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Abstract
Compared to black-box neural networks, logic rules
express explicit knowledge, can provide human-
understandable explanations for reasoning pro-
cesses, and have found their wide application in
knowledge graphs and other downstream tasks. As
extracting rules manually from large knowledge
graphs is labour-intensive and often infeasible, auto-
mated rule learning has recently attracted signi-
ficant interest, and a number of approaches to
rule learning for knowledge graphs have been pro-
posed. This survey aims to provide a review of
approaches and a classification of state-of-the-art

systems for learning first-order logic rules over know-
ledge graphs. A comparative analysis of various
approaches to rule learning is conducted based on
rule language biases, underlying methods, and eval-
uation metrics. The approaches we consider include
inductive logic programming (ILP)-based, statist-
ical path generalisation, and neuro-symbolic meth-
ods. Moreover, we highlight important and prom-
ising application scenarios of rule learning, such as
rule-based knowledge graph completion, fact check-
ing, and applications in other research areas.
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1 Introduction

Knowledge graphs are a popular form of knowledge bases that describe facts about real-world
entities and their relations. They serve as powerful tools for organising and modelling information
in a way that allows for efficient storage, retrieval, and reasoning. Recently, they have garnered
significant attention in both academia and industry. Many public knowledge graphs have been
developed, such as Freebase [8], WordNet [46], YAGO [69], DBPedia [3], and WikiData [76]. They

1 The corresponding author.

© Hong Wu, Zhe Wang, Kewen Wang, Pouya G. Omran and Jiangmeng Li;
licensed under Creative Commons License CC-BY 4.0

Transactions on Graph Data and Knowledge, Vol. 1, Issue 1, Article No. 7, pp. 7:1–7:23
Transactions on Graph Data and Knowledge

T G D K Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:hong.wu2@griffithuni.edu.au
https://orcid.org/0009-0000-8933-3140
mailto:zhe.wang@griffith.edu.au
https://orcid.org/0000-0002-1367-7139
mailto:k.wang@griffith.edu.au
https://orcid.org/0000-0002-0542-3761
mailto:p.g.omran@anu.edu.au
https://orcid.org/0000-0002-4473-3877
mailto:jiangmeng2019@iscas.ac.cn
https://orcid.org/0000-0002-3376-1522
https://doi.org/10.4230/TGDK.1.1.7
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/tgdk
https://www.dagstuhl.de/tgdk
https://www.dagstuhl.de


7:2 Rule Learning over Knowledge Graphs: A Review

highlight the pivotal role these graphs play as expansive and valuable resources, supporting a
wide array of applications in artificial intelligence, data analysis, and knowledge representation.
Additionally, numerous commercial knowledge graphs have been created, such as Google KG [18],
Microsoft Satori [34], and Facebook Graph Search [19]. These knowledge graphs have demonstrated
their capability to provide more efficient services for other products in their companies. They
enable efficient querying and reasoning, allowing users and applications to gain valuable insights
and make informed decisions based on interconnected knowledge. Many knowledge graphs are
large-scale with millions of entities and facts. For instance, in the case of the DBpedia Core
Release, the 2016-04 edition of the DBpedia dataset, it contains 6.0 million entities and 9.5 billion
triples. These numbers underscore the substantial growth in both the size and complexity of
knowledge graphs. Some medium-sized knowledge graphs encompass tens of thousands of entities
and several hundreds of thousands of facts.

The rise of knowledge graphs is intricately linked to the advancement of the Semantic Web [7].
Abiding by the triple-based definition of the Semantic Web, a knowledge graph is a set of RDF
triples such as (Allen, livesIn, NewYork), which means Allen lives in the city of New York. As
highlighted by some researchers [49, 6], a knowledge graph goes beyond being a simple graph
database. Data management and reasoning in knowledge graphs can be empowered by a layer
of conceptual knowledge, known as the ontology layer, and such conceptual knowledge can be
represented as logic rules. For instance, consider a rule 0.9 : hasBirthPlace(x, y)∧isRegionOf(y, z) →
hasNationality(x, z). This rule implies that if x was born in the place y of country z, then x may
have the nationality of z with a confidence degree of 0.9. Such rules can be used for reasoning
over knowledge graphs, enabling the prediction of new facts based on existing ones. Unlike
black-box deep neural networks, rules offer explicit high-level knowledge and can provide human-
understandable explanations for the reasoning processes. However, crafting rules manually for large
knowledge graphs is challenging, if not practically impossible. Therefore, the automatic extraction
of high-level rules becomes both useful and important for knowledge graphs. The learned rules
can be directly applied to reasoning in knowledge graph completion tasks. Additionally, they can
be indirectly utilised to enhance the interpretability of neural network models for knowledge graph
reasoning.

Learning Horn clauses has been studied extensively in the inductive logic programming (ILP)
literature [47, 47, 15]. In the context of ILP-based approaches, first-order Horn rules are explored
by systematically exploring the rule space through various refinement operators. Classical ILP
systems [92, 68] cannot be used directly to handle knowledge graphs due to the lack of negative
examples and the large data sizes. Recently, ILP-based rule learners such as AMIE [24] and
its extensions [23, 37] have been developed with the aim of handling knowledge graphs. Thus,
predicates in rules learned by AMIE+ are binary. This language bias helps significantly reduce the
search space in rule learning. They use plausibility metrics adapted from association rule mining
to address the lack of negative examples. ILP-based rule learners for knowledge graphs usually
assign a confidence score for each learned rule. Such approaches are also referred to as Probabilistic
Inductive Logic Programming (PILP) in the literature [65]. Another group of approaches generate
candidate rules by directly exploring frequent patterns or paths of different granularity. A typical
system in this group is AnyBURL [45, 44], which samples paths within knowledge graphs and
generalises them to form rules. It generalises path instances by substituting entities from sampled
paths with variables, thus forming rule patterns. The effectiveness of such an approach relies
on the ability to sample representative paths and apply suitable statistical metrics. Apart from
instance-level paths, some other rule learners explore ontological-level paths within knowledge
graphs [13, 12, 56], which significantly reduces the search space of paths. Recently, there has
been an emerging interest in integrating neural networks into the realm of rule learning. Neural



H. Wu, Z. Wang, K. Wang, P. G. Omran and J. Li 7:3

networks have shown remarkable success in various machine learning tasks and can automatically
learn feature representations from raw data, including knowledge graphs. These neuro-symbolic
approaches have the advantage of simultaneously learning both rule structures and parameters.
Neural LP [89] is the first attempt to propose a framework combining both of the learning in an
end-to-end differentiable model. Another group combines neural network models with other rule-
learning strategies through knowledge graph embeddings, like EMBEDRULE [88] and RLvLR [51].
The incorporation of embedding can improve the scalability of rule learning over large knowledge
graphs.

