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Abstract
Transactions on Graph Data and Knowledge
(TGDK) is a new journal publishing peer-reviewed
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1 Transactions on Graph Data and Knowledge

Transactions on Graph Data and Knowledge (TGDK) is a new Open Access journal publishing
research contributions on the use of graph-based abstractions for representing data and knowledge.
Such abstractions enable a wide variety of techniques to be applied for integrating, querying,
reasoning over and learning from diverse data and knowledge at large scale. As such, the journal
draws together expertise from a variety of research communities of Computer Science – including
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Representation and the Semantic Web – on the topic of graph-based data and knowledge.

Herein we provide an overview of the scope, goals and history of TGDK, and then introduce
the First Issue of the journal, entitled “Trends in Graph Data and Knowledge”.
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1.1 Scope of the journal
Recent years have seen a resurgence in interest in the use of graphs for representing data and
knowledge, with, for example, the topic of Knowledge Graphs gaining increasing traction in
industry and academia alike. Advances in other areas of Computer Science are further reflected in
this field; for example, key advances in the area of Deep Learning have led to the emergence of
powerful new techniques in the area of Graph Representation Learning.

Such advances increasingly involve a confluence of diverse techniques from seemingly disparate
paradigms. Within the field of Artificial Intelligence, new research results and directions continue
to emerge on how best to synthesise the symbolic, deductive and logical foundations of Knowledge
Representation with the neural, inductive and connectionist underpinnings of Machine Learning
for better harnessing graph-based data and knowledge at large scale; advances are being achieved,
for example, on combining knowledge graph embeddings and graph neural networks with formal
semantics, ontologies and logic. We can then ask how such techniques might interplay with Graph
Data Management to enable novel forms of queries over not only explicit data at large scale, but
also implicit knowledge: what query languages, optimisations, notions of schema, etc., will form
the basis of the graph databases of the future. We can wonder what insights are to be gained
from Graph Algorithms & Theory in this setting, where, for example, graph centrality measures,
graph isomorphism, spectral graph theory, tree decompositions, etc., have already led to key
practical and theoretical advances in various related subareas of Graph Data and Knowledge, and
will continue to bolster new insights. In the Semantic Web area, we see such techniques being
increasingly drawn together in order to better structure and leverage the content of the Web itself,
giving rise to a massive and unprecedented decentralised repository of graph-based knowledge,
composed of comprehensive knowledge graphs such as Wikidata, complex ontologies such as those
capturing shared knowledge in the Biomedical domain, and a great many Linked Datasets such as
those published by governments for the public good.

Graph Data and Knowledge can also play a role in other areas of computer science, leading to
advances in Data Science, Information Retrieval, Natural Language Processing, and more besides.
More and more use-cases for Graph Data and Knowledge continue to emerge in our society,
facilitating new discoveries in scientific disciplines, more transparency in governance, smarter
applications for users, better data management in industries, along with many other advances.

All of these techniques, theories, systems, applications and areas interact in complex ways,
but have at their foundation a common starting point: the use of graphs to represent data and
knowledge. How they will continue to interact lies at the core of TGDK’s scope, and our aim is to
publish some of the key research contributions that will shape the area’s future in the journal.
These contributions may range from novel theoretical results – stemming from areas such as
Database Theory, Graph Theory, Knowledge Representation, Logic and Ordinal Data Science –
to results from systems-oriented, empirical and/or applied research – including Graph Database
Systems, Graph Representation Learning, Knowledge Graphs, Linked Data, and more besides.
Works that combine both theoretical and empirical contributions will be particularly welcome.

TGDK currently solicits and publishes two types of articles as part of its regular call: research
articles and survey articles. Research articles present novel research contributions that advance
the state-of-the-art in their respective area, and are judged based on novelty, relevance, potential
impact, technical soundness, reproducibility and clarity. Survey articles present a novel, systematic
and comprehensive synthesis of published research works within a chosen scope, and are judged
based on novelty, relevance, scope, completeness and clarity. Aside from research and survey
articles, other types of submissions are occasionally welcomed as part of a Special Issue. This
Special Issue, the first of TGDK, presents a selection of vision, position and survey papers. We
are also planning a Special Issue for 2024 that will solicit resources papers.
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1.2 Goals of the journal
TGDK has the following stated goals and principles:

To publish high-quality articles: TGDK publishes articles relating to research on graph data and
knowledge. All articles undergo a rigorous peer-review process run by the Editors-in-Chief and
the Editorial Board consisting of experienced researchers of international standing, ensuring a
high standard regarding novelty, relevance, impact, technical soundness, reproducibility and
clarity. We aim to have TGDK indexed as widely as possible as soon as possible, with an
Impact Factor competing with the best journals in the area.

To publish under Diamond OA: TGDK provides Open Access under the “Diamond” (sometimes
known as “Platinum”) model, meaning that no fees are charged to authors or to readers. This
is enabled by the financial support of scientific organisations, such as the Semantic Web Science
Association (SWSA), that cover the low fees required by Dagstuhl Publishing.

To publish online in a dependable, reputable manner: Dagstuhl Publishing provides to TGDK
a formal publication mechanism that includes archiving by the Deutsche Nationalbibliothek
(German National Library). The journal will have an ISSN, and each article will be assigned a
DOI and a URN. All articles are indexed on DBLP and we will push for them to be indexed
as widely and as soon as possible, e.g., in Scopus, Web of Science collections, etc.

To publish rather than control content: All articles at TGDK will be published under a non-
exclusive publishing agreement under the CC-BY 4.0 licence. Authors will retain the copyright
of their own works. Meta-data relating to articles will be published under CC0, facilitating
their inclusion and use as part of open collections of scholarly knowledge.

To build a community: TGDK adopts a distinctive scope that combines graphs with data and
knowledge. Though existing journals have overlapping scope with TGDK, we believe this
particular focus on the combination of graphs with data and/or knowledge to be unique
amongst journals. Our goal then is that TGDK crystallise a community specifically around this
topic, one composed of a cross-section of established communities such as Artificial Intelligence,
Databases, Graph Algorithms & Theory, Knowledge Representation, the Semantic Web, etc.

To be community-run: TGDK is run by the community in a non-profit manner. It puts the
needs of its research community first. Editors-in-Chief (EiCs) will serve terms of a maximum
of four years, and each year a new EiC will be elected from the Editorial Board. The Editorial
Board will represent the community in all of its diversity, and participate in strategic decisions.
New community members will be regularly invited to form part of the Editorial Board.

To operate transparently: Though some aspects of the academic process – such as reviewer
identities during single-blind review – are not subject to transparency, our goal is to be as
transparent as possible regarding the operation of TGDK, in terms of scope, criteria, review
process, budget, procedures for selecting new EiCs, etc. We will also make meta-data about
the journal – its articles, authors, etc. – publicly available in structured formats.

To innovate in how best to serve the research community: At TGDK, we are open to discuss-
ing and exploring novel opportunities to improve the publication process for the community,
which may involve, for example, initiatives to improve the review process, reduce review times,
incentivise reviewers, improve reproducibility, publish supplementary material, foster good
practices in terms of meta-data, enable post-publication discussion, etc.

To become an exemplary non-profit journal: Together with Dagstuhl Publishing, we aim for
TGDK to show that journals run by the research community, for the research community, offer
a promising – and we argue better – alternative to journals run by, for example, commercial
academic publishers. In particular, TGDK will endeavour to inspire and support other journals
to follow a similar path to that exemplified by TGDK and other Diamond OA journals.

TGDK
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1.3 History of the journal
The inception of the journal begins with Ian Horrocks, Andreas Hotho and Lalana Kagal, who
were Editors-in-Chief of the Journal of Web Semantics (JWS) published by Elsevier. They opted
to resign together from JWS at the end of 2022 in order to initiate a new journal that they
hoped might better serve the community. They approached the Semantic Web Science Association
(SWSA) – a non-profit organisation that manages scientific events in the Semantic Web area, and
that is also affiliated with JWS – to discuss the possibility of SWSA supporting a new journal.

A SWSA Task Force comprising senior members of the Semantic Web community, including
the three ex-EiCs of JWS, as well as Abraham Bernstein, Tim Finin, Chiara Ghidini, Markus
Krötzsch and Axel Polleres, was set up to explore potential publishing models, scopes, titles, etc.,
for the new journal. A fourth Editor-in-Chief, Aidan Hogan, was invited to join the new initiative.

The Task Force decided that the new journal should have a broad scope so as to capture the
growing interest on Knowledge Graphs as well as more established areas of Semantic Web research.
Furthermore, the consensus was that the journal should be run in a non-profit manner by the
community, should be Open Access, and should strive to be free of fees for authors and readers.

The new Editors-in-Chief began the process of establishing this new journal – creating a
webpage with the title and scope, inviting the Editorial Board (with particular emphasis on
inviting members from areas other than the Semantic Web) to join, soliciting seed funding from
SWSA, contacting potential publishers, etc. – in early 2023. Planning for this First Issue began in
April of 2023, with the Editors-in-Chief soliciting topics for articles, culminating in a first batch
of papers being published in December 2023. More papers in this particular collection, entitled
“Trends in Graph Data and Knowledge” will be published early in 2024.

2 Trends in Graph Data and Knowledge

As the Inaugural Editors-in-Chief, we are pleased to herein present the First Issue of this journal:
a Special Issue entitled “Trends in Graph Data and Knowledge”.

This issue includes a collection of 12 vision, position and survey papers relating to the past,
present and future of research in the area of Graph Data and Knowledge. It draws together
diverse perspectives from internationally-renowned experts – many of whom are members of the
Editorial Board of TGDK – on what the future holds for this exciting area. All papers received at
least three reviews and one meta-review from members of our Editorial Board. This collection of
papers covers a diverse range of topics that discuss:

the interplay between the area of Graph Data & Knowledge and the areas of Machine Learning,
Natural Language Processing (particularly large language models) and Ordinal Data Science;
how Graph Data & Knowledge can help to address challenges relating to autonomous agents,
data self-determination, knowledge engineering, the life sciences, and low-resource languages;
algorithms, analyses, concepts and techniques involving embeddings, evolution, rule learning,
and summarisation in the context of Graph Data & Knowledge.

These articles exemplify the types of research topics that we hope to see TGDK publications
address in the future. And in case the reader is inspired by one of these articles to follow up on a
research direction it mentions, we would be pleased to receive submissions of their contributions.
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1 Introduction

Large Language Models (LLMs) have taken Knowledge Representation (KR) – and the world –
by storm, as they have demonstrated human-level performance on a vast spectrum of natural
language tasks [25]. Following this, people are gradually starting to accept the possibility of having
knowledge represented in the parameters by some language models, also known as parametric
knowledge, which is the information encoded from training datasets into language models’ internal
model parameters. The arrival of LLMs announces the era of Knowledge Computing, in which
the notion of reasoning within KR is broadened to many computation tasks based on various
knowledge representations.

This is a big step for the field of Knowledge Representation. For a long time, people focused
on explicit knowledge, such as those embedded in texts, sometimes also known as unstructured
data, and those in a structured form, such as in databases and knowledge graphs (KGs) [141].
Historically, for a long time, humans used texts to pass down their knowledge from one generation
to another, until around the 1960s, when researchers started to study knowledge representation
for better natural language understanding and developed early systems, such as ELIZA [207] at
the MIT. In the early 2000s, the Knowledge Representation and the Semantic Web communities
worked together to standardize the widely used knowledge representation languages, such as
RDF [139] and OWL [67], at web scale, using which the large-scale knowledge bases are then more
widely known as KGs [141], due to their helpful graph structures, enabling both logical reasoning
and graph-based learning.

This inflection point, with the arrival of LLMs, marks a paradigm shift from explicit knowledge
representation to a renewed focus on the hybrid representation, sometimes also referred to as
semi-parametric knowledge, of both explicit knowledge and parametric knowledge in neural
networks (NNs). As a popular approach for explicit knowledge representation, KGs are now widely
investigated for the combination with Transformer-based LLMs, including pre-trained masked
language models (PLMs) like BERT [47] and RoBERTa [122], and more recent generative LLMs
like the GPT series [24] and LLaMA [191]. Some works use LLMs to augment KGs for, e.g.,
knowledge extraction, KG construction, and refinement, while others use KGs to augment LLMs
for, e.g., training and prompt learning, or knowledge augmentation. In this paper, considering
both directions, LLMs for KGs and KGs for LLMs, we present a better understanding of the shift
from explicit knowledge representation to a renewed focus on the hybrid representation of both
explicit knowledge and parametric knowledge.

There has been some related work on LLMs and KGs. A related survey paper [235] presents a
comprehensive review of using LLMs for KG construction and reasoning, while our work provides
a more in-depth view of the inflection point, considering not only relational KGs but also KGs
with ontologies as schemas, as well as other dimensions of structured knowledge, including tabular
data [210] and numerical values [140]. Other works on the intersection of LLMs and KGs have a
minor overlap with the topics covered in our paper; e.g., on studies using LLMs as KGs [5], on
using KGs to augment LLMs [213], or on comparing GPT-4 with ChatGPT and SOTA fine-tuning
methods on three knowledge-related tasks – entity, relation and event extraction, link prediction,
and KG question answering [235]. Overall, none of these papers look into the implications of
the inflection point with concrete applications. To this end, this paper summarizes the common
debate points within the community, introduces the state-of-the-art for a comprehensive set of
topics where KGs and LLMs are integrated, and further presents opportunities and challenges.
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2 Terminology

Language models. The term “(large) language model (LLM)” covers quite a set of model families.
Although the term already existed before the rise of neural models, it arguably rose to prominence
with the publication of the BERT architecture [47], a Transformer-based neural architecture. The
BERT model was typically used with parameters pre-trained on a large text corpus and fine-tuned
on application specific data. BERT-style (masked) architectures have become a building block of
many language-related tasks, where they can be used, for instance, for obtaining latent semantic
representations of words or phrases, and are frequently employed in classification, similarity
estimation, or retrieval tasks.

A second, slightly more recent paradigm of language models are autoregressive (generative)
architectures like the GPT family. These models are suited for the generation of text from given
prefixes, and, in contrast to BERT models, can (in principle) directly be used in downstream use
cases. At the same time, they represent less mature architecture, with media headlines taken by
closed commercial models like ChatGPT and GPT-4 [137], and open models like LLaMA [191],
Vicuna [37], or Falcon [149] only recently entering the stage. Although fine-tuning is possible for
some of them, autoregressive models are often used without adapting their parameters, e.g., via
zero-shot or few-shot text-based prompts.

Where the distinction is important, we will explicitly state to which model family and prompt
style we refer.

Explicit knowledge. Explicit knowledge includes both unstructured knowledge, such as text,
images and videos, and structured knowledge, also referred to as symbolic knowledge, which is
knowledge codified in a logical representation, such as knowledge graphs and databases. This has
been the standard in the AI and KR communities for long and enables an intuitive understanding
of assertions. Nevertheless, it has been known for long that not all knowledge is suited for explicit
representations, and certain types of knowledge remain typically implicit.

Parametric knowledge. This is a kind of implicit knowledge. We use the term “parametric
knowledge” to refer to the information encoded from training datasets into language models’
internal model parameters. Most importantly, these parameters describe the weights of the neural
network and thus consist of a set of numeric values.

Some parametric knowledge cannot be easily translated into symbolic knowledge, for instance,
LLMs typically have solid “knowledge” on whether a textual phrase has positive sentiment or
not, yet there is typically no lossless conversion into a symbolic formula. At the other end of the
spectrum is the parametric knowledge that has been shown possible to be extracted into a crisp
symbolic form, for example, “Who was the first person on the moon?”.

As we will show later, parametric knowledge of the latter kind is important for many steps
in KG construction and consolidation pipelines, while parametric knowledge of the former kind
offers a direct supplement or alternative to existing KGs.

3 Common Debate Points within the Community

The usage of parametric and explicit knowledge together is a topic of debate in the Knowledge
Computing community, with proponents and skeptics offering different perspectives. Below are
some summaries of common points of contention.

TGDK
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Knowledge Representation and Reasoning. KGs offer a structured representation of knowledge
with explicit relationships, enabling reasoning and inference [128]. Critics argue that parametric
knowledge in NNs and LLMs relies on statistical patterns rather than true understanding and
reasoning [14]. Proponents of LLMs like ChatGPT highlight their ability to generalize from
large-scale text corpora, capturing a range of information, and excellent language understanding
capabilities. On the one hand, LLMs could generate plausible but incorrect or nonsensical
responses, such as hallucinations, due to a lack of explicit knowledge representation [163, 223].
There are also doubts on whether LLMs have the ability to learn directional entailments [114] or
infer subsumption between concepts [75]. On the other hand, KGs can be costly to build. While
LLMs can be expensive to train too, they can be readily usable to support many downstream
applications, bringing AI from the backstage to center stage. To sum up, in comparison to the
classic trade-off between expressiveness and decidability in knowledge representation, here KGs
and LLMs have the trade-off between precision and recall considering using explicit and parametric
knowledge in knowledge computing tasks.

High Precision Methods. The success of KGs can largely be attributed to their ability to
provide factual information about entities with high accuracy. For instance, YAGO [180] asserts
an accuracy rate exceeding 95%. Similarly, Google necessitates high accuracy in its KG for
operational use, e.g., the semi-automatic construction method of Knowledge Vault was not utilized
in production, partly due to its inability to reach the desired 99% accuracy in their benchmark [206].
Along this line of thought, many LLM-based methodologies for KG completion fail to reach these
high-performance levels, as exemplified by the performance of BERT in [115, 193], and GPT-3,
equipped with hundreds of billions of parameters [4]. This calls for novel high precision methods
for KG construction based on LLMs.

Numerical Values. It is widely recognized that LLMs grapple with handling numerical values.
Even straightforward arithmetic tasks can be a struggle for LMs, as highlighted in a study by
Big-bench [179]. This shortcoming also extends to KG completion tasks [95]. Multiple LLMs have
been evaluated on their ability to complete KGs using numerical facts from Wikidata [196], such
as individuals’ birth and death years. However, none of the tested models accurately predicted
even a single year. This raises questions about the capability of current LLMs to correctly
memorize numbers during pre-training in a way that enables them for subsequent use in KG
completion. While LLMs like PaLM [41] demonstrate some proficiency in dealing with numbers,
more commonly used smaller models seem ill-equipped for this task. The complexity escalates
when considering the intricacies of metrics and diverse numbering formats and types. Currently,
modifying LLMs to handle numerical values remains unresolved, making their utilization for
numerical KG completion seem far from practical.

Long-tail Knowledge. One of the key research questions on LLMs for the Knowledge Computing
community (and beyond) is how much knowledge LLMs remember [125]. Investigations indicate
that LLMs’ performance significantly deteriorates when dealing with random Wikidata facts,
specifically those associated with long-tail entities, in comparison to popular entities, as evidenced
in the PopQA dataset [125] and other datasets [152, 193]. This effect can be traced back to a
causal relationship between the frequency of an entity’s appearance in the pre-training corpus
and the LLMs’ capacity for memorization [53]. Even sizable LLMs face difficulties when trying to
retain information about long-tail entities [97]. KGs inherently present an advantage over LLMs
through their provision of knowledge about long-tail entities [95, 193] and thus can further help
improve the recall for Knowledge Computing tasks.
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Bias, Fairness and Beyond. Critics argue that LLMs can perpetuate and amplify biases present
in the training data, leading to biased outputs. LLMs may generate biased or prejudiced responses
if the training data contains stereotypes or discriminatory information [131, 108]. On the other
hand, proponents argue that bias is not inherent to LLMs but reflects societal biases embedded in
the data. They emphasize the importance of addressing bias in the training data and developing
mitigation techniques [167, 154, 161]. A survey [17] argued that “bias” in Natural Language
Processing (NLP) systems took various conceptualizations without being critically engaged by
practitioners. KGs are also used in a plethora of downstream tasks, and social biases engraved
in KG embeddings get propagated [68, 104]. Specifically, ontology creation, which generally
comprises manual rules factored by opinions, motivations, and personal choices, is a source of
bias [89, 51]. Also, automated pipelines for KG construction exhibit gender bias [127]. There are
other similar concerns of LLMs beyond bias and fairness, including (but not limited to) copyright
violation and misinformation. In general, due to the implicit nature of parametric knowledge, it is
less straightforward to forget such toxic information from LLMs, compared to explicit knowledge.

Explainability and Interpretability. KGs are often preferred in scenarios where explainability
and interpretability are crucial [31], as they explicitly represent relationships between entities and
provide a structured knowledge representation. Skeptics of LLMs argue that these models lack
transparency and interpretability, making it difficult to understand how they arrive at their answers
or recommendations. Proponents of LLMs acknowledge the challenge of explainability but argue
that recent research efforts [8, 88] are improving LLM’s interpretability through techniques like
attention mechanisms, model introspection. Some also argue that Chain-of-Thoughts (CoT) [204]
can also improve the explainability of LLMs, although question decomposition and precisely
answering sub-questions with LLMs are still far from being solved. Attribution evaluation and
augmentation of LLMs with e.g., source paragraphs and sentences is another recent research topic
for improving their explainability in question answering [18].

4 Opportunities and Visions

One of the key questions this paper needs to answer is, now with the emergence of parametric
knowledge, what new opportunities do we have? Here are some of our thoughts on such new
opportunities with the arrival of parametric knowledge and its potential integration with explicit
knowledge.

1. Instant access to huge text corpora: As mentioned in the Introduction, for a long time,
human beings passed down their knowledge in texts. Thus, a lot of knowledge these days
are in textual form. Using LLMs gives access to extremely large text corpora at high speed,
and recently even on consumer hardware [79]. This allows AI developers to avoid getting
bogged down in previously critical challenges around data gathering, preparation, storage,
and querying at scale. It also helps to reduce previously critical dependencies on the field of
information retrieval.

2. Richer knowledge for many subtasks: Although the most prominent capabilities of
LLMs, question answering and dialogue, are still under critical scrutiny, it should not be
overlooked that LLMs have significantly advanced and simplified many traditional tasks of
the knowledge engineering pipeline. Out-of-the-box, with fine-tuning on a few examples, or
via few-shot prompting, LLMs have advanced many tasks such as dependency and structured
parsing, entity recognition, and relation extraction. And just as errors propagate along a
pipeline, so do improvements, thus enabling KG construction at unprecedented scale and
quality. Furthermore, LLMs are readily usable for many downstream tasks beyond knowledge
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engineering. By injecting explicit, and in particular structured, knowledge into LLMs, such as
through retrieval augmented methods, one can make explicit knowledge more readily usable
for such a wide range of downstream tasks, further realizing the vision of ‘Knowledge is power’.

3. Even more advanced language understanding: LLMs alone already significantly advanced
the “understanding” of natural language, as evidenced by tasks like textual entailment,
summarization, paraphrase detection and generation, etc. These capabilities are critical to
making knowledge engineering robust to linguistic variance, typographic errors, redundancy,
and other features of human-written, web-scraped, and other noisy forms of text. Now with
potential novel approaches to combining parametric knowledge with explicit knowledge, it is
possible to have even more advanced language understanding, not only for textual entailments,
but also for other NLP tasks, such as summarization and consistent generation.

4. Compression entails consolidation: An important step in traditional knowledge engineering
is the consolidation and aggregation of conflicting and concurring pieces of information,
requiring often elaborate methods for consolidating observations from sentences, patterns, and
constraints [173]. In LLM training, an aggregation occurs automatically. Although this step is
not entirely understood, it brings the potential for outsourcing a major challenge in knowledge
engineering.

With the above new opportunities brought by the combination of parametric and explicit knowledge,
our vision is two-folded:

In Explicit-Knowledge-First use cases, our vision is that LLMs will enable, advance, and
simplify crucial steps in the knowledge engineering pipeline so much as to enable KGs at
unprecedented scale, quality, and utility.
In Parametric-Knowledge-First use cases, our vision is that KGs will improve, ground,
and verify LLM generations so as to significantly increase reliability and trust in LLM usage.

Both visions are neither alternatives, nor does one build upon the other. Instead, we believe that
classes of use cases will continue to exist side-by-side, some of which favor Explicit-Knowledge-First
(scrutable) approaches, some of which favor Parametric-Knowledge-First (blackbox) approaches,
with either of these having significant potential for benefiting from synergies of the two directions.

5 Key Research Topics and Related Challenges

With the opportunities and visions related to the availability of both parametric and explicit
knowledge in place, in this section, we categorize, summarize, and present the recent developments
in using LLMs and KGs under five different themes:
1. LLMs for KGs: Knowledge Extraction and Canonicalisation
2. LLMs for KGs: KG Construction
3. LLMs for KGs: Ontological Schema Construction
4. KGs for LLMs: Training and Augmenting LLMs
Figure 1 provides an overview. In Section 5.1, we start with the traditional KG construction from
text and tables, then show in Sections 5.2 and 5.3 how assertions and ontological information can
be extracted from LLMs. We then reverse perspective, and discuss in 5.4 how KGs can help and
enhance LLMs in training and deployment.

5.1 LLMs for KGs: Knowledge Extraction and Canonicalisation
KG construction is a complex task that demands collecting and integrating information from a wide
array of sources, encompassing structured, semi-structured, and unstructured data. Traditional
methods often rely on specific modules designed to process each data type in isolation and struggle
when the content is diverse and heterogeneous in structure. However, LLMs are powerful NLP
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Figure 1 A Framework of Key Research Topics and Related Challenges.

models trained on a broad spectrum of information sources, making them well-suited for knowledge
extraction tasks. This section presents work that uses LLMs for knowledge extraction from various
sources.

5.1.1 Entity Resolution and Matching
Entity resolution (also known as entity matching, entity linking or entity alignment) is the process
of linking pieces of information occurring in multiple heterogeneous datasets and referring to the
same world entity [55, 59, 144]. Past research has focused on developing the methodologies and
similarity measures among entities represented by flat structured data as well as semi-structured
data. Recent benchmarks, among which a recent one [147], have been proposed to compare
existing matching systems (including relational ones) on their accuracy, amount of corner cases
and robustness to unseen matching pairs. A similar benchmark and survey tailored for knowledge
graph entity alignment [225] focuses on the problem of alignment entities in different knowledge
graphs using embedding-based techniques. One of the findings of the comparative analysis of
existing systems is that semantic information (e.g. attribute triples and relation predicates) allow
to achieve better matching accuracy.

Embedding-based entity alignment methods for KGs reduces the symbolic similarities between
graph entities to a vector space in order to flatten the heterogeneity of graph components and
facilitate reasoning [182]. Specifically, a total of 23 representative embedding alignment approaches
are cross-compared in terms of performance but also are shown to require significant supervision
in the labeling phase. Therefore, unsupervised methods and methods that cope with large-scale
KGs are highly desirable in future research investigations.

CG-MuAlign [234] employs Graph Neural Networks (GNNs) to perform multi-type entity
alignment, leverages the neighborhood information and generalizes to unlabeled types, and
REA [148] which tackles the multilingual entity alignment problem by combining adversarial
training with GNNs to cope with the problem of noisy labeled data provided as input.
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LLMs are used in entity resolution and linking for KGs in multiple ways [7].
We envision the following important research challenges on the interplay between entity

resolution and linking and LLMs.
Generation of labeled training data, which is typically a resource-intensive and time-
consuming step, hindering the performance of entity alignment for KGs [94].
Generation of corpora of entity matching rules, which will allow to increase the amount
of rules available for these tasks on real-world knowledge graphs.
Generative entity linking, is about using a generative language model performing entity
linking as a sequence-to-sequence task [44, 93].

Similarly to how [170] employs Generative Adversarial Networks (GANs) to reduce the effort
of labeling data, we argue that LLMs can provide labeled samples of KGs and control the
performances of the aforementioned embedding-based approaches. Also, LLMs can help build
robust and trustworthy corpora of entity matching rules, modulo the fact that a declarative
formalism with a logical language L is defined in the graph setting. Training data for this
logical language should be provided as input to LLMs, similarly to SQL statements that are
readily available for consumption in text corpora. However, prompt engineering is needed in
order to produce meaningful rule corpora for real-world large-scale KGs, such as DBpedia [9] and
Wikidata [196]. Entity matching rule logs can be envisioned for these real-world large-scale KGs
in a similar fashion as query logs for these KGs [19, 20].

Another interesting line of research work revolves around the alignment of factoid questions
for building robust question answering (QA) systems. Existing approaches focus on the use of
biencoders to efficiently perform both entity mention detection and entity linking in only one
pass [110]. Matching of questions and predicate sequences on a knowledge base using both entity
linking and deep convolutional neural networks has been investigated in prior work [218].

Other interesting directions to pursue for future developments leading to intertwining symbolic
AI and statistical AI are as follows:

Combination of entity linking approaches and embedding-based approaches with
LLMs, which can lead to better integration of LLMs with knowledge reasoning and question
answering [81].
Marrying accuracy and interpretability, which will leverage the power of LLMs to
generate graph data and rules and improve the accuracy of the entity linking processes but
also enhance the interpretability of the processes.

5.1.2 Knowledge Extraction from Tabular Data
Extracting knowledge from tabular data like databases, Web tables and CSV files is a common
way for KG construction. For tables whose semantics (meta information) are already known,
heuristic rules can be defined and used to transform their data into KG facts. However, real-world
tables often have unclear semantics with important meta information, such as table name and
column header, not clearly defined. Meanwhile, the original data usually need to be retrieved,
explored, integrated and curated, before expected knowledge can be extracted. In recent years,
Transformer-based LMs have been investigated for processing tables, especially their textual
contents. They can be applied to table vector representation as a foundation of other prediction
tasks [194]. TURL [46] is a typical method of table representation learning that uses BERT [47]
and has been applied in several tasks such as cell filling, column type annotation, and relation
extraction. Similarly, RPT [188] uses BERT and GPT to pre-train a table representation model.
Starmie [56] transforms columns into sequences using a template and fine-tunes BERT with a
contrast learning framework using unionable and not unionable column pairs as samples.
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Among all the table processing tasks, semantic table annotation which matches table data to
KG components (e.g., table column to KG class, table cell to KG entity, inter-column relationship
to KG property) can be directly applied to extract knowledge for KG construction and population
[121, 92]. There have been several attempts that use LLMs for these tasks. Doduo [181] serializes
a table into a sequence of tokens and trains BERT for predicting column types and inter-column
relationships. Korini et al. [103] prompts ChatGPT to annotate semantic column types. When
task-specific samples for demonstration are minimal or absent, ChatGPT achieves a similar
performance as the RoBERTa model. Although some attention has been given to utilizing LLMs
for tabular data processing and KG construction, there is still much room for investigation.

Challenge and Opportunities.
Transforming table contents into sequences: A table or a table element with its structured
context needs to be transformed into a sequence before it can be fed into LLMs. Different
transformation methods are required for different LLM utilization scenarios, such as fine-tuning
LLMs, LLM inference with prompts, and instruction tuning of LLMs.
Representing and utilizing non-textual tabular data: A table often contains not only
long and short text, but also data of other types, like numbers and dates. There are still few
works that consider these data.
Extracting tabular knowledge: LLMs are mostly applied to process and understand tables
but rarely applied to the final step of knowledge extraction. OntoGPT [27], which extracts
instances from texts to populate an ontology using ChatGPT is known, but there are no
counterparts for tables. Beyond instances, extracting relational facts is more challenging.

5.1.3 Knowledge Extraction from Text
Knowledge extraction from text generally entails automatic extraction of entities and associated
relations, with traditional pipelines processing vast amounts of sentences and documents. This
process enables the transformation of raw text into actionable knowledge, facilitating various
applications such as information retrieval, recommendation systems, and KG construction. The
language understanding capabilities of LLMs have enhanced this process.

For example,
(1) Named Entity Recognition (NER) and Entity Linking, as mentioned in Section 5.1.1, involve

identifying and categorizing named entities (such as persons, organizations, and locations) in
text and linking (more in Section 5.2.1) them to KGs.

(2) Relation extraction focuses on identifying and classifying relationships between entities, with
LLMs that leverage zero-shot and few-shot in-context learning techniques [205, 111].

(3) Event extraction aims to detect and classify events mentioned in the text, including their
participants and attributes [197, 224].

(4) Semantic Role Labeling (SRL) involves identifying the roles played by entities in a sentence,
such as the subject, object and predicate [172, 230].

These approaches allow LLMs to extract information from text without needing a large amount
of explicit training on specific domains, thereby improving their versatility and adaptability [44].
Moreover, LLMs have demonstrated proficiency in extracting knowledge from languages other than
English, including low-resource languages, paving the way for cross-lingual knowledge extraction
and enabling the utilization of LLMs in diverse linguistic contexts [106].

Furthermore, prompting LLMs has introduced new paradigms and possibilities in the field
of NLP. LLMs can generate high-quality synthetic data, which can then be used to fine-tune
smaller task-specific models. This approach, known as synthetic data generation, addresses the
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challenge of limited training data availability and enhances the performance of models [94, 189].
Additionally, instruction tuning has emerged as a powerful technique where LLMs are trained on
datasets described by explicit instructions, enabling more precise control and customization of
their behavior for specific tasks [205, 201]. Also, for constructing domain-specific KGs, the stakes
are higher, and hence scrutinizing the generated text (by experts) is necessary. However, it is still
a step forward since human annotation is less expensive than human text generation.

Apart from the obvious substantial computational resource requirements for training and
utilizing these LLM, there are various challenges, including the ones presented in Section 3.

Challenge and Opportunities.
Efficient extraction from very long documents. Current LLMs are incapable of processing
very long documents like novels in one shot. In this regard, modeling long-range dependencies
and performing corpus-level information extraction can be further improved.
High-coverage information extraction. Almost all extraction pipelines focus on high
precision. However, high recall is ignored or under-explored [176]. Building knowledge
extractors with high precision and high recall will result in a great leap toward building lifelong
information extractors.

5.2 LLMs for KGs: Knowledge Graph Construction
We highlight the important role that LLMs play in improving KG construction, focusing on current
trends, issues, and unanswered questions in this field. We start by discussing link prediction, which
is a way to generate new facts given an existing KG. Next, we look at inductive link prediction,
a method that predicts triples for unseen relationships. Our focus then shifts to a more recent
method where triples are directly extracted from the parametric knowledge of an LLM.

As a conclusion of this section, we discuss the challenges of LLM-based methods for KG
construction. These involve issues with long-tail entities, numerical values, and also the precision
of these methods.

5.2.1 Link Prediction
Link prediction is about predicting a missing element of a triple given the other two elements. It
includes head entity prediction (?, r, t), relation prediction (h, ?, t), and tail prediction (h, r, ?).

KG link prediction methods have mostly been studied for static snapshots of a KG. Many
approaches, in fact, assume a training phase in which the current state of the KG is used
to learn embeddings and other model parameters. Subsequently, many such models can only
operate on entities for which an embedding was learned in the training phase. This leaves them
incapable of predicting links for any previously unseen entities, such as newly added people or
products. Inductive link prediction (ILP), in contrast, focuses on techniques that can predict
links to new entities not originally contained in a KG. Furthermore, existing KG embedding-
based KG completion approaches frequently fail to leverage textual information and other literal
information [65].

To overcome these challenges, current research focuses on incorporating textual information
available in the KGs to improve the KG embeddings, boost performance in downstream tasks,
and support ILP. The latent representation is learned from textual information using a variety of
encoding models such as linear models, convolutional models, recurrent neural models, and LLMs
and studied in [123, 142]. In this work, we focus only on LLM-based methods.

The LLM encoder BERT [47] is used in Pretrain-KGE [227] to generate initial entity embeddings
from entity descriptions and relations. These embeddings are then fed into KG embedding
models to generate final embeddings. MADLINK [15] uses SBERT to generate embeddings from
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entity descriptions, together with the entity embeddings obtained from structural information.
KEPLER [202] offers a unified approach for KG embedding and pre-trained language representation,
embedding text-enhanced knowledge and factual knowledge into LLMs. Nayyeri et al. [132] use
LLMs to produce representations at word, sentence, and document levels, merging them with
graph structure embeddings. Huang et al. [84] propose a model that combines LLMs with other
modalities, such as vision, to generate a multi-model embedding space. CoDEx [3] uses a novel
loss function driven by LLMs that helps KG embedding models estimate the likelihood of triples
based on textual information. While these approaches can leverage the structural information
contained in the graph, KG embeddings can not be directly used to predict unknown entities in
the ILP setting. To still predict entities within ILP, existing works that combine text embeddings
and traditional KG embeddings use only the text embeddings in the ILP setting [124] or apply
similarity based heuristics to generate KG embeddings for unseen entities [198].

Instead of considering the graph structure, another line of research directly leverages LLMs for
KG Completion. For example, KG-BERT [216] represents a triple as an ordered sequence of head
text, including surface form, descriptions, and attributes, relation text, tail text separated with
special tokens. KG-BERT [216] optimizes the BERT model on KGs, followed by KG-GPT2 [16]
that fine-tunes the GPT-2 model. MTL-KGC [101] enhances the effectiveness of KG-BERT by
combining prediction and relevance ranking tasks. PKGC evaluates triple validity by translating
it into natural language sentences, while LLMs process these sentences for binary classification.
Masked Language Models were introduced to encode KG text, with MEMKGC [38] predicting
masked entities using the MEM classification model. Open world KGC [39] expands MEMKGC
with modules Entity Description Prediction (EDP) and Incomplete Triple Prediction (ITP),
focusing on predicting entities with given textual descriptions. StAR [199] uses Siamese-style
textual encoders for text and a scoring module, while SimKGC [200] leverages a Siamese textual
encoder. LP-BERT [112] is a hybrid KG completion method that combines MLM encoding for
pre-training with LLM and separated encoding for fine-tuning, using a contrastive learning strategy.
Also, LLMs such as GPT-3 and GPT-4 have the in-context learning capability which could adapt
to new tasks through careful prompt design without fine-tuning the model parameters. Since LLMs
are directly capable of predicting entities that are not yet contained in the KG, many works using
direct LLM approaches also evaluate their models in the ILP setting [38, 39, 43, 199, 200, 202, 222].

Beyond the described approaches that construct and leverage embeddings for link prediction,
LLMs may also be directly used in a prompting setting to find suitable links between entities,
with existing methods described in detail in the following Section 5.2.2. As with the previous
approaches that purely use LLMs, prompt-based approaches are directly applicable for ILP and
are commonly evaluated in this setting [21, 90, 152, 174, 231]. LLMs make it significantly easier
to jointly utilize structural and text information for link prediction, while there are still challenges.

Challenge and Opportunities.
The generative language model which uses a decoder-only or encoder-decoder architecture
cannot ensure that the generated result is already included in the KG. Also, one entity may
have multiple natural language names. Thus it is hard to judge the correctness of the generated
results from LLMs.
Current link prediction models are mostly evaluated on ranking metrics, such as Hit@k and
Mean Reciprocal Rank, which requires methods to give a ranked list of candidates. Considering
that the number of candidate entities might be huge (e.g., over ten thousand), scoring each
candidate entity in inference requires many model predictions which may be problematic for
LLMs due to their large parameter size and high computational cost.
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The key research question of link prediction is how well a method could learn to infer new
triples based on existing ones. LLMs are trained based on a massive corpus that might overlap
with KGs such as Wikidata [196]. Thus it is not easy to distinguish whether the LLM completes
the prediction by utilizing its memory or reasoning over existing facts.
LLMs provide several benefits for ILP as demonstrated by the many existing approaches,
but their application also has certain drawbacks. Since ILP entities may occur that are not
contained within the underlying KG, the task is inherently reliant on auxiliary information.
When leveraging LLMs for ILP, many studies focus on improving the extraction of knowledge
from LLMs through prompt engineering, which is, by itself, a current popular research area
that may directly benefit the domain.
While prompting provides promising results, it requires well-designed strategies for predicting
multi-token entities and out-of-vocabulary tokens. Further, if required knowledge is not
captured by the LLM, e.g., when querying novel concepts that emerged after LLM pre-training,
schemes to incorporate further knowledge into the LLM are required. Meanwhile, as feature
selection, finding a suitable prompt also needs much searching with many experiments, which
is costly especially for those recent commercial LLMs like GPT-4.
Alternative methods rely on available high-quality textual descriptions of unknown entities.
These methods generally inherit the limitations of classical link prediction, in that they require
one-vs-all comparisons against all entity candidates during inference, which may become
computationally prohibitive for large KGs [199, 200]. While there are already approaches that
address this problem by applying efficient search heuristics, additional structural information,
and pre-computation [44, 153, 199, 200], they involve additional memory overhead. As such,
efficient strategies for obtaining predictions may provide a promising research direction.
Further, the combination of these methods with classical link prediction models has already
shown strong performance and is a promising trend followed by increasing numbers of works
that further explore the incorporation of structural information into LLM-driven approaches.

Though challenges exist, opportunities lie in designing efficient and effective link prediction
methods combining LLMs preserving the efficiency of traditional methods and robustness of
language models.

5.2.2 LLMs for KGs: Triple Extraction from LLMs
Traditionally, retrieval and reasoning of relational knowledge have both relied on symbolic know-
ledge bases [60], that often are constructed using supervised extraction techniques applied to
unstructured corpora, e.g. Web archives [220, 190]. More recently, self-supervised LLMs have been
investigated for their ability to directly retrieve relational knowledge [233] from their parameters,
e.g. through question answering, prompting through the use of cloze-style questions [76, 166]
or statement scoring [183]. In this context, the ability of LLMs to retrieve, infer and generalize
relational knowledge is seen as a crucial indicator of their capacity to understand and interpret
natural language. Even though a range of terms are used in that context, e.g. fact or knowledge
retrieval as well as knowledge inference, we refer to the task of accessing relational knowledge
from LLM parameters as knowledge retrieval.

Benchmarks and Baselines. LAMA is the first benchmark dataset to evaluate knowledge retrieval
in LLMs [152]. Related works show that knowledge retrieval through prompts is inconsistent
with regard to paraphrasing [54, 76], with some types of information guiding LLMs towards more
correct answers [26, 151, 35], while others are harmful to their performance [143, 100]. LLMs
struggle to retrieve knowledge from low-frequency phenomena [162] and [86] argue that LLMs fail
to express large varieties of knowledge when prompted in a zero-shot manner.
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Zhong et al. [231] propose that the models’ accuracy may originate from memorizing training
data, not actually inferring knowledge. Similar to LAMA, the experiments on a more recent
probing work KAMEL [95] confirm that LLMs are still far from the knowledge access capabilities
of symbolic knowledge bases. The Knowledge Memorization, Identification and Reasoning test
work KMIR [62] reveals that while LLMs struggle to robustly recall facts, their capacity to retain
information is determined more by the number of parameters than the training methods, and
while model compression can help preserve the memorization performance, it reduces the ability
to identify and reason about the information in LLMs from transformer-based language models.
Linzbach et al. [116] also present similar findings. LLMs are known to struggle with more complex
reasoning tasks [83, 75]. Branco et al. [22] explore generalizability of common-sense reasoning
capabilities and the impact of shortcuts in training data.

Biases in Triple Extraction Evaluation. LLMs may exhibit various types of biases; representation
of the majority viewpoint being a common issue due to distributions prevalent within pretraining
data [13], neglecting disagreements among multiple viewpoints (e.g. by majority voting) [42].
Prior works investigate individual factors (such as frequency) or LLM biases in other tasks [126],
as well as knowledge retrieval [231].

With respect to the interpretation, reliability and generalizability of knowledge retrieval, several
studies [22, 26] investigate whether LLMs actually learn transferable generalizations or only exploit
incidental shortcuts in the data. [26] explore biases in three different knowledge retrieval paradigms,
namely prompt-based retrieval, case-based analogy, context-based inference, finding that decent
performance of existing knowledge retrieval baselines tends to be driven by biased prompts that
overfit to artifacts in the data, guide the LLM towards correct entity types or unintentionally leak
correct answers or additional constraints applicable to the correct answer. In a similar context, [50]
discuss the shortcut learning behavior arising due to skewed training datasets, the model, or the
fine-tuning process. [169] demonstrate an intriguing similarity between human cognitive biases
and those exhibited by LLMs. Using insights from psychology, they analyze the learning and
decision-making processes of black-box models to reveal their biases towards right-and-wrong
for decision-making. Therefore, rigorous assessment of existing benchmark datasets is necessary
for generalizable insights about knowledge retrieval and inference performance, and to facilitate
efficient, unbiased knowledge retrieval from LLMs.

Prompt Engineering for Triple Extraction. Cao et al. [26] propose three paradigms for factual
knowledge extraction from LLMs: prompt-based, case-based, and context-based. Results suggest
the prompt-based retrieval is biased towards prompt structure. Prompt engineering [10] aims to
create prompts that efficiently elicit desired responses from LLMs for a specific task. However,
a limited number of manually created prompts only reveal a portion of the model’s encoded
knowledge [90], as the response can be influenced by the phrasing of the question. Thus, prompt
engineering is a crucial part of knowledge retrieval from LLMs. LPAQA [90] uses an automated
mining-based and paraphrasing-based method to generate diverse high-quality prompts, as well as
ensemble methods to combine answers from different prompts. Automatic Prompt Engineer [233]
uses LLM models like InstructGPT [138] and instruction induction [78] to generate instruction
candidates which are then improved by proposing semantically similar instruction variants to
achieve human-level performance. Zhou et al. [233] investigate the ability of LLMs, such as
GPT-3, to generate high-quality prompts for a variety of tasks.Initial experiments on the role of
syntax in knowledge retrieval [116] find a strong dependency on prompt structure and knowledge
retrieval performance.

TGDK



2:14 LLMs and KGs: Opportunities and Challenges

To summarize, prior works have shown that relational knowledge is captured by LLMs to
a certain extent. However, there is still insufficient understanding of how performance differs
across different kinds of knowledge or relations, for instance, commonsense knowledge compared
to entity-centric encyclopedic facts or transversal versus hierarchical relations. In addition, several
studies raise questions about LLMs capacity to infer knowledge beyond already-seen statements.

Challenges and Opportunities.
Entity Disambiguation: Entity disambiguation is essential for KG construction to ensure
unique identification of entities and to maintain consistency across the graph. However, when
extracting facts from LLMs, entity disambiguation presents several challenges, since LLMs only
operate on word token level. Hence, polysemy and homonymy make it difficult to determine
the correct entity when a term has multiple meanings or is spelled the same as others but has
different meanings. Also, the need to resolve co-references, where the same entity is mentioned
in various ways within a text, further complicates the process. Moreover, the same piece of
text can refer to different entities depending on the context, making it a significant challenge
to correctly identify and classify the entities. Entities that were not present in the training
data or are less common in general can be particularly hard to disambiguate. This can be a
frequent issue with newer, less well-known, or very domain-specific entities. These complexities
lead to major challenges that need to be addressed: enhancing disambiguation techniques to
better handle long-tail entities; developing methods to better understand and utilize context
in entity disambiguation; and improving co-reference resolution in such a way that it can be
effectively incorporated into KG construction.
Long-tail Entities: Existing LLMs still manifest a low level of precision on long-tail entities.
Models may begin to generate incorrect information when they fail to memorize the right
facts. The answers provided by these models often lack consistency. Incorrect correlations
drawn from the pre-training corpus can lead to various biases in KG completion. Whether
retrieval-augmented models serve as a viable solution to this problem remains uncertain, as
does the potential necessity to adapt pre-training and fine-tuning processes to enhance model
robustness in handling long-tail entities.
High-Precision: LLMs face challenges in achieving high-precision predictions when performing
knowledge retrieval [193]. A potential strategy to derive high-precision KGs from LLMs is to
focus on model calibration. However, there are pressing challenges that remain unsolved. How
can LLM training be adapted to prioritize high-precision learning? Can LLMs be used for
validation purposes? These questions form the crux of the ongoing exploration in this field.
Provenance: Extracting factual knowledge directly from LLMs does not provide proven-
ance, the origin and credibility of the information, which presents multiple issues. Without
provenance, verifying the accuracy of information becomes challenging, potentially leading to
the spread of misinformation. Additionally, bias detection is hindered, as the lack of source
information makes it difficult to account for potential biases in the data used for training.
Provenance also provides critical context, without which information can be misunderstood
or misapplied. Lastly, the absence of source information compromises model transparency,
making it hard to evaluate the accountability of the LLMs.

5.3 LLMs for KGs: Ontological Schema Construction
A KG is often equipped with an ontological schema (including rules, constraints, and ontologies)
for ensuring quality, enabling easier knowledge access, and supporting reasoning. At the same
time, an independent ontology, which usually represents conceptual knowledge sometimes with
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logics, can also be regarded as a KG. In this part, we describe the interaction between LLMs
and approaches to learn ontological schemas as well techniques that can exploit LLMs to manage
ontologies and rules.

5.3.1 Constraint and Rule Mining from KGs
The existing KGs are mostly obtained from large-scale data extraction pipelines, which are
notoriously brittle and can introduce errors and inconsistencies in these graphs [48, 158]. Moreover,
a KG is never considered complete since the closed world assumption does not hold [48, 146], i.e.,
it is not possible to conclude that a missing fact is false unless it contradicts another existing fact.
Instead, we usually consider that in a KG it holds the open-world assumption, that is a missing
fact is simply considered as unknown.

Practical applications impose high demands in terms of (semi-)automatic methods for data
quality assessment and validation [102, 157, 2]. Since KGs contain huge amounts of data, it is
not feasible to manually inspect and correct their errors. Therefore, a common approach is to
instantiate rules and constraints that can be automatically enforced. These constraints express
dependencies and conditions that the KG needs to satisfy at all times and that should not be
violated by the introduction of new facts or their deletion. In KGs, rules and constraints can
take the form of Graph Functional Dependencies [57], declarative first-order logic rules [61], entire
ontologies [69], or validating shapes [102, 155]. Once a set of rules or constraints are instantiated,
the next step is to either identify which entities or facts in the KG violate any of them, or
employ them to delete erroneous information, or, finally, to employ them to deduce any missing
information [58, 159].

▶ Example 1. The following rules could apply for a subset of a graph describing people and their
relationships:

r1 : hasParent(x, y) ⇒ hasChild(y, x);

r2 : hasParent(x, y) ⇒ ∃v1, v2∈N | hasBirthYear(x, v1) ∧ hasBirthYear(y, v2);

r3 : hasChild(x, y)∧hasBirthYear(x, v1)∧hasBirthYear(y, v2) ⇒ v1 < v2;

Where r1 states that hasChild is the inverse equivalent relation of hasParent, r2 states that for
each person in the KGs for which we know the parent-child relationship we should know the birth
year, and r3 states that if y is a child of x then x should be born before y.

Nonetheless, a fundamental challenge is how to generate such rules and constraints. Specifying
them manually is prohibitively difficult and expensive [2, 157]. On the one hand, the domain
experts, who know the semantics for the dataset at hand, may not have the skill set or the
background necessary to formally express those rules. Even when skilled, domain experts would
require a substantial amount of manual work to exhaustively materialize a complete list of such
rules [158]. Therefore, in the past decade, we have witnessed an increased interest in methods that
can (semi-) automatically extract rules and constraints [158, 33]. In all those cases, the data in
the KG is exploited as a silver standard [146]. That is, while the data are not perfect, we can still
assume it is at least of reasonable quality. This approach works for rules that can find frequent
positive examples. The challenge arises for rules that need to govern entities and facts that are
rare, and for negative rules that need to prohibit some facts from appearing. To handle these
cases, contextual information, e.g., documents and other user input provided in textual form,
can be exploited in many different ways. In this context, LLMs bring a number of important
opportunities:
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ability to extract contextual information from a given text, e.g., a document describing rules
in natural language;
information extraction from contextual data, like domain knowledge in textual form explicitly
used during training;
automatic generation of new rules via deductive chain-of-thought prompting;
understanding rules vocabulary in context of a given domain description expressed in natural
language, allowing to reconcile rules with synonyms and polysemy;
providing explanations of rules or generating candidate validating or counterfactual examples.

Consider, for example, a rule where the relationships hasParent has been used, an LLM can
be queries to identify whether hasParent between two entities refers more likely to the semantic
meaning of being biologically descended or being owned or controlled. LLMs can be used to filter
out candidate constraints, e.g., given their ability to mimic simple common sense reasoning, rules
can be translated in the form of questions to the LLM, e.g., “if X is child of Y is it true that the
birth year of Y comes always before the birth year of X?”. Thus, an LLM can be used in support
or replacement of a human annotator towards generated rules.

One of the most promising abilities of LLMs is parsing long texts. In companies and organiza-
tions, documents exist that contain reference governing information, e.g., procedures, regulations,
and specifications. Here we see an untapped opportunity in parsing these documents in relation
to the entities and predicates in the KG to extract constraints. Yet, the challenge arises in the
fact that the LLM needs to use the correct vocabulary of entities and relations and the correct
rule syntax. Recent advancements in program synthesis show a possible way to the challenge.

Finally, an even more fundamental challenge is that of transcending the usage of LLMs for
NLP alone, and using them directly on large sets of facts within a KG. We can think of this setting
as a special kind of multi-modal LLMs, where the KG is a specific modality. We have seen similar
approaches in the past when word embedding approaches have been translated to knowledge
graphs [165]. This brings to the question of whether it is possible to train LLMs to treat the task
of rule generation as, for example, a graph embedding or summarization task [11, 28]. This would
require then the ability to perform both inductive and abductive reasoning and treat rules as
summaries from the set of facts in the KG.

A Rule Mining Case with ChatGPT. Let’s have a look at the following real example asking
ChatGPT to generate rules.

▶ Example 2. We ask ChatGPT “Please list three rules that could help to infer one person’s
father. And output it in a first-order rule form.” The following is the output we get:

“Certainly! Here are three rules expressed in first-order logic form that could help infer
a person’s father:

Rule 1: ∀x, y (child(x, y) ∧ male(y) → father(y, x)) This rule states that for all
individuals x and y, if there exists a ’child’ relationship between x and y and y is male,
then y is the father of x.

Rule 2: ∀x, y (biologicalChild(x, y) → father(y, x)) This rule states that for all
individuals x and y, if there exists a ’biologicalChild’ relationship between x and y, then y
is the father of x.

Rule 3: ∀x, y (fatherOf(y, x) → father(y, x)) This rule states that for all individuals
x and y, if there exists a ’fatherOf’ relationship between y and x, then y is the father of x.

These rules, expressed in first-order logic, demonstrate how the relationships between
individuals can be used to infer the father of a person within a KG.”
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From the above example, we can see that ChatGPT gives three rules that can possibly infer the
father relationship. Rule 1 is correct which is consistent with the definition of father; Rule 2 is
a rule with high probability; and Rule 3 is also correct since father and fatherOf are inverse
relations. This demonstrates LLMs have rule knowledge and could express it in a formal form
following instruction, thus they could serve as experts for automatic rule construction. To this
end, however, we need to align the rules from the LLM to the existing knowledge in the
KG, and feed the LLM with the existing knowledge and the context encoded in the
KG. Both are consistent with discussion about the company and family examples.

Challenges and Opportunities.
Retrieval augmented rule extraction and generation: LLMs can be given access to
reference documents and KG and use this access to produce candidate rules informed by the
textual content of the documents as well.
LLM guided rule explanation and validation: LLMs can be used to identify from a list
of generated rules those that are more likely to hold within a given context. Further, it can
generate explanations on the meaning of the rule and its validity.

5.3.2 Ontology Refinement
Ontology refinement includes quite a few topics like knowledge completion (e.g., subsumption
prediction, complex concept learning and new concept placement), erroneous knowledge detection
and repair (e.g., inconsistency checking) and knowledge canonicalization (e.g., entity renaming).
Besides formally represented knowledge, real-world ontologies, such as the widely used medical
ontology SNOMED CT1 and food ontology FoodOn2, also include a lot of meta information
defined by different annotation properties for usability, such as entity labels, synonyms and natural
language definition. Taking the concept obo:FOODON_00002809 in FoodOn as an example, it
has not only formal knowledge such as named super concepts and logical restrictions, but also
labels and synonyms (e.g., “edamame”), definitions (e.g., “Edamame is a preparation of immature
soybean ...”), comments and so on. These meta information, especially the natural language text,
further motivates people to use LLMs for ontology refinement.

For a refinement task, usually there are quite a few existing examples in the original ontology.
Therefore, a straightforward solution, which has been adopted by most current methods, is
fine-tuning a Pre-trained Language Model such as BERT together with an attached classifier. One
typical method is BERTSubs [29] which is to predict the subsumption relationship between two
named concepts, or between one named concept and one complex concept. It concatenates the
corresponding texts of the two candidate concepts with special tokens as the input of a model
composed of a pre-trained BERT and a logistic regression classifier, and fine-tunes the model with
the existing subsumptions in the target ontology. For a named concept, the text could be either its
name (label or synonym), or its name in combination with a textual description of its surrounding
concepts; while for a complex concept, the text is its description (a.k.a. verbalisation). Another
typical work is [119] which fine-tunes BERT and predicts the position to place in SNOMED CT
for a new concept. Note that there are also some language model-based methods in taxonomy
curation, such as [171] which fine-tunes BERT for taxonomy edge completion and GenTaxo [221]
which fine-tunes a BERT variant named SciBERT for predicting positions that need new concepts.
They can be directly applied or easily extended to refine an ontology’s concept hierarchies.

1 https://www.snomed.org/
2 https://foodon.org/
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Exploiting LLMs is a promising direction for ontology refinement, but it still needs much
effort before they become practical tools. DeepOnto [73], which is a Python-based package that
can support quite a few ontology engineering tasks, has already included some tools for ontology
refinement and alignment using LLMs, but more development is needed to make it more accessible
and to support generative LLMs like LLaMA and GPT-4. One obvious challenge is that those
very recent generative LLMs have been rarely explored for ontology engineering. However, we
think the following two research challenges are more fundamental.

Challenges and Opportunities.
Exploiting the graph structure and logic of an ontology together with its text.
Currently, LLM fine-tuning-based methods can well utilize the text of individual entities,
but their other formal semantics are often ignored or not effectively incorporated. Besides
fine-tuning with samples constructed by some templates, more LLM techniques such as prompt
learning and instruction tuning could be considered.
Combing symbolic reasoning with LLM inference. Symbolic reasoning, such as consist-
ency checking in OWL ontologies, can still play a role e.g., in validating the knowledge inferred
by LLMs. One aspect of incorporating symbolic reasoning is constructing samples for LLM
fine-tuning and extracting prompts for LLM inference, while another aspect is the synergized
framework [235] where LLM inference and symbolic reasoning work iteratively.

5.3.3 Ontology Alignment
The content of one single ontology is often incomplete and many real-world applications rely on
cross-domain knowledge. Ontology alignment (a.k.a. ontology matching), which is to identify
cross-ontology mappings between entities that have an equivalent, subsumption or membership
relationship, thus becomes especially important for knowledge integration. The entity can be a
concept (class), an individual (instance) or a property. Traditional systems (e.g., LogMap [91])
heavily rely on lexical matching and optionally use symbolic reasoning to remove mappings that
lead to logical conflicts; while some recent methods combine these techniques with machine
learning techniques like feature engineering, semantic embedding and distant supervision for
better performance (e.g., LogMap-ML [30]). Especially, when the ontologies have a large ratio of
assertions (large ABoxes) and the task is to discover equivalent individuals, ontology alignment is
very close to the KG entity alignment task that has been widely investigated in recent years using
KG embeddings [228]. As in ontology refinement, exploiting the textual information by applying
LLMs is a promising direction for augmenting ontology alignment.

The study of LLM application in ontology alignment is similar to ontology refinement. Pre-
trained language models such as BERT have been applied via fine-tuning [133, 72]. BERTMap [72]
is a typical system that has achieved state-of-the-art performance in many biomedical ontology
alignment benchmarks. It fine-tunes a pre-trained LM with synonym pairs extracted from the
original ontologies and the potentially given mappings, and combines the predicted concept
equivalence scores with lexical matching scores and reasoning for the mappings. Those recent
LLMs like GPT-4 have not been applied in ontology alignment, as far as we know, and the two
fundamental research challenges mentioned in ontology refinement are applicable in ontology
alignment. Besides, ontology alignment has another critical challenge.

Challenges and Opportunities.
Evaluating LLM-based ontology alignment systems. Novel evaluation protocols with new
metrics are needed to fairly and efficiently compare LLM-based systems even with incomplete
ground truth mappings [74]. Meanwhile, the semantics from the textual meta information
and the LLM may be inconsistent with formal semantics defined in ontologies, and thus it is
sometimes hard to determine whether a mapping by an LLM-based system is true or not.
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5.4 KGs for LLMs: Training and Augmenting LLMs
In Sections 5.1 to 5.3, we discussed three different aspects on using LLMs for KGs. In this section,
we look into the other direction, i.e., using KGs for LLMs. There are a few dimensions here. Firstly,
KGs can be used as training data for LLMs. Secondly, triples in KGs can be used for prompt
construction. Last but not least, KGs can be used as external knowledge in retrieval-augmented
language models.

5.4.1 KGs for (Pre-)Training Language Models
KGs typically incorporate data derived from sources that are deemed highly reliable. The extracted
data goes through a post-processing phase before it is certified by human evaluations. This vetted
information from KGs has been incorporated into the pre-training corpus to complement natural
language text, which on its own, can result in limited information coverage [216, 150, 1, 212].

Using factual knowledge from KGs to pre-train LLMs has also infused structured know-
ledge [130]. This integration of KGs with LLMs, along with efficient prompts, has made it
convenient to inject world knowledge and incorporate new evolving information into language
models [49]. Additionally, knowledge expressed in high-resource language KBs has been transferred
into LMs tuned for low-resource languages [232, 118].

Furthermore, grounding knowledge from KGs to pre-train LMs has shown improvements in
performance on generation and QA tasks [34, 164, 136]. In another approach, [192] proposed
an interpretable neuro-symbolic KB, where the memory consists of vector representations of
entities and relations from an existing KB. These representations are augmented to an LM during
pre-training and fine-tuning, enabling the model to excel in knowledge-intensive QA tasks.

Challenges and Opportunities.
High-quality knowledge injection: KGs can prove to be a valuable source of knowledge,
fostering a more profound understanding of the relationships between entities within LLMs –
this is particularly true as existing KGs such as Wikidata [196] are committed to ensuring high
precision. Moreover, KGs’ ability to include dynamic updates with the latest information can
provide significant advantages during pre-training in comparison to outdated textual corpus.
Information duplication: KGs encapsulate direct and indirect relations, and one can induce
the same information using multiple facts. Such a kind of complex linking between entities is
generally hard to find in a single textual source. Therefore, leveraging KGs can enhance the
LLM’s understanding and reasoning capacities about popular as well as long-tail entities.

5.4.2 KGs for Prompt Construction
The attention received by the integration of KGs and LLMs has grown recently. On the one
hand, there is the explored direction of prompting LLMs for collecting and distilling knowledge in
order to make it available to the end-users. On the other hand, there is the less explored research
direction where KGs are used in synergy with prompts in order to enhance LLMs with capabilities
making them more effective and, at the same time, trustworthy. A number of studies have
leveraged KGs to enrich and fine-tune prompt creation resulting in a significant increase in prompt
quantity, quality, and diversity compared to manual approaches. KGs have been employed in single
and in multi-turn scaffolding prompts at scale, powered by numerous traversal paths over KGs
with low authoring cost while considering the meaningful learning patterns [107]. Other studies
have investigated how incorporating explicit knowledge from external sources like KGs can help
prompt engineering, especially by giving additional contexts (e.g., attributes, K-hop neighbors)
of the entities in order to help the LLMs to generate better predictions [23]. Approaches like

TGDK



2:20 LLMs and KGs: Opportunities and Challenges

KnowPrompt [35] use KGs to incorporate semantic and prior knowledge among relation labels into
prompt-tuning for relation extraction, enhancing the prompt construction process and optimizing
their representation with structured constraints. Certain studies have utilized LLMs and prompts
in the task of reasoning over KGs [40], e.g., LARK uses entities and relations in queries to find
pertinent sub-graph contexts within abstract KGs, and then, performs chain reasoning over these
contexts using LLM prompts of decomposed logical queries outperforming previous state-of-the-art
approaches by a significant margin.

Challenges and Opportunities. The current research in the field of KG utilization for prompt
creation predominantly centers around LLMs, which are considered to have relatively lower
efficacy compared to LLMs. LLMs present significant potential for advancing prompt creation
methodologies in conjunction with KGs. We may summarize this perspective within the following
four challenges:

KGs can be employed to automatically extract and represent relevant knowledge to generate
context-aware writing prompts. Analyze and understand the relationships between different
writing prompts, enabling the generation of prompts that build upon each other.
KGs can be combined with LLMs to facilitate the interactive and dynamic generation of
prompts, adapting to user feedback and preferences in real-time. Furthermore, the use of KGs
in prompt creation has opened up possibilities for explainability and interpretability. Since
KGs provide a transparent representation of knowledge, the prompts generated from KGs can
be easily traced back to their underlying sources.
KGs can integrate into prompts the definitions of guards exploited during the generative task.
Such guards may enhance the trustworthiness of the information generated by LLMs and make
them more compliant with specific domain-wise or context-wise constraints.
KGs can create prompts that ask questions (e.g., inferring missing relations in an incomplete
KG) that trigger KG complex reasoning capabilities and intermediate reasoning steps.

The integration of KGs within the prompt construction activities will allow us to answer the
following preparatory set of research questions. For each research question, we provide a link to
the challenges mentioned above, aiming to identify appropriate research pathways.

RQ1: How can KGs be integrated into existing prompts to enhance the effectiveness (including
relevance, absence of bias, privacy-preservation) of the information extracted from LLMs? −→
C1, C2, C3.
RQ2: How can KGs be exploited to drive the generative capabilities of LLMs in order to
properly address the whole ethical constraints of AI-based solutions? −→ C2, C3.
RQ3: What are the optimal approaches to generate KGs-based prompts that enhance reasoning
capabilities? −→ C4.

Also, in the following three scenarios, the community would benefit from tackling the above-
mentioned challenges and research questions.

KGs for Hallucination Detection in LLMs: The reliability of LLMs is greatly affected by
the hallucination problem, where they generate inaccurate information. Despite attempts to
address it, the issue of hallucination is likely to persist in the realm of LLMs for the foreseeable
future. To aid in the detection of hallucinations, KGs-based prompting aims to offer reliable
information that can serve as a foundation. By combining LLMs and KGs, researchers can
develop a comprehensive prompt-based fact-checking model that can identify hallucinations in
various domains.
KGs for Editing Knowledge in LLMs: LLMs possess the ability to store extensive real-
world knowledge, but they struggle to exploit prompts to update their internal knowledge
to reflect real-world changes. KGs-based prompts offer a potential solution for modifying
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knowledge in LLMs, but they are restricted to handling basic tuple-based knowledge in KGs.
Indeed, even if the entire LLM undergoes re-training, the knowledge presented through prompts
would likely be assimilated within the vast network structure of the LLM.
KGs for Black-box LLMs Knowledge Injection: While pre-training and knowledge
editing methods can bring LLMs up to date with the latest information, they require access
to the internal structures and parameters of LLMs. However, many cutting-edge large LLMs
only offer APIs that allow users and developers to interact with them, keeping their internal
workings hidden from the public. Consequently, traditional KG injection techniques that involve
modifying LLM structures with additional knowledge fusion modules cannot be employed.
One potential solution is to convert various types of knowledge into different text prompts.
However, it remains an area of ongoing research to determine if these prompts can effectively
adapt to new LLMs. Additionally, the approach of using KGs-based prompts is constrained
by the length of input tokens accepted by LLMs. Therefore, the question of how to enable
effective knowledge injection for black-box LLMs still remains unanswered.

5.4.3 Retrieval Augmented Methods
There are a few reasons for why retrieval augmented methods are necessary for LLMs to obtain
external knowledge. One reason is to address the problem of knowledge cutoff, i.e., LLMs are
not aware of the events that happened after their training. Also, although parametric knowledge
would increase when the size of parameters increases, training LLMs is expensive; e.g., GPT-3
(175B parameters) costs $4.6 million to train, and PaLM (540B parameters) costs $17 million. In
fact, research suggests that the obtained knowledge from such training is mainly about popular
entities [125]. Furthermore, for domain specific applications, there might be some significant
knowledge that is not yet in LLMs, including private and business critical knowledge that cannot
be put into LLMs.

One idea to deal with the above lack of (updated) knowledge is to edit the knowledge in
LLMs. Knowledge Editing methods assume that we know which entries are wrong and how
to fix them. An obvious strategy is to retrain and fine-tune the model based on the modified
data. However, apart from being costly, retraining cannot guarantee that erroneous data will be
corrected. Another strategy is to develop a hyper-network to learn a parameter shift for the base
model. De Cao et al.[45] trained a hyper-network, KnowledgeEditor, to modify a fact and used
Kullback-Leibler (KL) divergence-constrained optimization to alleviate the side effect on other
data/knowledge that should not be changed. However, many state of the art methods do not
perform well when editing multiple edits, as they use the same strategy to process multiple edits
and ignore the relation between different edit gradients, resulting in a “zero-sum” phenomenon,
where the inter-gradient conflict will inevitably cause some data modifications to fail. Han et
al. [71] design explicit and implicit multi-editor models to learn diverse editing strategies in terms
of dynamic structure and dynamic parameters respectively, allowing to deal with the conflict data
in an efficient end-to-end manner.

Alternatively, people could look into retrieve-generate architectures for building retrieval
augmented generation models. In this setting, we assume that the external sources contain the
needed knowledge for addressing users’ requirements. Initially, most such methods use unstructured
passages as external knowledge. RAG [109] outperforms DPR [99] by marginalizing the retrieval
step to train the generator and retriever jointly with the supervision of the label answer. RAG
tends to focus too much on label-relevant passages, rather than question-relevant passages and
answers. Huang et al. [85] address this issue by incorporating rich answer encoding through Dense
Knowledge Similarity (DKS) and Retriever as Answer Classifier (RAC). FiD [87] encodes the
concatenation of the passages retrieved by pre-trained DPR and the original question separately,
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Figure 2 Different Tasks for Retrieval Augmented Methods.

and then fuses them with concatenation to the decoder. It is expected that structured knowledge
will be the main source of external knowledge (cf. Figure 2), as passages often contain noise.
Knowledge Graphs can be used directly as external knowledge. For example, KG-FiD [219]
utilizes knowledge graphs to further enhance the retrieval quality by establishing the structural
relationship among the retrieved passages. Another external source is databases. Vougiouklis et
al. [195] propose an efficient NL2SQL approach, transforming questions in natural language into
SQL over given database schemas, outperforming ChatGPT under the zero-shot setting while
achieving about 10 times speedup over other state of the art NL2SQL engines.

As illustrated in Figure 2, it is important to note that there are different tasks for retrieval
augmented methods to enhance large language models. In addition to the above mentioned
retrieval augmented methods for prompting, there are also methods for other tasks. For example,
Zhao et al. [229] propose the Verify-and-Edit framework, which makes use of retrieval augmented
methods to validate texts generated by large language models for individual steps within CoT-style
reasoning chains. Yang et al. [214] proposes LLMA accelerator to make use of retrieval augmented
methods for speeding up decoding of large language models. Gao et al. [63] propose the RARR
system, which retrieve evidence for texts generated by large language models for referencing
purpose. Apart from retrieval augmentation for generations, retrieval augmented methods can
be used for pre-training and fine-tuning [70] as well. Knowledge graphs are expected to play key
roles in these tasks.

Challenges and Opportunities. To sum up, retrieval augmentation is a very promising direction.
There are a few pressing challenges:

Unifying Knowledge Editing and Retrieval Augmentation: KGs can be used for editing
knowledge in LLMs, while at the same time, KGs can also be used as external knowledge
to assist LLMs in retrieval augmented methods. In fact, knowledge editing and retrieval
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Figure 3 Tools and APIs as External Knowledge Sources.

augmentation is getting very close. For example, Mitchel et al. [129] proposed a Retrieval-
Augmented Counterfactual Model (SERAC), which stores edits in an explicit memory for
knowledge editing over LLMs. However, SERAC primarily focuses on batch editing, assuming
that all editing data is known. Han et al. [177] propose a Retrieval Augmented Sequential
Model Editing framework (RASE) that enhances editing generalisation and could work with
different knowledge editors, supporting thousand’s of edits.

Semi-parametric LLMs: This direction is highly related to the topic of this position paper.
The idea is to make use of explicit knowledge to augment LLMs. One of the key issues is to
integrate different explicit knowledge [184], including unstructured ones, such as passages, and
structured ones, such as KGs and databases, for augmenting LLMs.

Support of Complex Reasoning: Can we go beyond simply retrieving explicit knowledge
by enabling reasoning through retrieval augmented methods? BehnamGhader et al. [12]
demonstrated with their experimental results that the similarity metric used by the retrievers
is generally insufficient for reasoning tasks. Furthermore, LLMs do not take the complicated
relations between statements into account, thus leading to poor reasoning performance.

Attribution Evaluation and Revision: Can we retrieve relevant passages or structure
knowledge for some generated text t for a given query q (or a dialog [52])? If it turns out that
t is not appropriate for q, can we produce some revised text t′ instead [64]?

Tool Use and Agent: In a sense, retrieval augmented methods are mainly using a retriever
to offer external knowledge. One step further is to use tools [168] and APIs [156] as external
source of knowledge, as illustrated in Figure 3. There will be lots of room for Knowledge
Graph related research in this space.
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6 Some Thoughts on Applications

The integration of KGs and LLMs in a unified approach holds significant potential, as their
combination mutually enhances and complements each other in a valuable manner. For instance,
KGs provide very accurate and explicit knowledge, which is crucial for some applications i.e.
healthcare, whereas LLMs have been criticized for their lack of factual knowledge leading to
hallucinations and inaccurate facts. secondly, LLMs lack explainability instead, KGs given their
symbolic reasoning ability, are able to generate interpretable results. On the other hand, KGs
are difficult to construct from unstructured text and suffer from incompleteness therefore, LLMs
could be utilized in addressing these challenges by text processing. Various applications have
adopted this methodology of combining LLMs with KGs, such as healthcare assistants3, question
answering systems [217] or ChatBots, and sustainability, among others.

6.1 Commonsense Knowledge
The majority of KGs capture facts of the sort one might encounter in an encyclopedia or in
a relational database. However, commonsense knowledge is another important form of world
knowledge for AI systems. For instance, we may wish for a KG to not only capture that the
Congo rainforest lies in Central Africa, but also that tropical rainforests have significant rainfall
and lush green vegetation. ConceptNet is the most well-known commonsense knowledge graph,
developed using manual crowdsourcing along with automated refinement techniques [120]. However,
crowdsourcing is very labor-intensive and costly, so alternative means of harvesting such knowledge
have long been sought.

Commonsense Knowledge from LLMs. The first study to investigate extracting knowledge
from a language model to the best of our knowledge was indeed one that targeted commonsense
knowledge [185]. The authors mined commonsense triples such as hasProperty (apples, green)
from the Google Web 1T n-gram data as well as from Microsoft’s Web-scale smoothed language
models [82]. This was later extended into a large-scale commonsense knowledge graph [187] that
covered a range of different relations and became a part of the WebChild KG [186].

As both crowdsourcing and information extraction from text are likely to lead to incomplete
knowledge, a key challenge is how to generalize beyond what has been collected. The WebBrain
project explored neural knowledge graph completion [32] for better generalization. COMET, short
for COMmonsEnse Transformer [21], and the improved COMET-ATOMIC 2020 [86], used existing
data to fine-tune Transformer-based models. This line of work considers the original ConceptNet
relations as well as reasoning-related knowledge pertaining to events, causes, and effects, e.g.,
what goals might have motivated a person A to leave an event without person B. Recently, [208]
shows how common-sense triples could be extracted from an LLM and use through distillation to
transfer knowledge into a smaller LM, outperforming the larger one. Overall, fine-tuned LLMs are
found to outperform off-the-shelf LLMs, while also benefiting from the advances of the latter.

Challenges and Opportunities. Commonsense knowledge, in particular, is genuinely open-ended,
such that it depends on a number of considerations whether it makes sense to attempt to materialize
relevant knowledge beforehand or rather invoke a (possibly slow) LLM on the fly. Commonsense
knowledge may also differ substantially between different cultures [134]. This also leads to the

3 https://neo4j.com/blog/doctor-ai-a-voice-chatbot-for-healthcare-powered-by-neo4j-and-aws/
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question of what kinds of biases are acceptable. Finally, a long-term challenge is how to capture
knowledge that is not easily expressed in language, e.g., how a robot ought to grasp different kinds
of objects.

6.2 Digital Build Environment

In the domain of Build Environment, where it is vital to design and construct in a safe and
sustainable way, a number of regulations and guidelines need to be met. Automated Compliance
Code Checking has bloomed to support this, but still, in the past, it was quite challenging to
interpret regulations and execute rules in 3D models automatically due to the ambiguity of the
text, and the need for extensive expert knowledge for interpretation. Many applications now in this
area have combined LLMs + KGs in addressing these challenges by following an LLMs enhanced
KG approach [235]. LLMs interpret the text in the regulations and enhance a KG of rules, which
are further serialized using dome Domain Specific Language [226, 203]. Interrogating 3D models
modeled as graphs using the Linked Building Data approach is another challenge for the domain
as it requires skill sets in query languages like SPARQL. LLMs are helping in understanding
human language written questions and converting those into relevant query languages by bringing
a new way of how domain experts interact and interrogate 3D models and their various forms. An
example of this is AI Speckle 4.

6.3 Digital Healthcare

The Digital Healthcare sector holds immense potential for various possibilities concerning the
adoption of LLMs, including the automation of clinical documentation, the synthesis of patient
histories, and the identification of potential candidates for clinical trials. Although these advance-
ments are remarkable, it is crucial to recognize the potential risks associated with employing
LLMs in healthcare. Indeed, Digital Healthcare is one of the most critical application domains for
the adoption of LLMs. The needs of the major stakeholders (i.e., physicians, healthcare providers,
and policymakers) row against the paradigm behind the creation of LLMs. In particular, the two
major significant risks related to the model’s accuracy and the privacy concerns stemming from
its usage.

Accuracy. Some demonstrations of LLMs have showcased impressive capabilities. Nevertheless,
there have also been documented instances where LLMs have made mistakes or exhibited erratic
behavior. In the Digital Healthcare sector, where patient safety is of utmost importance, it
is crucial for healthcare organizations to comprehend the potential risks associated with LLM
usage. When utilized to diagnose hypothetical patient cases, LLMs have exhibited accuracy
at a level comparable to that of a third- or fourth-year medical student, albeit not reaching a
professional’s proficiency. Despite this high level of performance, LLMs have also been known
to generate false information, invent sources, commit logical errors, and provide answers that
are inappropriate or unethical. The integration of KGs would definitely enhance the capabilities
of LLMs given the possibility of injecting domain-specific knowledge able to mitigate the issues
mentioned above. Avoiding hallucinations and preserving ethics are definitely the two major
aspects to which LLMs+KG may contribute in a significant manner.

4 https://speckle.systems/blog/ai-powered-conversations-with-speckle/
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Privacy. One major concern with LLMs is that employing any third-party application necessitates
the transmission of data to that party. When data, including protected health information (PHI),
is managed by a covered entity like a hospital, it becomes subject to the regulations of the
jurisdiction where the entity is located (e.g., GDPR). Furthermore, by sending PHI to additional
third parties, organizations lose control over how that data will be handled. For instance, healthcare
organizations are unable to determine the exact storage location of their data, whether it will be
mixed with data from other organizations and utilized to train future language models, or what
security measures are in place to safeguard the data. Healthcare organizations employing LLMs
must recognize that their data are potentially more susceptible to breaches or misuse. The role of
preserving private information may be played by KGs through the modeling of axioms defining
which data may be shared and with who and how personal knowledge may be anonymized in
order to be transmitted to possible external systems.

An alternative approach, prioritizing privacy, involves running an open-source LLM within the
infrastructure of a healthcare organization. This way, it would be possible to directly work on the
parameters of LLMs given the possibility of having control of the injected knowledge and, at the
same time, ensuring that data are never shared with a third party. However, these open-source
models are currently not as advanced or extensively trained as the more popular commercial
systems (e.g., ChatGPT). Additionally, the effort to create the knowledge resources to inject and
the expertise required to program and maintain an open-source LLM may not be readily available
to many healthcare organizations.

The two risks described above lead to likewise challenges that must be tackled in order to
make a significant step toward the adoption of these models within the clinical practice.

6.3.1 Domain Specific Content Search
Recently we have witnessed the success of models like GPT-4 [137] in a multitude of domain-specific
NLP applications that involve multiple modalities and domain specific adaptations. In these cases
they need to be able to access data stored in multiple modalities (e.g., pictures, diagrams, scientific
images, PDF documents, or system logs) and an abundance of domain specific information that has
not been accessed during training. In these use-cases, while LLMs are often treated as generative
models, they can be easily adopted in search and reasoning tasks when integrated in specific
tools and pipelines 5. Nonetheless, as seen in the past all these specialized domains can better
benefit from the inclusion of symbolic knowledge in machine methods [6]. Here we focus on
two prototypical applications: (1) semantic image and video search and (2) technical document
understanding.

Recently, many methods, primarily based on deep learning models such as CLIP [160] and
BLIP2 [113], achieved state-of-the-art performance on image retrieval tasks. These multi-modal
models jointly learn vector embeddings for images and text, such that the embedding of the image
should be close to that of the text that describes that image. Nonetheless, we have also seen
increased interest in obtaining a more symbolic representation of the contents of an image [145, 105].
Datasets like Visual Genome [105] annotate images with scene graphs. A scene graph is a small
KG that describes, with a structured formal graphical representation, the contents of an image
in terms of objects (people, animals, items) as nodes connected via pairwise relationships (e.g.,
actions or positioning relationships) as edges. Therefore, Multimodal LLM can be trained to
reason and exploit this additional representation offering an advanced ability to understand the
contents of an image (or a video). Importantly, a scene graph node and edge can be annotated

5 For example https://haystack.deepset.ai/
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(grounded) with features and positions from the image (e.g., relative size). This can be exploited
in applications like image and video search and question answering. When entities in a scene graph
are connected to a background taxonomy or KG, then questions that require forms of abstraction
and computation, e.g., What is the genus of the largest animal in the picture? What is the average
price of the car in the picture? Retrieve images depicting kids wearing vegan friendly items of
clothing in the catalog.

On the other hand, the digitalization of domain specific documents, e.g., especially contracts,
is enabling in-depth applications of machine intelligence to help humans more effectively perform
time-consuming tasks. Among these, contract review costs humans substantial time, money, and
attention (many law firms spend approximately 50% of their time reviewing contracts, costing
hundreds of thousands of dollars) [77]. The Contract Understanding Atticus Dataset (CUAD) is a
new dataset for legal contract review [77]. CUAD was created with legal experts and consisted of
over 13,000 annotations. Recent advancements in generic pre-trained language models showed
their power in some text-understanding tasks. Therefore, we have seen different domain specific
applications of NLP and LLM methods [209, 215]. Yet, they do not have access to all relevant
knowledge and are ill-suited for certain calculations [98]. This can be solved by exploiting external
domain specific symbolic information, e.g., domain specific knowledge graphs [135, 117, 66], and
by adding symbolic and reasoning capabilities to the LLMs [98]. This promising direction will
lead to extending current state-of-the-art neuro-symbolic methods to combine the advantages of a
graph representation when extracting symbolic knowledge from complex documents, the ability to
understand long-form unstructured texts of LLMs, and the good properties of domain-specific
code synthesis of LLMs to address advanced retrieval and question answering use-cases, e.g., How
many weeks are left before the expiration of this contract? What are the conflicts between this
liability clause and previous contracts my company signed? What is the risk of side-effects of this
treatment for a patient with this given health record? Get the average yearly yield and spread for
competitor companies of ACorp and their recent acquisitions in the EU market.

7 Outlook

In conclusion, the recent advances on large language models (LLMs) mark an important inflection
point for knowledge graph (KG) research. While important questions on the ability to combine
their strengths remain open, these offer exciting opportunities for future research. This paper has
covered a number of relevant topics about KG and LLM. There are some others that may have
not been widely investigated at the current stage but are worthy of mentioning, including LLM
for multi-modal and temporal KG construction [36, 211], LLM for KG question answering [80],
multilingualism of LLM and KG [178], KG for LLM instruction tuning and human alignment, KG
for faster LLM inference and so on. The community is already rapidly adapting their research focus,
with novel forums like the KBC-LM workshop [96], the LM-KBC challenge [175] and the LLM
sub-track of OAEI Bio-ML6 arising, and resources massively shifting towards hybrid approaches
to knowledge extraction, consolidation, and usage. We give out the following recommendations:
1. Don’t throw out the KG with the paradigm shift: For a range of reliability or safety-critical

applications, structured knowledge remains indispensable, and we have outlined many ways in
which KGs and LLMs can fertilize each other. KGs are here to stay, do not just ditch them
out of fashion.

2. Murder your (pipeline) darlings: LLMs have substantially advanced many tasks in the KG
and ontology construction pipeline, and even made some tasks obsolete. Take critical care in
examining even the most established pipeline components, and compare them continuously
with the LLM-based state of the art.

6 https://www.cs.ox.ac.uk/isg/projects/ConCur/oaei/2023/index.html
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3. Stay curious, stay critical : LLMs are arguably the most impressive artifact of AI research of
the past years. Nonetheless, there exist a magnitude of exaggerated claims and expectations in
the public as well as in the research literature, and one should retain a healthy dose of critical
reflection. In particular, a fundamental fix to the so-called problem of hallucinations is not in
sight.

4. The past is over, let’s begin the new journey: The advances triggered by LLMs have uprooted
the field in an unprecedented manner, and enable to enter the field with significant shortcuts.
There is no better time to start anew in fields related to Knowledge Computing, than now.

Although the direction of the present transformation is widely open, as researchers continue to
explore the potentials and challenges of hybrid approaches, we can expect to see new breakthroughs
in the representation and processing of knowledge, with far-reaching implications for fields ranging
from Knowledge Computing to NLP, AI, and beyond.
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Abstract
Knowledge engineering is a discipline that focuses
on the creation and maintenance of processes that
generate and apply knowledge. Traditionally, know-
ledge engineering approaches have focused on know-
ledge expressed in formal languages. The emergence
of large language models and their capabilities to
effectively work with natural language, in its broad-
est sense, raises questions about the foundations

and practice of knowledge engineering. Here, we
outline the potential role of LLMs in knowledge
engineering, identifying two central directions: 1)
creating hybrid neuro-symbolic knowledge systems;
and 2) enabling knowledge engineering in natural
language. Additionally, we formulate key open re-
search questions to tackle these directions.
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1 Introduction

Knowledge engineering (KE) is a discipline concerned with the development and maintenance of
automated processes that generate and apply knowledge [4, 93]. Knowledge engineering rose to
prominence in the nineteen-seventies, when Edward Feigenbaum and others became convinced that
automating knowledge production through the application of research into artificial intelligence
required a domain-specific focus [32]. From the mid-nineteen-seventies to the nineteen-eighties,
knowledge engineering was mainly defined as the development of expert systems for automated
decision-making. By the early nineteen-nineties, however, it became clear that the expert systems
approach, given its dependence on manual knowledge acquisition and rule-based representation
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of knowledge by highly skilled knowledge engineers, resulted in systems that were expensive to
maintain and difficult to adapt to changing requirements or application contexts. Feigenbaum
argued that, to be successful, future knowledge-based systems would need to be scalable, globally
distributed, and interoperable [34].

The establishment of the World Wide Web and the emergence of Web architectural principles
in the mid-nineteen-nineties provided a means to address these requirements. Tim Berners-Lee
argued for a “Web of Data” based on linked data principles, standard ontologies, and data sharing
protocols that established open standards for knowledge representation and delivery on and across
the Web [11]. The subsequent twenty years witnessed the development of a globally federated
open linked data “cloud” [13], the refinement of techniques for ontology engineering [51], and
methodologies for the development of knowledge-based systems [86]. During the same period,
increasing use of machine learning and natural language processing techniques led to new means
of knowledge production through the automated extraction of knowledge from natural language
documents and structured data sources [26, 68]. Internet-based businesses in particular found
value in using such technologies to improve access to and discovery of Web content and data [43].
A consensus emerged around the use of knowledge graphs as the main approach to knowledge
representation in the practice of knowledge engineering in both commercial and research arenas,
providing easier reuse of knowledge across different tasks and a better developer experience for
knowledge engineers [45].

More recently, the increase in the availability of graphical processing hardware for fast matrix
arithmetic, and the exploitation of such hardware to drive concurrent innovations in neural
network architectures at heretofore unseen scales [106], has led to a new set of possibilities for the
production of knowledge using large language models (LLMs). LLMs are probabilistic models of
natural language, trained on very large corpora of content, principally acquired from the Web.
Similar to previous approaches to language modeling, given a sequence of tokens, LLMs predict a
probable next sequence of tokens based on a learned probability distribution of such sequences.
However, presumably due to the vast amount of content processed in learning and the large size
and architecture of the neural networks involved, LLMs exhibit remarkable capabilities for natural
language processing that far exceed earlier approaches [60].

