make high-quality factual information available to people across the globe. However, for most
of the world’s languages, the lack of coverage in terms of available data, linguistic models (be they
rules-based or data-driven), and the broader tooling ecosystem is daunting, and, therefore, there is
insufficient information readily available to easily extend existing applications to the language. We
refer to such languages as low-resource languages. There have been efforts to make low-resource
languages more accessible, as exhibited by initiatives such as Masakhane [27] and SaDiLaR4, which
have created datasets that aim to assist in making language applications available across a greater
number of languages. However, the vast majority of language resources are in and for English.
For example, on the web at large, 58.8% of websites are estimated to be in English5, which is also
reflected in the size of available corpora6. Low-resource languages are barely represented in these
sorts of collections. Therefore, models trained on web data are prone to suffering from a severe
lack of information in the majority of languages.

One possible way of addressing the issue of a lack of multilingual data is to rely on knowledge
graphs (KGs), which store knowledge as graph-structured data [35]. In a data-to-text generation
approach, KGs can be used as a source of information for newly generated text across languages [50].
The central storage of language-agnostic information enables downstream applications to provide
knowledge, such as in the form of text, for a wide range of language communities. We describe
some of the downstream use-cases of multilingual KGs in Section 4.2.

Despite being machine-readable, knowledge graphs also harbour substantial natural language
information. Entities and relationships in a knowledge graph generally have natural language
labels and often also natural language descriptions. Indeed, among the most prominent knowledge
graphs, many provide such natural language labels and descriptions in a multitude of different
languages and are thus also a valuable direct source of multilingual data [49]. For instance, a KG
may capture that the chemical element gold is called gold in English, altın in Turkish, igolide in
isiXhosa, bulawan in Cebuano, and so on. It becomes more challenging when there is no simple
1:1 mapping, such as pet being lexicalized as pet in English but de facto only described in isiZulu,
for instance, as isilwane sasekhaya (an animal that is of the home). Similarly, in agglutinating
languages, morphemes are strung together to create a new concept that may be translated as
a phrase or sentence, such as umagwazephindelela for “one who is not satisfied with a single
achievement” (a “persistent fighter”)7 [17].

By storing information in the KG in a machine-readable form, the KG can hold information
about entities, such as the gold chemical symbol, irrespective of whether this information exists in
each of the languages. This helps eliminate language barriers and ensures information is available
even in languages where it might otherwise be absent.

In this paper, we explore the current state of multilingual data in knowledge graphs (Section 2),
particular challenges regarding low-resource languages (Section 3), approaches to increase language
coverage in KGs (Section 4.1), applications using multilingual KGs (Section 4.2), and finally we
propose open questions regarding the multilingual support in KGs at large (Section 5).

4 South African Centre for Digital Language Resources with its language resources repository available at
https://repo.sadilar.org/.

5 https://www.statista.com/statistics/262946/most-common-languages-on-the-internet/, as of Janu-
ary 2023

6 e.g.: https://www.sketchengine.eu/corpora-and-languages/corpus-list/
7 From: u-/uma- noun prefix for noun class 1a or u- noun prefix for noun class 1a + -ma (v) “stand”, -gwaza

(v) “stab”, “slaughter”, verb with -e ending subjunctive mood, -phinda (v) “repeat”, “do again”, -phindelela
(v) “do again and again” (note the -el- applicative verb extension to -phinda)

https://repo.sadilar.org/
https://www.statista.com/statistics/262946/most-common-languages-on-the-internet/
https://www.sketchengine.eu/corpora-and-languages/corpus-list/
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Q7259 Q82594
P106

Ada Lovelace آدا لوفلایس occupation المھنة computer 
scientist

عالم حاسوب

@en @en @en@ar @ar @ar

rdfs:label rdfs:label rdfs:labelrdfs:label rdfs:labelrdfs:label

Figure 1 Modelling of multilingual knowledge using a unified knowledge graph with attributes given
in multiple different languages, as exemplified by Wikidata. Each entity has a single ID shared across
languages. In order to ensure stable and language-neutral IDs, the ID scheme does not include any
natural language part intended for human consumption. Instead, a separate entity label is provided for
each relevant language (in this example English and Arabic). These are connected using the rdfs:label
property in the RDF version of Wikidata.

dbr:Ada_Lovelace dbr:Computer_scientist
dbo:occupation

English DBpedia

dbr:آدا_لوفلایس dbr:عالم_حاسوب
dbo:المھنة

owl:SameAsowl:SameAs owl:SameAs

Arabic DBpedia

Figure 2 Modelling of multilingual knowledge using separate interconnected entity IDs, as exemplified
by DBpedia. A separate entity ID is defined for each language. These are connected by the owl:sameAs
property, which indicates that they in fact refer to the same entity. In practice, different languages differ
widely in their coverage and hence not all information is mirrored across languages as in this example.