In this paper, we survey major approaches to learning first-order Horn rules over knowledge
graphs, aiming to serve as a resource for researchers and practitioners in rule discovery over
knowledge graphs. We are unaware of any similar survey paper on automated rule learning over
knowledge graphs. More specifically, this paper provides a comprehensive review of state-of-
the-art rule learners. It presents a comparative analysis of various approaches to rule learning,
considering factors such as language bias, evaluation metrics, and underlying methods. Secondly,
a categorisation of rule learning methods and techniques is provided. The surveyed approaches
encompass three main categories: ILP-based, statistical path generalisation, and neuro-symbolic
methods. Thirdly, this survey investigates the important and promising application scenario of
logic rules, offering valuable insights into the current and future directions of this important field.
By providing a comprehensive overview of the state-of-the-art approaches and highlighting the
challenges and opportunities in rule learning, we hope to inspire further research and innovations
in this area. We believe that this survey will facilitate knowledge exchange and collaboration
among scholars and industry professionals, ultimately leading to significant contributions to the
field of rule learning and beyond.

The rest of this paper is organised as follows. Section 2 provides an overview of our survey
paper, introducing the definition of knowledge graphs, first-order Horn rules, a classification of
learning methods, and the rule evaluation metrics. Sections 3, 4 and 5 focus on three categories of
rule learning methods, respectively. Section 6 introduces the applications of first-order Horn rules
automatically learned by rule learners. Finally, we discuss the future directions of rule learning
and conclude the paper in Section 7.

2 Overview

In this section, we will first fix some definitions and notations in knowledge graphs and rule
languages that will be used in the paper. Then, we formulate the problem of rule learning in
knowledge graphs, and then propose a classification of rule learning methods. A method of
rule learning is essentially a process of ranking candidate rules. So, we will also introduce three
confidence measures of rules before we discuss specific methods of rule learning later.

2.1 Knowledge Graphs and Rules
In this subsection, we introduce the basics of knowledge graphs and rules.

Knowledge graphs represent real-world entities, such as persons and places, and binary relations
among them. A knowledge graph (KG) is often expressed as a set of triples of the form (s, p, o),
where entities s and o are called the subject and object of the triple, respectively, and p is
the relation. A KG is essentially a directed multi-relational graph by viewing the entity (the
subjects and objects) as the vertices and a triple (s, p, o) as an edge from s to o with the label p.
For instance, a triple (airline-NY, hasBase, airport-JFK) describes that the two entities airline-NY
and airport-JFK are connected by the relation hasBase. Following the convention in knowledge
representation, a triple is also denoted as a fact p(s, o).

TGDK
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Figure 1 An example knowledge graph.

Formally, let E and P be respectively the sets of entities and relations in a KG G. For a
relation p, p− denotes its inverse, i.e., triple (runway-408, hasRunway−1, airport-JFK) is equivalent
to (airport-JFK, hasRunway, runway-408). And P∗ denotes the set of the relations and their inverse
relations, i.e., P ∪ {p− | p ∈ P}. In this paper, we consider the class of first-order Horn rules,
which is sufficiently expressive for many practical applications in the Semantic Web and AI, and
allows efficient reasoning algorithms. Moreover, in KGs, only binary and unary relations are
considered. While a binary relation connects two entities, a unary relation represents a type (or
class) of entities. In first-order logic, a relation is expressed as a predicate. Whenever no confusion
is caused, we use these two terms alternatively.

A term is either an entity or a variable. If p is a binary relation, p(t1, t2) is an atom, where t1
and t2 are terms. Similarly, if p is a unary relation, p(t) is an atom, where t is a term.

A first-order Horn rule r is of the form

b1 ∧ . . . ∧ bn → h (1)

where h, b1, . . . , bn are atoms. The atom h is the head of r, denoted head(r), and the conjunction
of atoms b1, . . . , bn is the body of r, denoted body(r). Intuitively, the rule r reads that if b1, . . .,
and bn hold, then h holds too. The length of the above rule body is n (the number of body atoms
in the rule).

Due to the enormous search space of first-order Horn rules over large KGs, existing rule learning
approaches often adopt certain language biases to restrict the forms of rules to learn, such as
constraining the maximum length of rules, to effectively reduce the search space. This enables the
rule-learning algorithm to be more efficient and applicable in practical scenarios. These constraints
strike a balance between the size of the search space and the expressiveness of rules.

A most common language bias is to learn rules that represent path patterns in KGs, that is,
the class of closed-path (CP) rules [81, 51]. Intuitively, in a CP rule, the body atoms form a path
from the subject to the object of the head atom (involving only variables not entities). Formally,
a closed-path rule is of the form

p1(x0, x1) ∧ p2(x1, x2) ∧ · · · ∧ pn(xn−1, xn) → p(x0, xn), (2)

where p ∈ P, pi ∈ P∗ (1 ≤ i ≤ n) and xj ’s (0 ≤ j ≤ n) are variables. Note that CP rules allow
recursion, i.e., the head predicate can occur in the body. The advantage of closed-path rules lies
in their ability to capture specific and meaningful patterns in the data. These rules can reveal
intricate dependencies, cyclic patterns, and sequential behaviours present in the data, providing
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deeper insights into the underlying associations. Focusing on CP rules reduces the search for
candidate rules to the problem of path finding and ranking in KGs. This type of rules have been
widely adopted by major rule learners [88, 25, 13, 51, 56].

As the class of CP rules is too limited for some applications, one way to expand the class of
CP rules is to allow rules that are closed and connected. Two atoms in a rule are connected if
they share a variable or an entity. A rule is connected if every atom in the rule is connected to
another atom. A variable in a rule is closed if it appears at least twice in the rule. A rule is closed
if all of its variables are closed.

To avoid learning rules with unrelated atoms, some methods, such as AMIE and its variants [24,
23, 37], require that the graphs of learned rules to be connected. In addition, to avoid having
variables with existential quantifier in the rule head, a learned rule must be closed. For example,
the rule p1(x0, x1) ∧ p2(x1, x2) → p(x0, x1) is connected but not closed, while the rule p1(x0, x1) ∧
p2(x2, x2) → p(x0, x1) is closed but not connected. By the definition, it is clear that a CP rule is
both connected and closed, but not vice versa. For example, p1(x0, x1) ∧ p2(x1, x2) ∧ p3(x0, x1) →
p(x0, x2) is both connected and closed, but not a CP rule.

Another natural extension of CP rules is to allow unary predicates, i.e., classes (or types),
in the rules [82]. Such a rule also describes a path pattern in the KG, but allows to specify
the classes (or types) of the nodes on the paths. The rule person(x0) ∧ hasBirthPlace(x0, x1) ∧
city(x1) ∧ isRegionOf(x1, x2) ∧ country(x2) → hasNationality(x0, x2) is a typed rule. It specifies the
classes (types) of x0, x1, x2 to be Person, City, Country.

Some rule learners can learn more expressive rules beyond first-order Horn rules, allowing
negations [21, 31, 75], numeric values [54, 77], temporal values [52, 42], etc. Such extensions
are useful for practical applications. Specifically, some approaches can learn rules that involve
comparisons among numeric values, for example, hasBirthYear(x, v0) ∧ hasBirthYear(y, v1) ∧ v0 >

v1 → younger(x, y). This rule says if a person x was born after another person y, then x is
younger than y. Here, the relation hasBirthYear takes literal numbers as its object datatype. Some
approaches focus on learning nonmonotonic rules (or negated rules) with negated atoms in the
rule body, such as bornIn(x, y) ∧ not immigrate(x, z) → livesIn(x, y) says that a person x who was
born in a place y and is not known to have migrated to z lives in y. Moreover, temporal rules
can be learned over temporal KGs where every atom has a timestamp. For example, the rule
bornIn(x, y, t) → diedIn(x, y, t + 80) indicates that if a person x born in city y at timestamp t

usually die in the same place at time t + 80.