These capabilities include the ability to do zero- or few-shot learning across domains [20], to
generalize across tasks, including the ability to perform domain-independent question answering
integrating large amounts of world knowledge [77], to generate text passages at human levels of
fluency and coherence [28, 96], to deal gracefully with ambiguity and long-range dependencies in
natural language [104], and to reduce or even eliminate the need for manual feature engineering [98].
LLMs also exhibit the ability to generate and interpret structured and semi-structured information,
including programming language code [6, 100], tables [46, 53], and RDF metadata [106, 58, 7].
The generalization of language models (termed “foundation models” by some) to other modalities
including images and audio have led to similarly significant advances in image understanding
[23, 117], image generation [38, 79, 83], speech recognition, and text-to-speech generation [78, 105].
Such capabilities have prompted a significant amount of research and development activity
demonstrating potential applications of LLMs [66, 84, 54]. However, the means of incorporating
LLMs into structured, controllable, and repeatable approaches to developing and fielding such
applications in production use are only just beginning to be considered in detail [73].

This paper engages with the question of how LLMs can be effectively employed in the context
of knowledge engineering. We start by examining the different forms that knowledge can take,
both as inputs for constructing knowledge systems and as outputs of such systems. We argue
that the distinction between knowledge expressed in natural language (or other evolved, naturally
occurring modalities such as images or video) and knowledge expressed in formal languages (for
example, as knowledge graphs or rules), sheds light how LLMs can be brought to bear on the
development of knowledge systems.
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Based on this perspective, we then describe two potential paths forward. One approach
involves treating LLMs as components within hybrid neuro-symbolic knowledge systems. The
other approach treats LLMs and prompt engineering [57] as a standalone approach to knowledge
engineering2, using natural language as the primary representation of knowledge. We then
enumerate a set of open research problems in the exploration of these paths. These problems
aim to determine the feasibility of and potential approaches to using LLMs with existing KE
methodologies, as well as the development of new KE methodologies centered around LLMs and
prompt engineering.

2 Forms of knowledge and their engineering

In the history of the computational investigation of knowledge engineering, knowledge has been
often treated primarily as symbolic expressions. However, as [39] noted, knowledge is actually
encoded in a variety of media and forms, most notably in natural language (e.g. English) but also
in images, video, or even spreadsheets. This fact becomes even more apparent when looking at
institutional knowledge practices that have developed over centuries, for example, in the sciences
or archives [44]. We now illustrate this point by describing the many ways in which knowledge
manifests itself in the context of biodiversity informatics.

2.1 The multimodal richness of knowledge: an example from biodiversity
sciences

The ultimate goal of biodiversity science is to understand species evolution, variation, and
distribution, but finds applications in a variety of other fields such as climate science and policy.
At its heart is the collection and observation of organisms, providing evidence for deductions
about the natural world [59]. Such knowledge is inherently multimodal in nature, most commonly
appearing in the form of images, physical objects, tree structures and sequences, i.e., molecular
data.

Historically, organism sightings have been carefully logged in handwritten field diaries to
describe species behavior and environmental conditions. Detailed drawings and later photographs
were made to capture color, organs and other knowledge about an organism’s traits used for
identification, which is best conveyed visually but which is challenging to preserve in natural
specimens. These manuscripts are housed, together with the physical zoological specimens and
herbaria which they describe, in museums and collection facilities across the world. Both the
multimodal nature of these knowledge sources as well as their distributed nature hamper knowledge
integration and synthesis.

Metadata describes the specimen’s provenance: where specimens were found, who found them,
and provides an attempt at identifying the type of organism (such as the preserved squid specimen
shown in Figure 1). Such knowledge is paramount, as it allows researchers to understand resources
within the context in which they were produced, enabling researchers to carry out ecological
studies such as distribution modeling over time.

For a systematic comparison of the multitude of resources available, the biodiversity sciences
have had a long-standing tradition of developing information standards [67]. From Linnaeus’
Systema naturae mid 18th century as well as his formal introduction of zoological nomenclature,

2 As defined by [57], prompt engineering is finding the most appropriate prompt or input text to an LLM to
have it solve a given task.
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taxonomists have started categorizing natural specimens according to tree-like hierarchical struc-
tures. The process is challenging, given that biologists up until this day do not have a full picture
of all living organisms on earth, and incomplete, naturally evolved and fuzzy knowledge is not
easily systematized.

Figure 1 A specimen of the Loligo vulgaris Lamarck, 1798 species from the Naturalis–Zoology and
Geology catalogues.a Images free of known restrictions under copyright law (Public Domain Mark 1.0).
a https://bioportal.naturalis.nl/nl/specimen/RMNH.MOL.5009890

The development of digital methods has opened up new pathways for comparison and analysis.
Gene sequencing technology has led biologists to the genetic comparison of species, by the calcula-
tion of ancestry and construction of evolutionary tree structures in the study of phylogeny [50].
More importantly, digital methods allowed the transfer of analog resources, such as specimen col-
lection scans [14] and metadata, to the digital world. Such techniques have furthered formalization
and thereby interoperability of collected data through the use of Web standards, such as globally
unique identifiers for species names [72] as well as shared vocabularies for data integration across
collections [10]. The Global Biodiversity Information Facility (GBIF) and their data integration
toolkit serves as a great example of such integration efforts [97, 81]. Currently, there is a large
emphasis on linking up disparate digital resources in the creation of an interconnected network of
digital collection objects on the Web, linked up with relevant ecological, environmental and other
related data in support of machine actionability (i.e., the ability of computational systems to find,
access, interoperate, and reuse data with minimal intervention) for an array of interdisciplinary
tasks such as fact-based decision-making and forecasting [41].Using data standards for describing
and reasoning over collection data can aid researchers counter unwanted biases via transpar-
ency. However, making data comply with data standards can also lead to oversimplification or
reinterpretation [71].

Machine learning and knowledge engineering strategies can help to (semi-)automatically
extract and structure biodiversity knowledge according [102, 91], for instance using state-of-the-art
computer vision or natural language processing techniques as well as crowd-sourcing platforms
for the annotation of field diaries and other collection objects with formal language [92, 29].
Nevertheless, a bottleneck in the digitization of collections and their use for machine actionability
is the amount of work and domain expertise required for the formalization of such knowledge, and
the extraction from unstructured texts, images and videos. Historical resources, i.e. handwritten
texts, pose an additional challenge, as they are exceptionally challenging to interpret within the
current scientific paradigm [107].

https://bioportal.naturalis.nl/nl/specimen/RMNH.MOL.5009890
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The variety and usefulness of different forms of knowledge both natural and formal and the
challenges they pose is not limited to the biodiversity domain as described above. We see the same
diversity happening in law [82], medicine [16, 21] and even self-driving vehicles [9]. To summarize:

domain knowledge is often best represented in a variety of modalities, i.e., images, taxonomies,
or free text, each modality with its own data structure and characteristics which should be
preserved, and no easy way of integrating, interfacing with or reasoning over multimodal
knowledge in a federated way exists;
provenance of data is paramount in understanding knowledge within the context in which it
was produced;
fuzzy, incomplete, or complex knowledge is not easily systematized;
using data standards for describing and reasoning over collection data can aid researchers
counter unwanted biases via transparency;
making data comply with data standards can lead to oversimplification or reinterpretation;
the production of structured domain knowledge, for instance from images or free text, requires
domain expertise, and is therefore labor intensive and costly;
knowledge evolves, and knowledge-based systems are required to deal with updates in their
knowledge bases.

2.2 KE as the transformation of knowledge expressed in natural language
into knowledge expressed in a formal language

This sort of rich and complex array of modalities for the representation of knowledge has tra-
ditionally posed a challenge to knowledge engineers [33]. Much of the literature on knowledge
engineering methodology has focused on the ways in which knowledge in these naturally-occurring
forms can be recast into a structured symbolic representation, e.g., using methods of knowledge
elicitation from subject matter experts [88], for instance by the formulation of competency ques-
tions for analysing application ontologies [12]. One way to think about this is as the process of
expressing knowledge presented in a natural, humanly evolved language in a formally-defined
language. This notion of the transformation of natural language into a formal language as a
means of enabling effective reasoning has a deep history rooted in methodologies developed by
analytical philosophers of the early twentieth century [24, 69], but dating even further back to
Liebniz’s lingua rationalis [35] and the thought of Ramón Lull [37]. Catarina Dutilh Novaes [69]
has argued that formal languages enable reasoning that is less skewed by bias and held beliefs,
an effect achieved through de-semantification, i.e., the process of replacing terms in a natural
language with symbols that can be manipulated without interpretation using a system of rules
of transformation. Coupled with sensorimotor manipulation of symbols in a notational system,
people can reason in a manner that outstrips their abilities unaided by such a technology.

While Dutilh Novaes’ analysis focuses on this idea of formal languages as a cognitive tool
used by humans directly, e.g. through the manipulation of a system of notation using paper and
pencil, she notes that this manipulation of symbols is the route to the mechanization of reasoning
through computation. When externally manifested as a function executed by a machine through
either interpretation by an inference engine, or through compilation into a machine-level language,
this approach of formalization yields the benefits of reliability, greater speed and efficiency in
reasoning.

This idea captures precisely the essence of the practice of knowledge engineering: Starting from
sources of knowledge expressed in natural language and other modalities of human expression,
through the process of formalization [51, 95], knowledge engineers create computational artifacts
embodying this knowledge. These computational artifacts then enable us to reason using this
knowledge in a predictable, efficient, and repeatable fashion. This is done either by proxy through
the action of autonomous agents, or in the context of human-mediated decision-making processes.
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2.3 LLMs as a general-purpose technology for transforming natural language
into formal language

Until recently, there have been two ways in which this sort of formalization could be performed:
through the manual authoring of symbolic/logical representations, e.g., as in the traditional notion
of expert systems [34], or through the use of machine learning and natural language processing
to extract such representations automatically from natural language text [61]. But what has
become evident with the emergence of LLMs, with their capabilities for language learning and
processing, is that they provide a new and powerful type of general purpose tool for mapping
between natural language3 and formal language, as well as other modalities. LLMs have shown
state-of-the-art performance on challenging NLP tasks such as relation extraction [5] or text
abstraction/summarization [114], and have been used to translate between other modalities, such
as images and text (called vision-language models [119, 77]) in computer vision tasks, or from
natural language to code [113, 47], in which a pretrained task-agnostic language model can be
zero-shot and few-shot transferred to perform a certain task [20, 52]. If one accepts the position
that KE can be generally described as the process of transforming knowledge in natural language
into knowledge in formal language, then it becomes clear that LLMs provide an advance in our
ability to perform knowledge engineering tasks.

3 The use of LLMs in the practice of knowledge engineering: two scenarios

Given the above discussion, the natural question that arises is: what might be the utility and
impact of the use of LLMs for the transformation of natural language into formal language, when
applied in the context of the practice of knowledge engineering?

When LLMs emerged as a new technology in the mid-2010s, two views of the relationship
between LLMs and knowledge bases (KBs) were put forward. One was the LLM can be a useful
component for various processes that are part of a larger knowledge engineering workflow (i.e.
“LMs for KBs” [3]); the other was that the LLM is a cognitive artifact that can be treated as a
knowledge base in and of itself (i.e., “LMs as KBs” [75]). We exploit this dichotomy to formulate a
pair of possible future scenarios for the use of LLMs in the practice of KE. One is to use LLMs as
a technology for or tool in support of implementing knowledge tasks that have traditionally been
built using older technologies such as rule bases and natural language processing (NLP). Another
is to use LLMs to remove the need for knowledge engineers to be fluent in a formal language,
i.e., by allowing knowledge for a given knowledge task to be expressed in natural language, and
then using prompt engineering as the primary paradigm for the implementation of reasoning and
learning. We now explore each of these scenarios in turn, and consider the open research problems
that they raise.

3.1 LLMs as components or tools used in knowledge engineering
We illustrate the first scenario through reference to CommonKADS [86], a structured methodology
that has been used by knowledge engineers since the early 2000’s. CommonKADS is the refinement
of an approach to providing a disciplined approach to the development of knowledge systems. This
approach saw initial development in the nineteen-eighties as a reaction to both the ad-hoc nature
of early expert systems development [111] and to the frequency of failures in the deployment of
expert systems in an organizational context [34]. Stemming from early work on making expert

3 Again, we note that natural language should be read to include all modalities. Hence, the term “foundation
model” [15] was coined to refer to LLMs.



B. P. Allen, L. Stork, and P. Groth 3:7

systems development understandable and repeatable [42], CommonKADS is distinguished from
methodologies more focused on ontology development (e.g., NeON [94], Kendall and McGuinness’s
“Ontology 101” framework [51], and Presutti’s ontology design patterns [76]) in that it provides
practical guidance for specification and implementation of knowledge systems components in a
broader sense. It attempts to provide a synoptic guide to the full scope of activities involved in
the practice of KE, and show how it relates to the activities of the organization in which that
engineering is taking place. As such, in the context of this paper we can use it as a framework to
explore for what tasks and in what ways LLMs can be used for KE.

Some tasks identified by CommonKADS as part of the KE process may remain largely un-
changed by the use of LLMs. These include knowledge task identification and project organizational
design. But others can involve the use of LLMs. LLMs can assist knowledge engineers and/or
knowledge providers in the performance of knowledge engineering tasks. They can also be a means
for the implementation of modules performing knowledge-intensive tasks. Examples of these uses
include the following:
Knowledge acquisition and elicitation. LLMs can be used to support knowledge acquisition and

elicitation in a given domain of interest. Engineers can create prompts that target specific
aspects of the domain, using the responses as a starting point for building the knowledge base.
Dialogs between LLMs trained using such prompts and knowledge providers, the subject matter
experts, can support the review, validation, and refinement of the acquired knowledge [8].

Knowledge organization. LLMs can be used to organize the acquired knowledge into a coherent
structure using natural language, making it easy to understand and update. Prompt engineering
can be used to develop a set of prompts that extract formal language using the LLM, e.g.,
for text to graph generation [40] or vice versa [18, 2]. Moreover, LLMs are used for program
synthesis [113, 47], the generation of metadata [56] or for fusing knowledge graphs [118].

Data augmentation. LLMs can be used to generate synthetic training data to aid in testing the
knowledge system by evaluating its performance on instances of the specific task [116].

Testing and refinement. Feedback from subject matter experts and users can be used to prompt
an LLM to refine the natural language knowledge base and improve the system’s accuracy and
efficiency through self-correction of prompts and tuning of the LLM model settings as needed
to optimize the system’s performance [110].

Maintenance. LLMs can be used to monitor new information and trends, and to then propose
new prompts integrating those updates into the knowledge base.

Consider the CommonKADS knowledge task hierarchy shown in Figure 2. Synthetic knowledge-
intensive tasks, e.g. design or configuration, are amenable to generative approaches [109]; analytic
knowledge-intensive tasks can involve LLM components within a hybrid neuro-symbolic knowledge
system.

A shortcoming of using CommonKADS for our purposes, however, is that it predates the
widespread use of machine learning and statistical natural language processing in KE. A number
of architectural approaches have since been developed that extend the CommonKADS concepts
of a knowledge-intensive task type hierarchy and knowledge module templates. These include
modeling the fine-grained data flows and workflows associated with knowledge systems that
combine components that ingest, clean, transform, aggregate and generate data, as well as
generate and apply models built using machine learning [103, 19, 27, 31, 101]. These architectures
are put forward as providing a general framework for composing heterogeneous tools for knowledge
representation and inference into a single integrated hybrid neuro-symbolic system. The design
pattern notations put forward in recent work [103, 101, 31] treat data, models, and symbolic
representations as the inputs and outputs of components composed into a variety of knowledge
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knowledge-
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Figure 2 Hierarchy of knowledge-intensive task types from CommonKADS ([86], p.125).

system design patterns. Generalizing these into natural language and formal language inputs and
outputs can provide a simple way to extend these design notations to accommodate both LLMs
as well as a richer set of knowledge representations.

3.2 Knowledge engineering as prompt engineering
Given that LLMs enable knowledge modeling in natural language, it is conceivable that the
programming of knowledge modules could take place entirely in natural language. Consider
that prompt programming is “finding the most appropriate prompt to allow an LLM to solve a
task” [57]. One can through this lens view knowledge engineering as the crafting of dialogues in
which a subject matter expert (SME) arrives at a conclusion by considering the preceding context
and argumentation [80, 109, 89, 60]. This framing of knowledge engineering as prompt engineering
is the second scenario we wish to explore.

From the perspective of the CommonKADS knowledge-intensive task type hierarchy, this
would involve a redefinition of the types and hierarchy to use LLMs and prompt programming
design patterns, e.g. as described in [57]. Several aspects of this redefinition could include:
Natural language inference. LLMs can be used to build natural language inference engines that

use the organized knowledge to perform the specific task by taking input queries and generate
output using prompt engineering to guide the LLM towards generating accurate inferences,
e.g. using zero- or few-shot chain-of-thought design patterns. The benefit here is that the gap
between the knowledge engineer, knowledge provider (the subject matter expert) and the user
is smaller since a translation to a formal language (the language of the engineer) is no longer
required.

Knowledge-intensive task execution through human/machine dialog. LLMs can be used to con-
struct a conversational interface that allows users to interact with the knowledge system and
receive task-specific support.

Testing and refinement through human/machine dialog. Feedback from subject matter experts
and users can be used to prompt an LLM to refine the natural language knowledge base and
improve the system’s accuracy and efficiency through self-correction of prompts and tuning of
the LLM model settings as needed to optimize the system’s performance.
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One possible benefit of this approach would be that the barrier to adoption of knowledge
engineering as a practice could be lowered significantly. Knowledge elicitation could be conducted
entirely within natural language, meaning that subject matter experts without training in formal
knowledge representations could perform these tasks directly. However, this approach assumes
that predictable inference [101] using natural language is satisfactory. The propensity of current
LLMs to “hallucinate”, i.e., to confabulate facts, is an obstacle to the realization of this idea [48].
Multiple efforts have been devoted to the creation of prompt programming patterns that address
this issue, ranging from chain-of-thought approaches [108] to retrieval-assisted generation, i.e.
the augmentation of LLMs with authoritative document indexes and stores [84, 65]. Recent
work [73] has described ways in which knowledge graphs as a formal language can be integrated
with natural language and LLM-based language processing and reasoning to provide knowledge
systems architectures that directly address this issue. [115] surveys work in this direction.

4 Open research questions

Using the scenarios outlined above, we can identify a number of open research questions to
be addressed to realize either or both of these two possible approaches to the use of LLMs in
knowledge engineering. These questions touch on three general areas: the impact of LLMs on
the methodologies used to build knowledge systems, on the architectural design of knowledge
systems incorporating and/or based on LLMs, and on the evaluation of such systems. For each of
these open questions, we provide a link back to the biodiversity scenario discussed in Section 2.1
denoted by a 
.

4.1 Methodology

4.1.1 How can knowledge engineering methodologies best be adapted to
use LLMs?

How can we harmoniously meld the considerable body of work on knowledge engineering method-
ologies [51, 36, 76, 94, 87, 85, 90] with the new capabilities presented by LLMs?

Schreiber’s conceptualization of knowledge engineering as the construction of different aspect
models of human knowledge [86], as discussed above, offers a framework for further elaboration.
The distinctive characteristics of LLMs, coupled with prompt engineering, present unique challenges
and opportunities for building agents within a knowledge system, one that is consistent with the
CommonKADS approach.

While the role definitions within KE methodologies might mostly remain the same, the skills
required for knowledge engineers will need morphing to adapt to the LLM environment. This
evolution of roles calls for an extensive investigation into what these new skills might look like,
and how they can be cultivated. Additionally, the adaptability of the various knowledge-intensive
task type hierarchies described by CommonKADS and its descendants in the literature on hybrid
neuro-symbolic systems (e.g., as described in [19]) to accommodate LLMs is another fertile area
for exploration.

LLM-based applications, likened to synthetic tasks within these knowledge engineering frame-
works, raise compelling research questions regarding accuracy and the prevention of hallucinations.
LLM-based applications have a lower bar to reach with respect to notions of accuracy and avoidance
of hallucinations, but still must provide useful and reliable guidance to users and practitioners.


 Connecting back to the biodiversity domain, answering these questions would provide
guidance on the appropriate methodology to adopt when developing a new specimen curation
and collection knowledge management system that needs to deal with multimodal assets like
handwritten text or images.
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4.1.2 How do principles of content and data management apply to prompt
engineering?

Applying content and/or data management principles to collections of prompts and prompt
templates, integral to work with LLMs, is an area ripe for exploration. Properly managing
these resources could improve efficiency and guide the development of improved methodologies in
knowledge engineering. This calls for a rigorous investigation of current data management practices,
their applicability to LLMs, and potential areas of refinement. Ensuring the reproducibility of
LLM engineering from a FAIR data standpoint [112] is a crucial yet complex challenge. Developing
and validating practices and protocols that facilitate easy tracing and reproduction of LLM-based
processes and outputs is central to this endeavor.


 Addressing this challenge will aid researchers in applying LLM engineering in a FAIR way.
Doing so is critical for biodiversity research and science in general where precision, reproducibility
and provenance are key for knowledge discovery and research integrity.

4.1.3 What are the cognitive norms that govern the conduct of KE?

A crucial area of inquiry involves the identification and understanding of cognitive norms, as
described by Menary [62], that govern the practice of knowledge engineering. Cognitive norms are
established within a human community of practice as a way of governing the acceptable use of
“external representational vehicles to complete a cognitive task” [63]. As the consumer adoption
of LLM technology has progressed, we see a great deal of controversy about when and how it
is appropriate to use, e.g. in the context of education or the authoring of research publications.
Understanding how these norms shape the use of LLMs in this context is an under-explored field
of study. By unraveling the interplay between these cognitive norms and LLM usage, we can gain
valuable insights into the dynamics of knowledge engineering practices and possibly foster more
effective and responsible uses of LLMs.


 In the biodiversity sciences, this means understanding the cognitive norms specific to the
domain, to understand how LLMs can be used in a way that respects the domain’s practices and
standards.

4.1.4 How do LLMs impact the labor economics of KE?

A related but distinct question pertains to the impact of LLMs on the economic costs associated with
knowledge engineering. The introduction and application of LLMs in this field may significantly
alter the economic landscape, either by driving costs down through automation and efficiency or
by introducing new costs tied to system development, maintenance, and oversight. Thoroughly
exploring these economic implications can shed light on the broader effects of integrating LLMs
into knowledge engineering.

The realm of labor economics as it pertains to hybrid or centaur systems [1], is another
area ripe for investigation. Understanding how the deployment of these systems influences labor
distribution, skill requirements, and job roles could provide valuable input into the planning
and implementation of such technologies. Additionally, it could reveal the potential societal and
economic impacts of this technological evolution.


 Developments for LLM-based KE can help mitigate labor of knowledge experts in the
biodiversity sciences, for instance by the development of more efficient KE workflows for the
digitization of museum specimens or manuscripts.
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4.2 Architecture

4.2.1 How can hybrid neuro-symbolic architectural models incorporate
LLMs?

Design patterns for hybrid neuro-symbolic systems, as described in [103], offer a structured
approach to comprehend the flow of data within a knowledge system. Adapting this model
to account for the differences between natural and formal language could significantly enhance
our ability to trace and manage data within knowledge systems. A salient research question
emerging from this scenario pertains to the actual process of integrating LLMs into knowledge
engineering data processing flows [27]. Understanding the nuances of this process will involve a
deep examination of the shifts in methodologies, practices, and the potential re-evaluations of
existing knowledge engineering paradigms. The perspective of KE enabled by LLMs as focused on
the transformation of natural language into formal language provides insights that can be used
to improve the motivation for hybrid neuro-symbolic systems; e.g., [19] references [17] in using
dual process theories of reasoning (i.e. the “System 1/System 2” model described in [49]) as a
motivation for hybridization in knowledge systems, but more recent analyses [69, 64] cast doubt
on the validity of such models, and point to more nuanced perspectives that provide a better
grounding for the benefits of hybridization.


 Addressing these questions would shed light on tasks for which hybridization using LLMs
would prove favorable, e.g., image classification of species.

4.2.2 How can prompt engineering patterns support reasoning in natural
language?

One fundamental question that arises is how prompt engineering patterns can be utilized to
facilitate reasoning in natural language. Exploring this topic involves understanding the mechanics
of these patterns and their implications on natural language processing capabilities of LLMs. This
line of research could open new possibilities for enhancing the functionality and efficiency of these
models.

A related inquiry concerns the structure, controllability, and repeatability of reasoning facilit-
ated by LLMs. Examining ways to create structured, manageable, and reproducible reasoning
processes within these models could significantly advance our capacity to handle complex knowledge
engineering tasks and improve the reliability of LLMs.

The interaction of LLMs and approaches to reasoning based on probabilistic formalisms
is also an underexplored area of research. A particularly evocative effort in this area is that
described in [113], which describes the use of LLMs to transform natural language into programs
in a probabilistic programming language, which can then be executed to support reasoning in a
particular problem domain. We note that this work provides an excellent example of the knowledge
engineering as the transformation of natural language into formal language perspective and of the
impact of LLMs in advancing that perspective. Investigating how to automatically generate and
assess other nuanced forms of knowledge within LLMs could lead to a more refined understanding
of these models and their capabilities.


 Given that biodiversity knowledge is often best represented in a variety of modalities each
with their own data structures and characteristics, research may explore how LLMs can act as
natural language interfaces to such multimodal knowledge bases.
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4.2.3 How can we manage bias, trust and control in LLMs using knowledge
graphs?

Trust, control, and bias in LLMs, especially when these models leverage knowledge graphs, are
critical areas to explore. Understanding how to detect, measure, and mitigate bias, as well as
establish trust and exert control in these models, is an essential aspect of ensuring ethical and
responsible use of LLMs. Furthermore, investigating methods to update facts in LLMs serving as
knowledge graphs is a crucial area of research. Developing strategies for efficient and reliable fact
updating could enhance the accuracy and usefulness of these models.

Another key question involves understanding how we can add provenance to statements
produced by LLMs. This line of research could prove vital in tracking the origin of information
within these models, thus enhancing their reliability and usability. It opens the door to more
robust auditing and validation practices in the use of LLMs.


 Addressing this challenge can help biodiversity researchers detect and mitigate biases, as
use of LLMs might further exacerbate knowledge gaps, e.g., groups of individuals omitted from
historical narratives in archival collections. Moreover, novel update mechanisms can aid researchers
to reliably update facts or changing knowledge structures learned by LLMs, for instance when
domain knowledge evolves.

4.2.4 Is extrinsic explanation sufficient?
A significant area of interest pertains to how we can effectively address the explainability of
answers generated using LLMs [30]. This exploration requires a deep dive into the functioning
of LLMs and the mechanisms that govern their responses to prompts. Developing a thorough
understanding of these processes can aid in creating transparency and trust in LLMs, as well as
fostering their effective use.

The need for explanation in LLMs also leads to the question of whether extrinsic explanation
is sufficient for the purposes of justifying a knowledge system’s reasoning, as argued in general for
the intelligibility of knowledge systems by Cappelen and Devers [22], or if intrinsic explainability
is a necessary requirement [55]. This question calls for a thoughtful exploration of the value
and limitations of both extrinsic and intrinsic explanation methodologies, and their implications
for the understanding and usage of LLMs. An exciting research avenue arises from the work of
Tiddi [99], concerning explainability with formal languages. The exploration of this topic could
reveal significant insights into how we can leverage formal languages to enhance the explainability
of LLMs. This could pave the way for new methods to increase transparency and intelligibility in
these models.


 In the sciences in general, answering these questions would aid explainability of LLM-
generated answers via curated facts, increasing transparency and trust.

4.2.5 How can LLMs support the engineering of hybrid human/machine
knowledge systems?

Another topic of interest involves exploring the potential of hybrid systems that combine human
cognition with machine capabilities within a dialogical framework [64, 70]. As an exciting example
of the possibilities for new approaches to human/machine collaboration in this vein, we point to the
recent results reported by [74] on the creation of conversational agents that simulate goal-directed
human conversation and collaboration on tasks. One can imagine coupling LLM-based agents
with human interlocutors working collaboratively in this manner on specific knowledge-intensive
tasks. Understanding how to develop these types of systems, and what their implications might
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be for the practice of knowledge engineering presents a fertile research line. It requires the careful
analysis of human-machine interaction, the study of system design principles, and the investigation
of their potential impact.


 Research in this avenue can help mitigate the workload of the knowledge expert, for instance
in the elicitation of domain knowledge, or crowdsourcing of annotations from unstructured sources
such as herbaria or manuscripts.

4.3 Evaluation
4.3.1 How do we evaluate knowledge systems with LLM components?
The first point of interest involves the evaluation of knowledge-based systems, with a focus
beyond just logic. This area calls for innovative methodologies to assess the system’s capacity
to manage and utilize knowledge efficiently, going beyond traditional logical evaluations. This
topic of evaluation naturally extends to the question of how we evaluate ontologies and design
patterns within knowledge engineering. Evaluating these aspects would require a deep dive into the
structures and mechanisms underpinning these elements, potentially leading to the development
of refined evaluation metrics and methodologies.

Interestingly, the long-standing paradigm of machine learning evaluation, relying on benchmark-
ing against a standard train/test dataset, seems to falter in the era of LLMs [25]. This presents
an intriguing challenge for researchers and engineers alike. It is quite possible that traditional
methods may need to be significantly buttressed by methodologies and supporting tools for the
direct human evaluation of knowledge system performance. This has implications concerning the
cost and speed of evaluation processes, encouraging the rethink of current approaches to perhaps
develop new strategies that balance accuracy, cost-effectiveness, and timeliness. Reimagining
evaluation methodologies in this new context could provide transformative insights into how we
can gain confidence in the reliability engineering of knowledge systems that use LLMs.


 Developments in this direction may aid biodiversity researchers to get a better understanding
of the real-world efficacy of employing knowledge-based systems with LLM components in their
institutions. One can think of improving access to collections, knowledge discovery, or accuracy in
describing institutional knowledge.

4.3.2 What is the relationship between evaluation and explainability?
Lastly, there is an inherent dependency of evaluation on effective solutions for explainability
within knowledge systems. Understanding this relationship could help in the creation of more
comprehensive evaluation models that take into account not only the performance of a system but
also its explainability.

5 Summary

In this paper, we have advocated for a reconsideration of the practice and methodology of knowledge
engineering in light of the emergence of LLMs. We argued that LLMs allow naturally-occurring
and humanly-evolved means of conveying knowledge to be brought to bear in the automation of
knowledge tasks. We described how this can enhance the engineering of hybrid neuro-symbolic
knowledge systems, and how this can make knowledge engineering possible by people who do not
necessarily have the experience of recasting natural language into formal, structured representation
languages. Both of these possibilities will involve addressing a broad range of open questions,
which we have attempted to outline above. Given the rapid pace of the development of this area
of research, it is our earnest hope that the coming months and years will yield results shedding
light on these questions.
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Abstract
While Knowledge Graphs (KGs) have long been
used as valuable sources of structured knowledge,
in recent years, KG embeddings have become a
popular way of deriving numeric vector representa-
tions from them, for instance, to support knowledge
graph completion and similarity search. This study
surveys advances as well as open challenges and
opportunities in this area. For instance, the most
prominent embedding models focus primarily on
structural information. However, there has been
notable progress in incorporating further aspects,
such as semantics, multi-modal, temporal, and mul-

tilingual features. Most embedding techniques are
assessed using human-curated benchmark datasets
for the task of link prediction, neglecting other
important real-world KG applications. Many ap-
proaches assume a static knowledge graph and are
unable to account for dynamic changes. Addition-
ally, KG embeddings may encode data biases and
lack interpretability. Overall, this study provides
an overview of promising research avenues to learn
improved KG embeddings that can address a more
diverse range of use cases.
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Figure 1 Excerpt from DBpedia, with red dashed lines representing possible inferred relations.

1 Introduction

A Knowledge Graph (KG) is a semantic network that organises knowledge in a graph using
entities, relations, and attributes. It captures semantic relationships and connections between
entities, allowing for rapid searching, reasoning, and analysis. KGs are directed labelled graphs
that can represent a variety of structured knowledge across a wide range of domains including
e-commerce [97, 130], media [137], and life science [24], to name a few. They enable the integration
of structured knowledge from diverse sources, laying the groundwork for applications such as
question-answering systems, recommender systems, semantic search, and information retrieval.
Google [155], eBay [130], Amazon [97], and Uber [59] are examples of companies that have
developed in-house enterprise KGs for commercial purposes, which are not publicly available. The
term “Knowledge Graph” was first used in the literature in 1972 [149] and later revived by Google
in 2012 with the introduction of the Google KG. Broad-coverage open KGs, such as DBpedia [11],
Freebase [20], YAGO [158], and Wikidata [173], are either developed using heuristics, manually
curated, or automatically or semi-automatically extracted from structured data.

While the structured knowledge in KGs can readily be used in many applications, KG
embeddings open up new possibilities. A KG embedding encodes semantic information and
structural relationships by representing entities and relations in a KG as dense, low-dimensional
numeric vectors. This entails developing a mapping between entities and relations and vector
representations that accurately capture their characteristics and relationships.

KG embeddings allow for effective computation, reasoning, and analysis while maintaining
semantics and structural patterns. Link prediction and KG completion are perhaps the most
well-known uses of KG embeddings. Although KGs store vast amounts of data, they are often
incomplete. For instance, given the KG in Figure 1, which is an excerpt from DBpedia, it will not
be possible to answer the following questions:

Q1: Where is Berkshire located?, and
Q2: What is the nationality of Daniel Craig?
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Responding to Q1 requires the prediction of the missing entity in the triple <dbr:Berkshire1,
dbo:locatedIn, ?>. Similarly, for Q2, one would need to infer the nationality of Daniel Craig
from the information available in the KG. The effectiveness of KG-based question-answering
applications may therefore be enhanced by using embeddings to predict the missing links in a KG.
This is referred to as KG completion.

Other applications of KG embeddings include similarity search, entity classification, recom-
mender systems, semantic search, and question answering. Additionally, an embedding converts
symbolic knowledge into numerical representations, making it possible to incorporate structured
knowledge into machine learning and AI models, enabling reasoning across KGs.

Although prominent KG embedding models are widely used across diverse applications, there
is potential to learn improved embeddings addressing an even broader range of input information
and opening up new opportunities. For instance, one can account for additional signals in the
KG beyond the structural information, such as multi-modal and hierarchical information, as well
as external textual data, or information related to a certain domain or context. Some models
struggle to adequately represent rare or long-tail entities, while others are unable to cope with
little or no training data. Additionally, there is potential to design models that better account for
dynamic and temporal information in the KG. Likewise, KGs are often multilingual, which may
enable improved representations. Some models have trouble capturing asymmetric links as well as
complex relationships such as hierarchical, compositional, or multi-hop relationships. The bias
in KGs may also be reflected in the corresponding embeddings. Most models also lack explicit
interpretability or explainability. This paper focuses on describing the relevant research addressing
the aforementioned KG embedding models’ inadequacies and then discussing the untapped areas
for future research.

The rest of the paper is organised as: Section 2 gives an overview of the definitions and
notations related to KGs, followed by Section 3 summarising mainstream KG embedding models.
Next, Section 4 provides an overview of models that exploit additional kinds of information
often neglected by traditional KG embedding models, along with a discussion of remaining open
challenges. Section 5 sheds some light on important application areas of KG embeddings. Finally,
Section 6 concludes the paper with a discussion and an outlook of future work.

2 Preliminaries

This section provides formal definitions and relevant notational conventions used in this paper.

▶ Definition 1 (Knowledge Graph). A KG G is a labelled directed graph, which can be viewed as a
set of knowledge triples T ⊆ E × R × (E ∪ L), where E is the set of nodes, corresponding to entities
(or resources), R is the set of relation types (or properties) of the entities, and L is the set of
literals. An entity represents a real-world object or an abstract concept. Often the labels of entities
and relations are chosen to be URIs or IRIs (Internationalised Resource Identifiers).

▶ Definition 2 (Triple). Given a KG G, we call (eh, r, et) ∈ T a triple, where eh ∈ E is the subject,
r ∈ R is the relation, and et ∈ E ∪ L is the object. The subject is also called the head entity, and
an object et ∈ E may be referred to as the tail entity. Triples with literals as objects, i.e., et ∈ L
are known as attributive triples. In this paper, we use the notation <eh,r,et>, with angle brackets,
to indicate a triple.

1 For example, we will often shorten the IRIs using prefixes. For example, in dbr:Berkshire, dbr: stands for
http://dbpedia.org/resource/, and hence the identifier is a shorthand for http://dbpedia.org/resource/
Berkshire. Similarly, dbo: stands for http://dbpedia.org/ontology/.
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Relations (or Properties). Depending on the nature of the objects in a triple, one may distinguish
two main kinds of relations:

Object Relation (or Property), in which an entity is linked to another entity. For instance, in the
triple <dbr:Daniel_Craig, dbo:birthPlace, dbr:Cheshire>, dbr:Daniel_Craig and dbr:Cheshire
are head and tail entities, respectively, and dbo:birthPlace is an Object Relation (or Property).
Data Type Relation (or Property), in which the entity is linked to a literal. For instance, we
find the date “1868-03-02” in the triple <dbr:Daniel_Craig, dbo:birthDate, “1868-03-02”>,
and therefore the relation dbo:birthDate is a Data Type Relation (or Property).

Additionally, an entity e can also be linked to classes or semantic types of the entity. For example,
DBpedia uses rdf:type as r, while Freebase uses isA. A triple of the form <e, rdf:type, Ck> hence
implies that e ∈ E is an entity, Ck ∈ C is a class, C is the set of semantic types or classes, and e is
an instance of Ck. Often, the semantic types or the classes in a KG are organised in a hierarchical
tree structure. An entity may belong to more than one class.

Literals. A KG can have many types of literal values and examples of common attribute types
are as follows:

Text literals: These store information in the form of free natural language text and are often
used for labels, entity descriptions, comments, titles, and so on.
Numeric literals: Dates, population sizes, and other data saved as integers, real numbers, etc.
provide valuable information about an entity in a KG.
Image literals: These literals can, for example, be used to store a visual representation of the
entity, but can also contain the outcome of a medical scan, or a chart.

It is also possible that there is additional information (such as video or audio) stored external
to the graph. The graph can then contain an IRI or other kind of identifier that references the
external resource, its location, or both.

3 Knowledge Graph Embeddings

KG embedding models represent entities and relationships in a KG in a low-dimensional vector
space for various downstream applications. A typical KG embedding model is characterised by
the following aspects, as detailed by Ji et al. [83]: (1) The Representation Space may be a single
standard Euclidean vector space, separate Euclidean vector spaces for entities and relations, or
matrices, tensors, multivariate Gaussian distributions, or mixtures of Gaussians. Some methods
also use complex vectors or hyperbolic space to better account for the properties of relationships.
(2) A scoring function serves to represent relationships by quantifying the plausibility of triples
in the KG, with higher scores for true triples and lower scores for false/negative/corrupted
ones. (3) Encoding models are responsible for learning the representations by capturing relational
interactions between entities. This is typically achieved by solving optimisation problems, often
using factorisation approaches or neural networks. (4) Auxiliary Information in the KG may be
incorporated, e.g., literals. This leads to enriched entity embeddings and relations, forming an
ad-hoc scoring function integrated into the general scoring function.

An overview of different types of KG embedding models is given in Table 1. In the following,
we explain each of these in more detail.

Translation-based models use distance-based scoring functions to measure the plausibility of a
fact as the distance between two entities. There are numerous variants. TransE [22] represents
entities and relations as vectors in the same space, while TransH [184] introduces relation-
specific hyperplanes. TransR [114] uses relation-specific spaces but requires a projection matrix
for each relation. TransD [81] simplifies TransR by using two vectors for each entity-relation pair.
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Table 1 Categorisation of classic Knowledge Graph Embedding Models.

Categories Models
Translational Models TransE [21] and its variants, RotatE [160], etc,
Gaussian Embeddings KG2E [67], TransG [192]

Semantic Matching Models RESCAL [124] and its extensions, DistMult [198],
HoIE [123], SME [22]

Neural Network Models NTN [156] , HypER [14], ConvE [38], ConvKB [32]

Graph Neural Networks GCN [93], R-GCN [148], GraphSAGE [61], GAT [172],
KGAT [179], ComplEx-KG [170], SimlE [91]

Path-based Models GAKE [44], PTransE [113], RSN,
PConvKB [84], RDF2vec [141]

TranSparse [82] employs two separate models, TranSparse(share) and TranSparse(separate),
to modify projection vectors or matrices without considering other aspects. TransA [85]
replaces the traditional Euclidean distance with the Mahalanobis distance, demonstrating
better adaptability and flexibility as an indicator for performance improvement.
Gaussian Embeddings: KG2E [67] and TransG [192] are probabilistic embedding models
that incorporate uncertainty into their representation. KG2E uses multi-Gaussian distributions
to embed entities and relations, representing the mean and covariance of each entity or relation
in a semantic feature space. TransG, in contrast, uses a Gaussian mixture model to represent
relations, addressing multiple relationship semantics and incorporating uncertainty. Both
models offer unique approaches to representing entities and relations.
Semantic Matching models rely on the notion of semantic similarity to define their scoring
function. These include tensor decomposition models such as RESCAL, a tensor factorisation
model that represents entities and relations as latent factors [124], capturing complex inter-
actions between them. DistMult [199] simplifies the scoring function of RESCAL by using
diagonal matrices, leading to more efficient computations. SimplIE [91] is a simpler model
that uses a rule-based approach to extract relations from sentences. RotatE [161] introduces
rotational transformations to model complex relationships in KGs. ComplEx [170] extends
DistMult by introducing complex-valued embeddings, enabling it to capture both symmetric
and antisymmetric relations. HolE [124] employs circular correlation to capture compositional
patterns in KGs. TuckER [15] is a linear model based on Tucker decomposition of the binary
tensor representation of triples.
Neural network based models draw on the powerful representation learning abilities of
modern deep learning. Neural Tensor Networks (NTN) [156] allow mediated interaction of
entity vectors via a tensor. ConvE [38] uses 2D convolutions over embeddings to predict
missing links in KGs. ConvKB [32] represents each triple as a 3-column matrix and applies
convolution filters to generate multiple feature maps, which are concatenated into a single
feature vector. This vector is multiplied with a weight vector to produce a score, used for
predicting the validity of the triple. HypER [14] generates convolutional filter weights for each
relation using a hyper-network approach.
Graph Neural Network models are neural networks that operate directly on the graph
structure, often with information propagation along edges. GCN [93] and GraphSAGE [61]
are graph convolutional techniques that combine information from neighbouring nodes in a
graph to enable efficient learning of node representations in large-scale graphs. R-GCN [148]
extends GCN to handle different relationships between entities in graph-structured data using
a CNN model to learn hidden layer representations that encode local network structure and
node attributes, growing linearly with the number of graph edges. GAT [172] employs an
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attention mechanism to dynamically allocate weights to neighbouring nodes, focusing on salient
neighbours and capturing expressive representations. KGAT [179] applies the concept of graph
attention networks to KG embeddings, taking into account entity and relation information, as
well as capturing complicated semantic linkages and structural patterns. ComplEx-KG [170] is
a complex-valued embedding-based extension of ComplEx, a bilinear model for KG embeddings.
SimplE [91] uses a scoring function for large KGs that is scalable and optimised for efficiency.
Path-based models such as PTransE [113] represents entities and relations in the KG as
vectors and learn embeddings based on relation-specific translation operations along edge paths.
RSN [204] models the KG as a recursive structure, aggregating embeddings of connected entities
and capturing structural information through recursive path-based reasoning. PConvKB [84]
extends the ConvKB model and uses an attention mechanism on the paths to measure the
local importance in relation paths. GAKE [44] is a graph-aware embedding model that takes
into consideration three forms of graph structure: neighbour context, path context, and edge
context. RDF2Vec [141] uses random walks over the graph structure to generate node and
edge sequences, which are then used as input for training word2vec skip-gram models, which
yield entity and relation embeddings.

Traditional KG embedding methods primarily take into account the triple information but
neglect other potentially valuable signals encountered in KGs, such as multimodality, temporality,
multilinguality, and many more. Additionally, these models often assume KGs are static in nature
and have cold-start problems when incorporating new entities and relations. Also, real-world KGs
often exhibit sparsity, noisiness, and bias, which may adversely affect embedding models.

4 Opportunities and Challenges

KG embeddings are widely used to capture semantic meaning and enable improved comprehension,
reasoning, and decision-making across a diverse range of applications. However, the traditional
KG embedding models described earlier neglect a series of important opportunities and aspects.
In the following, in Section 4.1, we consider auxiliary information that may be present in KGs
but is often neglected in KG embeddings, e.g., multimodal, multilingual, and dynamic knowledge.
Subsequently, in Section 4.2, we discuss further more general issues, such as bias and explainability.
Recent research has made notable progress in addressing these issues. The remainder of the section
summarises pertinent recent research along with a discussion of open research challenges.

4.1 Auxiliary Information
Prominent KG embedding models such as those enumerated in Section 3 focus primarily on the
structure of the KG, i.e., on structural information pertaining to entities and their relationships. To
improve the latent representations of entities and relations, new lines of research attempt to draw
on additional forms of information present in the KG. This section offers an overview of existing
research in this regard, along with discussions of relevant shortcomings and recommendations for
further research.

4.1.1 Multimodal KG Embeddings
Many approaches for representation learning on entities and relations ignore the variety of data
modalities in KGs. In a Multimodal KG (MKG), entities and attributes of these entities may have
different modalities, each providing additional information about the entity. An effective learned
representation captures correspondences between modalities for accurate predictions, as described
by Gesese et al. [54]. The used modalities depend on the application area but can include text,
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images, numerical, and categorical values. Inductive approaches are required for modelling MKGs
that encompass a variety of data modalities, as assuming that all entities have been observed
during training is impractical. Learning a distinct vector for each entity and using enumeration
for all possible attribute multimodal values to predict links is usually infeasible.

Text: One of the early approaches for text extends TransE by incorporating word2vec SkipGram
and training a probabilistic version in the same embedding space, anchoring via Freebase entities
and the word embedding model vocabulary [183]. This enables link prediction for previously
unknown entities. Relations are treated without differentiation of types. A combination of
DistMult and CNN [169] tackles this issue by modelling the textual relations via dependency
paths extracted from the text. Other models such as DKRL [194] and Jointly (BOW) [196]
use the word2vec Continuous Bag-Of-Words (CBOW) approach to encode keywords extracted
from textual entity descriptions, while Text Literals in KGloVe [31] uses these in combination
with the graph context to train a GloVe model. However, the alignment between KG and word
model is achieved using string matching and therefore struggles with ambiguous entity names.
Veira et al. [171] use Wikipedia articles to construct relation-specific weighted word vectors
(WWV). Convolutional models, such as DKRL (CNN) [194] and RTKRL [66], use word order to
represent relations, considering implicit relationships between entities. Multi-source Knowledge
Representation Learning (MKRL) [164] uses position embedding and attention in CNNs to
find the most important textual relations among entity pairs. STKRL [188] extracts reference
sentences for each entity and treats the entity representation as a multi-instance learning model.
Recurrent neural models such as Entity Descriptions-Guided Embedding (EDGE) [178] and
Jointly (ALSTM) [196] use attention-based LSTMs with a gating mechanism to encode entity
descriptions, capturing long-term relational dependencies. The LLM encoder BERT is used in
Pretrain-KGE [213] to generate initial entity embeddings from entity descriptions and relations,
and subsequently feed them into KG embedding models for final embeddings. Other research
uses LLMs [17, 181, 120, 3] to produce representations at the word, sentence, and document
levels, merging them with graph structure embeddings. KG-BERT [200] optimises the BERT
model on KGs, followed by KG-GPT2 [18] fine-tuning the GPT-2 model. MTL-KGC [92]
enhances the effectiveness of KG-BERT by combining prediction and relevance ranking tasks.
Saxena et al. [147] similarly transform the link prediction task into a sequence-to-sequence
problem by verbalising triplets into questions and answers, overcoming the scalability issues of
KG-BERT. Masked Language Modelling (MLM) has been introduced to encode KG text, with
MEMKGC [29] predicting masked entities using the MEM classification model. StAR [174] uses
bi-encoder-style textual encoders for text along with a scoring module, while SimKGC leverages
bi-encoding for the textual encoder. LP-BERT [105] is a hybrid method that combines MLM
Encoding for pre-training with LLM and Separated Encoding for fine-tuning.
Numeric literals are addressed by several prominent models. MT-KGNN [166] trains a
relational network for triple classification and an attribute network for attribute value regression,
focusing on data properties with non-discrete literal values. KBLRN [51] combines relational,
latent, and numerical features using a probabilistic PoE method. LiteralE [98] incorporates
literals into existing latent feature models for link prediction, modifying the scoring function
and using a learnable transformation function. TransEA [190] has two component models: a
new attribute embedding model and a translation-based structure embedding model, TransE.
These embedding approaches, however, fail to fully comprehend the semantics behind literal
and unit data types. Also, most models lack proper mechanisms to handle multi-valued literals.
Image and Video models account for multimedia content. There is a large body of work
on visual relationship detection, i.e., identifying triples portrayed in visual content, using
datasets such as VisualGenome [96] and methods such as VTransE [208]. IKLR [193] enriches
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KG embeddings by retrieving images for each entity from ImageNet. The respective set of
pre-trained image embeddings is subsequently combined by an attention-based multi-instance
learning method into a joint representation space of entities and relations. This additionally
enables identifying the most relevant images for each entity.
General multi-modal KG embedding models may be used both for better link prediction
between existing entities and to impute missing values. One approach [128] combines different
neural encoders to learn embeddings of entities and multimodal evidence types used to predict
links. Then, DistMult or ConvE is employed to produce a score reflecting the probability
that a triple is correct. In addition, neural decoders are applied over the learned embeddings
to generate missing multimodal attributes, such as numerical values, text and images, from
the information in the KG. Moreover, decoders can be invoked to generate entity names,
descriptions, and images for previously unknown entities. A blueprint for multimodal learning
from KGs is introduced by Ektefaie et al. [41]. Graph methods are employed to combine
different datasets and modalities while leveraging cross-modal dependencies through geometric
relationships. Graph Neural Networks (GNN) are used to capture interactions in multimodal
graphs and learn a representation of the nodes, edges, subgraphs, or entity graph, based on
message-passing strategies. Multimodal graphs find increasing application not only in computer
vision and language modelling but also in natural sciences and biomedical networks [106], as well
as in physics-informed GNNs that integrate multimodal data with mathematical models [154].

Limitations. Some of the key challenges reported in the literature that require further attention
include: (1) Utilising multimodal information and multimodal fusion (from two or more modalities)
to perform a prediction (e.g, classification, regression, or link prediction), even in the presence
of missing modalities [128, 101, 41, 34]. (2) Modality collapse, that is when only a subset of the
most helpful modalities dominates the training process. The model may overly rely on that subset
of modalities and disregard information from the others that may be informative. This can be
due to an imbalance in the learning process or insufficient data for one or more modalities and
it can lead to sub-optimal representations [41]. (3) Generalisation across domains, modalities,
and transfer learning of embeddings across different downstream tasks. In general, there is a
high variance in the performance of multimodal methods [128, 110]. (4) Developing multimodal
imputation models that are capable of generating missing multimodal values. While research
in MKGs has predominantly focused on language (text) and vision (images) modalities, there
is a need to explore multimodal research in other modalities and domains as well [128]. (5)
Robustness to noise and controlling the flow of information within MKGs from more accurate
predictions. While multimodal triples provide more information, not all parts of this additional
data are necessarily informative for all prediction downstream tasks [101, 71, 128]. (6) Efficient
and scalable frameworks that can handle the complexity during training and inference [34, 110].
Large KGs are challenging for all embedding-based link prediction techniques, and multimodal
embeddings are not significantly worse because they can be viewed as having additional triples.
However, multimodal encoders/decoders are more expensive to train [128] and techniques for
batching and sampling are usually required for training. By addressing these challenges, we can
unlock the full potential of MKGs and advance our understanding in various domains.

4.1.2 Schema/Ontology Insertion in KG Embeddings
While many real-world KGs come with schemas and ontologies, which may be rich and expressive,
this does not hold for many of the benchmark datasets used in the evaluation of KG embeddings,
in particular in the link prediction field. Therefore, the use of ontological knowledge for improving
embeddings has drawn comparatively little attention.
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In a very recent survey [209], the authors have reviewed approaches that combine ontological
knowledge with KG embeddings. The authors distinguish between pre methods (methods applied
before training the embedding), joint (during training of the embedding), and post (after training
the embedding) methods. In their survey, joint methods are the most common approaches, usually
incorporating the ontological knowledge in the loss function [10, 26, 40, 39, 52, 57, 99, 113, 143,
194, 206]. In such approaches, loss functions of existing KGE models are typically altered in a
way such that ontologically non-compliant predictions are penalised. This is in line with a recent
proposal of evaluation functions that not only take into account the ranking of correct triples
but also the ontological compliance of predictions [75]. Some approaches also foresee the parallel
training of class encoders [194] or class embeddings [65] to optimise the entity embeddings.

Pre methods observed in the literature come in two flavours. The first family of approaches
exploit ontologies by inferring implicit knowledge in a preprocessing step and embedding the
resulting graph enriched with inferred knowledge [76, 143]. The second family of approaches exploits
ontologies in the process of sampling negative triples, implementing a sampling strategy that has
a higher tendency to create ontologically compliant (and thus harder) negative examples [10, 58,
78, 99, 194], or builds upon adversarial training setups [116].

The post methods in the aforementioned survey are actually modifications of the downstream
task, not the embedding method, and thus do not affect the embedding method per se.

The fact that most approaches fall into the joint category also limits them by being bound
to one single embedding model, instead of being universally applicable. At the same time, most
approaches have a very limited set of schema or ontology constraints they support (e.g., only
domains and ranges of relations), while general approaches that are able to deal with the full
spectrum of ontological definitions, or even more complex expressions such as SHACL constraints,
remain very rare.

4.1.3 Relation Prediction Models
Relation prediction in KGs is a fundamental task that involves predicting missing or unobserved
relations (properties) between entities in a KG. For instance, in Figure 1, relation prediction aims
to predict the relation dbo:starring between entities dbr:Daniel_Craig and dbr:Skyfall.

Some of the classical KG embedding models such as translational models, and semantic
matching models are often also used to predict missing relations. However, one of the pioneer
models that focused on improving the relation prediction task is ProjE [153]. The model projected
entity candidates onto a target vector representing input data, using a learnable combination
operator to avoid transformation matrices followed by an optimised ranking loss of candidate
entities. CNN-based models, in contrast, are argued to obtain richer and more expressive feature
embeddings compared to traditional approaches. Attention-based embeddings enhance this
approach further by capturing both entity and relation features in any given context or multihop
neighbourhood [118]. Prior research on relation prediction, which was restricted to encyclopaedic
KGs alone, disregarded the rich semantic information offered by lexical KGs, which resulted in the
issue of shallow understanding and coarse-grained analysis for knowledge acquisition. HARP [182]
extends earlier work by proposing a hierarchical attention module that integrates multiple semantic
signals, combining structured semantics from encyclopaedic KGs and concept semantics from
lexical KGs to improve relation prediction accuracy.

Self-supervised training objectives for multi-relational graph representation have also given
promising results. This may be achieved using a simplistic approach by incorporating relation
prediction into the commonly used 1-vs-All objective [28]. The previously mentioned path-based
embedding models may also be used, but often overlook sequential information or limited-length
entity paths, leading to the potential loss of crucial information. GGAE [107] is a novel global
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graph attention embedding network model that incorporates long-distance information from
multi-hop paths and sequential path information for relation prediction. The effectiveness of KG
embedding models for relation prediction is typically assessed using rank-based metrics, which
evaluate the ability of models to give high scores to ground-truth entities.

Limitations. Although embedding-based models for relation prediction in KGs have advanced
significantly, they have several shortcomings. (1) Most of the models struggle to capture transitivity,
which is essential for understanding relations that change over time or apply in different contexts.
(2) They also struggle to handle rare relations, which can result in biased predictions. (3) Although
embedding techniques are intended to accommodate multi-relational data, capturing complex
interactions between numerous relations remains challenging. (4) KGs can contain relations with
different semantic heterogeneity. For example, imagine a KG with a relation called hasPartner that
represents any type of close partnership, such as business partners or friends. This relationship is
semantically different from hasSpouse. Relation prediction models are often unable to distinguish
between such relations with related but different meanings. (5) Relation prediction models provide
limited support for temporal and contextual information. Temporal information, however, is
handled by the temporal KG embedding models presented in Section 4.1.5.

4.1.4 Hierarchical and N -to-M Modelling in KG Embeddings
Crucial to the success of using KG embeddings for link prediction is their ability to model relation
connectivity patterns, such as symmetry, inversion, and composition. However, many existing
models make deterministic predictions for a given entity and relation and hence struggle to
adequately model N -to-M relationships, where a given entity can stand in the same relationship
to many other entities, as for instance for the hasFriend relationship [121].

A particularly important case is that of hierarchical patterns, which, albeit ubiquitous, still
pose significant challenges. Indeed, modelling them with knowledge embeddings often requires
additional information regarding the hierarchical typing structure of the data [194] or custom
techniques [212, 211], as discussed next.

Various approaches have been proposed for modelling hierarchical structures. Li et al. [108]
proposes a joint embedding of entities and categories into a semantic space, by integrating
structured knowledge and taxonomy hierarchies from large-scale knowledge bases, as well as
a Hierarchical Category Embedding (HCE) model for hierarchical classification. This model
additionally incorporates the ancestor categories of the target entity when predicting context
entities, to capture the semantics of hierarchical concept category structures.

Another method used for hierarchical modelling centres around the usage of clustering al-
gorithms [212]. The authors define a three-layer hierarchical relation structure (HRS) for KG
relation clusters, relations, and subrelations. Based on this, they extend classic translational
embedding models to learn better knowledge representations. Their model defines the embedding
of a knowledge triple based on the sum of the embedding vectors for each of the HRS layers.

The Type-embodied Knowledge Representation Learning (TKRL) [194] model uses entity-type
information in KG embeddings to model hierarchical relations. Following the TransE approach,
relations are translated between head and tail KG entities in the embedding space. For each
entity type, type-specific projection matrices are built using custom hierarchical type encoders,
projecting the heads and tails of entities into their type spaces.

Limitations. Although they intend to better represent the structure of a KG, the limitations of
such KG embeddings include: (1) It is challenging to model interactions that transcend numerous
hierarchy levels, resulting in a limited ability to capture cross-hierarchy linkages. For instance,
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Arnold Schwarzenegger is an actor, a film director as well as a politician, leading to the entity
belonging to different branches of the class hierarchy in the KG. (2) The depth of the hierarchy or
branching factor of an n-to-m relationship can affect how effective the embeddings are, e.g., in
very fine-grained or coarse-grained hierarchies, performance may suffer. (3) Training and inference
with hierarchical embeddings can be computationally intensive, particularly in ultrafine-grained
hierarchies.

4.1.5 Temporal KG Embeddings
Most KG completion methods assume KGs to be static, which can lead to inaccurate prediction
results due to the constant change of facts over time. For instance, neglecting the fact that <Barack
Obama, presidentOf, USA> only holds from 2009 to 2017 can become crucial for KG completion.
Emerging approaches for Temporal Knowledge Graph Completion (TKGC) incorporate timestamps
into facts to improve the result prediction. These methods consider the dynamic evolution of KGs
by adding timestamps to convert triples into quadruples using several strategies [23]:

Tensor Decomposition based models in KG completion transform a KG into a 3-dimensional
binary tensor, with three modes representing head, relation, and tail entities to learn their
corresponding representations by tensor decomposition. The addition of timestamps as an
additional mode of tensor (4-way tensor) for TKGC allows for low-dimensional representations
of timestamps for scoring functions. For TKGC, Canonical Polyadic (CP) decomposition
is used on quadruple facts [112]. The authors employ an imaginary timestamp for static
facts, while complex-valued representation vectors may be used for asymmetric relations
[100]. Temporal smoothness penalties are used to ensure that neighbouring timestamps obtain
similar representations. Multivector representations [195] are learned using CP decomposition,
allowing the model to adjust to both point timestamps and intervals. A temporal smoothness
penalty for timestamps is created and expanded to a more generic autoregressive model.
Tucker decomposition can be used for TKGC [151], treating KGs as 4-way tensors and scoring
functions that consider interactions among entities, relations, and timestamps, relaxing the
requirement for identical embedding dimensions of entities, relations, and timestamps.
Timestamp-based Transformation models involve generating synthetic time-dependent
relations by concatenating relations with timestamps (e.g., presidentOf:2009-2017 ), converting
<Barack Obama, presidentOf, USA> to <Barack Obama, presidentOf:2009-2017, USA> [102].
This however may lead to more synthetic relations than necessary. An improvement is to
derive optimal timestamps for concatenating relations by splitting or merging existing time
intervals [135]. The concatenation of relation and timestamp as a sequence of tokens is also
provided as an input making the synthetic relation adaptive to different formats like points,
intervals, or modifiers [50]. Others [177] argue that different relations rely on different time
resolutions, such as a life span in years or a birth date in days. Multi-head self-attention is
adopted on the timestamp-relation sequence to achieve adaptive time resolution. In the TKGC
model, timestamps are often considered linear transformations that map entities/relations to
corresponding representations. The timestamps are also treated as hyperplanes, dividing time
into discrete time zones [33]. An additional relational matrix is included to map entities to be
relation-specific to improve expressiveness for multi-relational facts [185]. To capture dynamics
between hyperplanes, a GRU may be applied to the sequence of hyperplanes [163]. Another
approach [103] encodes timestamps into a one-hot vector representing various time resolutions,
such as centuries or days to achieve time precision.
KG Snapshots can be considered as a series of snapshots/subgraphs taken from a KG,
with each subgraph holding facts labelled with a timestamp. Therefore, a temporal subgraph
evolves with changing relation connections. The link prediction problem can be solved
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by utilising Markov models [197] to infer the multi-relational interactions among entities
and relations over time and can be trained using a recursive model. Probabilistic entity
representations based on variational Bayesian inference can be adopted to model entity features
and uncertainty jointly [111]. The dynamic evolution of facts can be modelled using an
autoregressive approach [86], incorporating local multi-hop neighbouring information and a
multi-relational graph aggregator. Alternatively, a multilayer GCN can capture dependencies
between concurrent facts with gated components to learn long-term temporal patterns [109].
Continuous-time embeddings can encode temporal and structural data from historical KG
snapshots [64].
Historical Context based models focus on the chronological order of facts in a KG, determined
by the availability of timestamps, which enable predicting missing links by reasoning with the
historical context of the query. An attention-based reasoning process has been proposed [63] as
the expansion of a query-dependent inference subgraph, which iteratively expands by sampling
neighbouring historical facts. Another approach uses path-based multi-hop reasoning by
propagating attention using a two-stage GNN through the edges of the KG, using the inferred
attention distribution [87]. The model captures displacements at two different granularities,
i.e., past, present, and future and the magnitude of the displacement. Two heuristic-based
tendency scores Goodness and Closeness [12] have been introduced to organise historical facts
for link prediction. Historical facts are aggregated based on these scores, followed by a GRU
for dynamic reasoning. It is observed that history often repeats itself in KGs [214], leading to
the proposal of two modes of inference: Copy and Generation.

Limitations. Although recently many TKGC models have been proposed that resolve the issues
of classical KG embedding models with timestamps, some intriguing possibilities for future studies
on TKGC include: (1) External knowledge such as relational domain knowledge, entity types, and
semantics of entities and relationships can be added to the limited structural/temporal information
during model learning to enhance prediction accuracy. (2) Due to the time dimension and intricate
relationships between facts and timestamps, time-aware negative sampling should be investigated
in TKGC. (3) Most methods assume timestamps are available, while in some cases only relative
time information is known. For example, we would know that a person lived in a city after they
were born, but neither when the person was born, nor when they started living there. (4) With
the constant evolution of the real-world KGs, TKGC should be regarded as an incremental or
continual learning problem.

4.1.6 Dynamic KG Embeddings
As discussed in the previous section, incorporating timestamps is one way to handle changes;
however, facts may be added, altered, or deleted over time, are not foreseen [95], and would
typically require a complete re-computation of the embedding model. Such an approach might still
be feasible for KGs like DBpedia, which have release cycles of weeks or months [70], but not for
continuously updated KGs such as Wikidata, let alone examples of even more highly dynamic KGs,
e.g., digital twins, which may continuously change every second. Moreover, naïvely recomputing
embeddings for an only slightly changed KG may lead to drastic shifts in the embeddings of
existing entities, e.g., due to stochastic training behaviour. This would require a recalibration of
downstream models consuming those embeddings, as they would not be stable [187, 94].

While a few approaches for embedding dynamic graphs (not necessarily KGs) have been
proposed [90], many of them focus on embedding a series of snapshots of KGs, rather than
developing mechanisms for embedding a dynamic KG. Thus, they do not support online learning,
i.e., continuously adjusting the KG embedding model whenever changes occur.
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Approaches capable of online learning are much scarcer. One of the first was puTransE [165],
which continuously learns new embedding spaces. Similarly, Wewer et al. [187] investigate updating
the link prediction model by incorporating change-specific epochs forcing the model to update the
embeddings related to added or removed entities and/or relations.

Embeddings based on random walks can be adapted to changes in the graph by extracting
new walks around the changed areas [115], or by applying local changes to the corpus of random
walks [146]. The latter approach also supports the deletion of nodes and edges. DKGE [189] learns
embeddings using gated graph neural networks and requires retraining only vectors of affected
entities in the online learning part. Similarly, OUKE first learns static embeddings and computes
dynamic representations only locally using graph neural networks. The two representations are
then combined into a dynamic embedding vector. The idea of only updating embeddings of affected
entities is also pursued by RotatH [186]. A different strategy is considered by Navi [94], which
learns a surrogate model to reconstruct the entity embeddings based on those of neighbouring
existing entities. This surrogate model is then used to recompute the embedding vectors for new
entities or entities with changed contexts.

Limitations. The main limitations in the existing approaches so far are threefold: (1) In most
models, only addition to KGs is studied, while deletion is not the focus, an exception is the
work by Wewer et al. [187].2 (2) The stability of the resulting embeddings, which is crucial for
downstream applications, has rarely been analysed systematically. (3) The applicability in a true
real-time scenario, as it would be required, e.g., for digital twins, is unclear for most approaches,
which are evaluated on snapshots.

4.1.7 Inductive KG Embedding
In the inductive setting, graph representation learning involves training and inference of partially
or completely disjoint sets of nodes, edges, and possibly even relationships types. In practice, from
the specific set of known structures, it tries to generalise knowledge that enables reasoning with
unseen graph objects by exploiting information on the structures involving them and the data
attached to them [47]. The case of link prediction involves being able to predict the existence of a
link between two previously unseen nodes (head and tail) by reasoning about their connections to
other known nodes (i.e., nodes observed during training) or by reasoning about their attributes
(e.g., features similar to those of nodes seen during training).

Therefore, in the most common setting, relationship types do not change, but training involves
a given KG and inference involves a completely or partially different graph. Overall, the crucial
point is that there must be some form of shared information that allows for inferring a description
of an unknown entity or edge from a small set of known attributes. For example, a common
approach allows for predictions involving previously unseen, or out-of-sample, entities that attach
to a known KG with a few edges adopting known relationship types [48]. In this case, a few nodes
in the KG seen during training are used as anchors and called NodePieces. A full NodePiece
vocabulary is then constructed from anchor nodes and relation types. Given a new node, an
embedding representation is obtained using elements of the constructed NodePiece vocabulary
extracting a hash code for it given by the sequence of k closest anchors, combined with discrete
anchor distances, and a relational context connecting relations. Other approaches extract a local
subgraph of one or more nodes and consider the structures within such a subgraph trying to learn

2 Even for papers using different versions of public KGs e.g., DBpedia or YAGO, the majority of changes are
additions, and most benchmarks used in the evaluation of the papers mentioned above, usually have much
more additions than deletions.
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an inductive bias able to infer entity-independent relational semantics [167]. This approach is then
also adopted to predict missing facts in KGs, i.e., to predict a missing relation between two entities.
Similarly, NBFNet [215] instead encodes the representation of a pair of nodes using the generalised
sum of all path representations between the two nodes and with each path representation as
the generalised product of the edge representations in the path. In this case, the operation is
modelled along the line of a generalised Bellman-Ford algorithm that computes the shortest paths
from a single source vertex to all of the other vertices by taking into account edge weights. Here,
operators to compute the length of the shortest path are learned for a specific downstream task.

The aforementioned methods are designed for the case where the only information available are
triples connecting entities and do not take into account node or edge properties. Conversely, when
properties are taken into account, e.g., textual data describing entities, this information can be
exploited as node or edge features. A typical case is that of networks that adopt an auto-encoder
architecture to encode node representations and decode edges as a function over the representation
of node pairs. Among those, GraphSAGE [61] was the first inductive GNN able to efficiently
generate embeddings for unseen nodes by leveraging node features, e.g., textual attributes. Later
methods, including BLP [36] create embeddings for entities by encoding the description with a
language model fine-tuned on a link prediction objective. This model can then be used inductively,
as long as nodes have a description.

Limitations. All these approaches have only scratched the surface of the need for KG embeddings.
In particular, challenges persist in terms of (1) scalability, e.g., the possibility of learning inductive
biases from small representative samples of the graph; (2) exploiting well-known feature extraction
from graphs and KGs, as existing methods tend to disregard the possibility of using structural
features, e.g., betweenness, page rank, relational neighbourhood and characteristic sets [122];
(3) moreover, while GNNs seem the most promising and expressive architecture, their ability
to produce inductive relation aware KG representations are limited in their treatment of rich
vocabularies of relation types (typically limited to fewer than a hundred), their ability to exploit
information at more than 3 hops of distance, and the possibility to generate a representation
for very sparse feature sets. Finally, known challenges that apply to transductive methods, e.g.,
distribution shift and how to update the model or decide to train it from scratch, still apply. Finally,
the ability to work in an inductive fashion might increase the risk of data leakages, which already
exist in non-inductive settings [42]. The use of GNNs that learn how to aggregate information
from node and edge attributes raises more concerns when the training data involves private data;
how to ensure that private data is not leaked through the model, e.g., via differentially private
KG embedding [62], is still an open question.

4.1.8 Multilingual KG Embeddings
Providing multilingual information in a KG is crucial to ensure wide adoption across different
language communities [88]. Languages in KGs can have different representations; e.g., in Wikidata,
each entity has a language-independent identifier, and labels in different languages are indicated
with the rdfs:label property [89]. Therefore, in Wikidata, entities do not need alignment across
languages. In DBpedia, there is one entity per language, derived from the respective language
Wikipedia [104]. Therefore, different language entities on the same concept can have different facts
stated about them. Here, an alignment using the owl:sameAs property is necessary to ensure the
different entities are connected across languages and enable seamless access to information for all
language communities. The different representations of languages in the different KGs can heavily
influence which way the KG can be embedded. For example, if provided with a KG per language
as in DBpedia, different language KGs might be embedded separately and then aligned or can be
fused for usage in downstream applications [74].
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One of the downstream tasks of multilingual KG embeddings is KG completion. Finding new
facts given machine-readable data such as a KG is a tedious task for human annotators, even
more so when the graph covers a wide range of languages. Addressing these challenges, recent
work has employed KG embeddings across languages to predict new facts in a KG.

One of the large challenges of multilingual KG embeddings is the knowledge inconsistency across
languages, i.e., the vastly different number of facts per language. Fusing different languages to
overcome such knowledge inconsistencies for multilingual KG completion can improve performance
across languages, especially for lower-resourced languages [74]. To fuse different languages, KGs
need to be aligned across languages. Such alignment can be done jointly with the task of
multilingual KG completion [25, 168, 27].

Another approach for multilingual KG completion is leveraging large language models’ (LLM)
knowledge about the world to add new facts to a KG. As LLMs are not trained towards KG
completion and are biased towards English, Song et al. [157] introduce global and local knowledge
constraints to constrain the reasoning of answer entities and to enhance the representation of
query context. Hence, the LLMs are better adapted for the task of multilingual KG completion.

Limitations. Although most of the existing multilingual KG embedding models focus on having
a unified embedding space across different language versions of the KGs, these embeddings
have several shortcomings. (1) The potential of the model to learn and generalise relations
between entities in different languages is often restricted by sparse cross-lingual links, resulting in
less accurate cross-lingual representations of entities. (2) Polysemy, which occurs when a word
has numerous meanings, can be difficult to address across languages, resulting in ambiguity in
cross-lingual representations. (3) Entities and relations can have very context-dependent and
language-specific meanings, which is a challenging task for multilingual embeddings to capture
the nuances of the context. (4) Resource imbalances may result in low-resource languages having
inadequate training data and linguistic resources, impacting the entity and relation embeddings.

4.2 General Challenges
In addition to the goal of accounting for a broader spectrum of available information, there are
more general challenges and opportunities for KG embedding models: (1) KG embedding models
can inherit biases from training data, thereby reinforcing societal preconceptions. (2) Scalable
embedding approaches are required for large-scale KGs with millions or billions of elements and
relations. (3) Improving the interpretability and explainability of embeddings remains a challenge.

4.2.1 Bias in KG Embeddings
KGs, which serve as the foundation for KG embeddings, are regarded as crucial tools for organising
and presenting information, enabling us to comprehend the vast quantities of available data.
Once constructed, KGs are commonly regarded as “gold standard” data sources that uphold
the accuracy of other systems, thus making the objectivity and neutrality of the information
they convey vital concerns. Biases inherent to KGs may become magnified and spread through
KG-based systems [150]. Traditionally, bias can be defined as “a disproportionate weight in favour
of or against an idea or thing, usually in a way that is closed-minded, prejudicial, or unfair”3.
Taking into account the bias networking effect for KGs, it is crucial that various types of bias are
already acknowledged and addressed during KG construction [79].

3 Wikipedia article on bias. https://en.wikipedia.org/wiki/Bias, retrieved 2023-11-28.
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Biases within KGs, as well as the approaches to address them, differ from those found in
linguistic models or image classification. KGs are sparse by nature, i.e., only a small number
of triples are available per entity. In contrast, linguistic models acquire the meaning of a term
through its contextual usage in extensive corpora, while image classification leverages millions
of labelled images to learn classes. Biases in KGs can arise from various sources, including the
design of the KG itself, the (semi-)automated generation of the source data, and the algorithms
employed to sample, aggregate, and process the data. These source biases typically manifest in
expressions, utterances, and textual sources, which can then permeate downstream representations
and in particular KG embeddings. Additionally, we must also account for a wide range of human
biases, such as reporting bias, selection bias, confirmation bias, overgeneralisation, and more.

Biases in KGs as the source of KG embeddings can arise from multiple sources. Data bias
occurs already in the data collection process or simply from the available source data. Schema
bias depends on the chosen ontology for the KG or simply is already embedded within the used
ontologies [79]. Inferential bias might result from drawing inferences on the represented knowledge.
Ontologies are typically defined by a group of knowledge engineers in collaboration with domain
experts and consequently (implicitly) reflect the world views and biases of the development team.
Ontologies are also prone to encoding bias depending on the chosen representation language
and modelling framework. Moreover, biases in KG embeddings may in particular arise from the
chosen embedding method as for instance induced by application-specific loss functions. Inferential
biases, which may arise at the inferencing level, such as reasoning, querying, or rule learning, are
mostly limited to KGs themselves and rarely propagate to KG embeddings. A simple example of
inferencing bias might be the different SPARQL entailment regimes, which in consequence, might
be responsible for different results that different SPARQL endpoints deliver despite containing the
same KG [2, 55].

Collaboratively built KGs, such as DBpedia or GeoNames, also exhibit social bias, often arising
from the western-centric world view of their main contributors [37]. In addition, some “truths"
represented in such KGs may be considered controversial or opinionated, which underlines the
importance of provenance information.

For KG embeddings that represent a vector space-based approximation of the structural and
semantic information contained in a KG, one of the main sources of bias lies in the sparsity and
incompleteness of most KGs. KG embeddings trained on incomplete KGs might favour entities
for which more information is available [136]. Moreover, if the underlying KG is biased, then KG
embeddings trained on this base data will as well be, and in fact, bias may even be amplified.
De-biasing of KG embeddings requires methods for detecting as well as removing bias in KG
embeddings. Depending on the underlying embedding model, this task might become complex
and requires finetuning of embeddings with respect to certain sensitive relations [45, 46, 9].

4.2.2 Reliability and Scalability of KG Embeddings
KG embedding methods suffer from many issues in terms of scalability. For example, many studies
experiment mainly on (poorly constructed) subsets of Freebase and Wordnet, the infamous FB15k
and WN18 [1], which are known to suffer from information leakage. These datasets contain in the
order of a few million triples and rarely go beyond 1,000 relationship types, usually focusing on
subgraphs with 200 or fewer. Recently, more realistic datasets have been proposed in terms of the
quality of the data involved and of the link prediction task adopted [145]. Nonetheless, even these
are far from being representative of typical real-world KG applications. Consider that DBpedia
contains 52M distinct triples involving 28M distinct literals and as many distinct entities, with
1.3K distinct relationship types. Indeed, a recent Wikidata snapshot contains 1.926 billion triples,
involving more than 600M entities and 904M distinct literals across 9K relationship types [134].
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The size of real-world KGs is far beyond the capabilities of current methods, and the current
results on small controlled benchmarks cannot be seen as representative of their scalability and
reliability on real-world deployment. This perhaps also suggests the need for methods designed
end-to-end to consider cases where different models can be learned for different subgraphs and
then combined in a modular fashion. Last but not least, as KG embedding methods are adopted
for tasks that go beyond link prediction, e.g., KG alignment [159], we refer to the well-known
issues of scale in terms of dataset size (number of triples) and in terms of heterogeneity (scale of
the vocabulary of relationships and attributes), as well as to new important issues based on the
number of KGs to align, i.e., scale in terms of the number of distinct KG sources [16].

4.2.3 Explainability of KG Embeddings
One of the persistent difficulties is the development of KG embedding methods to enhance
interpretability and explainability. This includes comprehending the reasoning and decision-
making processes of KG embedding models as well as providing explanations for their predictions.
KG embeddings have several advantages over conventional representations produced by deep
learning algorithms, including their absence of ambiguity and the ability to justify and explain
decisions [125]. Additionally, they can offer a semantic layer to help applications such as question-
answering, which are normally handled by text-based brute force techniques. CRIAGE [129]
is one such tool that can be used to understand the impact of adding and removing facts.
GNNExplainer [203] is proposed for the explainability of the predictions done by GNNs. Deep
Knowledge-Aware Networks [176] and Knowledge-aware Path Recurrent Networks [180] have
witnessed a surge in attention to recommendation systems. They model sequential dependencies
that link users and items. OpenDialKG [117] is a corpus that aligns KGs with dialogues and
presents an attention-based model that learns pathways from dialogue contexts and predicts
relevant novel entities. These models offer a semantic and explicable layer for conversational
agents and recommendations, aiding in the completion and interpretation of the predictions.

Limitations. However, there are still a number of limitations: (1) The lack of standardised
evaluation standards makes it difficult to compare different approaches and assess performance
consistently. (2) Improving interpretability often comes at the expense of performance and
striking a balance between interpretability and performance still remains a challenge. (3) User-
centric evaluation is necessary to understand the practical utility of explainable KG embeddings.
(4) Current research on KG embedding explainability often focuses on global or model-level
explanations, ignoring the importance of contextual and domain-specific explanations.

4.2.4 Complex Logical Query Answering and Approximate Answering of
Graph Queries

The link prediction task is often seen as a graph completion task. However, it can equivalently be
cast as a query-answering task for a very simple query. For example, if we predict the tail of the
triple <h,r,?>, the task is equivalent to answering the corresponding query as if the graph had all
the missing information. Recently, researchers started investigating how we could answer such
queries if they are more complex, a task known as complex logical query answering4. The goal is,
given a graph with missing information and a graph query, to produce the answers to the query
as if the graph were complete (or more commonly, produce a ranking of possible answers).

4 also sometimes approximate query answering, multi-hop reasoning, or query embedding
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One might naïvely assume that this can be solved by first completing the graph and then
performing a traditional graph query on the completed graph. The issue is, however, that a very
large KG can never be complete. This is because link prediction models do not yield a set of
missing edges, but rather a ranking of possible completions for an incomplete triple.

We can distinguish three main lines of work in this area. The reader is referred to relevant
surveys [138, 30] for more details. The first group of approaches are those that make use of a link
predictor, like the ones introduced above. These methods decompose the query into triples and
then use the link prediction model to make predictions for the triples. The first approach of this
type was CQD [7], which uses fuzzy logic to combine the outputs of the link predictor. Further
developments for this type of model include QTO [13], which materialises all intermediate scores
for the link predictors and makes sure that edges existing in the graph are always regarded as more
certain than those predicted by the link predictor. Another newer approach is Adaptive CQD [8],
which improves CQD by calibrating the scores of the link predictor across different relation types.

A second group of approaches are referred to as projection approaches, and the earliest
approaches in this domain are of this type. These methods are characterised by the restriction
that they can only answer DAG-shaped graph queries. They are inspired by translation-based link
predictors. Starting from the entities in the query (in this context called the anchors), they project
them with a relation-specific model to a representation for the tail entity. This representation
then replaces the other occurrences as a subject of the variable in the query. If a variable occurs
in more than one object position, a model is invoked to combine the computed projections into
a single representation (called the intersection). The first approach of this type was Graph
Query Embedding (GQE) [60], which did the above using vectors as representations, simple linear
projections, and an MLP with element-wise mean for the intersection. Later examples include
Query2Box [139], which uses axis-aligned hyperplanes to represent the outcomes of projections
and intersections, and BetaE [140], which instead uses the beta distribution.

A final group of approaches is message-passing-based. These are very flexible and can deal
with more query shapes than the above. This method regards the query as a small graph and
embeds that complete query into a single embedding. Then, answers to the query are found simply
by retrieving the entities of which the embedding is close to that query in the embedded space. A
notable example is MPQE [35], which uses a relational graph convolutional network (R-GCN)
to embed the query. The flexibility of these models is illustrated by StarQE [4], which can even
answer hyper-relational queries (very similar to RDF-star).

Limitations. As indicated in the survey by Ren et al. [138], there are still very many open
questions in this domain. (1) One aspect is that current approaches only support small subsets
of all possible graph queries. For example, hardly any work attempts to answer cyclic queries,
queries with variables on the relation position, or only variables in the whole query. (2) Also, the
graph formalism currently used is limited; only very few approaches can deal with literal data,
and there is no word yet on temporal KGs or the use of background semantics.

5 Applications

Recent research on KG embeddings has shown broad potential across diverse application do-
mains such as search engines [43], recommendation systems [49], question-answering systems [73],
biomedical and healthcare informatics [5], e-commerce [210], social network analysis [152], educa-
tion [201], and scientific research [119]. However, in this study, we highlight two such domains:
recommendation and biomedical/therapeutic use cases.
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5.1 KG Embedding for Recommendation
Recommender systems (RSs) are an integral part of many online services and applications to
provide relevant content and products tailored to their users. Many RSs identify user preference
patterns assuming that users with similar past behaviour have similar preferences, e.g., people
that watch the same movies are likely to do so also in the future, an approach commonly referred
to as collaborative filtering [69, 68]. Yet, many existing methods only work in a warm-start
setting, where it is assumed that all users and items have been seen during training [61, 205].
Moreover, methods that try to deal with cold-start settings, where for some users or items only
user–item interactions are known and only at inference time [202, 205], making them unable to
handle situations where this type of data is sparse, e.g., long-tail users and items. Therefore,
we can see this problem as a link prediction problem, and we can also distinguish between a
transductive setting and an inductive setting. In the transductive setting, some approaches try
to exploit other contextual information from KGs, e.g., semantic annotations, taxonomies, item
descriptions, or categories, to overcome these problems. In particular, a large body of methods
exploits both domain-specific and open-domain KGs integrated with user and item information.
In practice, users and items are nodes connected by special domain-specific relation types, e.g.,
a rating or a purchase, and item nodes are represented with additional connections to other
entities describing their categories, features, producers, and provenance. This information, in the
form of a Collaborative KG, is adopted as additional side information in the recommendation
process [179, 175, 126]. These methods can be grouped into three categories:
1. path-based methods, which capture information from distant nodes but tend to dismiss much

of the structural information in KG and are very dependent on the paths selected during
training [180, 191, 162];

2. embedding-based methods, which use existing transductive graph embedding approaches to
capture the semantic relations of the graph structure, such as TransR [206] or Node2Vec [56],
further applying them in recommendation scenarios [126, 207]; and

3. structural-based methods, which use GNNs to aggregate structural information of each node’s
neighbourhood [175, 179].

Among these, GNNs have recently shown promising results thanks to their ability to model
relations and capture high-order connectivity information by combining KGs and collaborative
data (user–item interactions) [179]. Nonetheless, these approaches often rely on transductive
methods, making them unable to handle frequent changes in the graph. Moreover, their user–item
representation often is limited to a single relation type and still cannot fully exploit the contextual
knowledge offered by open-domain KGs, due to only very few relation types being considered.
Furthermore, these approaches need to be able to exploit both the structure of the graph and the
attributes describing the items.

5.2 Multimodal KG Embeddings for Biomedical and Therapeutic Use
In the biomedical domain, KGs are a natural way to model and represent complex biomedical
structured data, such as molecular interactions, signalling pathways and disease co-morbidities
[106]. Information from a single source usually does not provide sufficient data, and various
state-of-the-art studies have shown that incorporating multiple heterogeneous knowledge sources
and modalities yields better predictions [101, 53, 71]. Learning an effective representation that
leverages the topology of these multimodal and heterogeneous KGs to create optimised embedding
representations is key to applying AI models. These optimised embeddings can then be fed into
link prediction models, such as for interactions between proteins [80], drugs [53], drug-targets
[53, 101], or drug indication/contraindications for diseases [71].

TGDK
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For instance, Otter-Knowledge [101] uses MKGs built from diverse sources, where each node
has a modality assigned, such as textual (e.g., protein function), numerical (e.g., molecule mass),
categorical entities (e.g., protein family), and modalities for representing protein and molecules.
For each modality in the graph, a model is assigned to compute initial embeddings, e.g., pre-trained
language models such as ESM [142] and MolFormer [144] are used for protein sequences and
molecules’ SMILES, respectively. A GNN is then invoked to enrich the initial representations
and train a model to produce knowledge-enhanced representations for drug molecules and protein
entities. These representations can improve drug-target binding affinity prediction tasks [72], even
in the presence of entities not encountered during training or having missing modalities.

During training, attribute modalities are treated as relational triples of structured knowledge
instead of predetermined features, making them first-class citizens of the MKG [128, 101]. The
advantage of this approach is that entity nodes are not required to carry all multimodal properties
or project large property vectors with missing values. Instead, the projection is done per modality
and only when such a modality exists for the entity.

6 Discussion and Conclusion

Currently, the vast majority of evaluations of knowledge graph embeddings are conducted on the
task of link prediction. At the same time, embeddings created with such techniques are used
across a wide range of diverse downstream tasks, such as recommender systems, text annotation
and retrieval, fact validation, data interpretation and integration, to name just a few. This raises
the question: How suitable is the effectiveness of a link prediction task as a predictor of the
applicability of a particular KGE method for a particular downstream task?

While the evaluation of link prediction is quite standardised with respect to benchmark
datasets and evaluation metrics, the field of downstream applications is much more diverse and
less standardised. Some frameworks, such as GEval [127] and kgbench [19], offer a greater variety
of tasks and evaluations, including evaluation metrics and dataset splits.

Some studies have looked into characterising the representation capabilities of different KGE
methods. They, for instance, analyse whether different classes are separated in the embedding
space [6, 77, 216]. More recently, the DLLC benchmark [132] has been proposed, which allows for
analysing which types of classification problems embeddings produced by a particular method can
address. Other studies analyse the distance function in the resulting embedding spaces, finding
that while most approaches create embedding spaces that encode entity similarity, others focus on
entity relatedness [131], and that some methods can actually be altered to focus more on similarity
and relatedness [133].

In addition, link prediction, entity categorisation, KG completion, and KG embeddings are
crucial for a number of downstream activities, such as entity recommendation, relation extraction,
question-answering, recommender systems, semantic search, and information retrieval. Models that
leverage user profiles, historical interactions, and KGs can deliver personalised recommendations,
capture similarity and relevance, and increase accuracy and relevance. KG embeddings also
improve the accuracy of relation extraction by adding structured knowledge. The majority of
existing KG embedding models are generalised, that is, they are trained and evaluated on open
KGs for KG completion. However, task-specific KG embeddings would be quite advantageous in
various kinds of applications, which still remains an open research task. They can be optimised for
creating representations for specific tasks, improving performance, focusing on relevant information
extraction, resolving data scarcity, and thereby improving interpretability and explainability. With
the use of domain-specific data or constraints, these embeddings can be trained to grasp and
reason about the relationships and semantics unique to that domain.
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Recent ongoing research also reveals that when KG embeddings and LLMs are combined, a
symbiotic relationship results, maximising the benefits of each methodology. While LLMs help
to integrate textual knowledge, improve entity and relation linking, promote cross-modal fusion,
and increase the explainability of KG embeddings, KG embeddings provide structured knowledge
representations that improve the contextual comprehension and reasoning of LLMs. Therefore,
future research may focus on building more robust and comprehensive models for knowledge
representation, reasoning, and language understanding as a result of these interrelated effects.