2 State of Multilingual KGs

To describe the challenges and opportunities of multilingual KGs, we first provide a brief overview
on the current state of knowledge graphs regarding their language coverage. Gracia et al. describe
their vision of a multilingual web of data in 2012 as having “(i) linguistic information for data and
vocabularies in different languages, (ii) mappings between data with labels in different languages,
and (iii) services to dynamically access and traverse Linked Data across different languages” [31].
Over 10 years later, we seek to understand what and how much of it has been realised. To gain
insights into the state of KGs, we observe multilingual data in KGs from different angles. First,
we examine how the different modelling choices and ontologies, i.e., the structure-giving elements
of the KG, enable or impede inclusion of multilingual information. Further, it is crucial to assess
how many and which languages are supported to what extent. Therefore, we provide an overview
of work analysing language coverage across different KGs. Finally, we provide insights on the
linguistic information available in KGs in the form of lexicographical data.

2.1 Modelling Multilingual Knowledge
There are, depending on the particular KG, different ways to store multilingual information [29].
A common choice is to assume that KG entities can be shared across languages, and thus for a
given KG entity, one can provide relevant language-specific information such as labels in multiple

TGDK



10:4 Multilingual Knowledge Graphs

languages. An example of this is illustrated in Figure 1 for the prominent Wikidata KG. An
alternative is to essentially create a different KG (or sub-KG) for each language and then interlink
these KGs. An example of this is illustrated in Figure 2 for the DBpedia KG.

The availability of labels can differ substantially across languages. Of course, this may simply
be due to incomplete coverage, as we discuss in Section 2.3. In some cases, however, this may
stem from linguistic differences in lexicalization or naming: A concept or entity may possess a
name in one language but not in another, in which case it is sometimes referred to as a lexical
gap. For instance, Runyankore does not have a single word for “pet” but only a description, and
isiZulu’s ingcula does not have a translation into English other than a description of the object (a
small bladed hunting spear). At the instance level, additional modelling efforts may be required,
if Runyankore-speaking people were to be interested in representing in the KG that Lassie and
Scooby Doo are pets, say, or for the development of a KG about Shaka Zulu’s armoury.

In the literature, there is a range of guidelines indicating how a KG should represent multilingual
information. These include the use of standard ontologies, recommendations for the data itself as
well as how the data should be modelled. Across the literature, the following guidelines have been
identified, as also summarised in previous work [44].

Stable identifiers [7]: Each entity is identified in the KG with an identifier (ID). These
are crucial as the way to access information about an entity. Many authors recommend
adopting Unique Resource Identifiers (URIs) or Internationalized Resource Identifiers (IRIs),
as used on the Web, for better interoperability. Some KGs identify entities in the graph
with identifiers incorporating natural language. For instance, DBpedia uses IRIs such as
http://dbpedia.org/resource/Ada_Lovelace. Such identifiers are human-readable, and
hence easy to interpret for humans, and they also take the function of a label. However, the
fact that the natural language portions of such IDs carry meaning can also be a disadvantage.
As identifiers are expected to remain stable, such IDs are unable to reflect potential changes in
the entity label. For example, if the name of a property changes, the entire structure of the
KG would be affected [85]. In contrast, opaque IDs are ones that are not easily readable by
humans. For example, they could have a unique identifier for a concept in the form of letters
and/or numbers, such as the Wikidata ID Q7259. As such IDs do not reflect the label of the
entity, if the entity’s name changes, the ID is not affected. Moreover, such entity IDs can be
more readily shared across languages.
Label coverage [21, 90, 16]: As natural language labels are the way humans access information
in the KG and interact with it, it is important that entities, classes, and properties in the KG
are labelled. This ensures that information is human-readable and can be displayed to a user.
Language tags [78]: When labelling an entity, it is important to indicate the language in
which this label is provided. Even in monolingual KGs, language tags can be valuable, in order
to avoid conflating different languages when fusing information from different language sources,
especially when automatically merging KGs or when operating across multiple knowledge graphs
in different languages through, e.g., federated queries. Language tags can help applications
decide which label should be displayed to which user.
Language coverage [31, 44]: For a multilingual KG it is crucial that entities are labelled
across a large number of languages for which a relevant label exists. Only such thorough
labelling can ensure access of all users to all information, independent of the languages they
speak. It also enables KGs to readily make other applications multilingual.
Monolingual islands [31]: When parts of the graph are labelled in only one language, they
can form monolingual islands. This can happen because knowledge is prevalent in one cultural
context and therefore is yet to be translated, such as governmental initiatives publishing
structured data in only their native language. Monolingual islands can lead to worse access
to a diverse set of knowledge across the graph and should be addressed when working on a
multilingual KG.

http://dbpedia.org/resource/Ada_Lovelace
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Reusing existing vocabulary: In the creation of a KG, it is essential to reuse existing
vocabulary, or ontology, to describe the schema of the KG. Especially for label and language
information in a KG, it is crucial for easier integration of multiple, complementary KGs. For
more information on ontologies, see Section 2.2.
Unambiguity [21]: As there are multiple complementary as well as overlapping ontologies, it
is crucial to make sure to avoid ambiguity. According to the Semantic Web standards, it is
recommended to use the labelling property rdfs:label to provide natural language labels of
entities. Furthermore, it is often recommended to provide a single preferred label in a given
language per entity, while using other properties such as alias to describe alternative names
for a concept.