2.2 A Classification of Rule Learning Methods
The task of rule learning is to automatically extract a set of first-order logic Horn rules over a
given KG. Formally, given a KG G, a rule learning system, a.k.a. rule learner, learns a set of rules
r of the form b1 ∧ . . . ∧ bn → h with a confidence degree 0 ≤ αr ≤ 1 associated with each rule r.
The relations and (possibly) entities in r are from G, and r is considered plausible if there are
many instances of r obtained by substituting the variables in r with entities in G, such that the
atoms in these instances are facts occurring in the KG G. The more such instances exist the more
plausible r is. The confidence degree αr is calculated to reflect the plausibility of r, i.e., the more
plausible r is the higher αr should be.

Rule learning involves both learning the rule structures and estimating their plausibility. For
example, in traditional Inductive Logic Programming, rule structure learning is achieved by
systematically exploring the rule space by adding, updating, or deleting atoms at a time in the
rule bodies. Rule plausibility is measured via example coverage by the set of learned rules. That
is, given two sets of positive examples (true facts in the data) and negative examples (false or
absent facts), the rule learner aims to induce a set of rules that cover as many positive examples

TGDK
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and as few negative examples as possible. Yet, due to the large sizes and the lack of negative
examples in KGs, the traditional ILP methods of traversing rule space for structure learning and
measuring example coverage for plausibility estimation are not directly applicable to KGs.

To handle the large sizes, complexity, incompleteness and dynamics of KGs, many novel and
efficient rule learners have been developed. We classify them by two dimensions as shown in
Figure 2, according to their structure learning and confidence measure methods.

Figure 2 The categorisation of rule learners.

According to the rule structure learning methods, we can broadly categorise existing methods
into three groups: the inductive logic programming (ILP)-based approaches, which use refinement
operators to guide the search in the rule space, the statistical path generalisation methods, which
extract frequent patterns from sampled paths or sub-graphs of the KGs, and the neuro-symbolic
approaches, which directly or indirectly utilise neural networks to learn rules. We will introduce
these three groups of methods with their representative works in Sections 3, 4, and 5.

According to the confidence measures, we classify the existing methods into three groups:
the example coverage measures, which are in the same spirit as ILP approaches, by generating
negative examples from KGs via a form of closed world assumption; the statistical confidence
measures, which adapt statistical measures from association rule mining to address the lack of
negative examples; and the confidence learning approaches, which learn confidence degrees as
parameters of some neural networks. We will discuss these confidence measures in further detail
in the remainder of this section.

Generally speaking, earlier works on KG rule learning are mostly ILP-based or statistical path
generalisation methods, while most recent ones are largely neuro-symbolic methods. Statistic
confidence measures are the most widely used, as they do not rely on the existence of negative
examples and have better interpretability, i.e., statistical meanings. While confidence learning is
only adopted by neuro-symbolic methods, example coverage measures have also been employed
in statistical path generalisation methods. Interestingly, we have not found an ILP-based rule
learner for KGs that adopts the example coverage measure which originates from ILP.
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2.3 Rule Confidence Measures
Rule confidence measures play a crucial role in rule learning, as they indicate the plausibility of
the learned rules, and the accuracy of such measures is critical for downstream tasks based on the
learned rules. There are three main approaches for rule confidence measures, example coverage,
statistical, and confidence learning measures.

2.3.1 Example Coverage
Traditional rule learning approaches, such as inductive logic programming (ILP), typically measure
the confidence of rules via their coverage of observed positive and negative examples. It views a
collection of rules as a classification model for the observed examples, and the goal of rule learning
is to find a set of rules that cover as many positive examples as possible and as few or zero negative
examples as possible. Specifically, for a first-order Horn rule r, intuitively a positive example is a
tuple of entities a that satisfy the head of the rule head(r), i.e., when the variables x in h are
substituted with a, the resulting atom is a fact in the KG. Similarly, a negative example is a tuple
of entities a′ that do not satisfy the head of the rule head(r), i.e., the substituted atom is not
a fact in the KG. The body of r covers (or simply say r covers) a tuple of entities a if when x
is substituted with a, there is a way to substitute the other variables in r to make all the facts
obtained from the body of r facts in the KG.

Given two sets A+ and A− of respectively positive and negative examples, let exA+(r) and
exA−(r) consist of respectively positive and negative examples covered by r. Formally, for a set of
rules R with the same head h, the coverage of R w.r.t. A+ and A− is defined as

cover(R, A+, A−) = β ·
|
⋃

r∈R exA+(r)|
|A+|

− (1 − β) ·
|
⋃

r∈R exA−(r)|
|A−|

. (3)

Some rule learning approaches measure the confidence of individual rules based on variants
of the coverage [54, 56], by applying it to individual rules r instead of a rule set R. However, a
major challenge is that KGs adopt the Open World Assumption (OWA), that is, missing triples
are not necessarily false but just unknown, which makes them inherently lack negative examples.
To address this issue, certain negative examples generation strategies are employed [54, 56]. For
example, negative examples are generated in [54] by considering (s, p, o) a negative example if it
does not occur in the KG and at least one triple of the form (s, p, o′), (s, p′, o) or (s′, p, o) occurs in
the KG, essentially following the PCA assumption (will be discussed in Section 2.3.2). Although
several safeguards are employed in the negative example generation processes, they may still
introduce noisy examples.

2.3.2 Statistical Confidence
Inspired by association rule mining and viewing logic rules as frequent patterns in KGs, some
statistical measures such as support and confidence have been adapted for rule learning over
KGs [24, 23, 37]. One advantage of such measures is that negative examples are not required.

For a first-order Horn rule r of the form (1), exH(r) consists of all the tuples of entities a that
satisfy the head of the rule h. Similarly, exB(r) consists of all the tuples of entities a covered by
the body or r, i.e., when the variables x in the head h is substituted with a, there is a way to
substitute the other variables in r to make all the facts obtained from the body of r facts in the
KG. Then, the support of r is defined as supp(r) = |exH(r) ∩ exB(r)|. That is, the support of r

is defined as the number of entities that satisfy both the head and the body of r. The standard
confidence (SC ) and head coverage (HC ) of r are defined as follows

TGDK
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sc(r) = |exH(r) ∩ exB(r)|
|exB(r)| and hc(r) = |exH(r) ∩ exB(r)|

|exH(r)| (4)

SC is the normalisation of support through the number of entity pairs that satisfy the body, while
HC is the normalisation of support through the number of entity pairs that satisfy the head. The
higher the values are for these measures, the more plausible the rule is.

These statistical measures have been widely applied to estimate the plausibility of rules learned
from KGs [23, 13, 51, 31, 44, 94, 71]. And several variants of these measures have been proposed
for better estimations.