KG embeddings will continue to evolve and serve an important role in enabling effective
knowledge representation, reasoning, and decision-making as KGs grow in scale and complexity.
This study highlights the potential of KG embeddings to convert unstructured data into structured
knowledge, reveal deeper insights, and enhance intelligent applications.
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Abstract
The term life sciences refers to the disciplines that
study living organisms and life processes, and in-
clude chemistry, biology, medicine, and a range
of other related disciplines. Research efforts in
life sciences are heavily data-driven, as they pro-
duce and consume vast amounts of scientific data,
much of which is intrinsically relational and graph-
structured.

The volume of data and the complexity of sci-
entific concepts and relations referred to therein
promote the application of advanced knowledge-
driven technologies for managing and interpreting
data, with the ultimate aim to advance scientific
discovery.

In this survey and position paper, we discuss

recent developments and advances in the use of
graph-based technologies in life sciences and set
out a vision for how these technologies will impact
these fields into the future. We focus on three broad
topics: the construction and management of Knowl-
edge Graphs (KGs), the use of KGs and associated
technologies in the discovery of new knowledge, and
the use of KGs in artificial intelligence applications
to support explanations (explainable AI). We select
a few exemplary use cases for each topic, discuss
the challenges and open research questions within
these topics, and conclude with a perspective and
outlook that summarizes the overarching challenges
and their potential solutions as a guide for future
research.
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1 Introduction

The term life sciences refers to those disciplines that study living organisms and life processes,
and include chemistry, biology, medicine, and a range of other related areas. Research efforts in
life sciences are increasingly data-driven, as they produce and consume vast amounts of scientific
data, much of which is intrinsically relational and graph-structured.

Much of this data is large-scale, complex, and presents many interrelationships and dependencies,
thus being well suited to be represented in graph structures. For this reason, graph-based
technologies are frequently used in the life sciences, and these disciplines have been drivers and
early adopters of innovative methods and associated technologies.

In this brief survey and position paper we discuss recent developments and advances in the
use of graph-based technologies in life sciences, and set out a vision for how these technologies
will impact these fields in future. We illustrate the contribution in this paper in Figure 1.

We consider Knowledge Graphs (KGs) and their associated technologies to broadly include
(i) different forms of graph-based representations,
(ii) the logical languages that assign explicit semantics to such representations, and their

associated automated reasoning technologies, and
(iii) machine learning approaches that ingest data in graph-based representations and that process

these graph-based representations to perform some task, e.g., data analytics.

https://doi.org/10.4230/TGDK.1.1.5
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Life Science 
Knowledge 
Discovery
(Sect. 4)

Knowledge Graph 
Construction and 
Management

(Sect. 3)

Knowledge Graph 
for Explainable AI

(Sect. 5)

Challenges for Life Science KGs (Sect. 6)

v Scalability
v Evolution & Quality Assurance
v Heterogeneity: Multi-domain & Multi-

modality
v Human Interaction & Explainability
v Personalized & Customized KGs
v Distributed KGs
v Representation Learning: Symbolic & Sub-

symbolic Integration

§ Alignment for Knowledge Validation
§ Knowledge Integration
§ Repositories of Ontologies and Mappings
§ Ontology Extension
§ Instance Matching

§ Therapeutics and Drug Discovery
§ Protein Function Prediction
§ Predictions for Healthcare

§ Explainable AI for Healthcare Practice
§ Explainable AI for Knowledge Discovery
§ Explainable AI for KG Construction

KG in Life Sciences (Sect. 2)

v Schema-less KGs: Facts in RDF triples
v Schema-based KGs: RDFS, OWL, SHACL, etc.
v Simple ontologies: Taxonomies
v Expressive OWL ontologies

Figure 1 An overview illustration of definitions (upper right, in gray), topics (left column, in blue),
use cases (middle), and challenges (bottom right, in green) for the research of KGs in the life sciences.

These different forms of graph-based representations can be further categorized based on the
type of content represented. We therefore distinguish schema-less and schema-based Knowledge
Graphs. More specifically, a typical KG contains either or both a schema part (terminologies
or TBox1) and a data part (facts, assertions, or ABox). The formal semantics of KGs can be
expressed with the OWL ontology language2.

In the remainder of this paper we will focus on three broad topic areas in which graph-based
technologies have been used extensively, and we illustrate each area with some specific projects or
use cases that guide our discussion and summary of the challenges that have been encountered.

The construction and management of KGs to represent life science knowledge;
The use of KGs and associated technologies in the discovery of new knowledge;
The use of KGs in artificial intelligence applications to support explanations (eXplainable AI
or XAI).

We then provide a summary of the general challenges across the topics, that include intrinsic
characteristics of KGs (e.g., scalability, evolution, heterogeneity) and their operational aspects in
the real world (e.g., human interaction, personalization, distributed setting, and representation
learning). We present the challenges by means of use cases and the current research efforts that
address them. It is worth mentioning that while we aim to focus on the life sciences, many of the
topics and challenges discussed in this work, especially those of KG construction and management
in Section 3, are general and applicable to KGs in other domains such as finance, e-commerce,
material, and urban management [111, 31], etc. The KG-based problem modeling and solving
approaches in life science knowledge discovery could be applicable for addressing many other use
cases and problems in a broader domain of AI for scientific discovery [175, 60].

In the next section, we introduce several different categories of KGs as they have been used in
life sciences. Thereafter in Sections 3-5, each of the above topics is described in a dedicated section
together with a survey of recent advances. Finally, in Section 6 we synthesize the overarching
challenges and trends into a perspective on the outlook for the future.

1 We introduce a list of key terms relevant to Knowledge Graphs and Life Sciences in Appendix A.
2 Web Ontology Language: https://www.w3.org/OWL/
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2 Knowledge Graphs in the Life Sciences

KGs represent semantically-described real-world entities, typically through ontologies (vocabularies
or schemas) [68, 61] and the data instantiating them, and thus provide descriptions of the entities of
interest and their interrelations, by means of links to ontology classes describing them, organized in
a graph [158]. KGs have been widely adopted in the life sciences, as can be seen in the composition
of the Linked Open Data Cloud3, where life sciences represent one of the largest subdomains. A
prominent example is the KG representing annotations regarding proteins by means of terms in
the Gene Ontology describing different protein functions [4].

Whilst KGs are becoming increasingly popular in different domains including the life sciences,
there is no single accepted definition of KG [43]. A KG can be formally described as a directed,
edge-labeled graph G = (V, E), where V refers to the vertices or nodes, representing real-world
entities of interest (e.g., proteins, genes, compounds, cellular components, but also pathways,
biological processes and molecular functions, to name a few) while E refers to the edges in the
graph, representing relationships or links between the entities in V (e.g., binds, associates, etc.).
These may be represented as statements about entities in the form of RDF4 triples: (subject,
predicate, object).

However, this formal definition only focuses on the components of KGs, but does not pose any
constraint on what a KG should model or represent, and how. This is particularly true in life
sciences, where the term Knowledge Graph has been used to refer to diverse graph data structures,
typically interconnected, but often isolated.

Many of the everyday tasks faced by researchers in this domain require the systematic processing
and integration of data and knowledge from data sources that are characterized by heterogeneous
syntaxes and structures, formats, entity notation, schemas and scope, e.g., ranging from molecular
mechanisms to phenotypes. Researchers in this area have been early adopters of Semantic Web
and linked data approaches as a means to facilitate knowledge integration and processing to
support tasks including semantic search, clinical decision support, enrichment analysis, data
annotation and integration. However, a recent analysis of life science open data has identified
several stand-alone data sources that exist in isolation, are not interlinked with other sources,
and are schema-less (or use unpublished schemas), with limited reuse or mappings to other data
sources [88]. Therefore, we can define a life sciences KG, following [130], as a data resource
integrating one or more possibly curated sources of information into a graph whose nodes represent
entities and edges represent relationships between two entities. This definition is consistent with
other definitions found in the literature, e.g., [135].

These considerations underlie the reasons why KGs in life sciences can be of different types,
and can be categorized across different dimensions. One of the most critical dimensions (in terms
of support for complex queries and integration) is the categorization of KGs into schema-based
and schema-less knowledge bases. In turn, the expressivity of the schema provides a further
categorization criterion, depending on whether schemas are modeled as simple taxonomies (e.g.,
the NCBI taxonomy [154] included in the UMLS Metathesaurus [9]), RDFS5 vocabularies or (fully
axiomatized) OWL ontologies. In particular, this paper refers to this broad definition of KGs,
which we then divide into:

Schema-less KGs composed of only relational facts in the form of RDF triples. Examples
include the PharmaGKB dataset, an integrated online knowledge resource capturing how
genetic variation contributes to variation in drug response [180]. Note that many semantic
networks (defined in Appendix A) could be assigned to this category as their triples form a
multi-relational graph.

3 http://cas.lod-cloud.net
4 Resource Description Framework: https://www.w3.org/RDF/
5 RDF Schema: https://www.w3.org/TR/rdf-schema/

http://cas.lod-cloud.net
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Schema-based KGs composed of relational facts and their schema (meta information) in e.g.,
RDFS, OWL, and constraint languages such as SHACL6. Examples include Wikidata with its
property constraints, and DBpedia with its DBpedia ontology. Whilst Wikidata and DBpedia
are general-purpose KGs, they also include large-scale life science knowledge.
Simple ontologies representing taxonomies. Notable examples include the tree structure of
the UMLS Semantic Network7 and the International Classification of Diseases, version 10
(ICD-10) [182].
Expressive OWL ontologies, with complex axioms beyond simple taxonomies. OWL ontologies
may be composed of a TBox and an ABox. Depending on the expressivity of the axioms
modeled in the ontology, i.e., the basic statements that an OWL ontology expresses, OWL
ontologies can fall into one of the previous categories: for instance, an OWL ontology with
just an ABox can be seen as the case above of a KG composed of relational facts alone. In
this final category we include fully axiomatized OWL ontologies, e.g., with complex classes
and property restrictions. Notable examples of these ontologies include SNOMED CT [38],
the Gene Ontology [4, 28], and the Food Ontology (FoodOn)8.

3 Knowledge Graph Construction and Management

The adoption of KGs in the life sciences is motivated by the need for standardization of taxonomies
and vocabularies to support the integration, exchange and analysis of data. More recently, richly
annotated data is also being used in combination with machine learning methods for many
applications, including helping to overcome issues related to the sparsity of data and helping to
select promising candidates for reducing expensive and time-consuming physical experiments [64].
Graph-based machine learning approaches such as Graph Neural Networks have been applied to a
number of life science tasks [49], including drug repurposing [120] and predicting polypharmacy
side effects [196].

Given the diverse nature of the knowledge and tasks supported by KGs, the focus of state-
of-the-art approaches has been the description of how individual KGs are developed within the
specific domain [190], typically in terms of the specific approaches used for the development of the
KG (e.g., data extraction process, relation extraction and entity discovery), rather than on the
overall development process. More recently, some efforts have focused on providing an overview
of development approaches and pipelines for the construction of KGs in the life sciences, and
beyond [130, 164]. The process of constructing a KG depends heavily on:

The type of data sources integrated and annotated by the KG, e.g., CSV files, public and
proprietary data sources, structured databases, full-text publications, etc.
The granularity of the KG to be constructed, e.g., schema-less KG, simple or expressive
ontology.
The usability expectations in downstream applications, e.g., the ability to customize and
manipulate the graph to support different use cases, or the ease of consumption as input to
machine learning methods [51].

A recent systematic review [164] surveyed different KG development approaches to determine
a general development framework. The review identified six main phases that are common across
different KG development approaches:

6 https://www.w3.org/TR/shacl/
7 https://uts.nlm.nih.gov/uts/umls/semantic-network/root
8 http://foodon.org
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1) Data source selection.
2) Ontology construction.
3) Knowledge extraction.
4) Knowledge ingestion and validation.
5) KG storage and inspection.
6) KG maintenance and evolution.

In the remainder of this section we will present the individual phases and the role they play
in a KG development process by means of two use cases, where we illustrate the construction
of KGs and discuss how these support knowledge integration and validation (Section 3.2). We
then present some recent technical developments in Section 3.3, while Section 3.4 discusses open
challenges for the construction and management of KGs.

3.1 Knowledge Graph Construction Phases
This section provides more details on the phases involved in the KG construction process, with
the aim of identifying recent trends, rather than providing an exhaustive literature survey. These
phases are discussed in order of execution, however the ontology construction phase can occur either
together with the data source selection (if an ontology covering the domain of interest already
exists or can be constructed through a set of given requirements) or as part of the knowledge
ingestion and validation phase, where an ontology is built semi-automatically from the available
data or through modularization and alignment of existing ontologies.

3.1.1 Data source selection
This phase identifies the data sources that are to be integrated by the KG, which in turn affects
the choice of knowledge extraction techniques. Generally, life science KGs ingest knowledge
from structured, semi-structured and unstructured data sources. By structured we refer to data
modeled according to an existing structure, e.g., data in tables or public or proprietary reference
(relational) databases such as UniProt [29] or ChEMBL [50]. Semi-structured data refer to, e.g.,
XML documents [116], whereas unstructured data refer to data that do not conform to a given
structure, i.e., free-text sources, such as scientific publications from PubMed9. Data ingested
from manually curated databases [130] and semi-structured sources constitute the foundation of a
KG [51], generally defining the entities and some of the relations in the KG. This data is then
further enriched by performing text mining on large-scale free text sources, in order to extract
relationships, which is the objective of the knowledge extraction phase.

3.1.2 Ontology construction
The aim of this phase is to define a common, consensus-based, controlled vocabulary to describe
the data in an ontology [146]. The existence of a common structure, or schema, supports querying,
integration and reasoning tasks over the KG.

Traditional ontology engineering approaches are divided into top-down or bottom-up. Top-
down approaches are based on more or less formal ontology engineering methodologies [45, 95, 131]
or common practices [3] to build ontologies from a description of the domain elicited from domain
experts [129], and/or by reusing or extending existing ontologies [82]. Ontology engineering
methodologies define the ontology development process in terms of requirement analysis, entity

9 https://pubmed.ncbi.nlm.nih.gov
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and property definitions, ontology reuse, validation and population. In contrast, bottom-up
approaches utilize semi-automatic data driven techniques, e.g., ontology learning from text [110],
and can be used to refine and validate an ontology. These approaches are discussed in more detail
when presenting the knowledge ingestion and validation phase.

Whilst general purpose ontology engineering methodologies have evolved to be used in the
development of KGs [139], a considerable number of ontologies in the life science domain have been
built as part of the Open Biological and Biomedical Ontologies (OBO) Foundry effort,10 which
defines a set of development principles for biological and biomedical ontologies and provides a suite
of high-quality, interoperable, free and open source tools that support ontology development [115].

3.1.3 Knowledge extraction

Knowledge extraction refers to the identification of entities and their relations from the data sources,
which is a crucial step in the development of a KG [164]. Entity extraction identifies entities from
the various data sources selected using Natural Language Processing (NLP) approaches and text
mining techniques to analyze and extract relevant information from large text corpora [178, 103, 71].
Named entity recognition (NER) supports the identification of named entities in text, such as drug
names, diseases, or chemical compounds, and their classification according to pre-defined entity
types [127]. NER approaches in the life sciences are typically based on labor intensive tasks such
as the definition of generic (e.g., orthographic, morphological, or dictionary-based) and specific
rules that are typically defined by experts, and are not easily applicable to other corpora [195].
There are a number of issues hindering these approaches:
a) the pace of scientific discovery and the identification of new entities;
b) the large number of synonyms and term variations associated with an entity; and
c) entity identifiers that are composed of a mixture of letters, symbols and punctuation, often in

large sentences [101].
More recent approaches have proposed the use of supervised machine learning methods (e.g.,
conditional random fields, or Support Vector Machines, SVMs, neural networks, and neural
language models in particular) [112, 86, 35] either in isolation, or combined in hybrid approaches
to improve accuracy [149].

Entity recognition generates entities that are isolated and not linked [164]. The goal of Relation
extraction is to discover relationships of interest between a pair of entities, thus describing their
interaction. Relation extraction is a necessary step for entities defined in semi-structured or
unstructured sources, whereas structured data sources are characterized by explicitly identifiable
relationships. Typical approaches for relation extraction include rule-based [75, 145, 144], super-
vised [106, 48] and unsupervised approaches [98, 130]. Rule-based relation extraction identifies
keywords (based on existing ontologies or expert defined dictionaries) and grammatical patterns
to discover relations between entities. Supervised relationship extraction methods utilize publicly
available pre-labelled datasets (e.g., BioInfer [141] or BioCreative II [97]) to construct generalized
patterns that separate positive examples (sentences implying the existence of a relationship) from
negative ones. Supervised approaches include SVMs, Recurrent Neural Networks (RNNs) and
Convolutional Neural Networks (CNNs) [6, 130]. Unsupervised relation extraction methods [113]
have emerged to address the lack of scalability of supervised relation extraction methods, due
to the high cost of human annotation. Unsupervised methods involve some form of clustering or
statistical computation to detect the co-occurrence of two entities in the same text [130].

10 https://obofoundry.org
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More recently, end-to-end approaches (End-to-End Relation Extraction – RE) have been used
to tackle both tasks simultaneously. In this scenario, a model is trained simultaneously on both
the NER and Relation Extraction objectives [74]. Furthermore, rule-based approaches can be
combined with relation classification using specialized pre-trained language models adapted for
life science domains, e.g., BioBERT [102], SapBERT [108], and RoBERTa-PM [104], to name a
few. There is also a recent trend to probe and prompt pre-trained language models to extract
relations (e.g., disease-to-disease, disease-to-symptoms) [187, 163].

3.1.4 Knowledge ingestion and validation

The aim of this phase is to ingest the entities and relationships extracted in a previous phase, which
models knowledge from different sources. These entities and relations can be incomplete, ambiguous
or redundant, and need to be appropriately aligned and integrated, and finally annotated according
to the ontology constructed in phase 2.

Knowledge integration or fusion can critically improve the quality of data by performing entity
resolution, i.e., the detection of different descriptions of the same real-world entity (also called
entity matching, deduplication, entity linkage or entity canonicalization), prior to ingesting them
in the KG. This reconciliation step is particularly crucial in the life sciences, where duplication can
be caused by data modeled using different vocabularies or ontologies, or when data is extracted
from literature sources that are rapidly changing. The severity of the ambiguity depends on the
number of ontologies available for the domain. For instance, the number of gene vocabularies is
far smaller than the number of disease vocabularies that could be present in the ingested datasets.
Linking these entities requires costly alignment processing; in particular the alignment of disease
entities is especially problematic given the number of different coding systems, whose conversion is
often not trivial [51]. We further explore this issue in two of the use cases presented in Section 3.3,
where we explore the problem of aligning vocabularies and ontologies through the use of mapping
repositories and instance matching in automated clinical coding.

Entities are assigned unique identifiers (URI or IRI) that support the definition of bespoke
namespaces, and support integration by reusing identifiers in related namespaces. Entity resolution
is based on clustering similar entities together in a block, where similarity measures are used to
detect duplicates [164]. Typical methods include sorted neighborhoods and traditional blocking;
and machine learning methods are commonly used for similarity computation, e.g., feature vector
computation [93].

This phase may also include the bottom-up construction of the ontology for those applications
where a top-down approach is not feasible. Bottom-up approaches extract the relevant knowledge
first, and then they construct the data schema / ontology based on the extracted data, typically
using (semi-)automated methods, based on machine learning. Ontologies define the structure
of the knowledge graph, which supports querying and data analytics. In bottom-up ontology
development the structure of the knowledge graph is determined based on the extracted knowledge,
thus providing a structure for this knowledge [69].

Often the construction of ontologies (either bottom-up or top-down) relies on the ability to
correctly align and reuse entities defined across different domains and KGs. Furthermore, reuse of
(or conformance to) existing upper level ontologies, e.g., BFO (Basic Formal Ontology) [3] provides
the basis for the consistent and unambiguous formal definition of entities and relations that
prevents errors in coding and annotation. The alignment of ontologies in life sciences and other
domains is an active area of research, and we provide an overview of recent technical developments
and challenges in Section 3.3.

Whilst bottom-up approaches, especially those based on alignment, are becoming more viable,
especially given the support of language models, such as BERT [63], their performance is not
always adequate for the task, as discussed in the second challenge in Section 3.4.
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Knowledge enrichment and completion improve the KG quality by performing reasoning
(KG materialization), inference [56] and optimization. Reasoning and inference support the
assertion of new relations based either on logical reasoning (e.g., [128, 170]) or machine learning
techniques (e.g., statistical relational learning or through embedding based link predictors for new
concepts [34, 35, 66, 76] and node classifiers, also called KG refinement [135]). The extent and type
of logical inferences depends on the expressivity of the ontology built in phase 2, or in a bottom-up
fashion in this phase, together with any associated mappings. Description Logic formalisms, such
as OWL, use logic-based reasoning for detecting and correcting incorrect assertions and ontology
alignments [24].

3.1.5 KG storage and inspection
KGs need to be accessible to support a variety of different tasks, beyond the mere integration of
different knowledge sources, and thus KG storage management [164, 142, 177] is an active area of
research. Current KG storage mechanisms are divided into relation based stores (e.g., [1]) and
native graph stores (e.g., [197]). Relational KG stores, either based on relational databases or
through NOSQL databases and / or triple stores such as Jena TDB11, have reached a considerable
level of maturity and have been optimized in order to avoid common problems, e.g., a large number
of null values in columns or optimized query performance [142]. Graph databases store nodes,
edges and properties of graphs natively, and support query and graph mining tasks. Examples
of state of the art implementations include Neo4J12, GraphDB13, and RDFox14. The evolution
of the performance of these systems has been the object of systematic studies [8], whereas [168]
explicitly focuses on biomedical use cases.

Storage management has implications on the ways KGs support expressive queries for nodes and
edges and visualization, to support data analysis, navigation and discovery of related knowledge [93,
162]. Graph databases often provide built-in tools for visualization, e.g., Neo4J, whereas different
Javascript libraries (e.g., SigmaJS15) are available for developing visualization front ends. Support
for complex queries is also either built in a graph database or a triple store by supporting the
SPARQL query language [140, 197], or proprietary query languages such as Cypher [47], supported
by Neo4J.

3.1.6 Knowledge maintenance and evolution
Given the rapid scientific development in the life sciences, and the consequent continuous update
of ontologies for this domain, artifacts annotated with these ontologies can become outdated
very quickly, and require some form of update (also called ontology extension). These update
mechanisms need to be automated to ensure that they scale to the size of KGs. Automatic update
approaches are based on the periodical detection and extraction of new knowledge that is then
mapped to existing entities and relations in the KG [183].

Update mechanisms are typically based on the detection of changes [121] that can affect an
ontology, e.g., addition, removal or modification of meta-entities (i.e., entities, relations and their
definitions). These changes include renaming concepts and properties, setting domain and range
restrictions, or setting a subsumption relation. To date, the most comprehensive account of

11 https://jena.apache.org/documentation/tdb/index.html
12 https://neo4j.com
13 https://graphdb.ontotext.com
14 https://www.oxfordsemantic.tech/product
15 https://github.com/jacomyal/sigma.js
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ontology change is given in [46], where change is described for different sub-fields, e.g., ontology
alignment, matching and mapping, morphisms, articulation, translation, evolution, debugging,
versioning, integration and merging; each with different requirements and implications. The
study [137] further investigates the impact of biomedical ontology evolution on materialization.

Currently available tools and methodologies use (semi)-automated methods to perform many
of the operations that trigger a change in an ontology and the consequent creation of a new
version [54, 63]. Different ontology management platforms and portals mandate different principles
and frameworks for handling ontology versioning (e.g., OBO foundry16 or BioPortal17), but these
are typically implemented by ontology developers with limited tool support. Section 3.3 presents
an example of automated ontology extension that relies on machine learning to cope with the
scale of data.

3.2 Examples of Life Science KG Construction
In this section we provide two examples of life science KGs that illustrate in practice the

phases composing the generic KG construction process discussed in Section 3; namely a KG for
Pharmacogenomics, PGxLOD [118], and one for Ecotoxicological Analysis, TERA [124, 125].

Alignment for Knowledge Validation: An Example of Pharmacogenomics. As mentioned
in Section 3, the task of aligning knowledge in KGs supports several downstream applications
and domains. For instance, pharmacogenomics studies the influence of genetic factors on drug
response phenotypes (e.g., expected effect, side effect). Hence, pharmacogenomics is of interest for
personalized medicine. The atomic knowledge unit in pharmacogenomics is a ternary relationship
between a drug, a genetic factor, and a phenotype. Such a relationship states that a patient
being treated with the specified drug while having the specified genetic factor may experience the
described phenotype. Semantic Web and KG technologies have been employed in this application
domain, for example by building ontologies in which patients and pharmacogenomic knowledge are
represented, and then using deductive reasoning mechanisms to conditionally recommend genetic
testing before drug prescription [153]. However, the knowledge relevant to pharmacogenomics
is scattered across several sources including reference databases such as PharmGKB, and the
biomedical literature. Additionally, this knowledge may lack sufficient validation to be implemented
in clinical practice. For example, some relationships may have only been observed in smaller
cohorts of patients or in non-replicated studies. Hence, there is a need to align different sources of
pharmacogenomic knowledge to detect additional evidence validating (or moderating) a knowledge
unit. To this aim, the PGxLOD KG was proposed [118]. Automatic knowledge extraction
approaches were applied on semi-structured and unstructured data from PharmGKB and the
biomedical literature to represent their knowledge in the KG. Then, matching approaches were
developed to align knowledge units from various sources [117, 119]. The resulting alignments
outlined some agreements between PharmGKB and the biomedical literature, which was expected
since PharmGKB is manually completed by experts after reviewing the literature. Interestingly, this
automatic knowledge extraction pipeline could guide the manual review process by automatically
pointing out studies confirming or mentioning a pharmacogenomic knowledge unit.

Knowledge Integration: An Example of Ecotoxicological Analysis. In ecotoxicological analysis,
data and knowledge from different domains such as chemistry and biology are often needed. These
are usually located in different sources such as spreadsheets or CSV files for local experimental
results, open databases for public research results, and ontologies for domain knowledge. Thus
knowledge integration becomes a critical and fundamental challenge before real analysis can be
conducted. In the study by Myklebust et al. [124, 125], which aims to predict adverse biological

16 http://www.obofoundry.org/principles/fp-004-versioning.html
17 https://bioportal.bioontology.org
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effects of chemicals on species, a toxicological effect and risk assessment KG named TERA was
constructed for knowledge integration. TERA includes three sub-KGs: (i) the Chemical sub-
KG, which is constructed by integrating the vocabulary MeSH (Medical Subject Headings) with
selective knowledge from two chemical databases PubChem and ChEMBL utilizing the chemical
mappings in Wikidata; (ii) the Taxonomy sub-KG, which is constructed by integrating EOL
(Environment Ontology for Livestock) and the NCBITaxon ontology utilizing NIBI-EOL mappings
in Wikidata; and (iii) the ECOTOX sub-KG, which is composed of RDF triples transformed from
experimental risk results and is aligned with the other two sub-KGs by the ontology alignment
system LogMap [80] and the chemical mappings in Wikidata. Another example of knowledge
integration is for drug repurposing, where the KG Hetionet18 is created by integrating 29 public
resources, including biomedical KGs and other types of data [67].

3.3 What has been done: recent technical developments
Given the many existing ontologies in life sciences, e.g., ontologies available in the OBO Foundry
collection or in BioPortal [132], KG construction usually involves the reuse, alignment, and
enrichment of state-of-the-art ontologies. The existing ontologies in life sciences need to be
updated given the new discoveries in the field. This is broadly a key issue in the management,
maintenance, and evolution of ontologies. We select a few promising use cases below to highlight
some recent developments that support the KG construction in the life sciences.

Repositories of Ontologies and Mappings. Ontologies and their mappings play a central
role in semantically enabled products and services consumed by life science companies, academic
institutions and universities, as highlighted by the Pistoia Alliance ontology mapping project [58].19

Ontology mappings are essential in knowledge graph construction tasks to bridge the knowledge
provided by different ontologies and expand their coverage. Ontology mappings can also play a key
role when identifying the right ontologies to be reused as they will enable the retrieval of the relevant
(overlapping) ontologies for the domain of interest. For this reason, a number of notable efforts in
life sciences have created large repositories of ontologies and mappings to serve the research within
the community. Prominent examples include the UMLS Metathesaurus [9], BioPortal [132, 152],
MONDO [172], and the EBI services: OLS [174], OxO [84] and the RDF platform [85]. The UMLS
Metathesaurus is a comprehensive effort for integrating biomedical ontologies through mappings.
In its 2023AA version, it integrates more than two hundred vocabularies, with more than 3 million
unique concepts and more than 15 million concept names. BioPortal is a repository containing
more than 1,000 biomedical ontologies and more than 79 million lexically computed mappings
among them (as of July 13, 2023). The Mondo Disease Ontology (MONDO) is a manually curated
effort to harmonize and integrate disease conceptualizations and definitions across state-of-the-art
ontologies (e.g., HPO [96], DO [155], ICD, SNOMED CT, etc.). The services provided by the
European Bioinformatics Institute (EBI) also deserve a special mention. The Ontology Lookup
Service (OLS) has become a reference to explore the latest versions of more than two hundred
ontologies via its graphical interface or programmatically via its API. OxO is a repository of
ontology mappings and cross-references extracted from the OLS and UMLS. OxO allows users to
visually traverse the graph of mappings to identify additional potential mappings beyond direct
ones (i.e., multi-hop mappings). Finally, the EBI RDF platform provides a unified KG with all the
RDF resources at the EBI. Complementary to the efforts from the life sciences, the Semantic Web

18 https://github.com/hetio/hetionet
19 https://www.pistoiaalliance.org/projects/current-projects/ontologies-mapping/

TGDK

https://github.com/hetio/hetionet
https://www.pistoiaalliance.org/projects/current-projects/ontologies-mapping/


5:12 Knowledge Graphs for Life Sciences

has also contributed to the systematic evaluation of mappings in public repositories (e.g., [81, 44])
and mappings produced by automated ontology mapping systems (e.g., the Ontology Alignment
Evaluation Initiative (OAEI) [138]). Automatically generated mappings of high quality have
the potential to be integrated within the aforementioned repositories and hence, the OAEI has
always had a special focus on life science test cases with evaluation tracks like Anatomy [39],
LargeBio [83], Phenotype [59] and the newly created track BioML [64]. The Simple Standard for
Sharing Ontological Mappings (SSSOM) [114] represents a joint effort between the life sciences
and Semantic Web communities to facilitate the exchange of mappings across different parties
and repositories, while keeping the provenance and other relevant characteristics of the mappings.

Ontology Extension. Ontology extension in life sciences aims to connect new concepts and their
relations to an ontology from updated sources, e.g., scientific papers in PubMed and chemical
information in PubChem20. Manual ontology extension, while essential for the development
of gold standard resources, is not scalable to the full scope of large domains due to its high
cost and low efficiency, and sometimes is even unfeasible as human beings may not be able
to review the quantities of new information at the rate they become available. Thus machine-
learning-based, automated methods are needed. One recent example is the use of deep learning,
specifically a Transformer-based model, to categorize new chemical entities within the ChEBI
ontology21 [53]. In addition, recent studies have explored enriching SNOMED CT by mining new
concepts from texts [35] and placing them into the ontology [109, 34]. A new concept can be
identified by NIL entity linking, i.e., exploring unlinkable mentions, usually through setting a
“linkable” score threshold or through classification [35]. Resolution and disambiguation of NIL
mentions with clustering can help to represent NIL entities [66, 91]. For concept placement, similar
to the aforementioned CHEBI ontology extension [53], machine learning, especially in the form
of Transformer-based deep learning, has been applied to predict subsumption relations between
a new concept and the existing concepts. Complex concepts in OWL ontologies that contain
logical operators (e.g., existential quantifier and conjunction in SNOMED CT) can be supported
in subsumption prediction [23] and new concept placement [34]. Another group of studies use
post-coordination or formalising a new term with existing concepts and attributes [16, 92], which
is similar to composing subsumption axioms with complex concepts. The methods include using
lexical features [92], word embeddings and KG embeddings [16]. Pre-trained and Large Language
Models, through fine-tuning, zero-shot and few-shot prompting have the potential to support the
mining [35] and placement of new concepts (e.g., by subsumption prediction [23, 65]).

Instance Matching: Automated Clinical Coding. A main source for patients’ KG construction
is Electronic Health Records (EHR). Using medical ontologies as backbones, it is possible to add a
layer of data by instance matching (or patient matching) through Clinical Coding. Clinical coding
is the task of transforming medical information in EHR into structured codes described in medical
ontologies [36], e.g., ICD and SNOMED CT. Recent approaches mainly formulate the problem as
a multi-label classification problem. Various neural network architectures have been proposed
and knowledge plays a key role to enhance the neural architectures [36, 79]. Pre-trained language
models, e.g., BERT [32], have been applied to clinical coding and gradually achieved better
results with adapted modeling methods and more advanced language models, e.g., PLM-ICD [70]
with RoBERTa-PM [104], according to studies [36, 42, 78]. Other studies formulate the task
as a Named Entity Recognition and Linking (NER+L) problem, by extraction of concepts and
linking them with the ontologies [36]. Overall, the recent progress in clinical coding, along with

20 https://pubchem.ncbi.nlm.nih.gov/
21 https://www.ebi.ac.uk/chebi/
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the advent of Large Language Models (LLMs) suggests a trend in this area for patients’ KG
construction from EHR. However, there is still room for improvement in knowledge integration to
better address explainability (see Section 5 for more details) and in zero-shot learning problems,
i.e., for classifying into rare codes or concepts [36, 42, 79]. There are also further recent examples
of instance matching with EHR data, including the works [15, 166].

3.4 What are the challenges?

KG construction and management often play a fundamental role in supporting life sciences with
computation. There are still quite a few technical challenges, and many of the current tools and
algorithms can be improved by modern machine learning and AI techniques. Here we present
some critical and fundamental technical challenges.

How to construct a customized KG? For a specific application, we often need to extract
relevant data and knowledge from multiple sources, and at the same time integrate extracted
knowledge from different sources. Considering a case study of personal health assistance, a
customized KG with knowledge of at least exercise (sports), food, disease and medicine are
required, while fine-grained knowledge of these aspects will lie in different domain KGs. The key
challenge for integrating different ontology modules lies in estimating the semantic similarity and
discovering the equivalence of two knowledge elements with their contexts considered, as well as
the subsequent refinement like KG completion and knowledge representation canonicalization.
Adequate tool support to minimize manual curation but enabling the user involvement when
required is also paramount (e.g., [105]).
How to ensure adequate performance using machine learning based approaches for
automated KG construction? At the TBox level, the state-of-the-art alignment between
classes (especially for subsumption relations) seems to not yet be achieving good enough
performance, as reflected in recent biomedical ontology alignment benchmarking [64]. At the
ABox level, predicting missing facts for practical KG construction expects high precision (e.g.,
beyond 90% or 95%) but only a few relations can be populated with a precision above 80%
using prompt learning with BERT as evaluated in [173]. This is also the case to associate
patients’ EHR (as a part of ABox) with clinical codes or concepts in medical ontologies, where
a micro F1 score is below 60% [36]. Learning subsymbolic representations (see defined in
Appendix A) of KG and data sources may help address the challenge. Transformer-based
language models have achieved great performance in recent years. Among them, pre-trained
language models such as BERT have been applied for KG construction with a promising
performance achieved (see e.g., the package DeepOnto [63]), while the more recent and more
powerful generative language models like GPT series [13] have not been well applied at the
time of writing, especially in the life science domain.
How to ensure reliable semi-automated deep learning-based KG construction with
human interaction? Many tasks in the KG life cycle unavoidably rely on human experts to
achieve consensus on reliable knowledge; on the other hand, as the automated KG construction
process is growing opaque with deep learning methods, it is important to ensure trustworthiness
and reliability [191]. Apart from enhancing performance metrics with novel methods, results
with certain explainability are needed, for example, highlighting key parts in the data input
when they are used as sources for KG construction. We discuss other aspects of explainability
with KG, on life science knowledge discovery and healthcare decision making, in Section 5.
Human-in-the-loop learning design for explainable KG construction may ensure the use of
experts’ knowledge for the task across the KG life cycle, which still remains a challenge for
future research [191].
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4 Life Science Knowledge Discovery

Research into AI technologies – including machine learning and KG-based reasoning – to accelerate
the pace of scientific discovery is an emerging and rapidly developing field. The challenge lies in
assisting scientists to uncover new knowledge and solutions, such as discovering novel therapeutic
opportunities, identifying candidate molecular drugs to treat complex diseases or alternatively
new uses for existing drugs, and supporting more personalized predictions.

Knowledge Graphs are powerful tools for representing complex biomedical knowledge, including
molecular interactions, signaling pathways, disease co-morbidities, and more. Overviews of graph
representation learning in biomedicine for healthcare applications and polypharmacy tasks are
presented in [107] and [52] respectively. In graph representation learning, the graph’s topology
is leveraged to create compact vector embeddings. Through nonlinear transformations, high-
dimensional information about a node’s graph neighborhood is distilled into low-dimensional
vectors, where similar nodes are embedded close together in the vectorial space. Embeddings have
been shown to be valuable for handling numerous relations in a KG while efficiently exploiting
relation sparsity using vector computations. These optimized representations are subsequently
used to train downstream models for various tasks, such as predicting property values of specific
nodes (e.g., protein function), predicting links between nodes (e.g., binding affinity between
molecules and protein targets), or performing classification tasks (e.g., predicting the toxicity
profile of a candidate drug, or risk of readmission for a patient).

It is worth mentioning that among the existing works for life science knowledge discovery,
different kinds of KGs have been exploited. The schema-less KG can be used to model different
kinds of interaction between instances such as proteins and drugs; the taxonomy alike simple
ontology is often used to represent concepts and their hierarchy such as protein functions defined
in the gene ontology, chemical compounds, species, and diseases; expressive OWL ontologies
and schema-based KGs can be used to model complex logical relationships between concepts,
besides simple interaction between instances. Such diverse knowledge representation capabilities
make KGs more flexible in modeling the input data and prediction targets of different knowledge
discovery tasks, than graphs and tabular data that are widely used in previous pure machine
learning-based methods.

In the following, we present some typical use cases, where machine learning techniques (including
graph representation learning and language models) are applied over KGs built from diverse
sources and domain ontologies, to facilitate life science discovery.

4.1 What has been done: use cases and their recent developments
Therapeutics and Drug Discovery: Learning a representation using multi-modal and hetero-
geneous knowledge. Drug discovery entails exploring an extremely large space of potential
drug candidates. AI can help to accelerate this process by narrowing down the most promising
candidates before expensive experimentation. The key to leveraging predictive and generative
models for candidate solution generation lies in learning an effective multi-modal representation of
protein targets, molecules and diseases among others. Recent research has focused on applying
language models over large databases of proteins or molecules for self-supervised representation
learning, such as ESM [148] and ProteinBERT [10] for protein sequences, or Molformer for the
molecule simplified molecular-input line-entry system (SMILES) [151]. These models have exhib-
ited remarkable success in tasks such as predicting protein interactions, binding affinity between
drugs and targets, and protein functions and structures. However, these existing pre-trained
sequence-based models often neglect to incorporate background knowledge from diverse sources,
for example, biological structural knowledge.
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Nonetheless, recent research indicates that incorporating existing expressive factual knowledge
can improve results in downstream machine learning tasks. To enhance Protein Language Models
(PLM), approaches such as OntoProtein [192] and KeAP [194] use a KG of protein sequences
augmented with textual annotations from the Gene Ontology (GO). OntoProtein was the first to
inject gene ontology descriptions into a PLM for sequences to predict protein interactions, function
and contact prediction. OntoProtein proposes to reconstruct masked amino acids while minimizing
the embedding distance between the contextual representation of proteins and associated knowledge
terms. Similarly, ProtST [186] uses a dataset of protein sequences augmented with textual property
descriptions from biomedical texts and jointly trains a PLM with a biomedical language model.

Knowledge Graphs are suitable data models for expressing heterogeneous knowledge and
facilitating end-to-end learning [181]. An entity in a KG can have multiple attributes with different
modalities - where each modality provides extra information about the entity - as well as relations
to and from entities in other sources. Graph Neural Networks (GNN) have been used to capture
inter-dependencies and diverse types of interactions between heterogeneous entity types and
multimodal attributes in KGs [100]. They achieve this by iteratively aggregating information from
neighboring nodes (through a process called message passing) and employing scoring functions to
optimize the learned embeddings for downstream tasks. Otter-Knowledge [100] incorporates a
heterogeneous KG (schema-based, containing concepts and their attributes) from diverse sources
and modalities, i.e., each node has a particular mode that qualifies its type (text, image, protein
sequence, molecule, etc.) and initial embeddings for each node are computed based on their
modality. A GNN is then used to enrich protein and molecule representations and train a model
to produce final node embeddings. The model is able to produce representations for entities
that were not seen during training and achieve state-of-the-art results in the Therapeutic Data
Commons (TDC) benchmarks [73] for drug-target binding affinity prediction. TxGNN [72] uses
a GNN pre-trained on a large heterogeneous, multi-relational KG of diseases and therapeutic
candidates constructed from various knowledge bases. TxGNN obtains a signature vector for each
disease based on its neighboring proteins, exposure and other biomedical entities to compute a
disease similarity and predict drug indication/contraindication for poorly characterized diseases.

Protein Function Prediction with the Gene Ontology. Conducting physical experiments for
identifying protein functions is time and resource consuming. With the development of machine
learning, protein function prediction (which is the task of predicting a given protein with multiple
and potentially hierarchical classes – functions – defined in GO) has been widely investigated in re-
cent years [193, 171]. A large part of these works such as GOLabler [189] focus on exploring feature
extraction, feature ensemble, and automatic feature learning of the proteins. For example, GO-
Labler [189] utilizes five kinds of different protein sequence information while DeepGraphGO [188]
builds a network of proteins and learns protein features via a Graph Neural Network. Recent
methods attempt to further exploit inter-function (class) relationships that are defined in GO for
better performance. For example, DeepGOZero [99] and HMI [185] use formal semantics including
the class hierarchy, class disjointness axioms and complex class restrictions in OWL as additional
constraints for training the multi-label classifier for protein function prediction. Protein function
prediction is a representative multi-label classification problem where complex relationships of the
labels are defined in a KG and can be used for performance augmentation. It is quite common in
machine learning applications in the life sciences, such as the above mentioned automated clinical
coding where the codes’ semantics are modeled by the ICD ontology, and ecotoxicological effect
prediction where the multiple affected species of a chemical to predict form a taxonomy.

Predictions for Healthcare using Ontologies with Clinical Data. Digital Healthcare involves
predictions using clinical data and ontologies, including diagnosis (e.g., rare diseases) and procedure
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predictions (e.g., ICU readmissions). A related concept is personalized medicine, which is achieved
through the matching and fusion of knowledge from diverse sources, and plays a significant role in
the prediction tasks. This often involves matching multiple ontologies [156], integrating curated
databases (e.g., pharmacogenomics, molecules and proteins knowledge bases), mining knowledge
from scientific literature [184] and person-centered clinical knowledge extracted from EHR or
claim data, with distinguishing risk factors or cohorts’ demographics (e.g., age and gender), which
could enhance predictions related to adverse effects [123] or rare diseases for which there are not
enough labeled datasets [2]. For example, SHEPHERD [2] incorporates a multi-relational KG
(extracted from PrimeKG [19]) of diseases, phenotypes and genes, and leverages patient simulated
data to discover novel connections between patients’ clinical, phenotype and gene information
to accelerate the diagnoses of rare diseases. Knowledge-guided learning is achieved by training a
GNN to represent each patient’s subgraphs of phenotypes in relation to other gene, phenotype,
and disease associations within the KG, such that embeddings are informed by all of the existing
biomedical knowledge captured in the network topology.

The approach in [15] constructs a KG (using expressive OWL ontologies) to predict ICU
(intensive care units) readmission risk by enriching EHR data with semantic annotations from
various biomedical ontologies in BioPortal. These predictions are based on KG embedding, such
as RDF2vec, OPA2vec, and TransE, and classical machine learning methods, such as Logistic
Regression, Random Forest, Naive Bayes and Support Vector Machines. Drawing from the Health
& Social Person-centric Ontology (HSPO) [165], which focuses on multiple clinical, social and
demographic facets for a patient or cohort, the approach presented in [166] builds a person-
centric KG (expressive OWL ontology with TBox and ABox) from structured and unstructured
data in EHR). Subsequently, a representation learning approach using GNNs is used to predict
readmissions to the ICU.

4.2 What are the challenges?
We present four of the open challenges to unlock the full potential of methods to advance knowledge
discovery for the life sciences using KGs, based on the use cases above.

How to incorporate the semantics from a KG in machine learning? Many life science
knowledge discovery tasks are modeled as a machine learning classification problem, whose input
and output labels have additional valuable information in one or multiple external KGs. The
challenge lies in extracting this information, optionally encoding it into vector representations,
and injecting that knowledge into machine learning and pre-trained language models. Doing
this effectively remains an important open challenge especially for protein-related pre-trained
language models [192, 186, 194]. Besides improving the accuracy in knowledge discovery,
injecting semantics from KGs can also contribute to making the model more explainable (see
Section 5), but to this end, much research is still required.
How to deal with the long-tail phenomenon in machine learning with KGs? In
machine learning classification for real-world life science knowledge discovery, the candidate
labels often exhibit a long-tailed distribution, i.e., a small ratio of them are common with a
large number of training samples available, while most of them are infrequent or even have
never appeared before. For example, imbalance in training data may occur for rare diseases
or adverse drug effects that affect only a small portion of the population [2, 72, 37]. KGs
sometimes have encoded the relationships of the labels, and could be used to help train the
model for predicting those long-tailed labels or enable the inference of such labels.
How to create an efficient multi-modal representation of knowledge to enable
discovery? Most current state-of-the-art methods build learned graph representations based on
isolated modalities. Multimodal KGs can explicitly capture labeled nodes and edges, each with
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well-defined meanings, across heterogeneous node types, relations and modalities (such as text,
images, protein sequences, molecules fingerprints, diseases and more) [19, 100]. Incorporating
KGs with multiple modalities for representation learning requires computationally scalable
methods to compute the initial embeddings for each modality, as a preliminary step to learn
computable representations of large knowledge. Furthermore, robust learning techniques are
needed for generalizing the learned representations to nodes with unseen or missing modalities,
thereby enabling the discovery of new knowledge. An example would be inferring properties of
proteins for which only the sequence is known.
How to efficiently utilize and fuse heterogeneous datasets, such as human-curated
domain knowledge bases, scientific literature and person-centered health records,
for knowledge discovery? State of the art shows that representations can be enhanced
by incorporating richer information available across different sources [72, 100, 156]. Bringing
in more data during training is needed to learn representations that can be applied to a
broader range of downstream prediction tasks. However, learning from large and diverse KGs
requires addressing challenges such as alignment, noise handling, balancing rich expressive
knowledge with scalability and dealing with knowledge inconsistency. Moreover, more robust
learning methods are needed for generalizing the learned representation to multiple downstream
tasks (e.g., knowledge-aware transfer, zero-shot and few-shot learning [22]). An important
aspect in this regard is addressing the disparity between all of the knowledge accessible during
pre-training and the knowledge accessible or relevant for downstream fine-tuning [72, 100].

5 Knowledge Graphs for Explainable AI

Machine Learning (ML) and Artificial Intelligence (AI) methods are widely employed to tackle
complex problems in many domains, including life sciences such as chemistry or biomedicine. Yet
many of those methods operate as a “black-box”, not enabling domain experts to understand
the reasoning behind their predictions [90]. This is a major concern, especially for applications
in areas with a potential impact on human lives, or areas with legally enforced accountability
or transparency [143]. Moreover, understanding the workings of AI methods is also crucial in
the context of scientific applications, such as those described in Section 4, where explaining the
prediction process can help elucidate natural phenomena [40].

One way to address this issue is to employ the methods of eXplainable Artificial Intelligence
(XAI). Although this is a topic long explored in the AI research community, there is still no
widely-accepted definition of explainability, with many terms being used interchangeably, such as
interpretability, comprehensibility, understandability and transparency [7]. Barredo et al. define
explainability as the ability of a model to make its functioning clearer to an audience [7]. A
slightly different definition is given in the previous survey [55]: “an interface between humans
and a decision maker that is at the same time both an accurate proxy of the decision maker
and comprehensible to humans”. Both definitions focus on the audience, for whom is the model
explainable, but the second suggests an explanation is another artifact produced by a model or
alongside the model.

There are two distinguishable audiences in the context of the life sciences: scientists (researchers)
and healthcare practitioners [167]. For the first group, the explanation is used as a guide to
understanding within life sciences research for scientific discovery. As a result, the explanation
may exist in a well-bounded context of a hypothesis or research project. On the other hand,
practitioners are involved directly in decisions with impact on healthcare. They need to consider
the output of the model in an open context, and sometimes also to explain the output to a patient
who is not a domain expert.
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A number of approaches for XAI emerge from the literature and broadly contain two parts:
(1) transparent box design, which includes algorithms such as decision trees, where models can be
directly interpreted by users and therefore an explanation of an output results in simply following
the decision paths that relate input to output; (2) post hoc interpretability, which provides an
explanation to a black-box model using additional methods such as probing, perturbing, or by
constructing surrogate models for general ML or AI methods [90, 167].

Utilization of KGs can greatly enhance XAI qualities as KGs are ideal for improving the model’s
interpretability, explainability, and understandability. Some methods are directly built around
KGs and thus take full advantage of them. Examples of those methods may include methods
that are using paths [161], predicting links, or performing reasoning [33]. Other methods can be
enhanced using the KG (e.g., [126]). Yet the enhancement effect greatly depends on the place
where KGs are employed and iteratively applied: pre-model (e.g., KG construction, potentially
multi-modal), in-model (e.g., integrating KG with machine learning models), and post-model (e.g.,
reviewing and updating KG by domain experts to be applied in the next iteration to enhance
machine learning models and their explanability) [143]. For example in in-model use, a model can
be pre-trained using a KG, and an example of a pre-trained language model is SapBERT [108],
which utilizes synonyms in the UMLS Metathesaurus to further pre-train a BERT language model.
This can not only be beneficial for performance [192], but can also potentially enhance post-model
explanation since the trained features are aligned with the KG [143].

5.1 What has been done: use cases and recent developments
Explainable AI for Healthcare Practice. The utilization of AI in healthcare practice raises the
concern of leaving life-critical decisions to black-box models [143, 167]. For example, in the field of
precision medicine which aims at tailoring drug treatments and dosages to each patient, clinicians
require more information from a model than a simple binary decision [7]. The interpretability and
explainability of AI models is thus an essential characteristic to make outputs understandable and
transparent. This would enforce both clinicians’ and patients’ trust in models by complementing
(and not substituting) clinicians’ explanations [20, 143, 167].

To illustrate, this direction has been envisioned for several healthcare scenarios. Explainable
AI models could support the experts in finding clinical trials that are appropriate based on patient
history [167]. Counterintuitive or unreliable predictions that could have serious consequences
could be explained, and thus prevented [167, 14, 90]. Some also envision such models to be used to
explain and debunk healthcare-related misinformation [143]. As aforementioned, it is noteworthy
that different kinds of explanations should be employed depending on the target audience, e.g.,
scientific explanations for evidence or trace-based explanations for treatment [20].

Explainable AI for Knowledge Discovery. As introduced in Section 4, KGs can support knowledge
discovery in life science, including the explainability of the process and the discovered units. In
this view, Ritoski and Paulheim [147] explain that ontologies, linked data, and KGs are used
in the interpretation step of a data mining process, e.g., for interpreting sequential patterns
in patient data [77], or to describe subgroups in a semantic subgroup discovery process [169].
KGs can also serve both as the basis for knowledge discovery processes and the interpretation
process. For example, Linked Open Data connecting drugs and adverse reactions can be analyzed
with Hidden Conditional Random Fields to predict adverse drug reactions, where the paths
from selected drugs to outcomes visually explain the prediction [87]. Similarly, Bresso et al. [12]
leverage features extracted from KGs (interpretable features such as paths, neighbors, path
patterns) and white box models (e.g., decision trees) to reproduce expert classifications of drugs
causing or not specific adverse drug reactions. The rules extracted from the decision trees contain
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features that provide explanations for the molecular mechanisms behind these adverse reactions
according to experts. Sousa et al. [159] employ KGs to explain both protein-protein interaction
predictions and gene-disease association predictions based on shared semantic aspects.

Explainable AI for KG Construction. The final use case considers the situation that XAI is
applied to KGs themselves. We discussed the challenge to support human intervention in KG
construction in Section 3.4. Recent KG construction gradually relies on data-driven, deep learning
based methods to automatically induce knowledge from data. The deep learning models are
opaque, and thus the process requires explainability. The resulting KG may not be accountable to
be used for downstream applications. Trustworthy KG engineering is proposed in [191] to highlight
the importance of embedding explainable AI and human intervention in the KG life cycle. XAI
methods have been applied in many NLP related tasks (entity and relation extraction, entity
resolution, link prediction, etc.) in KG construction from texts. The XAI methods rely either on
feature-based explanations or knowledge-based explanations. While feature-based explanations
try to infer explanations from the data or the models’ interpretation of the data, knowledge-based
explanations aim to interpret the process with rules, reasoning paths, and structured contextual
information. Rules and paths have mainly been used for explanation, especially for link prediction,
a task comprehensively surveyed in [191].

5.2 What are the challenges?

How to integrate KGs for better XAI, especially with recent deep learning and
language model based methods? KG may provide better data provenance for the model
output. This can ensure explainability for communicating the model to domain experts in data
science applications [7]. In terms of recent generative LLMs, life science KGs, with careful
curation based on scientific publications, may help to provide provenance data to the answers
generated by LLMs. Studies need to understand to what extent, and how, LLMs can be applied
to induce knowledge (e.g., by probing LLMs with biomedical ontologies [65]), which then may
provide a foundation to create better approaches to integrate KGs with LLMs. Another area
is neuro-symbolic methods which may provide models that are inherently more interpretable
(see further discussions in Section 6.1). Also, regarding language models (especially LLMs),
they are capable of generating fluent texts, which can potentially serve as textual explanation
generators from symbolic knowledge for XAI. Meanwhile, a key issue is the hallucination of
LLMs, and KGs may support better prompting, fine-tuning and interpretable inference of
LLMs for higher decisiveness and trustworthiness [134].
How to evaluate XAI methods that involve KG? How to measure the quality of
explanations, to ensure they are corresponding to users? The majority (around 70%) of XAI
studies for KG construction do not evaluate the quality of the explanations or only informally
visualize or comment on a limited number of cases to show the intuitive outcome [191]. Also,
an XAI method needs to consider the target audience, as the explainability is to be finally
received by a group of humans [7]. For instance, only a small number of current approaches to
XAI for KG construction involve a user study, human evaluation or task-specific metrics [191].
Evaluating the quality of explanations requires some expert evaluation performed as ex-post
evaluation, and well-defined metrics are needed for this task. An example is in [57] to use a
combination of users’ scores for each predicted explanation in a KG link prediction task, where
there are multiple possible explanations. More expert validated and automated evaluation
methods and associated metrics are required for KG-related XAI.
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6 Discussion and Conclusion

In this work, we have summarized the recent developments of KG research in life science on three
important topics – KG Construction and Management, Life Science Knowledge Discovery, and
KG for XAI. While each topic has its specific challenges, there are some common challenges and
trends for the life science KG research in general.

6.1 Overall challenges and trends
Meanwhile, more scalable and efficient knowledge retrieval, query and reasoning systems, including
life science KGs and mapping repositories, are still worthy of investigation and development.

Evolution and Quality Assurance of KGs. KGs need to be updated as new data and knowledge
are emerging, and the schema and facts can easily become outdated or less useful for existing
applications in life sciences. In terms of KG construction, we discussed ontology extension as
a use case to address the evolution issue or emergence of new concepts and relations, and also
instance matching to extend new instances for the KG. Updating KGs is also a prerequisite for
life science knowledge discovery and knowledge discovery methods should be able to support the
evolution of KGs with e.g., the capabilities of continuous learning and zero-shot learning. Quality
assurance is another issue for KGs, including the tasks of knowledge error detection and correction,
knowledge completion, knowledge canonicalization, etc. On the one hand, more effective KG
quality assurance methods and systems should be developed, including schema and constraint
languages for quality verification and learning-based models for prediction (e.g., [24] combines
both for fact correction); on the other hand, knowledge discovery methods should be robust to
noisy KGs by investigating e.g., robust KG embeddings and multi-modal representation learning.

Heterogeneity in KGs: Multi-domain and Multi-modality. KGs contain heterogeneous infor-
mation, which brings challenges to their construction, representation, and reasoning. Different
schema and data in KGs can have different focuses in their scopes and domains. Integrating data
of different domains for building multi-domain KGs is difficult with challenges in e.g., ontology
and data matching. Besides, recent studies have explored integrating different modalities to
construct Multi-modal KGs [26, 122, 176], for instance text [133], images [179], etc. One challenge
to address is how to learn effective machine learning models over multi-modal KGs fused from
different sources (patients’ records, curated knowledge bases, and scientific literature) to support
scientific discovery as well as KG construction and management. Another challenge is developing
accurate and efficient knowledge representation approaches for texts and images in multi-modal
KG construction. For example, careful consideration should be given to when to simply use an
annotation property to associate an image with an entity, and when to use a property with specific
semantics to connect an image and an entity.

Human Interaction and Explainability with KGs. In KG construction, human experts are
required for many sub-tasks of KG construction and provide oversight [191]. In life science
knowledge discovery, human experts are necessary to finally validate the predicted new knowledge.
The whole process of interacting with KG in life sciences requires explainability, especially when sub-
symbolic models (e.g., pre-trained language models) are used. How to generate clear explanations
for human interaction and how to evaluate the quality of explanations remains a challenge, as
well as how to achieve consensus regarding scientific understanding with automatically discovered
knowledge when organizing knowledge in life science [129]. The recent growth of Neuro-Symbolic
methods suggests their support for explainability [89, 90, 150]. A recent survey [90] summarizes
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XAI in bioinformatics with a chapter on knowledge-based explanations, whereas Karim [89,
Chapter 8] provides a neuro-symbolic framework for KG construction and utilization for medical
experts’ decision making in the cancer domain. The approach presented in [150] is another
recent example of neuro-symbolic integration for image classification with KG-based XAI in the
cultural heritage domain.

Personalized and Customized KGs. A key challenge for KG construction is customization, as
we discussed in Section 3, to construct application-oriented KGs, where relevant sub-KGs have to
be extracted for large-scale KGs (a.k.a. modularization) and integrated with other knowledge and
data from different sources. Besides, many life science KGs are about individuals, e.g., patients in
healthcare applications, where Personal Health KG enables the integration of instance-level (or
patient-level) information and their computation is required [122]. An example is the Personal
Health KG in [21] that supports the dietary recommendation for users, where the construction
and population of the KG requires reusing and integrating existing ontologies, dietary guidelines,
and time-series patient data. The other examples of KGs integrating patients’ EHR data [166, 15]
are presented in Section 4.1. In personal KG construction, personal data should be protected. KG
scalability should also be considered in order to be used on small devices such as cellphones. This
is still a big challenge that has been rarely considered in using KGs in the life sciences.

Distributed KGs. The value of healthcare data for improving clinical knowledge and standard of
care and the potential of semantic technologies to further enhance it are well recognized. However,
a responsible use of healthcare data at the global level (beyond each healthcare provider and even
each country) must take into account both legal and ethical issues in data sharing, privacy and
security. Distributed knowledge graphs can mitigate these issues, by allowing for access control
and privacy protection. Furthermore, distributed knowledge graphs can also address the challenges
of scientific data ownership and stewardship by enabling the decentralized publishing of high
quality data. Several approaches for federated querying and embedding of knowledge graphs have
been proposed in recent years [25, 136, 157], however a wide adoption of semantic technologies in
healthcare is still lacking, with a proliferation of terminological standards and a disconnection
between data and meaning.

Representation Learning with KGs: Symbolic and Sub-symbolic Integration. Across the topics
and use cases, we see the importance of transforming symbolic knowledge into sub-symbolic
representations or combining both representations. The combination of both the neural and
the traditional symbolic representation methods leads to a trend in neural-symbolic approaches
in the field [11]. Recently, Pre-trained and Large Language Models provide new methods to
transfer self-supervised learning from a vast amount of corpora to support KG construction, e.g.,
OntoGPT [17] and OntoLAMA [65]. LLMs are especially good at representing texts of life science
publications in sub-symbolic spaces for semantic understanding. KGs may also provide a layer of
explainability by validating the output of LLMs. A recent survey [134] proposes a roadmap for
integrating LLMs and KGs. OntoProtein [192] is a recent example of how to integrate KGs into
the process of pre-training LLMs in the bioinformatic domain, thus achieving improved results on
protein-related knowledge discovery tasks. Also, geometry-informed representations of more formal
KGs, especially in hyperbolic spaces or using complex geometric structures, e.g., [18, 99], can
usually represent the structure of the KG with low dimensional vectors. Graph Neural Networks
may also support the encoding of KG structures in a more explainable way with logical rules [30].
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6.2 Conclusion
Knowledge Graphs have become a popular and effective method to represent heterogeneous
concepts, relations, and data in life sciences. They require scalable solutions to represent and
reason with heterogeneous data and require constant updates. Throughout this work, we covered
the main topics and their corresponding use cases of KGs in multiple life science domains such as
protein analysis, drug discovery, ecotoxicology, and healthcare, and summarized the corresponding
challenges. As new methods in knowledge representation appear, for instance the recent trends
of human-in-the-loop, sub-symbolic knowledge representations, pre-trained and large language
models, and neuro-symbolic integration, we envisage deeper applications of KGs to life science
processes, that support the construction of more applicable KGs and the discovery of more
reliable scientific knowledge, with explainability and human interaction better supported. KGs in
combination with other modern machine learning and natural language processing techniques will
become a foundation for AI for the life sciences.
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A Terms in Knowledge Graphs and Life Sciences

Below we provide a list of key terms used in this paper, as well as their definitions and explanations.
Note we mainly use the original sentences in the sources that are referenced as the definitions.
Description Logics: a family of knowledge representation languages that can be used to represent

knowledge of an application domain. DLs differ from their predecessors, such as semantic
networks and frames, in that they are equipped with logic-based semantics, the same semantics
as that of classical first-order logic. Most ontologies are implemented in OWL, whose semantics
are given by the Description Logic SROIQ. [5]

TBox and ABox: the two components of domain knowledge in Description Logics, i.e., a termino-
logical part called the TBox and an assertional part called the ABox, with the combination of
a TBox and an ABox being called a knowledge base (KB). The TBox represents knowledge
about the structure of the domain (similar to a database schema), while the ABox represents
knowledge about a concrete situation (similar to a database instance). [5]

Semantic Networks: a graph structure for representing knowledge in patterns of interconnected
nodes and arcs [160]. We use the term to denote a graph of concepts and relations without
formal semantics.

Gene Ontology: The Gene Ontology (GO) knowledgebase provides a comprehensive, structured,
computer-accessible representation of gene function, for genes from any cellular organism or
virus [4, 28].
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SNOMED-CT: Systematized Nomenclature of Medicine Clinical Terms (SNOMED CT) is a
structured clinical vocabulary. It has a general and comprehensive coverage of clinical terms
to support electronic healthcare systems and clinical applications. [38, 27]

UMLS (UMLS Metahesaurus and UMLS Semantic Networks): Unified Medical Language Sys-
tem (UMLS) is a repository of biomedical vocabularies developed by the US National Library of
Medicine. The UMLS is composed of three “knowledge sources”, a Metathesaurus, a semantic
network, and a lexicon. The UMLS Metathesaurus is a comprehensive effort for integrating
biomedical ontologies through mappings. The UMLS Semantic Networks define the types
or categories, or Semantic Types, of all Metathesaurus concepts and their relationships, or
Semantic Relations. [9, 27]

ChEBI: Chemical Entities of Biological Interest (ChEBI) is a database and ontology containing
information about chemical entities of biological interest. [62]

Symbolic vs. subsymbolic representations: Rooted in cognitive science, symbolic systems of
human cognition are related to the representation and manipulation of symbols; sub-symbolic
or connectionist systems are most generally associated with the metaphor of a neuron, e.g.,
perceptrons as an early system [94]. In terms of AI, symbolic systems contain logic-based
and knowledge representations, while subsymbolic systems typically contain neural networks
and deep learning based methods [41]. Neural language models and pre-trained language
models [86] are also classified under subsymbolic systems.

Pre-trained and Large Language Models: Neural language modeling is the task of using neural
network approaches to predict words from prior their contexts in a sequence. Pre-training is the
process of learning some sort of representation (usually neural embedding based) of meaning for
words or sentences by processing very large amounts of text (or other data in a sequence form,
e.g., proteins and KG facts). This results in pre-trained language models. The dominating
architecture for neural language modeling is Transformer-based models, including BERT, its
domain specific versions, and later large variants, like the GPT series. The pre-trained language
models of very large sizes are recently coined Large Language Models (LLMs). [86]

Neuro-symbolic representations: refers to the integration of neural networks and symbolic rep-
resentations to design AI models that base their prediction on both data and knowledge. [41]
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Abstract
Order is one of the main instruments to measure
the relationship between objects in (empirical) data.
However, compared to methods that use numeri-
cal properties of objects, the amount of ordinal
methods developed is rather small. One reason
for this is the limited availability of computational
resources in the last century that would have been
required for ordinal computations. Another reason
– particularly important for this line of research –
is that order-based methods are often seen as too
mathematically rigorous for applying them to real-

world data. In this paper, we will therefore dis-
cuss different means for measuring and ‘calculating’
with ordinal structures – a specific class of directed
graphs – and show how to infer knowledge from
them. Our aim is to establish Ordinal Data Science
as a fundamentally new research agenda. Besides
cross-fertilization with other cornerstone machine
learning and knowledge representation methods, a
broad range of disciplines will benefit from this en-
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1 Introduction

Order is a predominant concept for perceiving and organizing our physical and social environment,
to infer meaning and explanation from observation, and to search and rectify decisions. For
instance, we admire the highest mountain on earth, observe pecking order among animals, schedule
events in time, and structure our organizations, libraries, and diseases hierarchically. The notion
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of order is deeply embedded in our language, as every adjective gives rise to a comparative
(e. g., better, more expensive, more beautiful). Specific technical and social processes have been
established for dealing with ordinal structures, e. g., scheduling routines for aircraft take-offs and
production planning, queuing at bus stops, deriving the succession order as depth-first linear
extension of the royal family tree, or discussing only the borderline cases in scientific program
committees. These processes, however, are rather task-specific – there exist only few generic data
analysis and machine learning tasks that are particularly tailored for ordinal data in general.

It comes thus as little surprise that order is one of the two main types of relations between
objects in empirical data, together with proximity/distance [39]. While there exists a wide range
of scientific work on analysis methods for ordinal data, their amount and coverage is far less
than for proximity data. As a consequence, many data analysts resort to methods designed for
other data types. We therefore call interested researchers to join us in the aim to establish the
new field of Ordinal Data Science – both by organizing existing work in a unifying framework
and by extending these approaches: Contributions are sought in two specific areas. Theoretical
foundations for analyzing ordinal structures, in particular with respect to knowledge extraction
and representation, on the one hand; and algorithmic methods that provide the means to measure
and “calculate” with ordinal structures and closely related algebraic notions on the other hand.

A wide range of applied disciplines will benefit from the new field of Ordinal Data Science,
a. o. psychology, web science, knowledge engineering, scientometrics. Besides these disciplines,
ordinal data are related to the large family of relational data which have received high interest
of the computer science community in the last years. This is due to developments in fields
such as sociology (“relational turn”) [141] or genetics [84] or epidemiology [36], and in particular
sociotechnical developments such as the rise of online social networks or knowledge graphs. This
means that, for the analysis of ordinal data, one can benefit from all kinds of measures and
methods for relational data, as for instance centrality measures and clustering algorithms for
(social) network data, or inductive logic programming. The specific structure of ordinal data,
however, allows additionally to tap on the rich – but up to date mostly unexploited for data
science – tool-set of mathematical order theory [34] and lattice2 theory [42].

We expect Ordinal Data Science to become a scientific field with many ramifications. In this
paper, we will discuss – in an exemplary fashion and to kindle the research field – five out of many
potential subfields as programmatic research tasks:

1) Ordinal Measurement Theory. Representational Measurement Theory, the most influential
theory of measurement to date, discusses how empirically observed phenomena can be measured.
It considers a measurement as a mapping from some empirical relational structure to a numerical
relational structure. While there seems to be agreement that the latter could be any mathematical
structure that is appropriate for the purpose at hand, almost all theory is centered around the
real numbers (and variations) as numerical relational structure. As order is the second main type
of relation in empirical data beside proximity/distance, we will discuss, in Section 5, the vision of
an order-theoretic version of measurement theory.

2) Ordered Metric Spaces. Real-world datasets are typically heterogeneous and contain both
ordinal and numerical dimensions. The latter naturally give rise to a metric. In Section 6, we
will motivate the need for a theory about the compatibility (or consistency) of an order relation
and a metric. To this end, we introduce ordered metric spaces (om-spaces), in the spirit of metric
measure spaces. Such a theory should be able to answer a range of foundational questions about

2 In Section 4.1, we will recall that lattices are specific order relations with additional structure.
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the relationship between order relations and metrics, including: a) If a metric has been learned
based on information about the order, how consistent is the metric with that order? This will
provide a fundamental new quality criterion for order-related machine learning tasks. b) How
strong do order and metrics “agree” with their view on a dataset? An answer might be highly
beneficial to an investigation whether order and metrics reflect the same hidden structure. c) How
justified is it to represent an order relation by means of the metric? If, for a given dataset, the
answer is satisfactory, this would justify in this case the use of the rich toolkit of numerical data
analysis and machine learning methods for analyzing the ordinal structure.

3) Algebraic constructions/decompositions for complexity reduction. Algebraic operations
provide a large variety of methods for reducing the complexity of ordered sets, in particular lattices.
However, they are very sensitive to small perturbations in the data; and approximations and
heuristics in the style of data mining are not (yet) considered in algebraic research. In Section 7,
we will discuss how they could be made less sensitive in order to make them applicable to data
science tasks.

4) Ordinal Factor Analysis. Observed and measured data is often highly correlated and in-
terlinked, being caused by a small amount of factors. A significant task in data analysis is the
identification of these factors. In Section 8, we discuss – in analogy to the classical factor analysis
which is based on linear algebra – potential ways for extracting these factors in ordinal data based
on the relation product.

5) Visualization, Exploration, and Browsing Ordinal Data. The typical means of presenting
ordered sets to humans is via line diagrams. Open problems include in particular the specification of
HCI-founded, formal optimization criteria for graph drawing (and the development of corresponding
layout algorithms), as well as the (semi-)automatic break-down of large ordered sets into smaller,
visualizable parts together with suitable means for their interactive exploration. In Section 9, we
will call for the development of new paradigms for exploring and browsing ordinal datasets.

Before diving in the challenges of these subfields in more detail, we will first discuss the nature
of ordinal data and the role of hierarchies in data science in Sections 2 and 3, resp., and will
provide some order-theoretical foundations in Section 4.

2 Order as Foundational Principle for Organizing Data

Quantification with real numbers has been boosted by different factors, including i) the development
of scientific measuring instruments since the scientific revolution, ii) the claim that the social
sciences (starting with psychology) should use the same numerical methods which had been
successful in natural sciences [63], and iii) nowadays by the instant availability of an enormous
range of datasets to almost all aspects of science and everyday life. Indeed, in many cases,
entities can be ordered through real-valued valuation functions like price or size. As the real
numbers constitute an ordered field, the analysis of such data benefits from the existence of the
operators +, −, ·, /, 0, 1 together with total3 comparability ≤. Moreover, this combination allows
for measures of tendency (such as mean, variance, and skewness) and transformations. If more
than one real-valued dimension is present, this yields to a real vector space Rn, which results
in additional descriptive measures and metric properties, such as volumes, angles, correlation,
covariance. This is the standard setting for the majority of data analysis and machine learning

3 Total refers to the property that for any two elements a, b either a ≤ b or b ≤ a is true. A total order relation
is often also called linear order.
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models, and algorithms (e. g., density-based clustering, logistic regression, SVMs, to name just a
few).

However, organizing hierarchical relationships by means of numerical values is not always
adequate, as this kind of organization presupposes two important conditions:
1. every pair of entities has to be comparable, and
2. the magnitudes of the differences between numerical values are meaningful and thus comparable

themselves.
In many situations, however, this is not the case: (i) does not hold, e. g., in concept hierarchies
(“mankind” is neither a subconcept nor a superconcept of “ocean”) nor in organizations (a member
of parliament is neither above nor below a Secretary of State), and also teaching curricula are
far from being linearly ordered; (ii) does not hold, e. g., in school grades (In the German system
is the difference between “1 – very good” and “2 – good” equal to the difference between “4 –
sufficient” and “5 – insufficient/fail”?) nor in organizations (In the European Commission, is an
advisor closer to a deputy director general than a head of group to a director?).

To address such variations of data types, S. S. Stevens has distinguished in [174] four levels
of measurement: nominal, ordinal, interval, and ratio. For data on the ratio level (e. g., height),
all above-mentioned operations are allowed (division, for instance, provides ratios). Data on the
interval level (e. g., temperature measured in Celsius or Fahrenheit) do not have a meaningful zero
as point of reference and thus do not allow for ratios, while the comparison of differences is still
meaningful. Data on the ordinal level (e. g., the parent relation) can be compared hierarchically
only, and on nominal level (e. g., eye color) only up to equality. Over time, this classification was
discussed, refined and expanded, but never discarded [144, 35].

The mathematical field of Order and Lattice Theory [97, 34, 163, 21, 88, 42] is a canonical
theory for modeling ordinal data. Its development started – independently of the above-mentioned
quest for a suitable theory for measurements – in the second half of the 19th century as algebraic
logic with the aim of George Boole [23], Charles S. Peirce [150] and Ernst Schröder [164] to
formalize a calculus for concept hierarchies as cornerstone for a mathematical logic. In symbolic
knowledge representation, ordered sets are extensively used for this purpose. For instance, in
RDFS, the set of all rdfs:Classes with the rdfs:subClassOf relation is an ordered set, and in
the field of conceptual graphs, one frequently assumes that the type hierarchy is even a lattice [168].

3 Hierarchies in Data Science

Data Science is the scientific field of analyzing data and extracting knowledge from data. This
understanding of data science as an interdisciplinary field grew over the past decades [208, 152,
58, 41, 46] as a confluence of methods from statistics, data mining/knowledge discovery, machine
learning, data management and big data. Here, we briefly discuss the relationship between some
of these areas to ordinal data.

In statistics, several correlation measures exist for rankings (e. g., Kendall’s τ [111], Spear-
man’s ρ [170], Goodman and Kruskal’s γ [83]) and tests for the significance of correlation (e. g.,
Mann–Whitney U test and Wilcoxon signed-rank test [213]). However, these measures and tests
are designed only for linear orders (i. e., multi-inheritance and pairs of incomparable elements are
not considered). In data mining and machine learning, most methods are designed for numerical
(and some for categorical) data. When ordered sets occur, then mostly as part of the model, e. g.,
in decision trees [27], as topology of neural networks [114], as inclusion hierarchy for frequent
item sets [3] (cf. next subsection), or as structure for coarser and finer set systems in hierarchical
agglomerative clustering [212]. Often data points are organized in (linear) rankings, as a result
from some numerical score, e. g., the predicted accuracy in supervised learning, the cosine similarity
to a given query in information retrieval, or the result of a learning-to-rank approach. Here again,
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these methods produce linear orders. A setting where the resulting order is non-linear is ontology
learning (see below).

Ordinal Data Science will profit from and contribute to the field of machine-learned ranking [129,
85], particularly preference learning [106], which is a subfield of AI concerned with label ranking
and instance ranking. Other areas in AI do also turn to ordinal data, e.g., “Deep Ordinal
Reinforcement Learning” [230] attempts to adapt reinforcement learning to ordinal data. Machine
learning methods for linear ordered sets are already somewhat further developed, e.g., treatment
of linear ordered classes in supervised learning [32]. The same is true for the important machine
learning method metric embedding, which was recently adapted to linear ordered data [165] and
ordinal constraints inferred from metrics [115, 199]. An even more extensive study on the use
of linear ordered data [109] concluded that even in the presence of metric features the study of
purely ordinal features might be fruitful. Early methods of how this might be done are already
being explored in a rather practical way [231]. Finally, Ordinal Data Science is strongly related to
the discipline statistical relational learning, a research area that itself has a lot in common with
many other AI areas, such as reasoning and knowledge representation. Foremost their advances in
treating graph data [159] is of high relevance to Ordinal Data Science and vice versa.

4 Order-Theoretical Foundations

4.1 Ordered Sets
The key concept for studying ordinal data is an ordered set. An ordered set (P, ≤) is a directed
graph (i. e., it consists of a set P and a binary relation ≤ on P ) such that ≤ is reflexive (p ≤ p),
transitive (p ≤ q, q ≤ r =⇒ p ≤ r), and antisymmetric (p ≤ q, q ≤ p =⇒ p = q) [21]. This
is equivalent to a transitive, directed acyclic graph with self-loops. Ordered sets could thus be
seen as special cases of directed graphs or networks, and indeed some results of graph theory and
network analysis are used; but order theory extends this with its own, specific flavor: For instance,
the acyclicity of an ordered set simplifies its decomposition (e. g., , by filters and ideals), results
in more specific structural measures such as height, width and dimension, and allows for more
readable visualisations.

A typical ordered set is the set of all human beings together with the is_ancester_of relation.
Another example are the dependencies of tasks in production planning. Note that, in general,
we do not require comparability of all elements. The latter would mean that the order is total
(also called linear), i. e., that, for all p, q ∈ P , one of p < q, p = q or p > q holds. To emphasize
that comparability is not required, ordered sets are also called partially ordered sets (or posets for
short) in the literature, especially in computer science.

While one cannot exploit numerical operations for describing and analyzing ordinal data, they
come with other constructions, such as order filters, order intervals, Pareto optima etc.

For finite ordered sets – as studied in data science – we can reduce ≤ without loss of information
to the neighboring relation ≺ by removing all pairs that can be deduced by reflexivity and
transitivity. This is the relation predominantly used for visualization. Note that in many cases,
the order is not linear (i. e., there may be incomparable elements and multi-inheritance).

A particularly useful kind of order relations are lattices, as they provide more structure and
operations: In a lattice, any two elements p and q always have a unique least common upper bound
p ∨ q and a unique greatest common lower bound p ∧ q. These two operations are often called join
and meet respectively. One could say that a lattice is a hierarchy in which one can navigate up
and down with these two operations. A complete lattice is an ordered set where every subset of P

(including the empty set and infinite subsets) has meet and join. This particular property is only
relevant if P is not finite, since each finite lattice is complete. Although the datasets considered in
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Figure 1 Pareto optima of train connections between the cities Hildesheim and Kassel as inferred from
the German railway corporation Deutsche Bahn via www.bahn.de.

data science are always finite, a deeper understanding of the infinite case, and hence of complete
lattices, can provide new insights.

A complexity measure for an ordered set or lattice (P, ≤) is its order dimension, i.e., the
number n of linear orders ≤1, . . . , ≤n on P with

⋂n
i=1 ≤i = ≤. In other terms, it is the smallest

n ∈ N such that the ordered set is embeddable in the Cartesian product of n linear orders [206].
In a previous work [50] we explored how to reduce the complexity of a dataset by identifying parts
that contribute to it having a high order dimension. However, computing (i.e., deciding) the order
dimension is N P-complete if the dimension is higher than two [228]. Even approximations are
proven to be N P-complete [99].

4.2 Ordinal Structures
As data may be ordered by different criteria, we define, more generally, an ordinal structure
P = ⟨P, (≤i)i∈I⟩ as a set P of objects that is equipped with quasi-orders ≤i [176].4 Quasi-orders
are transitive, reflexive relations. Not insisting on anti-symmetry for ≤i means that there may
exist objects that are indistinguishable in this relation (e. g., there may be different objects with
identical prize).

▶ Example 1 (Ordinal Structure). Train connections between two cities are an example for an
ordinal structure. They can be ordered by different criteria, e. g., by departure time (closer to
time given in the query is better), travel duration (shorter is better), number of transfers (fewer is
better), expected demand (lower is better), and price (lower is better). Figure 1 shows the pareto
optima for connections between Hildesheim and Kassel for a requested departure at 3pm, i. e.,
those connections for which it is impossible to improve a criterion without becoming worse in any
of the other criteria. ⌟

In our vision, we extend the notion of ordinal scale to allow for the analysis of all kinds of
ordinal data. With terms like “order”, “ordinal”, we always refer to arbitrary orders – be they

4 The entities may – and in most cases will – have additional attributes on other levels of measurement. The
development of hybrid analysis methods is of particular interest here.

www.bahn.de
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linear or not.5 We thus go beyond Stevens’ original understanding of “ordinal scale” which only
referred to linear orders. Even though this seems to be only a minor modification at first glance,
it has far-reaching consequences for the question of what “measurement” actually is, as well as for
the complexity of computational problems.

Ordered sets in general do not provide much structure. However, every ordered set is em-
beddable into a complete lattice, its Dedekind-MacNeille completion [135] (which generalizes
Dedekind’s construction for embedding Q in R). This allows for tapping into the rich algebraic
theory of lattices and of universal algebra [20, 87, 30]. The class of lattices forms a so-called
variety, which implies that every homomorphic image, every factor lattice and every subset of a
lattice that is closed under join and meet, as well as all direct products and direct sub-products of
lattices are lattices again. Hence, these operators can be exploited for composing and decomposing
lattices – and thus eventually of the ordered sets that generated them. In the worst case, the size
of the Dedekind-MacNeille completion is exponential in the size of the ordered set. However, this
growth is expected to be tame for real-world data, due to low amounts of multi-inheritance in it.
Ganter and Kuznetsov provided an algorithm for its computation [73] in O(c · w · n2) with c being
the size of the completion, w the width of the ordered set and n its size. The new nodes bear (yet
unexplored) potential for identifying substructures in ordered sets.

4.3 Formal Concept Analysis and knowledge spaces
A direct application of lattice theory to data analysis has been established as Formal Concept
Analysis (FCA) by R. Wille [216]. It follows the spirit of Boole, Peirce and Schröder by computing
concept hierarchies from datasets. In its most basic form, FCA derives a concept lattice from
a so-called formal context, a dataset (G, M, I) consisting of a set of objects G, a set of binary
attributes M , and I ⊆ G × M indicating which objects have which attributes. Concepts are all
maximal pairs (A, B) with A ⊆ G and B ⊆ M s. t. all objects in the extent A share all attributes in
the intent B, and vice versa. The set of formal concepts is denoted by B(G, M, I) and the relation
≤ ⊆ B(G, M, I) × B(G, M, I) with (A, B) ≤ (C, D) :⇐⇒ A ⊆ C constitutes an order relation on
B(G, M, I). Thereby (A, B) is designated as a subconcept of (C, D). More importantly, ≤ is a
lattice order. This fact follows from the basic theorem on Concept Lattices [78, Theorem 3]. This
theorem states that for any subsset {(Ai, Bi)}i∈I of B(G, M, I) there exists an infimum (meet)∧

i∈I(Ai, Bi) and a supremum (join)
∨

i∈I(Ai, Bi) in ≤. The set of all concept extents forms a
closure system, i. e., it is a set system which is closed under intersection, and the same holds for
the set of all concept intents.

▶ Example 2. The following table depicts a real world data set about paintings by Rembrandt (the
object set G) and their properties (M), taken from “Concept lattices and conceptual knowledge
systems” [215]. The formal context K = (G, M, I) and its incidence I is represented by means of
a cross table:

K Family Portrait Group Portrait Oak Canvas ≥ 1660
Nightwatch × ×
Anatomical lessons × × ×
Portrait Titus × × ×
Staalmeesters × ×
Mother × ×

5 When addressing linear orders, we will state this explicitly. For sake of linguistic simplicity, we will also
summaries all levels of measurement above ordinal – essentially interval and ratio – as “numerical”.
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Figure 2 Line diagram of the concept lattice from Example 2. The drawing uses a short-hand notation
for the labels. The nodes represent the set of formal concepts. Attributes are drawn on top of nodes and
objects below. Only the first occurrence of an attribute and the last occurrence of an object is annotated
(in the reading direction from top to bottom).

The line diagram of the concept lattice corresponding to K is shown in Figure 2. Such a line
diagram displays the covering relation, i.e., the subset of ≤ which contains only the comparable
elements that are immediate neighbors. From the lattice we can infer various types of information.
For example, we find that all paintings that were painted in 1660 or later were painted on canvas.
More intriguingly, family portraits that were painted on canvas occurred in 1660 or later. For a
comprehensive list of how-to infer information from lattices, and in particular lattice diagrams, we
refer the reader to the literature [78]. For a more in-depth discussion of questions concerning the
diagrammatic representation of order structures in the specific case of the present work, please
refer to Section 9. ⌟

Via conceptual scaling [77], FCA can be applied to any kind of data. Since its foundation in
1982, FCA has grown to an extensive theory [79, 33, 74, 64] and has seen several extensions, for
instance, to fuzzy concepts [11]. It has been applied in a large variety of domains (see, e.g., [195, 68]
for surveys). FCA has been connected to other disciplines, such as Software Engineering [167],
Psychology [169], Scientometrics [44], and Social Choice Theory [108].

Similar to FCA is the theory of knowledge spaces by J.–P. Doignon and J.–C. Falmagne [45].
They define a knowledge structure as a pair (Q, K) where Q is a non-empty set and K is a family
of subsets of Q. The set Q is called domain and its elements are called questions or items. The
subsets in K are called (knowledge) states. The intuition for this definition is that Q is a collection
of questions of some school subject, and that the sets in K describe which combinations of questions
could be solved by individual students. A knowledge space is then a knowledge structure that is
closed under set union. This is inspired by the assumption that if two students have knowledge
states K1 and K2, resp., then it should be possible for them to learn what the other student
knows, resulting in K1 ∪ K2.

A knowledge space is thus a kernel system, i. e., a set system closed under union. If K is a
kernel system, then {Q \ K | K ∈ K} is a closure system, and vice versa. This means in particular
that all theoretical and algorithmic results of FCA can directly be transferred to knowledge spaces,
and vice versa (see in particular [72]). From a mathematical viewpoint, the structures of closure
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systems, kernel systems, complete lattices and concept lattices are equivalent [216], as there exist
natural 1-to-1 correspondences. These structures are also in a natural 1-to-1 correspondence to sets
of implications (of propositional Horn logic) [214] and functional dependencies (of database theory).
These natural correspondences mean that for the computation, analysis and (de)compositions
of such structures one can switch to the representation that is most suitable for the task at
hand. Formal contexts play an important role when it comes to computations, as their sizes are
logarithmic in comparison to the sizes of the corresponding (concept) lattices.

4.4 Ordered Sets and Lattices in Computer Science
Specific ordered sets and lattices are frequently found in computer science: For instance, queues
and lists are linear orders, (B-)trees are used for indexing data, tries for Information Retrieval,
CPOs for modeling the semantics of recursion, and Boolean algebras for propositional logic
implemented in logical gates. Inheritance (including multiple inheritance) in object-oriented
programming induces a partial order on the set of classes. An introduction to the mathematical
foundations of order theory relevant to Data Mining is provided in [166]. Ordered sets are also
the key ingredient for modeling dependencies between tasks in scheduling problems.

FCA is used extensively in the field of Ontology Engineering / Semantic Web, in particular for
conceptual information systems [192], knowledge acquisition [186, 187, 189], for knowledge base
completion in Description Logics [6, 7], for computing probably approximately correct implication
bases [24], for ontology management [185, 76, 37], [160, 14], and text corpus analysis [104]. An
extensive survey on FCA based models and techniques in knowledge processing is given in [153].