Conceptual differences between different languages may lead to modelling challenges. An important
example is the subclass/superclass relationship (which corresponds to hypo-/hypernymy as a
lexical relation). For instance, consider the single concept and word for river in English, whereas in
the French language and presumably also the corresponding conceptualisation, one distinguishes
rivers that flow into other rivers and those that flow into the sea (fleuve versus rivière) [62]. This
may occur similarly for relational properties [54]. A common solution is to treat incompatible
concepts across different languages as distinct entries in the KG. Thus, one can avoid conflating
the English concept of river with the two French ones and optionally also explicitly describe how
the different entries relate to one another cross-lingually. It may also be the case that in one
language only a verbal form of a concept exists, i.e., it is assumed to be only a relational property,
and in another language it is nominalised, i.e., exists as a unary object or object type only, such
that heterogeneous mappings may be needed [26].

2.2 Multilingual Ontologies
Ontologies define the structure of a KG by setting standards for the different properties or
relationships to be used, and, for example, the classes used in a KG and across the web of
data [36]. The W3C Web Ontology Language (OWL) is a particularly prominent formalism to
define ontologies across different KGs to ensure the interoperability of different ontologies [37].

To be able to create multilingual KGs, it is crucial to understand how multilingualism is
addressed in the ontologies, be it in the formalism or in a declarative model associated with it,
how natural languages are incorporated, and how translation of entities may be recorded.

Gillis-Webber and Keet [29] survey multilinguality in and for ontologies. They grouped the
literature and practices in multilingual ontologies into three types of modelling multilingual
information: (1) using multilingual labels, i.e., labelling one entity across languages using a
labelling property and mentioning the language of the label in the label string (such as in Wikidata
in the example in Figure 1), (2) linguistic models (covered in Section 2.4), and (3) mapping-based
approach, i.e., creating one entity per language and linking them across languages to each other
with an appropriate property (such as in DBpedia in the example in Figure 2). They observed
that there is currently a limited uptake of multilingual ontologies at large. Further, limitations of
each of the three described ways of modelling multilingual data, such as “accurate representation
of languages that require grammatical features such as inflected forms and gender” [30], are yet to
be addressed, which apply at least in part also to KGs (discussed in Section 3.2 below).

As ontologies can be defined with the creation of each new KG anew, a number of monolingual
ontologies in different languages exist that could be interlinked so as to be more interoperable.
Efforts in this direction align ontologies across languages, making it possible to link different KGs
across languages [41] or translate labels across languages to make ontologies interoperable and
reusable [22].

TGDK



10:6 Multilingual Knowledge Graphs

2.3 Language Coverage Across KGs
Covering a large number of languages in the data in any KG is crucial to be able to support a
wide range of languages in downstream applications. For example, in the domain of Question
Answering (QA), using a multilingual KG facilitates easy switching between languages and finding
the KG best suited for the language requirements of an application and its user base [46].

A range of studies describes the language coverage of KGs to understand how well they
currently serve multilingual users. Studies have found that, across numerous language graphs,
there is a lack of non-English information in the form of labels. Further, the most used labelling
property is rdfs:label, and across the web of data at large there is a widespread lack of labels,
i.e., a large share of entities are not labelled at all. Additionally, most entities are labelled in only
one language [49, 21, 44].

Ell et al. [21] and Kaffee and Simperl [49] developed frameworks to analyse language and label
coverage in the web of data, in their case a collection of KGs available online. Zaveri et al. [90]
survey data quality metrics and describe a metric for human readable labelling, which characterises
the coverage of entities by labels. This metric was picked up and made actionable by Debattista
et al. [16].

Wikidata specifically shows a slightly different distribution than the web of data at large. While
there is still an English bias in the KG, there is a higher degree of language diversity overall [47, 44].
This more varied representation of languages could have different potential causes; for one, there
is a multilingual community editing the KG, which leads to a larger number of perspectives added
to the graph, compared to KGs that are automatically assembled or mostly contributed to by
a single community situated in one part of the world [48]. This international community has
been recruited to a large extent from the famous sister project of Wikidata, Wikipedia, where an
international community already edits knowledge in their respective language [79]. Further, the
community of humans is supported by so-called bots, which are automated tools that import and
edit knowledge on Wikidata across languages [45]. These approaches can be instructive for future
projects seeking to create more multilingual KGs.

This opens promising directions for the future development of multilingual KGs. With a
dedicated community and specialised tools, better language coverage can be achieved in the future.
In Section 4.1, we discuss automated solutions to improve the language coverage of KGs.

2.4 Lexicographical Data
Given that KGs can be used to store diverse kinds of knowledge, their versatile graph structure
also facilitates storing information about language. Some KGs, such as Lexvo [14] and Glottolog
[33], focus specifically on linguistic metadata about languages and dialects as well as scripts and
characters.

Lexicographical data in KGs describes a subset of data that expresses information about
the lexicon of languages, i.e., information about words, phrases, and other linguistic expressions.
For example, this linguistic information could describe how to conjugate verbs across different
languages. In this example, the verb may be modelled as an entity in the graph that is connected
to its different grammatical forms through its properties (edges in the graph).