It is argued that the standard confidence (SC) is not suitable for KGs that are highly incomplete.
Some approaches refine it by introducing partial completeness assumption (PCA) [24, 23, 37].
PCA assumes the KG has complete information about an entity w.r.t. a relation if the KG
contains at least one fact about the entity and relation. For example, if it is mentioned in KG
that (Allen, worksFor, airline-NY), then we assume that he only has one job in New York airline.
Some other variants along this line include completeness confidence [72, 73], which proposes to rely
on explicitly incompleteness information to determine an instance as a counterexample, and soft
confidence [81] which refines the SC with the entity type information. These statistical measures
have also been extended to other forms of rules, such as negated rules [21, 75, 31], numerical
rules [54, 77], temporal rules [52], and typed rules [82].

2.3.3 Confidence Learning

Traditionally, rule learning can be divided into two main steps: rule structure learning and rule
confidence estimation. Recently, some approaches based on neural networks have been developed
to perform rule structure and confidence learning simultaneously [89, 77, 62, 14, 87]. These
approaches learn the confidence degree of a rule r as a learnable parameter αr ∈ [0, 1], which will
be updated during the training of the neural networks. This allows the trained neural networks to
score any potential rules in the language bias and tightly couples the rule structure learning and
confidence learning.

These approaches typically model the learning process through rule-based reasoning tasks, e.g.,
using rules to infer a triple. Hence, the objective function of the neural network is to assess the
plausibility of each possible triple so that those existing in the KG have the highest plausibility.
The input of the neural networks includes some latent representations (called embeddings) of the
entities and relations in the KG, denoted e for e ∈ E and p for p ∈ P. For a triple (s, p, o) and a
rule r with its confidence αr, let score(s, p, o, r) be a scoring function defined on the embeddings
and the rule to score the plausibility of the triple. The neural networks are trained to update the
parameters αr that maximize scores for all the triples in the KG G. This allows the neural networks
to simultaneously learn both rule structure r and the rule confidence degrees αr. By learning the
confidence of rules as a parameter, the model can capture the uncertainty and ambiguity in the
data, allowing it to assign appropriate confidence to different rules. This adaptability makes the
rule-learning process more data-driven and helps the model to make more accurate predictions
and better generalisations on unseen data. We will defer the detailed discussions of neural-based
structure and parameter learning to Section 5.

In the following sections, we will talk about the three major groups of rule learning methods:
ILP-based, statistical path generalisation, and neuro-symbolic methods.
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3 ILP-based Methods

The classical ILP methods learn rule structures by systematically exploring the rule space (either
in a top-down or a bottom-up manner) through refinement operators, such as adding, updating,
or deleting one atom at a time in the rule bodies. However, existing ILP rule learners face at least
two challenges when they are applied to KGs. First, the traditional rule search methods have
difficulties in scaling to large KGs due to their high computational complexity. A KG can be much
larger in size than datasets typically considered in the ILP literature. As a result, classical ILP
systems like ALEPH [68] and QuickFOIL [92] cannot be used directly to perform rule learning
over medium-sized or large KGs. Moreover, in traditional ILP settings, both positive and negative
examples are normally provided for evaluating the rule coverage. However, KGs only contain
positive facts, and obtaining negative examples becomes more challenging due to the Open World
Assumption (OWA), which assumes that facts missing from the KG are not necessarily false but
just unknown.

In recent years, many ILP-based rule learning methods have been proposed in response to these
challenges. The AMIE series are notable representatives in this line of research, which introduces
novel rule confidence measures to avoid the step of generating negative examples. Another line of
research within ILP addresses the lack of negative examples by generating them. They focus on
learning rules that can express exceptions or negations, known as nonmonotonic logic programs.

3.1 Without Negative Examples

As traditional ILP methods cannot handle rule learning due to the scale of search space and the
lack of negative examples, recent ILP-based rule learners such as AMIE [24, 23, 37] tackle these
challenges in rule learning over KGs by employing certain language biases and new confidence
measures adapted form association rule mining. AMIE, especially its extension AMIE+ [23] is
one of the earliest and most widely referenced KG rule learners.

To reduce the search space, AMIE learns connected and closed rules. The rule structure
learning process of AMIE is a standard ILP top-down search to explore the rule search space.
Top-down rule search starts with a general rule and then refines it by progressively adding more
atoms. Based on defined refinement operators, such as adding atoms to make the rule closed
and connected, it iteratively expands rules. Instead of using standard confidence (SC), AMIE
calculates rule confidence under partial completeness assumption (PCA). If the rule satisfies the
confidence measure thresholds, the rule is selected as a candidate rule.

AMIE+ and AMIE 3 [37] are the extensions of AMIE with a series of improvements and
optimisations that allow the system to run over large-scale KGs. Specifically, AMIE+ speeds
up the rule refinement phase for specific kinds of rules, simplifies the query of support, and
approximates the PCA computations by an upper bound; AMIE 3 utilises an in-memory database
and parallel computation to store and process large-scale KGs.

Some other rule learning methods use enhanced refinement operators for rule search. For ex-
ample, Evoda [84] uses a Genetic Logic Programming algorithm that is combined with Evolutionary
Algorithms (EA) to define refinement operators. Hence, three rule transformation operators are pro-
posed, mutation, crossover and selection. This allows Evoda to learn rules that are not necessarily
closed, e.g., it can learn a rule like owns(x0, x1) ∧ capableOfLanding(x1, x2) → isAircraftOf(x1, x0),
which says if x0 owns x1 that can land on x2, then x1 may be the aircraft of the airline x0. Evoda
also adopts the PCA measure for rule confidence estimation.

TGDK
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3.2 Generate Negative Examples
Some other approaches address the lack of negative examples by generating them, this is particularly
necessary for learning rules with negations, traditionally known as nonmonotonic logic programs [33,
64]. Such rules can express a form of exceptions and support nonmonotonic reasoning.

Exception-Enriched Rule Learning [21] is an ILP-based method that refines learned Horn
rules by adding negated atoms (i.e., exceptions) into their rule bodies. They primarily focus on
mining rules over unary predicates, by converting binary predicates into multiple unary ones.
For example, the binary predicate hasOrigin(·, ·) can be translated into several unary ones like
hasOriginPEK(·) and hasOriginBOS(·). This is because unary predicates are easier to search for
negated atoms. But this makes KG a flattened representation containing just unary facts. To
overcome this problem, Nonmonotonic Relational Learning [75] extends [21] to learn exception
rules with binary predicates in KGs.

The lack of negative examples is essentially related to the incompleteness and noisiness of KGs,
and approaches like RuLES [31] address this through KG embeddings. Compared to AMIE+,
RuLES has two more refinement operators to allow negated atoms in a rule body. From Figure 2,
we can see the rule evaluation for RuLES is a hybrid combination of statistical and embedding-
guided confidence. A weight is used to allow one to choose whether to rely more on the classical
measure µ1 (like standard or PCA confidence), or on the embedding-based measure µ2(Gr, ϕ). Gr

extends G with facts derived from G by applying rule r. So, µ2(Gr, ϕ) capture the information
about facts missing in G that are relevant for r by loss function ϕ(·) pre-trained by KG embedding
and text corpus models.