4.5 Algorithms and Software for Ordered Sets and Lattices
The number of algorithms and software tools in the field of order theory and (concept) lattices
is extensive. Listing all relevant works would go far beyond the scope of this article; we only
mention the most important and recent tools. Ordinal Data Science may benefit from algorithms
for the uniform sampling of linear extensions [29] and the uniform sampling of ordered sets [119],
and the even more complicated problem for sampling binary relations in general, which was
tackled in [61]. The research field of Formal Concept Analysis can contribute algorithms for
the fast generation of concept lattices, e.g. In-Close4 [5] or Parallel Close-by-One [120]. Also,
the computation of (inter-feature-) dependencies will be an essential asset. The computation
of such dependencies can be done with proven parallel canonical base algorithms [122]. One
may also resort to approximate methods, since the related computational problems become
computationally intractable with increasing input size. For example, the dependencies can be
computed with probably approximately correct learning methods [25, 24], a combination of order
theory and classical machine learning model. Many of the mentioned algorithms are already
available, or are currently being implemented, in the analysis software conexp-clj [91], which is
a reimplementation of conexp by means of the functional programming language Clojure. It is
currently maintained and further developed in the group of the authors. There are many further
FCA software tools under active developed (and even more historic ones), most with a particular
specialization. Just to name a few: Graph-FCA6, an extension of FCA to knowledge graphs; lattice
miner [142]; conexp-ng7, an educational variant of conexp; fcaR8, a package for the statistical
software suite R.

6 https://bitbucket.org/sebferre/graph-fca/src/master/
7 https://github.com/fcatools/conexp-ng
8 https://cran.r-project.org/web/packages/fcaR/fcaR.pdf
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In the next five sections, we will now discuss exemplarily five out of many possible lines of research
in the new field of Ordinal Data Science in more detail.

5 Ordinal Measurement Theory

While measurements in physics were accepted without objections, other disciplines, in particular
psychology, asked in the 20th century – and still do so today – if and under which conditions
non-physical sensations such as loudness, fear, or intelligence can be measured. The most widely
acknowledged answer to this is the Representational Theory of Measurement (RTM) [121, 198, 131],
which aims at identifying criteria that justify a measurement on a given level. These criteria can
(at least in principle) be verified empirically without actually performing the measurement. RTM
defines measurement as a homomorphism from an empirical relational structure A = ⟨A, (Ri)i∈I⟩
– i. e., a set A of empirical objects (such as a collection of rods) equipped with qualitative relations
Ri (such as “rod a is shorter than rod b” and “when laid end to end, rods a and b together have
the same extension as rod c”) – to a numerical relational structure B = ⟨B, (Si)i∈I⟩ [151, 121].
In the latter, B is usually the set R of real numbers (or Rn and other variations) together with
relations such as x < y and x + y = z, even though several researchers [158, p. 253] observe that
in some cases it might be beneficial to allow for other algebraic – “non-numerical” – structures.

RTM puts a strong emphasis on measurements into the real numbers, and less emphasis on
ordinal phenomena. As it allows for linear ordinal scales only, RTM does not allow for studying
phenomena involving incomparability or multi-inheritance. Therefore, inspired by RTM, R. Wille
et al. [75] developed a theory of conceptual measurement where B takes the form of specific lattices,
called conceptual scales – a first step towards an ordinal version of RTM. In this context several
studies followed [77, 224, 154, 188, 182]. Conceptual measurement provides structural statements
about homomorphisms to standard scales, but it does not yet provide a full theory about the
conditions under which ordinal phenomena can be measured with the different types of ordinal
scales. In order to provide a theoretical foundation to Ordinal Data Science, we propose to extend
RTM by non-numerical scales. This will allow for empirically testing on a given dataset which
scales are appropriate for its analysis.

To this end, in this section, we suggest to analyze under which conditions measurements into
(linear and in particular in non-linear) ordinal scales exist, and how unique they are (i. e., under
which permissible transformations they remain invariant). We further suggest investigating how
the – potentially high – order dimension of the original data relates to the order dimensions of a
set of scales which together fully measure the dataset. At last, we consider non-linear versions of
Guttman scales [89], to allow for measuring simultaneously objects and their features.

In the long run, this endeavor may open the avenue to a “Grand Unified Theory of Measurement”
which will allow, for instance, in (the philosophy of) physics to discuss the analysis of symmetries
of elementary particles (by letting B be a (non-ordered) symmetry group) in the same terms as
the numerical measurement of their mass and charge.

5.1 State of the Art and Open Questions
Based on the successful role of measurement in physics and the demand of other disciplines – in
particular psychology – , in the late 19th and early 20th century a universal definition of measure-
ment was sought [63]. S. S. Stevens [174] provided an operational approach by distinguishing four
levels of measurement: nominal, ordinal, interval, and ratio; and characterized them by families of
automorphisms of the set of real numbers that respect the scale type (“admissible functions”).
Stevens’ levels of measurement have been (and still are [162, 202]) under dispute. A particular
controversial question among practitioners that is discussed since Stevens’ paper for over 70 years
is whether computing the mean of ordinal data is an allowed operation or not (see, e. g., the
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football number dispute [130, 162] as illustrative example). In practice, this is frequently done
(e. g., aggregating the jury votes in gymnastics or figure skating), while in other cases this is
considered bad practice (e. g., aggregating reviewer judgments in scientific peer review, where often
the average is considered as bearing little meaning, and therefore consensus is sought). Several
extensions were proposed for Stevens’ levels (e. g., [144, 35]), see [201] for a systematic survey. All
those extensions, however, consider ordinal data as a separate category; so our endeavor is widely
agnostic to this discussion.

Stevens did not answer the question of how to decide, in a given setting, which level is
appropriate. Representational Theory of Measurement (RTM) [121, 198, 131], [151, 158] provides
an answer with the notion of conjoint measurement. RTM defines a measurement as a mapping of
an empirical relational structure (ERS), i. e., a set of objects equipped with qualitative relations
such as “is larger than”, to a numerical relational structure (NRS). Luce and Tukey [132] proved
that whether some empirical sensation is a continuous variable depends on characteristics of the
ERS and is thus in principle empirically testable. How feasible this testing is in practice is one of
the questions of the still ongoing discussion on RTM, in particular in psychology [204, 28]. The
envisaged substantially new methods in Ordinal Data Science for measuring ordinal data may
turn RTM more acceptable to practitioners, as it is easier to show that ordinal methods are legible
in a given situation than it is for methods requiring interval or even ratio level.

Several researchers working on RTM (e. g., [158, p. 253]) stated that it might be beneficial
not to focus solely on the ordered field of real numbers as NRS, but to allow instead for other
mathematical structures. However, this approach has been followed rarely. For instance, R.
Wille and his group took up this line of thought, as described above: On one hand the group
studied the representation of ordinal structures in the real numbers [223, 224, 226] and weaker
algebras such as ordered quasi-groups [225]. On the other hand, work on a theory of conceptual
measurement [75, 77, 188, 182, 154] was started, where R is replaced by complete lattices which
can be understood as partial ontologies.

As Dedekind-MacNeille completions preserve important properties of ordered sets (e. g., order
dimension) and are isomorphic to a concept lattice, conceptual measurement is just a special –
but conceptually and computationally convenient – way of formalizing a general theory of ordinal
measurement. Conceptual measurement has frequently been used in applications. However, a
theoretical investigation in terms of RTM (e. g., what are the equivalences of cancellation and
solvability when R is replaced by a lattice?) is still lacking.

5.2 Promising Research Questions

The main objective in this field of research will be to extend Relational Measurement Theory to
non-numerical scales, as it would allow to empirically test on given data which of these scales
are appropriate. We will address three key aspects: The first is to establish theorems about the
existence and uniqueness of measurements into non-linear ordinal scales and to explore how well
the theory can be extended to fundamentally different scale types (e. g., (non-ordered) symmetry
groups), as a first step towards a “Grand Unified Theory of Measurement”. As the order dimension
is a strong indicator for the complexity of an ordered set, we will then discuss the relationship
between the order dimensions of an ordinal structure and its scales, in order to provide guidance
for suitable decompositions and factorizations in Sections 7 and 8; and extend the discussion to
scales that measure simultaneously the objects and their attributes.
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5.2.1 Measuring into ordinal scales
Research in Representational Measurement Theory is centered around the real numbers as
“numerical relational structure” (including derived structures, such as semiorders and interval
orders for modeling error and variation) and real vector spaces. Measurements with other types of
ordered sets have not been studied systematically, except for the theory of conceptual measurement
as described above. So a general research question will be: how does measurement theory look like
if we replace (R, ≤, +, −, ·, 0, 1) by a specific ordered set (P, ≤) or (complete) lattice (L, ≤, ∧, ∨)?
Are there equivalences to the notions of cancellation, solvability and conjointness, and how are
they constituted?

Following the line of traditional RTM, we suggest to study in particular the representation
problem and the uniqueness problem for specific scale types. The representation problem deals
with the question of which conditions a dataset has to fulfil in order to permit a measurement
in a given scale. For binary attributes on the empirical side and many standard ordinal scales
(nominal, linear, interval, multi-ordinal, contra-nominal, contra-ordinal, and convex-ordinal scales)
on the “numerical” side, this problem was addressed in [79, Chapt. 7]. In this case, the task is
reduced to translating the results to the terminology of RTM. For other types of empirical data,
and for other types of scales (e. g., trees) and ordinal scales in general9 on the “numerical” side, the
necessary theorems still have to be established. Once a measure has been identified, one should
also consider the uniqueness problem by analyzing invariance under permissible transformations:
How unique is the resulting measure or scale?

Our results constitute the first steps towards a “Grand Unified Theory of Measurement” : Once
a theory for ordinal measurement as been established, one may start to explore – as a side-trip and
preparation of more extensive research – how well this theory can be extended to fundamentally
different scales, as for instance to non-ordered groups (such as symmetry groups).

5.2.2 Dimensionality
The complexity of an ordered set is not only determined by its cardinality, but also to a large extent
by its order dimension. In contrast to numerical data, where most frequently each feature spans
one dimension, the identification of the different dimensions of an ordered set is not straightforward
– even determining their number is N P-complete [228]. The question of dimensionality thus takes
a completely different stance as in standard RTM (where dimensional analysis means that physical
dimensions such as length, mass, time duration, speed, and their relationships are studied [121,
Chapt. 10]). Breaking down a complex ordered set into smaller, less complex parts (i. e., parts
with lower dimensionality) is an important – but challenging – task for data science, which we will
discuss further in Sections 7 and 8. The following example shows that the development of a theory
about the dependencies between the ordinal dimension of an ordered set and the dimensions of
the scales it can be measured to might be of high interest.

▶ Example 3 (Order Dimension). Table 1 depicts the final standings of the German Soccer
Bundesliga season in 2022/23. In this dataset, the strength of the soccer clubs is measured using
four different scales. In the columns “Won” and “Goals for”, a high value implies a strong club,
while the converse is true for “Lost” and “Goals against”. The direct product of these four linear
orders describes an order relation in which two clubs are comparable, if one dominates the other
in all four categories. Two clubs may be incomparable in this ordering, as for instance Borussia
Dortmund has more wins than FC Bayern München, but also more losses.

9 Reminder: In this project, ordinal scales may be any type of ordered set, either linear or non-linear. What is
usually called ordinal scale (such as Likert scale or Beaufort) is a special, linear case thereof.
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Table 1 The final league table of the 2022–23 Bundesliga, Germany’s premier soccer league. (Pos:
Position, W: Won, D: Drawn, L: Lost, GF: Goals for, GA: Goals against, GD: Goal difference, Pts: Points)

Pos Team W D L GF GA GD Pts

1 FC Bayern München 21 8 5 92 38 +54 71
2 Borussia Dortmund 22 5 7 83 44 +39 71
3 RB Leipzig 20 6 8 64 41 +23 66
4 1. FC Union Berlin 18 8 8 51 38 +13 62
5 SC Freiburg 17 8 9 51 44 +7 59
6 Bayer 04 Leverkusen 14 8 12 57 49 +8 50
7 Eintracht Frankfurt 13 11 10 58 52 +6 50
8 VfL Wolfsburg 13 10 11 57 48 +9 49
9 1. FSV Mainz 05 12 10 12 54 55 −1 46
10 Borussia Mönchengladbach 11 10 13 52 55 −3 43
11 1. FC Köln 10 12 12 49 54 −5 42
12 TSG 1899 Hoffenheim 10 6 18 48 57 −9 36
13 Werder Bremen 10 6 18 51 64 −13 36
14 VfL Bochum 10 5 19 40 72 −32 35
15 FC Augsburg 9 7 18 42 63 −21 34
16 VfB Stuttgart 7 12 15 45 57 −12 33
17 FC Schalke 04 7 10 17 35 71 −36 31
18 Hertha BSC 7 8 19 42 69 −27 29

The order dimension of the domination order of the 2022/23 season is three. This means that
only three linear orders are necessary to represent the combination of the four scales. There is
hence some redundancy in the data – but not enough to produce a total ranking. The latter would
hold if the order dimension of the domination order would be one. It would then, for every pair of
clubs, provide an answer to the natural question of which of the two is better than the other. As
this is not the case, further rules are used to compute the final position of each club in the league.
This results in a linear extension of this domination order. The choice of these rules captures the
understanding which quality criteria are considered most important.

The current rules of Bundesliga [127] are one possible way to reach such a linear extension:
First, a “Points” scale is derived, where each team is awarded three Points for every win and
one point for every draw. This results in a linear extension of the direct product of the “Won”
and “Lost” scales, which are considered to be the most important criteria. However, this may
not yet result in a total ranking as multiple teams can have the same number of points (for
instance Borussia Dortmund and Bayern München). In this case, the tie is broken using the “Goal
difference”, which itself is a linear extension of the direct product of “Goals for” and “Goals against”.
Thus, from the original four scales, the two linear extensions “Points” and “Goal difference” are
computed as derived scales. Then, these two give the final ranking by taking once again a linear
extension of the two derived scales.10

Note that the rules are arbitrarily chosen (e. g., , one could assign only two points for a win, as
is done in other sports (and was done earlier in Bundesliga), or consider the direct comparison of
clubs in a tie as second criterion) and for every linear extension of the domination order there is a
set of rules that gives rise to the ranking described by this extension. Thus, one could consider
each linear extension a valid final ranking of the participating teams. ⌟

10 [127] provides further rules for cases where this still does not resolve all ties.
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A next research question could be a dimensional analysis of combinations of the standard
ordinal scales – for each of them studied separately, the answer is straightforward, but dimensional
properties of full measures of an ordered set in a (heterogeneous) collection of scales have not yet
been studied systematically. As deciding the order dimension of an ordered set is N P-complete,
one has to keep an eye on the computational tractability: Are exact algorithms fast enough for
typically sized datasets? Alternatively one may resort to computing upper bounds, together with
the realizers (i. e., the spanning linear orders) [229]. Also, the development of efficient algorithms
for computing lower bounds (and eventually also the critical pairs) will be of interest.

5.2.3 Joint scales on objects and attributes
Guttman scales have been introduced as joint scales for objects and attributes. Consider, for
instance, a set G of students, a set M of exercises of (assumingly) increasing difficulty, and a
relation I stating which student solved which exercise. If the corresponding concept lattice is
linearly ordered then it provides a linear ranking both for the difficulty of the exercises and for
the ability of the students. This can be interpreted such that there is no exception to the rule:
a student who is capable of solving a specific exercise can also solve all easier exercises. This
is equivalent to the original definition [89] which requires the existence of maps s : G → R and
e : M → R s. t. (g, m) ∈ I ⇐⇒ s(g) ≤ e(m). In practice, Guttman scales can be observed
frequently, but often only up to some “noise” or “impurity”. Standard approaches are then either
to assume that the assumptions hold in principle and to statistically find best-fitting functions [38],
or to analyze whether the data result from more than one Guttman scale. We propose to follow
two new order-theoretic approaches for analyzing these “impurities” instead. The first approach
is to relax the condition of linear order and to explore if a more general scale – e. g., a tree –
may be suitable as a joint scale. One can then identify necessary and sufficient conditions for
the existence of such generalized Guttman scales as well as criteria for their minimality (e. g.,
the lowest cardinality, the lowest dimensionality, least multi-inheritance). The second approach
is to analyze more closely the disturbance of the linear scale by identifying which parts of the
scale increase its local dimension [207]. Such a tool would allow analysts to investigate whether a
linear feature is disturbed by “noisy data” or whether it really shows some unexpected non-linear
characteristics.

6 Ordered Metric Spaces

Real-world data is feature-heterogeneous [31], i.e., it is (apart from others) composed of ordinal
and numerical dimensions. The former can be viewed as a partially ordered set, and the latter
often leads naturally to a metric. In principle, both can be analyzed separately, but this approach
has two disadvantages. First, the results calculated in this way can be contradictory to each other.
Second, the knowledge about the connection of the two feature dimensions is not exploited.

We therefore propose to develop theoretical and practical methods that honor the compatibility
(or consistency) of order relations and metrics on a set. To this end, we envision the unified
representation of such data by means of ordered metric spaces (om-spaces) (P, R, d), where P

denotes a set, R is an order relation on P , and a d a metric d : P × P → R+. This modeling is
inspired by similar investigations in metric measure spaces11 [146, 196].

11 In metric measure spaces, measures are those of mathematical analysis, being defined over σ-algebras [90].
They model a different aspect of the concept of measurement as the homomorphisms between relational
structures in RTM do, and should not be confused with them.
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The corresponding highly ambitious task, due to its novelty, is to develop a structure theory
for om-spaces. Particularly interesting in this context is the study of om-space embeddings into
Euclidean space. Since the latter is a very commonly used space for machine learning, the question
of how to measure ordinal distortions is imperative. Vice versa, it is important to understand to
which extent the extraction of linear orders from data via valuation functions is meaningful with
respect to om-spaces. With a new class of distortion measures – and computationally tractable
approximation algorithms – which allow to quantify the compatibility of R and d, one might be able
to answer a range of fundamental questions about the relationship between orders and metrics,
including: 1) If a metric has been (machine) learned based on information about the order, how
consistent is the metric with the order? This will provide a fundamental new quality criterion
for order-related machine learning tasks. 2) How strong do order and metrics “agree” with their
view on the dataset? An answer might be highly beneficial to an investigation whether order and
metrics reflect the same hidden structure. 3) How justified is it to represent the order by means
of a metric? If the answer is satisfactory for a given dataset, this would justify the use of the
rich toolkit of numerical data analysis and machine learning methods for analyzing the ordinal
structure. If not, this would indicate that alternative (ordinal) methods are mandatory in this
particular case.

6.1 State of the Art and Open Questions
Order relations entail many geometric properties. Likewise, metric spaces, which play a dominant
role in data science, have a rich geometric structure. Examples for datasets exhibiting both
a metric and an order relation are numerous. For example: Humans have (distances between
their) birthplaces and an ancestry order relation; scientists have an ancestry relation (doctoral
advisor) and different proximities (topical, geographic, social); mountains are ranked by height
and prominence [161] and have a geographic distance. A more general example for an om-space is
the set of Airports together with the connecting plane routes relation and the geodesic distances.

The analysis of ordinal data is often based on a (numerical) metrification. Imposing metric
structures on ordered sets12 is a widely studied [143], yet still very active, field of research. Almost
all mathematical disciplines contribute to this, e.g., algebra [60], combinatorics and geometry [128],
and analysis [110]. Furthermore, the task of (distance) metric learning in the realm of (weakly)
supervised machine learning addresses a similar problem, e.g., based on the generalized Mahalanobis
distance. Contemporary developments [211] do often use deep learning settings. However, recent
works claim that the reported achievements are rather marginal [145]. We contributed to the
task of finding meaningful metrics in ordinal data in two ways. First, we adapted the notions of
dominance and prominence from the research field of orometrics to network science [161]. This
process revealed a whole class of new metrics to study. Second, we have further developed the
popular word2vec method, which is based on a neural network model, for the special requirements
of (concept) lattices [48].

A popular embedding structure for ordinal and metric data in the realm of machine learning is
the Euclidean space, especially represented as Rn. Depending on the properties of the relation
(symmetric, transitive, reflexive, etc.) and the kind of embedding, e.g., distance, similarity, or
transitional, different bounds for n [18] are required for distortion free, i.e., isometric, embeddings.
Often n equals |P |, which may be computationally intractable. Moreover, it is a well known
fact [136] that many finite metric spaces are not distortion-free embeddable into Rn, for any n ∈ N.
A simple example for this is a 4-element ring with the graph distance as a metric. Therefore, low

12 In the realm of machine learning a natural consequence when learning an “embedding”.
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distortion embeddings [1] and different means of measuring distortion [210] are widely studied.
Hence, the investigation of distortions for embedding finite om-spaces into Rn, which takes into
account metric and order relational characteristics, is at hand, highly ambitious, and up to our
knowledge, not conducted. We have already found initial evidence in a special case that the
distortion can be extensive [92].

Understanding different metric embeddings of the same ordinal data is possible by comparing the
resulting metric spaces. Amongst others, the Gromov-Hausdorff (GH) distance (by D. Edwards [55,
209], M. Gromov [86]) enables such a comparison naturally. However, since GH is computationally
intractable [138] one might resort to computable lower bound methods, e.g., the modified GH
distance [147], which is time polynomial.

To further mitigate the computational demands in the last paragraphs, we can refer the
reader to various works we carried out, e.g., the identification of important features in relational
data [94] based on entropy maximization and structure preservation, dataset size reduction using
cores in formal contexts [93], and the identification of clones [43], i. e., concept lattice preserving
permutations. All works are applicable to om-spaces, as every order relation gives rise to a (unique)
concept lattice; and every metric on P can be lifted to the power set.

To the best of our knowledge, studies purely concerned with the interplay of order relations
and metrics with respect to data analysis are rare. We can identify in the literature few results
about fix points [126, 17] and contractions [2]. Related topological results for ordered metric
spaces are of less interest for our envisioned task, as the considered om-spaces are almost always
finite, which in turn implies that the induced topological space is discrete.

Coming full circle with our motivation from mm-spaces, we propose to consider different
results on valuation functions in ordered sets. This topic is already studied for order relations
and lattices [143, 124]. We already contributed to this by transferring ideas from orometrics to
bounded metric spaces endowed with binary relations [179, 180]. Even more related to the realm
of mm-spaces is our work on an intrinsic dimension of geometric datasets [95, 178]. Although the
proposed dimension function relies on mm-spaces, it is fully capable for the dimension analysis of
om-spaces.

Finally, comparing real-world data with randomly generated data often reveals new structural
insights and provides benchmarks. Yet, uniform sampling of ordered sets is a difficult problem,
at least for reasonable set sizes [119]. Our previous work allows to some extent for randomly
generating binary relations [61] and null-model generation for (order) relations [62]. To which
extent these methods can be useful for the study of om-spaces is an open question.

6.2 Promising Research Questions
Central to this research is the theoretical and experimental study of the triple (P, R, d), as
introduced in the last section as ordered metric space (om-space). One should distinguish between
originally metric data (and therefore spaces) and those where the metric was obtained through an
external (e. g., machine learning) method. Special interpretations of this structure are, for example,
directed acyclic graph metric spaces (if the metric values are additive along paths), or weighted
directed acyclic graphs (when considering metric values for connected pairs, i.e., relational pairs,
only). One should approach the goal for a structure theory of om-spaces for ordinal data science
from different angles, most importantly graph theory, order theory, and the analysis of metric
spaces.

Any new result will surely build up on modelings concerned with R being a tree or forest
relation and d a graph metric on it. The guiding methodology should be to examine the extensive
apparatus of order theory with respect to the om-space. In particular, it is necessary to develop
new concepts and methods to assess algorithmically the compatibility of R and d. A special focus
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Figure 3 Left: Simplified formal context from real-world data about cities (objects) that are serviced
by airlines (attributes). Right: Corresponding concept lattice.

should be set on understanding if and how different kinds of dimensionality (e.g., order dimension,
intrinsic dimension) do inflict the compatibility of R and d as well as a possible later embedding
of (P, R, d) into Euclidean space.

6.2.1 Structure Theory of om-Space Datasets
To explore the distortion of order relations on sets with respect to indigenous and externally
imposed metric functions is the focus of this research task. A first attempt to assess the distortion
of an order relation in this sense can be based on the distortion of a map φ between two metric
spaces (X, dX) and (Y, dY ). In the realm of machine learning numerous distortion functions are
studied [210]. A promising start may be with dis(φ) := supx,x̂∈X |dX(x, x̂) − dY (φ(x), φ(x̂))|. To
study the distortion introduced by relation R in om-space (P, R, d), one could then study the
canonical (by means of the Galois connection) map φ : P → 2P defined by x 7→ {y ∈ P | (x, y) ∈ R}
from metric space (P, d) to (2P , dH) where dH is the Hausdorff metric derived from d. This setting
allows for analytical tools to assess the relational distortion (as well as expansion, extraction, etc.)
of ordered metric spaces for real world datasets. If R is a purely reflexive relation, i.e., the simplest
order relation on P , there will be no distortion, i.e., dis(φ) = 0. Yet, for arbitrary relations in
real-world datasets the change of distortion is unknown.

▶ Example 4. The data shown in Figure 3 and Table 2 can be comprehended as an om-space.
The elements of P are the cities, the map d assigns any two cities their geodesic distance, and any
two cities are in relation R iff there is an airline servicing both cities. ⌟

Applying this new measure on real-world data would require non-incremental research to
develop efficient algorithms to compute them, as computational demands increase drastically with
increasing |P |. One might face this highly ambitious challenge by drawing from results on closed
sets, which arise naturally from the closure operator generated by R. Hence, one may employ
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Table 2 Geodesic distances between cities (in nautical miles [nmi]) that are the objects of the formal
context in Figure 3.
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Madrid 1781 513 0 3420 537 1975 1784 1246 797 1330 546 1718
Moscow 1765 3892 3420 0 2883 1563 1643 2508 2666 2399 3119 1722
Toulouse 1278 1029 537 2883 0 1453 1249 883 312 911 468 1188
Budapest 950 2480 1975 1563 1453 0 573 1490 1180 836 1590 674
Dresden 378 2250 1784 1643 1249 573 0 988 1070 1044 1546 111
London 745 1564 1246 2508 883 1490 988 0 989 1444 1348 879
Marseille 1186 1307 797 2666 312 1180 1070 989 0 602 479 1032
Rom 1326 1839 1330 2399 911 836 1044 1444 602 0 839 1070
Palma D.M. 1658 1027 546 3119 468 1590 1546 1348 479 839 0 1511
Leipzig/Halle 289 2174 1718 1722 1188 674 111 879 1032 1070 1511 0

fast algorithms for the generation of closed sets (or their generators), which will facilitate the
computation of the Hausdorff distances for large sets P . Starting from this promising modeling,
the next step would then be to test, examine and develop further distortion measures in the realm
of om-spaces.

6.2.2 Formal Context Mediated Metrics and Orders by Valuation
In a more general setting one might also want to study arbitrary binary relations, as often
investigated in the form of a formal context (G, M, I). In this regard, the following question is
directly obvious. How does the binary incidence relation I ⊆ G × M , and therefore the inherent
lattice structure, mediate a metric from one set to another? In detail, given the incidence I

between sets G and M , where G is equipped with a metric d, one can induce a metric on M

using the afore mentioned Hausdorff metric on (G, d) and the map m 7→ {g ∈ G | (g, m) ∈ I}.
What properties are expected of the resulting metric space (M, dM )? What alterations of I, i.e.,
operations based on adding or removing relational pairs, do change the properties of (M, dM )?
Based on this one might also want to investigate the special case in which both sets G and M are
equipped with an indigenous metric. Then, the natural question arises: how compatible are these
indigenous metrics with the mutually induced ones mediated by the incidence I? For this, the
computation of distance between metric spaces is essential, for which it might be necessary to
employ the modified GH distance [147].

▶ Example 5. It is clear that in Example 4 only the object set G is equipped with a distance
function (actually a metric) dG. In order to obtain a distance function between the airlines, i.e.
the attributes, the most obvious way is to calculate a Hamming distance between them. This
distance, however, would not consider the existing data for G. Based on the proposition above,
we can infer a distance function that incorporates dG. For example, dM (Scandinavian, Austrian)
would be mapped to the Hausdorff distance dH(M1, M2) where

M1 = {Hamburg, Madrid, Moscow, Budapest, London, Rom, Palma D.M.}
M2 = {Hamburg, Lisbon, Budapest, London, Rom, Palma D.M., Leipzig/Halle}.

Hence, one has to compute

max
{

sup
x∈M1

d(x, M2), sup
y∈M2

d(M1, y)
}

,

where d(u, V ) := infv∈V d(u, v), i.e., the distance from u to V . In our example the computation of
the Hausdorff distance results in max{836, 1563} = 1563 nmi. ⌟
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Closely related to the setting above is the application of valuation functions to generate (linear)
order relations. An example is to rank objects from G based on sizes of their shared related
subsets from M , i.e., every g ∈ G is valued by |{m ∈ M | (g, m) ∈ I}|. Since valuation functions
almost always map into a numerical scale, e.g., the real line, this results in a metric and in turn
into a linear order. Dual to the question in the first paragraph one can investigate how a valuation
map distorts an indigenous ordinal property of the set, for example extracted through the notion
of concept lattices. As a start, one may count how many wrongly ordered relation tuples are
present. Furthermore, it might be fruitful to investigate to which extent the order created by the
valuation differs from an arbitrarily generated linear extension [29]. Finally, one might re-evaluate
our preliminary work in this area [161, 179, 180]. This can shed light on the question whether
the valuation functions we transferred from orometry are superior when dealing with indigenous
ordinal properties.

6.2.3 Intrinsic Dimension of om-Spaces and Randomness
There are numerous notions for measuring the complexity of a dataset. For ordinal data the order
dimension is a natural candidate, as described in Section 4.1. Another approach is the notion
for intrinsic dimension. Put simply, this value reflects the number of dimensions required to
accurately represent the data. For incidence structures, such as formal contexts, we proposed in
our previous work “Intrinsic Dimension of Geometric Data Sets” [95] a novel intrinsic dimension
function that incorporates measure- and metric properties. This function is also applicable to
ordinal data. This is in particular true, if the ordinal data is scaled via the general ordinal scale.

Yet, it is unknown if the intrinsic dimension does relate to the order dimension in any way.
Still, it is to be expected that the intrinsic dimension can be used to capture ordinal complexity
to some extent. To substantiate the hypothesis, an extensive experimental evaluation is needed
and should be conducted, using real-world as well as randomly generated datasets. For the latter
we might refer the reader to our work on random relational data generation [61]. Moreover,
one can compare our results to recent notions of estimating dimensionality in the absence of
distance functions [116]. Building up on this evaluation, and even more progressive, is the further
development of an extension of the intrinsic dimension to om-spaces. This extension can open up
a new research avenue for dataset dimensionality – however, it is dependent on highly ambitious
theoretical and algorithmic results from all paragraphs above.

7 Algebraic constructions/decompositions for complexity reduction

For algebraic structures such as lattices, there exist many ways of reducing or decomposing
them to smaller parts, for instance factorizations or sub-direct decompositions. However, these
constructions are very sensitive to small perturbations in the data; and approximations and
heuristics in the style of data mining are not (yet) considered in algebraic research.13 The
challenge is thus to equip the algebraic constructions with approximations and heuristics s. t. they
become suitable for data analysis.

We propose to develop methods for clustering, aggregating and factorizing ordered sets and
lattices. For ordered sets this may include order-based modifications of clustering algorithms such
as k-modes, hierarchical agglomerative clustering and density-based clustering; and one might
explore which signals for clustering can be obtained from their Dedekind-MacNeille completions.

13 There are other approximations in universal algebra, but of a different nature, which is not relevant here: they
deal with approximating infinite algebras [137] and serve, e. g., for defining the semantics of programming
languages.
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For lattices, we suggest exploiting constructions of universal algebra and lattice theory (such as
factorizations, tolerance relations, atlas decompositions etc.) [42] [190]. These methods, however,
have not been developed with real-world data with noise or disturbances in mind – up to now
there are no notions such as “the lattice is decomposable to 95 %”, and no algorithms dealing with
them.

7.1 State of the Art and Open Questions
In universal algebra [20, 87, 30] it is a well-known fact that every homomorphic image and
every subalgebra of a lattice or of a finite complete lattice and every direct product thereof is a
lattice again [19].14 This means that universal algebra provides us already with a rich toolkit for
decomposing and aggregating lattices. In particular, every congruence relation of the lattice (i. e.,
an equivalence relation that is compatible with meet and join) provides a clustering of the lattice
that additionally respects the lattice operations. The interpretation as clustering works much
better for lattices than for other types of algebras (e. g., groups), as each congruence class is a
convex set (“cluster”) and is therefore not shattered throughout the lattice. The corresponding
factor lattice can be understood as an aggregate of the original lattice. Several approaches exist
that weaken the requirement of a congruence relation. Tolerance relations [217], for example,
allow for overlapping clusters, while our newly introduced interval relations [118] produce smaller
clusters (on the cost of not respecting all meets and joins any more). Another way of reducing the
complexity of a lattice is by exploiting the fact that every lattice can be decomposed into smaller,
irreducible factors.

Many of these algebraic operations were linked to datasets (in the form of a formal context)
within the field of FCA [69]; in particular for subdirect decompositions [155, 156], for direct
products of convex-ordinal scales [175], for substitution decomposition [133, 172] and substitution
product [220, 173], as well as for tensorial decomposition [219] and tensor products [222].

▶ Example 6. Figure 4 shows the subdirect product of two conceptual scales for a conceptual
information system about flight movements at Frankfurt Airport. With this composition of
scales, one can analyze the distribution of the flight movements over different dimensions. In the
figure, the outer scale indicates the location of the baggage conveyor assigned to an aircraft. For
instance, we can see at the left of the diagram that 2503 times a baggage conveyor in Halle A was
assigned to an aircraft. The inner scale shows the position of the aircraft. Of the 2503 aircraft
mentioned before, 78 were positioned on the apron (V = Vorfeld) and 2425 at Terminal 1 (T1).
Both assignments are reasonable because Halle A is part of Terminal 1. However, the system also
helps us to discover apparent mismatches. For instance, we find that there are 180 aircraft that
had a baggage conveyor assigned at Terminal 2 but which were positioned at Terminal 1 (T1).
Focussing on these 180 flight movements with further scales would support us to discover reasons
for this apparent mismatch. ⌟

Complete congruence relations of concept lattices [157, 117] are a good starting point for clus-
tering and aggregating. Complete tolerance relations and atlas decompositions [219] have been
developed explicitly for allowing large lattices to be visualized in smaller parts just like sev-
eral map pages in a road atlas. Decompositions and factorizations are more straightfor-
ward the more structure the lattice shows. A particular strong structure is distributivity
( x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) and x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z) ) [19, 218, 42]. In this case,
the lattice can be subdirectly decomposed into linear orders (which is beneficial for ordinal factor
analysis as is discussed in Section 8).

14 The same holds for all classes of algebras that are defined solely by equations, e. g., for groups and rings.
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O12 Ort der benötigten Staubahn [SBE]

G12a Positionen (grobe Struktur) [POS]

Halle A Halle B Halle C Halle Mitte Terminal 2 Vorfeld V3

sonst. Angaben

keine unbekannte

keine Angabe
T1T2

VWG

M

18939
834514148551124

460
45

2503

242578

2940

2790150

497

48116

1635

1415

4

216

5316

180

12693867

1942

177

1918

4106

10371342306124

460

45

4106

10371342306124460 45

Figure 4 Subdirect product of the scales position of baggage conveyor and position of aircraft at
Frankfurt Airport.

However, many of these constructions have never been used for larger data analysis tasks.
This is due to the fact that lattices resulting from real-world data often do not precisely fulfil the
structural conditions required for applying a decomposition or a factorization. In such a case, a
lattice is considered as irreducible; there is no such notion as “95 % distributive” or “reducible
with an error of x”. Techniques for dealing with partly imperfect data (as they exist in numerical
settings, as for instance soft margins for support vector machines) are not in the spirit of universal
algebra, and have thus not been developed so far. The same holds for distributivity, which is
rarely observed in the whole concept lattice of real-world data. Nevertheless, empirical evidence
shows that many lattices contain “a large distributive part” – a still to-be-defined concept.

The main scientific challenge in this field is thus to develop methods for applying algebraic
constructions to lattices even if the necessary structural conditions are not satisfied. This will
include the definition of measures for the degree of satisfaction of these conditions, the provision
of preprocessing methods for “cleaning” the data appropriately, the establishment of a theory for
compositions, decompositions and aggregations with structural impurity, and the development of
algorithms and heuristics for their computation on large datasets.

7.2 Promising Research Questions
We propose three specific research questions in this area. The first two consider clustering
in ordered sets and lattices, resp., while the third one focuses on decompositions of lattices.
Considering the required research approaches, it is the latter two questions that resemble more,
as both can draw on the richer structure of lattices. In those two, the challenge is how to either
“structurally clean up” the data before applying the algebraic operations, or how to turn the
operations more “fault-tolerant”.
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Figure 5 Minard’s map of Napoleon’s campaign in Russia as inspiration for a possible density-based
clustering algorithm of an ordered set.

7.2.1 Clustering in Ordered Sets
There are (at least) two straightforward approaches for clustering algorithms for ordered sets, the
first being the adaptation of classical clustering techniques to ordered sets, and the second being
the direct exploitation of order-theoretic constructs. For the adaption approach, we suggest to
start with exploring modifications of standard clustering algorithms that rely on the comparability
of pairs of objects, as opposed to numerical distances. These include for instance k-modes [105]
and hierarchical agglomerative clustering [212] (where “hierarchical” does refer to the set inclusion
hierarchy of the clusters). We also consider it extremely promising to develop ordinal versions
of modularity-based clustering of networks [22], and – inspired by Ch. Minard’s seminal map of
Napoleon’s campaign in Russia (Figure 5, [140]) – ordinal versions of density-based clustering [59].

In the second approach, one might investigate how to exploit order-theoretic concepts (such
as common upper and lower bounds, order filters and ideals, and intervals) for new kinds of
ordinal clustering. Particularly promising is to consider the new nodes in a Dedekind-MacNeille
completion as cluster nuclei. This is due to the observation that, in the ancestor_of hierarchy
of a human genealogy, a couple with two or more children always generates a new node in the
Dedekind-MacNeille completion, which may be interpreted as a node representing the family.

7.2.2 Clustering and Factorizations in Lattices
If an ordered set is a lattice (including the case when we enforce this by the Dedekind-MacNeille
completion), one can benefit from more structure. As stated above, in theory congruence relations
and tolerance relations already provide clusterings that are even compatible with the lattice
operations. However, they may not always be applicable. Again, there are (at least) two promising
approaches to remediate this: The first is to assess the proportion of a lattice that has to be
modified such that a congruence relation or a tolerance relation with pre-defined requirements
exists; and derive methods to efficiently identify such modifications. The second is to weaken the
notions of congruence relations and tolerance relations, so that they may respect only most of the
operations. The questions here are again how to define them, how to compute (or approximate)
them efficiently, and how to interpret the results. This may result in a new notion of “operator-
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aware modularity”. An expected problem case in modularity based graph clustering is a cluster
that is a fully connected subgraph. In lattices, this corresponds to (convex) Boolean sublattices.
This correspondence could give rise to a theory and algorithms for their compression in a cluster.

Another line of research one may draw from is employing other representation modes of
the lattice: One could for instance study if there are meaningful concepts for clustering sets
of implications, and how they translate back again to the clustering problem for lattices. In
particular in the case of a large dataset one could also resort to probabilistic methods to derive
the propositional logic and dependencies [181]. One might also employ results from preliminary
work on probably approximately correct learning [24, 25] of those dependencies.

7.2.3 Decompositions of lattices
Concerning the complexity reduction of lattices by decompositions, one can follow the same
research methodology as for clusterings and factorizations: There exists a large body of algebraic
decomposition constructions for lattices, such as direct and sub-direct decompositions, or tensor
decompositions [79], but these do not admit for minor structural disturbances. Hence, a natural
task would be to adapt them to more robust versions, either by suitable preprocessing or by
modifying the decomposition mechanism directly.

A promising observation with respect to preprocessing is that many real-world lattices are “to
a large extent” distributive at their top [177], and that distributive lattices allow for particularly
simple decompositions (e. g., subdirect decomposition into linear orders). Hence, the question
for how to “repair” a lattice s. t. it becomes distributive is meaningful. In the case of “almost
distributive” lattices, one could resort to the study of how (potentially non-distributive) ordered
sets can be freely completed (in the sense of universal algebra) to lattices [190]. A potential means
to identify the non-distributive part of a lattice might then be to establish a way to reverse this
construction and develop efficient computation methods.

Additionally, one might want to explore – as described above – how other equivalent represen-
tations (in particular sets of implications) can be decomposed, and how this can be translated
into meaningful decompositions of lattices.

8 Ordinal Factor Analysis

Factor analysis (in its traditional sense) is a method of multi-variate statistics to reduce data
consisting of observations in different manifest variables to a lower-dimensional space spanned by
“latent variables” with as little loss as possible. As the variables are considered to range in the real
numbers, we will call this task numerical factor analysis in the sequel. A variety of approaches
exists, the most prominent being principal component analysis. However, all these approaches
require the data to be at least on interval scale level. Ordinal factor analysis, on the other hand,
has been developed with the same intention as its numerical counterpart, but focussing on data of
ordinal scale type.

Based on this foundation, we are looking forward to a comprehensive theory and algorithms
for an ordinal version of factor analysis, that will keep track of all operations and thus avoid
the problem of numerical factor analysis where distances may be distorted. For ordinal data the
factors are known to be ordered sets. One might continue research in this direction by focussing
on linear ordered sets as factors, as they provide an intuitive representation, in particular when
their number is low. This constitutes an instance of dimension reduction and is computationally
hard for ordinal data. Hence, one may have to resort to approximate methods for real-world data
applications. In a second step, the theoretical foundation of ordinal factor analysis might then be
adapted to non-linear factors. Our ambition is to establish ordinal factor analysis as a tool for
ordinal data analysis, that will provide a more intuitive representation of complex ordinal data.
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Figure 6 A dataset on social networks together with a visualization of a factorization into its two
largest ordinal factors. All incidences can be deduced from the projection except for (TikTok, timeline),
(WhatsApp, stories), (Facebook, timeline), (YouTube, stories), (Facebook, stories). The ordinal projection
does not contain false data.

8.1 State of the Art and Open Questions

In multivariate statistics empirical observations are used to draw conclusions about underlying
independent random variables. This was first developed by Spearman [170] in 1904 for evaluating
intelligence tests, tracing them back to a single “general factor”, and was generalized to multiple
variables in 1919 by Garnett [80]. Building on this notion, nowadays two variants of factor analysis
are employed. On one hand, confirmatory factor analysis [96] is used in social research to test
whether the data fits to hypothesized measurement models. On the other hand, explorative factor
analysis [149] is used to discover hidden structures in underlying data without the numbers of
factors being known beforehand. This explorative factor analysis is closely related and often
confused with principal component analysis as noted in [107], even though both techniques differ
in execution as well as in their aim. In the area of recommender systems, factor analysis came to
prominence through the “Netflix Prize” that was held between 2006 and 2009 where Funk [67]
showed how to use factor analysis techniques to predict users preferences of movies. This approach
was improved and refined in [123, 98]. A similar but not equal way of doing factor analysis is
called non-negative matrix factorization and applied in cluster analysis of documents [171] or in
astronomy [15]. One problem of these approaches is that the resulting factors are difficult (or even
impossible) to interpret for a data analyst.

To avoid this problem, steps towards an explainable factor analysis have been made in the field
of FCA. This goes back to Kerpt and Snásel [112, 113] and was further developed by Belohlavek
and Vychodil [12, 13] under the name Boolean factor analysis. They compute a factorization of a
Boolean matrix into two binary matrices, such that their Boolean matrix product results in the
original matrix.

For such a factorization there is a corresponding factorizing family in the lattice, consisting
of k formal concepts, called Boolean factors. Even though it is known to be N P-complete to
decide whether a Boolean matrix has a factorization into k Boolean factors, they introduce a set
of algorithms for Boolean factor analysis which optimize k. Building on these notions, ordinal
factor analysis was introduced by Ganter and Glodeanu in [71, 70], as a technique to meaningfully
group Boolean factors, together with a visualization technique to depict ordinal factors in a biplot.
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▶ Example 7. Figure 6 shows, on the left, a small dataset about prominent social networking
platforms. On the right, a factorization of the dataset into its two largest ordinal data is shown.
In the plot, an object contains all attributes that are listed below on the horizontal axis and all
attributes that are listed left of it on the horizontal axis. The plot contains all information of
the original dataset, except the four incidences listed in the caption of the figure. In order to
cover these relations as well, the third factor would have to be included as well, leading to a 3D
visualisation. ⌟

The authors restrict their work to ordinal factors that form a chain in the concept lattice. This
linear factor analysis is closely related to dimension theory of ordered sets [206], as in both cases
a minimal number of chains is computed that covers an ordered set. In [82] the authors show
that linear factor analysis can be applied to data sets from real-world applications and in [81] the
theory of linear factor is transferred to triadic concept analysis. A modification of the visualization
technique for the linear factors and the idea to extract two maximal linear factors that cover most
of the data is proposed in [70]. A way that tries to cover most of a concept lattice with two chains
and can thus be seen as a variant of linear factor analysis is described in our work [47].

While linear factor analysis seems to be a promising tool for a data analyst, it is still not
yet fleshed out enough to be applied in practice. This is mainly due to the fact of being
computationally expensive, and thus algorithms have not yet been developed (except for the
Boolean case). Furthermore, the theoretical backbone of the theory is not yet broad enough to
provide a data analyst with a robust toolkit of methods and variants.

8.2 Promising Research Questions
The overarching research question here is how to develop ordinal factor analysis to a mature
(visual) data analysis tool, that can be applied using little manual effort. In particular this calls
for enriching the theoretical backbone and the development of algorithms to make ordinal factor
analysis applicable in practice. The algorithms should be able to extract structure that is already
encapsulated in data and to deal with incremental changes in the data. Finally, a variant that
also deals with non-linear factors (e. g., trees) might be of interest.

8.2.1 Computing Linear Factorizations in Two and More Dimensions
A first step in this direction is our greedy algorithm [52] that iteratively extracts the largest
remaining ordinal factor from a formal context. Furthermore, our second work [53] builds on
an idea proposed by Ganter [70] to cover a maximum subset of the dataset with a small set of
linear factors. This proposed method allows for the incorporation of heuristics to approximate a
factorization into two dimensions, and examines the computational boundaries.

We assume two-dimensional linear factor analysis to perform better on smaller datasets, as
large datasets tend to comprise more complex dependencies. Thus, a second step may leap
significantly beyond the state of the art by exploring how complex data can be represented with
factor analysis in higher dimensions. As the two-dimensional case is already known to be of high
computational complexity, we do expect this to be an even more complicated problem, which will
definitely require the development of heuristics.

As the aim of these factorizations is to improve the understanding of correlations in data sets
for a data analyst, novel visualization techniques are required. The practicability of resulting
breakthrough approaches and algorithms of ordinal factor analysis in higher dimensions will have
to be demonstrated. As it hardly seems possible to visualize factors far beyond dimension three
on a static two-dimensional document, interactive navigation methods will have to be developed
as well.
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8.2.2 Background Orders and Evolving Data
In real-world settings, parts of the data may already be (linearly) ordered because of additional
background information. Such data often appears in practice, as especially data containing
numerical values (including time) are already ordered. An ordinal factor analysis should respect
such background orders as it is unnatural for an analyst to have concepts such as time divided
and distributed over different factors. One could follow (at least) two possible routes to avoid this
problem. The first one is to disregard the ordered part of the data from for the computation of an
ordinal factorization. Then in a second step this order would be added back as an additional factor.
While this guarantees the purity of this additional factor, it might not depict relationships to a
sufficient degree. Thus, one might want to follow a more ambitious path by developing algorithms
which do not split such an ordinal structure into different factors but are completely contained
in a single factor. This factor is however still allowed to contain additional information and is
contrary to the first approach not restricted to the background order.

Another typical requirement in practice is to update the factorization when data is evolving.
Computing an ordinal factorization of a large dataset will not be (computationally) cheap because
of the high computational complexity. Thus, if a small detail changes in the data it should be
possible to integrate it in an existing ordinal factorization without having to repeat the whole
computational effort. Furthermore, the structure of the factorization should be stable to a sufficient
degree, as a human data analyst looking a second time at slightly modified data should be presented
with familiar ordinal factors. This proposes two research questions, the first being if one already
has to follow additional restrictions when computing the first factorization to allow a later change
in the data. The second is how one can insert the changes into an existing factorization.

8.2.3 Non-Linear Factor Analysis
As often complex data is not correlated linearly, further research on non-linear factorizations
seems to be promising. The definition of ordinal factors stemming from a linear order of Boolean
factors allows the definition to be extended to factorization into arbitrarily ordered sets. However,
these non-linear factors have to be further restricted as otherwise every lattice is its own, trivial
factorization. We propose to investigate several restrictions for non-ordinal factors that seem
reasonable, such as planarity, two-dimensionality, distributivity, and trees. Another possible
approach to gain a reasonable factorization is to fix the number of factors beforehand and to allow
arbitrary non-ordinal factors that should approximately be of similar cardinality. For all those
restrictions no preliminary work is available, making this endeavor highly challenging because of
anticipated potential complexity as well as visualization problems.

9 Visualizing, Exploring and Explaining Ordinal Data

Real-world ordinal data are usually too large to be analyzed by simply browsing the set along
the edges of the order relation. The typical means of presenting ordered sets to humans is
via line diagrams. A surprisingly hard conceptual problem that we will discuss in this section
is the specification of HCI-founded, formal optimization criteria for graph drawing, for which
one can then develop efficient layout algorithms [203, 47]. A second conceptually demanding
problem – still addressed manually today – is the automatic break-down of large ordered sets
into smaller, visualizable parts together with suitable means for their interactive exploration [182].
We will motivate the development of new interaction paradigms based on the decomposition and
factorization methods discussed in Sections 7 and 8. These are particularly challenging as they
also have to transmit the information about the effects caused by approximations.
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9.1 State of the Art and Open Questions
Graph Drawing has a long research history, represented a. o. by the series of Graph Drawing
Symposia15 since 1992. Partial orders and lattices are specific types of graphs, and their drawings
can benefit from cycle freeness. Surprisingly, though, there exist only a few criteria for formalizing
readability (e. g., maximizing distances between nodes and lines, maximizing angles of crossing
lines, minimizing the number of different edge directions, organizing nodes in layers). There is
agreement in the community that further criteria are needed, and that they have to be empirically
evaluated from the HCI perspective.

In order theory, a common tool for visualizing and investigating ordered set is the order
diagram, that is sometimes also called line diagram or Hasse diagram. The order diagram of an
ordered set (X, ≤) is a directed graph, where the edge (a, b) ∈ X × X exists if and only if a < b

and there is no c ∈ X such that a < c < b. In a drawing of this graph the direction of an edge is
not signaled by an arrow but by the y-coordinates, with the dot marking the position of b being
above the dot marking the position of a. The relative horizontal positions are thus used as visual
variable [16]. While readable order diagrams can be drawn from an experienced expert by hand,
this is not viable in practice, as it is a time-consuming task. The automatic generation of well
interpretable graph drawings is a surprisingly hard task. The problem starts with the fact that
the readability criteria described above are partly conflicting and that their relative importance
varies in different settings. In the standard work about graph drawing [203, Sect. 3.1] several
divide-and-conquer algorithms for drawing trees, which are closely related to order diagrams, are
described.

In the case of a planar graph (which can be checked in linear time [103]), a drawing only
consisting of straight lines without bends or curves always exists [148, Sect. 4.2 & 4.3] and
should be preferred. For an order diagram with a unique maximum and minimum it can be
checked whether it is planar and in this case an upward planar drawing can be computed in
linear time [203, Sect. 6]. However, while lattices by definition contain a maximum and minimum
element, they are usually not planar if they are derived from real world data [4]. A drawing
algorithm [203, Sect. 3.2] for “serial parallel graphs”, a special family of planar, acyclic graphs
straight-line drawings can be equipped with a modification to produce symmetries based on the
automorphism group [102]. Sugiyama et al. [197] published in 1981 an algorithm framework to
compute upwards layered drawings of acyclic graphs. Force directed algorithms were introduced
in [54] and further refined in [66]. In [65, 51] this idea is applied to order diagrams. Our work [194]
proposes a geometrical heuristic to support a human to draw order diagrams manually. By trying
to emphasize the intrinsic structure of ordered sets our work [47] proposes a drawing algorithm
based on the computation of two linear extensions. The algorithm is included as a tool in the
software-suite conexp-clj16 under the name DimDraw [49].

▶ Example 8. The example in Figure 7 shows that it is possible to achieve competitive order
diagrams using this approach. The concept lattice was created for structuring an educational film
about living beings and water [200, 79]. The left diagram was hand-drawn by an FCA expert. The
diagram in the middle was generated with the algorithm of Sugiyama et al. [197] while the right
one was drawn with the DimDraw-algorithm [47] which leverages the dimensional structure of the
order. Experiments have shown that the DimDraw results are often rather close to hand-drawn
diagrams. ⌟

15 https://dblp.uni-trier.de/db/conf/gd/
16 https://github.com/tomhanika/conexp-clj
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Figure 7 Three order diagrams for the visualization of the same ordered set: hand-drawn by an expert,
by the Sugiyama algorithm and by the DimDraw algorithm.

As ordered sets and lattices even of modest size (from, say, 30-50 elements upwards) are hard
to visualize such that they are still beneficial for a data analyst, further means of interaction
are necessary for larger ordered sets. One way is to compute a diagram in 3D, which can be
done using [65] or a modification of [47], and then allow to rotate it on the screen, but this does
not increase the size of presentable nodes significantly. Another way is to display only a single
node together with its upper and lower neighbors at a time, and to shift the focus when the
user selects one of these neighbors. This has for instance been used by Carpineto and Romano
for Information Retrieval [33]. A third approach follows the divide & conquer paradigm. Its
first realization for concept lattices decomposed the lattice in two or more factors of a sub-direct
semi-product, and combined their smaller diagrams in a nested line diagram [221, 188, 182].
This is also the archetype for the kind of algebraic constructions that we suggested studying in
Section 7. This approach became part of a model for Conceptual Information Systems [8] and
has been implemented in the ToscanaJ tool suite17 [9, 10, 40]. ToscanaJ also allows, by means
of conceptual scaling, to visualize concept lattices derived from data types of any kind, and to
navigate intuitively through the data by switching between the conceptual scales and zooming
into concepts. However, the initialization of the system requires conceptual and manual work, in
particular a meaningful selection of the factors and a manual layout of the order diagram for each
factor. The model of Conceptual Information Systems has been generalized in various ways: as
ordinal version of Online-Analytical Processing [191, 183, 56, 100, 193], for accessing databases
and conceptual graphs [125] and knowledge bases [64]. A good survey over navigation paradigms
and layout algorithms for concept lattices with hybrid data is provided by [57].

9.2 Promising Research Questions
The main objective of the visualization of ordinal structures is to support human analysts in
analyzing and exploring large ordinal data. In particular, we emphasize on the urgent need of
new layout algorithms that allow for a completely automatic, well interpretable visualization of
medium-sized ordered sets and lattices. These might include new interaction paradigms based on
the decomposition and factorization methods as discussed in Sections 7 and 8. This approach is
particularly challenging as it also has to transmit the information about which aspects of the data
are not represented in the visualization, due to an approximation.

These (static) visualizations may pave the way for (dynamic) interactive browsing and exploring
of complete datasets. Again, the opportunities for new browsing paradigms may benefit from
advances in the field of algebraic decompositions and ordinal factor analysis as discussed in Sections
7 and 8.

17 http://toscanaj.sourceforge.net/

http://toscanaj.sourceforge.net/
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9.2.1 Visualization of Ordered Sets and Lattices
Ordinal factor analysis, as discussed in Section 8, will provide a set of chains that cover all
points represented in a dataset. Using ideas from [47], this could be applied for a novel drawing
algorithm, which, however, would not reduce the – typically too large – order dimension. One
could hence exploit means for order dimension reduction (towards dimension 2) as discussed in
Section 7, or employ force directed drawing algorithms in three or more dimensions. The challenge
is to incorporate the order constraints such that they are all reflected properly in the resulting
diagram. Another potential approach might be machine-learning-based dimension reduction. This
is challenging since the requirement that the y-coordinates of data points have to obey the order
relation is not encoded in non-linear methods such as t-SNE [134], in contrast to linear methods
such as PCA [227]. This is also true for deep learning procedures, which nevertheless might be
worth being adapted to ordinal data.

For some special families of lattices (such as distributive lattices, two-dimensional lattices
or Boolean lattices), methods exist for generating readable drawings. Thus, in a third line of
research one could explore modifications (removing or adding vertices and/or edges) such that the
lattice “partly fulfills” these properties – which first needs to be defined. In a second step, the
drawing of this structurally simpler part could then be used to derive a readable drawing for the
whole lattice. A supporting study of this endeavor would be to empirically investigate how large
the two-dimensional, distributive or Boolean parts of real-world lattices have to be to justify the
applicability of such an algorithm.

9.2.2 Browsing and Exploring Large Orders
There may be many ways for future approaches to browsing and exploring ordered sets. We
assume that some of them will be based on the outcomes of research along the lines described in
Sections 7 and 8. From today’s perspective we anticipate these approaches as follows. The slice &
dice paradigm of On-Line Analytical Processing (OLAP) provides a good scheme for analyzing
multidimensional numerical data, and first applications to ordinal data exist [191, 183, 56, 100, 193].
A similar approach might be followed for the clusterings, decompositions and factorizations
developed as described in Sections 7 and 8. To date it is not obvious, though, whether the same
visualization and interaction paradigms can also be applied to the new constructions. What is
definitely missing in the preliminary work is the handling of disturbances. In a second step, we might
therefore address the visualization of and interaction with algebraic clusterings, decompositions
and factorizations that have been approximated. As there does not exist any preliminary work
on this, this part of the research will be of non-incremental nature. Our assumption is that the
analyst will be informed about the existence of any non-covered and eventually wrongly assigned
data, at least on request. Following the paradigm of Explainable AI, the analyst should be enabled
to drill down to the original data if necessary, and to obtain explanations in case the construction
could not fully respect the data.

10 Challenges and Long-Term Perspective

While a wide range of methods for Data Analysis and Knowledge Discovery has been developed
for data that are on ratio level (i. e., can be adequately modeled with real numbers), there are
fewer methods for data on ordinal level. In this paper, we call for a joint activity to bring these
methods together and to extend them with new ones, and to establish thus the new research field
of Ordinal Data Analysis. The amount of ordinal data in the real world is large, and so is the
requirement for adequate methods and algorithms. There are many research opportunities in this
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field, and we can provide only some teasers in this paper. We are looking forward to all kinds of
contributions to the new field of Ordinal Data Science, both within and outside the five subfields
discussed in the previous sections.

We see Ordinal Data Science in a long tradition of Conceptual Knowledge Processing, where
we aim at a highly human-centered process of asking, exploring, analyzing, interpreting, and
learning about the data in interaction with the underlying database [101, 184]. In this line, we
follow R. S. Brachman et al. [26], who introduced the notion of Data Archaeology for knowledge
discovery tasks in which a precise specification of the discovery strategy, the crucial questions,
and the basic goals of the task have to be elaborated during such an unpredictable interactive
exploration of the data.

We expect that all future contributions to this new field will share a range of challenges
that are specific for research on the intersection of computer science and mathematics, which
both come with different philosophical foundations, research aims and working paradigms. One
challenge will be to develop sound theoretical theories, another one to find computationally
feasible solutions and/or approximations. Last but not least the algorithms and methods have
to be made accessible to their users, e. g., by suitable visualizations, interaction paradigms and
human-computer interfaces.

We will conclude this paper by illustrating, for the five fields that we discussed in the previous
sections, the challenges and long-term perspectives that we expect to face:

We expect to meet the largest theoretical challenges in the endeavor of developing an ordinal
version of the Representational Theory of Measurement. The replacement of the numerical
relational structure in RTM by ordinal relational structures (and in the long run by other, non-
ordinal relational structures such as symmetry groups) implies the loss of focus on additivity. A
generalization of RTM thus requires a much more flexible framework that allows for a large variety
of (numerical and) non-numerical scales, and it is not obvious a priori how such a framework might
look like. A major criticism to RTM is that in practice the pre-conditions for applicability of
measures on interval or ratio scale are hard to verify, and that nominal measurements (whose pre-
conditions are easier to verify) do not provide enough insight. When we succeed, we expect a new
ordinal theory of measurement to fill the gap between these extremes and to become a significant
contribution to the still intense discussion about the applicability of RTM for psychological studies
([139, 204, 205], a good survey is [201]).

Generalized ordinal scales are just a special case of allowing arbitrary algebraic structures as
ranges of measurements. In the long run we have the ambition to establish a “Grand Unified
Theory of Measurement”, which is likely to be of high interest to (the philosophical foundations
of) physics (where traditionally the adaptation of measurement to psychological phenomena has
been eyed with some suspicion), as it might allow for describing the study of, e. g., the symmetries
of elementary particles in the same way as their numerical properties.

In Section 6, we proposed to develop a joint theory for the interplay of metric functions and
ordinal relations, based on the archetype of metric measure spaces. While, in the latter, both
metrics and measures operate on the set of real numbers, our proposed approach tries to marry
two structurally different domains. We might thus face the task of developing a new paradigm of
interaction which has no precedents that can be followed.

In Sections 7 to 9, we argued for the exploitation of algebraic structures for data analysis
tasks, which unfortunately go along with large size and computationally hard problems. E.g., the
size of concept lattices grows in the worst case exponentially in the size of the data, which in
the Information Age are already large by themselves; and determining the order dimension of an
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ordered set is N P-hard. In Data Science, the typical approach is to use projections, decompositions,
approximations, and heuristics. However, these kinds of approximations and heuristics are no
subject of study in classical universal algebra, and still have to be established. In particular, we
suggest to make use of algebraic composition and decomposition techniques for a divide & conquer
approach for browsing and exploring the data. The transformation of the (approximated) algebraic
constructions to human–computer interaction paradigms that support users without knowledge of
universal algebra and order theory is challenging, as there is little precedence. Nonetheless, if this
works out, it might provide a whole new family of analysis techniques for ordinal data.
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Abstract
Compared to black-box neural networks, logic rules
express explicit knowledge, can provide human-
understandable explanations for reasoning pro-
cesses, and have found their wide application in
knowledge graphs and other downstream tasks. As
extracting rules manually from large knowledge
graphs is labour-intensive and often infeasible, auto-
mated rule learning has recently attracted signi-
ficant interest, and a number of approaches to
rule learning for knowledge graphs have been pro-
posed. This survey aims to provide a review of
approaches and a classification of state-of-the-art

systems for learning first-order logic rules over know-
ledge graphs. A comparative analysis of various
approaches to rule learning is conducted based on
rule language biases, underlying methods, and eval-
uation metrics. The approaches we consider include
inductive logic programming (ILP)-based, statist-
ical path generalisation, and neuro-symbolic meth-
ods. Moreover, we highlight important and prom-
ising application scenarios of rule learning, such as
rule-based knowledge graph completion, fact check-
ing, and applications in other research areas.
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1 Introduction

Knowledge graphs are a popular form of knowledge bases that describe facts about real-world
entities and their relations. They serve as powerful tools for organising and modelling information
in a way that allows for efficient storage, retrieval, and reasoning. Recently, they have garnered
significant attention in both academia and industry. Many public knowledge graphs have been
developed, such as Freebase [8], WordNet [46], YAGO [69], DBPedia [3], and WikiData [76]. They
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7:2 Rule Learning over Knowledge Graphs: A Review

highlight the pivotal role these graphs play as expansive and valuable resources, supporting a
wide array of applications in artificial intelligence, data analysis, and knowledge representation.
Additionally, numerous commercial knowledge graphs have been created, such as Google KG [18],
Microsoft Satori [34], and Facebook Graph Search [19]. These knowledge graphs have demonstrated
their capability to provide more efficient services for other products in their companies. They
enable efficient querying and reasoning, allowing users and applications to gain valuable insights
and make informed decisions based on interconnected knowledge. Many knowledge graphs are
large-scale with millions of entities and facts. For instance, in the case of the DBpedia Core
Release, the 2016-04 edition of the DBpedia dataset, it contains 6.0 million entities and 9.5 billion
triples. These numbers underscore the substantial growth in both the size and complexity of
knowledge graphs. Some medium-sized knowledge graphs encompass tens of thousands of entities
and several hundreds of thousands of facts.

The rise of knowledge graphs is intricately linked to the advancement of the Semantic Web [7].
Abiding by the triple-based definition of the Semantic Web, a knowledge graph is a set of RDF
triples such as (Allen, livesIn, NewYork), which means Allen lives in the city of New York. As
highlighted by some researchers [49, 6], a knowledge graph goes beyond being a simple graph
database. Data management and reasoning in knowledge graphs can be empowered by a layer
of conceptual knowledge, known as the ontology layer, and such conceptual knowledge can be
represented as logic rules. For instance, consider a rule 0.9 : hasBirthPlace(x, y)∧isRegionOf(y, z) →
hasNationality(x, z). This rule implies that if x was born in the place y of country z, then x may
have the nationality of z with a confidence degree of 0.9. Such rules can be used for reasoning
over knowledge graphs, enabling the prediction of new facts based on existing ones. Unlike
black-box deep neural networks, rules offer explicit high-level knowledge and can provide human-
understandable explanations for the reasoning processes. However, crafting rules manually for large
knowledge graphs is challenging, if not practically impossible. Therefore, the automatic extraction
of high-level rules becomes both useful and important for knowledge graphs. The learned rules
can be directly applied to reasoning in knowledge graph completion tasks. Additionally, they can
be indirectly utilised to enhance the interpretability of neural network models for knowledge graph
reasoning.

Learning Horn clauses has been studied extensively in the inductive logic programming (ILP)
literature [47, 47, 15]. In the context of ILP-based approaches, first-order Horn rules are explored
by systematically exploring the rule space through various refinement operators. Classical ILP
systems [92, 68] cannot be used directly to handle knowledge graphs due to the lack of negative
examples and the large data sizes. Recently, ILP-based rule learners such as AMIE [24] and
its extensions [23, 37] have been developed with the aim of handling knowledge graphs. Thus,
predicates in rules learned by AMIE+ are binary. This language bias helps significantly reduce the
search space in rule learning. They use plausibility metrics adapted from association rule mining
to address the lack of negative examples. ILP-based rule learners for knowledge graphs usually
assign a confidence score for each learned rule. Such approaches are also referred to as Probabilistic
Inductive Logic Programming (PILP) in the literature [65]. Another group of approaches generate
candidate rules by directly exploring frequent patterns or paths of different granularity. A typical
system in this group is AnyBURL [45, 44], which samples paths within knowledge graphs and
generalises them to form rules. It generalises path instances by substituting entities from sampled
paths with variables, thus forming rule patterns. The effectiveness of such an approach relies
on the ability to sample representative paths and apply suitable statistical metrics. Apart from
instance-level paths, some other rule learners explore ontological-level paths within knowledge
graphs [13, 12, 56], which significantly reduces the search space of paths. Recently, there has
been an emerging interest in integrating neural networks into the realm of rule learning. Neural
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networks have shown remarkable success in various machine learning tasks and can automatically
learn feature representations from raw data, including knowledge graphs. These neuro-symbolic
approaches have the advantage of simultaneously learning both rule structures and parameters.
Neural LP [89] is the first attempt to propose a framework combining both of the learning in an
end-to-end differentiable model. Another group combines neural network models with other rule-
learning strategies through knowledge graph embeddings, like EMBEDRULE [88] and RLvLR [51].
The incorporation of embedding can improve the scalability of rule learning over large knowledge
graphs.

In this paper, we survey major approaches to learning first-order Horn rules over knowledge
graphs, aiming to serve as a resource for researchers and practitioners in rule discovery over
knowledge graphs. We are unaware of any similar survey paper on automated rule learning over
knowledge graphs. More specifically, this paper provides a comprehensive review of state-of-
the-art rule learners. It presents a comparative analysis of various approaches to rule learning,
considering factors such as language bias, evaluation metrics, and underlying methods. Secondly,
a categorisation of rule learning methods and techniques is provided. The surveyed approaches
encompass three main categories: ILP-based, statistical path generalisation, and neuro-symbolic
methods. Thirdly, this survey investigates the important and promising application scenario of
logic rules, offering valuable insights into the current and future directions of this important field.
By providing a comprehensive overview of the state-of-the-art approaches and highlighting the
challenges and opportunities in rule learning, we hope to inspire further research and innovations
in this area. We believe that this survey will facilitate knowledge exchange and collaboration
among scholars and industry professionals, ultimately leading to significant contributions to the
field of rule learning and beyond.

The rest of this paper is organised as follows. Section 2 provides an overview of our survey
paper, introducing the definition of knowledge graphs, first-order Horn rules, a classification of
learning methods, and the rule evaluation metrics. Sections 3, 4 and 5 focus on three categories of
rule learning methods, respectively. Section 6 introduces the applications of first-order Horn rules
automatically learned by rule learners. Finally, we discuss the future directions of rule learning
and conclude the paper in Section 7.

2 Overview

In this section, we will first fix some definitions and notations in knowledge graphs and rule
languages that will be used in the paper. Then, we formulate the problem of rule learning in
knowledge graphs, and then propose a classification of rule learning methods. A method of
rule learning is essentially a process of ranking candidate rules. So, we will also introduce three
confidence measures of rules before we discuss specific methods of rule learning later.

2.1 Knowledge Graphs and Rules
In this subsection, we introduce the basics of knowledge graphs and rules.

Knowledge graphs represent real-world entities, such as persons and places, and binary relations
among them. A knowledge graph (KG) is often expressed as a set of triples of the form (s, p, o),
where entities s and o are called the subject and object of the triple, respectively, and p is
the relation. A KG is essentially a directed multi-relational graph by viewing the entity (the
subjects and objects) as the vertices and a triple (s, p, o) as an edge from s to o with the label p.
For instance, a triple (airline-NY, hasBase, airport-JFK) describes that the two entities airline-NY
and airport-JFK are connected by the relation hasBase. Following the convention in knowledge
representation, a triple is also denoted as a fact p(s, o).

TGDK



7:4 Rule Learning over Knowledge Graphs: A Review

Figure 1 An example knowledge graph.

Formally, let E and P be respectively the sets of entities and relations in a KG G. For a
relation p, p− denotes its inverse, i.e., triple (runway-408, hasRunway−1, airport-JFK) is equivalent
to (airport-JFK, hasRunway, runway-408). And P∗ denotes the set of the relations and their inverse
relations, i.e., P ∪ {p− | p ∈ P}. In this paper, we consider the class of first-order Horn rules,
which is sufficiently expressive for many practical applications in the Semantic Web and AI, and
allows efficient reasoning algorithms. Moreover, in KGs, only binary and unary relations are
considered. While a binary relation connects two entities, a unary relation represents a type (or
class) of entities. In first-order logic, a relation is expressed as a predicate. Whenever no confusion
is caused, we use these two terms alternatively.

A term is either an entity or a variable. If p is a binary relation, p(t1, t2) is an atom, where t1
and t2 are terms. Similarly, if p is a unary relation, p(t) is an atom, where t is a term.

A first-order Horn rule r is of the form

b1 ∧ . . . ∧ bn → h (1)

where h, b1, . . . , bn are atoms. The atom h is the head of r, denoted head(r), and the conjunction
of atoms b1, . . . , bn is the body of r, denoted body(r). Intuitively, the rule r reads that if b1, . . .,
and bn hold, then h holds too. The length of the above rule body is n (the number of body atoms
in the rule).

Due to the enormous search space of first-order Horn rules over large KGs, existing rule learning
approaches often adopt certain language biases to restrict the forms of rules to learn, such as
constraining the maximum length of rules, to effectively reduce the search space. This enables the
rule-learning algorithm to be more efficient and applicable in practical scenarios. These constraints
strike a balance between the size of the search space and the expressiveness of rules.

A most common language bias is to learn rules that represent path patterns in KGs, that is,
the class of closed-path (CP) rules [81, 51]. Intuitively, in a CP rule, the body atoms form a path
from the subject to the object of the head atom (involving only variables not entities). Formally,
a closed-path rule is of the form

p1(x0, x1) ∧ p2(x1, x2) ∧ · · · ∧ pn(xn−1, xn) → p(x0, xn), (2)

where p ∈ P , pi ∈ P∗ (1 ≤ i ≤ n) and xj ’s (0 ≤ j ≤ n) are variables. Note that CP rules allow
recursion, i.e., the head predicate can occur in the body. The advantage of closed-path rules lies
in their ability to capture specific and meaningful patterns in the data. These rules can reveal
intricate dependencies, cyclic patterns, and sequential behaviours present in the data, providing
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deeper insights into the underlying associations. Focusing on CP rules reduces the search for
candidate rules to the problem of path finding and ranking in KGs. This type of rules have been
widely adopted by major rule learners [88, 25, 13, 51, 56].

As the class of CP rules is too limited for some applications, one way to expand the class of
CP rules is to allow rules that are closed and connected. Two atoms in a rule are connected if
they share a variable or an entity. A rule is connected if every atom in the rule is connected to
another atom. A variable in a rule is closed if it appears at least twice in the rule. A rule is closed
if all of its variables are closed.

To avoid learning rules with unrelated atoms, some methods, such as AMIE and its variants [24,
23, 37], require that the graphs of learned rules to be connected. In addition, to avoid having
variables with existential quantifier in the rule head, a learned rule must be closed. For example,
the rule p1(x0, x1) ∧ p2(x1, x2) → p(x0, x1) is connected but not closed, while the rule p1(x0, x1) ∧
p2(x2, x2) → p(x0, x1) is closed but not connected. By the definition, it is clear that a CP rule is
both connected and closed, but not vice versa. For example, p1(x0, x1) ∧ p2(x1, x2) ∧ p3(x0, x1) →
p(x0, x2) is both connected and closed, but not a CP rule.

Another natural extension of CP rules is to allow unary predicates, i.e., classes (or types),
in the rules [82]. Such a rule also describes a path pattern in the KG, but allows to specify
the classes (or types) of the nodes on the paths. The rule person(x0) ∧ hasBirthPlace(x0, x1) ∧
city(x1) ∧ isRegionOf(x1, x2) ∧ country(x2) → hasNationality(x0, x2) is a typed rule. It specifies the
classes (types) of x0, x1, x2 to be Person, City, Country.

Some rule learners can learn more expressive rules beyond first-order Horn rules, allowing
negations [21, 31, 75], numeric values [54, 77], temporal values [52, 42], etc. Such extensions
are useful for practical applications. Specifically, some approaches can learn rules that involve
comparisons among numeric values, for example, hasBirthYear(x, v0) ∧ hasBirthYear(y, v1) ∧ v0 >

v1 → younger(x, y). This rule says if a person x was born after another person y, then x is
younger than y. Here, the relation hasBirthYear takes literal numbers as its object datatype. Some
approaches focus on learning nonmonotonic rules (or negated rules) with negated atoms in the
rule body, such as bornIn(x, y) ∧ not immigrate(x, z) → livesIn(x, y) says that a person x who was
born in a place y and is not known to have migrated to z lives in y. Moreover, temporal rules
can be learned over temporal KGs where every atom has a timestamp. For example, the rule
bornIn(x, y, t) → diedIn(x, y, t + 80) indicates that if a person x born in city y at timestamp t

usually die in the same place at time t + 80.

2.2 A Classification of Rule Learning Methods
The task of rule learning is to automatically extract a set of first-order logic Horn rules over a
given KG. Formally, given a KG G, a rule learning system, a.k.a. rule learner, learns a set of rules
r of the form b1 ∧ . . . ∧ bn → h with a confidence degree 0 ≤ αr ≤ 1 associated with each rule r.
The relations and (possibly) entities in r are from G, and r is considered plausible if there are
many instances of r obtained by substituting the variables in r with entities in G, such that the
atoms in these instances are facts occurring in the KG G. The more such instances exist the more
plausible r is. The confidence degree αr is calculated to reflect the plausibility of r, i.e., the more
plausible r is the higher αr should be.

Rule learning involves both learning the rule structures and estimating their plausibility. For
example, in traditional Inductive Logic Programming, rule structure learning is achieved by
systematically exploring the rule space by adding, updating, or deleting atoms at a time in the
rule bodies. Rule plausibility is measured via example coverage by the set of learned rules. That
is, given two sets of positive examples (true facts in the data) and negative examples (false or
absent facts), the rule learner aims to induce a set of rules that cover as many positive examples

TGDK
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and as few negative examples as possible. Yet, due to the large sizes and the lack of negative
examples in KGs, the traditional ILP methods of traversing rule space for structure learning and
measuring example coverage for plausibility estimation are not directly applicable to KGs.

To handle the large sizes, complexity, incompleteness and dynamics of KGs, many novel and
efficient rule learners have been developed. We classify them by two dimensions as shown in
Figure 2, according to their structure learning and confidence measure methods.

Figure 2 The categorisation of rule learners.

According to the rule structure learning methods, we can broadly categorise existing methods
into three groups: the inductive logic programming (ILP)-based approaches, which use refinement
operators to guide the search in the rule space, the statistical path generalisation methods, which
extract frequent patterns from sampled paths or sub-graphs of the KGs, and the neuro-symbolic
approaches, which directly or indirectly utilise neural networks to learn rules. We will introduce
these three groups of methods with their representative works in Sections 3, 4, and 5.

According to the confidence measures, we classify the existing methods into three groups:
the example coverage measures, which are in the same spirit as ILP approaches, by generating
negative examples from KGs via a form of closed world assumption; the statistical confidence
measures, which adapt statistical measures from association rule mining to address the lack of
negative examples; and the confidence learning approaches, which learn confidence degrees as
parameters of some neural networks. We will discuss these confidence measures in further detail
in the remainder of this section.

Generally speaking, earlier works on KG rule learning are mostly ILP-based or statistical path
generalisation methods, while most recent ones are largely neuro-symbolic methods. Statistic
confidence measures are the most widely used, as they do not rely on the existence of negative
examples and have better interpretability, i.e., statistical meanings. While confidence learning is
only adopted by neuro-symbolic methods, example coverage measures have also been employed
in statistical path generalisation methods. Interestingly, we have not found an ILP-based rule
learner for KGs that adopts the example coverage measure which originates from ILP.
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2.3 Rule Confidence Measures
Rule confidence measures play a crucial role in rule learning, as they indicate the plausibility of
the learned rules, and the accuracy of such measures is critical for downstream tasks based on the
learned rules. There are three main approaches for rule confidence measures, example coverage,
statistical, and confidence learning measures.

2.3.1 Example Coverage
Traditional rule learning approaches, such as inductive logic programming (ILP), typically measure
the confidence of rules via their coverage of observed positive and negative examples. It views a
collection of rules as a classification model for the observed examples, and the goal of rule learning
is to find a set of rules that cover as many positive examples as possible and as few or zero negative
examples as possible. Specifically, for a first-order Horn rule r, intuitively a positive example is a
tuple of entities a that satisfy the head of the rule head(r), i.e., when the variables x in h are
substituted with a, the resulting atom is a fact in the KG. Similarly, a negative example is a tuple
of entities a′ that do not satisfy the head of the rule head(r), i.e., the substituted atom is not
a fact in the KG. The body of r covers (or simply say r covers) a tuple of entities a if when x
is substituted with a, there is a way to substitute the other variables in r to make all the facts
obtained from the body of r facts in the KG.

Given two sets A+ and A− of respectively positive and negative examples, let exA+(r) and
exA−(r) consist of respectively positive and negative examples covered by r. Formally, for a set of
rules R with the same head h, the coverage of R w.r.t. A+ and A− is defined as

cover(R, A+, A−) = β ·
|
⋃

r∈R exA+(r)|
|A+|

− (1 − β) ·
|
⋃

r∈R exA−(r)|
|A−|

. (3)

Some rule learning approaches measure the confidence of individual rules based on variants
of the coverage [54, 56], by applying it to individual rules r instead of a rule set R. However, a
major challenge is that KGs adopt the Open World Assumption (OWA), that is, missing triples
are not necessarily false but just unknown, which makes them inherently lack negative examples.
To address this issue, certain negative examples generation strategies are employed [54, 56]. For
example, negative examples are generated in [54] by considering (s, p, o) a negative example if it
does not occur in the KG and at least one triple of the form (s, p, o′), (s, p′, o) or (s′, p, o) occurs in
the KG, essentially following the PCA assumption (will be discussed in Section 2.3.2). Although
several safeguards are employed in the negative example generation processes, they may still
introduce noisy examples.

2.3.2 Statistical Confidence
Inspired by association rule mining and viewing logic rules as frequent patterns in KGs, some
statistical measures such as support and confidence have been adapted for rule learning over
KGs [24, 23, 37]. One advantage of such measures is that negative examples are not required.

For a first-order Horn rule r of the form (1), exH(r) consists of all the tuples of entities a that
satisfy the head of the rule h. Similarly, exB(r) consists of all the tuples of entities a covered by
the body or r, i.e., when the variables x in the head h is substituted with a, there is a way to
substitute the other variables in r to make all the facts obtained from the body of r facts in the
KG. Then, the support of r is defined as supp(r) = |exH(r) ∩ exB(r)|. That is, the support of r

is defined as the number of entities that satisfy both the head and the body of r. The standard
confidence (SC ) and head coverage (HC ) of r are defined as follows

TGDK
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sc(r) = |exH(r) ∩ exB(r)|
|exB(r)| and hc(r) = |exH(r) ∩ exB(r)|

|exH(r)| (4)

SC is the normalisation of support through the number of entity pairs that satisfy the body, while
HC is the normalisation of support through the number of entity pairs that satisfy the head. The
higher the values are for these measures, the more plausible the rule is.

These statistical measures have been widely applied to estimate the plausibility of rules learned
from KGs [23, 13, 51, 31, 44, 94, 71]. And several variants of these measures have been proposed
for better estimations.

It is argued that the standard confidence (SC) is not suitable for KGs that are highly incomplete.
Some approaches refine it by introducing partial completeness assumption (PCA) [24, 23, 37].
PCA assumes the KG has complete information about an entity w.r.t. a relation if the KG
contains at least one fact about the entity and relation. For example, if it is mentioned in KG
that (Allen, worksFor, airline-NY), then we assume that he only has one job in New York airline.
Some other variants along this line include completeness confidence [72, 73], which proposes to rely
on explicitly incompleteness information to determine an instance as a counterexample, and soft
confidence [81] which refines the SC with the entity type information. These statistical measures
have also been extended to other forms of rules, such as negated rules [21, 75, 31], numerical
rules [54, 77], temporal rules [52], and typed rules [82].

2.3.3 Confidence Learning

Traditionally, rule learning can be divided into two main steps: rule structure learning and rule
confidence estimation. Recently, some approaches based on neural networks have been developed
to perform rule structure and confidence learning simultaneously [89, 77, 62, 14, 87]. These
approaches learn the confidence degree of a rule r as a learnable parameter αr ∈ [0, 1], which will
be updated during the training of the neural networks. This allows the trained neural networks to
score any potential rules in the language bias and tightly couples the rule structure learning and
confidence learning.

These approaches typically model the learning process through rule-based reasoning tasks, e.g.,
using rules to infer a triple. Hence, the objective function of the neural network is to assess the
plausibility of each possible triple so that those existing in the KG have the highest plausibility.
The input of the neural networks includes some latent representations (called embeddings) of the
entities and relations in the KG, denoted e for e ∈ E and p for p ∈ P . For a triple (s, p, o) and a
rule r with its confidence αr, let score(s, p, o, r) be a scoring function defined on the embeddings
and the rule to score the plausibility of the triple. The neural networks are trained to update the
parameters αr that maximize scores for all the triples in the KG G. This allows the neural networks
to simultaneously learn both rule structure r and the rule confidence degrees αr. By learning the
confidence of rules as a parameter, the model can capture the uncertainty and ambiguity in the
data, allowing it to assign appropriate confidence to different rules. This adaptability makes the
rule-learning process more data-driven and helps the model to make more accurate predictions
and better generalisations on unseen data. We will defer the detailed discussions of neural-based
structure and parameter learning to Section 5.

In the following sections, we will talk about the three major groups of rule learning methods:
ILP-based, statistical path generalisation, and neuro-symbolic methods.
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3 ILP-based Methods

The classical ILP methods learn rule structures by systematically exploring the rule space (either
in a top-down or a bottom-up manner) through refinement operators, such as adding, updating,
or deleting one atom at a time in the rule bodies. However, existing ILP rule learners face at least
two challenges when they are applied to KGs. First, the traditional rule search methods have
difficulties in scaling to large KGs due to their high computational complexity. A KG can be much
larger in size than datasets typically considered in the ILP literature. As a result, classical ILP
systems like ALEPH [68] and QuickFOIL [92] cannot be used directly to perform rule learning
over medium-sized or large KGs. Moreover, in traditional ILP settings, both positive and negative
examples are normally provided for evaluating the rule coverage. However, KGs only contain
positive facts, and obtaining negative examples becomes more challenging due to the Open World
Assumption (OWA), which assumes that facts missing from the KG are not necessarily false but
just unknown.

In recent years, many ILP-based rule learning methods have been proposed in response to these
challenges. The AMIE series are notable representatives in this line of research, which introduces
novel rule confidence measures to avoid the step of generating negative examples. Another line of
research within ILP addresses the lack of negative examples by generating them. They focus on
learning rules that can express exceptions or negations, known as nonmonotonic logic programs.

3.1 Without Negative Examples

As traditional ILP methods cannot handle rule learning due to the scale of search space and the
lack of negative examples, recent ILP-based rule learners such as AMIE [24, 23, 37] tackle these
challenges in rule learning over KGs by employing certain language biases and new confidence
measures adapted form association rule mining. AMIE, especially its extension AMIE+ [23] is
one of the earliest and most widely referenced KG rule learners.

To reduce the search space, AMIE learns connected and closed rules. The rule structure
learning process of AMIE is a standard ILP top-down search to explore the rule search space.
Top-down rule search starts with a general rule and then refines it by progressively adding more
atoms. Based on defined refinement operators, such as adding atoms to make the rule closed
and connected, it iteratively expands rules. Instead of using standard confidence (SC), AMIE
calculates rule confidence under partial completeness assumption (PCA). If the rule satisfies the
confidence measure thresholds, the rule is selected as a candidate rule.

AMIE+ and AMIE 3 [37] are the extensions of AMIE with a series of improvements and
optimisations that allow the system to run over large-scale KGs. Specifically, AMIE+ speeds
up the rule refinement phase for specific kinds of rules, simplifies the query of support, and
approximates the PCA computations by an upper bound; AMIE 3 utilises an in-memory database
and parallel computation to store and process large-scale KGs.

Some other rule learning methods use enhanced refinement operators for rule search. For ex-
ample, Evoda [84] uses a Genetic Logic Programming algorithm that is combined with Evolutionary
Algorithms (EA) to define refinement operators. Hence, three rule transformation operators are pro-
posed, mutation, crossover and selection. This allows Evoda to learn rules that are not necessarily
closed, e.g., it can learn a rule like owns(x0, x1) ∧ capableOfLanding(x1, x2) → isAircraftOf(x1, x0),
which says if x0 owns x1 that can land on x2, then x1 may be the aircraft of the airline x0. Evoda
also adopts the PCA measure for rule confidence estimation.

TGDK
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3.2 Generate Negative Examples
Some other approaches address the lack of negative examples by generating them, this is particularly
necessary for learning rules with negations, traditionally known as nonmonotonic logic programs [33,
64]. Such rules can express a form of exceptions and support nonmonotonic reasoning.

Exception-Enriched Rule Learning [21] is an ILP-based method that refines learned Horn
rules by adding negated atoms (i.e., exceptions) into their rule bodies. They primarily focus on
mining rules over unary predicates, by converting binary predicates into multiple unary ones.
For example, the binary predicate hasOrigin(·, ·) can be translated into several unary ones like
hasOriginPEK(·) and hasOriginBOS(·). This is because unary predicates are easier to search for
negated atoms. But this makes KG a flattened representation containing just unary facts. To
overcome this problem, Nonmonotonic Relational Learning [75] extends [21] to learn exception
rules with binary predicates in KGs.

The lack of negative examples is essentially related to the incompleteness and noisiness of KGs,
and approaches like RuLES [31] address this through KG embeddings. Compared to AMIE+,
RuLES has two more refinement operators to allow negated atoms in a rule body. From Figure 2,
we can see the rule evaluation for RuLES is a hybrid combination of statistical and embedding-
guided confidence. A weight is used to allow one to choose whether to rely more on the classical
measure µ1 (like standard or PCA confidence), or on the embedding-based measure µ2(Gr, ϕ). Gr

extends G with facts derived from G by applying rule r. So, µ2(Gr, ϕ) capture the information
about facts missing in G that are relevant for r by loss function ϕ(·) pre-trained by KG embedding
and text corpus models.

4 Statistical Path Generalisation

Statistical Relational Learning (SRL) [26] is a subfield of machine learning that focuses on modelling
and learning complex relational data. It combines principles from statistical learning and relational
databases to address learning tasks that involve structured data with rich inter-dependencies
and uncertainty. There are some SRL approaches to learning first-order rules by using heuristic
searching algorithms, for instance, both ProPPR [80, 79] and CoR-PRA [38] are based on the Path
Ranking Algorithm (PRA). Several rule learners have emerged to utilise various path-searching
strategies based on statistics to directly generate rules. In this section, we focus on sampling-based
approaches to mining frequency patterns or path patterns for rule generation in KGs.