To express and standardise this type of linguistic information, OntoLex Lemon8 was introduced
based on the RDF standard, focusing on expressing linguistic information as Linguistic Linked
Data [64].

8 https://www.w3.org/2016/05/ontolex/

https://www.w3.org/2016/05/ontolex/
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The concept of lexemes, a form of describing lexical knowledge, has also been introduced to
the KG Wikidata. Wikidata uses a custom community-created schema that only loosely resembles
Lemon. However, considering the actual data provided by Wikidata, statistics reveal that there
are only a few languages with significant lexeme coverage, while the vast majority of languages
have little to no representation [73]. This limited language coverage shows that there is still a long
way to go to reuse such linguistic information for applications focusing on low-resource languages.

One of the most successful, widely used knowledge resources is WordNet [65], as it has over
the years seen extensive use in a number of NLP applications, such as text summarisation [5] and
text categorisation [20]. A large number of similar resources have been created for a multitude
of different languages, including low-resource languages, and many of these resources have been
interlinked. The Universal WordNet [15] and BabelNet [72] were among the first massively
multilingual knowledge graphs, both drawing on WordNet as their backbone. WordNet is based
on the notion of synonym sets as linguistic concepts, which are connected by various linguistically
inspired semantic relationships.

Despite the widespread use of multilingual lexicographic KGs in NLP, it is important to
acknowledge that the coverage is uneven. While high-resource languages are well-represented,
many widely-spoken languages of socio-economic importance are covered inadequately. For some
low-resource languages, only very basic terminology is covered. Many others are missing entirely.
While information about grammar can be useful for languages with sparse training data, the
lack of representation in KGs cannot yet fill this gap. However, as argued previously, having a
central general-domain storage of this information for low-resource languages can support future
applications in broadening language coverage. Therefore, we argue, it would be beneficial to build
these resources and maintain and widen existing ones.

3 KG Challenges Regarding Low-resource Languages

For KGs to be part of the solution for low-resource languages (LRL) in data-driven settings, they
need to be buildable and deployable in KG-driven information systems. They may also need a
better specification of “low-resourced languages”. With a full characterisation under way [55],
within NLP, it is typically narrowed down to LRLs having just limited online corpora, tools, and
computational grammars, or lacking something to build statistics-based NLP applications9. LRLs
have also been characterised as “less studied, resource scarce, less computerised, less privileged, less
commonly taught, or low density, among other denomination” [87], and similarly by others [80, 34].
Some studies have sought to quantify this by counting labelled and unlabelled corpora [42] or
other data [34] and tools [6, 58], and conducted audits [67, 82, inter alia]. Such characterisations
are based mostly on quantities, while neglecting to account for the practicalities of working
with limited resources. Such practicalities may be grouped into two: one related to the tools
and processes and the other at a “deeper” level on language features of both the representation
language and the LRL. We’ll discuss each in turn.

3.1 Computational Resources
Within the narrow computational resource-oriented view, a consequence is the existence of blocking
interdependencies. As a concrete example related to Figure 1, within Abstract Wikipedia [89],
it has been proposed to automatically induce templates for a template-based approach [32] or
grammars for the Grammatical Framework-based approach [81], ultimately to facilitate rule-
based natural language generation to generate Wikipedia articles from the KG. This, however,

9 See, for instance, Felix Laumann’s discussion post at https://medium.com/neuralspace/low-resource-
language-what-does-it-mean-d067ec85dea5, likely based on Tsvetkov (2017) [87] (slide 26) and repeated in
the literature (e.g., [59]).

TGDK
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presupposes the existence and usability of corpora, of good quality part-of-speech taggers and of
morphological analysers, which are rarely available for LRLs. These resources are likewise needed
for automated KG construction and use in KG-driven information systems, such as educational
question generation and document navigation. Consider KG verbalisation for, e.g., isiZulu, a
LRL in South Africa spoken by around 23 million people [53]: nouns had to be pluralised, but
there was no pluraliser, and verbs of the object properties needed to be conjugated, yet grammar
books were outdated and recent linguistics research is scattered, so all that had to be investigated
alongside the actual KG task [8, 52]. Also, popular multilingual realisers, such as SimpleNLG [28],
are easily adapted among a selection of well-resourced languages in the Indo-European languages
family, but they may not be suitable for a language that needs subword-level management, and so
a new modular realisation engine may be needed [60]. Conversely, any prospective KG task helps
focus language resource development on a specific, measurable, and achievable segment, which is
confidence-building and a way to gradually expand the resources.

These anecdotes, and similar observations, are illustrative of several general issues when
creating KGs or using them in applications with LRLs, be this for data-oriented techniques and
applications or other KG tasks, being:

There will be linguistic hurdles (gaps in the linguistic knowledge and sociolinguistics) to
overcome, which are on top of the intended KG task or KG as a solution. In addition,
computerising the language information takes time and scarce human resources, delaying the
KG task.
Freely available pre-existing data is often imprecise, incorrect, or outdated, and thus not a good
basis to rely on [solely/at all], requiring an additional data collection stage in a data-driven
KG task; therefore, an expert-driven rules-based approach may be more viable for some tasks.
A resource shortage also tends to imply a human shortage, both in numbers and capacity/-
knowledge/skills of the language, limiting the scale of human evaluation and quality of survey
or crowdsourced responses.
The notion of “good” quality is relative and a lower overall size or quality may still mean
that the KG task itself performs well (but lower in context due to compounding of less well
performing preceding steps).
Each LRL has its own set of hurdles, and its own history, and how the low resourcedness came
about and therewith may need a context-specific incentive to realise the KG task for the LRL.