4 Statistical Path Generalisation

Statistical Relational Learning (SRL) [26] is a subfield of machine learning that focuses on modelling
and learning complex relational data. It combines principles from statistical learning and relational
databases to address learning tasks that involve structured data with rich inter-dependencies
and uncertainty. There are some SRL approaches to learning first-order rules by using heuristic
searching algorithms, for instance, both ProPPR [80, 79] and CoR-PRA [38] are based on the Path
Ranking Algorithm (PRA). Several rule learners have emerged to utilise various path-searching
strategies based on statistics to directly generate rules. In this section, we focus on sampling-based
approaches to mining frequency patterns or path patterns for rule generation in KGs.

4.1 Heuristic Path Sampling
This group of approaches generate candidate rules by directly exploring paths in KGs using
heuristic strategies, and these approaches typically focus on learning CP rules generalised from
KG paths. As many KGs contain scheme-level (a.k.a., ontological) knowledge such as entity types
as well as relation domains and ranges, which is different from instance-level knowledge about
relations between individual entities. So, a KG containing ontological knowledge can be split into
the ontology graph and the instance (sub)graph.

Given a KG G = GO ∪ GI , GO is the ontology graph and GI is the instance graph. The instance
graph GI has entities as vertices and describes instance-level knowledge about entities and their
relations; for instance, a triple (airline-NY, hasBase, airport-JFK) describes that the two entities
airline-NY and airport-JFK are associated by the relation hasBase. GI also describes the classes of
entities, such as a triple (airline-NY, rdf:type, Airline) expressing that airline-NY is a member of the
class Airline. The ontology graph GO, on the other hand, has classes as vertices and describes
schema-level (or ontological) knowledge about the relations between classes. For example, triple
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(Airline, rdfs:subClassOf, Organisation) says that class Airline is a subclass of Organisation. Also,
the two triples (hasBase, rdfs:domain, Airline) and (hasBase, rdfs:range, Airport) state that relation
hasBase has a domain type Airline and a range type Airport. This can be expressed as an edge
(Airline, hasBase, Airport) in the ontology graph.

A path is a sequence of triples (s1, p1, o1), (s2, p2, o2), . . . , (sn, pn, on) in G where oi = si+1
(1 ≤ i < n). There are two kinds of paths in KGs. A instance path (resp., ontological path) is
a path where si, oi are entities (resp., classes). Existing path exploration methods can thus be
classified by whether the paths are from the ontology graph or the instance graph. Generalising
instance paths to form rule patterns is also called a bottom-up approach, while generating rules
from ontological paths is called a top-down approach.

4.1.1 Bottom-up Approaches
The AnyBURL series [45, 44, 43] are typical bottom-up approaches, which learn rules by sampling
and generalising instance-level paths. To generalise path instances to form rule patterns, AnyBURL
substitutes entities from sampled paths in the KG with variables. For example, the paths
worksFor(Allen, airline-NY), hasHeadquater(airline-NY, NewYork) and livesIn(Allen, NewYork) can be
generalised to a rule worksFor(x, y) ∧ hasHeadquater(y, z) → livesIn(x, z). Unlike the bottom-up
approaches in ILP, the generalisation does not add or delete atoms but only substitutes their
parameters. This bottom-up approach allows AnyBURL to learn CP rules with constants (i.e.,
non-substituted entities) in predefined places, e.g., worksFor(x, y) ∧ hasHeadquater(y, NewYork) →
livesIn(x, NewYork). Due to the huge space of semi-grounded CP rules, it is infeasible for AnyBURL
to systematically explore the whole search space. Instead, it introduces an anytime algorithm where
users can specify the learning time. AnyBURL is much more efficient and effective for rule learning
in the sense that it is able to learn more rules in a shorter time than most existing rule learners. For
the task of link prediction in KGs, AnyBURL also outperforms many embedding-based methods.
In addition, Reinforced AnyBURL[43] is an extension of AnyBURL that introduces reinforcement
learning to find more reasonable rules earlier. To achieve this, it incorporates three different
reward strategies based on statistical confidence measures to guide the sampling process.

Another example of bottom-up approaches is RuDiK [54]. Different from AnyBURL, it starts
from some positive examples and searches the paths connecting the subjects and objects in the
positive examples using A∗ search. In this approach, the rule generation is guided by assigning a
so-called marginal weight to each path. In each iteration, the method picks the most promising
paths (that is, paths with minimum marginal weight) in the queue of invalid paths. Such paths
are expanded and evaluated. If valid, it is added to the output and not further expanded. And
the resulting invalid paths will be put back in the queue. This process continues until the queue
is empty. RuDiK extends the language bias to allow ⊥ in the rule heads and literal comparison
in the rule bodies. Thus, it can learn constraints as well as rules. To learn rules with literal
comparison, it adds comparison edges between pairs of literals of the same type and treats the
comparison operators as normal predicates. Unlike AnyBURL using SC for confidence estimation,
RuDiK adopts ILP-style example coverage metrics.

4.1.2 Top-down Approaches
Rule learners exploring ontological paths in KGs include Ontological Pathfinding [12], ScaLeKB [13],
and RARL [56]. They construct path patterns directly from ontology graphs, and the space
of ontological paths is much smaller than that of instance paths. For example, the ontology
path hasBirthPlace(Person, City), isRegionOf(City, Country) and hasNationality(Person, Country) can
be generalised to a rule hasBirthPlace(x0, x1) ∧ isRegionOf(x1, x2) → hasNationality(x0, x2).
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ScaLeKB extends Ontological Pathfinding and is a typical example of top-down approaches.
It achieves its efficiency by storing candidate rules in relational tables according to structural
equivalence. Two first-order rules are defined to be structurally equivalent if the number of body
predicates of the rule and the position of the variable are the same. After that, the rule mining
algorithm can process the join queries and partition tables into smaller inputs in parallel, so as to
break the mining tasks into smaller independent sub-tasks with Spark.

However, ScaLeKB typically uses type information as hard constraints on the candidate rules,
i.e., each entity going through the path must belong to some type. Yet in practice, type information
in KGs is often highly incomplete, which would make it too restrictive.

Instead of directly searching ontological paths as hard constraints, RARL [56] samples paths
step by step according to the domain and range information of the relations. It reduces the path
search space by computing the relatedness of the relations on the paths based on term frequency-
inverse document frequency (TF-IDF) weighting factor, an information retrieval technique adapted
to KGs. RARL adopts ILP-style example coverage metrics similar to RuDiK. It also samples
a reduced instance graph for fast confidence computation. Moreover, in TyRuLe [82], type
information is present in the learned rules and is encoded as latent representations (known as
embeddings) to guide the rule search.

4.2 Frequent Pattern Sampling
Some techniques in association rule mining have been adapted to first-order rule learning [81, 4, 5].
Such techniques are originally developed to discover meaningful relationships or associations
among items in a dataset and thus, they are modified to generate first-order rules by identifying
statistically frequent patterns occurring in KGs.