4.1 Heuristic Path Sampling
This group of approaches generate candidate rules by directly exploring paths in KGs using
heuristic strategies, and these approaches typically focus on learning CP rules generalised from
KG paths. As many KGs contain scheme-level (a.k.a., ontological) knowledge such as entity types
as well as relation domains and ranges, which is different from instance-level knowledge about
relations between individual entities. So, a KG containing ontological knowledge can be split into
the ontology graph and the instance (sub)graph.

Given a KG G = GO ∪ GI , GO is the ontology graph and GI is the instance graph. The instance
graph GI has entities as vertices and describes instance-level knowledge about entities and their
relations; for instance, a triple (airline-NY, hasBase, airport-JFK) describes that the two entities
airline-NY and airport-JFK are associated by the relation hasBase. GI also describes the classes of
entities, such as a triple (airline-NY, rdf:type, Airline) expressing that airline-NY is a member of the
class Airline. The ontology graph GO, on the other hand, has classes as vertices and describes
schema-level (or ontological) knowledge about the relations between classes. For example, triple
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(Airline, rdfs:subClassOf, Organisation) says that class Airline is a subclass of Organisation. Also,
the two triples (hasBase, rdfs:domain, Airline) and (hasBase, rdfs:range, Airport) state that relation
hasBase has a domain type Airline and a range type Airport. This can be expressed as an edge
(Airline, hasBase, Airport) in the ontology graph.

A path is a sequence of triples (s1, p1, o1), (s2, p2, o2), . . . , (sn, pn, on) in G where oi = si+1
(1 ≤ i < n). There are two kinds of paths in KGs. A instance path (resp., ontological path) is
a path where si, oi are entities (resp., classes). Existing path exploration methods can thus be
classified by whether the paths are from the ontology graph or the instance graph. Generalising
instance paths to form rule patterns is also called a bottom-up approach, while generating rules
from ontological paths is called a top-down approach.

4.1.1 Bottom-up Approaches
The AnyBURL series [45, 44, 43] are typical bottom-up approaches, which learn rules by sampling
and generalising instance-level paths. To generalise path instances to form rule patterns, AnyBURL
substitutes entities from sampled paths in the KG with variables. For example, the paths
worksFor(Allen, airline-NY), hasHeadquater(airline-NY, NewYork) and livesIn(Allen, NewYork) can be
generalised to a rule worksFor(x, y) ∧ hasHeadquater(y, z) → livesIn(x, z). Unlike the bottom-up
approaches in ILP, the generalisation does not add or delete atoms but only substitutes their
parameters. This bottom-up approach allows AnyBURL to learn CP rules with constants (i.e.,
non-substituted entities) in predefined places, e.g., worksFor(x, y) ∧ hasHeadquater(y, NewYork) →
livesIn(x, NewYork). Due to the huge space of semi-grounded CP rules, it is infeasible for AnyBURL
to systematically explore the whole search space. Instead, it introduces an anytime algorithm where
users can specify the learning time. AnyBURL is much more efficient and effective for rule learning
in the sense that it is able to learn more rules in a shorter time than most existing rule learners. For
the task of link prediction in KGs, AnyBURL also outperforms many embedding-based methods.
In addition, Reinforced AnyBURL[43] is an extension of AnyBURL that introduces reinforcement
learning to find more reasonable rules earlier. To achieve this, it incorporates three different
reward strategies based on statistical confidence measures to guide the sampling process.

Another example of bottom-up approaches is RuDiK [54]. Different from AnyBURL, it starts
from some positive examples and searches the paths connecting the subjects and objects in the
positive examples using A∗ search. In this approach, the rule generation is guided by assigning a
so-called marginal weight to each path. In each iteration, the method picks the most promising
paths (that is, paths with minimum marginal weight) in the queue of invalid paths. Such paths
are expanded and evaluated. If valid, it is added to the output and not further expanded. And
the resulting invalid paths will be put back in the queue. This process continues until the queue
is empty. RuDiK extends the language bias to allow ⊥ in the rule heads and literal comparison
in the rule bodies. Thus, it can learn constraints as well as rules. To learn rules with literal
comparison, it adds comparison edges between pairs of literals of the same type and treats the
comparison operators as normal predicates. Unlike AnyBURL using SC for confidence estimation,
RuDiK adopts ILP-style example coverage metrics.

4.1.2 Top-down Approaches
Rule learners exploring ontological paths in KGs include Ontological Pathfinding [12], ScaLeKB [13],
and RARL [56]. They construct path patterns directly from ontology graphs, and the space
of ontological paths is much smaller than that of instance paths. For example, the ontology
path hasBirthPlace(Person, City), isRegionOf(City, Country) and hasNationality(Person, Country) can
be generalised to a rule hasBirthPlace(x0, x1) ∧ isRegionOf(x1, x2) → hasNationality(x0, x2).
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ScaLeKB extends Ontological Pathfinding and is a typical example of top-down approaches.
It achieves its efficiency by storing candidate rules in relational tables according to structural
equivalence. Two first-order rules are defined to be structurally equivalent if the number of body
predicates of the rule and the position of the variable are the same. After that, the rule mining
algorithm can process the join queries and partition tables into smaller inputs in parallel, so as to
break the mining tasks into smaller independent sub-tasks with Spark.

However, ScaLeKB typically uses type information as hard constraints on the candidate rules,
i.e., each entity going through the path must belong to some type. Yet in practice, type information
in KGs is often highly incomplete, which would make it too restrictive.

Instead of directly searching ontological paths as hard constraints, RARL [56] samples paths
step by step according to the domain and range information of the relations. It reduces the path
search space by computing the relatedness of the relations on the paths based on term frequency-
inverse document frequency (TF-IDF) weighting factor, an information retrieval technique adapted
to KGs. RARL adopts ILP-style example coverage metrics similar to RuDiK. It also samples
a reduced instance graph for fast confidence computation. Moreover, in TyRuLe [82], type
information is present in the learned rules and is encoded as latent representations (known as
embeddings) to guide the rule search.

4.2 Frequent Pattern Sampling
Some techniques in association rule mining have been adapted to first-order rule learning [81, 4, 5].
Such techniques are originally developed to discover meaningful relationships or associations
among items in a dataset and thus, they are modified to generate first-order rules by identifying
statistically frequent patterns occurring in KGs.

RDF2Rules [81] samples the so-called frequent predicate cycles (FPCs). A predicate cycle
is a sequence of variables and predicates of the form (x0, p1, x1, ..., pn, x0), which are essentially
generalised instance paths. If a predicate cycle has a sufficient number of instance paths in the
KG as its instantiations, it is called a frequent predicate cycle. Rules can be generated from
FPCs. For instance, a FPC (x0, hasOrigin−1, x1, hasDestination, x2, hasAlliance, x0) can generate
three rules hasDestination(x1, x2) ∧ hasAlliance(x2, x0) → hasOrigin(x1, x0), hasOrigin(x1, x0) ∧
hasAlliance−1(x0, x2) → hasDestination(x1, x2), and hasDestination−1(x2, x1)∧hasOrigin(x1, x0) →
hasAlliance(x2, x0). RDF2Rules uses a greedy algorithm to iteratively mine FPCs.

SWARM [4, 5] converts triples in KGs into transaction data to apply association rule mining.
Association rules capture frequent items in transaction data. As for KG, they convert a triple
(s, p, o) into a 2-tuple (s, (p, o)) or (o, (p−1, s)). Here both of the s or (p, o) can be seen as
items, also the fact tuple (s, (p, o)) can be one transaction where these two items appear at the
same time. The frequent transaction items can be generalised to rule patterns. For example,
we found two frequent transaction items having a common or mostly overlapping item set like
({Allen, Ally}, (livesIn, NewYork)) and ({Allen, Ally}, (diedIn, NewYork)). They can be generalised
to the association rule {Allen, Ally} : (livesIn, NewYork) → (diedIn, NewYork). Using the type
information like rdf:type and rdfs:subClassOf in the ontology graph, they could generate the rule
{Person} : (livesIn, City) → (diedIn, City).

5 Neuro-symbolic Methods

In this section, we review rule learning methods that utilise deep neural networks (DNNs). While
a rich body of DNN-based methods have been proposed for KG completion, including Graph
Neural Networks and embedding-based methods, there is an increasing interest in developing or
applying DNN-based methods for rule learning over KGs.
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There are two major streams of research in this group. Those that learn both rule structures
and parameters (i.e., rule plausibility degrees) through DNN models [89, 77, 62, 57, 87, 14, 11], and
those that combine DNN models with other rule learning strategies through KG embeddings [88,
51, 94, 82].

5.1 End-to-end Models
In this subsection, we discuss about approaches that use DNNs to learn rules directly by optimising
objective functions that roughly correspond to plausible path patterns.

5.1.1 Neural Logic Programming
Neural LP [89] was among the first attempts to combine rule structure learning and confidence
learning in an end-to-end differentiable model. It is based on a differentiable probabilistic logic
called TensorLog, which models CP rule inferences with sparse matrix multiplications. TensorLog
maps each entity ei ∈ E to a one-hot vector vi ∈ {0, 1}|E| where only the i-th entry is 1, and each
relation pk ∈ P∗ to a matrix Mk ∈ {0, 1}|E|×|E| such that its (i, j) entry is 1 if p(ei, ej) is a fact in
the KG. Then, the application of a rule p1(x, z) ∧ p2(z, y) → p(x, y) on an entity x = ei can be
captured by matrix multiplications M1 · M2 · vi = s. The non-zero entries of the score vector s
represent the instances of y (as entities in the KG) when the rule is applied. Hence, the rule-based
inference is captured as:

max
{αr,Lr}

∑
{x,y}

score(y|x) = max
{αr,Lr}

∑
{x,y}

vT
y (

∑
r

(αr(
∏

k∈Lr

Mkvx))), (5)

where r indexes over all possible rules, αr is the confidence associated with rule r and Lr is an
ordered list of all predicates in this particular rule. The rule structure along with its confidence
αr are learned by maximising the score. Neural LP thus uses gradient-based programming and
optimisation algorithms for the rule learning task. A challenge is a large number of learnable
parameters, and Neural LP reduces the learnable parameters by approximating the optimisation
objective functions. Another limitation of the above approach is that it is bound to learn rules
with a fixed length, and Neural LP addresses this by using an LSTM and attention mechanisms
to learn rules of variable lengths.

Neural-Num-LP [77] extends Neural-LP to learn rules with negations and numeric values. It
also improves Neural-LP by representing some necessary matrix operations implicitly, including
using dynamic programming, cumulative sums operation for numerical comparison features, and
low-rank factorisations for negated atoms. Yet it is found that Neural-LP may inevitably learn
meaningless rules with high confidence that share atoms with quality rules, and DRUM [62]
addresses this issue by utilising bidirectional RNNs to prune the potential incorrect rules.

5.1.2 Decoupling Models
Neural logic programming approaches may still face challenges of exponentially large rule search
space, as well as the computational cost of large matrix multiplications. Also, the complexity of
simultaneously learning rule structures and confidences makes the optimisation of the computation
nontrivial.

To overcome this challenge, new models have been proposed by decoupling the rule structure
learning and confidence learning. RNNLogic [57] uses a separate rule generator module for structure
learning and a reasoning predictor module for confidence learning. Such a separation allows for
more efficient optimisation, by adapting an Expectation-Maximisation (EM ) algorithm [48], which
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enables RNNLogic to handle large KGs effectively. In the same spirit, Ruleformer [87] adopts an
encoder-decoder model based on the Transformer architecture. The logic rules are indirectly parsed
from the reasoning paths by trained parameters, rather than learned directly. Since Transformer
is a sequence-to-sequence model, a converter is used to convert context sub-graph structure into
a sequence. A relational attention mechanism is utilised for encoding multi-relational KGs in
Transformer. Moreover, RLogic [14] proposes a sequential rule learning algorithm into small
atomic models in a recursive way. Given a relation path of rule body [p1, . . . , pn], the relation
path encoder first reduces it into a single head ph by recursively merging relation pairs by a greedy
algorithm. Then, the close ratio predictor bridges the gap between “ideal prediction” ph following
logical rules and “real observation” pt given in KGs. A multi-layer perception (MLP) is used to
learn the probability of replacing a relation pair with a single relation and the ratio that a path
will close. Finally, Reinforcement Rule Learning [11] formalises the rule generation problem as
a sequential decision problem, by adopting reinforcement learning (RL) to generate rules step
by step. As shown in Figure 2, the plausibility of generated candidate rules is estimated with a
hybrid measure combining explicit statistical confidence and latent embedding measures.

It should be noted that many DNN-based models aim to learn instance paths in KGs to predict
missing triples in link prediction. Logical rules are extracted from these instance paths as the side
product [86, 74, 16, 85].

5.2 Embedding-based Methods
Representation learning for KGs has attracted intensive interest, which maps entities, relations, and
types to low-dimensional vector or matrix spaces, called embedding [61, 35], to capture semantic
associations between them. Another stream of rule learning approaches use existing or new KG
embeddings to learn rule structures and combine them with other rule search strategies and/or
rule confidence measures. Utilising embeddings enhances the efficiency of rule learning to allow
the handling of large KGs and improves the interpretability of DNN-based rule learning methods.

The authors of [88] were among the first to suggest using KG embeddings extracted from
DNNs for rule structure learning, called EMBEDRULE [88]. In EMBEDRULE, the plausibility of
rules will be first estimated via an embedding-based scoring function before the more expensive
computation of PCA confidence. It first embeds entities e ∈ E and predicates p ∈ P∗ as respectively
vectors e ∈ Rd and diagonal matrices P ∈ Rd×d. Similar to the bilinear transformation of Neural
LP, the embeddings satisfy eT

1 · P · e2 ≈ 1 for each fact p(e1, e2) in the KG; that is, eT
1 · P ≈ eT

2 .
Consider a CP rule r of the form p1(x0, x1) ∧ p2(x1, x2) ∧ · · · ∧ pn(xn−1, xn) → p(x0, xn), there
should be many instance paths that support it, i.e., p1(e0, e1), p2(e1, e2), . . . , pn(en−1, en) and
p(e0, en) in the KG. Hence, the embeddings satisfy eT

0 ·P1 ≈ eT
1 , eT

1 ·P2 ≈ eT
2 , . . ., eT

n−1 ·Pn ≈ eT
n ,

and eT
0 · P ≈ eT

n ; that is, eT
0 · P1 · P2 · · · Pn ≈ eT

n ≈ eT
0 · P. Since rule r must hold for many such

entities e0, the rule can be captured by P1 · P2 · · · Pn ≈ P. The scoring function for r is defined
via embeddings as follows:

score1(r) = sim(P1 · P2 · · · Pn, P), (6)

and the similarity between two matrices sim(M1, M2) can be defined in various ways such as the
Frobenius norm, i.e., sim(M1, M2) = exp(−||M1 − M2||F ). Based on similar intuitions, different
scoring functions via embeddings for rule learning.

RLvLR [51] uses a KG sampling strategy and path embedding methods, which enables it to
handle large-scale KGs like DBpedia or Wikidata. The step of sampling based on n-hop paths
(for rules with maximum length n) can effectively reduce the search space and can handle massive
benchmarks efficiently. The sampled smaller KG contains only those entities and facts that are
relevant to the target predicate p. Then, RLvLR uses the proposed co-occurrence scoring function
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to guide and prune the search for plausible rules. The selected candidates are kept for the final
evaluation by standard confidence and head coverage. The co-occurrence means that for a rule
of the form p1(x0, x1) ∧ p2(x1, x2) ∧ · · · ∧ pn(xn−1, xn) → p(x0, xn), the objects of pi share many
common entities with the subjects of pi+1, where embeddings of the subjects and objects of pi,
denoted ps

i and ps
i , are defined as the averages of the embeddings of the entities occurring in the

corresponding positions. Their co-occurrence scoring function is defined as:

score2(r) = sim(ps
1, ps) + sim(po

1, ps
2) + · · · + sim(po

n−1, ps
n) + sim(po

n, po). (7)

Later approaches focus on improving the embedding methods to further enhance rule learning
performance [83, 94, 53] or learn more expressive forms of rules [52, 82]. In particular, R-Linker [83]
improves RLvLR with a hierarchical sampling and lightweight embedding method, and IterE [94]
improves the KG embeddings of (especially sparse) KGs through an iterative enhancement process.
Rules are learned from embedding with traverse and select strategies, while embedding is refined
according to new triples inferred by rules. StreamLearner [52] extends RLvLR to learn temporal
rules, and TyRuLe [82] extends the embedding to learn rules with entity type information. Finally,
embeddings have been used to transfer rules from one KG to another KG [53].

6 Applications of Rule Learning

Logical rules have been applied in a wide range of scenarios and play a significant role in Explainable
AI. In this section, we focus on the applications of first-order Horn rules automatically learned by
rule learners.

6.1 Applications in KG Completion
Many existing KGs are large-scale and subject to regular updates. Yet the knowledge contained
in them is still far from complete and contains noise. Manual maintenance of large-scale KGs
is costly, if not impossible. Hence, automated reasoning for KG completion and verification is
essential, including common tasks such as link prediction and fact checking. While link prediction
aims to discover missing links between entities, fact-checking focuses on validating existing triples.
Both tasks are important for building KGs and enhancing the quality of existing KGs.

Rule-based Link Prediction. Link prediction is the task of extracting missing triples in a KG
and thus it is a subtask of KG completion. Formally, given an entity s ∈ E (resp., o ∈ E) and a
relation p ∈ P in a KG, the task is to predict entities o (resp., s) such that the triple (s, p, o) is
plausibly in the KG.

In recent years, a large number of link prediction models have been proposed. Most major
models for link prediction are based on DNNs, especially, embedding models and thus, lack
transparency and explainability. Some researchers proposed to develop explainable link prediction
models that are based on logic rules [23, 88, 45]. Rules express explicit knowledge and are
easy to understand for human beings. For example, given a query of (Allen, hasNationality, ?)
in Figure 1, the rule hasBirthPlace(x, y) ∧ isRegionOf(y, z) → hasNationality(x, z) can predict
hasNationality(Allen, America) and provide the reason that hasBirthPlace(Allen, Boston)∧isRegionOf
(Boston, America). Thus, rules provide a promising approach to explainable link prediction. This
has become feasible when scalable and effective rule learners are available. On the other hand,
link prediction offers an important benchmark for validating and evaluating rule learners for KGs.
Experiments show that rule-based link prediction methods possess competitive accuracy and
scalability compared to embedding-based ones [44, 56].
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Unlike embedding-based methods that rank all the entities via scoring functions, a rule-based
method derives plausible new facts through logical reasoning, and the confidence of the new facts is
determined by the rules deriving them. One research direction is how to calculate the confidence of
the derived facts from those of the rules. Noisy-OR [23] and Max-Aggregation [44] are two popular
methods for obtaining the confidence degree of a plausible triple that is derived from learned rules.
Noisy-OR is defined by aggregating the SC of all the rules deriving the triple. The intuition is
that facts inferred by more rules should have a higher confidence degree. Max-Aggregation [44]
ranks a triple based on the maximum SC of all rules deriving it. It only considers the most
confident rule that derives the triple. These two methods for obtaining confidence degrees have
their advantages and disadvantages. When aggregating using Noisy-OR, the redundant rules can
lead to overestimating the confidence of predicted entities. In order to mitigate this disadvantage,
a Non-redundant Noisy-OR [55] is proposed to cluster rules based on their redundancy degree
prior to Noisy-OR. Predictions of rules in a cluster are aggregated using the Max-Aggregation,
while predictions of the different clusters are then further aggregated using the Noisy-OR.

Rule-guided Embeddings. Rules can also be used to guide the training of existing embedding
models so that logic relations are incorporated into the embeddings. In this way, inferences by
the generated embeddings are expected to satisfy the rules and are more interpretable, which
essentially combines symbolic rule reasoning with neural networks.

In the early literature of rule-guided embeddings, only a small number of manually created hard
rules are used in the models [78, 28]. Given the availability of scalable and effective rule learners
for KGs, recent efforts focus on combining embedding models and rules learned automatically.
RUGE [29] and SoLE [93] use t-norm fuzzy logics [30] to incorporate grounded rules, as the
t-norm fuzzy logics define how to calculate the probabilities of compositions (e.g., conjunctions
and disjunctions) of clauses from the probabilities of the individual clauses. Some other works,
such as pLogicNet [58], use Markov Logic Network (MLN) [60] to combine the grounded rules
with probabilistic graphical models. These approaches need to first compute all the groundings
of the rules, which is computationally expensive, especially for long rules. To avoid this, some
other approaches incorporate rules as a sequence of relations [17, 27, 50]. Some other models
incorporate rules via different learning frameworks, such as RuleGuider [39] and RARL [32], which
train reinforcement learning agents guided by rules, and AR-KGAN [95], which incorporates rules
via Graph Attention Networks (GAT).

Rule-based Fact Checking. Fact checking is the task of verifying the facts in KGs, by predicting
the plausibility of the facts. Traditionally, fact checking is done by manual verification which
is extremely time-consuming. While black-box models can be used to estimate the plausibility
of facts, rule-based fact checking offers explainability. Moreover, rules contain domain-specific
knowledge, which is particularly useful for verifying ambiguous facts.

Some rule-based fact checking approaches can generate evidence or explanations for the facts
under examination (called target facts) to assess their plausibility [20, 67, 22]. CHEEP [20]
generates evidence as paths in the ontology graph according to rules, while ExFaKT [22] uses
rules to rewrite each target fact into a set of other easier-to-spot facts as explanations from both
text and KGs.

There are also some approaches dedicated to designing new forms of rules for fact checking.
Lin et al. [40] propose a kind of graph-fact-checking (GFC) rules to discover a discriminant-
directed graph associated with the target facts. OGFC [41] extends GFC with more topological
and ontological information to group similar triples. Rules in disjunctive normal form (DNF),
i.e., a disjunction of multiple conjunctions, are used in CHAI [9] to filter facts. Some other
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methods transform rule-based fact-checking problems into answer set program formulations, like
EXPCLAIM [1]. It uses first-order rule discovery and Web text mining to gather the evidence to
assess target facts, and the fact-checking task is modelled as an inference problem in the answer
set programs.

6.2 Other Applications of Rule Learning

There has been a heightened interest in the interpretability of AI models, as understanding how
and why a model arrives at a particular decision is pivotal for trust and transparency in decision-
making. Logic rules, with their inherent ability to support human-comprehensible reasoning
processes, have emerged as a valuable tool in diverse fields.

Several domains are actively exploring the use of automatically learned rules to complement
and enhance existing AI models. Rules can naturally be applied to other tasks related to KGs,
such as entity alignment [10, 36] and knowledge base question answering (KBQA) [70]. In the
entity alignment task, RTEA-RA [36] enhances the embeddings of individual entities by injecting
the grounded rules into the model to produce hybrid embeddings. MuGNN [10] reconciles the
structural differences of two KGs before entity alignment by employing rules induced by AMIE+
for KG completion and pruning. Also, these rules are transferred between KGs based on the
knowledge invariant assumption.

As for KBQA, RuKBC-QA [70] uses rule-based knowledge base completion (KBC) in general
question answering (QA) systems. Both the origin knowledge base and inferred missing facts by
selected rules are used as input of RuKBC-QA for predicting the answers.

Beyond the tasks with KGs as the primary forms of data, several attempts involving rules
have been made in the context of natural language processing (NLP), computer vision (CV), and
biomedical applications. For NLP, RuleBERT [63] tries to teach the pre-trained language models
(PLMs) with the common-sense knowledge provided by Horn rules. KoRC [91] uses rules learned
by background KGs to construct the reasoning chain for Reading Comprehension.

Rule learning has also found applications in computer vision, like reasoning in the sub-graph
extracted from the images. LOGICDEF [90] constructs a defence model that uses first-order logic
rules mined from the extracted scene graph, to explain the object classification and detect the
attacks of the adversarial vision model. The document image model [59] uses inductive rules by
extracting textual subgraphs corresponding to the text entities in the documents for information
extraction.

In the biomedical domain, rule learning has also shown promising applications. In drug
discovery [66], generating the explanation paths by Horn rules for drug-disease (entity) pairs. As
for drug-gene interaction prediction [2], rules can predict missing links between drug and gene
nodes in a graph that contains relevant biomedical knowledge.

These studies collectively showcase the versatility and potential of rule learning across diverse
domains, addressing various challenges and improving outcomes in different application areas.

7 Discussion and Conclusion

Rule learning in KGs is a fast-developing research area with promising applications in various
fields. In this section, we discuss some future research directions for rule learning and conclude
the paper.
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7.1 Future Directions
Despite the rapid advancements in rule learning techniques over KGs, this is still a relatively
new research area, with a lot of potential for further development in several aspects, including
the complexity and quality of learned rules, evaluation metrics, and rule learning and reasoning
strategies.

First of all, the complexity of learned rules can be enhanced by expanding the form of rules
(i.e., the language bias) to be learned. Most existing rule learning approaches focus on rules that
represent path patterns in KGs. While path patterns capture important structural information
in KGs, more complex structural patterns such as sub-graph patterns can reveal more refined
knowledge and first-order Horn rules can express complex sub-graph patterns. Scalability of
rule learning and identification of the most useful sub-graph patterns remain major challenges in
learning more complex rules. Besides, learning rules that can capture more useful information such
as attributes or more complex logical connections in KGs is another aspect of rule complexity.

Also, the form of rules and their learning strategies can be tailored according to the applications.
For instance, to learn domain-specific rules that are designed to express prior knowledge in specific
domains, can potentially lead to more scalable, accurate, and robust performance in the concerned
applications. This is especially relevant for applications in knowledge-intensive domains such
as biomedical science, healthcare, finance, or legal applications, which involve domain-specific
knowledge and specialised applications.

Moreover, to enhance the quality of learned rules, it is crucial to establish effective and robust
rule quality evaluation measures. Existing rule confidence measures often lack sufficient granularity
or interpretability. Yet designing suitable rule quality metrics has received less attention in the
literature. Meanwhile, there has been insufficient emphasis on evaluating the semantic validity of
learned rules, that is, to measure how meaningful the learned rules are to human beings. This is
particularly important for learning domain-specific rules, and it is desirable to develop quality
measures that take into consideration both the data semantics and data distributions.

Finally, new rule learning and reasoning strategies that tightly integrate symbolic AI and
deep learning techniques hold great promise. This line of research may involve developing hybrid
models that leverage the strengths of both rule-based reasoning and data-driven neural networks.
Yet a tighter integration of them has always been a pursuit of the academic communities and the
industry. With the recent development of neuro-symbolic approaches, where neural networks are
used for symbolic rule learning and reasoning, the other direction is gaining increasing interest,
that is, to apply symbolic knowledge, logical constraints, and rule guidance in neural network
predictions. This research direction also foresees a tighter coupling of rule learning and prediction
models that utilise KGs.

7.2 Conclusion
In this paper, we have provided a systematic review of state-of-the-art rule learning for knowledge
graphs. We studied major categories of logic rule learning approaches over knowledge graphs,
including the ILP-based, statistical path generalisation, and neuro-symbolic approaches, with
discussions on their developments and limitations. Besides, we also discussed the rule confidence
measures, which play a crucial role in rule learning. As for the applications of rule learning, we
introduced applications of rule-based knowledge graph inferences, as well as wider applications in
natural language processing, computer vision, and biomedical science. Finally, we pointed out
several promising future directions for rule learning research.
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Abstract
The graph model is nowadays largely adopted to
model a wide range of knowledge and data, span-
ning from social networks to knowledge graphs
(KGs), representing a successful paradigm of how
symbolic and transparent AI can scale on the World
Wide Web. However, due to their unprecedented
volume, they are generally tackled by Machine
Learning (ML) and mostly numeric based methods
such as graph embedding models (KGE) and deep
neural networks (DNNs). The latter methods have
been proved lately very efficient, leading the current
AI spring. In this vision paper, we introduce some
of the main existing methods for combining KGs

and ML, divided into two categories: those using
ML to improve KGs, and those using KGs to im-
prove results on ML tasks. From this introduction,
we highlight research gaps and perspectives that we
deem promising and currently under-explored for
the involved research communities, spanning from
KG support for LLM prompting, integration of KG
semantics in ML models to symbol-based meth-
ods, interpretability of ML models, and the need
for improved benchmark datasets. In our opinion,
such perspectives are stepping stones in an ultimate
view of KGs as central assets for neuro-symbolic
and explainable AI.
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1 Introduction

Graph data refers to data that lends itself naturally to being represented as a graph-based data
model. Examples of graph data are social networks, computer networks, entailment graphs [93],
concept graphs [26]. Several standards have been proposed to represent graph data, including
the W3C devised standards OWL, RDF, and RDFS. These enable easy sharing and combining of
graph data from different sources, and so further facilitate the adoption of the graph formalism.

Among the several types of graph data in widespread use, one prominent example is the
Knowledge Graph (KG). A KG aims to convey knowledge of the real world and represent it
conforming to a graph-based data model, where nodes represent concepts of interest, such as
human or lion, and edges represent possibly different relations between these entities, such as
isTypeOf or isPredatorOf [68]. A closely related concept that we do not discuss any further is
Property Graph, where both nodes and edges can have multiple properties which are represented
as key-value pairs (the interested reader may refer to [68] for further details). Graphs data may
be stored in native graph databases or relational databases [68].

When referring to the representation of information, the term ‘knowledge’, as opposed to
‘data’, is usually what is predicated of humans. It suggests the information is stored in a more
structured and actionable manner, e.g. that it enables reasoning. This distinction from ‘data’ was
first made in relation to the concept of a knowledge base (KB) [104], in the context of expert
systems [64], in order to distinguish them from databases using, e.g., lookup tables or hash tables.
A KB is a representation of information as a set of facts or sentences [161].

A KG can be formalized as a triple of sets ⟨E, R, T ⟩, where E is a set of entities, R a set
of relations, and T is of the form {(s, p, o) | s, o ∈ E, p ∈ R} [29], by which it is immediately
equivalent to a KB, considered as a set of facts. Moreover, a graph G = (N , E), can be written
equivalently as a set of facts, by equating N with the set of all entities appearing as arguments
to facts, and equating each fact ⟨s, p, o⟩ to a directed edge from s (subject) to o (object) labeled
p (predicate). On a higher level, one difference between a KG and KB as a set of facts, is that
the former has a greater emphasis on the connection to the graph-based data model, and is more
directly associated with the agreed formatting standards for graph data. Our discussion here does
not require precise disambiguation of the term and in the remainder of this paper, we use the two
terms interchangeably.

A closely related concept to a KG is an ontology. Intuitively, an ontology defines a set of
object types, and how these types relate to each other. For example, if the domain is living things,
then an ontology would specify that human and lion are two distinct types of a mammal, mammal
and reptile are two distinct types of vertebrates etc. Formally, an ontology has been defined as
comprising two components, the TBox, which introduces the vocabulary of an application domain,
and the ABox, which contains assertions about named individuals in terms of this vocabulary [11].
Often the set of concepts in a KG forms an ontology, and their ontological relations can be
incorporated into the structure of the KG. In the remainder of this paper, we will treat the term
“ontology” as interchangeable with “knowledge base”, as defined above.

Many important applications, such as e-Commerce [208], financial trading [29], semantic
search [205], fact-checking [165], recommendation [195], (medical) decision support systems [202],
question answering [73] and even machine translation [221, 135] benefit from access to real-
world knowledge in a form that is both machine-readable and human-interpretable (i.e. entities,
properties, relations and types). There has thus been a general convergence on KGs as the means
to represent and store such knowledge. This interest from academia and especially from industry,
has led to several large-scale efforts at constructing KGs. Some are freely available and accessible,
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such as DBpedia [9]1, Freebase [18]2, YAGO [172]3, Wikidata [187]4. Others are private, developed
for commercial use by companies such as Google, Amazon, IKEA, Uber, Microsoft, Facebook and
LinkedIn. The interested reader could refer to [69] for a comprehensive overview of the history
and current use of KGs.

The amount of data that may be of interest to KG applications is very large, e.g., English-
language Wikipedia contains close to seven million articles at the time of writing5. Developing
KGs of this size is a difficult, expensive process, requiring the integration of multiple sources of
information, along with input from human experts and crowdsourcing. Despite significant efforts
for making KGs as comprehensive and reliable as possible, they tend to suffer from incompleteness
and noise, due to the complex building process [69, 193]. This has prompted a search for automatic
construction and enrichment [83, 190], often through the use of machine learning (ML). Indeed,
the ML world has advanced considerably in the past decade, particularly with the rise of deep
learning. From the victory of AlexNet in the ILSVRC in 2012 [96], to the release of ChatGPT in
2022, deep learning has come to dominate ML research and powers many industry applications.

One method of combining the world of knowledge and KGs with ML, and especially deep
learning, is to form a vector representation of each node and edge in the KG, by optimizing
some loss function based on the graph structure. The resulting set of vector representations is
known as a knowledge graph embedding (KGE) and it enables several important use cases. In one
direction, KGEs allow the use of predictive machine learning techniques to improve the KG, for
example, by KG completion, where sparse KGs, such as those automatically constructed from
text [89], are augmented with missing triples. Also, by using the deep neural network (DNN)
feature vector extracted from a video, KGEs have been used to represent the content of a video
as a graph [120]. Other uses of KGEs include triple (fact) classification, for assessing if a fact
within the KG is correct or not, KG question answering and node clustering. Node clustering
indeed can reveal similarities and differences between groups of nodes in the KG [59] and this
can, for example, help uncover certain types of users in a social network, or article subjects, in a
citation network. KG question answering uses the information in a KG to answer natural language
questions [73]. In the other direction, KGEs allow KGs to be used to improve ML performance: for
example, knowledge-aware visual question-answering [107], or reasoning of large language models
(LLMs) [212].

In this paper, we introduce some of the main existing methods for combining KGs and ML,
divided into two categories: those using ML to improve KGs, and those using KGs to improve
results on ML tasks. From this introduction, we draw research gaps and perspectives that we
consider urgent as well as promising. These gaps and perspectives are summarized in Table 1 (and
analyzed and developed in section 3) and are concerned with the topics: LLM prompting, KG
semantics and KGE models, symbol-based methods, ML model interpretability, and benchmark
datasets. For each topic, we provide a description of some unsolved problems (gaps) that we
consider to be of particular importance for future research work, and provide our views, claims, and
proposals to overcome them. In particular, we support the use of KGs to formalize LLM prompting
(e.g., providing concept, defining sequencing). We claim that KGE could benefit from the injection
of KG semantics and usage of various reasoning capabilities, e.g., in terms of performance or
negative generation. Informative negatives could also be generated by exploiting symbol-based
method learning disjointness axioms (that are often missing). With respect to interpretability

1 https://www.dbpedia.org/
2 https://developers.google.com/freebase
3 https://yago-knowledge.org/
4 https://www.wikidata.org/
5 https://en.wikipedia.org/wiki/Wikipedia:Statistics
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using KG, we argue that little progress has been made, and that in-model KG-based approaches
that demonstrably produce reliable explanations are needed to validate ML results. Assessing
these improvements in KGE performance or interpretability also calls for extensive empirical
evaluations. Such evaluations require benchmark datasets that feature various schema constructs
or levels of semantics that are currently lacking, unnoticed, or uncommon in the state of the art.
That is why, we call for a systematic characterization and collection of available datasets as well
as the creation of synthetic KG generators to produce tailored datasets to support experiments.

The remainder of this paper is organized as follows. Section 2 provides an overview of existing
work linking KG and ML, under the framework of KGs for ML (Section 2.1) and ML for KGs
(Section 2.2). Section 3 describes some gaps in the literature that we deem important, and outlines
our vision of future research directions for filling these gaps. We particularly focus on: the use of
KGs for prompting LLMs (Section 3.1), the integration of KG semantics and associated reasoning
capabilities in KGE models for improved performance and handling of negatives (Section 3.2), the
potential of symbol-based ML for KGs (Section 3.3), the attempts to use KGs for explainable AI
(Section 3.4), and the need for further benchmark datasets and metrics to assess improvements
brought by aforementioned directions (Section 3.5). Finally, Section 4 concludes and summarizes
this work.

2 Machine Learning and Knowledge Graphs

In this section we focus on the interlink between ML and KGs. As sketched in [19], two main
perspectives can be drawn: a) KGs as input to ML, whose main goal is to improve the performance
in many learning tasks, e.g. question answering, image classification, instance disambiguation,
text summarization, etc.; b) ML as input to KG, whose main goal is to improve the KG itself,
e.g. in terms of coverage, quality, and adding new facts. In the following, we analyze the most
impactful approaches in the literature, along these two perspectives.

2.1 Knowledge Graphs as Input to Machine Learning
KGs, as representations of background and contextual knowledge in a structured form, have gained
significant interest from both academia and industry in the area of machine learning, enabling
models to tackle complicated tasks that need prior knowledge [44]. ML models are knowledge-aware
and thus can benefit from the incorporation of information that effectively captures the semantic
meanings [83]. From traditional ML to modern DNNs, KGs can offer advantages, enhancing
the functionality of ML systems by addressing various challenges and solving problems. In the
following, we will briefly describe key applications of KGs in ML. Specifically, in Section 2.1.1, we
elaborate on the key methodologies for incorporating KGs in ML, with a particular emphasis on
the shortcomings they seek to mitigate. In Section 2.1.2, our focus shifts to recent advancements
in describing large language models (LLMs) enhancement using KGs, a domain we believe will be
increasingly significant in the future, given the widespread adoption of LLMs.

2.1.1 Addressing Machine Learning Challenges with Knowledge Graphs
KGs represent semantic descriptions of entity types and properties with a well-defined meaning.
Hence, they can be employed when attempting to automatically extract features (that are
difficult to measure or quantify directly) from data points [92, 133]. A feature extractor is a
transformation function that maps data from a higher-dimensional space to a lower-dimensional
vector space, encompassing a wide range of dimensionality reduction techniques. Early approaches
map the output of feature extractors to hierarchies [100, 41] or use hierarchies as input to feature
extraction [162], or use large-scale real world labels and their inter-relations [140, 39]. Many recent
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Table 1 Overview of the research topics considered, the identified gaps, and our claims and proposals
to address them.

Topics Gaps Claims & Proposals

LLM prompting

LLM hallucinations
No formalized process to inter-
act with LLMs

Use KG at inference time to formalize
the dialogue process between humans
and LLM
Ground prompts in knowledge (e.g.,
adding context, analyzing response,
defining prompt sequence)

KG semantics &
KGE models

Semantics not (fully) considered
Deductive capabilities not (fully)
considered

Investigate the full exploitation of KG
semantics (e.g., to improve model per-
formance, to generate informative neg-
atives)
Possibly with different reasoning types
(deductive, analogical)
Empirical full assessment of the role of
semantics

Symbol-based
methods

Largely disregarded
Scalability issues

Leverage mining of disjointness ax-
ioms to generate informative negatives
needed in ML models training
Alleviate scalability issues

Interpretability
of ML models

Pre-/post-model approaches do
not fulfill necessary require-
ments
In-model KG-based explainable
approaches not proved to im-
prove interpretability

Infuse KG in ML training
Demonstrate that this improves ML in-
terpretability

Benchmark
datasets

Lack of needed characteristics
(e.g., schemas)
Some datasets under-used or un-
noticed

Develop a unified repository of datasets
Automatically crawl in the wild and
qualify datasets w.r.t. needed charac-
teristics
Create synthetic KG generators that
generate both tailored schemas and
KGs
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approaches rely on image annotation that is linked to KGs, such as WordNet [127], like the image
databases that have been established based on these concepts (see for example [40, 94]). On the
other hand, knowledge graph embedding methods can be also seen as methods to build semantic
feature extractors. This involves the mapping of entities and relations into low-dimensional
vectors, effectively capturing their semantic meanings in a form that is more compatible to deep
learning models [192, 138]. This field of research offers significant opportunities for exploration
and advancement [145, 112] and will be analyzed in more detail in the next sections.

DNNs require a substantial amount of data for training. Sometimes, the data can either
be unavailable or come with a high cost of collection. This issue, commonly referred to as the
sample shortage, comes with different settings. Among them, the zero-shot learning (ZSL) [141]
[49, 194] and the few-shot learning (FSL) [196] has recently gained significant research attention
and call for the use of structured knowledge [71]. ZSL is formally defined as the task of predicting
labels for new classes that have never been encountered during training, while FSL involves the
task of predicting labels for new classes for which only a small number of labeled samples are
provided. In both cases, the proposed solutions try to somehow transfer knowledge from seen
classes to unseen classes (see [228] for recent advances on transfer learning, specifically describing
knowledge transfer). Here, KGs play an important role, since they can represent background
knowledge such as class hierarchies, instances of classes (samples), features, properties, relations
as well as meta information like model parameters, providing the necessary auxiliary information.
The interested reader can check [194] and [196] for a systematic review on ZSL and FSL, [71]
and [27] for ZSL and FSL based on external knowledge (covering some works that use KGs as the
background knowledge), [133] covers the use of knowledge graphs specifically for visual transfer
learning and [28] that is a recent thorough survey paper that specifically classifies and analyzes
methods utilizing KGs for ZSL and FSL.

The capabilities of DNNs have enabled the development of numerous models and techniques
to address challenging problems, particularly those involving multimodal data. In this context,
multimodal machine learning [14, 61, 132] has emerged as one of the rapidly advancing fields
within artificial intelligence, addressing various challenging problems, including visual question
answering, visual reasoning, image captioning, image-text retrieval, visual storytelling, visual
dialoguing and others [3, 66, 217, 204, 169, 45, 45, 95]. Not surprisingly, the proposed DNNs
models (mainly based on transformers) often struggle with generalization to various concepts
and scenarios that demand commonsense knowledge, or understanding of abstract entities, facts,
and real-world events, due to the lack of formal representation of background, contextual and
commonsense knowledge [150, 74, 90]. Hence, integrating external knowledge at different stages
of multimodal learning, especially in pre-training or fine-tuning, augments the capabilities of
models, enabling them to better address a broader range of real-world scenarios. Several proposed
DNNs models are based on external knowledge that is represented using semantic descriptions
stored in KGs. In particular, there have been proposed datasets that leverage external knowledge
[122, 177, 149, 200] linked to web resources and KGs [106] to learn the alignment between visual
and textual information [30] in order to solve multimodal learning tasks. The interested reader
can find information in several survey papers classifying and analyzing methods in the area of
multimodal learning (see for example [14, 61, 132], specifically presenting works that make use of
KGs [119]).

The adoption of symbolic knowledge representation and reasoning as a means to address the
opacity of machine learning classifiers is a research domain that has recently garnered significant
attention from researchers [58]. The need to provide explanations grounded in domain knowledge
with formal semantics has driven the utilization of KGs in explainable AI [32, 111, 42, 25, 180].
As this field holds considerable interest and offers numerous prospects for future research, we
discuss it in more detail in Section 3.4.
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2.1.2 Knowledge Graphs for Large Language Models
The current ML literature is dominated by Deep Learning solutions that have been proved very
effective in multiple domains and for multiple tasks. Particularly, nowadays LLMs and related
systems are catalyzing the attention of the scientific and industrial community for their impressive
ability to provide highly accurate results in a very limited amount of time, as for the case of
ChatGPT6 and similar solutions. LLMs behind these systems (like the GPT models [22] that
currently guide ChatGPT) are usually deep learning models that have been trained on huge
amounts of text data and are capable of understanding and generating human-like text. Typically,
they get a text in their input and provide a text as a response. Lately, they can be also directly
connected to other generative models like Midjourney7 and DALLE-38 that get text as input and
give image or videos in the output, advancing the user experience and extending the scope of
application domains.

There are many ways of using KGs to improve or understand the operation of LLMs. There are
works that aim to enhance the text generation (see for example the survey [216]) or more generally
to enhance visiolinguistic learning with knowledge (see for example the survey [119]). In [142]
several methods are discussed that try to unify LLMs and KGs, combining their advantages.
Among others, methods that use KGs to improve the operation of LLMs are analyzed. An
interesting approach is to incorporate knowledge graph information into LLMs in order to enhance
their performance, by advancing the factual knowledge understanding. This is a way to improve the
LLM performance on knowledge-intensive tasks, and to generate more informed and contextually
grounded text. In particular, there are works that try to enhance word representations with
knowledge graph embeddings providing context, improving the model’s performance [146], or to
learn contextualized representations that capture both linguistic and factual knowledge [118], or
to use KGs in pre-training to enhance the model’s understanding of factual knowledge [174, 109].
Other works in the area try to decompose knowledge into separate modules to improve its natural
language understanding capabilities [219], or to integrate KG and language understanding in a
joint pre-training framework [215].

Moreover, there are other approaches for graph-to-text generation integrating knowledge from a
knowledge graph into the text generation process, trying to produce more informative and coherent
outputs [214]. In this framework, combining language representations with knowledge graph
embeddings can be used to enhance the representation of contextualized knowledge [173, 171, 65].
Sentiment knowledge can be also incorporated with the use of KGs, thus enhancing the performance
of language models with respect to sentiment analysis accuracy [178].

Finally, KGs can be used to prob and possibly understand different aspects of the operation of
LLMs. In particular, KGs can be used to elicit knowledge from language models using automatically
generated prompts, enabling targeted information retrieval from the model’s knowledge base [164],
or for querying language models effectively, through a query generation technique that leverages
explicit context [2], or to contrastively probing LLMs to investigate the domain knowledge
of pretrained language models by comparing their performance to specially designed contrast
models [125]. Prompting can be also used for understanding the limitations LLMs, revealing
scenarios where language models may produce unreliable or incorrect responses [121], or to enable
the exploration and understanding of the underlying knowledge captured by LLMs [176], or to
understand how LLMs capture factual knowledge and identify the key factors that contribute to
their acquisition of factual information [108].

6 https://openai.com/blog/chatgpt
7 https://www.midjourney.com/home/
8 https://openai.com/dall-e-3

TGDK

https://openai.com/blog/chatgpt
https://www.midjourney.com/home/
https://openai.com/dall-e-3


8:8 Machine Learning and Knowledge Graphs: Existing Gaps and Future Research Challenges

Of particular significance in this context is the utilization of KGs to validate LLMs, mitigating
the issue of hallucination, that causes the generation of factually incorrect content [84]. Halluci-
nation of LLMs poses a substantial challenge to their reliability [15]. Although some LLMs are
equipped with the ability to explain their predictions, their explanatory capabilities also suffer
from hallucination and this has been particularly connected to the criticism that LLMs have
limited ability to encode factual knowledge [229, 188, 56]. Hence, it becomes crucial to examine
and authenticate the knowledge embedded within LLMs to prevent hallucination. Recently, there
is some work in the area of utilizing KGs for hallucination detection. Specifically, KGs are used as
an external source to validate LLMs reliability [85], or to develop fact-checking models, identifying
and mitigating hallucinations [48]. This is a very interesting area for future work.

In Section 3.1, we outline our viewpoint on the most important research areas that require
attention in order to address the challenges discussed here.

2.2 Machine Learning as Input to Knowledge Graphs
From the perspective of ML as input to KGs, the main objective is to improve the quality of
existing KGs overall. Particularly, given the well-known issues concerning noise and incompleteness
of KGs, most solutions have focused on KG refinement which actually encompasses several tasks.
Among the others, triple classification (aiming at assessing the correctness of a statement in a
KG and generally regarded as a binary classification problem) and mostly link/type prediction
(aiming at predicting missing links/types between entities and generally regarded as a learning to
rank problem) gained most of the attention, aiming at improving/limiting KG incompleteness.

Different approaches have been developed over the years, with the goal of improving effectiveness
(mostly targeting the link prediction problems) while scaling to very large KGs. Mostly, numeric-
based methods have been investigated. Among the very first proposals, probabilistic latent variable
models from the Statistical Relational Learning (SRL) [54] field (having as main goal the creation
of statistical models for relational/graph-based data) have been formalized. Successive and very
efficient solutions have been represented by Knowledge Graph Embedding (KGE) models. Other
approaches focusing on propositionalization techniques, recently also exploiting Graph Neural
Networks (GNN) [201]) have been also pursued. Complementary to these numeric-based solutions,
research directions targeting symbol-based models have been also proposed, particularly focusing
on rule-based methods for predicting triples in KGs.

In the following we summarize the most representative methods for each of the aforementioned
categories. We dedicate particular attention to KGE methods that represent the main subject of
study for our successive proposals, illustrated in Section 3.2.

2.2.1 Probabilistic Latent Variable Models
Probabilistic Latent Variable Models explain relations between entities by associating each resource
to a set of intrinsic latent attributes (i.e. attributes not directly observable in the data) and
conditions the probability distribution of the relations between two resources on their latent
attributes. All relations are considered conditionally independent given the latent attributes. This
allows the information to propagate through the network of interconnected latent variables.

One of the first solutions belonging to this category is the Infinite Hidden Semantic Model
(IHSM) [153]. It formalizes a probabilistic latent variable that associates a latent class variable with
each node and makes use of constraints expressed in First Order Logic during the learning process.
IHSM showed promising results but was found to have limited scaling on large data collections,
because of the complexity of the probabilistic inference and learning, which is intractable in
general [91].
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2.2.2 Knowledge Graph Embedding Models
KGE models have received considerable attention because of their impressive ability to scale on
very large KGs. KGE are numeric-based approaches that convert the data graph into an optimal
low-dimensional space in which graph structural information and graph properties are preserved as
much as possible [23, 83]. The embedding procedure consists of learning embeddings such that the
score of a valid (positive) triple is lower than the score of an invalid triple, i.e. the invalid triples
function as negative examples. Graph embedding methods may differ in their main building blocks:
the representation space (e.g. point-wise, complex, discrete, Gaussian, manifold), the encoding
model (e.g. linear, factorization, neural models) and the scoring function (that can be based
on distance, energy, semantic matching or other criteria) [83]. Over the years, several models
have been developed. Some are presented below. It should also be noted that several libraries
or frameworks such as Deep Graph Library9 [191], PyKEEN10 [6], or PyTorch-BigGraph11 [105]
have been developed and provide unified implementations of wide ranges of models.

One of the first solutions that has been proposed is RESCAL [139], which performs graph
embedding by computing a three-way factorization of an adjacency tensor that represents the
multi-graph structure of the data collection. It resulted in a powerful model that was also able
to capture complex relational patterns over multiple hops in a graph, however it was not able
to scale on very large graph-based data collections (e.g. the whole YAGO or DBpedia). The
main limitation was represented by the parameter learning phase, which may take rather long for
converging to optimal solutions.

The very first highly scalable embedding model is TransE [20]. It introduces a simple but
effective and efficient model: each entity is represented by an embedding vector and each predicate
is represented by a (vector) translation operation. The score of a triple is given by the similarity of
the translated subject embedding to the object embedding. The optimal embedding and translation
vectors for predicates are learned jointly. The method relies on a stochastic optimization process,
that iteratively updates the distributed representations by increasing the score of the positive
triples i.e. the observed triples, while lowering the score of unobserved triples standing as negative
examples. The embedding of all entities and predicates in the KG is learned by minimizing a
margin-based ranking loss.

Despite its scalability and effectiveness, TransE remained limited in properly representing
various types of properties such as reflexivity, and 1-to-N , N -to-1 and N -to-N relations that
can be easily found in KGs (e.g. typeOf as an example of N -to-N relationship). To tackle this
limitation while keeping the ability to scale to very large KGs, a large family of models has been
developed that build on TransE, such as TransH [197] and TransR [113].

Specifically, TransR adopts a score function that projects entities into a different vectorial
space for each relation through a suitable projection matrix. TransR associates to typeOf, and
to all other properties, a specific vector space in which entity vectors are projected. This leads
to training specific projection matrices for typeOf (and any other relation) so that the projected
entities can be located more suitably to be linked by the vector translation associated to the
(typeOf) relation. This differs from TransE, which models typeOf as simple vector translation.
The considered individuals and classes may be quite different in terms of the properties and
attributes they are involved in, thus determining strong semantic differences (according to [210])
taking place at small reciprocal distances in the underlying vector space, hence revealing the
weakness of employing the mere translation.

With the goal of capturing additional properties in the data, such as inverse relationship,
symmetry, anti-symmetry and composition, more complex embedding models have been formalized,

9 https://www.dgl.ai/
10 https://github.com/pykeen/pykeen
11 https://github.com/facebookresearch/PyTorch-BigGraph
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either targeting more complex vector representation spaces, such as the complex representation,
as for the case of ComplEx [184] and (Path-)RotatE [224], Gaussian representation, as for the
case of KG2E [67] and TransG [203], and manifold representation, as for the case of MuRP [13]
and DihEdral [206], or targeting more complex encoding models such as neural models, as for
the case of ConvKB [137] and CompGCN [185]. Nevertheless, these additional models became
rather computationally expensive, which limits their usefulness.

Nevertheless, several additional semantic aspects that are generally available within KGs, such
as hierarchies of concepts and roles, type constraints and transitivity of relationships, are currently
almost disregarded by existing KGE models. The need for semantic embedding methods has been
argued [33, 144, 82]. In [60] a KG embedding method considering logical rules has been proposed,
where triples in the KG and rules are represented in a unified framework. Specifically, triples are
represented as atomic formulae while rules are represented as more complex formulae modeled
by t-norm fuzzy logics. A common loss function over both representations is defined, which is
minimized to learn the embeddings. This proposal resulted in a novel solution but the specific form
of prior knowledge that has to be available constitutes its main drawback. A similar drawback also
applies to [129], where a solution based on adversarial training is formalized, exploiting Datalog
clauses to encode assumptions which are used to regularize neural link predictors.

Complementary solutions, directly targeting rich representation languages as RDFS and OWL
and not requiring additional formalism for representing prior knowledge have been proposed.
Particularly, [128] has proven the effectiveness of combining embedding methods and strategies
relying on reasoning services for the injection of prior Background Knowledge (BK) to enhance
the performance of a specific predictive model. Following this line, TransOWL, aiming at
injecting schema level information, particularly during the learning process, and its upgraded
version TransROWL, have been formalized [36, 35]. The main focus is on the application of this
idea to enhance well-known basic scalable models, namely TransE [20] and TransR [113], even
if, in principle, the proposed approach could be applied to more complex embedding methods,
with an additional formalization. In TransOWL the original TransE setting is maintained
while resorting to reasoning with schema axioms to derive further triples to be considered for
training and that are generated consistently with the semantics of the properties. Particularly, for
each considered axiom, TransOWL defines, on the score function, specific constraints that guide
the way embedding vectors are learned. A set of different axioms, specifically equivalentClass,
equivalentProperty, inverseOf and subClassOf, are employed for the definition of constraints on the
score function so that the resulting vectors, related to such axioms, reflect their specific properties.
As a consequence, new triples are added to the training set on the grounds of the specified axioms.
TransROWL further develops TransOWL by adopting TransR as the base model in order
to handle non 1-to-1 properties in a more proper way. TransOWL and TransROWL have
been proven to improve their effectiveness on link prediction and triple classification tasks when
compared to the baseline models (TransE and TransR) that focus on structural graph properties.
Some additional efforts in the formalization of KGE and Deep Learning solutions taking into
account limited semantics can be found in the literature [57, 12, 72, 62, 99]. Nevertheless, none of
the existing KGE model is able to exploit the full expressiveness that a KG may have in principle.

Independently of the specific model, another important issue needs to be highlighted: most of
the existing KGs only contain positive (training) examples, since usually false facts are generally
not encoded. However, training a learning model in all-positive examples could be tricky, because
the model might easily overgeneralize. As such, in order to obtain the negative examples that are
needed to train KGE models, two different approaches are generally adopted: either corrupting
true/observed triples randomly, with the goal of generating plausible negative examples or
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adopting a local-closed world assumption (LCWA) in which the data collection is assumed as
locally complete [138]. In both cases, wrong negative triples may be generated and thus used when
training and learning the embedding models.

In Section 3.2, we present our perspective on the research directions that need to be tackled to
cope with the problems illustrated particularly in this section.

2.2.3 Neural Methods for Vector Space Embeddings

Another research direction focused on the exploitation of vector space embeddings for obtaining
a propositional feature vector representation of a KG. One of the first solutions targeting this
research direction is RDF2Vec [154], which adapts the well-known Word2Vec technique, devised
for natural language processing, to graph representations. A two-step approach is adopted. First
the data graph is converted into a set of sequences of entities (two different approaches can be
used for this purpose: graph walks and Weisfeiler-Lehman Subtree RDF graph kernels). In the
second step, the obtained sequences are used to train a neural language model to estimate the
likelihood of a sequence of entities appearing in a graph. The result is that each entity in the graph
is represented as a vector of latent numerical features. In order to show that the obtained vector
representation is independent of the downstream task and the specific algorithm, an experimental
evaluation involving a number of classification and regression tasks has been performed.

An upgrade of RDF2Vec has been presented in [31], where global patterns are considered
(differently from the initial RDF2Vec proposition grounded on local patterns). These solutions
cannot cope with literals.

Another way to better capture global information is to use a more powerful model, such as a
graph neural network (GNN). These are a class of methods for allowing artificial neural networks
to operate on graph data. Given that graphs are a very general data structure, GNNs can take a
wide variety of forms. It has also been shown that many popular deep learning architectures, such
as convolutional neural networks, recurrent neural networks, and transformers, can be seen as
a GNN for a suitably defined graph [21]. In a GNN, as for RDF2Vec and KGE models, nodes
are represented as vectors. These vectors are fed through a sequence of message-passing layers,
where nodes update their values based on their neighbors’ values, and local pooling layers, where
groups of neighboring nodes are combined into a single vector representation. The final layer
aggregates the entire input into a single vector representation for the entire graph. Because of this
iterative process, GNNs are better able to capture multi-hop relations and global graph structure,
compared to RDF2Vec [154]. They are also able to reduce an entire graph to a single embedding
vector, as well as computing embedding vectors for each node. See [223] or [226] for an overview
of GNN design and applications.

Several works have applied GNNs to construct or enhance KGs. [227] integrates Bellman-Ford
into the GNNs training procedure, and then uses the resulting model for link prediction on
KGs. [143] show that GNNs can be trained, in a supervised setting, to accurately estimate node
importance in a KG. GNNs have also been used for entity alignment, which seeks to discover
when the same entity appears in two different knowledge graphs. [198] embeds entities in both
KGs and then uses the distance between the embeddings to identify when nodes in different KGs
correspond to the same entity. More recent works have built on this method, for example by
capturing time-sensitive information [207] or multi-modal inputs [170]. Another common use of
GNNs for KG is to improve the use of KGs in recommender systems [52], and inference [136]. For
an overview of the use for GNNs for KGs, see [213].

TGDK
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2.2.4 Rule Learning Solutions

With the goal of finding new facts (namely new triples) that are missing in a KG, AMIE [51, 50]12

has been proposed. AMIE represents one of the most well-known and efficient solutions grounded
on a symbol-based approach. Inspired by association rule mining [4] and the Inductive Logic
Programming (ILP) literature, AMIE is able to learn logic rules from KGs, that are ultimately
used for predicting new unseen triples. Interestingly AMIE is tailored to support the Open World
Assumption (OWA) characterizing KGs, differently from all numeric-based solutions that are
grounded on the Closed World Assumption (CWA). Nevertheless, AMIE mines rules inspecting
the triples that are directly observable in the KG and it does not exploit the additional semantics
that is available in the KG as well as any form of deductive reasoning.

A related rule mining system, based on a level-wise generate and test strategy has been further
proposed [37], with the goal of learning SWRL rules [70] while exploiting schema level information
and deductive reasoning capabilities during learning. As for AMIE, the goal was to exploit the
discovered rules for predicting new facts. This system actually outperformed AMIE in terms of
new predicted triples, and this was due to the exploitation of the schema level information and
reasoning capabilities. Nevertheless, they have been also the main cause of the reduced ability of
the system to scale on large KGs, when compared to AMIE.

More recently AnyBURL [123] has been proposed. It is a scalable bottom-up rule learning
system for KG completion that works by sampling random paths that are generalized into
Horn rules. Reinforcement learning is exploited to guide path sampling and make efficient use of
computational resources. AnyBURL also showed improved scalability and competitive performance
in comparison to numeric-based approaches. Even more so, it has been also shown that AnyBURL
can be used to explain predictions made by a latent model when restricting the types of learned
rules. Nevertheless, as for AMIE, no exploitation of the KG semantics and reasoning capabilities
can be found.

3 Gaps in Machine Learning and Knowledge Graphs and Next Challenges

In this section we analyze existing gaps of the class of methods illustrated in Section 2 that
we identify as important. Hence, for each of them, we provide our perspective on the research
directions that need to be pursued in order to fill these gaps. Specifically, the following Section 3.1
primarily focuses on the need of having a clear methodology for interleaving LLMs with KGs and
drafts a preliminary proposal. Section 3.2 primarily focuses and provides preliminary proposals
for the need of taking into account reasoning capabilities and schema level information of KGs,
to be used for setting up a more informative way for generating negative training examples as
well as for injecting schema level information in KGE. Beyond the gaps, Section 3.3 presents our
view supporting that symbolic ML methods may still have a role in KG, particularly for KG
refinement and more specifically for mining disjointness axioms, that are quite often missing in
KGs and related ontologies. Section 3.4 presents our position on the need for an approach that
demonstrably produces reliable explanations to validate ML results when applied to KGs. Hence,
Section 3.5 shows the need for diverse, high-quality benchmark datasets when combining ML and
KGs as well as new metrics for capturing new behaviors.

12 AMIE system is currently at its third version. For more details see https://github.com/dig-team/amie.

https://github.com/dig-team/amie
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3.1 Knowledge Graphs for Prompting Large Language Models

From what has been described in section 2.1, we understand that the use of KGs, as an additional
tool, during the (pre-)training phase or during the inference phase of LLMs are important fields of
research, attracting the interest of many researchers, and could potentially improve the operation
of the LLM and the results of LLMs, respectively. Although the operation of modern LLMs
and respective systems (like chatGPT) is impressive and traditional machine learning gaps (like
reasoning capabilities) have started to close, there is still room for improvement, and the use
of KGs as an additional tool during the training and fine-tuning phases can play an important
role, here. Specifically, KGs can provide background knowledge (encyclopedic, commonsense,
domain-specific, multimodal etc), represent human-oriented processes, and explain opaque machine
operation. On the other hand, the practical use of LLMs increases dramatically and there is a
great need for advancing the use of LLMs inference, making the process of dialoguing
LLMs more formal and systematic. Therefore, the use of KGs during the phase of the design
of the input to be given to LLMs and during the phase of the analysis of the LLM response seems
to have a great potential.

Following the above, interesting open problems and challenges is the use of KGs in LLM
prompt engineering or simply LLM prompting [142, 116]. Prompting is the process of providing a
sequence of instructions or queries to a LLM in order to get the desired output or to check the
LLM’s operation and characteristics. It is actually a dialogue between a user (human or agent)
and a LLM, that reflects the user’s intent and finally results in the desired task or information
that the user wants to get from the model. Although the field is new, there are some attempts to
formalize the process (see for example the Automatic Prompt Engineer (APE) approach [225]). The
formalization of the dialogue process should be grounded on some type of background knowledge,
so there is a need for representing and using this knowledge. Here, we describe the great potential
of using KGs in LLM prompting, based on the nature of prompts, their types and effectiveness, the
tasks and the methodology to provide adequate prompts during the prompting process, focusing
on the potential use of KGs.

There are many ways to modify the prompt that is given to LLM, using KGs. First, the
instruction or question can be more explicit and specific, capturing the user requirements, since it
is well-understood that the more specific the prompt the better the chance of guiding the LLM
to the desired response. For example, the instruction “Summarize text A” can be specified as
“Summarize the text A in 200 words”, using the knowledge that an abstract should be between
200 and 300 words. Or the question “Is there any recent paper in the area of prompting machine
learning systems?” can be specified as “Is there any recent paper in the area of prompting
LLMs?”. On the other hand, sometimes it may be helpful, depending on the instruction or the
question, to generalize it, for example, the question “Is there any recent paper in the area of
prompting machine learning systems?” can be generalized as “Is there any recent work in the
area of prompting machine learning systems?”. Also, may be useful to contextualize or style the
prompt, by providing examples (“Suggest romantic musicals, like “La La Land”), or conditions
(“Suggest papers for prompting LLM, published in top conferences”), or style (“Paraphrase text A,
using more formal language). It is not difficult to see that KGs can be very helpful in constructing
knowledge-enhanced prompts like the above (and not restricted to them), guiding prompt changes,
as they capture formal domain knowledge descriptions. Interesting ideas can be found in [225] that
the instruction generation is framed as natural language program synthesis, in [166] that simple
and effective prompts are constructed to improve GPT-3’s reliability, in [189] that multi-step
reasoning tasks are tackled by constructing planning and solving prompts, in [222] that LLMs
are asked to provide explanations for their choices (in this case for a specific task that is model
selection) and in [116] that prompting with generated knowledge rectifies model prediction.
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Response analysis. Another interesting issue that could be considered is to use KGs to character-
ize the prompt, for example to measure its effectiveness or reliability, by analyzing and evaluating
the response. The effectiveness of prompts depends on the response of the LLM, i.e. the answer
to a specific prompt in comparison with the desired output, given the task. Depending on the
prompt and response languages, it is important to formalize effectiveness or reliability evaluation
measures that guide a process of iterative refinement of the results, by using formal knowledge
represented in KGs. Interesting ideas can be found in [142, 118, 166].

Prompt sequencing. Designing and controlling prompting, i.e. producing a sequence of prompts
to elicit a desired output, can be a challenging task that requires a systematic strategy, evaluation
and experimentation. Although LLMs are powerful, their operation is complex and unpredictable
and thus a dialogue for producing a sequence of prompts may be helpful to understand LLM
characteristics, like complex reasoning capabilities. There is lately some work in the area, for
example: Chain-of-Thought (CoT) prompts [199] decompose complex reasoning capabilities into
a set of simpler reasoning steps; In [116], the usefulness of using knowledge in common sense
reasoning is discovered, extracting knowledge from an LLM and then using this knowledge as
additional input to refine the prompt result. The APE methodology proposed in [225] uses ideas
from program synthesis in order to optimize the prompt selection process, based on efficient score
estimations. Future steps would benefit from the use of KGs as formal knowledge representations,
because there is a clear requirement formalizing the prompting extraction methodology.

3.2 Handling Semantics, Reasoning and Negative Information in Knowledge
Graph Embedding Methods

One of the key features of KGs is that they can be enriched with schema-level information. For the
purpose ontologies are generally adopted, which coupled with deductive reasoners, allow to make
explicit knowledge which is implicitly coded in a KG13. For example, given a KG containing the
triple <c typeOf Woman> (or equivalently Woman(c), by adopting a Description Logic formalism)
and referring to the following simple ontology formalizing a hierarchy of concepts Man ⊑ Human
and Woman ⊑ Human, the fact Human(c) can be derived by the use of a deductive reasoner.
Similarly, new knowledge can be derived when additional axioms are available, such as equivalence
axioms, disjointness axioms, as well as restrictions on domain and ranges14. However, due to the
limited ability of reasoners to scale on very large KGs, deductive reasoning is currently almost
disregarded.

Indeed, when talking about ML methods coupled with KGs, as for the case of KGE methods,
generally only facts that can be directly observed are taken into account e.g. when projecting the
data graph into a lower vectorial representation space. This is clearly a limitation, since knowledge
that is somehow already available within the KGs (as for the fact Human(c) in the example above)
and that may play a role when considering KGE is ignored. For instance, by considering the fact
Human(c), a more appropriate vectorial representation for the entity c could be provided thus
limiting errors also when solving downstream tasks. By only considering observable facts, schema
level information, that is a seminal element of knowledge, and all additional knowledge that can
be derived are actually fully dismissed.

13 Several reasoners exist and may be used for the purpose. Some examples are RDFox (https://www.
oxfordsemantic.tech/rdfox), HermiT (http://www.hermit-reasoner.com/), FaCT++ (http://owl.cs.
manchester.ac.uk/tools/fact/). See http://owl.cs.manchester.ac.uk/tools/list-of-reasoners/ for
the full list of reasoners.

14 See https://www.w3.org/TR/owl2-overview/ for details on the representation language.
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Abboud et al. [1] analyzed the shortcomings of the existing embedding mod-
els. These shortcomings can be summarized in: theoretical inexpressiveness, lack
of support for inference patterns and higher-arity relations, need for logical rule
incorporation.

Here, we specifically claim that KGE methods need to be equipped with the full usage of KGs
semantics which comprises the exploitation of all axioms that can be found in the ontologies that are
used for supplying (rich) schema level information to KGs, as well as the exploitation of deductive
reasoning services that allow to obtain additional knowledge both at schema and assertion level.
Indeed, whilst the need for semantic embedding methods has been advocated [33, 144, 82], only a
few proposals can be found in the literature that actually address this problem (see section 2.2.2
for details) and mainly focusing on equivalentClass, equivalentProperty, inverseOf and subClassOf
axioms. To the best of our knowledge, none of the existing methods is able to exploit all kinds of
axioms that in principle can be found in expressive ontologies. Even more so, a complementary
research direction would be needed, calling for a solid and extensive experimental evaluation
aiming at providing a clear position on the need (or not) to fully exploit the KG semantics as well
as reasoning capabilities. Specifically, we claim that a comprehensive experimental evaluation,
involving most of the KGE methods currently available, is needed. Two main scenarios should be
considered: the first one (currently adopted) where only observable facts are considered; the second
one where the full knowledge available within KG is made explicit by considering schema-level
information (e.g. transitivity, equivalence axioms, same as axioms etc,) and reasoning capabilities.
Hence performances on the very same downstream tasks, adopting the two settings, should be
compared, in order to experimentally prove the value added, if any, of exploiting the KGs entirely.
Importantly the second scenario could be possibly divided into two intermediate steps, one where
knowledge is partially completed by considering the schema level information but no exploitation
of deductive reasoners and a second step where the actual full knowledge is gained by adopting
available deductive reasoners. This is on one hand, for assessing the impact of the usage of the
full knowledge and on the other hand, for assessing if some complexity, due to reasoning, can be
saved whilst still trying to make knowledge explicit as much as possible.

Another issue with KGE models is given by the need of negative examples (for training KGE
models) that anyhow are generally missing in KGs, where generally only positive information
is coded. As illustrated in section 2.2.2, this problem is usually addressed either by corrupting
true/observed triples randomly, that is by replacing either the subject or the object of the observed
triple with an entity picked randomly from the KG, or by adopting a local-closed world assumption
(LCWA), in which the data collection is assumed as locally complete [138]. In both cases, wrong
negative triples may be generated and thus used when training and learning the embedding models.
In order to mitigate this issue, preliminary proposals tried to take under control the number of
negatives that are randomly generated [43]. Clearly this solution does not solve the problem
of generating false negatives, but rather simply tries to somehow control the effect of the false
negatives. One of the first proposals trying to generate and materialize actual negative triples
has been formalized in [8]. Nevertheless, the proposed solution is grounded on the exploitation of
additional and external sources of information besides KGs. Specifically, the proposed solution is
grounded on two complementary approaches: a statistical ranking for statements obtained based
on related entities, and a pattern-based text extraction, applied to search engine query logs.

On the contrary, here we claim that KGs semantics should be fully and solely exploited
for making explicit correct negative statements. For instance, given a restriction on domain
and/or range of predicate appearing in a true observed triple, the restriction can be exploited for
generating negative triples where e.g. the object entity of the negative triple can be deductively
proved to be out of the declared range restriction. Similarly, given an observed true triple with a
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predicate having a functional restriction, negative statements may be generated by constructing
triples having objects that are different from the object in the true statement. More generally, the
approach for generating correct negative statements that is envisioned, is deeply grounded on the
semantics of the schema axioms. The approach should basically construct triples that are in the
complement of the set of triples representing the semantics of a given schema axiom.

An initial proposal in this direction can be found in [36, 35, 117], where only domain, range,
disjointWith and functionalProperty constraints are considered. Whilst we consider this proposal
a valuable way to go as in agreement with the envisioned solution, it needs to be extended for
comprising all axioms and constraints that can be possibly found in a KGs, e.g. transitivity,
same-as, equivalence axioms, for citing a few. Even more so, we consider it worthwhile to conduct
an extensive experimental study comparing the different settings for generating negative examples
in order to prove experimentally the actual role of semantics, if any.

Up to now, when referring to reasoning we basically meant deductive reasoning applied to
ontologies/KGs [11]. Nevertheless, besides deductive reasoning, other forms of reasoning could be
investigated. These different reasoning forms could be useful in KG-related tasks, and conversely,
knowledge contained in KGs could be leveraged in their reasoning process. Here we specifically
focus on analogical reasoning that is a remarkable capability of the human mind [131] relying
on analogical proportions. They are statements of the form “A is to B as C is to D” that can
be formalized as quadruples A : B :: C : D [126]. An example of such a quadruple is “leg :
human :: paw : dog”. Analogical reasoning relies on similarity and dissimilarity to extrapolate
knowledge between objects of potentially different domains. To illustrate, the given example
quadruple leverages the similarity between body parts and whole, and the relation linking them
to constitute a valid analogy. Analogical reasoning is mainly concerned with two tasks: analogy
detection that aims to determine whether a quadruple A : B :: C : D is a valid analogy, and
analogy solving that aims to predict a missing element X, given three elements A, B, and C

such that A : B :: C : D constitutes a valid analogy. When elements are represented as vectors,
analogies can be thought of as parallelograms, i.e., eB − eA = eD − eC . Such a view can thus
be adopted with embeddings, which attracted works on ML-based analogy for various Natural
Language Processing tasks, e.g., word morphology [7] or machine translation [101]. In the realm of
KGs, to the best of our knowledge, only a few works consider analogical reasoning. However, KG
embeddings are suited for analogical formalization. For instance, by using translations to model
relations, TransE inherently validates the parallelogram rule. This motivated Portisch et al. [147]
to investigate whether some KG embedding models are well-suited for the task of analogy detection
with standard analogical datasets. But analogical reasoning could also be directly applied to KGs.
In the link prediction task, it is natural to extrapolate edges from one (part of a) KG to another
(part), which motivated the ANALOGY model [115]. Interestingly, ANALOGY is based on the
parallelogram rule and the authors showed that it subsumes some other models such as DistMult,
ComplEx, and HolE. Analogical reasoning can also be considered as an enhancer of existing
KGE models by using triples, relations or entities in analogies to enrich the training process [211].
In fact, the integration of analogical reasoning into KG-related tasks and KGE models is not
limited to one formalization or one task. Jarnac et al. re-used a convolutional model for analogy
detection and applied it on pre-trained graph embeddings to select subgraphs of interest from
Wikidata to bootstrap a domain-specific KG [81]. Analogies also inherently appear in several
other tasks, e.g., Semantic Table Interpretation, matching, or recommendation [134]. It remains
to explore both theoretically and empirically the best formalizations, models, improvement in
performance, and interactions with other forms of reasoning, especially deductive reasoning that
is inherently permitted by ontologies.
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3.3 Symbol-based Methods for Knowledge Graphs
Given KGs volumes, the need for scalable ML solutions has obfuscated the attention to
symbol-based ML solutions. Nevertheless, the important gain, in terms of scalability, that
numeric-based methods (such as KGEs) are obtaining is penalizing: a) the possibility to have
interpretable models as a result of a learning process (see Section 3.4 for more details); b) the
ability to exploit deductive (and complementary forms of) reasoning (see Section 3.2 for more
details); c) the expressiveness of the representations to be considered and related assumptions
(such as the Open World Assumption (OWA)).

Indeed, suitable symbol-based methods, often inspired by the Inductive Logic Programming
(ILP) [151] field (aiming at inducing a hypothesized logic program from background knowledge
and a collection of examples), have been proposed [34, 86, 103, 51, 179]. Most of them are able to
cope with expressive representation languages such as Description Logics (DLs) [11], theoretical
foundation for OWL, and the Open World Assumption (OWA) typically adopted, differently from
the Closed World Assumption (CWA) that is usually assumed in the traditional ML settings. Also,
problems such as ontology refinement and enrichment at terminology/schema level have been
proposed [46, 47, 102, 186, 157].

Particularly, with the purpose of enriching ontologies at the terminological level, methods for
learning concept descriptions for a concept name have been formalized. The problem has been
regarded as a supervised concept learning problem aiming at approximating an intensional DLs
definition, given a set of individuals of an ontological KB acting as positive/negative training
examples. Various solutions, e.g. DL-Foil15 [46] and celoe [102] (part of the DL-Learner
suite16), have been formalized. They are mostly grounded on a separate-and-conquer (sequential
covering) strategy: a new concept description is built by specializing, via suitable refinement
operators, a partial solution to correctly cover (i.e. decide a consistent classification for) as many
training instances as possible. Whilst DL-Foil works under OWA, celoe works under CWA. Both
of them may yield sub-optimal solutions. In order to overcome such issues, DL-Focl17 [159, 158],
Parcel [182] and SpACEL [183] have been proposed. DL-Focl is an optimized version of DL-
Foil, implementing a base greedy covering strategy. Parcel combines top-down and bottom-up
refinements in the search space. Specifically, the learning problem is split into various sub-problems,
according to a divide-and-conquer strategy, that are solved by running celoe as a subroutine.
Once the partial solutions are obtained, they are combined in a bottom-up fashion. SpACEL
extends Parcel by performing a symmetrical specialization of a concept description. All these
solutions proved to be able to learn approximated concept descriptions for a target concept name
to be used for possibly introducing new (inclusion or equality) axioms in the KB. Nevertheless,
quite often, relatively small ontological KBs have been considered for the experiments, revealing
that, currently, they have limited ability to scale on very large KGs.

A few scalable exceptions are represented by rule learning systems for KG completion such as
AMIE and most of all AnyBURL (see section 2.2.4 for more details). Nevertheless, most of the
existing symbol-based methods cannot scale to very large KGs [158].

Here we want to highlight particularly the role that symbolic ML solutions may play in
assessing disjointness axioms within ontologies. Indeed, disjointness axioms are essential for
making explicit the negative knowledge about a domain, yet they are often overlooked during the
modeling process [193]. Furthermore, disjointness axioms would be absolutely beneficial for setting
up an informed generation of negative examples in KGE models (see section 3.2 for details), thus
limiting false negatives that random corruption may inject.

15 System publicly available at: https://bitbucket.org/grizzo001/dl-foil/src/master/
16 Suite publicly available at: https://dl-learner.org/
17 System publicly available at: https://bitbucket.org/grizzo001/dlfocl/src/master/
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To tackle this problem, automated methods for discovering disjointness axioms from the
data distribution have been devised. A solution grounded on association rule mining [4] has
been proposed in [186]. It is based on studying the correlation between classes comparatively,
namely by considering association rules, negative association rules and correlation coefficient.
Background knowledge and reasoning capabilities are used to a limited extent. A different solution
has been proposed in [157, 156], where, moving from the assumption that two or more concepts
may be mutually disjoint when the sets of their (known) instances do not overlap, the problem
has been regarded as a clustering problem, aiming at finding partitions of similar individuals
of the knowledge base, according to a cohesion criterion quantifying the degree of homogeneity
of the individuals in an element of the partition. Specifically, the problem has been cast as a
conceptual clustering problem, where the goal is both to find the best possible partitioning of the
individuals and also to induce intensional definitions of the corresponding classes expressed in the
standard representation languages. Emerging disjointness axioms are captured by the employment
of terminological cluster trees (TCTs) and by minimizing the risk of mutual overlap between
concepts. Once the TCT is grown, groups of (disjoint) clusters located at sibling nodes identify
concepts involved in candidate disjointness axioms to be derived18. Unlike [186], that is based
on the statistical correlation between instances, the empirical evaluation of [157, 156] showed the
system ability to discover disjointness axioms also involving complex concept descriptions, thanks
to the exploitation of the underlying ontology as background knowledge.

Here, we claim that, when tackling the problem of learning disjointness axioms, a two-level
analysis needs to be conducted. One level relates to the expressiveness of the axioms that can
be learned. The other level is related to the usage of the learned axioms from a user/knowledge
engineering perspective. The goal of this two-level analysis should be finding a trade-off between
expressiveness and utility from a user modeling perspective. Whilst the former analysis, concerning
the expressiveness of the discovered axioms, has been conducted (as reported just above) the
latter, requiring an actual user study is currently missing, whilst we consider it necessary for
coming up with the aforementioned trade-off between expressiveness and utility of the discovered
disjointness axioms. Furthermore, additional efforts should be devoted to the scalability of the
developed methods that, even if not very limited, still do not appear to be able to scale on the
existing KGs.

3.4 Knowledge Graphs for Interpretable Machine Learning
When considering the relation of KGs to deep learning, via KGEs for example, a popular research
objective is to use KGs for interpretability. The internal dynamics of DNNs are typically opaque,
and there is hope that KGs can be used to help provide (satisfying) explanations of their behavior.
The general goal of producing explanations for behavior of machine learning models is sometimes
referred to as explainable AI (XAI).

As argued in [55], the concepts of explainability and interpretability are intertwined in the
context of XAI, because what we really seek is an interpretable explanation. One could, for example,
detail exactly the activations of each hidden layer in a neural network to explain why it produced
the output from the corresponding input, but this is not a human-interpretable explanation, so is
unhelpful for XAI. Despite a strong incentive for interpretable machine learning [114], especially
in the area of healthcare [130, 5], and despite significant research attention, how to make complex
machine learning model interpretable and explainable remains an open problem [87, 110].

In this section, we give an overview of existing work, and needed future work, on using KGs
for interpretable machine learning. We follow our above framework and divide the discussion into
two parts: ML for KG and KG for ML.

18 System publicly available at: https://github.com/Giuseppe-Rizzo/TCTnew
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The former uses ML techniques to augment or construct a KG. With respect to interpretability,
the idea is that a KG is a human-readable representation of information. Once it is constructed,
it can be used to produce an answer that is highly interpretable, because we can identify the facts
and inference rules from which the answer was derived. The problem is that the construction
itself, which is often a complex process, remains uninterpretable. The same also applies to work
that uses LLMs for KG construction, such as [63, 98], which use BERT-based models to build a
clinical KG for medical and financial applications, respectively. Once constructed, the KG can
perhaps be used in an interpretable way, but the LLM that constructs it is not interpretable.
Methods which then use the KG as input to another stage, may see interpretability gains at those
other stages. For example, [16] iteratively use a KG to augment the training data, and then use
predictions from augmented training data to extend the KG. However, the initial creation of the
KG remains uninterpretable.

In the other direction, there are several works which aim to use KGs to enhance the performance
of ML models. There, the possible approaches to using KG for interpretable ML models can,
following [152] be divided into three types, pre-model, post-model and in-model.

Pre-model, refers to using the KG as input to a DNN often referred to as “conditioning
on the KG”, [99]. The idea is that the KG contains higher-quality structured information than
images or free-form text, which can then be used by the DNN to solve the given task. This could
potentially help interpretability if the network uses an attention mechanism that can be inspected
to see which parts of the KG are attended to, as shown by [209] (although, interestingly, the
authors were not motivated by explainability in the design of their model). A similar method
was later also used by [218]. Similarly, [220] proposed a question-answering model that attends
to paths in a KG from a question to the answer, and claims the attention map over these paths
constitutes an explanation of the model output. However, these provide at best, only partial
interpretability, because it is unclear how/why the model’s attention mechanism focuses on the
information from the KG that it does.

Post-model, refers to obtaining the output of a ML model, and then invoking a KG to try to
produce an explanation for where that output came from. For example, [53] proposes a visual
classifier that matches the predicted classes to KG entities, and then uses the KG structure to
give an explanation. Similarly, [167] claims to propose an explainable textual entailment model
that, after predicting whether one text entails another, finds evidence for this entailment in a KG.
The problem with generating post-hoc explanations is that they depend only on the model output
and not on the processes internal to the model which produced that output, even though it is
precisely the latter that explanations are supposed to shed light on. Two different ML models
that produced the same output by very different means would, by methods such as [167] and [53],
automatically receive the same ‘explanation’. For example, consider two visual classifiers which
both assign the same label to an input image. Suppose one of these classifiers has been trained
on and memorized the test set, while the other has actually learned relevant visual features and
used these to infer the label. We would surely want the explanation for the outputs of these two
classifiers to be different, but if we use only the assigned label to produce an explanation, then
they will automatically be the same. Thus, post-model XAI methods that invoke a KG after
prediction are precluded from the outset from producing satisfactory explanations, because the
explanation is independent of internal model behavior (given the output), which is exactly the
thing we want to explain.

In-model, the third manner of enhancing ML models with a KG, involves the KG during the
training of the model itself. In the case of DNNs, this faces the difficulty of connecting discrete
data from the KG, to a continuous loss function. Beyond some exploratory work, [99, 163], few
methods have attempted this approach. Additionally, even if one successfully improved predictive
performance, it is not immediately obvious that it would improve interpretability. It is possible
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that such an in-model method, were it to be designed, would involve a complex interactive passing
of information between a KG and a DNN, which is highly uninterpretable. One such method
did explicitly target explanations [160], however this was a bespoke system that requires the
KG to consist of part-whole relationships only, as well as additional annotation of the images of
object-part classes.

The use of KGs for interpretable ML remains an open problem, either to devise
a generalizable method of infusing KG in ML training that demonstrably improves
interpretability, or to determine that such a method is not feasible. At the moment, there is
interest in the use of KGs for interpretable ML, but we do not have a KG-based method that
demonstrably improves interpretability in ML. This gap in the research was also noted by [38].
Moreover, in order for KGs to be of significant help for explainability, we contend that they must
be involved internally in the model itself. Using machine learning to generate KGs means that
this generation process itself is not interpretable, and invoking the KG after the operation of the
machine learning model means that it cannot distinguish between models that produced the same
output, even if by very different means.

3.5 Benchmark datasets, and metrics
The ever-expanding number of available methods targeting KG construction, refinement, or usage
in ML approaches entails a need for appropriate benchmark datasets and metrics to evaluate their
capabilities. Some datasets are considered as de facto standards to evaluate approaches developed
for KG-related tasks such as FB15k-237 and WN18RR for link prediction, or Citeseer for node
classification. However, we claim that current datasets do not suffice for a sound and
complete evaluation of the capabilities of developed approaches. Indeed, they present
several issues such as:

unwanted leakages between train and test sets;
absence of shared patterns between train and test sets;
lack of necessary characteristics to support the use of background knowledge in ML models
(e.g., presence of inverse axioms, hierarchy of classes or properties).
scattering of datasets across several repositories hindering their discovery and re-usage

In the following, we briefly illustrate and discuss each of these issues and propose possible ways to
overcome them.

Several datasets have been made available to the community over the past few years, e.g.,
by using (fragments of) open KGs [17, 148, 155]. At first, the presence of patterns in train and
test sets was regarded with a concern for unwanted leakages. For example, the two datasets
FB15k and WN18 were previously widely adopted to evaluate link prediction approaches. It
was later discovered that both datasets present data leakage between train and test sets due
to inverse relations [43, 181]. A link prediction approach can then easily learn to predict a test
triple (t, r−1, h) if triple (h, r, t) is in the train set, where r−1 denotes the inverse relation of r.
Two filtered versions named FB15k-237 [181] and WN18RR [43] were thus created by filtering
such triples, to avoid spurious performance measures. Nevertheless, patterns such as inversion,
symmetry, hierarchy or composition and their capture by KGE models are now argued to be of
interest, especially if adequately considered in the experimental and evaluation setting [117, 24].
In particular, some authors claim that test triples should be inferable from patterns learned
and premises existing in the train set. This imposes additional constraints when constituting
datasets but enables to evaluate the ability of KGE models to efficiently model, capture, and
implement those patterns [117, 24]. In this view, train sets should contain samples of premises and
conclusions of the considered patterns to learn. Test sets should contain conclusions that can be
inferred from patterns learned and premises in train sets. This empirical evaluation is of interest to
substantiate some theoretical guarantees of model design or, conversely, to outline some unexpected
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abilities. For instance, some KGE models such as RotatE [175] are theoretically designed to
capture patterns such as symmetry, antisymmetry, inversion, and composition and should be
evaluated accordingly. It follows that detecting (and potentially removing) some patterns is an
important step of dataset preprocessing. For now, detection (and removal) of inverses is performed
statistically, as featured in the AYNEC/AYNEXT system [10, 168]. They detect whether two
relations r1 and r2 are inverses of each other if some proportions of triples involving r1 have their
counterpart involving r2. The identification of other patterns also relies on statistical approaches
such as rule mining for their detection [117]. It is noteworthy that ontologies provide definitions of
inverses, symmetric predicates and hierarchies of properties and classes. Hence, besides statistical
approaches, ontological axioms should be taken into account to detect or implement patterns.
Indeed, train sets could be completely based on ontological axioms and deductive reasoning to
feature the needed patterns to learn or remove some unwanted ones.