Also, and separate to KG building, there are power dynamics. Those who build the KG wield
power over those who use it and, as Vang argues, “to some degree contests the autonomy of the
user” [43]. A multilingual KG would ideally be built with the community of prospective users who
speak that LRL, not just for them. In addition, it is not clear how the notion of KG co-ownership
or KG benefit-sharing of extracted and systematised community knowledge, as alluded to in,
among others, the groundbreaking San Code of Research Ethics10, can be realised. Finally, the
LRL may have features that do not fit well with the KG language. Since this may be applicable
to a subset of LRLs only, we elaborate on this in the next section.

3.2 KG Representation Language Assumptions and Challenges
In this paper, we introduce KGs as a well-suited technology to address limitations in language
coverage in downstream applications. There are obvious limitations to this claim. Popular KGs
tend to be Eurocentric, in terms of their editors (see for example Wikidata [48]) and data covered.11

10 https://www.globalcodeofconduct.org/affiliated-codes/
11 Visualisation of Wikidata entities with geolocation: https://wmde.github.io/wikidata-map/dist/index.
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Moreover, they have been developed to a large extent by researchers working in what is known as
the global north, emphasising the bias in the type of content and how the content is captured and
displayed.

The subject-predicate-object paradigm of capturing facts in a knowledge graph, OWL’s
assumptions about axiomatisations, and the likes of frame-based approaches suit English well,
as it typically takes an object-based approach, has limited verb inflections and has a disjunctive
orthography, and an SVO ordering of sentences that are statements.

The practices of modelling assume nouns in the singular and predicates in the 3rd person
singular, whose string remains fixed irrespective of the domain or range of the property. This is
not the case for several LRLs, however, such as at least Niger-Congo B languages [53], nor for
several Indo-European languages that have an extensive noun class system where the verb changes
contextually depending on the actor. For instance, the “eats” is all the same in ⟨Human, eats,
apple⟩, ⟨Elephant, eats, apple⟩, and ⟨Microbe, eats, apple⟩, regardless who or what (in
sg.) is doing the eating, where the “eats” property is being reused as it should be. Consider
now a direct translation to isiZulu, respectively: ⟨Umuntu, udla, i-apula⟩, ⟨Indlovu, idla,
i-apula⟩, and ⟨Igciwane, lidla, i-apula⟩. The 3rd person singular differs. It is not the case
that the predicate is different, just the natural language rendering of it is. However, most KG
languages by design typically conflate elements with surface rendering [25]. One could use an
identifier, as OBO did, and carry over to OBO Foundry ontologies and in Wikidata, but that still
requires additional machinery somewhere to complete the -dla verb stem in accordance with the
noun class of the noun. Or: to start properly with KG development, one first needs to figure out
some sort of extension of, or addition to, RDF. Depending on the LRL, there may well be up to
20 variants, with one for each noun class.

It has also become common practice in “English KGs” to insert prepositions into the property
name or label, such as “works for” and “part of”. They may be realised differently in many other
languages, such as being affixed to the noun of the class in the range (object) position or infixed in
the verb. The affixation to the noun is also specific to the context where it is used, i.e., in which
axiom, not the name of the class or individual, for which there is no established KG language
yet. An extreme case is the containment relation, typically used in KGs as contained in. The
notion of containment in isiZulu is realised through indicating the container, by means of noun
affixation for locatives and determined by both the container and the containee such that there
is no “contained in” verb or name to put in the predicate position [51]; e.g., a bolus of food
(indilinga yokudla) that is contained in the stomach (isisu) becomes indilinga yokudla isesiswini.
What would the triple be? ⟨bolus of food, contained in, stomach⟩ maps neatly with the
natural language in English and many other well-resourced languages, but neither a ⟨indilinga
yokudla, blank_prop, isisu⟩ nor a ⟨indilinga yokudla, inverse(L3951-S4), isisu⟩ are
satisfactory solutions.

Therefore, a KG may need to be accompanied by a declarative language model and a set
of grammar rules, or a different way of usage to represent all the required inputs, or the KG
representation language may need to be revised. This is regardless of the usage scenario, from
rendering the content of the KG correctly and understandable to the user to automated KG
creation. The W3C community standard OntoLex-Lemon [13] as well as the more expressive
lemon model [61] that aim to provide such a declarative model address this only in part [29, 10].

These language differences lay bare certain English-oriented assumptions baked into the repres-
entation language and in naming conventions. This is complicated further if the conceptualisation
or terminology diverges not only for domain knowledge but also for a foundational relation such
as parthood (e.g., [23, 54]). This need not impede KGs as a possible contributing solution to LRL
applications but is to be borne in mind in both KG construction and in their use.