RDF2Rules [81] samples the so-called frequent predicate cycles (FPCs). A predicate cycle
is a sequence of variables and predicates of the form (x0, p1, x1, ..., pn, x0), which are essentially
generalised instance paths. If a predicate cycle has a sufficient number of instance paths in the
KG as its instantiations, it is called a frequent predicate cycle. Rules can be generated from
FPCs. For instance, a FPC (x0, hasOrigin−1, x1, hasDestination, x2, hasAlliance, x0) can generate
three rules hasDestination(x1, x2) ∧ hasAlliance(x2, x0) → hasOrigin(x1, x0), hasOrigin(x1, x0) ∧
hasAlliance−1(x0, x2) → hasDestination(x1, x2), and hasDestination−1(x2, x1)∧hasOrigin(x1, x0) →
hasAlliance(x2, x0). RDF2Rules uses a greedy algorithm to iteratively mine FPCs.

SWARM [4, 5] converts triples in KGs into transaction data to apply association rule mining.
Association rules capture frequent items in transaction data. As for KG, they convert a triple
(s, p, o) into a 2-tuple (s, (p, o)) or (o, (p−1, s)). Here both of the s or (p, o) can be seen as
items, also the fact tuple (s, (p, o)) can be one transaction where these two items appear at the
same time. The frequent transaction items can be generalised to rule patterns. For example,
we found two frequent transaction items having a common or mostly overlapping item set like
({Allen, Ally}, (livesIn, NewYork)) and ({Allen, Ally}, (diedIn, NewYork)). They can be generalised
to the association rule {Allen, Ally} : (livesIn, NewYork) → (diedIn, NewYork). Using the type
information like rdf:type and rdfs:subClassOf in the ontology graph, they could generate the rule
{Person} : (livesIn, City) → (diedIn, City).

5 Neuro-symbolic Methods

In this section, we review rule learning methods that utilise deep neural networks (DNNs). While
a rich body of DNN-based methods have been proposed for KG completion, including Graph
Neural Networks and embedding-based methods, there is an increasing interest in developing or
applying DNN-based methods for rule learning over KGs.
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There are two major streams of research in this group. Those that learn both rule structures
and parameters (i.e., rule plausibility degrees) through DNN models [89, 77, 62, 57, 87, 14, 11], and
those that combine DNN models with other rule learning strategies through KG embeddings [88,
51, 94, 82].

5.1 End-to-end Models
In this subsection, we discuss about approaches that use DNNs to learn rules directly by optimising
objective functions that roughly correspond to plausible path patterns.

5.1.1 Neural Logic Programming
Neural LP [89] was among the first attempts to combine rule structure learning and confidence
learning in an end-to-end differentiable model. It is based on a differentiable probabilistic logic
called TensorLog, which models CP rule inferences with sparse matrix multiplications. TensorLog
maps each entity ei ∈ E to a one-hot vector vi ∈ {0, 1}|E| where only the i-th entry is 1, and each
relation pk ∈ P∗ to a matrix Mk ∈ {0, 1}|E|×|E| such that its (i, j) entry is 1 if p(ei, ej) is a fact in
the KG. Then, the application of a rule p1(x, z) ∧ p2(z, y) → p(x, y) on an entity x = ei can be
captured by matrix multiplications M1 · M2 · vi = s. The non-zero entries of the score vector s
represent the instances of y (as entities in the KG) when the rule is applied. Hence, the rule-based
inference is captured as:

max
{αr,Lr}

∑
{x,y}

score(y|x) = max
{αr,Lr}

∑
{x,y}

vT
y (

∑
r

(αr(
∏

k∈Lr

Mkvx))), (5)

where r indexes over all possible rules, αr is the confidence associated with rule r and Lr is an
ordered list of all predicates in this particular rule. The rule structure along with its confidence
αr are learned by maximising the score. Neural LP thus uses gradient-based programming and
optimisation algorithms for the rule learning task. A challenge is a large number of learnable
parameters, and Neural LP reduces the learnable parameters by approximating the optimisation
objective functions. Another limitation of the above approach is that it is bound to learn rules
with a fixed length, and Neural LP addresses this by using an LSTM and attention mechanisms
to learn rules of variable lengths.

Neural-Num-LP [77] extends Neural-LP to learn rules with negations and numeric values. It
also improves Neural-LP by representing some necessary matrix operations implicitly, including
using dynamic programming, cumulative sums operation for numerical comparison features, and
low-rank factorisations for negated atoms. Yet it is found that Neural-LP may inevitably learn
meaningless rules with high confidence that share atoms with quality rules, and DRUM [62]
addresses this issue by utilising bidirectional RNNs to prune the potential incorrect rules.

5.1.2 Decoupling Models
Neural logic programming approaches may still face challenges of exponentially large rule search
space, as well as the computational cost of large matrix multiplications. Also, the complexity of
simultaneously learning rule structures and confidences makes the optimisation of the computation
nontrivial.

To overcome this challenge, new models have been proposed by decoupling the rule structure
learning and confidence learning. RNNLogic [57] uses a separate rule generator module for structure
learning and a reasoning predictor module for confidence learning. Such a separation allows for
more efficient optimisation, by adapting an Expectation-Maximisation (EM ) algorithm [48], which
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enables RNNLogic to handle large KGs effectively. In the same spirit, Ruleformer [87] adopts an
encoder-decoder model based on the Transformer architecture. The logic rules are indirectly parsed
from the reasoning paths by trained parameters, rather than learned directly. Since Transformer
is a sequence-to-sequence model, a converter is used to convert context sub-graph structure into
a sequence. A relational attention mechanism is utilised for encoding multi-relational KGs in
Transformer. Moreover, RLogic [14] proposes a sequential rule learning algorithm into small
atomic models in a recursive way. Given a relation path of rule body [p1, . . . , pn], the relation
path encoder first reduces it into a single head ph by recursively merging relation pairs by a greedy
algorithm. Then, the close ratio predictor bridges the gap between “ideal prediction” ph following
logical rules and “real observation” pt given in KGs. A multi-layer perception (MLP) is used to
learn the probability of replacing a relation pair with a single relation and the ratio that a path
will close. Finally, Reinforcement Rule Learning [11] formalises the rule generation problem as
a sequential decision problem, by adopting reinforcement learning (RL) to generate rules step
by step. As shown in Figure 2, the plausibility of generated candidate rules is estimated with a
hybrid measure combining explicit statistical confidence and latent embedding measures.

It should be noted that many DNN-based models aim to learn instance paths in KGs to predict
missing triples in link prediction. Logical rules are extracted from these instance paths as the side
product [86, 74, 16, 85].

5.2 Embedding-based Methods
Representation learning for KGs has attracted intensive interest, which maps entities, relations, and
types to low-dimensional vector or matrix spaces, called embedding [61, 35], to capture semantic
associations between them. Another stream of rule learning approaches use existing or new KG
embeddings to learn rule structures and combine them with other rule search strategies and/or
rule confidence measures. Utilising embeddings enhances the efficiency of rule learning to allow
the handling of large KGs and improves the interpretability of DNN-based rule learning methods.