Also, we previously outlined the interest in studying the role and usage of background knowledge
in ML models. For now, datasets are often regarded as simple graph data without consideration for
(or association with) additional knowledge potentially provided by ontologies. Beside improving
datasets by adding triples respecting patterns or removing unwanted ones, the association of
ontological axioms with datasets could support the development of learning techniques, settings,
and models that consider them, following our claim for further consideration of knowledge in
KGE models. To illustrate, instead of enriching datasets with triples respecting patterns, models
could be evaluated on their ability to consider patterns stated by ontological axioms to predict
missing triples in the test set. It is noteworthy that knowledge is already leveraged to enrich
the training process in some proposals. For instance, Type-Constrained Negative Sampling [97]
replaces the head or the tail of a triple with an entity of the same type when generating negative
triples. d’Amato et al. [36] use a reasoner to deduce additional triples from axioms defining
equivalent classes, equivalent properties, inverses, or subclasses. Similarly, Iana and Paulheim [79]
test whether materializing all triples induced by transitive properties, symmetric properties, and
sub-properties leads to improved embeddings. Ontological information is also needed to evaluate
the semantics captured by KGE models. In this view, Jain et al. [80] relies on the existence
of types of entities. They learn embeddings on the YAGO3-10 and FB15k-237 datasets with
various KGE models and then use these embeddings to predict entity types with classification or
clustering approaches. Their analysis shows that semantic representation in the embedding space
is not universal across models. In a similar fashion, the DLCC node classification benchmark
was introduced to evaluate the capability of classification approaches to reproduce classes defined
by Description Logic Constructors [148]. For example, the constructor ∃r.⊤ is used to group
nodes having a particular outgoing relation. Interestingly, they propose two gold standards: one
based on the real graph DBpedia and another synthetic standard that is generated by a gold
standard generator publicly available. The analysis of ontological information captured by KGE
models also motivates new metrics besides traditional metrics such as precision, recall, Hits@K,
or Mean Reciprocal Rank. For example, Hubert et al. introduced the Sem@K metric [76, 75, 77]
to measure the number of predicted triples that respect domain and range of relations among the
top-K predicted triples. This metric can thus be seen as measuring the ability of KGE models
to capture the semantic profiles of relations. The aforementioned work highlights an interest in
using ontological information in KGE model design, learning process, or evaluation. Consequently,
we advocate for the further development of benchmark datasets that include various ontological
axioms, separately or combined. The availability of such datasets would in turn encourage and
support the development of neuro-symbolic methods leveraging such axioms. However, it is
noteworthy that not all current benchmarks offer the ontological information that is needed by
particular approaches. That is why some authors resort to synthetic KG generators [124, 148],
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sometimes with a fixed ontology. To further this research direction, synthetic KG generators
should be enriched with the synthetic generation of schemas with different levels of expressiveness
and constructs. This would allow an on-demand generation of specific ontologies and knowledge
graphs featuring the needed ontological axioms.

To further support the research community, we also call for a more systematic approach in
the development, characterization, and collection of benchmark datasets. For now, benchmark
datasets (or versions of) are scattered across several repositories such as GitHub or Zenodo. This
leads to some of them being widely adopted (e.g., FB15k-237) and some others to be only re-used
in a few papers. A unified repository, similar to the UCI Machine Learning repository19, is
needed to encourage their reuse and adoption by the community. Constituting such a repository
first requires to crawl (semi-)automatically several sources, including GitHub or Zenodo, and
links in papers available in digital libraries, arXiv, or PapersWithCode. Additionally, given that
different approaches may leverage different characteristics of datasets (e.g., DL constructors [148],
sub-properties [36, 79], domain and range of predicates [78], patterns in train and test sets [117]),
datasets should be qualified w.r.t. the presence or absence of these characteristics. This would help
researchers and developers to select suitable datasets to evaluate their approaches. To this aim,
scalable automatic methods need to be developed to crawl and analyze KG-based datasets in the
wild and detect a broad range of characteristics including those aforementioned. This qualification
process will produce metadata that enrich usual dataset metadata such as providers, or license.
To represent these new dataset metadata, an additional perspective thus lies in extending existing
ontologies describing datasets (e.g., VoID, DCAT). Ontologies introduced to describe mining
processes and their features such as DMOP [88] could offer sources of inspiration in this matter.

4 Conclusion

The interrelation between knowledge graphs and machine learning has been supporting advances
in both fields. Machine learning methods have indeed allowed efficient construction and refinement
of large knowledge graphs. Conversely, knowledge graphs have been leveraged in various machine
learning tasks to improve performance, e.g., in question answering, or image classification.

However, this interrelation still does not consider parts of knowledge graphs and ML methods
summarized in Table 1 that we deem to be important and to offer promising research directions.
In particular, we believe KGs constitute a major structure for prompting Large Languages Models
and could allow researchers to formalize interactions (e.g., providing contexts in prompts, or
deciding prompt sequencing). Additionally, rich semantics of KGs and knowledge actionable by
various forms of reasoning capabilities could benefit KGE models through a deeper integration.
This could lead to improved performance, or a better handling or generation of informative
negatives which are essential in model learning. Regarding informative negatives, we also believe
that symbol-based ML, which is particularly adapted to the symbolic structure of KGs, could
provide an interesting perspective, especially with the mining of disjointness axioms. KGs are
human- and machine-interpretable, and thus are a promising structure on which to construct
in-model interpretable ML models. Nevertheless, the infusion of KGs directly within ML models
and an actual demonstration of the production of more interpretable and reliable explanations are
open challenges. To assess improved performance or interpretability of ML models thanks to KGs,
extensive experimental evaluations are needed, which require datasets showcasing different levels
of semantics, or schema constructs to assess their individual impacts. That is why, we also call for
a more systematic collection and characterization of datasets, as well as the creation of synthetic
KG generators to enrich the collection of available benchmarks.

19 https://archive.ics.uci.edu/

https://archive.ics.uci.edu/
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In our view, such integrations and interactions open promising challenges to foster both fields
of research. We believe these directions to be stepping stones to place KGs as central assets
towards neuro-symbolic and explainable AI.
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Abstract
Knowledge Graphs (KGs) have emerged as funda-
mental platforms for powering intelligent decision-
making and a wide range of Artificial Intelligence
(AI) services across major corporations such as
Google, Walmart, and AirBnb. KGs complement
Machine Learning (ML) algorithms by providing
data context and semantics, thereby enabling fur-
ther inference and question-answering capabilities.
The integration of KGs with neuronal learning (e.g.,
Large Language Models (LLMs)) is currently a topic
of active research, commonly named neuro-symbolic
AI. Despite the numerous benefits that can be ac-
complished with KG-based AI, its growing ubiquity
within online services may result in the loss of self-
determination for citizens as a fundamental societal
issue. The more we rely on these technologies, which
are often centralised, the less citizens will be able

to determine their own destinies. To counter this
threat, AI regulation, such as the European Union
(EU) AI Act, is being proposed in certain regions.
The regulation sets what technologists need to do,
leading to questions concerning How the output
of AI systems can be trusted? What is needed to
ensure that the data fuelling and the inner work-
ings of these artefacts are transparent? How can
AI be made accountable for its decision-making?
This paper conceptualises the foundational topics
and research pillars to support KG-based AI for
self-determination. Drawing upon this conceptual
framework, challenges and opportunities for citizen
self-determination are illustrated and analysed in
a real-world scenario. As a result, we propose a
research agenda aimed at accomplishing the recom-
mended objectives.
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1 Introduction

Modern Artificial Intelligence (AI) can be traced back to a workshop held at Dartmouth College
in the summer of 1956 [66] and is most commonly defined as the use of computers to simulate
human intelligence, in particular human reasoning, learning, and problem-solving. Since 1956, AI
has lived through times of increased interest and funding, and also “AI Winters”, such as after the
1974 Lighthill report [63], when overall funding was reduced. Over the last few years, however,
funding and interest in AI have been high and exploded in November 2022, when ChatGPT, a
type of Generative AI, was announced by OpenAI, exposing the power of Large Language Models
(LLMs) to the general public. Since its release, ChatGPT has become the fastest-growing app
in history, reaching 100M users in just two months, and is now estimated to have 200M users.
Generative AI will continue to grow following a significant investment by Microsoft into OpenAI
and announcements by Microsoft and Google on how Generative AI will be embedded in future
products [36]. Data-centric AI [114] recognises the immense value of data as crucial resources for
training, optimising, and evaluating AI systems. Databricks, a prominent AI company, has defined
data-centric AI as the challenge of designing processes for data collection, labelling, and quality
monitoring in machine learning (ML) datasets [85] highlighting the need for continuous re-running
and re-training, actionable monitoring, and the difficulties of incorporating data inaccessible to
human annotators due to privacy concerns as primary research directions. Knowledge Graphs
have been used as a resource and structure to support data-centric AI processes.

The term Knowledge Graph (KG) was first introduced by Google in 2012 and is usually
defined as a type of knowledge structure that uses a graph data model to integrate data. KGs
are strongly linked to the work of the Semantic Web community, which first began in around
2001 and was introduced in a seminal paper by Tim Berners-Lee [13]. The Semantic Web
initiative produced a stack of web standards on which KGs are based. These include the Resource
Description Framework (RDF), where data is encoded as subject-predicate-object triples, and
the Web Ontology Language (OWL), a set of web-based languages mostly based on description
logic. The common theme of these semantic representations is that they facilitate the publishing,
use, and re-use of data at the web-scale. In particular, they allow disparate heterogeneous data
sources to be integrated continuously at scale. Over the past decade, KGs have become a mainstay
for several key large-scale applications found online. For example, KGs underpin Google Search,
which saw 5,900,000 searches in just one minute in April 2022. Similarly, the same minute saw
1,700,000 pieces of content shared on Facebook, 1,000,000 hours streamed, and 347,200 tweets
shared on Twitter. All of this content and data are linked to a plethora of AI services that have
increasingly been based on KGs, as mentioned above, founded upon machine-readable data and
schema representations based on a web stack of standards. AI services cover a wide number
of areas, including content recommendation, user input prediction, and large-scale search and
discovery and form the basis for the business models of companies like Google, Netflix, Spotify,



L.-D. Ibáñez, J. Domingue, S. Kirrane, O. Seneviratne, A. Third, and M.-E. Vidal 9:3

and Facebook. Given the above, we define KG-based AI as an AI system (replicating some aspect
of human intelligence) based on a KG that possibly uses the web standards produced by the
Semantic Web community.

In addition to privacy concerns, there has been a growing worry about how personal data can be
abused and, thus, how AI services impinge on citizen rights. For example, the over-centralisation
of data and its misuse led Sir Tim Berners-Lee to call the Web “anti-human” in an interview in
2018 [18]. Since 2016, hundreds of United States (US) Immigration and Customs Enforcement
employees have faced investigations into abuse of confidential law enforcement databases, from
stalking and harassment, to passing data to criminals [69]. The subject of much of the proposed
legislation today is ensuring that digital platforms, including AI platforms, provide real societal
benefit. Within Europe, the proposed European Union (EU) AI Act1 aims to support safe AI
that respects fundamental human rights. The regulation sets what technologists need to do. The
concept of data self-determination, which is often used in a legal context, implies that individuals
are not only aware of who knows what about them but can also influence data processing that
concerns them [60]. Given that nowadays, data processing is conducted by opaque AI algorithms
behind corporate firewalls, sometimes even without our knowledge, data self-determination is
harder than ever before. When it comes to trust in web data and services, Berners-Lee and
Fischetti [12] envisaged an “Oh yeah?” button embedded into Web browsers that would provide
justifications as to why a page or a service should be trusted. Alas, their vision was never realised
in popular web browsers2. Instead, we have dedicated websites, e.g., the Ecommerce Europe
Trustmark3 that are used to perform company reputation checks and fact-checking websites, such
as Snopes4, that can be used to check the validity of information posted online. Although some
automated fact-checking techniques have been proposed [87], they are used solely for developing
trust in information resources and cannot provide any guarantees with respect to AI-based data
processing. As we move beyond trust towards accountability, policies have already been used
to specify legal data processing requirements that serve as the basis for automated compliance
checking, for example, [82]. But what happens when service providers or AI algorithms do not
comply? How far can technology go in terms of helping us determine non-compliance and make
service providers accountable for their actions?

In this paper, we propose a research agenda for ensuring that KG-based AI approaches
contribute to user self-determination instead of hindering it. Our vision, which is depicted in
Figure 1, is structured around three pillar research topics - trust, accountability, and autonomy -
that represent the desired goals for how AI can benefit society and facilitate self-determination.
The pillars combine fundamental principles of the proposed EU AI Act and self-determination
theory. Both trust and accountability are imperative for safeguarding against adverse impacts
caused by AI systems, while autonomy is critical for ensuring individuals are able to determine their
own destinies. The pillars are supported via four foundational research topics - machine-readable
norms and policies are needed for humans to declare regulatory frameworks, privacy and usage
constraints that can be interpreted by the machines that process their data; decentralised KG
management and decentralised infrastructure to provide alternatives to approaches where a central
entity controls a whole process, that are prone to abuse of power; and explainable neuro-symbolic
AI to clearly communicate and prove the decisions AI systems make. We posit the following
research questions:

1 https://artificialintelligenceact.eu/
2 However, a linked browser prototype, the Tabulator, incorporated this feature in an Justification UI (http:

//dig.csail.mit.edu/TAMI/2008/JustificationUI/howto.html#useTab).
3 https://ecommercetrustmark.eu/
4 https://www.snopes.com/
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Figure 1 KG-based AI for Self-determination Conceptualisation. KG-based AI for self-
determination is supported by the pillars of trust, accountability, and autonomy, built upon the foundational
topics of machine-readable norms and policies, decentralised infrastructure, decentralised KG management,
and explainable neuro-symbolic AI.

Q1 What are the key requirements for an AI system to produce trustable results?
Q2 How can AI be made accountable for its decision-making?
Q3 How can citizens maintain autonomy as users or subjects of KG-based AI systems?

In order to facilitate exposition, we ground our discussion in a healthcare scenario inspired
by the recently proposed regulation on European Health Data Space5 that aims to ensure that
“natural persons in the EU have increased control in practice over their electronic health data” and
to facilitate access to health data by various stakeholders in order to “promote better diagnosis,
treatment and well-being of natural persons, and lead to better and well-informed policies”. The
proposed healthcare scenario, which is illustrated in Figure 2, is composed of the following actors
and interactions:
Individuals manage their Personal Knowledge Graphs (PKGs) (aligned with the original Semantic

Web vision and modern interpretations [7, 47]). They collect knowledge about their medical
conditions, symptoms, treatments, reactions to treatments, etc. Individuals get services from
KG-based AI applications that utilise their PKGs, e.g., therapy bots or health assistants.

Experts in healthcare also have PKGs where they collect their knowledge about diseases, results
of the treatments they have suggested in the past, links to general medical knowledge graphs,
etc. Experts may also be assisted by KG-based AI models.

5 https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A52022PC0197

https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A52022PC0197


L.-D. Ibáñez, J. Domingue, S. Kirrane, O. Seneviratne, A. Third, and M.-E. Vidal 9:5

Figure 2 Illustrative Scenario for KG-Based AIs in the healthcare domain. Individuals use
AI assistants to make sense of data collected in their PKGs. They may also share perspectives of their
PKGs with other individuals and healthcare experts in knowledge-sharing communities that aggregate
and curate data to power AI services for the benefit of all members. Public and private organisations can
negotiate access to data from communities and individuals to train KG-based AI models, which in turn
are used to build services for them.

Knowledge sharing communities are spaces where individuals and healthcare experts may share
subsets of their PKGs in the context of specific knowledge, e.g., diseases. We call these
community-based perspectives. Perspectives from different contributors are aggregated into
community KGs (e.g., disease-based). AI applications use these KGs for community benefit,
e.g., assessing if a treatment that worked for an individual may work for a different individual.

Public and private organisations may negotiate access to data and knowledge from communities
to train large KG-based AI models to either improve internal processes or power products sold
to communities, experts, or individuals, completing the cycle.

The remainder of the paper is structured as follows: Section 2 introduces the necessary
background in terms of KG-based AI. Section 3 highlights the importance of trust, accountability,
and autonomy when it comes to ensuring that AI benefits society. Section 4 presents several
KG-based tools and techniques that can be used to facilitate trust, accountability, and self-
determination. In Section 5, we propose a research roadmap that includes several challenges and
opportunities for KG-based AI that benefits individuals and society. Finally, we conclude and
outline important first steps in Section 6.

2 Knowledge Graph-based AI

In his seminal publication, “Thinking, Fast and Slow”, Daniel Kahneman [49] presents a com-
prehensive theory of human intelligence, offering profound insights into the workings of the
human mind. This groundbreaking work separates intuition from rationality when approaching
problem-solving tasks, defining them as two sets of abilities or systems. System 1 operates at an
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unconscious level, generating responses effortlessly and swiftly. In contrast, System 2 requires
conscious attention and concentration, enabling the generation of responses needing complex com-
putations. Kahneman’s characterisation of mental cognition aligns with statistical and symbolic
learning models that seek to simulate human thinking processes [16]. These systems are known as
neuro-symbolic systems [17], and there is a growing interest in emerging hybrid approaches that
aim to integrate cognitive capabilities. Specifically, they strive to combine the power of neural
networks, such as LLMs, with the interpretability offered by symbolic processing, particularly
semantic reasoning over KGs.

2.1 Knowledge Graphs
Google first introduced KGs in 2012 when they enabled “Knowledge Panels” to contain descriptions,
including pictures, for search items. For example, if one types “London” in Google Search, the
Knowledge Panel displays pictures, the current weather, a map, directions, elevation, and related
entities (e.g., Paris). The seed for the Google KG was Freebase – a community knowledge base
initially launched in 2007 with an add-on RDF service launched at the International Semantic
Web Conference in 2008. In 2010, Google bought Metaweb, the company that owned Freebase
and extended the knowledge base into the Google KG6.

In 2011, Bing, Google and Yahoo! launched Schema.org, a reference website for common data
schemas related to web search engines. The proposal was that website owners would use the
published schemas alongside Semantic Web standards such as RDFa and JSON-LD. A number
of the schemas, such as Organisation, influence the results returned by Google KG search.
Schema.org is an example of a shared vocabulary for semantic representation; the use of such
vocabularies or ontologies in KGs, along with the ability to map between equivalent schemas in
them, enables the integration of heterogeneous data at scale.

Today, KGs are used in a wide range of areas and products outside of search. For example,
Netflix, Amazon, and Facebook all use KGs as the foundation for their recommendation engines
for television programmes and films, consumer products and posts7, whereas in the healthcare
sector, KGs are used to integrate medical knowledge and support drug discovery.8

2.2 Large Language Models
A Large Language Model (LLM) is a specialised machine learning model constructed using a
transformer architecture, a category of deep neural networks [120]. LLMs are primarily designed
for predicting the next word in a sequence, making them flexible tools for various text-processing
tasks, such as text generation, summarisation, translation, and text completion. Examples of
existing LLMs include OpenAI’s ChatGPT [93] and Google’s PALM [24]. These models have
demonstrated high performance in Natural Language Processing (NLP) tasks like code generation,
text generation, tool manipulation, and comprehension across diverse domains, often achieving
high-quality results in zero-shot and few-shot settings. This success has stimulated advancements
in LLM architectures, training techniques, prompt engineering, and question answering [72].

Despite their unquestionable capabilities in emulating human-like conversations, there is an
ongoing debate regarding the intelligence exhibited by LLMs, particularly, since their fluency
in language does not necessarily imply a cognitive understanding of real-world problems [72].
Additionally, LLMs can only learn knowledge when it appears in the training data and may

6 https://en.wikipedia.org/wiki/Schema.org
7 https://builtin.com/data-science/knowledge-graph
8 https://www.wisecube.ai/blog/20-real-world-industrial-applications-of-knowledge-graphs/
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perform badly when answering questions involving long-tailed facts [30]. Moreover, they may
struggle to absorb new knowledge and are not easy to audit [73], suggesting potential risks of
discrimination and information hazards.

2.3 Neurosymbolic AI

LLMs and machine learning models, in general, are trained on extensive datasets, resulting in
high-quality outcomes whenever applied to specific prediction tasks. However, LLMs, like OpenAI’s
ChatGPT [93], lack causal understanding and may hallucinate in cases which are not statistical in
nature (e.g. memories or explanations) [40]. On the other hand, symbolic AI systems are capable
of emulating human-like conscious processes required for causality, logic, and counterfactual
reasoning, as well as maintaining long-term memory. As a result, symbolic systems can empower
LLMs by modelling human learning and combining knowledge extracted (e.g., from KGs) to
formulate prompts that allow for more fluent communication with users.

Neuro-symbolic AI provides the basis for integrating the discrete approaches implemented by
Symbolic AI with high-dimensional vector spaces managed by LLMs. They must decide when
and how to combine both systems, e.g. following a principled integration (combining neural
and symbolic while maintaining a clear separation between their roles and representations) or
integrated (e.g., a symbolic reasoner integrated into the tuning process of an LLM). Recently, van
Bekkum et al. [109] propose 17 fundamental design patterns to model neuro-symbolic systems.
These patterns encompass many scenarios where the symbiotic relationship between symbolic
reasoning and ML models becomes apparent. Since these combinations may enable symbolic
reasoning and enhance contextual knowledge, neuro-symbolic systems may empower explainability
and, as a result, also improve transparency by showing how a system works based on the symbolic
explanations deduced by the hybrid system.

3 KG-based AI that Benefits Individuals and Society

Considering our vision that KG-based AI can facilitate self-determination, we start by discussing
the pertinent role played by trust, accountability, and autonomy when it comes to ensuring that
AI benefits society. In each case, we highlight existing challenges and present arguments in favour
of a KG-based AI system.

3.1 Trust and KG-based AI

One of the primary objectives of the proposed EU AI Act is the “development of an ecosystem
of trust by proposing a legal framework for trustworthy AI”. The Merriam-Webster dictionary
definition of trust includes a “firm belief in the reliability, truth, or ability of someone or some-
thing” [70]. Questions we address in this paper include understanding how KG-based AI systems
can demonstrate reliability, truth, and ability through mechanisms which add transparency to all
elements involved in KG-reasoning. These include comprehensive provenance tracking of data
sources and data elements used for any output; understanding repeatability for all KG-based AI
reasoning (e.g. if datasets are altered or disappear altogether or if other reasoning methods, such
as LLMs, are involved); and alleviation mechanisms when KG-based AI system responses are
untruthful.

The proliferation of misinformation on the internet has risen significantly in recent years,
coinciding with the advancements in generative AI technologies. As AI becomes more sophisticated,
it has inadvertently provided tools and techniques for the creation and dissemination of false

TGDK



9:8 Trust, Accountability, and Autonomy in KG-Based AI

information, leading to widespread confusion and societal harm [25, 121]. For instance, AI-
generated deepfake videos have become a concerning source of misinformation. Deepfakes use
AI algorithms to manipulate and superimpose faces onto existing videos, making it difficult to
discern real from fabricated content [113]. This technology has been used to create fake videos
of public figures saying or doing things they never actually did, leading to potential defamation
and manipulation of public opinion. AI-powered chatbots and automated accounts on social
media platforms have been employed to spread false information and manipulate public sentiment.
These bots can mimic human-like conversations and flood social media platforms with fake news,
propaganda, and divisive narratives, influencing public opinion and sowing discord, and have even
contributed to misinformation in medical literature [65]. AI-powered recommendation algorithms
used by platforms like social media and video-sharing websites can inadvertently contribute to
the spread of misinformation. These algorithms aim to maximise user engagement by suggesting
content based on user preferences and behaviour. They can create filter bubbles, reinforcing users’
existing beliefs and exposing them to a limited range of perspectives, potentially amplifying false
information and preventing users from accessing accurate and diverse sources of information [84].

Amidst these challenges, KG technologies have emerged as a potential solution to curb mis-
information and enhance trust. Leveraging the power of crowd-supplied and verified knowledge
sources, such as Wikidata [111], KGs enable comprehensive fact-checking capabilities. By integ-
rating diverse and reliable information from various trusted sources, these graphs can potentially
identify and flag misleading or inaccurate content more effectively. By utilising the collective
intelligence of a crowd, KG technologies empower users to contribute to the verification process,
enhancing the accuracy and credibility of the information presented. Through collaborative efforts
and the utilisation of KG technologies, it is possible to combat the rising tide of misinformation,
safeguard the integrity of online information and foster a more informed digital society. Coupled
with distributed ledgers KG-based AI may combat misinformation on the web [95]. There is
already a growing body of work in this space, which shows some promise. For example, Mayank
et al. [68] and Koloski et al. [57] describe systems that leverage KGs to detect fake news; Kou et
al. [59] and Shang et al. [96] describe how crowd-sourced KGs can be used to mitigate COVID-19
misinformation; and Kazenoff et al. [50] use semantic graph analysis to detect cryptocurrency
scams propagating in social media.

3.2 Accountability and KG-based AI
According to the proposed EU AI Act, when it comes to high-risk AI, “accuracy, reliability
and transparency are particularly important to avoid adverse impacts, retain public trust and
ensure accountability and effective redress”. Accountability in a KG-based AI context assumes
that data scientists, computer scientists, and software engineers will follow best practices and
ensure compliance with relevant legislation. In the purely symbolic world, such properties can
be achieved via consistency and compliance checking based on formal requirements specified in
policy languages such as LegalRuleML [4] and ODRL [46]. When it comes to the sub-symbolic
world, these principles are particularly challenging, as ML algorithms are often opaque and could
potentially infer confidential information during the training process. In recent years, various
Explainable AI (XAI) techniques have been used to build or to be applied to the output of
models such that they can be interpreted and understood by various stakeholders [56]. In the
context of KG-based AI, this will require the intersection between two strains of explainability:
the explanation of why a statement is in the KG that supports the AI and the explanation of how
the model used the statements from the KG to reach a particular decision. KGs can also be used
to support the modelling, capturing, and auditing of records useful for accountability throughout
the system life cycle [75]
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When it comes to AI and accountability, technical research should go hand in hand with the
interdisciplinary research conducted in communities like FaccT9. A recent paper [26] revisited the
four barriers of accountability that were developed in the 1990s for accountability of computerised
systems in the light of the rise of AI, finding that they are even more important than before.
The main barrier is the problem of many hands – the large amount of actors involved in the
construction of an AI service creates difficulties in the assignment of responsibilities in case of harm.
Advancing efficient provenance collection and verifiability will be the key technical intervention to
overcome this barrier. Fields such as data science require strong guarantees for provenance to
build context-aware KGs [94]. Similar to explainability, we consider two different approaches that
need to be combined: the provenance of statements in the KG and the provenance of the pipeline
that was followed to construct the ML model.

3.3 Autonomy and KG-based AI

Alongside accountability and trust, the third pillar needed to support self-determination is
autonomy, defined from a self-determination theory10 perspective as “the belief that one can choose
their own behaviours and actions”. In the current context, we take this to mean that individuals
should be able to make their own decisions about their uses of KG-based AI and about its uses
of their data (and have their wishes respected). Assuming that AI systems can be made to be
trustable and accountable, how can we best support autonomy in this way? That is to say, if
we can know that an AI will behave in a desired and known way and that its decisions and
processes are transparent and traceable, how can we express and enable control over what it does
in regard to an individual? A number of approaches have emerged in recent years which facilitate
individuals’ data sovereignty and how they represent and express their identity online.

The concept of a PKG, introduced in our illustrative scenario (Figure 2), is one means of
facilitating autonomy; Solid pods [91, 67] are secure decentralised data stores accessible through
standard semantic interfaces for applications that generate and consume linked data. Currently,
the default model on the Web is for service providers to host and control access to user data by
means of a user account. This denies autonomy to the individuals concerned since all access is
mediated via applications and interfaces designed and controlled by service providers. The PKG
model is that personal data is independent of any application; PKGs are the primary source of
data under the control of individuals, and they mediate service access via standard interfaces. On
top of shifting control away from service providers, this approach makes it technically simpler to
implement data usage policies, as they can be stored with the data and evaluated at the PKG
level.

One prominent way of achieving the second goal is through the notion of Self-Sovereign Identity
(SSI) [27]. Traditional digital identity (e.g. as in OpenID Authentication [41]) has been modelled in
terms of Identity Providers (IdPs). An individual and an IdP establish a relationship, and the IdP
generates a digital identity for them. If the individual wants to authenticate with a third party, the
IdP confirms the relationship to them and then asserts that identity to the relying party. Crucially,
sovereignty over that identity and decisions about who can see it, the data associated with it, or
whether it continues to exist are taken by the IdP. With SSI, an individual generates their own
digital identity (e.g. a cryptographic key pair), makes their own identity assertions, and therefore
has full control over that identity, with correlations between two identities (digital or physical)

9 https://facctconference.org/index.html
10 https://en.wikipedia.org/wiki/Self-determination_theory
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relying explicitly on attestation by others, and trust relationships with them11. The autonomy
enabled by SSI makes selective disclosure possible, meaning that what identity information gets
shared with whom can be made contextually and on a case-by-base basis – much like presenting
different aspects of one’s personal identity in daily life (e.g., work and home personas).

Considerations of identity pervade technical ones for safeguarding self-determination. It seems
uncontroversial that there will be scenarios in which an individual’s identity is relevant to what
they wish to do with a KG-based AI, whether in training, KG contents, or inference, and indeed,
even where anonymity is desired, identity must be considered in order to avoid revealing it.
Identity is also fundamental to the concept of trust; trust in a person, organisation, system, AI
model, KG, etc., is useful only insofar as it is possible to identify relevant entities as needed, and
accountability cannot be tracked or apportioned without it. We consider autonomy in terms of
the identity, data, and sovereignty afforded to an individual or organisation in terms of what they
or others communicate to a KG-based AI ecosystem or elements thereof, what they or others
receive from those, and what happens to those (including respect of choices) as data is processed
in the ecosystem, with each of these evaluated through the lenses of selective disclosure, relevant
identities, and utility.

4 A KG Toolbox for Trust, Accountability, and Autonomy

In order to ground our pillars, we motivate and introduce relevant literature and highlight open
research challenges and opportunities concerning our foundational topics: machine-readable norms
and policies, decentralised infrastructure, decentralised KG management, and explainable neuro-
symbolic AI, each of which plays a pivotal role in facilitating trust, accountability, and autonomy
in KG-based AI.

4.1 Machine-readable Norms and Policies
When it comes to KG-based AI, norms and policies could potentially be used to inform data
processing based on legal requirements, social norms, privacy preferences, and licensing. Legal
documents are designed in natural language for human consumption; thus in order to enable
machines and automated agents to evaluate and enforce the agreements embodied in documents,
we need to translate them to formats they can read and process efficiently.

4.1.1 Norm and Policy Encoding
Languages to express policies, including but not limited to data access, can be categorised as either
general or specific. In the former, the syntax caters to a diverse range of functional requirements
(e.g. access control, query answering, service discovery, negotiation), whereas the latter focuses on
just one functional requirement. In the early days of the Semantic Web, research into general
policy languages that leverage semantic technologies (e.g. KAoS [108], Rei [48], AIR [51], and
Protune [15]) was an active area of research. However, despite the huge potential offered by these
general-purpose languages to date, none of them achieved mainstream adoption [55]. More recently,
researchers have proposed ontologies that can be used to represent licences, privacy preferences,
and regulatory obligations [53]. When it comes to the legal domain specifically, Semantic Web
researchers have proposed cross-domain ontologies that can be used to encode legal text in a

11 As it ultimately does in traditional digital identity, where trust in a small number of well-known IdPs serves
as a simplified proxy for more detailed or fine-grained considerations of trust networks.
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machine-readable format using LegalRuleML12 and adaptations thereof (e.g. [3, 80]). Others focus
on facilitating legal document indexing and search using the European Law Identifier (ELI)13 and
the European Case Law Identifier (ECLI)14 (e.g. [78, 22]), or bridging the gap between the EU
and member state legal terminology (e.g. [1, 14]). Besides these cross-domain activities, there have
also been various domain-specific initiatives. For instance, the ELI ontology has to be extended
to facilitate the encoding of the text of the General Data Protection Regulation (GDPR)15

(e.g. [83]). At the same time, others have focused specifically on modelling privacy policies
(e.g. [79, 82]). The Open Digital Rights Language (ODRL)16, which is a W3C recommendation,
has gained a lot of traction in recent years in terms of intellectual property rights management
(e.g. [42, 74]). Additionally, the ODRL model and vocabularies have been extended in order
to model contracts [39], personal data processing consent [32], and data protection regulatory
requirements [110]. There has also been some work on automatically extracting rights and
conditions from textual documents (e.g. [21, 20]) or extracting important information from legal
cases (e.g., [116, 77]). Although many of the proposed approaches are based on existing standards,
there is a lot of overhead involved for systems that need to consider different types of policies that
are encoded using different languages. General-purpose policy languages are particularly attractive
in such scenarios as they lessen the administrative burden. However, considering the potential
complexity of such a language, there is a need for policy profiles with well-defined semantics and
complexity classes.

4.1.2 Norm and Policy Encoding

From a policy governance perspective, LegalRuleML researchers have proposed automated compli-
ance approaches based on auditing (e.g. [28, 82]) and business processes (e.g. [81, 9]). While [37]
shows how LegalRuleML, together with semantic technologies, is used for business process regulat-
ory compliance checking based on a rule-based logic combining defeasible and deontic logic. One of
the advantages of description logic-based approaches, when it comes to consistency and compliance
checking, is that they can leverage generic reasoners, such as Pellet17 (e.g. [33]). Although there
are presently no ODRL-specific reasoning engines, researchers have demonstrated how ODRL can
be translated into rules that can be processed by Answer Set Programming (ASP) [8] solvers such
as Clingo [35] (e.g. [42, 110]). Additionally, there have been several custom applications that are
designed to support ODRL enforcement or compliance checking, such as a licence-based search
engine [74]; generalised contract schema and role-based access control enforcement [39]; and access
request matching and authorisation [32]. Despite existing efforts, challenges arise when it comes
to ensuring that AI and processing algorithms adhere to the policies. This could potentially be
achieved either before or during processing using Trusted Execution Environments (TEEs) [10]
or after execution by detecting data misuse via automated compliance checking using system
logs [54]. The combination of ex-ante and ex-post compliance checking is particularly appealing
for supporting risk-based conformance checking such as that envisaged in the proposed EU AI
Act. Nevertheless, the practicality, performance and scalability of these proposals remain to be
determined. In order to further support self-determination, data owners and processors should

12 https://docs.oasis-open.org/legalruleml/legalruleml-core-spec/v1.0/os/legalruleml-core-spec-
v1.0-os.html

13 https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52012XG1026(01)
14 https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52011XG0429(01)
15 https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32016R0679&qid=1681238509224
16 https://www.w3.org/TR/odrl-model/
17 https://github.com/stardog-union/pellet
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Figure 3 Machine-readable norms and policies to support self-determination. A Policy
Composer/Translator assists individuals in writing data usage policies, communities in defining their rules,
and organisations in declaring their data processing purposes in both human- and machine-readable formats.
Policy Evaluation Engines assess the acceptability of perspectives in a community by evaluating policies
and rules. Engines assess organisations’ data usage compliance with regulations. If permitted, processing
can occur in a Trusted Execution Environment, ensuring compliance. If not allowed, a Negotiation engine
may be utilised to seek agreement with data owners/stewards under relevant regulations.

be able to engage in on-demand negotiation over policies, assisted by technology that ensures a
safe and fair space and helps assess the compliance of negotiated terms with existing regulations.
Negotiation between automated agents has been a topic of interest since the early 2000s, but in
the context of self-determination, we must pay attention to the right balance between artificial
representation and human involvement [5, 6].

4.1.3 Grounding based on our Illustrative Scenario
Figure 3 illustrates how machine-readable policies and norms can be used to support self-
determination. Considering our illustrated scenario (Figure 2), individuals may want to establish
policies to precisely define the subset of their PKGs to be shared with communities and what
forwarding they allow. For example, share with the diabetes community my blood in sugar values
measured by my connected device and the output of my AI healthcare assistant, or only share and
forward anonymised aggregates to medical research institutions, or contact me for negotiation if
the pharma company is interested in using my data for clinical studies. Communities may do
the same, e.g. requiring specific data to be shared to join the community, but also requiring
agreements in order to ensure that participants will abide by social and behavioural norms needed
for self-regulation. Public and private organisations may need to adhere not only to privacy
preferences and licences but also to various general regulations, e.g., the GDPR, the proposed
AI Act in the EU or the Health Insurance Portability and Accountability Act (HIPAA)18 in the
US, as well as domain-specific regulations (e.g. advanced therapy medicinal products19 and rare
diseases20).

18 https://www.hhs.gov/hipaa/index.html
19 https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32007R1394
20 https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32009H0703%2802%29

https://www.hhs.gov/hipaa/index.html
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32007R1394
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32009H0703%2802%29
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4.2 Decentralised Infrastructure
Over the last 15-20 years, a number of communities have come to accept that centralised computing
systems, despite many benefits, can lead to issues such as the over-centralisation of power, the
risk of single points of failure, potential abuse of personal data and creation of data silos which
can inhibit innovation. A boon from this realisation is that we now have a number of technologies,
standards, and approaches to decentralisation which offer benefits in terms of scalability, diversity,
and privacy, as well as individually-centred flexibility and control, and is an appealing basis for
maintaining and increasing trust, accountability, and autonomy with KG-based AI.

4.2.1 Personal Knowledge Graphs
The concept of a Personal Knowledge Graph (PKG) is that an individual can keep their personal
or private data in a space belonging to them, rather than with siloed centralised service providers
with limited access and control [7]. A Solid pod21 is an example of a PKG platform, and the key to
the vision of Solid is that there should be standard interfaces and authorisation models to grant or
deny access to the contents of a PKG at a granular level. This is argued in particular22 to enable
a highly decentralised architecture for Web applications. Rather than a provider aggregating data
from all users into a single location controlled by the provider and application code accessing such
data there, an individual permits (or does not permit) Web applications of their choice to access
whatever subsets of their data they decide from their PKG. As well as autonomy, this enables
greater accountability since access to the PKG can be filtered via personal machine-readable
policies at source, and activities can be tracked directly (e.g. [29]). Although PKGs offer great
potential, they also come with challenges in terms of performance and scalability, as applications
will need to interact with multiple distributed data sources as opposed to a single backend server.
These challenges, however, may also simultaneously be opportunities for scalability trade-offs,
querying over multiple low-powered data sources rather than a high-powered central one.

4.2.2 Distributed Ledger Technology
Distributed Ledger Technology (DLT) [104] promotes trust and empowerment through the replica-
tion of data across contributing nodes, which are geographically distributed across many sites, and
the use of consensus algorithms which enable collective fair decision-making with no central control.
Blockchains are a type of distributed ledger where an ever-growing list of records in blocks is tied
together with cryptographic hashes, often, although not necessarily, associated with a securely
exchangeable token system or “cryptocurrency”. This technology rose to prominence following the
release of Bitcoin [76] in 2008 - a blockchain-based currency that has now been adopted by El
Salvador as their legal tender. Ethereum [115], a blockchain platform released in 2015, contains
the notion of a “Smart Contract” [19] (originally coined in the 1990s by Nick Szabo [105]), which
is a collection of code that executes in a fully decentralised way. Smart Contracts have been
used to implement a range of decentralised applications, including Decentralised Autonomous
Organisations (DAOs) [64], which are organisations where decisions are made through blockchain
consensus mechanisms. The best-known example of a DAO was “The DAO”, which at one point
was worth more than $70M; they have been applied to a number of different activities, including
scholarly publishing [43]. Despite the fact that immutability and transparency guarantees offered
by DLT are very attractive when dealing with personal data, both the ledgers and the smart

21 https://solidproject.org/
22 https://ruben.verborgh.org/blog/2017/12/20/paradigm-shifts-for-the-decentralized-web/
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contracts themselves will need to be protected against unauthorised access and usage. Personal
data itself is neither stored in, or derivable from, immutable DLT records. Smart contracts may
also introduce scalability issues: the default Ethereum model involves every contributing node
executing every run of a smart contract and thus has inherent scale limitations. Relaxing this
model may, however, affect trust.

4.2.3 Self Sovereign Identity
In the Web space, Self-Sovereign Identity (SSI) is being developed through a combination of
Decentralised Identifiers (DIDs) [101] and Verifiable Credentials (VCs) [102], W3C standards for
identity and verifiable attestation claims, respectively. DLT is one of the ways in which DIDs can
be grounded, although, by design, the DID standard is open in terms of method. A DID is a
URL (did:<method>:<...>) which can be resolved in a method-specific manner (e.g. HTTP(S)
dereferencing, reading from a smart contract, etc.) to obtain a DID document, a Linked Data set
containing information about digital identity in a standard form - for example, how to verify it
(e.g. a public key), methods for communicating with the entity controlling it, and so on. DIDs
enable SSI; the creation and use of DIDs are open and decentralised, and by using different DIDs
with different audiences, individuals can minimise how easily their information can be tracked or
correlated across services and can contextually and selectively disclose personal information as
desired. This grants individuals significantly greater autonomy than current practices. There is a
potential trade-off with trust and accountability of an individual when it comes to information
that others need to rely on, which is that effective anonymity of a unique DID can be used to
misrepresent oneself (e.g. fake a qualification or entitlement) or pretend to be someone else. VCs
are a proposed solution to this. The VC data model is for sharing data alongside information that
a recipient can use to verify its integrity or origin, such as a digital signature or DLT record. If a
DID is presented to a service that is restricted to legal adults, for example, the DID owner may
also present a VC issued by a government body confirming their adulthood; methods for selective
disclosure supported by both DID and VC standards allow this to be done verifiably without
requiring disclosure of real-world identity. These technologies are relatively new in comparison
with standard digital identity models, and while intended and designed to address issues in those
models, they may also introduce new difficulties or enable different vulnerabilities to, e.g. identity
fraud, than current standards.

4.2.4 Federated Learning
In the context of data-driven AI and decentralised infrastructure, there are also techniques for
decentralised machine learning. Federated Learning (FL) [118] is the idea that rather than
aggregating training data in one location controlled by a model developer (thereby compromising
subject privacy), data holders can run learning algorithms to generate model weights for their own
data locally and privately, and then send only the weights to the developer to be incorporated into
the larger model. An example might be a smartphone text prediction personalisation algorithm,
where a user’s own writing is used to generate predictive weights on the device, where periodic
selections of these can be aggregated to improve general text prediction models. Refinements
of FL approaches include sending not the actual learned model weights but a set of weights
with statistically similar properties [112] to further reduce the risk of privacy breaches without
affecting model performance. A related approach takes this concept even further, with the idea of
embeddings in a larger model, e.g. “Textual Inversion” [34] to personalise large generative image
diffusion models. The intuition here is that if someone wants certain personalised types of output
from a generative AI, then if a model is sufficiently large, there is a good chance that the desired
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Figure 4 Decentralised Infrastructure supporting self-determination, shown from the perspective of
one individual with a PKG23. According to individual wishes, portions of the PKG can be shared either
directly with a healthcare provider, with web applications for health, or indirectly with peer or research
communities. Identity is via DIDs (anonymous in the latter cases), with VCs used for trustable selective
disclosure. KG-based AI models can be trained and personalised in federated and private ways on
knowledge from diverse sources.

concept already exists within it. More recently, the idea of federating for preserving privacy has
been applied specifically to deep learning, in particular in the context of the Internet of Things. [119]
proposes an architecture with a control layer including a distributed ledger, while [117] propose
advanced cryptographic mechanisms to reduce the risk of privacy leaks, following more general
approaches that apply either differential privacy, homomorphic encryption or secure multi-party
computation. Federation also has the positive side effect of potentially speeding up model training
when the privacy constraints allow for a helpful distribution of the process [11]. However, when
opening the process to multiple parties, there are a number of attack vectors that do not exist in
a centralised approach for which we need protection and pay a communication and computation
overhead [44].

4.2.5 Grounding based on our Illustrative Scenario
A decentralised infrastructure supporting self-determination for our illustrative scenario (Figure 2)
is depicted in Figure 4. Health data is highly sensitive and private, and individuals may want
or need to interact with multiple services where it is relevant, including KG-based AI systems.
It thus makes sense to create a personal health knowledge graph (PKG) to be a comprehensive

23 The full picture would have knowledge exchange between multiple parties; to avoid an unreadable cluttered
figure, this is left implied by the background network.
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and interconnected representation of an individual’s health information, including their medical
history, lifestyle choices, genetic data, and real-time health monitoring data from IoT devices.
Data from various sources, such as wearable devices, mobile applications, electronic health records,
and even genomic sequencing, can be linked together to form a holistic view of an individual’s
health in such a personal health knowledge graph. An early example of a PKG was in [106], where
medical, lifestyle, and IoT health monitoring data in a PKG was integrated into a (patient-focused)
decision support system built around a public medically-curated KG representing cardiovascular
risk factors, giving individuals the autonomy to gain deeper insights into their own health patterns
and risks, identify correlations, and make more informed decisions.

More recently, BlockIoT [97, 98] aims to integrate health data seamlessly in a decentralised
PKG using blockchain and KG technologies, addressing this trust aspect and using PKG-driven
smart contracts to trigger the personalised recommendations for lifestyle modifications, medication
adjustments, or even timely interventions by the healthcare providers. Furthermore, the PKG
can serve as a powerful tool for healthcare beyond the individual. Communities of patients,
providers, researchers, etc., or combinations thereof, can share knowledge about various aspects
of, e.g., particular conditions, whether that is clinical evidence and best practice, peer advice
and support on living with a condition, or data on novel or rare symptoms and side effects, with
this knowledge used for support, care, or medical research across populations. De-identified and
aggregated data from multiple individual KGs can be collected in community KGs, with trust
securely established using DIDs and VCs, and accessed by community, practitioner, researcher,
and service provider stakeholders, allowing for decentralised large-scale analysis and identification
of broader health trends from multiple perspectives and intersecting factors. This can lead to
advancements in disease prevention, treatment protocols, and the development of personalised
medicine in a collaborative manner [99]. KG-based AI systems can be both trained and used
across this ecosystem, with FL being applied to train larger models (e.g., the organisation models
in Figure 2) and personalised embeddings used by individuals to get the best experience from
their therapy bots and healthcare assistants while maintaining privacy and autonomy.

4.3 Decentralised KG Management
As the amount of data and knowledge grows exponentially, managing and harnessing this vast
information becomes increasingly complex. Traditional centralised approaches to KG management
face challenges in terms of scalability, privacy, and control over data, and to address these issues,
decentralised KG management emerges as a promising solution. This section explores the key
aspects and open challenges in decentralised KG management to enable trust, accountability, and
self-determination for individuals in a rapidly evolving AI ecosystem.

4.3.1 Decentralised KG Access and Management
Efficient query processing infrastructures are fundamental for traversing decentralised KGs. There
have been notable efforts such as Fedbench [92] in the past. However, these infrastructures should
be capable of executing queries against the available KGs while respecting privacy and adhering
to norms and policies. With the increasing emphasis on privacy protection with regulations such
as GDPR, it is crucial to develop mechanisms that allow users to access and extract knowledge
from KGs without compromising sensitive information or violating privacy regulations. Several
research directions are worth considering to address the open challenges in decentralised KG
management. Firstly, developing the formalisms to describe KG management semantically can
provide a common ground for understanding and interoperability across different decentralised
KG systems. Such formalisms can enable standardised representations of KGs in the form of
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ontologies and facilitate seamless integration and collaboration among diverse knowledge sources.
Architectures supporting new protocols and standards specific to decentralised KGs are essential
for establishing interoperability and seamless communication between knowledge sources and
systems. By defining and adopting common protocols and standards, decentralised KGs can
collaborate more effectively, share insights, and facilitate cross-domain knowledge discovery.

Note that if we add LLMs to the picture, their current training and execution processes are
currently centralised. Decentralised KG management is useful for providing transparency in data
used for their training. For approaches involving the interaction between LLM and KGs, the
transparency of the LLM itself still depends on the owner.

4.3.2 Provenance and Explanations
Furthermore, explainable methods for data integration and curation, as well as KG validation and
distribution, such as the Explanation Ontology for user-centric AI, are necessary to ensure the
reliability and accuracy of decentralised KGs [23]. By providing transparent and interpretable
approaches, users can have better insights into knowledge integration and validation, enhancing
trust and accountability of the knowledge contained in the KG and the insights derived. This
is especially critical because, in decentralised KGs, data may come from various sources and
be represented in different ways. The standardised framework provided in the Explanation
Ontology for representing domain-specific explanations of KG entities and relationships helps
users and applications understand the meaning and context of the data in the KG. Provenance
and traceability also play a vital role in decentralised KG management. Establishing mechanisms
to track and validate the origin, history, and lineage of knowledge within KGs is crucial for
accountability and the ability to trace back the sources and transformations that contribute to the
resulting knowledge. The W3C Provenance Data Management standards [71] provides the basis
for encoding provenance attributes in KGs, and subsequent nanopublications specification [38]
has gained a lot of traction in the biomedical domains. While these solutions exist, there needs
to be a cohesive framework that ties together explanation provenance data management in a
decentralised KG context and ensures that users can trace the origins, transformations, and
sources of the data, which is crucial for trust, accountability, and data quality assurance. The
W3C provenance data management suite of recommendations provides normative interoperable
guidance on recording information about data sources, contributors, and how data is collected
or transformed, making integrating heterogeneous data into a coherent KG easier. When data
quality issues arise, users can trace back to the source of the problem and take corrective actions,
ensuring the KG remains accurate and reliable. The W3C recommendations for decentralised
provenance management provide a mechanism for attributing data to its sources or contributors.
This attribution is essential for accountability, especially when multiple parties contribute to a KG.

4.3.3 Blockchain Technologies and Tokenomics
In recent years, the integration of blockchain technologies and tokenomics has gained attention in
the context of decentralised KG management. Projects such as OriginTrail24 have contributed to
the development of ownable DKGs, which leverage blockchain’s inherent properties to enhance
trust, provenance, and accountability. By utilising blockchain, KG management systems can
ensure the integrity and traceability of data and metadata across various nodes in the network.
The OriginTrail protocol aims to create a trustless environment where data providers, consumers,

24 https://origintrail.io
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and verifiers can interact and validate the authenticity and reliability of data stored within the
knowledge graph. Their protocol issues tokens as incentives for data contributors, validators, and
curators within the KG ecosystem. The integration of blockchain technologies and tokenomics
in decentralised KG management addresses several critical aspects. Firstly, blockchain’s immut-
ability and transparency enable the traceability and provenance of data and metadata, ensuring
accountability throughout the KG management pipeline. Secondly, the decentralised nature of
blockchain mitigates single points of failure and promotes the distribution of knowledge and
decision-making power among participants. This decentralised approach aligns with the principles
of self-determination, empowering individuals to have control over their data and knowledge. By
rewarding contributors, validators, and curators with tokens, these systems encourage continuous
improvement, data quality assurance, and community engagement. Token-based economies can
drive the development of sustainable KG management pipelines, enabling the growth and evolution
of DKGs over time. However, the tokenomics have to be carefully designed and monitored to avoid
the possibility contributors have a motivation (possibly extrinsic) to misbehave. There is also the
risk that a sudden churn in blockchain participants impacts performance and availability. There is
also the question of the performance of the consensus algorithm of a specific blockchain itself.

4.3.4 Grounding based on our Illustrative Scenario
An approach to decentralised knowledge graph management in the context of healthcare in
our illustrative scenario (Figure 2), where users retain control over their personal information
while benefiting from enhanced privacy measures and seamless collaboration in a community, is
illustrated in Figure 5. At the heart of this framework lies the concept of PKGs, such as Solid,
which empowers individuals to store and manage their personal health data securely. Central
to the architecture are specific components aimed at safeguarding user privacy and ensuring
data transparency. The process begins with knowledge sanitisation, which anonymises sensitive
information and filters the data according to the user’s preferences and data policies. These
policies encompass not only globally recognised regulations like GDPR and HIPAA but also
individual data policies, enabling users to set granular restrictions on how their data is used,
such as opting out of genetic data usage for medical research. To ensure interoperability and
standardisation, the creation of knowledge graphs leverages community-defined ontologies and
vocabularies. These shared frameworks facilitate seamless integration and alignment of personal
knowledge graphs within the broader ecosystem, promoting data exchange and collaboration.
Users are incentivised to aggregate their knowledge graphs, contributing to the construction
of community-based knowledge graphs focused on specific diseases. Through community-based
verification, validation, and knowledge aggregation processes, these disease-based knowledge
graphs are created, providing valuable insights and fostering collaborative efforts among healthcare
professionals, researchers, and the wider community. Blockchain-based incentives drive user
participation, rewarding both community users and healthcare experts for their verification,
validation, and aggregation activities. The utilisation of an immutable ledger and verifiable
credentials ensures the integrity and trustworthiness of the verification process. The validation
process, powered by RDF SHACL and Shape descriptions, further enhances data quality and
consistency, instilling confidence in the aggregated knowledge. The integrated knowledge graphs,
encompassing personal, community-based, and healthcare expert knowledge, can be queried using
federated querying mechanisms powered by SPARQL. This allows various institutions, including
insurers, pharmaceutical companies, and medical research organisations, to access and leverage
the rich insights stored within the knowledge graphs, enabling evidence-based decision-making
and advancing medical research and healthcare practices. By combining decentralised knowledge
graph management, user-centric privacy controls, and collaborative data sharing, this innovative
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Figure 5 Decentralised KG Management Process in Healthcare. Emphasising user empower-
ment, privacy, and seamless collaboration, users maintain control over their personal health data through
personal data stores like Solid, and community and healthcare experts enhance different facets of the KGs
in the ecosystem. Decentralised KG management involves anonymisation, filtering based on data policies
(including GDPR and HIPAA), and alignment with community-defined ontologies. Incentives, driven
by blockchain technology, encourage user participation in aggregating KGs and incentivise healthcare
professionals for verification, validation, and aggregation activities. SHACL shapes ensure KG validation
and federated querying mechanisms enable access to the KGs to stakeholders, e.g. insurers, pharma, and
medical research organisations. Integrated KGs are iteratively generated; they comprise a federation of
KGs that may be autonomous, distributed, and heterogeneous. A federation query engine enables the
traversal of these integrated and connected KGs to provide useful insights to the stakeholders involved.

framework represents a significant step forward in transforming decentralised KG management,
fostering a secure, privacy-enhanced environment that empowers users, facilitates collaboration,
and drives advancements in domains such as medical knowledge and patient care.

4.4 Explainable Neuro-symbolic AI
Neuro-symbolic systems go beyond generating explanations solely based on the trained model or
the individual results derived from applying the model to specific data. They can produce symbolic
explanations capturing the essence of an AI model itself. These explanations can be classified as
either instance-level explanations generated for each specific result of the model or model-level
explanations of the structure of a learned model. Previous work on the role of KGs in AI has
focused on explainability. [61] frames explainability as a dimension of trustable AI and presents
challenges, existing approaches, limitations and opportunities for KGs to bring explainable AI to
the right level of semantics and interpretability. [107] and [88] conducted independent systematic
reviews of existing explainable AI systems to characterise KGs’ impact. These results put into
perspective the role of KGs in providing symbolic reasoning and learning capabilities with the
potential to be precise, as shown by Akrami et al. [2], in addition to being explainable.
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4.4.1 Reasoning and AI
Despite the unquestionable reasoning features of symbolic systems and the studies reporting
limitations of LLMs in human-like tasks (e.g., explanations, memories, and reasoning over factual
statements) [40], there is an ongoing debate about LLM’s reasoning their causal inference capabil-
ities [52]. Although LLMs excel at certain reasoning tasks, they do poorly in others, raising the
question of whether they genuinely engage in causal reasoning or merely function as unreliable
mimics, generating memorised responses (e.g. [45]). Methods to reason can be roughly divided
into methods using only the LLM itself (e.g. with prompt engineering) and methods combining the
LLM with an external reasoner and/or external source of knowledge (e.g. a Knowledge Graph) [86].
Our vision posits that external help will always be needed, especially for concrete use cases. There
are discussions about the need for knowledge graphs in the era of LLMs. Sun et al. [103] and
Dong [31] report on an empirical assessment of ChatGPT [93] with respect to DBpedia, illustrating
the need of symbolic systems that over-fit for the truth whenever factual statements are collected
from KGs. In addition, symbolic approaches can support sanity checking and be easily auditable
and traceable. These features position the combination of both approaches in neuro-symbolic AI
as a feasible option to provide KG-based AI. Neuro-symbolic AI delivers the basis to integrate the
discrete methods implemented by symbolic AI with high-dimensional vector spaces managed by
LLMs. They must decide when and how to combine both systems, e.g., following a principled
integration (combining neural and symbolic while maintaining a clear separation between their
roles and representations) or integrated (e.g. a symbolic reasoner integrated into the tuning
process of an LLM).

4.4.2 Trust and AI
Trust in AI systems stems from various factors, including transparency, reproducibility, predictab-
ility, and explainability. Neuro-symbolic systems play a vital role in enhancing trustworthiness
by enabling communication between modules and facilitating tracing. Modularity enables the
specification, verification, and validation of each component and its interactions. As a result, a
system’s behaviour can be traced and validated. Specifically, within the domain of KG-based AI
for self-determination, the seamless integration of KGs and symbolic semantic reasoning offers a
comprehensive and unified perspective on curated knowledge. This integration holds immense
value in addressing critical tasks such as validating, refuting, and explaining incorrect, biased,
or misleading information that may potentially be generated by LLMs. By combining symbolic
reasoning over KGs with LLMs, the propagation of misinformation can be mitigated while simul-
taneously enhancing the transparency and trustworthiness of AI-generated outputs. Consequently,
KG-based AI systems can effectively emulate human behaviour by subjecting mistakes arising
from false or incomplete information to a process of validation and enrichment using curated and
potentially peer-reviewed sources of knowledge [109].

4.4.3 Quality and AI
A notable application of KGs in neuro-symbolic AI is as a source of informative prior knowledge to
increase the quality of machine learning models. An example is the work by Rivas et al. [89], where
a deductive database, expressed in Datalog, establishes an axiomatic system of the pharmacokinetic
behaviour of a treatment’s drugs and enables the deduction of new drug-drug interactions in
cancer treatments. This prior knowledge plays a crucial role in elucidating the characteristics
of a therapy and justifying its efficacy by considering all the interactions and the dynamic
movement of drugs within the body. It encompasses factors such as the absorption, bioavailability,
metabolism, and excretion of drugs over time. A KG embedding model improves its prediction
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Figure 6 Design Patterns for Hybrid AI. Extension of patterns by van Bekkum et al. [109] for
running example in Figure 2. The patterns represent an explainable system with prior knowledge created
by the alignments of data from health-related data sources (e.g. insurance, pharma, and medical data).

of the effectiveness of a treatment based on prior knowledge, which encodes statements about a
treatment’s characteristics; these statements are inferred by a deductive system which comprises
the symbolic component of the hybrid approach. An approach for explaining link prediction
(e.g. [90]) allows the justification of why this added prior knowledge affects the model’s decisions,
potentially improving trust in the model’s results.

4.4.4 Grounding Based on Our Illustrative Scenario
Grounding on the example presented in Figure 2, when individuals and professionals engage in
communities with bots and assistants powered by AI models, it is critical to ensure the transparency
of their decision-making process. However, despite the increasing focus on LLMs in healthcare
and their continual improvement in terms of precision and accuracy [100], their outcomes can
still be susceptible to hidden biases and a lack of traceability [62]. To tackle these challenges, the
utilisation of a neuro-symbolic system can enhance LLMs by incorporating reasoning capabilities.
This system operates as a deductive system on a user’s Knowledge Graph (KG). These hybrid AI
systems can be effectively modelled using patterns proposed by [109]. Figure 6 depicts a pattern
describing a hybrid AI system that enhances the explainability of the LLMs described in our
running example. At the community level, symbolic reasoning applied to the ontology of shared
PKGs can generate prior knowledge, enabling precise and concrete questioning of an LLM and
providing additional contextual information. Moreover, a symbolic system facilitates the linking
of shared PKGs with corresponding entities in KGs related to insurance, pharmaceuticals, and
medical research. By incorporating this prior knowledge, the LLM’s answers are improved and
validated with the assistance of the symbolic system. The systems operating at the community
level and involving heterogeneous sources can be described using the explainable system with prior
knowledge pattern; data alignments comprising prior knowledge enhance contextual knowledge
provided to the therapy bot, facilitating thoughtful health recommendations.
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5 Proposed KG-based AI for Self-determination Research Agenda

In this section, we derive a set of requirements concerning KG-based AI for self-determination
and map them to the concrete research goals introduced at the start of this vision paper.

5.1 Trust, Accountability, and Autonomy Foundational Goals
In the following, we highlight five open research challenges and opportunities in each of our
proposed foundational topics (machine-readable norms and policies, decentralised infrastructure,
decentralised KG management, and explainable neuro-symbolic AI). Considering the complex
nature of each of these requirements, an assessment of the maturity of existing technologies with
respect to the various requirements is beyond the scope of a vision paper.

MRP1: Seamless policy translation. There is a need for humans to express policies in machine-
readable format and for machines to express them in natural language or via appropriate
visualisations. A major challenge involves checking that machine-readable policies faithfully
represent their human-readable counterpart.

MRP2: Multi-level policy evaluation. Several policy languages exist. However, many of them
do not have corresponding enforcement mechanisms. Given that usage constraints, community
rules, and regulations operate at different yet interconnected levels, there is a need to devise
effective and efficient enforcement and/or compliance-checking strategies.

MRP3: Negotiation. Facilitate autonomy via fair and safe negotiation between individuals,
communities, and organisations. Here, there is a need to study the benefits and trade-offs
between merely assisting humans in making decisions and developing automated approaches
that alleviate individuals from constant affirmations (e.g. the cookie problem).

MRP4: Compliance verification. Provide support for both ex-ante and ex-post compliance check-
ing mechanisms. Despite their potential, it remains to be seen which machine-readable agree-
ments can actually be enforced by TEEs. Additionally, in scenarios where it does not pay
data processors to cheat, game theoretic approaches could be used to underpin honours-based
compliance-checking.

MRP5: Data misuse detection. Instil trust and ensure accountability in KG-based AI by devel-
oping mechanisms that can detect if any party violated policies and norms. In this context,
causal reasoning and explanations could potentially be used to both detect misuse and to
better understand the root cause.

5.1.1 Decentralised Infrastructure
DI1: Comprehensive recording. A DLT can provide an immutable ledger, but work remains on

how best to connect KG-based AI activities, e.g. to a possible federated query engine.
DI2: Personalised tracing. Providing individual and community owners of PKGs with person-

alised traces of how acquired data was processed and used will involve dis-aggregating KG-
processing and inferencing according to different user data and ensuring that privacy is not
violated when individual results are returned.

DI3: “Decency” check. There is a need for easy-to-use services that allow users and communities
to check if an organisation has behaved in a “decent” way when it processes acquired data.
Research here will examine how “decency” can be defined and validated by comparing PKG
declarations of use (e.g. policies) with generated traces of use.
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DI4: Interoperability. Develop mechanisms that facilitate comprehensive, interoperable identi-
fication of human and machine participants in KG-based AI processes. For example, users
and communities will wish to know and be able to validate claims that a data request comes
from a particular organisation, unit and even individual KG processor. This will provide a
foundation for accountability at all levels of granularity.

DI5: Self-sovereignty. True self-sovereign KG-based AI needs to be: (i) based upon easy-to-use
self-sovereign identities and data management; and (ii) capable of supporting the continuous
monitoring of organisational behaviours in a transparent fashion.

5.1.2 Decentralised KG Management

DKG1: Knowledge Sanitisation. Develop robust techniques for knowledge sanitisation that en-
sure user privacy by anonymising and filtering sensitive information based on data policies.
These policies can be regulations such as GDPR and HIPAA, as well as individual-level
data policies enforced at their personal data store, empowering users to specify their sharing
preferences and control the aspects of data they disclose.

DKG2: Knowledge Graph Aggregation. Design and implement mechanisms to encourage users
to contribute their PKGs towards aggregated knowledge graphs, such as a concerted effort
towards developing specific disease KGs. Blockchain-based incentive models that reward users
for contributing to constructing such knowledge graphs, fostering collaborative efforts, and
enriching the overall quality of shared knowledge are components of this goal.

DKG3: Knowledge Verification. Develop community-based and expert processes to verify the
knowledge available in the global KGs. On the community front, it is critical to ensure that a
knowledge item that was previously contributed through an individual has not been altered
(either through error or with malicious intent), for instance, via blockchain primitives, as
explained in the previous section.

DKG4: Knowledge Validation. Validation of knowledge is paramount to ensure KG interoper-
ability and the consumption of knowledge in target applications. By employing RDF and
SHACL technologies, we ensure that the DKGs across different data stores conform to a specific
template, thus enabling their integration with community-supported KGs.

DKG5: Federated Querying. Explore and implement federated querying mechanisms, specifically
utilising SPARQL, to enable efficient querying across integrated KGs. This process includes
developing techniques to support various institutions, such as insurers, pharmaceutical compan-
ies, and medical research organisations, accessing and extracting insights from the knowledge
graphs to enhance decision-making and advance their respective domains.

5.1.3 Explainable Neuro-Symbolic AI

XNS1: User-dependent Recommendations. Neuro-symbolic systems need to be empowered to
present results transparently to the users according to their interests. For example, in our
illustrative scenario (Figure 2), an individual may not expect the same level of detail in a
health recommendation as a medical doctor or a community representative.

XNS2: Adaptive Hybrid AI. Define models that can adaptively combine predictive models with
logical reasoning, encompassing abilities such as generalisation and causal inference. For
accountability, the neuro-symbolic system should explain when the combination of logical
reasoning with a therapy bot or healthcare assistant will be beneficial. For autonomy, the
neuro-symbolic system should include the user in the loop and consider their opinion in this
decision. Finally, trust requires verifying and validating these decisions.
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Table 1 Mapping of foundational requirements to pillars. A checkmark signifies that the
corresponding requirement is necessary for answering a research question related to a pillar.
(Q1) is related to Trust, (Q2) to Accountability, and (Q3) to Autonomy.

Machine-readable norms and policies
Trust Accountability Autonomy

MRP1 ✓ ✓
MRP2 ✓ ✓
MRP3 ✓
MRP4 ✓ ✓

MRP5 ✓ ✓ ✓
Decentralised Infrastructure

Trust Accountability Autonomy
DI1 ✓ ✓
DI2 ✓ ✓
DI3 ✓ ✓
DI4 ✓
DI5 ✓

Decentralised KG Management.
Trust Accountability Autonomy

DKG1 ✓
DKG2 ✓ ✓
DKG3 ✓
DKG4 ✓
DKG5 ✓

Explainable Neuro-Symbolic AI
Trust Accountability Autonomy

XNS1 ✓
XNS2 ✓ ✓
XNS3 ✓ ✓
XNS4 ✓
XNS5 ✓

XNS3: Contextual-based Hybrid AI. Equip neuro-symbolic systems with contextual knowledge,
reasoning capabilities, and causal inference to effectively evaluate the strengths and limitations
of machine learning components. This goal empowers the system to identify optimal combina-
tions of statistical and symbolic AI methods, requiring the definition of causal models on top
of KGs capable of combining reasoning over KGs with causal inference.

XNS4: Symbolic Reasoning. Employ inference processes, both inductive and deductive, on
knowledge graphs to enable ML models, and LLMs in particular, to adjust hyper-parameters
and a model’s configuration to new environments (i.e., Personal, community-based, and
integrated healthcare KGs) and provide explanations for their decisions. Despite the advances
of Automated Machine Learning (AutoML) systems (e.g., AutoML25 and AutoWeka [58], to the
best of our knowledge, there are no developments for AutoML over KGs or for neuro-symbolic
systems, which will enhance accountability, autonomy, and trust.

XNS5: Learning Transparency. Investigate if existing XAI mechanisms can be tailored for learn-
ing transparency, such that it is possible to explain what action was taken, how the decision
making was performed, and why this was perceived as the outcome offering the greatest
expected satisfaction.

25 https://www.automl.org/

https://www.automl.org/
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5.2 AI for Self-determination
The identified foundational research topic challenges and opportunities can be used to better
contextualise concrete goals in relation to trust, accountability, and autonomy from a KG-based
AI for self-determination perspective. An overview of this mapping, which is depicted in Table 1,
is provided by attempting to answer the overarching questions that guide our vision paper.

(Q1) What are the key requirements for an AI system to produce trustable results? From a
trust perspective, it is important that machine-readable policies faithfully represent the human-
readable policies (MRP1) in a manner that can be verified automatically (MRP2). Regardless of
whether systems are automated or semi-automated, we need to be able to verify that processes
behave as expected (MRP4) and any misuse can be detected and rectified (MRP5). Trust
could potentially be facilitated via auditing (DI1) and tracing (DI2), as well as certification
mechanisms that support decency checks (DI3) and (semi-)automated knowledge verification
(DKG3) and validation (DKG4) techniques. While human involvement is paramount to
establishing trust in adaptive (XNS2) and contextualised (XNS3) hybrid AI.

(Q2) How can AI be made accountable for its decision-making? The first step to achieving
accountability is to ensure it is possible to detect if any party violated policies and norms
(MRP5) and that the recommendations given and decisions taken using both induction and
deduction (XNS4) are comprehensible from a user perspective, for instance via user focuses
recommendations (XNS1), providing explanations for recommendations and decisions (XNS2),
facilitating learning transparency (XNS5), and contextualisation based on causal inference
(XNS3). Considering that machines can only work with the knowledge that it has at hand, it
is important that systems are able to integrate knowledge from disparate sources (DI4) and
are capable of querying (DKG5) and aggregating (DKG2) relevant sources.

(Q3) How can citizens maintain autonomy as users or subjects of KG-based AI systems?
Citizens’ autonomy in a KG-based AI context is necessary to ensure that humans are able to
control not only who has access to their personal data, but also that its usage is in line with
existing regulatory requirements. This could be achieved with automated compliance checking
(MRP4) and misuse detection (MRP5) built on top of machine-readable policies (MRP1) and
evaluation mechanisms (MRP2). Negotiation could potentially enable organisations to gain
access to better quality data (MRP3) or to foster collaboration via aggregation (DKG2) and
strong privacy guarantees via anonymisation (DKG1). Meanwhile, self-sovereign identities
(DI5), auditing (DI1), tracing (DI2), and decency certification (DI3) have a major role to play
when it comes to continuous monitoring.

6 Conclusion

This paper presents a compelling argument for integrating KG-based AI to empower individuals’ self-
determination and benefit society. This overarching goal is supported by three fundamental pillars:
trust, accountability, and autonomy. We advocate that the foundations of these pillars require
focused research in four areas: machine-readable norms and policies, decentralised infrastructure,
decentralised KG management, and explainable neuro-symbolic AI. By drawing on a concrete
scenario within the healthcare domain, we demonstrate the relevance of each foundational topic
and outline a comprehensive research agenda for each of them.

We aspire for the insights presented in this paper to catalyse the creation of AI services
that genuinely support citizens while upholding their rights. Responsible advancement of the
foundational topics is crucial to ensure that future KG-based AI solutions are comprehensive and
possess the qualities of being traceable, verifiable, and interpretable. It is essential that relevant
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legislation, such as the EU AI Act, provides clear guidance to steer the development of these
forthcoming applications, emphasising the need for accurate, reliable, and transparent AI systems.
Within this context, we recognise the Semantic Web community as uniquely positioned to drive
transformative change and contribute solutions that illuminate the workings of opaque AI models.
Through this concerted effort, we envision a paradigm shift in KG management and analytics that
establishes KG-based AI to empower individuals in their pursuit of self-determination.
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Abstract
There is a lack of multilingual data to support
applications in a large number of languages, es-
pecially for low-resource languages. Knowledge
graphs (KG) could contribute to closing the gap
of language support by providing easily accessible,
machine-readable, multilingual linked data, which
can be reused across applications. In this paper, we
provide an overview of work in the domain of multi-
lingual KGs with a focus on low-resource languages.
We review the current state of multilingual KGs

along with the different aspects that are crucial for
creating KGs with language coverage in mind. Spe-
cial consideration is given to challenges particular to
low-resource languages in KGs. We further provide
an overview of applications that yield multilingual
KG information as well as downstream applications
reusing such multilingual data. Finally, we explore
open problems regarding multilingual KGs with a
focus on low-resource languages.
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1 Introduction

For a wide range of applications, including chatbots and search engines, it is important to support
a large variety of languages, as this enables more people to access these applications in their native
language. However, currently, many applications only provide support for a highly restricted
number of languages. While there are over 7,000 languages spoken in the world2, applications
such as Amazon Alexa or Google Home support 8 or 16, respectively, at the time of writing.3

1 Corresponding author
2 https://www.ethnologue.com/
3 Link to Amazon Alexa; Link to Google Home.
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This drastically limits the accessibility for speakers of languages not among this small set of
languages. Providing access to information across languages may be crucial whenever one wishes
to make high-quality factual information available to people across the globe. However, for most
of the world’s languages, the lack of coverage in terms of available data, linguistic models (be they
rules-based or data-driven), and the broader tooling ecosystem is daunting, and, therefore, there is
insufficient information readily available to easily extend existing applications to the language. We
refer to such languages as low-resource languages. There have been efforts to make low-resource
languages more accessible, as exhibited by initiatives such as Masakhane [27] and SaDiLaR4, which
have created datasets that aim to assist in making language applications available across a greater
number of languages. However, the vast majority of language resources are in and for English.
For example, on the web at large, 58.8% of websites are estimated to be in English5, which is also
reflected in the size of available corpora6. Low-resource languages are barely represented in these
sorts of collections. Therefore, models trained on web data are prone to suffering from a severe
lack of information in the majority of languages.

One possible way of addressing the issue of a lack of multilingual data is to rely on knowledge
graphs (KGs), which store knowledge as graph-structured data [35]. In a data-to-text generation
approach, KGs can be used as a source of information for newly generated text across languages [50].
The central storage of language-agnostic information enables downstream applications to provide
knowledge, such as in the form of text, for a wide range of language communities. We describe
some of the downstream use-cases of multilingual KGs in Section 4.2.

Despite being machine-readable, knowledge graphs also harbour substantial natural language
information. Entities and relationships in a knowledge graph generally have natural language
labels and often also natural language descriptions. Indeed, among the most prominent knowledge
graphs, many provide such natural language labels and descriptions in a multitude of different
languages and are thus also a valuable direct source of multilingual data [49]. For instance, a KG
may capture that the chemical element gold is called gold in English, altın in Turkish, igolide in
isiXhosa, bulawan in Cebuano, and so on. It becomes more challenging when there is no simple
1:1 mapping, such as pet being lexicalized as pet in English but de facto only described in isiZulu,
for instance, as isilwane sasekhaya (an animal that is of the home). Similarly, in agglutinating
languages, morphemes are strung together to create a new concept that may be translated as
a phrase or sentence, such as umagwazephindelela for “one who is not satisfied with a single
achievement” (a “persistent fighter”)7 [17].

By storing information in the KG in a machine-readable form, the KG can hold information
about entities, such as the gold chemical symbol, irrespective of whether this information exists in
each of the languages. This helps eliminate language barriers and ensures information is available
even in languages where it might otherwise be absent.

In this paper, we explore the current state of multilingual data in knowledge graphs (Section 2),
particular challenges regarding low-resource languages (Section 3), approaches to increase language
coverage in KGs (Section 4.1), applications using multilingual KGs (Section 4.2), and finally we
propose open questions regarding the multilingual support in KGs at large (Section 5).

4 South African Centre for Digital Language Resources with its language resources repository available at
https://repo.sadilar.org/.

5 https://www.statista.com/statistics/262946/most-common-languages-on-the-internet/, as of Janu-
ary 2023

6 e.g.: https://www.sketchengine.eu/corpora-and-languages/corpus-list/
7 From: u-/uma- noun prefix for noun class 1a or u- noun prefix for noun class 1a + -ma (v) “stand”, -gwaza

(v) “stab”, “slaughter”, verb with -e ending subjunctive mood, -phinda (v) “repeat”, “do again”, -phindelela
(v) “do again and again” (note the -el- applicative verb extension to -phinda)

https://repo.sadilar.org/
https://www.statista.com/statistics/262946/most-common-languages-on-the-internet/
https://www.sketchengine.eu/corpora-and-languages/corpus-list/
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Q7259 Q82594
P106

Ada Lovelace آدا لوفلایس occupation المھنة computer 
scientist

عالم حاسوب

@en @en @en@ar @ar @ar

rdfs:label rdfs:label rdfs:labelrdfs:label rdfs:labelrdfs:label

Figure 1 Modelling of multilingual knowledge using a unified knowledge graph with attributes given
in multiple different languages, as exemplified by Wikidata. Each entity has a single ID shared across
languages. In order to ensure stable and language-neutral IDs, the ID scheme does not include any
natural language part intended for human consumption. Instead, a separate entity label is provided for
each relevant language (in this example English and Arabic). These are connected using the rdfs:label
property in the RDF version of Wikidata.

dbr:Ada_Lovelace dbr:Computer_scientist
dbo:occupation

English DBpedia

dbr:آدا_لوفلایس dbr:عالم_حاسوب
dbo:المھنة

owl:SameAsowl:SameAs owl:SameAs

Arabic DBpedia

Figure 2 Modelling of multilingual knowledge using separate interconnected entity IDs, as exemplified
by DBpedia. A separate entity ID is defined for each language. These are connected by the owl:sameAs
property, which indicates that they in fact refer to the same entity. In practice, different languages differ
widely in their coverage and hence not all information is mirrored across languages as in this example.

2 State of Multilingual KGs

To describe the challenges and opportunities of multilingual KGs, we first provide a brief overview
on the current state of knowledge graphs regarding their language coverage. Gracia et al. describe
their vision of a multilingual web of data in 2012 as having “(i) linguistic information for data and
vocabularies in different languages, (ii) mappings between data with labels in different languages,
and (iii) services to dynamically access and traverse Linked Data across different languages” [31].
Over 10 years later, we seek to understand what and how much of it has been realised. To gain
insights into the state of KGs, we observe multilingual data in KGs from different angles. First,
we examine how the different modelling choices and ontologies, i.e., the structure-giving elements
of the KG, enable or impede inclusion of multilingual information. Further, it is crucial to assess
how many and which languages are supported to what extent. Therefore, we provide an overview
of work analysing language coverage across different KGs. Finally, we provide insights on the
linguistic information available in KGs in the form of lexicographical data.

2.1 Modelling Multilingual Knowledge
There are, depending on the particular KG, different ways to store multilingual information [29].
A common choice is to assume that KG entities can be shared across languages, and thus for a
given KG entity, one can provide relevant language-specific information such as labels in multiple

TGDK
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languages. An example of this is illustrated in Figure 1 for the prominent Wikidata KG. An
alternative is to essentially create a different KG (or sub-KG) for each language and then interlink
these KGs. An example of this is illustrated in Figure 2 for the DBpedia KG.

The availability of labels can differ substantially across languages. Of course, this may simply
be due to incomplete coverage, as we discuss in Section 2.3. In some cases, however, this may
stem from linguistic differences in lexicalization or naming: A concept or entity may possess a
name in one language but not in another, in which case it is sometimes referred to as a lexical
gap. For instance, Runyankore does not have a single word for “pet” but only a description, and
isiZulu’s ingcula does not have a translation into English other than a description of the object (a
small bladed hunting spear). At the instance level, additional modelling efforts may be required,
if Runyankore-speaking people were to be interested in representing in the KG that Lassie and
Scooby Doo are pets, say, or for the development of a KG about Shaka Zulu’s armoury.

In the literature, there is a range of guidelines indicating how a KG should represent multilingual
information. These include the use of standard ontologies, recommendations for the data itself as
well as how the data should be modelled. Across the literature, the following guidelines have been
identified, as also summarised in previous work [44].

Stable identifiers [7]: Each entity is identified in the KG with an identifier (ID). These
are crucial as the way to access information about an entity. Many authors recommend
adopting Unique Resource Identifiers (URIs) or Internationalized Resource Identifiers (IRIs),
as used on the Web, for better interoperability. Some KGs identify entities in the graph
with identifiers incorporating natural language. For instance, DBpedia uses IRIs such as
http://dbpedia.org/resource/Ada_Lovelace. Such identifiers are human-readable, and
hence easy to interpret for humans, and they also take the function of a label. However, the
fact that the natural language portions of such IDs carry meaning can also be a disadvantage.
As identifiers are expected to remain stable, such IDs are unable to reflect potential changes in
the entity label. For example, if the name of a property changes, the entire structure of the
KG would be affected [85]. In contrast, opaque IDs are ones that are not easily readable by
humans. For example, they could have a unique identifier for a concept in the form of letters
and/or numbers, such as the Wikidata ID Q7259. As such IDs do not reflect the label of the
entity, if the entity’s name changes, the ID is not affected. Moreover, such entity IDs can be
more readily shared across languages.
Label coverage [21, 90, 16]: As natural language labels are the way humans access information
in the KG and interact with it, it is important that entities, classes, and properties in the KG
are labelled. This ensures that information is human-readable and can be displayed to a user.
Language tags [78]: When labelling an entity, it is important to indicate the language in
which this label is provided. Even in monolingual KGs, language tags can be valuable, in order
to avoid conflating different languages when fusing information from different language sources,
especially when automatically merging KGs or when operating across multiple knowledge graphs
in different languages through, e.g., federated queries. Language tags can help applications
decide which label should be displayed to which user.
Language coverage [31, 44]: For a multilingual KG it is crucial that entities are labelled
across a large number of languages for which a relevant label exists. Only such thorough
labelling can ensure access of all users to all information, independent of the languages they
speak. It also enables KGs to readily make other applications multilingual.
Monolingual islands [31]: When parts of the graph are labelled in only one language, they
can form monolingual islands. This can happen because knowledge is prevalent in one cultural
context and therefore is yet to be translated, such as governmental initiatives publishing
structured data in only their native language. Monolingual islands can lead to worse access
to a diverse set of knowledge across the graph and should be addressed when working on a
multilingual KG.

http://dbpedia.org/resource/Ada_Lovelace
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Reusing existing vocabulary: In the creation of a KG, it is essential to reuse existing
vocabulary, or ontology, to describe the schema of the KG. Especially for label and language
information in a KG, it is crucial for easier integration of multiple, complementary KGs. For
more information on ontologies, see Section 2.2.
Unambiguity [21]: As there are multiple complementary as well as overlapping ontologies, it
is crucial to make sure to avoid ambiguity. According to the Semantic Web standards, it is
recommended to use the labelling property rdfs:label to provide natural language labels of
entities. Furthermore, it is often recommended to provide a single preferred label in a given
language per entity, while using other properties such as alias to describe alternative names
for a concept.

Conceptual differences between different languages may lead to modelling challenges. An important
example is the subclass/superclass relationship (which corresponds to hypo-/hypernymy as a
lexical relation). For instance, consider the single concept and word for river in English, whereas in
the French language and presumably also the corresponding conceptualisation, one distinguishes
rivers that flow into other rivers and those that flow into the sea (fleuve versus rivière) [62]. This
may occur similarly for relational properties [54]. A common solution is to treat incompatible
concepts across different languages as distinct entries in the KG. Thus, one can avoid conflating
the English concept of river with the two French ones and optionally also explicitly describe how
the different entries relate to one another cross-lingually. It may also be the case that in one
language only a verbal form of a concept exists, i.e., it is assumed to be only a relational property,
and in another language it is nominalised, i.e., exists as a unary object or object type only, such
that heterogeneous mappings may be needed [26].

2.2 Multilingual Ontologies
Ontologies define the structure of a KG by setting standards for the different properties or
relationships to be used, and, for example, the classes used in a KG and across the web of
data [36]. The W3C Web Ontology Language (OWL) is a particularly prominent formalism to
define ontologies across different KGs to ensure the interoperability of different ontologies [37].

To be able to create multilingual KGs, it is crucial to understand how multilingualism is
addressed in the ontologies, be it in the formalism or in a declarative model associated with it,
how natural languages are incorporated, and how translation of entities may be recorded.

Gillis-Webber and Keet [29] survey multilinguality in and for ontologies. They grouped the
literature and practices in multilingual ontologies into three types of modelling multilingual
information: (1) using multilingual labels, i.e., labelling one entity across languages using a
labelling property and mentioning the language of the label in the label string (such as in Wikidata
in the example in Figure 1), (2) linguistic models (covered in Section 2.4), and (3) mapping-based
approach, i.e., creating one entity per language and linking them across languages to each other
with an appropriate property (such as in DBpedia in the example in Figure 2). They observed
that there is currently a limited uptake of multilingual ontologies at large. Further, limitations of
each of the three described ways of modelling multilingual data, such as “accurate representation
of languages that require grammatical features such as inflected forms and gender” [30], are yet to
be addressed, which apply at least in part also to KGs (discussed in Section 3.2 below).

As ontologies can be defined with the creation of each new KG anew, a number of monolingual
ontologies in different languages exist that could be interlinked so as to be more interoperable.
Efforts in this direction align ontologies across languages, making it possible to link different KGs
across languages [41] or translate labels across languages to make ontologies interoperable and
reusable [22].

TGDK
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2.3 Language Coverage Across KGs
Covering a large number of languages in the data in any KG is crucial to be able to support a
wide range of languages in downstream applications. For example, in the domain of Question
Answering (QA), using a multilingual KG facilitates easy switching between languages and finding
the KG best suited for the language requirements of an application and its user base [46].

A range of studies describes the language coverage of KGs to understand how well they
currently serve multilingual users. Studies have found that, across numerous language graphs,
there is a lack of non-English information in the form of labels. Further, the most used labelling
property is rdfs:label, and across the web of data at large there is a widespread lack of labels,
i.e., a large share of entities are not labelled at all. Additionally, most entities are labelled in only
one language [49, 21, 44].

Ell et al. [21] and Kaffee and Simperl [49] developed frameworks to analyse language and label
coverage in the web of data, in their case a collection of KGs available online. Zaveri et al. [90]
survey data quality metrics and describe a metric for human readable labelling, which characterises
the coverage of entities by labels. This metric was picked up and made actionable by Debattista
et al. [16].

Wikidata specifically shows a slightly different distribution than the web of data at large. While
there is still an English bias in the KG, there is a higher degree of language diversity overall [47, 44].
This more varied representation of languages could have different potential causes; for one, there
is a multilingual community editing the KG, which leads to a larger number of perspectives added
to the graph, compared to KGs that are automatically assembled or mostly contributed to by
a single community situated in one part of the world [48]. This international community has
been recruited to a large extent from the famous sister project of Wikidata, Wikipedia, where an
international community already edits knowledge in their respective language [79]. Further, the
community of humans is supported by so-called bots, which are automated tools that import and
edit knowledge on Wikidata across languages [45]. These approaches can be instructive for future
projects seeking to create more multilingual KGs.

This opens promising directions for the future development of multilingual KGs. With a
dedicated community and specialised tools, better language coverage can be achieved in the future.
In Section 4.1, we discuss automated solutions to improve the language coverage of KGs.

2.4 Lexicographical Data
Given that KGs can be used to store diverse kinds of knowledge, their versatile graph structure
also facilitates storing information about language. Some KGs, such as Lexvo [14] and Glottolog
[33], focus specifically on linguistic metadata about languages and dialects as well as scripts and
characters.

Lexicographical data in KGs describes a subset of data that expresses information about
the lexicon of languages, i.e., information about words, phrases, and other linguistic expressions.
For example, this linguistic information could describe how to conjugate verbs across different
languages. In this example, the verb may be modelled as an entity in the graph that is connected
to its different grammatical forms through its properties (edges in the graph).

To express and standardise this type of linguistic information, OntoLex Lemon8 was introduced
based on the RDF standard, focusing on expressing linguistic information as Linguistic Linked
Data [64].

8 https://www.w3.org/2016/05/ontolex/

https://www.w3.org/2016/05/ontolex/
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The concept of lexemes, a form of describing lexical knowledge, has also been introduced to
the KG Wikidata. Wikidata uses a custom community-created schema that only loosely resembles
Lemon. However, considering the actual data provided by Wikidata, statistics reveal that there
are only a few languages with significant lexeme coverage, while the vast majority of languages
have little to no representation [73]. This limited language coverage shows that there is still a long
way to go to reuse such linguistic information for applications focusing on low-resource languages.

One of the most successful, widely used knowledge resources is WordNet [65], as it has over
the years seen extensive use in a number of NLP applications, such as text summarisation [5] and
text categorisation [20]. A large number of similar resources have been created for a multitude
of different languages, including low-resource languages, and many of these resources have been
interlinked. The Universal WordNet [15] and BabelNet [72] were among the first massively
multilingual knowledge graphs, both drawing on WordNet as their backbone. WordNet is based
on the notion of synonym sets as linguistic concepts, which are connected by various linguistically
inspired semantic relationships.

Despite the widespread use of multilingual lexicographic KGs in NLP, it is important to
acknowledge that the coverage is uneven. While high-resource languages are well-represented,
many widely-spoken languages of socio-economic importance are covered inadequately. For some
low-resource languages, only very basic terminology is covered. Many others are missing entirely.
While information about grammar can be useful for languages with sparse training data, the
lack of representation in KGs cannot yet fill this gap. However, as argued previously, having a
central general-domain storage of this information for low-resource languages can support future
applications in broadening language coverage. Therefore, we argue, it would be beneficial to build
these resources and maintain and widen existing ones.