These limitations need to be addressed to make KGs truly inclusive of a wide range of languages.
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4 Applications of Multilingual KGs

Multilingual KGs have emerged as resources that transcend language barriers to enable a wide
range of applications in our increasingly linked and multilingual world. Improving language
coverage in multilingual KGs is critical for completing these resources and making them more
relevant to a wide range of global audiences. Also, they have a wide range of applications across
various domains due to their ability to bridge linguistic gaps. This section provides an overview of
the existing research in the application areas of multilingual KGs.

4.1 Improving Language Coverage of KGs
Recent research has seen an enormous development in the use of KGs to improve Natural
Language Processing tasks such as Natural Language Inference (NLI), Question Answering (QA),
and Recommender Systems. Even well-known KGs like DBpedia and Wikidata, which are widely
used, are the largest in their English versions despite major human efforts to make them available
across languages. Furthermore, geographic area-specific facts are frequently restricted to the KG
unique to the region or the native language. The incorporation of Machine Learning (ML) models
into several languages is constrained by the scarcity of multilingual knowledge.

Machine Translation (MT) systems have been used [2, 63] to improve the language coverage
in multilingual KGs, but these efforts only aim to translate domain-specific KGs from English
into a target language. These methods ignore the graph structure of KGs, which is critical for
determining the domain in which the word must be translated in the target language. Taking into
account the graph structure of KGs can help an MT system identify the proper translation for
ambiguous labels. As referred to in the survey [70], Rule-based (RBMT), Example-based (EBMT),
and Statistical Machine Translation (SMT) based models have been used in the past to translate
Semantic Web Technologies (SWT). However, MT for SWT still remains open research due to:
(1) lack of clearly specified object attributes, such as cardinality or reflexiveness, (2) concept
blending across thesaurus, vocabulary, and ontology, (3) inaccurate definitions of the domain
and range, and (4) using ambiguous annotations [70]. However, domain-specific terms from the
medical and financial areas have been translated using a Neural Machine Translation (NMT)
architecture, outperforming SMT results [3]. Feng et al. [24] introduced a gated NN strategy
for translating English KGs into Chinese, learning continuous triple representations. Source and
target triples were mapped in the same semantic vector space using their method, which was
extracted from Freebase. Their modified NN strategy increased translation accuracy compared to
a strong NMT baseline, highlighting the significance of taking into account KG structure for KG
translation and enhancing the quality of disambiguation for ambiguous phrases. Another NMT
model, THOTH [69] trains to translate the facts from one language into another, treating the
facts (i.e., triples) in a KG as sentences with URIs acting as tokens. It uses KG embeddings and
two separate recurrent neural network models to extract bilingual alignments between a source
and target KG and then learns the translation.

KG embedding based models have been proposed to enhance multilingual KGs. A more
realistic method would draw on the information in several language-specific KGs, keeping in mind
that individual KGs have their own strengths and limitations on data quality and coverage. This
is a significant challenge since inconsistently expressed facts and a lack of sufficient alignment
information can make it difficult for knowledge to be transferred between many independently
maintained KGs. KEnS [11] is one such approach that embeds all multilingual KGs in a shared
embedding space where the association of entities is captured through self-learning.

LLM-based KG creation has been used recently in an attempt to create monolingual
knowledge facts for KGs [77], but multilingual KG construction and enrichment have not yet been
attempted at their full strength. Due to the potential for complementary and unequally dispersed
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knowledge stated in many languages, multilingual LLMs can offer richer combined knowledge
for multilingual KGs. Prix-LM [91] is a pioneering model for multilingual KG construction
and completion that employs both monolingual triples and cross-lingual linkages retrieved from
existing multilingual KGs, followed by fine-tuning a multilingual language encoder XLM-R via
a causal language modelling objective. Hou et al. [38] proposes another model that leverages
adapters to fine-tune LLMs for multilingual KGs, including low-resource languages, enhancing the
corresponding downstream tasks. Therefore, leveraging LLMs for the construction and completion
of multilingual KGs emerges to be one of the promising future directions of research, considering
that their information content has shown promise for knowledge extraction [77].

4.2 Downstream Applications of Multilingual KG Information
In this section, we survey a set of use cases for multilingual KGs. When developing new KGs, new
ontologies, or improving the language coverage of existing KGs, it is crucial to keep the use-cases
in mind to ensure that the KG can indeed serve knowledge that is useful in the envisioned tasks.
Several applications already make use of multilingual KGs, in the following we present a selected
few tasks.

Multilingual Knowledge Graph Question Answering (mKGQA) is a task that involves
answering a user’s questions in a set of languages based on facts stored in a KG. This is a research
topic of particular importance, as these systems can bridge the gap between users and pertinent
information on the Web. The task should ideally address all languages, making it possible for users
to ask questions independent of the languages of the information in the KG. Currently, however,
these systems typically define a set of languages in which questions can be answered, relying on
information in the corresponding language stored in the target KG. mKGQA is strongly dependent
on data, and there is currently a lack of multilingual data on the web, making it accessible to only
a fraction of people12, therefore causing a “cultural gap” on the Web [66]. Further, the task of
mKGQA suffers from a lack of multilingual benchmarks.