The authors of [88] were among the first to suggest using KG embeddings extracted from
DNNs for rule structure learning, called EMBEDRULE [88]. In EMBEDRULE, the plausibility of
rules will be first estimated via an embedding-based scoring function before the more expensive
computation of PCA confidence. It first embeds entities e ∈ E and predicates p ∈ P∗ as respectively
vectors e ∈ Rd and diagonal matrices P ∈ Rd×d. Similar to the bilinear transformation of Neural
LP, the embeddings satisfy eT

1 · P · e2 ≈ 1 for each fact p(e1, e2) in the KG; that is, eT
1 · P ≈ eT

2 .
Consider a CP rule r of the form p1(x0, x1) ∧ p2(x1, x2) ∧ · · · ∧ pn(xn−1, xn) → p(x0, xn), there
should be many instance paths that support it, i.e., p1(e0, e1), p2(e1, e2), . . . , pn(en−1, en) and
p(e0, en) in the KG. Hence, the embeddings satisfy eT

0 ·P1 ≈ eT
1 , eT

1 ·P2 ≈ eT
2 , . . ., eT

n−1 ·Pn ≈ eT
n ,

and eT
0 · P ≈ eT

n ; that is, eT
0 · P1 · P2 · · · Pn ≈ eT

n ≈ eT
0 · P. Since rule r must hold for many such

entities e0, the rule can be captured by P1 · P2 · · · Pn ≈ P. The scoring function for r is defined
via embeddings as follows:

score1(r) = sim(P1 · P2 · · · Pn, P), (6)

and the similarity between two matrices sim(M1, M2) can be defined in various ways such as the
Frobenius norm, i.e., sim(M1, M2) = exp(−||M1 − M2||F ). Based on similar intuitions, different
scoring functions via embeddings for rule learning.

RLvLR [51] uses a KG sampling strategy and path embedding methods, which enables it to
handle large-scale KGs like DBpedia or Wikidata. The step of sampling based on n-hop paths
(for rules with maximum length n) can effectively reduce the search space and can handle massive
benchmarks efficiently. The sampled smaller KG contains only those entities and facts that are
relevant to the target predicate p. Then, RLvLR uses the proposed co-occurrence scoring function
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to guide and prune the search for plausible rules. The selected candidates are kept for the final
evaluation by standard confidence and head coverage. The co-occurrence means that for a rule
of the form p1(x0, x1) ∧ p2(x1, x2) ∧ · · · ∧ pn(xn−1, xn) → p(x0, xn), the objects of pi share many
common entities with the subjects of pi+1, where embeddings of the subjects and objects of pi,
denoted ps

i and ps
i , are defined as the averages of the embeddings of the entities occurring in the

corresponding positions. Their co-occurrence scoring function is defined as:

score2(r) = sim(ps
1, ps) + sim(po

1, ps
2) + · · · + sim(po

n−1, ps
n) + sim(po

n, po). (7)

Later approaches focus on improving the embedding methods to further enhance rule learning
performance [83, 94, 53] or learn more expressive forms of rules [52, 82]. In particular, R-Linker [83]
improves RLvLR with a hierarchical sampling and lightweight embedding method, and IterE [94]
improves the KG embeddings of (especially sparse) KGs through an iterative enhancement process.
Rules are learned from embedding with traverse and select strategies, while embedding is refined
according to new triples inferred by rules. StreamLearner [52] extends RLvLR to learn temporal
rules, and TyRuLe [82] extends the embedding to learn rules with entity type information. Finally,
embeddings have been used to transfer rules from one KG to another KG [53].

6 Applications of Rule Learning

Logical rules have been applied in a wide range of scenarios and play a significant role in Explainable
AI. In this section, we focus on the applications of first-order Horn rules automatically learned by
rule learners.

6.1 Applications in KG Completion
Many existing KGs are large-scale and subject to regular updates. Yet the knowledge contained
in them is still far from complete and contains noise. Manual maintenance of large-scale KGs
is costly, if not impossible. Hence, automated reasoning for KG completion and verification is
essential, including common tasks such as link prediction and fact checking. While link prediction
aims to discover missing links between entities, fact-checking focuses on validating existing triples.
Both tasks are important for building KGs and enhancing the quality of existing KGs.

Rule-based Link Prediction. Link prediction is the task of extracting missing triples in a KG
and thus it is a subtask of KG completion. Formally, given an entity s ∈ E (resp., o ∈ E) and a
relation p ∈ P in a KG, the task is to predict entities o (resp., s) such that the triple (s, p, o) is
plausibly in the KG.

In recent years, a large number of link prediction models have been proposed. Most major
models for link prediction are based on DNNs, especially, embedding models and thus, lack
transparency and explainability. Some researchers proposed to develop explainable link prediction
models that are based on logic rules [23, 88, 45]. Rules express explicit knowledge and are
easy to understand for human beings. For example, given a query of (Allen, hasNationality, ?)
in Figure 1, the rule hasBirthPlace(x, y) ∧ isRegionOf(y, z) → hasNationality(x, z) can predict
hasNationality(Allen, America) and provide the reason that hasBirthPlace(Allen, Boston)∧isRegionOf
(Boston, America). Thus, rules provide a promising approach to explainable link prediction. This
has become feasible when scalable and effective rule learners are available. On the other hand,
link prediction offers an important benchmark for validating and evaluating rule learners for KGs.
Experiments show that rule-based link prediction methods possess competitive accuracy and
scalability compared to embedding-based ones [44, 56].
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Unlike embedding-based methods that rank all the entities via scoring functions, a rule-based
method derives plausible new facts through logical reasoning, and the confidence of the new facts is
determined by the rules deriving them. One research direction is how to calculate the confidence of
the derived facts from those of the rules. Noisy-OR [23] and Max-Aggregation [44] are two popular
methods for obtaining the confidence degree of a plausible triple that is derived from learned rules.
Noisy-OR is defined by aggregating the SC of all the rules deriving the triple. The intuition is
that facts inferred by more rules should have a higher confidence degree. Max-Aggregation [44]
ranks a triple based on the maximum SC of all rules deriving it. It only considers the most
confident rule that derives the triple. These two methods for obtaining confidence degrees have
their advantages and disadvantages. When aggregating using Noisy-OR, the redundant rules can
lead to overestimating the confidence of predicted entities. In order to mitigate this disadvantage,
a Non-redundant Noisy-OR [55] is proposed to cluster rules based on their redundancy degree
prior to Noisy-OR. Predictions of rules in a cluster are aggregated using the Max-Aggregation,
while predictions of the different clusters are then further aggregated using the Noisy-OR.

Rule-guided Embeddings. Rules can also be used to guide the training of existing embedding
models so that logic relations are incorporated into the embeddings. In this way, inferences by
the generated embeddings are expected to satisfy the rules and are more interpretable, which
essentially combines symbolic rule reasoning with neural networks.

In the early literature of rule-guided embeddings, only a small number of manually created hard
rules are used in the models [78, 28]. Given the availability of scalable and effective rule learners
for KGs, recent efforts focus on combining embedding models and rules learned automatically.
RUGE [29] and SoLE [93] use t-norm fuzzy logics [30] to incorporate grounded rules, as the
t-norm fuzzy logics define how to calculate the probabilities of compositions (e.g., conjunctions
and disjunctions) of clauses from the probabilities of the individual clauses. Some other works,
such as pLogicNet [58], use Markov Logic Network (MLN) [60] to combine the grounded rules
with probabilistic graphical models. These approaches need to first compute all the groundings
of the rules, which is computationally expensive, especially for long rules. To avoid this, some
other approaches incorporate rules as a sequence of relations [17, 27, 50]. Some other models
incorporate rules via different learning frameworks, such as RuleGuider [39] and RARL [32], which
train reinforcement learning agents guided by rules, and AR-KGAN [95], which incorporates rules
via Graph Attention Networks (GAT).