3 KG Challenges Regarding Low-resource Languages

For KGs to be part of the solution for low-resource languages (LRL) in data-driven settings, they
need to be buildable and deployable in KG-driven information systems. They may also need a
better specification of “low-resourced languages”. With a full characterisation under way [55],
within NLP, it is typically narrowed down to LRLs having just limited online corpora, tools, and
computational grammars, or lacking something to build statistics-based NLP applications9. LRLs
have also been characterised as “less studied, resource scarce, less computerised, less privileged, less
commonly taught, or low density, among other denomination” [87], and similarly by others [80, 34].
Some studies have sought to quantify this by counting labelled and unlabelled corpora [42] or
other data [34] and tools [6, 58], and conducted audits [67, 82, inter alia]. Such characterisations
are based mostly on quantities, while neglecting to account for the practicalities of working
with limited resources. Such practicalities may be grouped into two: one related to the tools
and processes and the other at a “deeper” level on language features of both the representation
language and the LRL. We’ll discuss each in turn.

3.1 Computational Resources
Within the narrow computational resource-oriented view, a consequence is the existence of blocking
interdependencies. As a concrete example related to Figure 1, within Abstract Wikipedia [89],
it has been proposed to automatically induce templates for a template-based approach [32] or
grammars for the Grammatical Framework-based approach [81], ultimately to facilitate rule-
based natural language generation to generate Wikipedia articles from the KG. This, however,

9 See, for instance, Felix Laumann’s discussion post at https://medium.com/neuralspace/low-resource-
language-what-does-it-mean-d067ec85dea5, likely based on Tsvetkov (2017) [87] (slide 26) and repeated in
the literature (e.g., [59]).
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presupposes the existence and usability of corpora, of good quality part-of-speech taggers and of
morphological analysers, which are rarely available for LRLs. These resources are likewise needed
for automated KG construction and use in KG-driven information systems, such as educational
question generation and document navigation. Consider KG verbalisation for, e.g., isiZulu, a
LRL in South Africa spoken by around 23 million people [53]: nouns had to be pluralised, but
there was no pluraliser, and verbs of the object properties needed to be conjugated, yet grammar
books were outdated and recent linguistics research is scattered, so all that had to be investigated
alongside the actual KG task [8, 52]. Also, popular multilingual realisers, such as SimpleNLG [28],
are easily adapted among a selection of well-resourced languages in the Indo-European languages
family, but they may not be suitable for a language that needs subword-level management, and so
a new modular realisation engine may be needed [60]. Conversely, any prospective KG task helps
focus language resource development on a specific, measurable, and achievable segment, which is
confidence-building and a way to gradually expand the resources.

These anecdotes, and similar observations, are illustrative of several general issues when
creating KGs or using them in applications with LRLs, be this for data-oriented techniques and
applications or other KG tasks, being:

There will be linguistic hurdles (gaps in the linguistic knowledge and sociolinguistics) to
overcome, which are on top of the intended KG task or KG as a solution. In addition,
computerising the language information takes time and scarce human resources, delaying the
KG task.
Freely available pre-existing data is often imprecise, incorrect, or outdated, and thus not a good
basis to rely on [solely/at all], requiring an additional data collection stage in a data-driven
KG task; therefore, an expert-driven rules-based approach may be more viable for some tasks.
A resource shortage also tends to imply a human shortage, both in numbers and capacity/-
knowledge/skills of the language, limiting the scale of human evaluation and quality of survey
or crowdsourced responses.
The notion of “good” quality is relative and a lower overall size or quality may still mean
that the KG task itself performs well (but lower in context due to compounding of less well
performing preceding steps).
Each LRL has its own set of hurdles, and its own history, and how the low resourcedness came
about and therewith may need a context-specific incentive to realise the KG task for the LRL.

Also, and separate to KG building, there are power dynamics. Those who build the KG wield
power over those who use it and, as Vang argues, “to some degree contests the autonomy of the
user” [43]. A multilingual KG would ideally be built with the community of prospective users who
speak that LRL, not just for them. In addition, it is not clear how the notion of KG co-ownership
or KG benefit-sharing of extracted and systematised community knowledge, as alluded to in,
among others, the groundbreaking San Code of Research Ethics10, can be realised. Finally, the
LRL may have features that do not fit well with the KG language. Since this may be applicable
to a subset of LRLs only, we elaborate on this in the next section.

3.2 KG Representation Language Assumptions and Challenges
In this paper, we introduce KGs as a well-suited technology to address limitations in language
coverage in downstream applications. There are obvious limitations to this claim. Popular KGs
tend to be Eurocentric, in terms of their editors (see for example Wikidata [48]) and data covered.11

10 https://www.globalcodeofconduct.org/affiliated-codes/
11 Visualisation of Wikidata entities with geolocation: https://wmde.github.io/wikidata-map/dist/index.
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Moreover, they have been developed to a large extent by researchers working in what is known as
the global north, emphasising the bias in the type of content and how the content is captured and
displayed.

The subject-predicate-object paradigm of capturing facts in a knowledge graph, OWL’s
assumptions about axiomatisations, and the likes of frame-based approaches suit English well,
as it typically takes an object-based approach, has limited verb inflections and has a disjunctive
orthography, and an SVO ordering of sentences that are statements.

The practices of modelling assume nouns in the singular and predicates in the 3rd person
singular, whose string remains fixed irrespective of the domain or range of the property. This is
not the case for several LRLs, however, such as at least Niger-Congo B languages [53], nor for
several Indo-European languages that have an extensive noun class system where the verb changes
contextually depending on the actor. For instance, the “eats” is all the same in ⟨Human, eats,
apple⟩, ⟨Elephant, eats, apple⟩, and ⟨Microbe, eats, apple⟩, regardless who or what (in
sg.) is doing the eating, where the “eats” property is being reused as it should be. Consider
now a direct translation to isiZulu, respectively: ⟨Umuntu, udla, i-apula⟩, ⟨Indlovu, idla,
i-apula⟩, and ⟨Igciwane, lidla, i-apula⟩. The 3rd person singular differs. It is not the case
that the predicate is different, just the natural language rendering of it is. However, most KG
languages by design typically conflate elements with surface rendering [25]. One could use an
identifier, as OBO did, and carry over to OBO Foundry ontologies and in Wikidata, but that still
requires additional machinery somewhere to complete the -dla verb stem in accordance with the
noun class of the noun. Or: to start properly with KG development, one first needs to figure out
some sort of extension of, or addition to, RDF. Depending on the LRL, there may well be up to
20 variants, with one for each noun class.

It has also become common practice in “English KGs” to insert prepositions into the property
name or label, such as “works for” and “part of”. They may be realised differently in many other
languages, such as being affixed to the noun of the class in the range (object) position or infixed in
the verb. The affixation to the noun is also specific to the context where it is used, i.e., in which
axiom, not the name of the class or individual, for which there is no established KG language
yet. An extreme case is the containment relation, typically used in KGs as contained in. The
notion of containment in isiZulu is realised through indicating the container, by means of noun
affixation for locatives and determined by both the container and the containee such that there
is no “contained in” verb or name to put in the predicate position [51]; e.g., a bolus of food
(indilinga yokudla) that is contained in the stomach (isisu) becomes indilinga yokudla isesiswini.
What would the triple be? ⟨bolus of food, contained in, stomach⟩ maps neatly with the
natural language in English and many other well-resourced languages, but neither a ⟨indilinga
yokudla, blank_prop, isisu⟩ nor a ⟨indilinga yokudla, inverse(L3951-S4), isisu⟩ are
satisfactory solutions.

Therefore, a KG may need to be accompanied by a declarative language model and a set
of grammar rules, or a different way of usage to represent all the required inputs, or the KG
representation language may need to be revised. This is regardless of the usage scenario, from
rendering the content of the KG correctly and understandable to the user to automated KG
creation. The W3C community standard OntoLex-Lemon [13] as well as the more expressive
lemon model [61] that aim to provide such a declarative model address this only in part [29, 10].

These language differences lay bare certain English-oriented assumptions baked into the repres-
entation language and in naming conventions. This is complicated further if the conceptualisation
or terminology diverges not only for domain knowledge but also for a foundational relation such
as parthood (e.g., [23, 54]). This need not impede KGs as a possible contributing solution to LRL
applications but is to be borne in mind in both KG construction and in their use.

These limitations need to be addressed to make KGs truly inclusive of a wide range of languages.
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4 Applications of Multilingual KGs

Multilingual KGs have emerged as resources that transcend language barriers to enable a wide
range of applications in our increasingly linked and multilingual world. Improving language
coverage in multilingual KGs is critical for completing these resources and making them more
relevant to a wide range of global audiences. Also, they have a wide range of applications across
various domains due to their ability to bridge linguistic gaps. This section provides an overview of
the existing research in the application areas of multilingual KGs.

4.1 Improving Language Coverage of KGs
Recent research has seen an enormous development in the use of KGs to improve Natural
Language Processing tasks such as Natural Language Inference (NLI), Question Answering (QA),
and Recommender Systems. Even well-known KGs like DBpedia and Wikidata, which are widely
used, are the largest in their English versions despite major human efforts to make them available
across languages. Furthermore, geographic area-specific facts are frequently restricted to the KG
unique to the region or the native language. The incorporation of Machine Learning (ML) models
into several languages is constrained by the scarcity of multilingual knowledge.

Machine Translation (MT) systems have been used [2, 63] to improve the language coverage
in multilingual KGs, but these efforts only aim to translate domain-specific KGs from English
into a target language. These methods ignore the graph structure of KGs, which is critical for
determining the domain in which the word must be translated in the target language. Taking into
account the graph structure of KGs can help an MT system identify the proper translation for
ambiguous labels. As referred to in the survey [70], Rule-based (RBMT), Example-based (EBMT),
and Statistical Machine Translation (SMT) based models have been used in the past to translate
Semantic Web Technologies (SWT). However, MT for SWT still remains open research due to:
(1) lack of clearly specified object attributes, such as cardinality or reflexiveness, (2) concept
blending across thesaurus, vocabulary, and ontology, (3) inaccurate definitions of the domain
and range, and (4) using ambiguous annotations [70]. However, domain-specific terms from the
medical and financial areas have been translated using a Neural Machine Translation (NMT)
architecture, outperforming SMT results [3]. Feng et al. [24] introduced a gated NN strategy
for translating English KGs into Chinese, learning continuous triple representations. Source and
target triples were mapped in the same semantic vector space using their method, which was
extracted from Freebase. Their modified NN strategy increased translation accuracy compared to
a strong NMT baseline, highlighting the significance of taking into account KG structure for KG
translation and enhancing the quality of disambiguation for ambiguous phrases. Another NMT
model, THOTH [69] trains to translate the facts from one language into another, treating the
facts (i.e., triples) in a KG as sentences with URIs acting as tokens. It uses KG embeddings and
two separate recurrent neural network models to extract bilingual alignments between a source
and target KG and then learns the translation.

KG embedding based models have been proposed to enhance multilingual KGs. A more
realistic method would draw on the information in several language-specific KGs, keeping in mind
that individual KGs have their own strengths and limitations on data quality and coverage. This
is a significant challenge since inconsistently expressed facts and a lack of sufficient alignment
information can make it difficult for knowledge to be transferred between many independently
maintained KGs. KEnS [11] is one such approach that embeds all multilingual KGs in a shared
embedding space where the association of entities is captured through self-learning.

LLM-based KG creation has been used recently in an attempt to create monolingual
knowledge facts for KGs [77], but multilingual KG construction and enrichment have not yet been
attempted at their full strength. Due to the potential for complementary and unequally dispersed
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knowledge stated in many languages, multilingual LLMs can offer richer combined knowledge
for multilingual KGs. Prix-LM [91] is a pioneering model for multilingual KG construction
and completion that employs both monolingual triples and cross-lingual linkages retrieved from
existing multilingual KGs, followed by fine-tuning a multilingual language encoder XLM-R via
a causal language modelling objective. Hou et al. [38] proposes another model that leverages
adapters to fine-tune LLMs for multilingual KGs, including low-resource languages, enhancing the
corresponding downstream tasks. Therefore, leveraging LLMs for the construction and completion
of multilingual KGs emerges to be one of the promising future directions of research, considering
that their information content has shown promise for knowledge extraction [77].

4.2 Downstream Applications of Multilingual KG Information
In this section, we survey a set of use cases for multilingual KGs. When developing new KGs, new
ontologies, or improving the language coverage of existing KGs, it is crucial to keep the use-cases
in mind to ensure that the KG can indeed serve knowledge that is useful in the envisioned tasks.
Several applications already make use of multilingual KGs, in the following we present a selected
few tasks.

Multilingual Knowledge Graph Question Answering (mKGQA) is a task that involves
answering a user’s questions in a set of languages based on facts stored in a KG. This is a research
topic of particular importance, as these systems can bridge the gap between users and pertinent
information on the Web. The task should ideally address all languages, making it possible for users
to ask questions independent of the languages of the information in the KG. Currently, however,
these systems typically define a set of languages in which questions can be answered, relying on
information in the corresponding language stored in the target KG. mKGQA is strongly dependent
on data, and there is currently a lack of multilingual data on the web, making it accessible to only
a fraction of people12, therefore causing a “cultural gap” on the Web [66]. Further, the task of
mKGQA suffers from a lack of multilingual benchmarks.

Perevalov et al. [75, 76] identified 17 mKGQA systems. We have provided in the table below a
list of 4 mKGQA systems filtered based on the coverage that they provide for languages besides
English (with a focus on lower-resourced languages), along with the KG used, data sets, and the
specific languages covered.

Table 1 Multilingual Knowledge Graph Question Answering (mKGQA) systems.

mKGQA system Ref. KG Languages Dataset

WDAqua-core, 2018 [19] DBpedia, Wikidata,
DBLP, MusicBrainz en, de, es, it QALD,

LC-QuAD 1.0

QAnswer, 2019 [18] DBpedia, Wikidata,
DBLP, MusicBrainz, FreeBase

en, de, fr, it, es,
pt, ar, zh

QALD-3-7,
LC-QuAD 1.0

Y. Zhou et al. [92] DBpedia en, fa, de, ro, it,
ru, fr, nl, es, hi, pt

LC-QuAD 1.0,
QALD-9

A. Perevalov et al. [74] Wikidata, DBpedia en, de, fr, ru,
uk, lt, be, ba, hy QALD-9-Plus

BLEU-4 [84] – tibetian TibetanQA+

12 25.9% according to https://www.statista.com/statistics/262946/share-of-the-most-common-languages-on-the-
internet/, retrieved 2023-02-15
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Knowledge Graph Completion aims to add new, missing facts to a KG. This remains a
challenging problem that is particularly pronounced in multilingual low-resource languages, given
that human annotations are rare and difficult to procure [39]. A number of solutions have been
devised to mitigate this problem, such as using KG embeddings [40] or jointly predicting entity
alignment across languages and new facts for KG completion [9, 86, 11]. A promising approach is
the self-supervised adaptive graph alignment (SS-AGA) method [39], which regards alignment as
a new edge type between parallel entities instead of a loss constraint, and fuses KGs from different
languages in a single graph. This approach has been evaluated on both the public multilingual
DBpedia KG and a newly created industrial multilingual E-commerce KG.

Cross Lingual Fact Extraction (CLFE) is the task of extracting facts from a text to,
e.g., store the facts in a structured data format. Extracting facts from source text of different
languages has not received as much attention as monolingual fact extraction [83]. KGs can support
multilingual fact linking and extraction, which is important in many downstream tasks such as QA.
The REFCOGLink model [57] is based on linking facts expressed in a sentence to the corresponding
fact labels (i.e., language-specific representation of the fact) in the KG and outperforms standard
retrieval + re-ranking. The CLFE (Cross-Lingual Fact Extraction) [1] model demonstrates strong
performance in multilingual and cross-lingual fact extraction tasks, specifically in English and
seven other LR Indic languages. It achieves an F1 score of 77.46% using two different approaches.
The first approach is a classification-based method, where the model first extracts the object or
“tail” of the fact and then predicts the relationship between the extracted tail and the subject.
The second approach is a generative one, which combines both tasks into a single step. CLFE
makes use of the XAlign dataset, which contains 0.45M pairs across 8 languages, of which 5,402
pairs have been manually annotated.

Multilingual Relation Classification is the task of extracting relations (i.e., triples in the
context of KGs) from natural language text in various languages. Multilingual relation classification
has been explored through the method of prompting, which can receive promising results even
for lower-resourced languages [12]. One of the challenges for the task of multilingual relation
classification is the lack of multilingual datasets and benchmarks. The dataset RELX [56] aims to
close this gap by providing a baseline model and benchmark for English, French, German, Spanish,
and Turkish. IndoRE [71] is a comprehensive dataset comprising 21,000 gold-tagged sentences for
named entity recognition (NER) and relation extraction (RE) in three Indian languages (English,
Bengali, Hindi) as well as English. The dataset provides valuable resources for advancing research
in relation classification of Indian languages, which is crucial for KG augmentation and Question
Answering systems. The authors employ multilingual BERT and transfer learning techniques, and
propose TransRel, a multilingual system for joint named entity recognition (NER) and relation
extraction (RE) with interlingual transfer.

Neural Machine Translation translates text from a source to a target language using deep
learning architectures. The performance of Neural Machine Translation (NMT) systems can be
enhanced through the integration of KGs, particularly when translating domain-specific expressions
and named entities. For example, Moussallem et al. [68] introduce an approach incorporating the
KG DBpedia into NMT models, resulting in considerable improvements in performance of these
NMT models.

Automatic KG creation for low-resource languages has been leveraged as another possible
route to tackle the lack of low-resource language KGs. HKC has been recently introduced as
a framework that constructs a knowledge graph for the Hindi language [88] using various NLP
techniques. FarsBase, a Persian multi-source knowledge graph [4] is another example of such an
application. To construct such a KG, the authors apply a number of techniques to integrate data
from Wikipedia and both structured and unstructured data from the web.
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Overall, KGs offer immense potential in supporting multilingualism, which in the future will
likely also increasingly benefit low-resource languages. By constructing multilingual KGs, aligning
entities across languages, and employing techniques such as machine translation and cross-lingual
extraction, KGs can effectively bridge the knowledge gap and facilitate access to information in
low-resource languages. These advancements not only empower speakers of all languages but also
contribute to a more inclusive and diverse knowledge ecosystem.

5 Open Problems

We have introduced existing approaches to close the language gap in the domain of KGs. We
described multilingual KGs, their challenges with regard to low-resource languages, and approaches
to improve and use them. However, there remain a number of open challenges, which we will
describe here to build a foundation for future work and point out some of the pressing issues in
the domain of multilingual KGs.

5.1 Regarding the State of Multilingual KGs
The lack of multilingual information in KGs should be addressed in the future, and while there
are a number of approaches seeking to mitigate this problem, none have thus far succeeded in
addressing this important challenge. One of the notable issues with current KGs is that they
are typically not aligned across languages, given the usage of different language ontologies. This
misalignment poses a large challenge when merging knowledge across languages. Addressing the
cross-lingual alignment of ontologies is one of the crucial challenges that will build the foundation
for the wide availability of cross-lingual information.

Merging KGs across languages, even with aligned ontologies, remains a non-trivial task. Not
only is there a need to identify alignments at the entity and class level. Future studies are
needed to understand which languages are covered to which extent in the different KGs and how
these different KGs with potentially different topic-focus could be merged harmonically without
centering one language in the approach.

Another open problem, especially for community-edited KGs, is the question of how to interest
a larger, more diverse community in the contribution to the knowledge stored in the KG. If a
diverse community is contributing, naturally more languages will be covered. Creating incentives
and showing how the information could be used, such as building tools based on KG information,
could be a way to address this challenge. However, future work will have to better understand
existing incentives and broaden them.

5.2 Regarding Low-resource Languages
While there have been approaches suggested to address the lack of languages covered in KGs (see
Section 4), there is currently a glaring gap when it comes to low-resource languages. Having very
little available information in any language is a challenge for all applications, especially neural- or
deep-learning-driven ones, such as large language models. This then also raises the question of
optimal strategies for KG construction, such as human-in-the-loop procedures due to limited and
overly noisy data and appropriate incentive strategies for manual modelling. KGs could contribute
to closing this gap to some extent by providing central storage of multilingual, linked, reusable
data. One of the advantages of using KGs may be that while a fact is not yet translated to a
lower-resourced language, it already exists in another language, and by linking the data across
languages, these facts can be reused even before translation. However, the challenges described
in Section 3.2 in the form of assumptions of language modelling need to be urgently addressed
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for under-represented languages to be able to catch up in the content representation. From an
ontology engineering perspective, it is important to focus on representing the diversity of language
structures accurately, lest the technique limits its use to applications in a few languages only
rather than the breadth of opportunities across the world.

5.3 Regarding Applications of Multilingual KGs
For the reuse of multilingual KGs in downstream tasks, there are still many opportunities to
better integrate multilingual KG information with approaches from the field of NLP and with
multi-modal approaches. Reusing the knowledge graph information is not only beneficial to the
applications that use them but can also create an incentive to create better, more diverse KGs. To
ensure this, the current information needs to be accurately curated, and multilingual information
should be put into focus for future approaches in increasing KG coverage. Understanding coverage
in different low-resource languages as well as reusing this information is a promising path forward
for future work that can have a real-world impact.

6 Conclusion

In this paper, we reviewed different aspects of multilingual KGs; we established the state of
multilingual KGs by summarising the guidelines on creating multilingual KGs; established the
challenges with regards to low-resource languages; described applications for and using multilingual
KGs; and finally pointed out open problems derived from our survey of multilingual KGs. The
literature provides clear guidelines and ontologies for multilingual information and lexicographic
data. Yet, there is a severe lack of multilingual information in existing KGs and a bias toward
English-language information. Particularly for low-resource languages, KGs could be useful for
closing information gaps. However, we concluded that there are currently major challenges
that need to be addressed regarding low-resource language integration into KGs, such as the
English-centric structure and content of existing KGs.

Current approaches to improve language coverage of KGs, such as machine translation of KG
labels or leveraging KG embeddings to align monolingual KGs across languages, are a promising
direction to make the KG more diverse. However, these approaches are currently limited to a
small set of languages and need to be explored for low-resource languages with a focus on the
challenges described. Future work has to focus on the inclusion of non-European languages from
the very structure of KGs, including them in the considerations of how knowledge is modelled
in KGs. Expanding language inclusivity holds immense importance as it paves the way for a
more accessible and all-encompassing digital landscape, enabling the internet to cater to a diverse
array of communities. While currently language coverage, especially for low-resource languages, is
limited, there are viable avenues for progress. If these pathways are pursued, KGs could serve
as a technology to realise the vision of a more equitable and inclusive internet, facilitating the
exchange of knowledge across language communities.
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1 Introduction

Knowledge Graphs (KGs) [112] are graph-structured representations intended to capture the
semantics about how entities relate to each other, used as a general tool for the symbolic
representation and integration of knowledge in a structured manner. The actual semantics or
schema of such graphs can be formally described using expressive logic-based languages such as
the Web Ontology Language (OWL) [101], as well as in terms of constraint languages such as the
Shapes Constraint Language (SHACL) [135] or Shape Expressions (ShEx) [195]. Thanks to the
expressivity provided by such formalisations, KGs have become a de-facto standard data model
for integrating information across organisations and public institutions. It also facilitates the
collaborative construction of structured knowledge on the Web by dispersed communities. In other
words, KGs serve as intermediate layers of abstraction between raw data and decision support
systems. Raising the level of abstraction has allowed us to ask more sophisticated questions,
integrate data from heterogeneous sources, and spark collaborations between groups with different
perspectives and views on business problems.

As a result of their function as a basis for knowledge integration, KGs are rarely produced in
a single one-shot process. Instead, KGs are often collaboratively built and accessed over time.
As such, KGs have become a significant driver for the collaborative management of evolving
knowledge, integrating knowledge provided by different actors and multiple stakeholders: use
cases range from the collaborative collection of factual base knowledge in general-purpose Open
KGs such as Wikidata [242] to capturing specialised collaborative knowledge about engineering
processes in manufacturing [110].

However, the sheer scale of – in particular – openly available, collaborative KGs has exacerbated
the challenge of managing their evolution, be it in terms of (i) the size and temporal nature of
the data, (ii) heterogeneity and evolution of the communities of their contributors, or (iii) the
development of information, knowledge, and semantics captured within these graphs over time.

Even though analysis of the content, nature, and quality of KGs has already attracted a vast
amount of research (i. e. [192, 104, 202] and references therein), these works focus less on how
their structure and contents change over time, indeed how these systems evolve.

With the present article, we aim to shift the focus on precisely this matter. In particular, we
try to answer the following main questions:
RQ1 Which publicly accessible, open KGs are observable in a manner that would allow a longitudinal

analysis of their evolution and how? That is, how could we obtain historical data about
their development, or which infrastructures and techniques would we need to monitor their
growth and changes in the future?

RQ2 Which metrics could be used to compare the evolution and structure over time, and how
could existing static metrics be adapted accordingly? Here, we are particularly interested
in approaches from other adjacent fields, such as network science, and how those could be
adapted and applied to specifically analyse the evolution of knowledge graphs.
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(single edge, node changes)
Continuous Change

Discrete Changes
(full graph snapshots/dumps)

"Time as data"
(valid time)

"Time as metadata/log data"
(transaction time)

Temporal KG

Versioned KG

Dynamic KG

Figure 1 Perspectives on evolving knowledge graphs. We distinguish between considering time as
data or metadata (x-axis) vs. at which “granularity” changes range from full static “bulk” snapshots at
different points in time to continuous reporting of changes at the level of single edges or nodes (y-axis).
We explicitly note that these perspectives are not mutually exclusive: the visualisation does not capture
the possible overlaps of these perspectives, nor the nature of how changes are produced and captured, e. g.
in terms of underlying collaborative processes.

RQ3 Finally, do we have the right techniques to process evolving KGs, both in terms of scaling
monitoring and computing the necessary metrics, but also in terms of enabling longitudinal
queries, or other downstream tasks such as reasoning and learning in the context of change –
facing the rapid growth and evolution of existing KGs?

To approach these questions, the remainder of this article surveys existing approaches and
works and raises open questions in four directions: observing, studying, managing and spreading
KG evolution. Before elaborating on these directions, we first discuss the different dimensions of
evolution in Section 2, introducing relevant terminology. In Section 3, we discuss to what extent
data about the evolution of open KGs (like Wikidata or DBpedia) is available and what evolution
trends have been observed so far in prior literature. In Section 4, we discuss different types of
metrics to study evolving KGs; starting from state-of-the-art graph and ontology metrics, we
also discuss metrics related to quality and consistency, as well as potentially valuable works and
metrics from the area from network science. In Section 5, we discuss data management problems
for evolving knowledge graphs, i. e. data models that capture temporality as well as storage
approaches and schema mappings for versioned and dynamic KGs. In Section 6, we focus on
downstream tasks on KGs in the specific context of evolution. More precisely, we discuss how
querying, reasoning, and learning approaches can be tailored for evolving KGs. We also address
the exploration of KGs, an essential aspect of evolving KGs. We conclude with a summary of the
main research challenges we currently see unaddressed (or only partially addressed) in Section 7.

2 Dimensions of Evolution

The temporal evolution of graphs, knowledge graphs (KGs), and collaboratively edited KGs has
multiple dimensions that we outline in this section, along with relevant terminology. That is to say,
there are multiple coherent perspectives we can use to talk about the “evolution” of KGs, ranging
from considering time and evolution as being part of the data itself to considering evolution and
change over time on a meta-level. We illustrate these perspectives in Figure 1.

TGDK
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Temporal KGs: Time as data

The first perspective considers time, or – more concretely, the temporal validity of information in
a KG – as part of the KG itself; we call this the “Temporal KG” perspective. In this context,
the evolution depicted by the data pertains to the changes in the “world” it represents, not the
evolution of the data itself. Following database terminology, this temporal validity of information
in a KG is typically referred to as valid time; see, for instance, [103]. A very simple example
of a temporal KG is illustrated in Figure 2, which contains the year of production of Picasso’s
“Guernica”, as a slightly simplified subgraph DBpedia [146].1

dbo:year 1937

 Madrid

dbo:location

Guernica

Pablo Picasso
dbo:author

Figure 2 A simple KG containing temporal information as data (literal).

Time and temporality may be represented with a single temporal literal – as illustrated here
a year or a timestamp, or likewise an interval: for instance, the production of “Guernica” itself
was not a one-shot process, but its painting took place over a longer period. For instance, the
production period of “Guernica” was carried out between 1937-05-01 and 1937-06-04, as illustrated
in Figure 3, a simplified graph inspired by the Linked Art project.2

We note here that capturing intervals typically requires extensions of the “flat” directed
labelled graph model used to represent simple knowledge graphs, as shown in Figure 3: contextual
information about simple statements (such as in this case, the start and end time of a production
interval), can be modelled in various ways, either
1. in terms of adding intermediate nodes to a flat graph model, also often referred to as “reification”,

or alternatively
2. in terms of bespoke, extended graph models such as so-called property graphs
Let us refer to Section 5.1 for a more in-depth discussion of different data models to capture time
and temporality in KGs.

Time-varying KGs: Time as meta-data

The second perspective on evolution is scoped by the time granularity of change in the KG itself;
in other words, by how the temporal aspect of the data, i. e. nodes, edges, and structure, of
the KG is evolving. We call this the “Time-varying KG” perspective. Again, using database
terminology, such changes in data are typically referred to as transaction time [103].

1 https://www.dbpedia.org/
2 https://linked.art/model/

https://www.dbpedia.org/
https://linked.art/model/
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produced_by

_P1

1937-05-01 00:00

carried_out_by

1937-06-04 00:00

start

end

Production

type

Madrid

current_location

Guernica

Pablo Picasso

_TS1
timespan

Figure 3 A KG containing temporal information in terms of intervals using a simple form of reification.

We present an example from the arts. Paintings like “Guernica” and information about their
artists and other attributes have been added dynamically to Knowledge Graphs like Wikidata over
time. The entry for “Guernica” (Q175036) in the Wikidata [242] KG was created on 28 November
2012,3 while its creator “Pablo Picasso” (Q5593) was added on 1 November 20124. Of course, both
of these dates are independent of the birth or production dates of the referred entities themselves.
As we will further discuss in Section 3 and also Section 5 below, the granularity and manner of
how such changes are stored affect the observability and analysis of a KG’s evolution.

In terms of granularity, we can differentiate between two types of knowledge graphs based on
how they are stored:

Dynamic KGs - which allow access to all observable atomic changes in the knowledge graph.
Versioned KGs - which provide static snapshots of the materialised state of the knowledge graph
at specific points in time.

These represent opposite ends of the granularity spectrum. Figures 4 and 5 show two examples of
how the changing information regarding the location of “Guernica” over time5 could be represented
in terms of versions or dynamic changes, respectively.

For instance, as discussed above, Wikidata embodies continuous change, accessible through
the entities’ edit histories at the level of real-time modifications. At the same time, DBpedia
represents both the spectrum’s discrete end, releasing snapshot updates,6 as well as offering
small-scale releases with DBpedia Live7 on minute level. Observe that in both cases, the temporal
information about neither the materialisation time of a DBpedia snapshot or the edits of single
statement claims on Wikidata are available in terms of the (RDF) graph materialisations of these
KGs themselves, but only in terms of the publication metadata or edit histories, which is why we
may also speak of “time as meta-data”.

We note that this distinction is hardly clear-cut. The difference between dynamic and versioned
temporalities is marked by the technical means by which particular KGs evolve. In particular,
this boundary is shaped by differences in technical infrastructures supporting these evolutionary
processes rather than general characteristics of the KG and the kind of knowledge it captures.

3 https://www.wikidata.org/w/index.php?title=Q175036&action=history&dir=prev
4 https://www.wikidata.org/w/index.php?title=Q5593&action=history&dir=prev
5 The painting was first exhibited in Paris in 1937, and moved to an exhibition in New York in 1939. Since

1992 “Guernica” is displayed in Museo Reina Sofía in Madrid.
6 https://www.dbpedia.org/resources/snapshot-release/
7 https://www.dbpedia.org/resources/live/

TGDK
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Figure 4 Representation of Dynamic Knowledge Graph, with updates at edge level, i. e. deletions (left)
and future additions (right).

Figure 5 Representation of Versioned Knowledge Graph, with snapshots sorted by time.

For example, on the one hand, while changes in Wikidata may be recorded down to the level
of single statements, Wikibase8 also supports interfaces for bulk updates. Likewise, each single
statement change in Wikidata’s overall edit history may be theoretically materialised in terms of
sequential snapshots. On the other hand, DBpedia’s extraction framework constructing a KG
from Wikipedia may be analogously applied to any materialised point in time of the fine-granular
page edit history of Wikipedia, or even per page [80]. DBpedia’s model has also changed over the
past years from irregular, approximately annual, snapshots published in its beginnings, to enable
more dynamic publishing (monthly) cycles [111] through the DBpedia Databus.9

Lastly, we note that analogously to the examples in Figures 2 and 3 both timestamps and time
intervals can be used to represent not only validity but also transaction and versions, i. e. snapshots
of the entire graph in the context of KGs. However, depending on which dimension is considered,
it will have an impact on how data should be managed, whether evolution is observable, and how
the information about evolution is spread into downstream tasks, see the further discussions in
Sections 5 and 6 below.

8 https://wikiba.se, Wikidata’s underlying software framework.
9 https://www.dbpedia.org/resources/databus/

https://wikiba.se
https://www.dbpedia.org/resources/databus/
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Both of the aforementioned perspectives can serve the purpose of monitoring the evolution
of KGs along different yet interrelated (sub-)dimensions. We outline these dimensions in the
following subsections. First, according to Section 2.1, the structural evolution of KGs can be
observed through the temporal information captured in them; here, KGs present a distinction
between changes on the data and schema levels. Second, one can analyse the dynamics or velocity
of evolution in KG over time, see Section 2.1. Finally, when considering the collaborative processes
involved in KG editing and evolution, one can analyse the structure and dynamics of these
collaborations, see Section 2.2. After exploring these dimensions in detail, we then discuss
concrete metrics in Section 4.

2.1 Structural Evolution, Dynamics, Timeliness, and Monotonicity
In the context of evolving KGs (hereafter EKGs), we may consider different forms of change
related to the graph structure, dynamics of change or its nature (monotonic or with deletions),
and alternative notions of time. The following will briefly elaborate on our running example in
Figure 6.

produced by

EX1

exhibited_at

EX20 EX30

exhibited_at

1937-07-12 00:00
start

1937-11-25 00:00

took_place_at

end

1981-10-24 00:001958-01-01 00:00

1981-09-09 00:00

took_place_at

MoMa, New York Reina Sofía
Museum, Madrid

International
Exposition, Paris

_P1

1937-05-01 00:00

carried_out_by

1937-06-04 00:00

start

end

Production

type

Pablo Picasso

_TS1
timespan

_TS11

start

end

_TS21 _TS31

start

took_place_at

exhibited_at

Figure 6 A sample KG containing temporal information about the production (static) and exhibitions
(dynamic) of paintings.

Structural Evolution

The first dimension to measure on a graph is essentially related to its structure: descriptive
statistics about nodes and edge distributions, centrality, connectedness, density, and modularity.
In KGs, similar static metrics can also be observed concerning the schema, typically the node
and edge types, and – if additionally axiomatic knowledge on the schema-level is considered – the
complexity of this schema.

For all of these structural properties (both on the instance-level and schema-level), we may
also be interested in their development over time, i. e. in quantifying their changes. The existing
concrete metrics for this dimension will be discussed in more detail in Section 4 below.

TGDK
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Notably, longitudinal investigations of structural properties are not restricted to the time-
varying KG perspective: depending on whether temporal information is present in the KG itself,
one may also be interested in analysing and comparing structural evolution in terms of “temporal
slices”.

Dynamics

Dynamics for KGs refers to characteristics such as growth and change frequencies over time and
per time interval). These may be observed overall but also in terms of subgraphs or topic-wise
components of a KG. For instance, one may consider comparing the change dynamics of entities
related to different topic areas, such as “arts” and “sports” within a particular KGs like Wikidata.
Again, these dynamics may be observed concerning the KG schema. Referring to a concrete
elaboration of our running example in Figure 6, we can derive that properties related to the
production of paintings evolve more slowly than properties relating to exhibitions. Notably,
dynamics and temporal granularity may again be compared and analysed both from secular and
time-varying perspectives.

Timeliness

Timeliness, from a data quality perspective, refers to the “freshness” of the data concerning the
occurrence of change, the current time, or the time of processing. Timeliness directly links to query
answering (or processing in general), as it establishes the value of the retrieved answer considering
some requirements. More specifically, the timeliness of data in a KG can be interpreted as

“out-of-date” or “stale” information: i. e. in terms of recency of temporal information concerning
the current time;
“out-of-sync” or “delayed” information, i. e. in terms of the difference between valid times
and transaction times of items in the KG, i. e. the interplay between these temporal and
time-varying perspectives.

Regarding the former case, considering Figure 6, the question “Where is Guernica currently?”
obtains a different answer at different times. While historical events such as the creation of
“Guernica” lie far in the past, even far before Wikidata was founded, the location of paintings is an
important dimension to analyse over time as it changes with exhibitions or purchases. If neglecting
such variations is an issue for the users, e. g. when an accurate current location is needed to
recommend a museum visit, then we witness a data quality problem related to timeliness.

A “drastic” example of the latter, i. e. extended out-of-sync information from the art domain
is documented in Rembrandt’s “Portrait of a Young Woman” (Q85523581 in Wikidata) from 1632,
which was added to Wikidata only in February 2020, after it was recently confirmed to be an
authentic Rembrandt.10 Users who have asked for the number of Rembrandt paintings before
2020 would have received a stale answer.

Monotonicity

Monotonicity refers to the nature of changes, i. e. if they are positive changes only augmenting
the content of the graphs, or if they take the form of an update which may include deletions of
past information.

Continuing our examples in the domain of painting, we consider rectifying a painting’s
attribution to its artist, which happens repeatedly in arts. A documented case is the painting
“Girl with a Flute” (Q3739200) in Wikidata, originally attributed to the Dutch painter Vermeer

10 https://news.artnet.com/art-world/pennsylvania-museum-rembrandt-discovery-1773954

https://news.artnet.com/art-world/pennsylvania-museum-rembrandt-discovery-1773954


A. Polleres et al. 11:9

but later confirmed to be the work of another painter.11 Similar, non-monotonic changes may
arise when temporal information itself changes in the KG: imagine, following our running example,
that subsequent research may reveal Guernica was actually created in 1936, not 1937.

From this combination of dynamics (i. e. the study of changes), timeliness, and monotonicity
(i. e. the frequency of deletions and, therefore, errors and rectifications of incorrect information
in a KG), it is also possible to estimate the frequency of future transactions. Together they
form an essential dimension of evolving KGs, both in the context of the ability to process
evolution technically but in terms of its impact on the validity of updated results of downstream
tasks Section 6: as KGs are meant to support sophisticated decision-making tasks, it is often
paramount to guarantee up-to-date information and provide answers before they become obsolete.

2.2 Evolution in Collaboration
Knowledge evolution is driven by different types of collaborations [190, 5]. As described by Piscopo
et al. [190], collaborative KGs rely on experts for specific types of activities, defining rules and
processes for how and by whom some activities should be carried out, or provide tools to facilitate
such collaboration.

In the context of KG evolution, we may thus want to analyse the behaviours of single users or
user groups over time. To classify the collaboration types, we can distinguish the following roles
of users/agents:

Anonymous users: These are Users who do not have a registered account or a consistent
identity within a project (e. g. anonymous Wikibase users)
Registered users: similarly, these are Users who have a registered account or a consistent
identity within a project (e. g. registered Wikibase users), ideally also combined with additional
information or characteristics which allow to classify such users (e. g. country of origin or other
demographic attributes)
Authoritative users: These are Users characterised by in-depth domain knowledge or
knowledge engineering expertise. This group represents vetted knowledge engineers, domain
experts, and moderators.
Bots: These are automated agents performing recurring tasks (e. g. Wikibase bot accounts).

Longitudinal analyses of the contributions of such users may include changes in their behaviours
(e. g. in terms of edit frequencies), interests (e. g. in terms of editing particular parts or topics
of KGs), or role changes. Additionally, based on the aforementioned roles, various collaboration
types can be potentially recognised when analysing the evolution of edits in collaboratively edited
KGs [191]:

Expert-driven collaboration: this type of collaboration involves Authoritative users devel-
oping schemas or editing data on the instance-level (creating mapping rules, as in the case of
DBpedia, would be an example of such schema-level expert collaboration, whereas the instance
data, origins from Wikipedia, thus following another collaboration model).
Crowd-sourced collaboration: this type of collaboration involves many Users not considered
Authoritative users performing basic editing tasks which neither requires in-depth domain or
knowledge engineering expertise nor coordination between the editors (for instance, any users
being allowed to edit Wikipedia could be understood as such a crowd-sourced collaboration
model, if a more moderated process did not govern it, see below).

11 https://www.wikidata.org/w/index.php?title=Q3739200&oldid=803621750
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Table 1 Types of Collaboration in Open-domain Knowledge Graphs.

KG Expert-driven Crowd-
sourced

Resource-
dependent

Community-
driven

Bot-assisted

Wikidata [242] ✓ ✓ ✓

DBpedia [146] ✓ ✓ (✓)
YAGO [153] ✓

Resource-dependent collaboration: This type of collaboration is based on integrating
information from external resources, potentially governed by different heterogeneous collabora-
tion models (indeed, DBpedia’s extraction of instance data from Wikipedia may be understood
as such a resource-dependent “collaboration”).
Community-driven collaboration: this type of collaboration relies on self-moderating
communities of Users characterised by deep involvement in the project, collective discussion,
and decision making (e. g. Item/Property discussions characteristic for Wikidata, but also
characteristic for the curation process in Wikipedia).
Bot-assisted collaboration: this type of collaboration is characterised by Bots performing
repetitive tasks alongside Users (i. e. curation tasks, e. g. checking property constraints on
Wikidata, but also, indirectly in DBpedia, via bot interactions in Wikipedia, cf. [254, 50]).

Table 1 describes the common collaboration models of some existing, collaboratively maintained
open general-purpose KGs, according to the literature. We note that the list of KGs shown here is
not meant to be exhaustive and that such metrics could be further extended and refined in more
fine-grained longitudinal analyses. As described in Section 4.4, for example, topologically identified
groups of collaborators could be used to predict outcomes. A concrete methodology to analyse
the composition of the collaborators within the KG and assess their effects on quality has been
suggested in [189]. Further investigation can also include the different evolution and collaboration
approaches and how these influence the possibility of analysing evolution. For example: does the
relatively small DBpedia ontology and the limited frequency of updates via mapping changes
make the analysis of the evolution of its ontology easier than the direct ontology editing model of
Wikidata? Does the extraction and mapping mechanism and changes to the rules that drive them
make ontology evolution in turn less flexible for the community in DBpedia? Likewise, does the
free-for-all collaboration approach in Wikidata render a structured analysis of ontology evolution
impossible, or what are the methods to handle this challenge? For instance (i) can one define
“checkpoints” of limited changes that can be used as anchor points to produce useful analyses, or
(ii) does it make sense to investigate the evolution of vocabularies specifically scoped to editors’
sub-communities? Another avenue for investigation is a more effective utilisation of machine
learning in supporting the collaborative evolution of KGs and their schemas. Specifically, it would
be interesting to learn how this evolution is affected and affects the interaction of automated
extraction (DBpedia), extraction by statistical learning (YAGO), or in leveraging or improving
bots (Wikidata): that is, can ontology extraction rules or curation pipelines be improved by
observing and learning from the collaboration and evolution processes over time?

2.3 Semantic Drift
Semantic drift is a crucial concept of evolution in language. It refers to the change in meaning
of a concept over time [246, 218] independently from the downstream tasks like querying or
reasoning. Before detecting semantic drift, one needs to identify the two concepts to compare
between versions. Although early work on identifying semantic drift focused on the definition of the
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identity of a concept [246], when a concept changes meaning, it might also change its identifying
information. Therefore, it is not always possible to rely only on identity-based approaches to
understand semantic drift. In such cases, morphing chain-based strategies are more suitable [90].
The morphing chain approach presents the user with a comparison of a concept to all the concepts
between the versions of an ontology and lets the user choose or chooses heuristically which is the
most likely concept that a previous one evolved into.

For KGs, Meroño-Peñuela et al. [158] studied semantic drift in DBpedia concepts, while
Stavropoulous et al. [219] studied semantic drift in the context of the Dutch Historical Consensus
and the BBC Sports Ontology. SemaDrift [218] takes a morphing-chain approach, where three
aspects are used to identify concepts that have potentially evolved from another: label, intention,
and extension. The advantage of this approach is that every concept in a new version will have
evolved from some previous concept. Unfortunately, the identity of concepts, such as URI, is not
used in SemaDrift. OntoDrift [44] uses a hybrid approach and can be considered an extension
of SemaDrift [218]. Additionally to using the label, intention, and extension aspects of concepts,
it also considers the subclass relations. The drawback of this approach is that rules need to be
defined for every type of predicate, as demonstrated by OntoDrift.

The notion of logical difference [136] between KGs can also be used to evaluate the semantic
drift of the KG concepts. The logical difference focuses on the entailments or facts that follow from
one KG but not from the other, and vice versa. Jiménez-Ruiz et al. [126] proposed an approach
to evaluate the logical difference among different versions of the same ontology. Considering the
new logical entailments/axioms involving a given entity, one could define a metric. The entity’s
role within the entailment (i. e. the entity is being defined vs. the entity referenced) may also
impact the metric.

Potential approaches in the future could make additional use of embeddings, representing
concepts in vector space and assessing their neighbourhoods. Pernisch et al. [181] showed that
comparing two embeddings to each other is complex, and the similarity between concepts is, e. g.
around 0.5 for FB15k-237 with TransE; Verkijk et al. [240] further discuss the difficulties with
this approach, especially comparing it to concept shift in natural language. Finally, the lack of
domain-specific benchmarks for semantic drift makes comparing methods difficult. For instance,
OntoDrift and SemaDrift return very different numbers when detecting drift, but we cannot tell
which ones are closer to the truth. Also, the number of studies that look at semantic drift is
limited. Not many KGs have been studied, and even though the phenomenon is known, it has not
been investigated extensively so far [158, 219].

3 Observe and Analyse the Evolution

This section discusses how far evolution can be observed and analysed along the dimensions
defined above in various existing KGs. KGs come in very different flavours and structures, and in
particular, we may also assume that their evolution shows very diverse characteristics.

Below, we first characterise different kinds of graphs. In Section 3.1, we discuss tools to observe
the historical longitudinal data on the evolution of the most important existing KGs. Section 3.2
provides a respective overview of available studies to analyse and track the dynamics of some
of these KGs. We consider both monitoring and analysing the evolution of the instance-level of
graph data as well as the schema-level.

Without claiming completeness, we distinguish the following kinds of KGs:
General-purpose Open Knowledge Graphs: publicly available open-domain (or, resp.,
cross-domain) KGs such as DPpedia [146] and Wikidata [242] as two of the most prominent KGs
have been developed since more than a decade by now, covering a wide range of comprehensive
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knowledge. Yet, they differ fundamentally in the process in which knowledge is maintained
and developed within the KG: whereas DBpedia relies on extractors to collect data from
Wikipedia’s infoboxes regularly, Wikidata comprises a completely collaboratively evolving
schema and factbases that, by themselves, feed back into Wikipedia. In particular, we observed
significant growth and dynamics in both the instance-level and schema-level of Wikidata over
the past years. Collections of structured RDF data and microdata (e. g. schema.org [102]
metadata) from Web pages through openly available Web crawls, such as made available
regularly by the Webdatacommons12 project [159], may indeed also be perceived as evolving,
general purpose, real-world Knowledge Graphs.

Domain-specific Special-purpose Open Knowledge Graphs: Many open knowledge
graphs available to the public are often overlooked. These graphs are collaboratively developed
and serve narrow, special-purpose topics or use cases. An example is Semantic MediaWiki
(SMW)[138], which has been around for almost 20 years and is still actively developed and
used in various community projects. SMW can be considered a predecessor of Wikibase, the
underlying platform for Wikidata. Wikibase is increasingly being used in separate, special-
purpose community projects. Other examples of domain-specific knowledge graphs include
the UMLS Metathesaurus [34], as well as the ontologies in the OBO Foundry [121], and
BioPortal [248]. These graphs focus on the schema and are assumed to have significantly
different evolution characteristics [182].

Task-specific Knowledge Graphs: One category of Knowledge Graphs that some authors
identify is task-specific Knowledge Graphs [122]. These graphs, often used in benchmarks,
are typically subsets of larger KGs created to support a specific application or may result
from a downstream application (e. g. DBP15K as a subset of DBpedia for cross-lingual entity
alignment). However, since these KGs are usually artificially limited and static (i. e. subset of
specific snapshots), compared to real-world evolving KGs, we will not discuss them separately
in this paper. We note, however, that principled approaches to create evolving subsets of
KGs for specific benchmarking tasks are sorely needed to better understand these tasks “in
evolution”.

Large (and Small) Enterprise Knowledge Graphs Lastly, we see many companies
reportedly using and adopting Knowledge Graph technologies in their operations and businesses
over the past years, including large firms like Google, Amazon, Facebook, and Apple, as well as
many other smaller examples. What these KGs typically have in common is that due to their
commercial value, they are non-observable to the community and we may only speculate about
their sizes and structures using white papers [170, 209, 117], high-level announcements, and
to some extent through industry track reports in conference series such as ISWC (e. g. [97]),
SEMANTiCS (e. g. [204]), or recently the Knowledge Graph conference series. Given these
limitations, we exclude enterprise KGs from the scope of the present paper.

Except for the latter two cases then, it appears that the research community has built up a
large number of publicly accessible and observable KGs that vary in characteristics, and purpose,
with unique communities of maintainers that seek to capture a rich variety of knowledge artefacts
in evolving graph-like structures. In the remainder of this section, we specifically focus on Open
General-purpose KGs rather than attempt to cover all types of KGs.
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Table 2 Availability of Open KG Versions (V), Schema (S), and Change logs (CL).
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No No Daily

CL Yes Yes RDF HTTP No Graph TS Daily
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O V Yes No RDF all HTTP No No NA

S Yes No RDF HTTP No No NA
CL No No No
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V Yes Yes RDF all HTTP,
SPARQL

Some No NA

S Yes Yes RDF, OWL HTTP,
SPARQL

No No NA

CL Depends on individual datasets
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V Yes No SQL Big
Query

HTTP No Yes 15 min

S No No CSV, JSON,
XML

HTTP No No No

CL No No CSV HTTP No Event TS 15 min

3.1 Availability of Graph Data
In the following, we start by assessing how and where historical longitudinal data about existing
open KGs and their evolution can be found. We specifically focus on KGs that are still available
and, therefore, do not include KGs like Freebase [36] and OpenCyc [156]. These two KGs are no
longer maintained but are considered pioneering work and predecessors of the KGs investigated in
this subsection. Therefore, it is generally possible for KGs to go dark, e. g. through neglect or
malign actions.

Here, we give an overview of the datasets regarding the availability of their versions, their
schema, and their changelogs in Table 2. The table captures if the versions, schema, or changelogs
are queryable and collaborative. Queryable in this context captures if the KG answers queries in
any way or form specifically over (historical) versions, schema as well as change logs, for which we
then further specify the protocol (HTTP, SPARQL, etc.); for possible temporal queries over RDF
archives that should be enabled over evolving KGs, we refer to, for instance, the categorisation
in [84, Section 3.2]. Collaborativeness in Table 2 refers to the possibility of reconstructing user
information on the different levels. For example, on the changelog level, a “yes” refers to having
user information for individual changes. Wikidata and DBpedia allow anonymous edits, which
potentially limits a reconstruction of the editing history, indicated with “Partial” in the table.

12 http://webdatacommons.org/
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Further information on formats (RDF, JSON, etc.) is given. Temporality refers to the ability
of the KG to capture temporal information for example through reification or other means. With
“Event TS”, we indicate that the KG allows for events to be timestamped, whereas with “Graph
TS”, we refer to the whole graph having timestamps. Lastly, timeliness refers to how often the
part of the KG is updated.

Wikidata is an open KG read and edited by humans and machines and is hosted by the Wikimedia
Foundation. Intuitively, the considerable level of automation and collaboration on Wikidata, and
its scale13 present significant challenges in Wikidata evolution maintenance.

As for direct queryability, Wikidata’s public SPARQL endpoint14 provides query access to the
current, regularly synced snapshot; it is undisputed that due to its scale, querying Wikidata in
the light of its rapid growth – even on static snapshots – is currently reaching its limits in terms
of regular SPARQL engines, as well documented for instance in [13]. Yet, there are various ways
to access and potentially – given the respective infrastructure – query the historic versions and
change data about Wikidata: Wikidata Entities dumps are available in JSON in a single JSON
array, or RDF (using Turtle and N-triples) with Full RDF dumps are available for download15

every 2-3 days, and historically for approximately a month. Schema.org metadata is used to
describe the dump that contains additional helpful metadata such as the entity revision counter
(schema:version), last modification time (schema:dateModified), and the link to the entity node
with (schema:about).

As a subset, also truthy dumps are provided, which are limited to direct, truthy statements
– since Wikidata offers (validTime) temporal annotations for statements, as well as provenance
annotated statements, this “truthy” subset contains only currently valid or preferred ranked
statements, where however additional metadata such as qualifiers, ranks, and references are
consequently left out. The truthy dump could, therefore, be perceived as a “current truth”
snapshot of Wikidata. In contrast, the entire dump also contains outdated (valid time) or disputed
(in terms of being lower-ranked alternative statements by particular contributors).

RDF HDT16 hosts roughly annual HDT [83] snapshots of Wikidata’s complete dumps. In
addition to these hosted RDF dumps, obtaining the statement-level change log from Wikidata’s
aggregated entity and editing history, which are also available via respective APIs, would be
possible.

Finally, Wikimedia offers changes (of both Wikipedia and Wikidata) through the Wikimedia
Event Streams17 Web service that exposes continuous streams of JSON event data. It uses
chunked transfer encoding following the Server-Sent Events protocol (SSE) and emits changes
events, including Wikidata entity creations, updates, page moves, etc. The usage of edit history
and event stream data, apart from RDF dumps, also has the advantage of making (where available)
user/contributor information visible, which is helpful for collaboration analyses. Pelisser and
Suchanek [225] have presented a prototype to provide this additional information in RDF via a
SPARQL interface.

Wikidata Schema/Ontology. Wikidata does not follow a pre-defined formal ontology,
meaning it does not formally differentiate between classes and instances. Instead, the terminology
is derived from the relationships between the items in the graph and is collectively created by
the editors. In other words, Wikidata (deliberately) does not make a formal commitment to the
logical meaning of its properties and classes, which could be, for instance, roughly defined as the
objects of the P31 (instance of) property.

13 with over 15B triples at the time of writing: https://w.wiki/7iez.
14 query.wikidata.org
15 https://dumps.wikimedia.org/wikidatawiki/entities/
16 https://www.rdfhdt.org/datasets/
17 https://stream.wikimedia.org/

https://w.wiki/7iez
query.wikidata.org
https://dumps.wikimedia.org/wikidatawiki/entities/
https://www.rdfhdt.org/datasets/
https://stream.wikimedia.org/
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As a consequence, Wikidata’s schema is evolving entirely in parallel with its data – and
analogous considerations for the availability of data about its historic evolution apply as mentioned
above. This has been reported to pose significant data quality challenges [190]; moreover, as a
primary consequence of such an informal, collaborative process, Wikidata’s ontology may change
quickly. In practice, this does not impact the evolution of the graph itself, but it poses an
obstacle to downstream tasks and analyses. We note that prior attempts to map the user-defined
terminological vocabulary of Wikidata to RDFS and OWL, such as [105], could be used to partially
map Wikidata to more standard ontology languages and conduct (approximate) analyses on a
logical level. In contrast, we should note that theoretically, OWL/RDFS “mappable” properties
could evolve independently in Wikidata.

DBpedia is an openly available KG encoded in RDF, which evolves alongside Wikipedia. It has
four releases per year (approximately the 15th of January, April, June, and September, with a
five-day tolerance), named using the same date convention as the Wikipedia Dumps that served
as the basis for the release.18 DBpedia Latest Core Releases19 are published separately as
small subsets of the total DBpedia release. Its extraction is fully automated using MARVIN [111]
and then catalogued. The standard release is available on the 15th of each month, five days
after Wikimedia releases Wikipedia dumps. DBpedia Databus20 is a platform designed for
data developers and consumers to catalogue and version data, not only restricted to DBpedia
alone. It enables the smooth release of new data versions and promotes a shift towards more
frequent and regular releases. DBpedia takes advantage of this functionality to promptly publish
the most up-to-date DBpedia datasets, generating approximately 5,500 triples per second and
21 billion triples per release every month. DBpedia Live21 is a changelog stream accessible in
a pull manner. DBpedia Live monitors edits on Wikipedia and extracts the information of an
article after it was changed. A synchronisation API is available to transfer updates to a dedicated
online SPARQL endpoint, whereas temporal evolution as such is not directly queryable from that
endpoint.

DBpedia Ontology (DBO), the core schema of DBpedia, is currently crowd-sourced by its
community: DBpedia mappings are contributed and made automatically available daily, where
DBO is generated every time changes in the mappings Wiki have been made. Notably, DBpedia
Latest Core and DBpedia Live are based on the latest DBO snapshot available at the point of
generation, i. e. one should consider the evolutions of data (Wikipedia edits), schema (mappings),
and also the various releases of the actual DBpedia KG, separately.

Finally, we note that a fine-grained historical development, in terms of reproducing any DBpe-
dia page at any point in time in the past, and thereby reconstructing a fine-grained RDF “history”
would be theoretically possible by combining DBpedia’s mappings with the Wikipedia edit history
API. A prototypical implementation of this approach, the “DBpedia Wayback Machine” – inspired
by the Web Archive’s Wayback machine – has been presented by Fernández et al. [80].

YAGO is a large multilingual KG with general knowledge about people, cities, countries, movies,
and organisations [220]. At the time of writing, there are six versions of YAGO. In its latest
version, 4.5, YAGO combines Wikidata and Schema.org. Older versions integrate different sources
such as Wikipedia, WordNet, and GeoNames but are independent of the most recent ones. YAGO
places a strong emphasis on data extraction quality, achieving a precision rate of 95% through
manual evaluation [198]. One of YAGO’s unique features is its inclusion of spatial and temporal

18 https://www.dbpedia.org/resources/snapshot-release/
19 https://www.dbpedia.org/resources/latest-core/
20 https://databus.dbpedia.org/
21 https://www.dbpedia.org/resources/live/

TGDK

https://www.dbpedia.org/resources/snapshot-release/
https://www.dbpedia.org/resources/latest-core/
https://databus.dbpedia.org/
https://www.dbpedia.org/resources/live/


11:16 How Does Knowledge Evolve in Open Knowledge Graphs?

information for many facts, enabling users to query the data across different locations and time
periods. Since version 4, YAGO combines Schema.org’s structured typing and constraints with
Wikidata’s rich instance data. It contains 2 billion type-consistent triples for 64 million entities,
providing a consistent ontology for semantic reasoning with OWL 2 description logics. Temporal
information in YAGO 4 is sourced from Wikidata qualifiers, which annotate facts with validity
periods and other metadata. YAGO 4 adopts the RDF* model for representing temporal scopes,
enabling precise assertions about facts within specific timeframes. This approach ensures accurate
temporal modelling without implying current states [180]. YAGO can be accessed in different
RDF formats, but little information is provided on its evolution or the changes in its schema.

The LOD Cloud,22 is, although regularly re-published and maintained since 2007, a collec-
tion/catalogue of (interlinked) Knowledge Graphs, rather than a KG on its own. Due to its
decentralised nature, anyone can submit a dataset, and the evolution of the respective constituent
KGs is not observable from this source directly. While many of its catalogues KGs are accessible
via dumps or even SPARQL endpoints, at the same time, many of its datasets have disappeared
over time and are no longer (or irregularly available).

As for queryability, the LOD-a-LOT dataset,23 which has been created as an attempt to clean
and crawl all accessible datasets of the LOD cloud and make it available in HDT [83] compressed
form [82] – to the best of our knowledge this remains to date a static, once-off effort. While
this dataset has also been re-used in other works, for instance, to analyse cross-linkage and
ontology-reuse within the LOD Cloud [104], such investigations are lacking a longitudinal analysis
of development over time. Likewise, little is known about the evolution of its schema expressivity:
a once-off study from 2012 on the Billion Triple Challenge sample from different LOD Cloud
datasets has found for instance that hardly any OWL2 constructs had been used at the time [95],
and most of the ontologies in Linked Data had used only a moderately expressive fragment of
OWL, which had been called OWL LD in this study. A subsequent or even continuous assessment
over time with respect to changes or uptake of OWL constructs in LOD over time is to the best of
our knowledge still missing. We note that, while the evolution of the LOD Cloud schema itself
was partially studied, e. g. the changes and interlinkage of the RDF vocabularies [1, 2], this study
did not include expressivity as such.

Unfortunately, such longitudinal analyses over the LOD cloud’s evolution as a whole are hardly
reproducible or observable a posteriori, since, by its nature, availability of versions, separate
schemata and change logs, as well as information about temporality and timeliness is highly
heterogeneous across the LOD Cloud datasets. Only summary statistics about the individual
states of available datasets at the time of updates are available; i. e. the LOD Cloud service as
such does not capture the LOD’s historical development itself and older versions of the data itself
are typically not provided. External initiatives have attempted to address this problem:

the Billion Triples Challenge (BTC)24 initiative that, starting from a certain set of seeds,
collected billions of triples on the LOD using the popular LDspider [118] framework. The first
BTC snapshot of the LOD Cloud from 2009 contained about 1B triples. The crawls have been
repeated in irregular year-based intervals. The largest version is from 2014, with about 4B
triples.
The Dynamic Linked Data Observatory (DyLDO) [140]25, initiated in 2012, partially overcomes
this limitation by providing weekly snapshots of about 90, 000 URIs using the same crawler as
the BTC dataset, resembling about 150 to 205 million triples per week. Key characteristics

22 https://lod-cloud.net/
23 http://lod-a-lot.lod.labs.vu.nl/
24 https://www.aifb.kit.edu/web/BTC
25 http://km.aifb.kit.edu/projects/dyldo/
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of the dataset are that the weekly crawls are stored as so-called snapshots using the N-Quad
format [45]. This means that the full graph data collected per week is available in a single
data dump. The variance of the collected data reflects the changes in the LOD Cloud. The
main drawback of this approach in evolution analysis is that the seed URLs have not changed
since the start of the data collection; this initiative is apparently the longest-running collection
of a subset of the LOD Cloud.

While well-known, publicly available Knowledge Graphs (KGs) such as DBpedia and Wikidata
play a significant role in the realm of structured knowledge, there are other, perhaps less widely
recognised, but equally substantial KGs that deal with highly dynamic data. Two notable examples
are the GDELT Global Knowledge Graph26 and Diffbot.

The GDELT project has been providing an integrated event stream for media news events since
2013, and it has evolved into a comprehensive event KG. It separates events and associated
entities such as individuals, organisations, locations, emotions, themes, and event counts into a
continuously updating KG. The GDELT 1.0 Global Knowledge Graph, initiated on April 1, 2013,
consisted of two data streams – one encoding the complete KG and the other focusing on counts
of predefined categories (e. g. protester numbers, casualties). GDELT 2.0’s Global Knowledge
Graph (GKG)27 enhances this with additional features, incorporates 65 translated languages, and
updates every 15 minutes. Notably, mappings of GDELT into RDF stream were proposed, yet it
is limited to only the event graphs and the GKG [235, 236].

As for queryability, GDELT can be accessed via Google’s BigQuery28 in its current state [235],
updated every 15 minutes in real-time with temporal information available at the event level at
different granularities, with a fixed schema.

Being updated in an automated manner from news sources, this stream KG is not in the same
sense collaboratively evolving as Wikidata or DBpedia, in the sense of individual users contributing
changes by their edits, but rather from curated news sources. While, to some extent, these sources
could also be interpreted as “collaborative” agents contributing to the KG on the one hand, on
the other hand, the act of changes has not collaborative nature in the sense that one of these
actors could overwrite or undo others’ additions.

Similar to GDELT, Diffbot offers a commercially available Knowledge Graph29 that combines
dynamic event data with information about products, events, and organisations. This Knowledge
Graph is only available as a commercial service, wherefore we do not discuss it here in more detail.

3.2 Monitoring Trends
The LOD cloud can be seen as a network of open interconnected KGs, the most prominent of
which are Wikidata, DBpedia, DBLP and YAGO. As such, a key part of its evolution has been the
open community’s continuous maintenance of these KGs. Indeed, their growth has been central to
the expansion of the LOD cloud from ≈ 6.7B triples and 90 RDF datasets [20], in 2009, to ≈ 28
B triples and more than 1,200 datasets [177], by 2020.

With the growth of the LOD cloud comes the desire to analyse its temporal changes and
track trends and evolution. Below, we first discuss approaches to analyse at the instance-level the
changes in the LOD cloud. Subsequently, we take the perspective of the schema-level and consider
methods and works analysing the changes of the LOD cloud in terms of the vocabulary.

26 https://blog.gdeltproject.org/gdelt-global-knowledge-graph/
27 https://www.gdeltproject.org/data.html
28 https://console.cloud.google.com/marketplace/product/the-gdelt-project/gdelt-2-events
29 https://www.diffbot.com/products/knowledge-graph/
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3.2.1 Instance-level Monitoring
Several works have sought to capture and understand the nature of KG evolution. One such
seminal initiative is DyLDO (see Section 3.1), which has been monitoring Linked Data on the
Web since 2012, by collecting continuous LOD snapshots and examining them in terms of their
document-level and RDF-level dynamics. The original paper [139] is based on the analysis of
86,696 Linked Data documents for 29 weeks and reveals that ≈ 62% of the documents available
during that time were, in fact, unchanged. In the remaining, the changes occurred mainly very
infrequently, ≈ 23%, or very frequently, ≈ 8%, with very few documents reporting changes in
between. The same polarising trend is recorded for very static domains, ≈ 44%, change very
infrequently, ≈ 28%, or very frequently, ≈ 25%. The study also reveals that data changes occurred
most frequently at the level of object literals, while schema changes (involving predicates and
rdf:type values) were very infrequent, often related to time stamps, and very rarely involved the
creation of fresh links.

Analyses of the DyLDO dataset include the work of Nishioka and Scherp [166] who applied
time-series clustering over the temporal changes of the DyLDO snapshots and determined the most
likely periodicities of the changes using an algorithm from Elfeky et al. [75]. This resulted in the
finding of patterns in the evolution of the graph data. Although 78% of the first three considered
years of DyLDO snapshots do not change at all, the remaining nodes could be organised into seven
clusters of various sizes and periodicity. The latter ranges from periodicity prediction every week
to once every half a year or year. Information-theoretic analyses have also been applied to analyse
pairwise changes in graph snapshots of the DyLDO dataset [167]. Time-series clustering allowed
us to organise the evolution into segments of similar behaviour. The study reveals that nodes
of the same type show a similar evolution, even if these nodes are defined in different pay-level
domains, i. e., different organisations. Finally, Gottron and Gottron analysed the same dataset
but applied perplexity to explain the evolution of graph data [98].

At the level of the individual LOD cloud KGs, Wikidata is an especially interesting
example of an evolving KG, having 90M entities and 1.4B revisions by more than 20K users.30

The recent Wikidated 1.0 dataset [208] records the fine-grained organic evolution of Wikidata
from its inception in 2012 until June 2021. The statistical characteristics of Wikidated 1.0 reveal
a linear growth in the number of entities, which has been slightly accentuated after the Freebase
integration in 2015. Also, almost all entities have less than 100 revisions, with half having
less than 10. In terms of revision speed, the analysis highlights that most entities are edited
frequently. Specifically, 60% of the revisions of a given entity occurred less than a month after a
previous revision of the same entity. Inspecting the types of revisions, the paper indicates that
most revisions consist of atomic changes, with approximately 90% containing less than 10 triple
additions; moreover, 80% of revisions do not feature triple deletions. Another interesting trend
indicates that half of the triples are added less than a day after the creation of their entity, while
deletions take much longer, with over half involving triples that are deleted more than 6 months
after they have been added. Although the vast majority of Wikidata triples are never deleted, ≈
10% are deleted only once and less than ≈ 1% are deleted repeatedly after being added again.
The CorHist dataset [224] is also built from Wikidata’s edit histories, although with a focus on
constraint violations and their corrections. The study shows that users are more likely to accept
corrections for familiar constraints and certain types of constraints favour over-represented entities,
highlighting the impact of biases. The evolution of Wikidata has also been studied in terms of
editor engagement [207] and impact [191], as well as the quality of provenance information [188].

30 According to https://www.wikidata.org/wiki/Wikidata:Statistics.

https://www.wikidata.org/wiki/Wikidata:Statistics.
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The work in [169] analyses the changes in Wikidata KG from a topological perspective. As such,
it establishes that the evolution of the number of nodes and edges resembles a power law [147],
similar to those commonly observed in social network graphs; based on this, it proposes classifiers
that verify whether changes are correct.

Levels of Granularity. Alloatti et al. [10] propose to analyse KG evolution trends by
capturing their changes across different snapshots at three levels of granularity: atomic focuses on
operations at the resource level, local targets the evolution of a resource within its community,
and global detects communities at the level of the entire graph. At the level of atomic evolutions,
given a set of atomic updates performed between two snapshots, the authors distinguish between
statistical changes, quantifiable in terms of the mean and variance with respect to a normal
distribution, and so-called noteworthy ones, which capture snapshot features that diverge from the
expected KG evolution with respect to a given threshold that is dataset-specific. An example of
the former type would be quantifying the number of citations of a paper, while an exceptionally
high number of new citations would illustrate the latter. Local evolution would also account for
community-level features, such as graph density. As such, a publication may be noteworthy only at
the level of its community, and communities themselves may be identified as noteworthy based on
specific features, such as topological ones. At the global level, community detection methods can
provide insights into the general behaviour of the different entities in the KG. When considering
KGs as multi-community networks, various detection algorithms can be applied using custom
network metrics, as reviewed in [193, 87]. When it comes to investigating KG evolution at a global
level, studies have applied metrics transferred from different disciplines, such as databases [70],
information theory [167, 98], web data crawling [68] and machine learning [168, 169].

Future Directions

Even with the large number of analyses already done in the past, there are many avenues to
investigate further when it comes to monitoring, but especially analysing evolving KGs at instance-
level. One such direction involves exploring the commonality of data sources across different open
KGs. For example, knowledge graphs like YAGO3 and Wikidata draw extensively from various
language editions of Wikipedia. Investigating the extent of shared data sources and how this
commonality has evolved can provide valuable insights into the collaborative dynamics of KG
development. By understanding the overlaps and changes in data sources, researchers can gain a
more comprehensive understanding of how this influences evolution; for example, an investigation
of link evolution and cross-references between KGs over time could deliver new insights here.

Another compelling area for analysis pertains to the role of programmatic intervention in the
development of knowledge bases. Many knowledge graphs, including YAGO and DBpedia, rely
on automated processes for data extraction and transformation, including, in the case of YAGO,
statistical learning. Likewise, Wikidata’s data generation, while predominantly carried out by its
users, also relies partially on programs that extract information from external sources through
bots. Delving into the balance between manual curation and automated data extraction and its
impact on KG growth and quality can offer valuable insights into the mechanisms that drive their
evolution.

These future directions in KG analysis provide exciting opportunities to deepen our under-
standing of how these structures evolve, the factors influencing their development, and their crucial
role in the dissemination of structured knowledge. Addressing these challenges will contribute to
the ongoing advancement of knowledge representation and dissemination in the digital age.
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3.2.2 Schema-level Monitoring
All the aforementioned studies of the evolution of Web graphs focused on the instance-level of the
graph data, i. e., the nodes modelling the entities in the domain. Only a few works also considered
analysing the evolution of the schema-level of the graph. An early study by Dividino et
al. [70] shows that indeed, the schema of a node changes over time when one considers how the
available RDF properties and RDF types are combined to a set of edge labels and node types to
model a node. We call this set of properties and types the schematic structure of a node. Over
one year in the DyLDO dataset, the authors analysed the schema structures of the nodes in terms
of both the outgoing properties as well as types. They found that in each snapshot between 20%
and 90% of the schema structures change from one version to the next. This means that more or
fewer nodes have the same schema structures, nodes with new schema structures are observed, and
some schema structures are not used anymore. There are also some combinations of properties
and types where the schema structure of the nodes is very stable, i. e. the set of nodes with that
specific schema structure did not change for one year [166, 70].

Just like new data nodes appear and change in the Web graph, the vocabularies used to model
such data also change, but at a much slower speed. New vocabulary terms are coined to cover
additional requirements or reflect changes in the domain. Other existing terms are modified or
even deprecated. Previous work analysed the amount and frequency of changes in vocabularies
based on different snapshots of the Billion Triples Challenge, DyLDO and Wikidata datasets [1].
Although the evolution of vocabularies is slow [1, 140], i. e., they happen on average a few changes
every year only, a change may still have a significant impact due to the large amount of distributed
graph data on the Web.

Another insight is that, in the course of an evolving vocabulary, the update of new terms from
released vocabulary versions varies greatly and ranges from a few days to years. It is not surprising
that even deprecated terms are still used by data publishers. Moreover, it is important to analyse
both the change in the vocabulary, as well as how the various terms are used in combination. This
can be seen at the schema-level: one can observe changes in the node and property shapes (e. g.
SHACL shapes), as well as in their prevalence. For example, a recent study [196] compared the
property shapes extracted from two Wikidata snapshots (one from 2015 and one from 2021). The
analysis reported that the number of RDF classes increased from 13K to 82K and the number of
predicates from 4,906 to 9,017, while the number of distinct property shapes increased from 202K
to more than 2M. This calls for an in-depth study of how the different elements of the vocabulary
evolve, not only in isolation but also together at the schema-level.

Finally, similar to the LOD Cloud showing the dependencies of different Web graph datasets,
one may also consider the Network of Linked Vocabularies (NeLO) where the nodes are the
vocabularies and the edges model vocabulary reuse [2]. Vocabulary reuse is generally encouraged,
as it improves the interoperability of data, but at the same time, it also introduces dependencies
between vocabularies that are to be resolved when vocabulary terms in the network change, are
deprecated, or deleted. The NeLO network has been analysed over a history of 17 years based on
the data from the Linked Open Vocabulary (LOV) service31 with respect to standard network
metrics, such as size, density, degree and importance [2]. LOV collects the temporal information
from hundreds of RDF vocabularies added to the service through a review-based process. The
evolution of this schema-level graph has been analysed with respect to the impact of vocabulary
term changes, term reuse and vocabulary importance [1, 2].

31 https://lov.linkeddata.es/dataset/lov/
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Future Directions

Exploring the schema-level dynamics of open KGs reveals several promising avenues for future
research and analysis. These areas of inquiry offer valuable insights into the evolving nature of
knowledge graphs and their impact on knowledge representation.

One important aspect of KG analysis pertains to understanding how schemas are structured
and evolve within graphs, but also how re-use between graphs evolves. Many open KGs, including
Wikidata and DBpedia, make use of RDFS and OWL to organise their ontologies. However, the
specific integration of schemas into the data varies. For instance, some graphs incorporate their
ontologies directly into the data, while others maintain separate ontology files. Investigating the
consequences of these schema design choices on knowledge graph evolution is another possible
research direction. Additionally, assessing how expressive power and intended meaning in these
schemas evolve and potentially influence KG development is of strong interest.

KGs exhibit varying degrees of semantic underpinnings, ranging from basic RDFS to more
complex representations like OWL. Some, like Wikidata, may have intricate intended meanings
and collaboratively evolving schema constructs that go beyond OWL’s expressivity, which may
necessitate advanced logics for interpretation (for instance the constantly evolving set of Wikidata’s
property constraints). Analysing the gap between intended, implied and supported semantics in
KGs and its implications for their evolution is a further promising area of investigation. Overall
debates within the Semantic Web and Knowledge Graph communities, about additional complex
ontology features and the evolution of ontology languages as such, may also raise questions about
the role of evolving ontology expressiveness in shaping knowledge graph structures over time.

Comparing the rates of schema/ontology evolution vs instance/data evolution in different
knowledge graphs in depth is another potential future direction: preliminary observations may
suggest that in some cases, the evolution of ontology structures lags behind changes in the data.
Such temporal misalignment raises questions about how it affects the overall coherence and
semantics of knowledge graphs over time; as a concrete example, let us again name constraints in
Wikidata, which partially become outdated (and even explicitly deprecated) by their actual use –
which could indeed be understood as a form of semantic drift.

Comparative analyses between knowledge graphs, especially those with similar characteristics
or shared data sources, can provide valuable insights into ontology evolution, schema design
and knowledge representation choices. By examining similarities and differences in their evolu-
tion processes, researchers can identify best practices and challenges in crowd-sourced ontology
development.

These future directions in schema-level analysis offer opportunities to gain a deeper under-
standing of how knowledge graphs evolve structurally and semantically. By addressing these
challenges, researchers can contribute to advancing our knowledge of knowledge representation
dynamics and the evolving landscape of open KGs.

4 Study the Evolution

In this section, we discuss methods for studying the evolution of KGs. First, we introduce some
relevant static graphs and KG metrics, as they have been defined to inform KG quality and are
sometimes used to analyse KG evolution. Second, we address measures that concern consistency
and quality specifically using constraints, as opposed to the simple metrics introduced first. In the
third part, we discuss measures specifically developed to capture and quantify evolution, and we
finish this section with a focus on how network science approaches could be used in the future for
the study of KG evolution.
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4.1 Basic Graph and Knowledge Graph Metrics
This section introduces metrics designed initially to study the properties of graphs and specifically
knowledge graphs, which have been used to assess ontology quality [11, 142, 91, 37, 213, 227, 205]
and that has also been used to study KG evolution [250, 252, 73, 71, 172]. Table 3 summarises
such metrics, which – however – do not take an evolving KG as input for their calculation as they
consider only one graph at a time. We can broadly group these static metrics into two groups:
graph metrics and knowledge graph metrics.

Graph metrics are applied to a graph version of the KG or adapted to work on the
KG. Examples of these metrics include average depth [71, 73, 91, 142], number of paths [142],
tangledness [11, 91, 142] and absolute leaf cardinality [11, 91, 142]. In the work of Alm et al. [11],
Gangemi et al. [91] and Lantow et al. [142], the metrics are applied only to the isA graph,
whereas Djedidi et al. [71] apply the average depth on the OWL graph, the same as Duque-Ramos
et al. [73].

Knowledge Graph metrics can be distinguished from graph metrics based on the idea
of taking semantics into account. However, each approach, metric or paper specifies what type
of semantics (RDF, RDFS, OWL or other) are considered and if the metrics are applied to
materialised KGs or not. We do not make this specification here but leave it up to the interested
reader to follow the cited sources. While instance-level analyses focus on the data graph, schema-
level analyses focus on the semantic information [33]. Therefore, we divide the metrics into three
groups:

Primitive metrics focus on a single aspect of the KG; for instance, they are used to
characterise the number of entities of a KG [37, 142]
Schema metrics focus on the schema or T-Box of the KG. Examples of such metrics
include Property Class Ratio [250, 252, 172, 73], Depth of Inheritance Tree [250, 172, 73] and
Inheritance Richness [71, 73]. For example, most of these metrics are used in the OQuaRE
quality assessment by Duque-Ramos [73] to inform about varying quality (sub-)characteristics.
Data metrics or A-Box metrics mostly combine an aspect of the A-Box with one from the
T-Box. Examples of such metrics include Average Population [73] and Instance Comprehen-
sion [71]. Due to their simplicity, data metrics give only a partial view of KG quality and
often need to be contextualised for a complete evaluation [73].

In summary, KGs have been analysed by calculating static metrics like the ones in Table 3 on
linear/nonlinear series of consecutive snapshots: by combining these measures over some time, as
done for instance in [73, 33, 182, 71, 172], one obtains time series data (a versioned or dynamic
KG) that allows (and is currently primarily used) for calculating descriptive statistics (e. g. central
tendencies, dispersion, distribution) that partially describe the KG evolution over time.

Future Directions

While static metrics can provide valuable insights at little cost, we argue that designing specific
metrics and combining those with more sophisticated time-series analyses can lead to more precise
monitoring of KG evolution. In particular – for any of the above-mentioned static metrics –
investigating time-series trends in metrics variations such as seasonality or stationarity or even
more complex models [214] can provide further insights about the KG evolution. We illustrate
some ideas for such future metrics by the example questions listed below:

Trends: How has the average degree of nodes or centrality developed in KGs such as Wikidata
over the past N years? How interconnected is the KG becoming over time?
Seasonality: Are there recurring periods of increased or decreased growth in the size (number
of nodes or edges)? Is there any correlation with specific events?
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Table 3 Overview of general graph metrics and specific Knowledge Graph metrics from the literature:
metrics are only included if there are at least 3 papers (graph metrics) using and defining a measure
(excluded 98 metrics). We excluded some of the graph metrics cited by the same three papers (5 metrics);
for knowledge graph data metrics we also included those with 2 citations – any of these static metrics and
changes would seem worthwhile to be also investigated in a longitudinal manner over time.

Metric Description Used/Defined in

G
ra

ph

Absolute depth da = sum over the cardinality
of each path in a set of paths in
graph

IsA graph [11, 91, 142, 250]

Average depth da / |paths| IsA graph [11, 91, 142, 250],
graph [37, 71], OWL schema
[73, 71]

Maximal depth longest path IsA graph [11, 91, 142], graph
[37]

Number of paths |paths| DAG [142, 250, 252]
Tengledness nG

t
, nG = cardinality of G, t =

cardinality of the set of nodes
with more than one ingoing IsA
arc in G

IsA graph [11, 91, 142]

Degree Distribution mean-square deviation of the de-
gree of graph nodes

graph [37, 67, 142]

K
no

w
le

dg
e

G
ra

ph

P
ri

m
it

iv
es

Entities number of entities, classes and
instances

graph [37, 142], IsA graph [91],
OWL [213], DAG [250]

Properties number of unique properties or
relations

OWL schema [172], OWL [227,
229, 231], DAG [252]

Classes |C| = number of classes (con-
cepts)

OWL [227, 231], DAG [250, 252]

Instances |I| = number of individuals OWL [227, 229, 231]
Object properties Po = number of object proper-

ties (non-inheritancE)
Schema [142], OWL [213, 229]

T
-B

ox
/S

ch
em

a Depth of Inheritance Tree Tree [172], OWL [73, 205, 227],
DAG [250]

Property Class Ratio |P |
|C| OWL [229, 172, 73], DAG [250]

Inheritance Richness |H|
|C| , H = inheritance relations OWL [71, 73, 205, 227], Schema

[142]
Attribute Richness |Pd|

|C| , Pd = datatype properties OWL [71, 227], Schema [142]
Class Property Ratio |C|

|P | Onto [11, 91, 142]

A
-B

o x
/D

at
a Average Population |I|

|C| OWL [73, 227], Onto [91]
Cohesion number of connected compon-

ents
OWL [71, 227]

Average Class Connectiv-
ity

mean(|(c1, p, c2|) where c1 and
c2 are instances of classes

OWL [205, 227]

Moving Averages: How does the moving average of additions (new triples) or deletions (removed
triples) over 12 months compare to the monthly new triples values? Are there evolutionary
anomalies?
Autocorrelation: Is there autocorrelation in the time series data of a given ratio metric (e. g.
Property Class ratio, etc.) in the KG?
Stationarity: Do structural changes in the KG (for instance, lengths of certain paths or other
structural metrics) follow a stationary process?
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So far, time series analyses with static metrics for LOD characterisation have been traditionally
restricted to descriptive statistics, e. g. in [129, 182, 73]. We argue that this is an opportunity
for the Semantic Web and Knowledge Graph research community to rethink more sophisticated
metrics designed to precisely measure KG dynamics and change overall and in a modular fashion
(e. g. instance data vs. schema dynamics, etc.). Likewise, we see a lack of tools and calculation
frameworks geared specifically towards running such more complex time series analytics on evolving
KGs at scale.

4.2 Consistency-Based Quality Metrics
Assessing data quality within a KG presents significant challenges that worsen if the aim extends
to monitoring, ensuring, or improving such quality over time. Consistency-based quality metrics
play a crucial role in assessing many dimensions of data quality, for example, measuring the
integrity, coherence and general consistency of KGs [245]. Paulheim and Gangemi [176] estimated
inconsistency in DBpedia by clustering conflicting statements; they limit their evaluation to a
given snapshot, neglecting the evolution of these inconsistencies.

Various languages have been developed to express and represent constraints in KGs, yet not all
are equally suited to “measure” consistency and quality. That is, while formal ontology languages
such as OWL [101] and the respective underlying Description Logics [21] allow one to determine
inconsistency of the whole KG, typically, due to their expressivity, they suffer from ambiguity
between pinpointing and counting violations. Earlier work has used rule-based fragments of OWL,
OWL RL to – again statically – quantify and repair inconsistencies [113].

More recent specific standards for KG constraint languages have revived the research on
quantifying constraint violations. Specifically, the relatively new W3C standard SHACL [135], and
similarly ShEx [195], allows validation and counting violations in a KG, w.r.t. a set of (integrity)
constraints and target node/edge definitions. Yet, we only see both formal ontology languages
such as OWL, e. g. [95], and these novel constraint languages being only slowly, if ever, adopted in
(openly available) KGs.

In the following, we dive deeper into the measurability of quality metrics, focusing on consistency.
Consistency metrics evaluate the coherence and absence of contradictions within a KG. Constraints
can be used to specify rules regarding relationships between entities, ensuring that the graph
remains internally consistent. Inconsistencies, such as conflicting assertions or logical contradictions,
can be identified with these metrics. There is a trade-off between measuring consistency and
simply measuring missing information. However, this trade-off will be explored as part of defining
assessment frameworks.

As a first approach towards monitoring consistency w.r.t. constraints over time, Wikidata
has leveraged constraint modelling to enhance data quality and usability. Within the Wikidata
ecosystem, the Schemas project32 uses ShEx to define schemas for modelling various Wikidata
classes. Additionally, Wikidata uses its own representation model to define constraints on its
properties, known as Wikidata property constraints.33 These property constraints serve as valuable
guidelines for the community of users, aiding in maintaining data integrity and the development
of violations is documented over time in Wikidata’s own published database reports.34 In a recent
work, Ferranti et al. [86] have attempted to formalise the respective constraints in SHACL and
SPARQL, in order to enable generating such violation reports in a standardised manner, on the
fly, which may be viewed as a starting point to enable monitoring constraint violation over time.

32 https://www.wikidata.org/wiki/Wikidata:WikiProject_Schemas
33 https://www.wikidata.org/wiki/Help:Property_constraints_portal
34 https://www.wikidata.org/wiki/Wikidata:Database_reports/Constraint_violations/Summary

https://www.wikidata.org/wiki/Wikidata:WikiProject_Schemas
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https://www.wikidata.org/wiki/Wikidata:Database_reports/Constraint_violations/Summary
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An alternative approach to quantify violations is to attach the number of violations (nCi) for
each violated denial constraint (Ci) to nodes and edges in the KG. The counting can be done in a
bag or set semantics by considering the duplicates in the constraint violations or not. Provenance
polynomials can be built by summing the monomials given by CinCi . The obtained polynomials
and corresponding degrees of quality can be leveraged during query evaluation to characterise
the quality of the query results further. Although this approach has been conceived for static
relational data [119, 120], the temporal aspects of inconsistency are still largely unexplored.

Despite these starting points, the question of how to measure and monitor quality in terms
of consistency in a systematic manner for particular KGs over time seems to be still an open
question that opens up engaging scenarios. For example, the presence of time in evolving KGs
adds a dynamic perspective to constraint enforcement, facilitating ongoing improvements in the
KG through data repairs, as proposed by [57]. Moreover, the analysis of constraints over time can
also provide significant insights into the occurrence of semantic drift (see Section 2.3) within the
schema layer of a KG. When historical constraint definitions are compared with the current state,
it becomes possible to identify schema modifications, shifts in the focus of the schema layer and
potential mismatches between the evolving semantics and the intended scope.

Future Directions

As outlined above, consistency is a big factor when assessing the quality of KGs. Hence, we see
several potential directions of analyses in the future using constraints to learn more about knowledge
evolution concerning quality. For example, before even analysing evolution, an investigation into
which KGs use RDFS, SHACL and ShEX but also how expressive their ontologies are and which
are entirely based on external data sources. Such questions directly tie into an investigation of
quality based on consistency and constraints and how these evolve. First, measures and frameworks
must be developed to support these kinds of investigations as they require handling KGs at scale.
At the same time, the tradeoff between measuring quality and consistency vs. measuring missing
information must be considered in greater detail before applying such approaches to any open
general-purpose KGs, as these KGs operate with an open-world assumption.