Perevalov et al. [75, 76] identified 17 mKGQA systems. We have provided in the table below a
list of 4 mKGQA systems filtered based on the coverage that they provide for languages besides
English (with a focus on lower-resourced languages), along with the KG used, data sets, and the
specific languages covered.

Table 1 Multilingual Knowledge Graph Question Answering (mKGQA) systems.

mKGQA system Ref. KG Languages Dataset

WDAqua-core, 2018 [19] DBpedia, Wikidata,
DBLP, MusicBrainz en, de, es, it QALD,

LC-QuAD 1.0

QAnswer, 2019 [18] DBpedia, Wikidata,
DBLP, MusicBrainz, FreeBase

en, de, fr, it, es,
pt, ar, zh

QALD-3-7,
LC-QuAD 1.0

Y. Zhou et al. [92] DBpedia en, fa, de, ro, it,
ru, fr, nl, es, hi, pt

LC-QuAD 1.0,
QALD-9

A. Perevalov et al. [74] Wikidata, DBpedia en, de, fr, ru,
uk, lt, be, ba, hy QALD-9-Plus

BLEU-4 [84] – tibetian TibetanQA+

12 25.9% according to https://www.statista.com/statistics/262946/share-of-the-most-common-languages-on-the-
internet/, retrieved 2023-02-15

TGDK

https://www.statista.com/statistics/262946/share-of-the-most-common-languages-on-the-internet/
https://www.statista.com/statistics/262946/share-of-the-most-common-languages-on-the-internet/


10:12 Multilingual Knowledge Graphs

Knowledge Graph Completion aims to add new, missing facts to a KG. This remains a
challenging problem that is particularly pronounced in multilingual low-resource languages, given
that human annotations are rare and difficult to procure [39]. A number of solutions have been
devised to mitigate this problem, such as using KG embeddings [40] or jointly predicting entity
alignment across languages and new facts for KG completion [9, 86, 11]. A promising approach is
the self-supervised adaptive graph alignment (SS-AGA) method [39], which regards alignment as
a new edge type between parallel entities instead of a loss constraint, and fuses KGs from different
languages in a single graph. This approach has been evaluated on both the public multilingual
DBpedia KG and a newly created industrial multilingual E-commerce KG.

Cross Lingual Fact Extraction (CLFE) is the task of extracting facts from a text to,
e.g., store the facts in a structured data format. Extracting facts from source text of different
languages has not received as much attention as monolingual fact extraction [83]. KGs can support
multilingual fact linking and extraction, which is important in many downstream tasks such as QA.
The REFCOGLink model [57] is based on linking facts expressed in a sentence to the corresponding
fact labels (i.e., language-specific representation of the fact) in the KG and outperforms standard
retrieval + re-ranking. The CLFE (Cross-Lingual Fact Extraction) [1] model demonstrates strong
performance in multilingual and cross-lingual fact extraction tasks, specifically in English and
seven other LR Indic languages. It achieves an F1 score of 77.46% using two different approaches.
The first approach is a classification-based method, where the model first extracts the object or
“tail” of the fact and then predicts the relationship between the extracted tail and the subject.
The second approach is a generative one, which combines both tasks into a single step. CLFE
makes use of the XAlign dataset, which contains 0.45M pairs across 8 languages, of which 5,402
pairs have been manually annotated.

Multilingual Relation Classification is the task of extracting relations (i.e., triples in the
context of KGs) from natural language text in various languages. Multilingual relation classification
has been explored through the method of prompting, which can receive promising results even
for lower-resourced languages [12]. One of the challenges for the task of multilingual relation
classification is the lack of multilingual datasets and benchmarks. The dataset RELX [56] aims to
close this gap by providing a baseline model and benchmark for English, French, German, Spanish,
and Turkish. IndoRE [71] is a comprehensive dataset comprising 21,000 gold-tagged sentences for
named entity recognition (NER) and relation extraction (RE) in three Indian languages (English,
Bengali, Hindi) as well as English. The dataset provides valuable resources for advancing research
in relation classification of Indian languages, which is crucial for KG augmentation and Question
Answering systems. The authors employ multilingual BERT and transfer learning techniques, and
propose TransRel, a multilingual system for joint named entity recognition (NER) and relation
extraction (RE) with interlingual transfer.

Neural Machine Translation translates text from a source to a target language using deep
learning architectures. The performance of Neural Machine Translation (NMT) systems can be
enhanced through the integration of KGs, particularly when translating domain-specific expressions
and named entities. For example, Moussallem et al. [68] introduce an approach incorporating the
KG DBpedia into NMT models, resulting in considerable improvements in performance of these
NMT models.