Rule-based Fact Checking. Fact checking is the task of verifying the facts in KGs, by predicting
the plausibility of the facts. Traditionally, fact checking is done by manual verification which
is extremely time-consuming. While black-box models can be used to estimate the plausibility
of facts, rule-based fact checking offers explainability. Moreover, rules contain domain-specific
knowledge, which is particularly useful for verifying ambiguous facts.

Some rule-based fact checking approaches can generate evidence or explanations for the facts
under examination (called target facts) to assess their plausibility [20, 67, 22]. CHEEP [20]
generates evidence as paths in the ontology graph according to rules, while ExFaKT [22] uses
rules to rewrite each target fact into a set of other easier-to-spot facts as explanations from both
text and KGs.

There are also some approaches dedicated to designing new forms of rules for fact checking.
Lin et al. [40] propose a kind of graph-fact-checking (GFC) rules to discover a discriminant-
directed graph associated with the target facts. OGFC [41] extends GFC with more topological
and ontological information to group similar triples. Rules in disjunctive normal form (DNF),
i.e., a disjunction of multiple conjunctions, are used in CHAI [9] to filter facts. Some other
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methods transform rule-based fact-checking problems into answer set program formulations, like
EXPCLAIM [1]. It uses first-order rule discovery and Web text mining to gather the evidence to
assess target facts, and the fact-checking task is modelled as an inference problem in the answer
set programs.

6.2 Other Applications of Rule Learning

There has been a heightened interest in the interpretability of AI models, as understanding how
and why a model arrives at a particular decision is pivotal for trust and transparency in decision-
making. Logic rules, with their inherent ability to support human-comprehensible reasoning
processes, have emerged as a valuable tool in diverse fields.

Several domains are actively exploring the use of automatically learned rules to complement
and enhance existing AI models. Rules can naturally be applied to other tasks related to KGs,
such as entity alignment [10, 36] and knowledge base question answering (KBQA) [70]. In the
entity alignment task, RTEA-RA [36] enhances the embeddings of individual entities by injecting
the grounded rules into the model to produce hybrid embeddings. MuGNN [10] reconciles the
structural differences of two KGs before entity alignment by employing rules induced by AMIE+
for KG completion and pruning. Also, these rules are transferred between KGs based on the
knowledge invariant assumption.

As for KBQA, RuKBC-QA [70] uses rule-based knowledge base completion (KBC) in general
question answering (QA) systems. Both the origin knowledge base and inferred missing facts by
selected rules are used as input of RuKBC-QA for predicting the answers.

Beyond the tasks with KGs as the primary forms of data, several attempts involving rules
have been made in the context of natural language processing (NLP), computer vision (CV), and
biomedical applications. For NLP, RuleBERT [63] tries to teach the pre-trained language models
(PLMs) with the common-sense knowledge provided by Horn rules. KoRC [91] uses rules learned
by background KGs to construct the reasoning chain for Reading Comprehension.

Rule learning has also found applications in computer vision, like reasoning in the sub-graph
extracted from the images. LOGICDEF [90] constructs a defence model that uses first-order logic
rules mined from the extracted scene graph, to explain the object classification and detect the
attacks of the adversarial vision model. The document image model [59] uses inductive rules by
extracting textual subgraphs corresponding to the text entities in the documents for information
extraction.

In the biomedical domain, rule learning has also shown promising applications. In drug
discovery [66], generating the explanation paths by Horn rules for drug-disease (entity) pairs. As
for drug-gene interaction prediction [2], rules can predict missing links between drug and gene
nodes in a graph that contains relevant biomedical knowledge.

These studies collectively showcase the versatility and potential of rule learning across diverse
domains, addressing various challenges and improving outcomes in different application areas.

7 Discussion and Conclusion

Rule learning in KGs is a fast-developing research area with promising applications in various
fields. In this section, we discuss some future research directions for rule learning and conclude
the paper.
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7.1 Future Directions
Despite the rapid advancements in rule learning techniques over KGs, this is still a relatively
new research area, with a lot of potential for further development in several aspects, including
the complexity and quality of learned rules, evaluation metrics, and rule learning and reasoning
strategies.

First of all, the complexity of learned rules can be enhanced by expanding the form of rules
(i.e., the language bias) to be learned. Most existing rule learning approaches focus on rules that
represent path patterns in KGs. While path patterns capture important structural information
in KGs, more complex structural patterns such as sub-graph patterns can reveal more refined
knowledge and first-order Horn rules can express complex sub-graph patterns. Scalability of
rule learning and identification of the most useful sub-graph patterns remain major challenges in
learning more complex rules. Besides, learning rules that can capture more useful information such
as attributes or more complex logical connections in KGs is another aspect of rule complexity.

Also, the form of rules and their learning strategies can be tailored according to the applications.
For instance, to learn domain-specific rules that are designed to express prior knowledge in specific
domains, can potentially lead to more scalable, accurate, and robust performance in the concerned
applications. This is especially relevant for applications in knowledge-intensive domains such
as biomedical science, healthcare, finance, or legal applications, which involve domain-specific
knowledge and specialised applications.

Moreover, to enhance the quality of learned rules, it is crucial to establish effective and robust
rule quality evaluation measures. Existing rule confidence measures often lack sufficient granularity
or interpretability. Yet designing suitable rule quality metrics has received less attention in the
literature. Meanwhile, there has been insufficient emphasis on evaluating the semantic validity of
learned rules, that is, to measure how meaningful the learned rules are to human beings. This is
particularly important for learning domain-specific rules, and it is desirable to develop quality
measures that take into consideration both the data semantics and data distributions.

Finally, new rule learning and reasoning strategies that tightly integrate symbolic AI and
deep learning techniques hold great promise. This line of research may involve developing hybrid
models that leverage the strengths of both rule-based reasoning and data-driven neural networks.
Yet a tighter integration of them has always been a pursuit of the academic communities and the
industry. With the recent development of neuro-symbolic approaches, where neural networks are
used for symbolic rule learning and reasoning, the other direction is gaining increasing interest,
that is, to apply symbolic knowledge, logical constraints, and rule guidance in neural network
predictions. This research direction also foresees a tighter coupling of rule learning and prediction
models that utilise KGs.

7.2 Conclusion
In this paper, we have provided a systematic review of state-of-the-art rule learning for knowledge
graphs. We studied major categories of logic rule learning approaches over knowledge graphs,
including the ILP-based, statistical path generalisation, and neuro-symbolic approaches, with
discussions on their developments and limitations. Besides, we also discussed the rule confidence
measures, which play a crucial role in rule learning. As for the applications of rule learning, we
introduced applications of rule-based knowledge graph inferences, as well as wider applications in
natural language processing, computer vision, and biomedical science. Finally, we pointed out
several promising future directions for rule learning research.
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