Automatic KG creation for low-resource languages has been leveraged as another possible
route to tackle the lack of low-resource language KGs. HKC has been recently introduced as
a framework that constructs a knowledge graph for the Hindi language [88] using various NLP
techniques. FarsBase, a Persian multi-source knowledge graph [4] is another example of such an
application. To construct such a KG, the authors apply a number of techniques to integrate data
from Wikipedia and both structured and unstructured data from the web.
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Overall, KGs offer immense potential in supporting multilingualism, which in the future will
likely also increasingly benefit low-resource languages. By constructing multilingual KGs, aligning
entities across languages, and employing techniques such as machine translation and cross-lingual
extraction, KGs can effectively bridge the knowledge gap and facilitate access to information in
low-resource languages. These advancements not only empower speakers of all languages but also
contribute to a more inclusive and diverse knowledge ecosystem.

5 Open Problems

We have introduced existing approaches to close the language gap in the domain of KGs. We
described multilingual KGs, their challenges with regard to low-resource languages, and approaches
to improve and use them. However, there remain a number of open challenges, which we will
describe here to build a foundation for future work and point out some of the pressing issues in
the domain of multilingual KGs.

5.1 Regarding the State of Multilingual KGs
The lack of multilingual information in KGs should be addressed in the future, and while there
are a number of approaches seeking to mitigate this problem, none have thus far succeeded in
addressing this important challenge. One of the notable issues with current KGs is that they
are typically not aligned across languages, given the usage of different language ontologies. This
misalignment poses a large challenge when merging knowledge across languages. Addressing the
cross-lingual alignment of ontologies is one of the crucial challenges that will build the foundation
for the wide availability of cross-lingual information.

Merging KGs across languages, even with aligned ontologies, remains a non-trivial task. Not
only is there a need to identify alignments at the entity and class level. Future studies are
needed to understand which languages are covered to which extent in the different KGs and how
these different KGs with potentially different topic-focus could be merged harmonically without
centering one language in the approach.

Another open problem, especially for community-edited KGs, is the question of how to interest
a larger, more diverse community in the contribution to the knowledge stored in the KG. If a
diverse community is contributing, naturally more languages will be covered. Creating incentives
and showing how the information could be used, such as building tools based on KG information,
could be a way to address this challenge. However, future work will have to better understand
existing incentives and broaden them.

5.2 Regarding Low-resource Languages
While there have been approaches suggested to address the lack of languages covered in KGs (see
Section 4), there is currently a glaring gap when it comes to low-resource languages. Having very
little available information in any language is a challenge for all applications, especially neural- or
deep-learning-driven ones, such as large language models. This then also raises the question of
optimal strategies for KG construction, such as human-in-the-loop procedures due to limited and
overly noisy data and appropriate incentive strategies for manual modelling. KGs could contribute
to closing this gap to some extent by providing central storage of multilingual, linked, reusable
data. One of the advantages of using KGs may be that while a fact is not yet translated to a
lower-resourced language, it already exists in another language, and by linking the data across
languages, these facts can be reused even before translation. However, the challenges described
in Section 3.2 in the form of assumptions of language modelling need to be urgently addressed
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for under-represented languages to be able to catch up in the content representation. From an
ontology engineering perspective, it is important to focus on representing the diversity of language
structures accurately, lest the technique limits its use to applications in a few languages only
rather than the breadth of opportunities across the world.

5.3 Regarding Applications of Multilingual KGs
For the reuse of multilingual KGs in downstream tasks, there are still many opportunities to
better integrate multilingual KG information with approaches from the field of NLP and with
multi-modal approaches. Reusing the knowledge graph information is not only beneficial to the
applications that use them but can also create an incentive to create better, more diverse KGs. To
ensure this, the current information needs to be accurately curated, and multilingual information
should be put into focus for future approaches in increasing KG coverage. Understanding coverage
in different low-resource languages as well as reusing this information is a promising path forward
for future work that can have a real-world impact.

6 Conclusion

In this paper, we reviewed different aspects of multilingual KGs; we established the state of
multilingual KGs by summarising the guidelines on creating multilingual KGs; established the
challenges with regards to low-resource languages; described applications for and using multilingual
KGs; and finally pointed out open problems derived from our survey of multilingual KGs. The
literature provides clear guidelines and ontologies for multilingual information and lexicographic
data. Yet, there is a severe lack of multilingual information in existing KGs and a bias toward
English-language information. Particularly for low-resource languages, KGs could be useful for
closing information gaps. However, we concluded that there are currently major challenges
that need to be addressed regarding low-resource language integration into KGs, such as the
English-centric structure and content of existing KGs.

Current approaches to improve language coverage of KGs, such as machine translation of KG
labels or leveraging KG embeddings to align monolingual KGs across languages, are a promising
direction to make the KG more diverse. However, these approaches are currently limited to a
small set of languages and need to be explored for low-resource languages with a focus on the
challenges described. Future work has to focus on the inclusion of non-European languages from
the very structure of KGs, including them in the considerations of how knowledge is modelled
in KGs. Expanding language inclusivity holds immense importance as it paves the way for a
more accessible and all-encompassing digital landscape, enabling the internet to cater to a diverse
array of communities. While currently language coverage, especially for low-resource languages, is
limited, there are viable avenues for progress. If these pathways are pursued, KGs could serve
as a technology to realise the vision of a more equitable and inclusive internet, facilitating the
exchange of knowledge across language communities.
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