The analysis directions align well with the dimensions of evolution (dynamics, timeliness and
monotonicity), but each requires different approaches or solutions. Thus, we urge the community
to use constraint-based metrics to analyse the consistency of the evolution of KGs, the change
(trends, seasonality, etc.) of completeness, data freshness, data recency and temporal completeness.
Precisely, the last three need to regard time as data rather than meta-data.

4.3 Methods for Quantifying Evolution
In this section, we want to give space to metrics specifically introduced to capture the evolution of
a KG, which require pairs of (consecutive) graphs as input in the form of a versioned or dynamic
KG, according to the classification presented in Figure 1. Most of the works introduced below
study the changes between two (consecutive) versions of a graph, that is, two snapshots, such
as [69, 177, 182, 181], making them specifically applicable to versioned KGs rather than dynamic
ones. Pernisch et al. [182] propose several metrics to capture evolution on the materialisation and
also provide their implementation in a Protégé plugin [183]. The evolution metrics capture the
amount of change between two snapshots using simple counts of deltas between the snapshots.
Pelgrin et al. [177] developed a framework to analyse various properties of versioned KGs based on
changesets computed over pairwise versions of DBpedia, YAGO and Wikidata. Their framework
consists of multiple evolution metrics such as growth rate and dynamicity. The authors also
measure high-level changes, such as the number of entities changed between a pair of versions,
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using the metrics we discussed in Section 4.1, but relating them directly to the evolution. The
metrics capture the changes between a pair of snapshots but do not directly reflect KG evolution
over multiple snapshots, i. e. a sequence of snapshots. Instead, pairwise comparison sequences can
be considered to identify trends in evolution. Lastly, Dividino et al. [69] developed a monotonic
measure for KG evolution that aggregates the amount of data changes over a sequence of snapshots.
This results in a function measuring the evolution of the graph by approximating the actual
evolution with an aggregation of absolute infinitesimal changes. When a KG evolves, such as
Wikidata, most of the additions and deletions may be valid changes reflecting the nature of the
entities modelled. However, collaborative KGs can also receive erroneous changes, be it due to
vandalism or carelessness. Evolution information is exploited to assess which changes in a KG
are correct [169]. Based on the features for Web data caching [168], several triple features are
employed on the subject, predicate and object URIs, including additional information about the
age and last edit. Notably, this improvement is achieved by purely employing information about
KG evolution and not requiring historical information about the editors who perform changes on
the collaborative graph.

Future Directions

As is evident from the studies mentioned above, there are not many metrics specifically developed
for the study of KG evolution. This, we identify as a research gap as it is necessary to introduce
measures capturing different dimensions and aspects of KG evolution. Following the examples
above, measures need to capture the different aspects of evolution while at the same time being
outlier-resistant. Approaches from time series analysis can be fruitful to kick-start this future
direction and enable the further development of methods and metrics to study KG evolution.
In the future, it is important to move from snapshot analysis to more continuous approaches
capturing fine-grained evolution at the time of individual edits. We can also potentially borrow
approaches from network science, as they also analyse the evolution of networks, even though the
networks have a simpler representation than KGs.

4.4 Metrics and Methods from Network Science
Network science has developed tools to map and analyse complex systems, suggesting the possibility
of adopting them to study the structural properties of KGs. Researchers have discovered that
regularities in domains such as transportation systems, scientific communities, economic sectors,
or communication systems can be fruitfully represented and studied as networks. Indeed, there
are remarkable regularities in such domains that play an important role in how these systems
function and evolve. For example, networks tend to have very heterogeneous degree distributions,
which means there are “hub” nodes with orders of magnitude more connectivity than the typical
node [7]. Social networks tend to have many triangles, as suggested by the saying that a friend of
a friend is likely to be a friend. Scientific community networks often have modular structures [87],
reflecting coherent subcommunities of nodes in a larger system. Empirical networks tend to be
sparse (i. e. given a network on n nodes, there are far fewer than the possible n(n− 1)/2 edges).
But they also have short paths connecting all pairs of nodes (i. e., low diameters) [247].

Although recent work on multiplex or multi-layer networks considers data with multiple kinds
of objects or links between them, most networks studied are generally simpler than those observed
in the Semantic Web community. For instance, ordinary networks usually consist of a homogeneous
set of nodes (i. e. airports) and relationships between them (i. e. direct flights between airports).
Multilayer networks consist of the same nodes and different kinds of relationships they might
have. For example, people who may communicate via email and telephone. Studies using this



A. Polleres et al. 11:27

kind of multi-layer data tend rather to just generalise the methods applied to ordinary networks
described in this section than to invent new ones [26, 25]. On the other hand, knowledge graphs
are multi-dimensional by design. Although undoubtedly useful, such complexity presents an
obstacle to studying their evolution using methods from network science. Therefore, to apply
these methods to study the evolution of KGs, we must first simplify the data. However, any
simplification must be driven by a substantive question to make it meaningful, and it must be
significant in the sense that it discards a significant amount of data, to be tractable.

Once a simple network has been constructed, the temporal dimension of the data can be
integrated by slicing data into time periods (for instance, as in [143]). Measures of the network,
for instance, its diameter, the mean and variance of its degree distribution, the modularity of
a community detection exercise, or the prevalence of clustering can be calculated for each slice
and then plotted over time. However, the choice of the width of the time slice can have major
implications for subsequent analyses [211].

The stylized facts about networks described above have important implications for things that
happen to them or to them. They predict the robustness of a network, i. e. how well it holds
when its nodes are removed. They predict how quickly things like information or diseases spread.
Network structure plays an important role in its navigability: if you do not have a map of the
network, can you still find your way from a node you know to another specific node in a reasonably
short amount of steps [134, 215]? Network scientists are naturally interested in how changes in
a network are captured by these measures and, in turn, how they influence things that happen
within networks [165].

Network scientists have two broad solutions for the comparability issue between networks of
different sizes. The first is to propose a generative model that captures many of the key properties
of the network in question [38, 39], and to instantiate random graphs from this model. Next, one
calculates the same statistics on this randomised version of the graph and uses it as a kind of
benchmark or normalisation factor. The most simple generative model is the Erdős-Rényi model,
in which edges are randomly added between nodes with a fixed probability p. Given two empirical
networks of different sizes, one can create corresponding random networks with the same number
of nodes and edges for each. Calculating the clustering on these random networks allows us to scale
or normalise the clustering observed in the corresponding empirical networks, which then become
more comparable. More sophisticated models like the Barabasi-Albert model [7] (which generates
networks with heterogeneous degree distributions, i. e. hubs) and the Watts-Strogatz model [247]
(which generates “small world networks” that have both short paths and high clustering) can also
be used in this way, depending on the research question.

The second way to make network measures comparable between networks of different sizes
and over time is to create randomised versions of empirical networks, sometimes called null
models [128, 206]. Such randomisation typically takes place among the edges, which are randomly
rewired or shuffled subject to constraints depending on context. For example, a randomization
of links between Wikipedia editors and the articles they touch creates a “random” version of
Wikipedia preserving editor activity counts and article edit counts. Such randomisations are
similar to statistical Monte Carlo simulations and can be computationally intensive, but the
resulting randomised versions of the empirical graph can provide a useful benchmark to compare
against the original graph. Although these methods require both a drastic simplification of the
data contained in KGs and the deployment of complicated methods such as generative models or
null models, they present a significant opportunity to create more robust estimates of the dynamics
of KGs. Given the degree of simplification this process requires, a clear research question about
the structure and dynamics of KGs is an essential first step.
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Future directions

We see the potential of using network science to investigate the collaborative nature of many open
general-purpose knowledge graphs. Not only does knowledge evolve, but the way it evolves is
intertwined with the editing network, for which network science and its approaches to analysing
its changes over time would be beneficial. For example, if one wanted to study whether Wikidata
editors were becoming more or less collaborative over time, how could one define a reasonable
notion of collaborative behaviour? Could one define collaboration between two editors as a function
of their using the same properties or working on the same entities? Should a pair of editors both
using the most widely used property be as thickly connected as two editors using a more rarely
used property? Network science offers tools to carry out such an analysis, but the researcher must
make choices in pursuit of a question. Question-driven modelling of KGs as simplified “networks”
can move us beyond a descriptive analysis of KG evolution.

5 Manage the Evolution

Although dynamic/versioned and temporal KGs can be considered as two alternative approaches,
they introduce different challenges in their management. In the case of temporal KGs, the main
challenges lie in how the temporal information is captured and represented. We discuss different
approaches in Section 5.1. Although, when time is not part of the data, the KGs do not require
specific data models. The temporal information lies in the updating process itself; they often
publish complementary changelog streams that may or may not be represented in RDF. However,
time as metadata raises a different set of challenges for KGs, including the representation of the
evolution and storage options, discussed in Sections 5.1, 5.2, respectively.

5.1 Data Models for Temporal Knowledge Graphs
The two main approaches for implementing KGs are RDF and labelled property graphs (LPG). In
the rest of this section, we describe how researchers and practitioners modelled temporal KGs in
these two approaches. In the last part, we elaborate on open challenges with regard to capturing
and then analysing the evolution of knowledge in Temporal KGs.

Temporality in RDF

The problem of how to model time-related information has been intensively studied. Amongst the
multitude of proposed solutions, a broad distinction can be made by representing time in the data
vs. in the metadata.

In the former case, entities can be part of statements together with their temporal proper-
ties. The Time Ontology and the Sensor, Observation, Sample, and Actuator (SOSA) ontology
implements this idea, e.g. an observation can have a relation sosa:phenomenonTime with a
time:TemporalEntity individual.

In the latter case, the temporal annotation applies to RDF statements (or graphs). A common
method to implement it is reification, which involves annotating triples. In [109], various reification
schemes were examined:

Standard Reification uses a resource to represent a statement, such that it can be used in other
RDF statements to add annotations (including temporal ones).
N-ary Relations represent relationships using resources, stating subject involvement, value,
and qualifiers. Instead of stating that a subject has a given value, it states that the subject is
involved in a relationship that has a value and qualifiers.
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The Singleton Properties approach involves creating a property that is only used for a single
statement. The resource representing the statement is annotated with this property to add
more information.
RDF 1.1 introduced the notion of Named Graphs, which can, for example, be serialised in
N-Quads. One can annotate the named graphs, e.g. associating the same temporal annotation
to all the statements contained in the graph.
RDF-star [107] extends RDF through embedded triples, i.e., an RDF statement can be the
subject or object in another RDF statement. Just as standard RDF can be queried via the
SPARQL query language, RDF-star can be queried using SPARQL-star (formerly SPARQL*),
allowing users to query both standard and nested triples.

There is no single way to represent contextual information in RDF graphs, and the different
mechanisms have advantages and disadvantages. Reification and n-ary relationships model complex
facts in RDF. However, adding reification triples for each reified triple increases the data volume,
making metadata queries cumbersome due to the need for additional subexpressions to match
the corresponding reification triples. Other methods, such as singleton properties and named
graphs, reduce the number of extra triples. However, these approaches require verbose constructs
in queries, introducing artefacts to associate triples with their metadata [171]. RDF-star is more
compact and adds facilities to the query language via SPARQL-star but does not achieve the
levels of flexibility as some previous approaches. Of the strategies presented, named graphs are
the most flexible since they allow assigning one annotation to sets of statements; RDF-star is the
least flexible option since it cannot capture different sets of contextual values on an edge [112].

Temporality in Labelled Property Graphs

Labelled Property Graphs (LPGs) are another popular solution to represent KGs. The problem
of the representation of evolution, particularly temporality, has also been addressed in their
context. However, while in principle LPGs allow direct attachment of temporal information to
edges in the graph, there is no consensus on a single approach for temporal LPGs. Similar to core
RDF approaches, works in LPG in the literature differ in supported time dimensions (valid time,
transaction time or both/bitemporal), types of possible changes to graph structure and properties,
and representation as either a series of graph snapshots or a single graph reflecting changes over
time.

The Temporal Property Graph Model (TPGM) [201] extends the Extended Property Graph
Model (EPGM) to support analytical operators on directed graphs that evolve in Gradoop. TPGM
adds support for two different time dimensions, valid and transaction time, to differentiate between
the evolution of the graph data concerning the application and managing the data. This approach
offers a flexible representation of temporal graphs with bitemporal time semantics. TPGM expands
EPGM with four new time attributes as mandatory for vertices, edges, and logical graphs: two
for transaction time intervals and two for valid time intervals.

Debrouvier et al. [60] apply temporal database concepts to graph databases to model, store,
and query temporal graphs for historical data tracking. The focus is on the Interval-labelled
Property Graphs data model, which timestamps nodes, relationships, and node properties with
temporal validity intervals, allowing for heterogeneous graphs with different types of relationships.
This model enables richer queries and supports two path semantics: Continuous Path Semantics
and Consecutive Path Semantics.

Andriamampianina et al. [12] propose a conceptual model to represent temporal property
graphs and define a set of operators to perform queries on these. The model establishes various
concepts to represent objects, their relationships, and their evolution over time. It manages time
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through valid time intervals to track changes and occurrences in the real world. To describe an
object, the model introduces the notion of temporal entity, comprising a set of states to represent
different versions of the entity over time. Each state includes attributes, attribute values, and a
valid time interval. A temporal relationship, analogous to a temporal entity, describes the link
between two entity states.

Future Directions

Despite RDF and LPGs originating in different contexts, the two approaches are valid for
creating and representing KGs. Several graph database vendors support both approaches to offer
their customers flexibility and choice. In this context, an ongoing research direction lies in the
interoperability between the approaches. Despite the active research [4, 15, 144], to the best of our
knowledge, there is no study on the RDF-LGP interoperability in the context of temporal KGs.
The challenge lies in the way the time can be represented in both RDF and LPGs: the multitude of
different approaches leads to many possible conversion procedures. We argue that reference models
are needed to unify the existing approaches and to set the basis for standardisation initiatives that
will ease the creation, storage and processing of temporal knowledge graphs in different engines.

Another direction relates to query languages for temporal KGs. SPARQL and the LGP query
languages consider temporal annotations as any other type of annotations. As such, query writers
need to understand how time is represented in the graph and write the query accordingly. However,
temporal annotations enable specific time-related operations, such as creating selection criteria
based on Allen’s relations [9]. Encoding such relations in the queries is not trivial and often error-
prone. Treating time as a first-class citizen in the data models can lead to query languages with
specific time-related operators, simplifying the query writing process and constructing dedicated
query engines that can efficiently evaluate such operators. While this idea has been investigated
in the context of continuous query processing over RDF streams (see section 6.2), it has not yet
been deeply investigated for temporal knowledge graphs.

Interoperability between the two models would also further enable the possible application
of analysis frameworks, existing and future ones. The same can also be said about SPARQL
integrations, as in the past analyses have made use of SPARQL. Therefore, a SPARQL extension
for temporality (of any dimensions) would further support efforts into KG evolution analysis.

5.2 Storage Methods
Since in temporal KGs the time dimension is managed as part of the data, temporal information
integrates naturally in the data model and can therefore be captured using standard methods
as outlined in Section 5.1. In the case of dynamic and versioned KGs (Figure 1), alternative
approaches have been proposed capturing temporal information outside the data model itself.

An intuitive way of storing versioned KGs is to store each complete version of the KG as a
new copy, often referred to as the Independent Copies approach [81]. While this can even be
implemented using standard triple stores with named graphs, it has scalability issues regarding
the number of named graphs (one for each version) and the required storage space for larger KGs.
An advantage of this approach is that all queries to be executed on a single full version of a KG
can be executed very efficiently since no additional computation (see below) is needed to retrieve
the complete version of a graph to execute the query on. IC approaches are generally very useful
for small knowledge graphs [177].

To reduce the storage overhead, Change-Based approaches store several full versions of the
KG as snapshots but only sets of changes (deltas) for the versions in between. This makes
them a hybrid solution between versioned and dynamic KGs. In this setup, querying versions
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that correspond to snapshots is again very efficient since the full KG is readily available. The
disadvantage of this approach is that for the versions between snapshots, chains of deltas have to
be applied on the preceding snapshot to recreate full intermediate versions [222, 19, 5, 179, 178].
An important aspect is then to identify which versions to materialise as snapshots and which ones
to capture as deltas.

Instead of capturing entire versions of complete KGs, dynamic KGs annotate individual triples
with timestamps, so-called Timestamp-Based approaches. In such a setting, it is then of course
expensive to recreate particular versions of a KG since this requires filtering all triples based on
their temporal validity. On the other hand, it becomes efficient to look up the temporal validity
of each triple.

Future Directions

While most systems implement only one of the above-mentioned storage methods [223], there are
hybrid approaches that can be configured to resemble one or the other. In this sense, one direction
of future work is to investigate how to exploit the strengths of different storage techniques for
certain use cases and develop adaptive approaches that choose and adjust the storage layout based
on how the data is used.

Building upon existing approaches for the above-mentioned storage models, one of the main
challenges is scalability. On the one hand, we need to develop more efficient storage methods to
reduce the storage overhead of capturing information about versions and temporal validity. On
the other hand – and this is very much determined and influenced by how the data is stored –
future work needs to develop efficient methods for querying that can not only retrieve complete
versions of a KG but also allow efficient query processing over certain versions of a graph (see also
Section 6.1).

Finally, it is worth noting that the way the data is stored affects the type of possible analyses on
KG evolution. For example, if one wants to run time-series analyses (as described in Section 4.1),
change-based approaches are ideal due to their focus on changes. Independent copies may not
contain enough fine-grained information to perform such analysis. However, metrics based on
consistency metrics (as described in Section 4.2) may not work in change-based approaches as
some intermediate changes may affect the consistency of the KG. Therefore, we envision storage
solutions able to store KGs following different approaches, with the ability to perform a wide
range of analytics tasks on KG evolution in efficient ways.

5.3 Mapping Schemas
Supporting KG versions is a key approach to ensure the stability of downstream applications for
KGs. Therefore, it is essential to capture the evolution on the schema-level by sets of schema
changes that typically occur in collaborative and decentralised processes.

Schema evolution requirements have been discussed in the past, in particular with respect to
ontology evolution [28]. The availability of expressive and declarative mappings specifying the
evolution between an original version of a schema S and an evolved version S′ makes it possible
to cater for the automatic propagation of the changes on the corresponding instances.

There exist two inherent problems with mappings between schemas. The first problem
corresponds to the (semi-)automatic computation of the schema mappings by leveraging schema
matchings and Diff(erence) computation [197]. Schema matchings can be defined as one-to-one
correspondences between two different versions of a schema, and they can be coupled with a
confidence value. On the other hand, schema mappings are declarative specifications, typically
expressed in a subset of First-Order logic, representing the transformation between two different
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versions of the underlying data. Schema mappings are typically expressed as source-to-target tuple
generating dependencies (s-t tgds), whose left-hand side is a conjunctive query and right-hand
side is a conjunctive query enhanced with existential variables, which lead to value creation. In
the case of schema evolution, schema mappings are adapted after schema changes and meta
modelling abstractions serve the need of providing high-level programming interfaces than other
techniques [31].

The second problem concerning mappings between schemas is the so-called schema mapping
or data exchange problem [78, 28], consisting of computing the transformed target instance (also
called target solution) by applying the source-to-target tuple-generating dependencies between
source and target schemas. In the case of schema evolution, the target schema might undergo
some changes, thus entailing the propagation of these changes to both the mappings (s-t tgds)
and the corresponding target solution.

The most expressive schemas for KGs are ontologies, which allow conceptualising a domain.
They provide a steerable vocabulary for a given domain of interest, defining the ontology concepts
as well as the properties and relationship between these concepts. Several research approaches
study collaborative ontology evolution and ontology matching, as surveyed in [108, 77]. Without
going into the details of these approaches, we point out that in the last decade after the above
approaches, schemas for graphs have profoundly evolved, thus bringing more open challenges for
KG mappings and transformations.

Finally, often KGs originate from external databases that can contain graph data in different
formats or even other data models, such as relational or document databases. There are approaches,
such as R2RML [55], to facilitate the latter, but the mappings from relational data to RDF have
to be (manually) adapted whenever the native (or the integrated) schema changes.

Future Directions

Recent schemas for KGs range from RDFS [42], SHACL [135], and ShEX [22] to PG-Schema [14]
and their evolution, as well as the mapping problems related to computation of schema mappings
and computation of the target solution, are not yet studied. The first three schemas are applicable
to mapping RDF data, while the latter is applicable to mapping property graphs [38]. One relevant
future direction consists of studying the automatic generation of schema mapping transformations
and the data exchange problem for the above models in a time-varying context thus exploring
schema evolution and versioning for evolving knowledge graphs under recent schema languages.

Another important direction concerns the mappings from RDF to property graphs or the other
way round [132, 15] in order to pay attention to producing incremental or comparable schemas
in comparison to previous versions. Especially complex constructs have alternative translations
into the other model. Hence, small changes can have big structural impacts on the integrated
result. It therefore remains mostly unclear how to appropriately capture and measure schema
evolution caused by schema changes in the input data. Although some proposals, such as the
OneGraph vision [144], propose to achieve graph interoperability by allowing users to use Cypher
or SPARQL independently from whether RDF or property graphs were chosen as the data model,
this only means that users are free to choose the query language that they prefer or that is more
appropriate for a different use case; the underlying challenges of how to capture evolution in the
underlying graph model remain the same.
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6 Spread the Evolution

Typical tasks to process KGs include querying, reasoning, and machine learning. When we move
from static to evolving KGs, one should consider the temporal dimension. In Sections 6.1 and
6.2, we discuss two classical operations on knowledge graphs: querying and reasoning. Next, we
discuss learning techniques in Section 6.3. We conclude by discussing evolving KG exploration in
Section 6.4.

6.1 Query Processing
We introduced data models for temporal KGs in Section 5.1. As the temporal information can be
modelled in standard RDF (e. g. through named graphs or reification), in RDF-star and LPG,
it follows that their relative query languages, such as SPARQL (or SPARQL-star), can be used
to retrieve data from them. However, as we explain in Section 6.1, several researchers proposed
ad-hoc query languages where time is a first-class citizen. Next, we discuss querying for versioned
KGs in Section 6.1, focusing on the solutions to extract and query a specific KG version. Finally,
we introduce continuous queries in Section 6.1 to monitor changes and to evaluate a query on
evolving data continuously.

Temporal Querying

Temporal queries refer to languages and operators that offer native support for retrieving and
manipulating time-referenced data. The semantics of a temporal query language are usually closely
coupled to a temporal data model that defines the underlying data abstractions (see Section 5.1).

Despite the growing popularity of temporal data in KGs, this research area is still in its
infancy. Exciting proposals (with a few exceptions) represent the graphs using either RDF or
LPG and approaching change as a snapshot sequence. Thus, their query-answering capabilities
are limited to those possible under the snapshot reproducibility principles, i. e. answering a
temporal query over a database is equivalent to taking the union of all the answers obtained by
evaluating the non-temporal variants of the query for each database state [35]. For example, τ -
SPARQL [226], SPARQLT [251] propose syntactic extension meant to access RDF triples annotated
with a timestamp. Zhang et al. [253] went one step further with their proposal, SPARQL[t],
extending the annotation with an interval-based validity time. Raising the expressivity bar, Arenas
et al. [18] studied Temporal Regular Path Queries (TRPQ) to interrogate reachability over time
over property graphs extended with time intervals of validity. Intervals of validity represent
consecutive time points during which no change occurred for a node or an edge in terms of its
existence or property values. Their approach, similar to T-GQL [61] and the Temporal Graph
Algebra [161], is designed for Labelled Property Graphs. The main drawback of such a query
model is the lack of support for operations that explicitly reference temporal information [18].
Therefore, an extension of this query model that propagates temporal information across snapshots
has been proposed [66].

Querying Versions

Querying archives is not straightforward; since there is no well-defined or commonly accep-
ted standard, archiving engines typically propose customised solutions for querying their data.
AnQL [256] and SPARQL-T [92], for instance, are SPARQL extensions based on quad patterns –
where the fourth component indicates the version over which the given query should be executed.
T-SPARQL [100] instead is a SPARQL extension where groups of triple patterns are annotated
with constraints regarding temporal validity supporting time ranges and timestamps. Other
extensions go beyond the temporal dimension and include geospatial constraints [30, 185]. Some
archiving engines [178, 179] also use the GRAPH clause of SPARQL to denote specific versions.
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Apart from different approaches on how to formulate queries syntactically, one can distinguish
different types of queries over archives based on the way they access the available versions of the
knowledge graph [81, 177]. Two basic retrieval tasks are to extract a specific full version of a
KG from storage (Version Materialisation) and to extract deltas (changesets) between pairs of
versions (Delta Materialisation). In addition, we can distinguish different types of queries; the
most commonly supported type of queries on evolving KGs are those where a SPARQL query is to
be evaluated over a specified full version of the KG (Single Version). Another type of query aims
at comparing answers to full SPARQL queries on different versions of a KG (Cross Version, e. g.
which of the current countries was not in the original list of UN members. Instead of retrieving
the answers to a SPARQL query, one can also aim to retrieve the specific versions in which a
given SPARQL query yields (specific) results (Version), e. g. in which revisions did the USA and
Cuba have a diplomatic relationship?

While the literature also introduces queries on deltas (single delta and cross delta), where
queries can be evaluated on the changesets only, we argue that these types of queries can be
considered subsumed by the above-mentioned types on full versions of a KG and assume that
the archiving engine will detect during query optimization whether a complete version of the KG
needs to be retrieved of a retrieving a changeset is sufficient.

Continuous Querying

Continuous queries (CQs), also known as standing queries, differ from other query processing
tasks due to their never-ending nature. Indeed, they are typically used to analyse evolving data,
including evolving KGs, to identify patterns, trends and outliers. With respect to the running
example, one may write a query to monitor the movements of artworks between galleries. While
the artwork is displayed in New York, the continuous query returns New York when specifically
queried for the “current location”. When the artwork is moved to Madrid and consequently the
KG is updated, the query’s result changes to Madrid as soon as the information changes.

The most relevant trait of CQs is the time-varying nature of the answers. Indeed, a query
evaluated under continuous semantics produces a series of responses as if it was evaluated for
every time instant. In practice, continuous-query evaluation is either periodic or based on custom
conditions, e. g. the occurrence of an event or data change. Although several proposals exist
for relational data [237], their potential in the Knowledge Graph world remains substantially
unexpressed.

The Semantic Web literature has explored continuous queries for Streaming Linked Data [41]
proposing several SPARQL extensions, e. g. C-SPARQL, CQELS, SPARQLstream, including some
able to combine different modalities [184]. Such languages have been reconciled by Dell’Aglio et
al. [64], who explained their continuous query semantics using three families of operators adapted
to RDF from [17]. RSP-QL describes how, despite syntactical differences, the existing languages
all use window operators to cope with the infinite nature of the input data, usually modelled
as a partially ordered sequence of timestamped RDF graphs. On a parallel line of research,
EP-SPARQL [16], DOTR [155], and OBEP [233] have explored the approach for detecting event
patterns in RDF streams. Such languages leverage time-aware operators and can be evaluated
using regular expressions. Although the SPARQL query is entirely supported semantically, such
proposals have given little attention to subgraph matching and navigational/exploratory continuous
queries. Notably, queries involving (regular) path expressions that cover more than 99% of all
recursive queries found in massive Wikidata query logs [40].

Regarding navigational continuous queries, Pacaci et al. [174, 175] modelled the graph as an
ever-growing sequence of timestamped edges. Moreover, they studied two query models, Regular
Path Queries (RQP) and Union of Conjunctive RPQs. Such query models are analysed with and
without explicit deletions as a form of the materialised view.
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Finally, continuous subgraph-matching (CSM) is a particular case of the foundational subgraph-
matching problem, where the target graph is subject to updating (either append-only or with
explicit deletions). Sun et al. [221] recently surveyed the existing exact approaches, modelling the
CSM problem as incremental view maintenance.

Future Directions

Besides an investigation of which approaches have been applied to which general-purpose open KGs
and how they perform, we distinguish two main directions for what concerns querying evolving
knowledge graphs, i. e. addressing the open challenges related to each query model and a more
general challenge that goes in the direction of a unified query model.

Temporal Querying for EKG has built upon the adoption of a single temporal model and snap-
shot reducibility. Future work requires relaxing such assumptions. The simultaneous application
of multiple temporal models relates to the heterogeneous nature of graph data. Indeed, KGs are
often referred to as a way to address data variety and perform data integration. However, such
variety is not allowed within the temporal model, given an entailed complexity exposition. Going
beyond the snapshot reducibility means allowing explicit temporal reference within the query
settings. Such an approach reduces the temporal-navigational mismatch in the query language,
allowing for posing complex questions over hybrid graph data models.

As explained above, querying versions of a KG often entails evaluating queries on a specific
version of a KG or multiple ones. Naturally, the storage layout and available indexes determine
how efficiently a query can be answered. Hence, developing appropriate indexing, storage layout,
and efficient query optimisation techniques exploiting them are important aspects of future work.

The challenge related to continuous queries over EKGs relates to the central role of windowing
in Streaming Linked Data, which poses serious limitations to the adoption and the optimisation
of continuous queries. Users must know the temporal context of the interested phenomenon to
choose an appropriate windowing policy. Moreover, aggregation-optimised windowing, which
is well-known for relational data, was not studied for graphs. On the other hand, navigational
continuous queries, and in general continuous subgraph matching, were little studied. Their
relationship with knowledge evolution is noticeable and further investigation is required.

Finally, searching for a unifying query model that could make the best of the existing one is
open and motivated by the specific need to migrate from one model to another when necessary.
Currently, the users must pick one data and query model, and thus, their query ability is limited
by the design choice of such languages. Instead, a formally verified language for EKG data that
can express queries about time, through time, and in time is still missing.

6.2 Reasoning
Reasoning over large KGs layered with an OWL ontology to describe their schema may be
prohibitive when using the full power of OWL. However, reasoning within the OWL 2 profiles [137]
brings very interesting computational properties. Indeed, state-of-the-art reasoners over KGs
typically focus on fragments of OWL (e. g. [164, 46, 238, 29]). For example, OWL 2 RL axioms
can directly be translated into Datalog rules [162] enabling the use of efficient Datalog engines
(e. g. [164]) that will expand the KG with implicit facts following from the OWL ontology and
the KG data. Reasoning also enables the use of the notion of logical difference [136], which can
be essential to understanding the evolution of a KG in terms of new entailed facts. For example,
diff(KG, KG’) represents the (entailed) facts in KG’ not present in KG.
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Reasoning in Evolving Knowledge Graphs

Rule-based systems typically perform materialisation (i. e. precomputation of the consequences
after reasoning) before queries over the KG are evaluated. Changes in the KG require recomputing
the materialisation so that query results are up-to-date concerning the changes. This process
may be expensive for very large KGs and rule sets, especially if they constantly evolve. Most
systems adopt Incremental materialisation when changes are to be reflected as soon as they occur
(e. g. [241, 163]). These systems focus only on the part of the KG affected by the changes and
implement optimised solutions to perform efficient incremental reasoning. In addition, there
have been efforts in the literature to enhance incremental reasoning via modular materialisation
(e. g. [114]) and enable distributed materialisation via data partitioning (e. g. [6]).

The evolution of a KG may also require the integration with other KGs as described in
Section 5.3. The compatibility of integrating multiple KGs has been extensively evaluated from
the ontology alignment perspective. In the literature, several approaches aim at identifying logical
errors and unintended logical consequences derived from the alignment of the KGs (e. g. [157, 79,
216]). To the best of our knowledge, at the moment, no studies are focusing on how KG evolution
affects consistency in alignment tasks. We believe that this is an important future direction
because the effect of changes on reasoning can be substantial [182] and can also unexpectedly
impact alignment tasks [183].

Reasoning for Studying Evolution

Logic-based reasoning, as discussed in previous sections, can play a key role in conducting
constraint validation and can contribute to the definition of robust metrics to measure KG
evolution. For example, the semantic drift described in Section 2.3 can be tackled via the logical
difference [136] between two versions of a KG after materialisation. diff(KGi, KGi+1) represents
the new (materialised) facts in KGi+1 not present in KGi, while diff(KGi+1, KGi) represents the
facts that were lost in the new version of the KG KGi+1. An analysis of the impact of changes
on the materialisation in the case of EL++ ontologies in the biomedical domain was analysed in
previous work [182], where the authors quantified the change in the materialisation to learn how
ontologies evolve over time.

Efficient rule-based reasoning can also be leveraged to evaluate the evolution of the knowledge
graph in terms of the conformance of the data with respect to the ontology and available constraints.
This conformance evaluation can complement the related quality metrics (see Section 4.2). For
example, Kharlamov et al. [131] interpreted some OWL 2 axioms involving cardinalities and
ranges as integrity constraints and represented them as Datalog rules to identify violations of
those constraints. For example, the following OWL axiom (α):

MasterPiece SUBCLASSOF (carried_out_by SOME Artist) (1)

is transformed into the following Datalog rules:

Art_pieces_carried_out_by_artists(?x)← carried_out_by(?x, ?p) ∧ Artist(?p) (2)
Violation(?p, α)← MasterPiece(?p) ∧ not Art_piece_carried_out_by_artists(?p) (3)

In the example above, it is expected that MasterPiece in the KG have at least an explicitly
associated Artist.
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Stream Reasoning

When the KGs evolve at a high pace, and the information needs to focus on extracting novel
and recent information, we enter the realm of stream reasoning [62]. Stream reasoning combines
knowledge representation with stream processing techniques [52] to process evolving ontologies
and KGs in a continuous and responsive fashion[64]. Stream reasoning cases relate to Timeliness
(Section 2.1), i. e. the inference is needed before data are no longer useful.

Firstly, several research groups worked on defining data models and vocabularies to capture
data streams through KGs and ontologies. Zhang and Stuckenschmidt [115] introduce the notion
of linear version space to define a sequence of ontologies. Such a notion was later adapted by Ren
and Pan [199] to define ontology streams as a sequence of timestamped ontologies. An alternative
model for data streams is RDF streams, defined as a sequence of timestamped statements (as in
[24, 186]) or graphs (as in [63]).

Reasoning task extensions over streams, such as consistency check and closure, were first studied
with a focus on adapting reasoning algorithms to the streaming settings. For example, Barbieri
et al. [24] extend the incremental reasoning algorithms DReD for stream reasoning with sliding
windows. The authors exploit the knowledge derived from the sliding window operator to calculate
when assertions must be deleted and use such information to improve the performance of the
materialisation algorithm. Ren and Pan [199] propose a truth maintenance system implemented
in the TrOWL reasoner that builds a graph to track the derivations. When the assertion changes,
the system incrementally maintains the graph and consequently updates the materialisation.

Over time, the focus moved to the application of temporal logic for stream reasoning: here,
Beck et al. proposed the Logic-based framework for Analysing Reasoning over Streams (LARS)
[27]. LARS combines temporal logic operators with specific operators to reason over streams,
such as the window operator. Tiger and Heintz [230] propose P-MTL, an extension of the Metric
Temporal Logic with probabilities to model the state uncertainty. P-MTL allows the use of
probabilities in the logic formulas and to use them in the inference process. One of the most
recent studies is from Walega et al. [243], who researched DatalogMTL in the context of stream
reasoning. They study the conditions to guarantee that no infinite materialisation occurs and
show that reasoning over the fragment of DatalogMTL that satisfies such conditions is not more
complicated than reasoning over Datalog, i. e. ExpTime-complete for combined complexity.

Lastly, several researchers and practitioners studied stream reasoning applications. One area
where stream reasoning found considerable interest is smart cities and traffic management. Lecue
et al. propose STAR-CITY [152], a system to analyse streaming heterogeneous data by combining
ontological reasoning, rule-based reasoning, and machine learning. Eiter et al. [74] designed a
stream reasoning solution based on Answer Set Programming (ASP) to optimise traffic control
systems. Le Phuoc, Eiter, and Le-Tuan [187] use stream reasoning to integrate streams of images
from car cameras and data streams to reason over them.

Stream reasoning has also found application in other domains. For example, Barbieri et al. [23]
applied stream reasoning techniques to social media streams for personalised recommendations;
Kharlamov et al. [130] propose stream reasoning in the context of monitoring failures in an
industrial setting; De Leng and Heintz [59] integrated stream reasoning techniques in the Robot
Operating System (ROS) to reason on the input IoT data and determine the most appropriate
configuration. A recent survey discusses the maturity level of knowledge representation and
reasoning within the lifecycle of existing stream reasoning applications [41]
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Future Directions

Much attention is still required concerning logical reasoning to analyse and spread the evolution
in state-of-the-art open knowledge graphs. As discussed, performing reasoning may be prohibitive
in modern knowledge graphs if the full expressiveness of the underlying ontology is used. State-of-
the-art solutions focus on tractable fragments (e. g. OWL 2 profiles) to scale with large knowledge
graphs and ontologies; however, coping with these KGs still poses essential challenges in terms of
scale completeness and errors in the data. To assess how far the current approaches can take us, a
comprehensive analysis of reasoning methods with a combination of general-purpose open KGs is
necessary to understand the limitations in real-world settings. The combination of deductive and
inductive techniques [65], as discussed in Section 6.3, is key to tackling these challenges as it leads
to data and knowledge-driven techniques to, e. g., complement the evolving knowledge graph and
to identify and correct potentially wrong new facts [48].

Stream reasoning is a candidate to have a central role in making sense of evolving knowledge
graphs. In particular, expressive stream reasoners like Laser and LARS are candidates as formalisms
to capture the complex interrelations between dynamic, versioned, and temporal KGs (cf Section 1).
Similarly, it needs to be verified if existing languages like RSP-QL [63] are adequate for defining
transformation across EKG types. Moreover, as we envision a more prominent role for events [99],
agent-based reasoning methods are an important direction towards efficient methods to spread
and handle the evolution [234]. Finally, from an application/engineering standpoint, different
reasoning tasks may benefit from alternative KG encoding. Therefore, solutions like RSP4J [232],
ChImp [183], or the SR PlayGround [210] need to evolve to welcome EKGs as first-class citizens.

6.3 Learning
In machine learning, KGs or ontologies are often transformed into vector space known as embeddings
before use. KG embeddings are low-dimensional vector representations of entities and relationships
within a KG. Typical tasks over such embeddings are link prediction, KG completion, node
classification, query answering and data integration. Overall, we can distinguish two main families
of graph embedding approaches: transductive and inductive. In transductive approaches, all nodes
and relations are seen during training while new edges among seen nodes can be predicted at
inference time. Inductive approaches instead allow to train on one version of the graph and then
perform inference even with new nodes and edges introduced at testing time [8]. Therefore, when
dealing with evolving KGs, we can distinguish between approaches that try to adapt transductive
embedding methods to the case of dynamic or evolving graphs [43, 228, 249] and inductive methods
that try to learn from contextual information and metadata, e. g. attributes or recurrent structures,
high-level patterns that should allow inference even when the underlying data changes [89, 255, 58].

In the following, we first discuss existing continual learning approaches for embeddings of
time-varying KGs, which could potentially be used to analyse the evolution of KGs in the future.

Next, we discuss temporal embeddings, where instead of embedding changes to the KG, the
objective is to embed temporal information in vector space as well, therefore having a temporal KG
as input. This type of method inherently requires a different KG, one with temporal information.
Lastly, we discuss some applications of learning for KGs with the evolving nature in mind.

We aim to provide a high-level overview of learning with regard to evolving KGs but do not
claim to provide an in-depth survey of approaches. We specifically want to highlight known open
challenges at the end of this section.
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Continuous Embedding Learning

PuTransE provides a self-contained model, based on TransE, which builds on a metaphor of
“parallel universes” [228]. It trains several parallel embedding spaces using different subgraphs.
The retraining is then limited to some of the parallel universes instead of relearning the entire
representation. DKGE is another self-contained model [249]. In this approach, the embedding of
an entity consists of two parts, the embedding of the entity itself and its context embedding. Both
puTransE and DKGE deal with the changing graph as a whole, but their scalability to larger
graphs is limited. Song et al. [217] was one the first efforts regarding dynamic KG embeddings,
focusing on the addition of new triples on translation-based models, which the authors refer to
as enrichment. Cui et al. [53] present a transfer-based strategy for embedding generation for
newly introduced entities. This self-contained model is based on auto-encoders and scales well
with large graphs. Daruna et al. [54] extends and reformulates the principles of five main types
of continual learning methods not specific to KGs. These criteria are applied to KG embedding
models, each requiring a different kind of adjustment to fit the continual learning problem. All
three methods [217, 53, 54] can only deal with additions and not with deletions or modifications.
Lastly, the objective of Hamaguchi et al. [106] is slightly different. They rely on GNNs to generate
embeddings for unseen entities at testing time but do not update and reuse the embedding for
subsequent use.

All the methods above have drawbacks and there does not exist a go-to method so far to
embed KGs continuously. The big challenges are (1) deterioration of the task performance as the
embedding is updated and (2) dealing with deletions of triples or nodes.

Temporal Knowledge Graph Embeddings

The goal of temporal KG embeddings is to represent a time-annotated KG in a vector space. As
such, these methods are completely different from the methods dealing with evolving snapshots
of a KG. Many methods have been proposed for embedding temporal KGs and can be roughly
separated into four categories: geometric, matrix factorisation, deep learning, and model-agnostic
methods. There are some methods that are meant for dynamic temporal knowledge graphs;
however, they only consider additions, arguing that deletions are not necessary for temporal
knowledge graphs [148].

Geometric methods use geometrical transformations, such as translations and rotations, to
represent the KG elements, e. g. HyTE [56] as an extension of TransE for temporal knowledge
graphs: it incorporating time in the entity-relation space through a hyper-plane for each timestamp.
TeRo [125] and ChronoR [203] use rotation transformations by creating multiple representations
over time and creating time-dependent embeddings for relations respectively.

Matrix factorisation methods produce embeddings by decomposition tensors representing
the KG. While a KG is usually represented in a 3rd-order tensor, a temporal KG can be
represented in a 4th-order tensor, with the additional dimension representing time. For example,
TNTComplEx [141] extends ComplEx. One of the main peculiarities of the method is that it
distinguishes between non-temporal predicates and temporal facts.

Deep-learning methods exploit neural networks to learn the embeddings. For example, RE-
Net [127] learns temporal KG embeddings using a recurrent neural network, while [151] uses
convolutional neural networks to capture the time interaction between facts.

Finally, model-agnostic methods can be applied to time-agnostic KG embedding methods to
add the temporal dimension. For example, the Diachronic Embeddings [96] represent the entity
as a function of time and entity, while [145] provides a framework to extend methods to deal with
arbitrary time granularities.
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Applications of Learning on Evolving Knowledge Graphs

Learning on evolving KGs has been extensively used for completion and data integration tasks.
Here, we aim to present some examples, not a complete overview.

Completion. Completion is the problem of inferring missing links in a knowledge graph. In
recent years, many approaches have been proposed to address completion through KG embeddings.
There, the completion problem can be targeted through the link prediction task, i. e. finding a
missing element of a statement given the other two, or question answering, i. e. discovering unseen
links through approximate query answering. However, KG completion also includes other tasks,
namely triple completion, node classification, and relation prediction [212]. Many of the methods
presented above have been proposed for the purpose of KG completion and also tested with that
task specifically. Shen et al. [212] provide an up-to-date overview of approaches in this area
without considering KG evolution. They divide the existing approaches into those only relying on
structural information (the knowledge graph) and those that also make use of additional resources.
Additionally, some more specialised approaches deal with temporal KGs and their embeddings,
commonsense KG, and hyper-relational KGs. Since our goal is not to provide such an overview, we
refer to the work of Shen et al. [212]. Other surveys, which might not cover all of KG completion
like Rossi et al. [200] who only focus on link prediction or Wang et al. [244] who focus more
on the embedding methods and their application. Lastly, Gesese et al. [94] gave an overview of
approaches which specifically deal with literals.

Question answering. Then there are the approaches that are more specific for approximate
query answering, though they can also be seen as KG completion approaches. When not using
the graph information directly, it is possible to answer queries approximately by making use of
implicit information, the same as with KG completion. These can be presented in a transductive
[160, 49] or inductive setting [88]. There are emerging question-answering systems that target
time-related questions. For example, Jia et al. [123] propose TEQUILA, a system that enriches
question-answering systems with temporal question-answer capabilities. Three years later, Jia et
al. [124] created EXAQT, which answers questions using graph convolutional networks enhanced
with time-aware entity embeddings. Otte et al. [173] propose a question-answering system that
exploits an ensemble of diachronic temporal KG embeddings.

Data integration. An important practical application of graph embeddings lies in their usage
for data integration tasks on KGs. This has been particularly impactful in bio-medicine, where
data has been accumulating at an unprecedented rate and where efficient solutions for uniformly
integrating and processing them are particularly needed. The work in [72] introduces a semantic
KG embedding approach for biomedical data. As such, the authors focus on integrating biomedical
literature, e. g. MedLine and PubMed, with ontologies used to contextualise KG entities. At a
larger scale, a case in point of KG data integration with embeddings is the Bioteque knowledge
graph [85]. This integrates data from 150 sources and comprises 450K biological entities and 30M
relationships. To reduce dimensionality, while still capturing the various types of relationships
between entities, specific node embeddings are defined.

Future Directions

When it comes to continuous learning of KG embeddings, in light of an evolving KG as input,
there are three main challenges still open. From previously published approaches, the deterioration
of task performance is a known problem when continuously learning as new information arrives.
Here we can also draw parallels to catastrophic forgetting in other continual learning tasks without
KGs. Additionally, most approaches currently available for the continuous learning of embeddings,
do not consider deletions but only additions. Therefore, being able to handle all manners of
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changes when embedding evolving KGs is an open challenge. Lastly, studies presented often only
deal with a small number of updates to a KG, and hence, investigations are limited and need to
be investigated at scale.

Embedding temporal knowledge graphs gained attention in recent years, and it is not at the
same level of maturity of embedding techniques for knowledge graphs. One challenge lies in the
definition of temporal knowledge graph, which is not standardised. Existing studies on the topic
consider knowledge graphs where the temporal information is represented differently (see Section
5.1) and can have different semantics, e. g. time intervals where the fact is true or time instant
where an event starts. Moreover, there is no set of well-defined and shared tasks, e. g. most
studies focus on slightly different variations of the completion tasks, where time can or cannot
be predicted. As a consequence, the existing methods are hardly comparable. Therefore, we
envision the creation of de-facto standard datasets and tasks, which can help consolidate existing
techniques and drive this research trend.

In parallel, as also mentioned in Section 6.2, there is an opportunity to enrich temporal
knowledge graph embedding methods with deductive techniques. Specifically, in future, we
expect novel research that combines embeddings, which are effective in capturing the structural
information stored in a knowledge graph, with temporal logics, which have proven a robust solution
to manage and reason on the temporal information.

By embedding a KG into a vector representation, we can potentially learn more about the
evolution of the KG and conduct longitudinal analyses, e. g. of concept drift. However, due to the
stochastic nature of the learning process, this remains a large open challenge, until the stochasticity
problem is resolved to some extent [181]. We see a large number of open challenges when it
comes to applications relying on embeddings of evolving KGs. Currently, we lack techniques and
approaches for embedding-dependent tasks to be able to handle the changing KG without losing
in performance or requiring complete recalculations. We can, however, also look at this from a
slightly different perspective, that of the impact of evolution on these applications. When these
applications first involve the learning of an embedding, it becomes extremely difficult to judge
and capture the impact of evolution [181]. However, judging impact should not only be based on
benchmark performance but rather the real impact in terms of changes to predictions. Therefore,
we see an open challenge in analysing the performance of evolving tasks not in terms of metrics like
mean-reciprocal-rank or accuracy, but rather the changes to the individual predictions. Approaches
like inter-rater agreements may be useful for analysing localised changes in predictions [93].

6.4 Exploring Evolving Knowledge Graphs
When it comes to managing and analysing KGs, their heterogeneity constitutes both a defining
characteristic and a challenge. In particular, both the contents and the schemas of these graphs
have become less and less familiar even to domain experts and almost impenetrable to first-time
users, leading to a rising need for exploratory methods for knowledge graphs [149, 150]. Knowledge
graph exploration [149] is the machine-assisted and progressive process of analysis of a KG leading
to (1) the understanding of the structure and nature of the graph, (2) the identification of which
portion of the KG can satisfy the current information need, and (3) the extraction of insights that
enable the formulation of novel research questions and hypotheses. These goals translate to three
main tasks: (i) summarization and profiling, (ii) exploratory data analytics, and (iii) exploratory
search. Looking at the dimension of evolution (Figure 1), we see that time adds a new dimension
to the data to be explored and becomes a subject of exploration by itself when we explore how
the structure (and not only the content) of the KG evolves and can provide new information that
can then in turn guide the exploration.
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Data profiling is the simplest form of exploration providing descriptive statistics and analysis
about a given dataset. Typically, profiling tasks include counting the number of classes and their
instances, summarising value distributions for specific (numerical) attributes, and they also identify
important descriptors of the structure of the graph, e. g. node degree distribution [154]. There are
also structural summarization [47] and pattern mining tasks [257, 194] to facilitate understanding
the structure of the graph and to obtain concise representations of the most salient features of
their contents. Profiling an evolving KG will provide insights into its structural changes through
time, yet, only a few works scratch the surface of profiling KG evolution [76, 32]. They focus on
analysing the statistical dataset characteristics at different snapshots [76], while more recent work
started proposing algorithms to incrementally compute and update structural graph summaries
defined as equivalence relations [32]. Therefore, to date, how to extend existing methods to
tackle the challenges of scalable and continuous profiling of evolving KGs is still an open question.
Moreover, as described above (Section 4.1), we are missing methods that can concisely summarise
the results of a longitudinal analysis of the evolution of the schema and main characteristics of
the dataset.

Exploratory analytics, is similar to data profiling since it is an iterative process of extracting
aggregate information from portions of the graph, similar to a localised data profiling task [3,
51, 116]. The typical focus is to provide functionalities equivalent to those of multi-dimensional
analysis that exist for relational data. Here, we see the need for analytical methods that can
effectively include the temporal dimension in exploratory analytics, both when time is part of the
data, as well as when time is treated as metadata. In this regard, we have recently witnessed a
proposal to allow aggregation both at the attribute and at the time dimension [133, 239]. This
is especially relevant since it offers the opportunity to employ exploration strategies that can
guide the user through the evolution of the graph based on the identification of time intervals of
significant growth, shrinkage, or stability of certain attribute values.

Finally, Exploratory search supports information needs that can be answered by retrieving
specific entities, relationships, or paths. Exploratory queries change the traditional semantics
of the search input: instead of strictly prescribing the conditions that the desired result set must
satisfy, they provide a hint of what is relevant [149]. In these cases, the system should become an
active agent able to suggest or infer query reformulations, refinements, and suggestions to help
the user in their navigation. On the one hand, we see the need to help users explore the evolution
of a given entity, e. g. identifying the most relevant changes w.r.t. a given stable state. On the
other hand, the question is whether tapping into the analysis of the evolution of the KG, this
information could be used to provide better suggestions or refinements. Overall, the methods
designed to allow for query processing over evolving graphs (see Section 6.1) can still be used
under the hood to enable exploratory search. Yet, to date, no method actively accounts for the
rate and evolution of given entities and substructures when computing query suggestions to help
the user in their exploration.

Future Directions

In summary, we identify both the need for new exploratory techniques that take into account the
temporal dimension, and at the same time we highlight how existing techniques need to face the
computational challenges posed by a KG that is not static anymore but dynamic. In particular,
we postulate the need for new KG profiling techniques that apply longitudinal analysis to the
data model in the KG through its lifespan. Furthermore, they see the need for methods that
can understand trends in graph-centric measures and can efficiently compute and measure their
evolution over time while the graph evolves. Finally, we ask which signals can be extracted from
the observation of the evolution of the graph that can be exploited as a signal to help users identify
interesting information and to identify methods to assist users in navigating more easily through
an unfamiliar KG.
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7 Summary and Conclusions

While KGs are gaining attention overall, the analysis and management of their evolution is still
a “less conquered” territory in research. The present paper encourages us to look closely at
KG evolution and make it a more prominent subject in our research. After emphasising that
different types of KGs likely have very different change and evolution characteristics, we motivated
various dimensions of looking at the evolution of KGs. We started investigating how known static
structural analyses of KGs can be considered in a dynamic context, exploring the evolution of
quality and consistency over time, to specific aspects related to dynamic collaboration processes of
KG contributors, and finally, semantic drift in KGs. We provided an overview of publicly available
KGs and, specifically, the availability of historical longitudinal data about their evolution that
could serve as a starting point for analyses, as well as an overview of already existing studies.

We identified a research gap in terms of specific metrics for studying KG evolution in different
dimensions; here, in the future, we will need to address concerns regarding the application and
adaption of static metrics for longitudinal and time-series analyses on KGs. In particular, regarding
the analysis of KG consistency over time, we have sketched viable approaches in Section 4.2;
however, these have not yet been applied in an analysis of KG evolution, presenting a notable
research gap.

Finally, we had a detailed discussion about the metrics and techniques that can be applied to
analyse KGs. We suggested exploring more methods not commonly used in our community but
well-established in other fields, such as network science. This field has a long-standing tradition of
analysing large-scale networks’ structural and dynamic aspects. Given the extensive reach and
rapid growth of KGs, it is imperative to implement similar methods in our field. However, we
should remember that these methods may require adaptations due to the “multi-level” network
characteristic of KGs, as they can be viewed as overlaid networks encompassing all their properties.

We further discussed challenges related to different graph representation models and storage
strategies for the extraction/construction of dynamic KGs. They focus mainly on the interoperab-
ility of the different ways time is captured in evolving KGs, different schemas and their mapping
to each other, and how these could be integrated in the future, for instance in standardised ways
to query evolving KGs. Regarding storage, currently, different storage solutions facilitate different
types of analyses. Still, in the future, we hope to see storage solutions enabling the storage of
dynamic and versioned graphs to enable all kinds of analyses.

The popular downstream tasks when using knowledge graphs, such as querying, reasoning, and
learning, can benefit from considering the evolution of knowledge more explicitly. Considering
the temporal dimension as a first-class citizen at the query level opens the possibility to specific
operators for retrieving data about time, through time, and in time. In the future, we can
expect further extensions of SPARQL and other LPG-specific query languages to support these
operators, ideally combining temporal, versioned, and continuous flavours in more comprehensive
query languages. Similarly, reasoning is affected by evolving knowledge. On the one hand,
there are new algorithmic challenges, e. g. how to maintain a materialisation incrementally and
reactively (on time). On the other hand, considering temporal logics at a fundamental level could
enhance reasoning over evolving KGs and their schemas over time. KG evolution can also provide
additional signals for training machine learning models, capturing dynamic processes. However,
respective approaches that for instance capture updates in learned embeddings, are still lacking in
performance and scalability to be helpful in practical analytical use cases. Finally, we envision
querying, reasoning, and learning to be fruitfully combined to overcome individual weaknesses
for managing, processing and analysing evolving KGs, eventually creating new applications and
services. While such combinations have been studied for static KGs, we expect and hope to see
more studies in the future that consider the evolving knowledge case.
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In the following list, we summarise the most important future directions and open challenges,
in particular about learning more about and understanding how knowledge evolves in open,
general-purpose KGs:

Systematic analysis of open general-purpose KGs along various dimensions of evolution such as
dynamics, timeliness and monotonicity, but also structural, semantic and collaborative aspects
making use of approaches such as time-series analysis and network science.
Principled approaches to create evolving subsets of KGs in evolution for specific benchmarking
tasks would be dearly needed to better understand these tasks “in evolution”.
Further development of metrics for measuring and understanding knowledge evolution in KGs,
specifically capable of handling outliers and the complexity and size of the known KGs.
Interoperability between different KG models, mainly RDF and LPG, and query languages that
support these to enable better and complementary analyses of temporal KGs.
Development of adaptive approaches and respective querying capabilities to store dynamic
and versioned KGs simultaneously, making it possible to apply any analysis (time-series and
constraint-based) on the evolving KGs.
The combination of deductive and inductive techniques [65] is necessary to tackle challenges
with reasoning (scale, completeness, errors) as it leads to data and knowledge-driven techniques.
For example, one may complement the evolving knowledge graph and identify and correct
potentially wrong new facts.
Development of novel continuous embedding approaches and methods for embedding temporal
KGs, i. e., the study of concept drift with large evolving KGs from different perspectives
becomes a new open challenge.
Tackling the computational challenges of existing exploratory techniques and the development
of new ones specifically facilitating longitudinal analysis through, e. g. graph-centric measures
to help navigate the evolution of an unfamiliar KG.

In summary, we have performed an extensive survey of evolution in KGs - significantly
more extensive than initially expected. From this survey we conclude that KG’s evolution is
apparently a field that – while having already attracted a lot of attention – remains to have
various open questions. The authors hope we motivated the readers to work jointly on more
in-depth investigations and more standardised, agreed-upon methods of capturing and dealing
with Knowledge (Graph) Evolution as well as newer methods for analysis as identified in this
work.
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Abstract
Graph summarization is the process of computing a
compact version of an input graph while preserving
chosen features of its structure. We consider seman-
tic graphs where the features include edge labels
and label sets associated with a vertex. Graph sum-
maries are typically much smaller than the original
graph. Applications that depend on the preserved
features can perform their tasks on the summary,
but much faster or with less memory overhead,
while producing the same outcome as if they were
applied on the original graph.

In this survey, we focus on structural summaries
based on quotients that organize vertices in equiv-
alence classes of shared features. Structural sum-

maries are particularly popular for semantic graphs
and have the advantage of defining a precise graph-
based output. We consider approaches and algo-
rithms for both static and temporal graphs. A
common example of quotient-based structural sum-
maries is bisimulation, and we discuss this in detail.
While there exist other surveys on graph summariza-
tion, to the best of our knowledge, we are the first
to bring in a focused discussion on quotients, bisim-
ulation, and their relation. Furthermore, structural
summarization naturally connects well with formal
logic due to the discrete structures considered. We
complete the survey with a brief description of ap-
proaches beyond structural summaries.
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12:2 Structural Summarization of Semantic Graphs Using Quotients

1 Introduction

Representing data as a graph is increasingly popular [45, 48], though the idea dates back to
at least the 1960s [5]. The strength of graphs as a data representation lies in their general
applicability and their focus on relationships between data points rather than just the properties
of the individual data points [45]. The same graph formalism can be used in various domains
ranging from relations in social networks, drug and protein interactions, connections between
terminals in a telecommunications network, pages on the World Wide Web, linked data on the
Semantic Web, and many others [45].

1.1 What are Semantic Graphs and Why Graph Summarization?

We are agnostic to the specific representation of graphs. We use the umbrella term semantic graph
for the kinds of graphs considered in this work. We assume that a graph is a collection of vertices
connected by directed edges. The vertices and/or edges may be labeled and one may perform
some semantic inference on them, e. g., generalizations and specializations [16].

▶ Definition 1 (Semantic Graph). A semantic graph is a finite, directed, labeled graph G =
(V, E, ℓV , ℓE). Here E ⊆ V × V is the edge relation, and the functions ℓV : V → ΣV and
ℓE : E → ΣE label the vertices and edges, respectively.

We also refer to the value ℓV (v) as the type set of a vertex, and we use the function ℓE to
define the property set of a vertex, which is defined over its outgoing edges. Some variants of
graph summarization also consider incoming edges (we discuss these in Section 3).

▶ Definition 2 (Property Set). The property set of a vertex v in a semantic graph G is the set
{ℓE(v, w) | (v, w) ∈ E} of labels on its outgoing edges. We abuse notation and write ℓE(v) for the
property set of v.

A semantic graph may be represented as a Resource Description Framework (RDF) graph [24],
labeled property graph (LPGs), or some other approach. RDF graphs do not directly support
vertex labels, but rdf:type edges can be used to simulate these, so RDF graphs and LPGs can be
transformed into one another [8]. A comprehensive overview of different kinds of semantic graphs
is given by Hogan et al. [48] under the term “Knowledge Graphs”. The term was coined in 2012
by Google as part of its knowledge representation and web search service extended by contextual
knowledge such as mapping queries to persons, companies, etc.

Classical graph algorithms focus on finding structures such as shortest paths or minimum
spanning trees, or invariants such as treewidth or chromatic number. In the context of graph-
structured data, the focus of algorithms shifts from the graph per se to the data it represents.
Typical tasks on such graphs include mere querying of the data, but also estimating cardinalities
for queries in graph databases [77], subgraph-based indices for data search [59], data modeling
recommendation [87], schema induction [99], data exploration [80], data visualization [41], and
related entity retrieval [22].

The motivation for graph summaries lies in the growing size of semantic graphs. As the graphs
can be extremely large, tasks become computationally expensive and might require a large amount
of memory. Structural graph summaries have been developed as useful abstractions of large graphs
to solve tasks more efficiently. A summary of a graph G is a smaller graph S, which retains the
information from G that is required to perform the desired tasks, but which discards information
that is not needed, and which may represent the retained information more compactly.
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Example

Suppose we wish to count solutions to queries on a graph database G such as finding all
students studying the same course, or all books in the same genre by the same set of
authors. Many vertices in the graph G may be equivalent from the point of view of the
queries. Hence, we can summarize the graph by merging each set X of equivalent vertices
into a single vertex vX that is labeled with the cardinality of X. In doing this, we lose
the ability to answer certain queries that could be answered on the original database. We
can no longer distinguish between vertices that have been merged, and we no longer know
their identities. But we can still answer our class of counting queries, and we can do so
by processing a much smaller graph – graph summaries are typically orders of magnitude
smaller than the original graph, measured in numbers of edges [19].

Summary graphs can be constructed in several ways. The survey by Čebirić et al. [19] classifies
existing techniques into structural, pattern-mining, statistical, and hybrid approaches. A broad
overview of these summarization approaches can be found there. In this paper, we focus on
structural approaches based on quotients, due to their versatility and popularity for summarizing
semantic graphs. The idea here is to partition the vertices into equivalence classes, assigning
each vertex to exactly one equivalence class. These equivalence classes are used as the vertices
of the summary. A structural summary is again a graph that can be used to answer a given
application task exactly [19], i. e., as if it were executed on the original graph. Structural graph
summaries defined using quotients [20] are closely related to k-bisimulation [53,88]. Many summary
approaches for semantic graphs are in fact stratified bisimulations.

Such structural summaries are “lossless” with respect to the features defined in a summary
model: selected features of the original graph are accurately preserved to allow the task to be
exactly computed on the summary. The features preserved by the graph summary are defined in
the so-called graph summary model. Summaries can also be “lossy”, only allowing the task to be
approximated on the summary.

1.2 What is a Task, a Graph Summary, and a Graph Summary Model?

Since different works and communities deal with graph summarization from different perspectives,
we first need to provide a high-level clarification of the basic concepts. This shall provide the
reader with an intuition about the nature of graph summaries and how they are used. The basic
definitions are of a task (in the context of a graph summary) as well as the graph summary and
its model, based on Blume, Scherp, and Richerby [10].

▶ Definition 3 (Task). Given a graph G, a task T applied on G is a parameterized function
TΨ : G → Y that maps the input graph G to a task-specific range of values Y .

The set of parameters Ψ and the output of the function T , (the range Y ) are specific to a
given application domain.

Example Task

For cardinality estimations of queries on the graph G the range Y is N+ and the parameter
Ψ is the graph-based query Q for which the cardinality is to be estimated [77].
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▶ Definition 4 (Graph Summary Model). A graph summary model is a tuple M = (EQR, Φ, PAY),
where EQR specifies an equivalence relation on graph vertices, Φ are model parameters, and PAY
is a set of task-specific payload functions. They are computed during summarization and their
output is included in the summary.

Structural approaches summarize a graph G w.r.t. an equivalence relation EQR ⊆ V × V

defined on the vertices V of G [14, 19]. The vertices V (S) of the resulting summary graph S

correspond to equivalence classes of the equivalence relation EQR, and to equivalence classes of
subsidiary equivalence relations used in the definition of EQR – see Figure 1.

Example Summary Models

Example graph summary models are the attribute-based collection [18], where the EQR
defines vertex equivalence based on having the same set of labels of the outgoing edges. In
contrast, the class-based collection [18] is defined by an EQR that groups vertices sharing
the same vertex labels. There are also summary models that require both attribute and
class equivalence [22,59].

The model parameters Φ are applied to control the output. Φ can, e.g., limit the maximum
summary size (in terms of number of vertices or edges), the weights assigned to some graph
elements (preference for certain edges or vertices), or the minimum support of subgraph structures
summarized by S [19]. PAY describes what information must be stored about the summarized
vertices to allow the task T to be answered using the summary.

Example Payload Functions

In a data search task, such as in the first example, the set PAY contains one payload
function to compute cardinalities of the search results. Another commonly used payload
function for data search is computing the set of data sources (URIs where the results can
be found on the web) [43].

Different summary models serve different tasks. While a structural summary is a lossless
representation of the input graph with respect to the features defined in a summary model,
different summaries (with different payloads) will be needed for different tasks. Thus, the choice
of features and the tasks have to be aligned. Finally, based on the graph summary model, we
define the Graph Summary:

▶ Definition 5 (Graph Summarization). A graph summarization is a parameterized function
CM : G → S that computes a representation of the input graph based on a graph summary model
M = (EQR, Φ, PAY). The summary S preserves (selected) features of G in accordance with M .
Note that S also contains the output of the payload functions PAY.

For the full definition of a graph summary with respect to a graph summary model, see [10].
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GP: QP: SP:

Figure 1 A colored Petersen graph GP (left) quotiented (center, QP; see Section 3) and summarized
(right, SP). The graph summary model defines two vertices of GP to be equivalent if they have the same
color and are adjacent to the same set of colors.

Example Summary of the Petersen Graph

In Figure 1, the semantic graph GP to be summarized is a colored version of the Petersen
graph. In this case, the graph is undirected and has vertex labels (the colors) but no edge
labels. We use a graph summary model that defines two vertices of GP to be equivalent
if they have the same color and are adjacent to the same set of colors. There are four
equivalence classes: the red vertex with only green neighbors (the top vertex), the three
red vertices with green and blue neighbors, the three green vertices with red and blue
neighbors, and the three blue vertices with red and green neighbors.
In the summary graph SP, these “primary” equivalence classes are on the left-hand side;
the vertices on the right are “secondary” equivalence classes of the “same color” relation,
which is used to define equivalence of the neighbors. In this example, there is no payload,
but payload would be stored as labels of additional vertices connected to the primary
equivalence classes.

1.3 What is Not a Graph Summary!

Graph summarization is distinct from other related concepts, some of which also use the term
summarization, but to mean something different.

The goal of compression is to allow the original graph to be exactly recovered (in the case of
lossless compression, for example, RDF HDT [38]), or approximately recovered (lossy compression).
Thus, compression must retain (or approximately retain) all information in the graph. Another
term in this context is “corrections” [58, 89]. Again, the goal is to (incrementally) compute a
lossless compression of a graph by determining a so-called corrections set, i. e., a set of edges that
must be added or removed to reconstruct the original graph [58, 89]. Another work on graph
compression is by Hajiabadi et al. [44], who propose an approach to reconstruct a graph exactly
(lossless) or with a small error (lossy). In contrast to compression and correction, summarization
only retains the information that is needed for specific tasks.

An intermediate operation between summarization and compression is graph contraction [34],
which uses the graph-theoretic concept of contraction minors [25]. Contraction makes graphs
smaller by replacing regular structures such as cliques and paths with “supernodes”. Each
supernode is annotated with a payload and a mechanism for recovering the original graph. This
can also be done hierarchically, to produce even smaller graphs [35]. Compared to summarization,
this only operates on parts of the graph; on the other hand, the entire graph can be recovered if
needed, so the contracted graph is not task-specific (albeit that tasks that can be performed using
the payload of the supernodes, without expanding out the graph, will run faster).
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Further related research areas are graph transformation systems, graph rewriting, and model-
driven engineering [30]. These approaches have in common that they have rules and mappings to
manipulate input graphs to a desired output graph, e. g., to merge adjacent vertices by preserving
(hyper-)edge structures [57,81]. In general, the difference between structured graph summaries
and the communities of graph transformation and graph rewriting is as follows: The goal of
summarization is to provide concise representations of the input graph G while preserving specific,
defined features (e. g., structural features like which edges are attached to a vertex). The focus of
graph rewriting is to perform operations on the graph to transform G from one state to another
via rewrite rules. Nonetheless, graph summarization is an example of graph rewriting in the most
general sense.

1.4 Structure
The article is organized as follows: First, we consider applications of structural graph summaries
in Section 2. In Section 3, we introduce features and models of structural graph summaries for
static graphs that are based on quotients.

Bisimulation is a versatile and popular technique among structural graph summarization
models, which we discuss in further detail in Section 4. Logics are a natural partner of structural
summaries and this connection is discussed in Section 5. We consider graph summarization
approaches for temporal graphs in Section 6.

Finally, in Section 7, we briefly discuss alternative approaches to graph summaries that are
not based on graph quotients, such as pattern mining, and statistical approaches. We conclude
this article with a brief reflection, as well as an outlook on future directions and open questions.

2 Applications of Structural Graph Summaries

Many different structural graph summaries have been developed to solve different tasks [6, 18, 22,
23,41,53,59,71,72,77,87,88,91,95]. In the following, we describe four common applications of
structural (semantic) graph summaries in detail. These applications are typical applications for
managed graph database systems but also for the decentralized Semantic Web [1].

These applications showcase the universal nature of structural summaries. We connect the
applications with the basic notion of graph summarization by providing the specific definitions of
the graph summary model M being used in each application. These are the equivalence relation
EQR its parameters Ψ and equally important the set of payload functions PAY (see Definition 4).

2.1 Semantic Entity Retrieval
One application of structural graph summaries is to find semantically related entities in the
Semantic Web [22]. Entities on the Semantic Web are represented using vertices, each identified
with a unique IRI [29], and labeled edges indicate relations between them. Entities can have a set
of types, each of which is indicated by an edge labeled rdf:type to a vertex representing that
type. This graph data is typically stored as an RDF graph [1].

If two entities share the same set of RDF types and RDF properties (i.e., labels of outgoing
edges other than rdf:type), we can say they are semantically related [22]. Hence, we can create
a summary where the equivalence relation EQR represents that; i. e., it puts vertices in the same
partition if their RDF types and set of RDF properties are the same.

This structural graph summary summarizes vertices (entities), based on such structural
subgraph features. To find semantically related entities, we need to memorize the vertex identifiers
of each summarized vertex in the computed structural graph summary, this index gets created by
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a function from PAY and is part of the output of the graph summary. We can now use that index
for immediate retrieval of related vertices since all semantically related vertices are summarized
together.

A variation of this task would be when the graph is dynamic. In that case, there is an interesting
trade-off between recomputing the index, which can be costly, versus updating it in place, which
requires more index information to be kept and leads to a more complex implementation.

2.2 Cardinality Computation

Cardinality computation is often desired in databases [77, 84]. For graph databases, graph
summaries can be used as an index to look up how many vertices will be returned by certain
queries. If the graph summary is smaller than the original graph, as it usually is, the query runs
faster on the graph summary than on the database. This task is related to the semantic entity
retrieval task described above. However, for this purpose, we only need to memorize the number
of summarized vertices rather than all vertex identifiers. Hence, EQR would be the same, but the
function in PAY would only compute the counts, rather than keeping the full index.

A graph summary that memorizes the number of summarized vertices enables fast implemen-
tations of query size estimation [77]. Analogously to the semantically related entities task above,
expensive re-computation of the graph summary from scratch when the database changes can yield
an unwanted performance overhead, and hence a way to deal with online updates is necessary.

Knowledge bases often have a data schema or ontology that defines how entities should be
modeled. Structural graph summaries can help determine how many entities strictly follow that
schema, match the schema partially, or even contradict the schema. The stored numbers of
summarized vertices can be used as an indicator of data completeness [84]. It is often desired
to evaluate the evolution of data quality over time [84]; also in that case an incremental update
mechanism is needed.

2.3 Data Source Search

As part of data source search, one needs to find (sub)graphs in the Semantic Web that match a
given schema structure [43]. Structural graph summaries can be used as an index that memorizes
the location of summarized vertices on the Web. This is illustrated in Figure 2.

The EQR of the graph summary model in this scenario is defined such that it summarizes
vertices that have the same set of RDF types, and are connected by edges with the same labels to
target vertices with the same set of types, known as SchemEX [59]. The set of payload functions
PAY is in this case a cardinality count and memorizing the data source URIs.

With a graph query, the structural graph summary is queried to get the URLs of relevant data
sources. Then, the data sources are accessed to download the graphs matching the query. Search
systems like LODatio [43], LODeX [6], Loupe [71], and LODatlas [80] rely on structural graph
summaries to offer a search for relevant data sources or exploration of data sources.

To implement this task, we need to memorize the locations where each summarized vertex
appears, which is computed by a function in PAY. As the data on the Web changes [51], the
summaries need to be updated as well. In contrast to the previous two tasks, for data source
search we neither memorize vertex identifiers nor the number of summarized vertices but only
their location.
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Figure 2 Finding data sources on the Web using an index based on graph summaries (from [8]). A
structural query is executed over an index to identify relevant data sources (1). Subsequently, the data
sources are accessed to retrieve actual vertices (2).

2.4 Training Graph Neural Networks
Another application of graph summaries can be found in recent work by Generale, Blume, and
Cochez [39], who address scalability issues when training graph neural networks (GNNs) on larger
graphs. They suggest training the GNN on a summary, rather than on the original graph. The
summaries used in this case are actually quotient graphs (see Section 3), using either k-bisimulation
(see Section 4) or direct vertex attributes for EQR.

The machine learning task solved with this GNN is the prediction of vertex types. In the
normal training setting, the training set is a subset of the vertices of known type. The model
parameters are then optimized such that the outputs of the GNN, when passed through a classifier,
predict the correct vertex type for the test vertices. To evaluate whether the model works, one
uses it to predict the types of vertices outside the training set and compares these predictions
to the correct answer. An issue while training on the summary is that multiple vertices from
the original graph are in the same equivalence class and hence mapped to the same vertex in
the summary. Now, the difficulty is that we do not have a clear label for this vertex; it is not
the case that all nodes in the equivalence class have the same label, since this is not taken into
account when summarizing. The authors [39] suggest using a weighted multi-label classification
task during training where the labels are weighted by their frequency. To compute this label, we
need to collect the frequency of the labels of the vertices of each equivalence class, which is one of
the functions in PAY.

After training on the summary graph, the weights of the model are transferred back to the
original graph, where inference is performed to predict the types of vertices from the test set.
Inference can be done on the full graph because it is much faster than training and requires
much less memory. In some cases, this method of training can not only provide reasonable
results, but also the results can be improved if the model is further trained on the original graph.
This two-stage process can give better results than training only on the original graph, without
summarizing. To transfer the model weights, we include the index with the equivalence classes as
part of PAY.

A follow-up work by Bollen et al. [13] provides a theoretical foundation for the earlier work.
They prove that it is possible to create a specific graph summary that for a specific class of GNN
performs the same message-passing steps as on the original graph. In effect, this means that the
same outcome is obtained at inference time. The prior work is not covered by this proof because
the summary did not retain information about the cardinality of edges in the quotient graph, and
therefore the conditions for equivalence are not met. Error bounds for the approximation remain
open.
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3 Structural Summarization of Static Graphs based on Quotients

In Section 1, we introduced structural graph summaries as a condensed representation of a graph
based on some summary model. Our focus is on quotient-based summaries. For context, we first
define graph quotients.

▶ Definition 6 (Graph Quotient). Consider a labeled graph G, and an equivalence relation ≡ on
G’s vertices. The quotient of G w.r.t. ≡ is the graph Q defined as follows. The vertices are the
equivalence classes of ≡. Q has an edge labeled p from class c to class c′ iff G contains an edge
labeled p from some vertex in c to some vertex in c′.

Example

Recall Figure 1. There, vertices of the colored Petersen graph GP are defined to be
equivalent if they have the same color and their neighbors have the same set of colors.
This leads to four equivalence classes among GP’s vertices: the blue vertices (which are
all adjacent to both red and green), the green vertices (which are all adjacent to red and
blue), and what we will call type-1 (adjacent to green and blue) and type-2 red vertices
(adjacent only to green). These are the four vertices of the quotient QP, with the type-1
red vertex on the left and the type-2 on the right. The edges can be read off from the
descriptions of the equivalence classes, noting that each green vertex is adjacent to a blue
vertex, a type-1 red and the type-2 red.

Quotient-based summaries are constructed along similar lines, but the summary stores rela-
tionships between multiple equivalence relations, instead of just between the classes of a single
one. For example, the equivalence relation described above for the colored Petersen graph GP
defines the overall equivalence on vertices with reference to a second equivalence relation: that
which only considers the vertex’s color and not its neighbors. Blume, Richerby, and Scherp [10]
define a language, FLUID, for specifying such combinations of equivalence relations. We omit the
details here, as the following intuition suffices.

The input semantic graph is summarized using a primary equivalence relation, which is defined
in FLUID by a logic-like expression that combines secondary equivalence relations. The secondary
equivalence relations may themselves be defined by combining other secondary equivalence relations.

▶ Definition 7 (Summary Graph). The summary S of a graph G w.r.t. a summary model M has
a vertex for each equivalence class of each equivalence relation used in the definition of EQR
in M. Primary and secondary vertices correspond to primary and secondary equivalence relations,
respectively. Between these vertices, edges are added similarly to quotient graphs. Suppose
equivalence relation R is defined by combining equivalence relations, one of which is R′. Then
there is an edge labeled p from class c of R to class c′ of R′ in the summary graph if and only if
there is an edge labeled p in the input graph from some vertex in c to some vertex in c′.

This can be seen in Figure 1. The primary vertices are on the left of SP (equivalence classes of
“same color and same colored neighbors”) and the secondary vertices (“same color”) are on the
right. All edges are between a primary vertex and a secondary vertex.

In this approach to structural graph summarization, each vertex v of the input graph G is
represented by exactly one primary vertex pv in the summary graph S. The structure around v

in G that is used to determine v’s equivalence class is represented by the edges between pv and
secondary vertices, and edges between the secondary vertices. Structure around v that is not used
to determine v’s equivalence class is not represented in the summary.
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Bisimulation is a very common feature among structural graph summarization approaches, but
often the works on structural summarization using quotients and bisimulation do not explicitly
refer to each other. We discuss bisimulation in detail in Section 4, where we explain its relation to
summary models introduced in this section.

There are many structural graph summary models based on quotients, defining the features that
shall be captured by the summary, often targeted for solving one specific task [6, 22, 43, 71, 77, 80,
87,91,92]. Based on Blume et al. [10], we analyze existing structural graph summaries with respect
to the captured schema structure, i. e., what features of the input graph are used to summarize
vertices. This analysis complements existing surveys covering graph summaries [14, 19, 55, 66] and
the taxonomy is summarized in Figure 3. We distinguish features that only use triple information
(triple features), features that define how features of multiple vertices are combined (subgraph
features), and features that define explicit semantic rules such as joining and inference (semantic
rule features). Each group of features adds another level of complexity, i. e., intuitively, the
computational complexity of computing summaries grows when features of different groups are
used. There is no single graph summary model that supports all features. However, we see
common combinations of features. In the following, we summarize the graph summary models
along with the identified features.

Other features in quotient-based summaries include dependent compression [50], which sum-
marizes vertices v1 and v2 if and only if v1 is adjacent only to v2, or vice versa [50]. In another
variant of dependent compression, a set of vertices is grouped if they are connected to the same
set of other vertices in G [65].

3.1 Triple Features
Triple features are solely based on outgoing triples of vertices. A triple corresponds to a directed
edge between two vertices, namely the subject connecting to the object, which is labeled with the
predicate.

Edge Labels

To compute the equivalence of two vertices s and s′ of G, we compare the triples where the subject
is s with those where the subject is s′. The most commonly used feature in structural graph
summaries is using properties to compute the schema of vertices. More specifically, for each vertex
s in the data graph the set of edge labels ℓE(s) is compared. For example, the graph summary
model attribute-based collections, due to Campinas et al. [18], solely relies on the sets of edge
labels to compute the graph summary. If vertices s and s′ share the same property set, i. e.,
ℓE(s) = ℓE(s′), they are considered equivalent, so are summarized together.

Vertex Labels

Another common feature is using the vertices’ labels to compute the summary. Here, for each
vertex s in the data graph, the so-called type set ℓV (s) is compared. If vertices s and s′ share
the same type set, i. e., ℓV (s) = ℓV (s′), they are considered equivalent. For example, class-based
collections (again due to Campinas et al. [18]) is a summary model, which uses only the vertices’
label sets to compute the schema. These are used, along with the attribute-based collections
described above, to implement a query recommendation system for SPARQL,1 that facilitates
working with heterogeneous datasets, especially when the schema structure is unknown.

1 https://www.w3.org/TR/sparql11-overview/

https://www.w3.org/TR/sparql11-overview/
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Summarization method

Quotient-based
Triple features (Sec. 3.1)

Edge labels
Vertex labels
Filtering labels
Neighbor identity

Subgraph features (Sec. 3.2)
Neighbor triples
Predicate path
Stratified bisimulation (highlighted in Sec. 4)

Semantic rule features (Sec. 3.3)
RDF Schema
OWL SameAs
OR combination
Related properties

Non–quotient-based (Sec. 7)
Non-quotient structural approaches
Pattern-mining approaches
Statistical methods

Figure 3 The taxonomy of features that are used in structural graph summarization, based on Čebirić
et al. [19]. These features are described in detail in the sections indicated, and can be summarized in
both static and temporal graphs. Section 3 introduces the different features of quotient-based methods.
Section 4 discusses stratified bisimulation methods in detail, as they are most prominent among quotient-
based methods. Section 5 further reflects on quotient-based summaries and their relation to logics, which
are by their nature orthogonal to the taxonomy. Quotient-based summaries for temporal graphs are
discussed in Section 6. The overview of summarization methods is complemented with a brief discussion
of non–quotient-based summarization methods in Section 7.

Filtering Labels

Tran et al. [95] proposed the feature of label parameterization for graph summaries. With the label
parameterization, only a subset of all edge labels is used to compute the schema. More precisely,
one defines a set of predicates Pl, the so-called label set, which are ignored when determining the
equivalence of vertices. Tran et al.’s graph summary combines property sets ℓE(s) with label sets.
Furthermore, they combine this with k-bisimulation (see Section 4 on k-bisimulation).

Neighbor Identity

The final triple feature uses the identity of outgoing neighbors Γ+(s) = {v | (s, v) ∈ E} to
determine the equivalence of vertices. It appears that no existing graph summary summarizes
vertices solely by comparing the neighbor identities. However, SemSets [22] summarize vertices
that share the same outgoing predicates, which are linked to the same vertices. To check if
vertices s and s′ are equivalent under SemSets, all triples where s or s′ are the subject vertices
are compared. For each triple (s, p, o) ∈ G there has to be a triple (s′, p, o) ∈ G, and vice versa.
Thus, they combine neighbor vertex identifiers Γ+(s) with predicate paths (see below).
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3.2 Subgraph Features
The neighbor vertex identifier is the most direct approach to incorporate neighbor information
and leads to a wider range of summary models that consider neighbor information, e. g., vertices
in Γ+(s). We classify features as subgraph features when they combine triple features of multiple
vertices.

Neighbor Triples

SchemEX [59], SchemEX+U+I [11], ABSTAT [91], LODeX [6], and Loupe [71] summarize vertices
s and s′ based on having a common type set and common edge labels linking to vertices with
the same type sets. This means that, to compute the schema of one vertex s, also the type sets
of outgoing neighbors Γ+(s) are required to be equivalent, i. e., we compare neighbor triples. In
contrast to SemSets [22], these approaches use not the neighbor vertex identifiers Γ+(s) but the
type set ℓV (o) for each o ∈ Γ+(s). SchemEX [59], SchemEX+U+I [11], ABSTAT [91], LODeX [6],
and Loupe [71] combine type sets ℓV (s), property sets ℓE(s), and neighbor type sets ℓV (o) for
o ∈ Γ+(s) using predicate paths, introduced next. This mapping can aid in recommending related
queries and generally for finding relevant data sources [43].

Predicate Path

Almost all analyzed graph summaries that use neighbor information combine the schema structures
using predicate paths, i. e., they compare which predicates link to which neighbors. Predicate
paths are compared based on the edge labels and type sets that appear along paths. For example,
SchemEX [59], SchemEX+U+I [11], ABSTAT [91], LODeX [6], and Loupe [71] consider which
property links to which type set. TermPicker [87] follows a different strategy to integrate the
schema of neighboring vertices. TermPicker summarizes vertices s based on having the same
type set ℓV (s), the same property set ℓE(s), and the same set of types among the neighbors,
{ℓV (o) | o ∈ Γ+(s)}. Consequently, TermPicker’s graph summaries compress all type sets of all
neighbors into a single type set. Thus, TermPicker’s graph summaries do not contain information
about which specific property linked to which neighbor.

Stratified Bisimulation

Many graph summaries compute the schema of vertices by taking into account the schema
of neighbors over multiple hops [53, 59, 83, 95]. This is commonly defined as a bisimulation.
Bisimulation operates on state transition systems and defines an equivalence relation over states [86].
Two states are equivalent (or bisimilar) if they change into equivalent states with the same type
of transition. Inductively, this means that applying an arbitrary sequence of transitions to two
bisimilar states will result in bisimilar states. Interpreting a labeled graph as a representation of
a state transition system allows us to apply bisimulation on graph data to discover structurally
equivalent parts.

In practice, many graph summary models define a stratified k-bisimulation, e. g., [53,59,83,
95]. When states are k-bisimilar, applying any sequence of k transitions to them will result in
equivalent states, but applying more than k transitions may lead to inequivalent states. Thus,
stratified bisimulation only considers paths of lengths up to k when determining equivalence. This
increases the chance that two vertices are considered equivalent.

Some graph summaries combine the feature of using only incoming or only outgoing properties
with the k-bisimulation feature [23, 72, 88]. This is referred to as backward k-bisimulation and
forward k-bisimulation, respectively [41]. The T-index of Milo and Suciu [72] supports path
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queries in semi-structured databases. This summarizes vertices s based on having the same set
of incoming property-paths, i. e., they use k-bisimulation only on incoming property sets ℓ−

E(s).
Consens et al. [23] propose a structural graph summary model to support navigational SPARQL
queries, so-called Extended Property Paths (EPPs). They summarize vertices s based on having
the same set of outgoing property-paths, i. e., they use k-bisimulation only on outgoing property
sets ℓE(s). In addition, for each hop, the type sets ℓV (s) have to be equivalent.

Stratified k-bisimulation is very popular in the summary models found in the literature. Often,
however, it is not referred to as such and/or the summary model is considering only the case of
the 1-bisimulation. Due to its importance for structural graph summarization, we discuss and
reflect on the k-bisimulation feature in detail in Section 4.

3.3 Semantic Rule Features in Graph Summaries
The last group of features for structural graph summaries defines explicit semantic rules. It
deals with RDF Schema (RDFS) reasoning, OWL’s owl:sameAs reasoning, as well as inference on
property sets in an OR-like fashion and via the inclusion of related properties.

RDF Schema

Several semantic structural graph summaries use RDF Schema inference to enhance their summaries.
ABSTAT [91] exploits RDF Schema type hierarchies to compute so-called minimal patterns. They
select the minimal number of types, i. e., they only keep the most specific types from the RDF
Schema type hierarchy. Goasdoué et al. [41] exploit RDF Schema type hierarchies, property
hierarchies, and RDF Schema domain and RDF Schema range. With domain and range, types for
the subject vertex and the object vertex can be inferred.

OWL’s SameAs

SchemEX+U+I [11] also uses the full RDF Schema inference but also exploits the semantics of
the owl:sameAs property. This property is part of W3C’s OWL [70], which is heavily used in the
context of RDF graphs. The owl:sameAs property defines an equivalence relation [70, Section
4.2], intended to identify vertices that represent the same real-world entity. To compute the
schema structure of one vertex v, the schema structures of all vertices v′ in the weakly connected
components in an owl:sameAs-labeled subgraph of G are merged (see Ding et al. [26] for details
on owl:sameAs networks).

OR Combination

Goasdoué et al. [41] define the Weak Summary using an OR-like combination. In the Weak
Summary, two vertices s and s′ are equivalent if they have the same outgoing property set and/or
the same incoming property set. This is not necessarily transitive, so the transitive closure is taken
as the equivalence relation. The authors also define a Typed Weak Summary, which combines
the Weak Summary based on properties with vertex types. There is also a variant of a Strong
Summary, which does not consider the OR-like combination. Details can be found in Goasdoué
et al. [41], see also the discussion in Blume et al. [10].

Related Properties

Goasdoué et al. [41] also propose to include property relations. Two properties p and p′ are source-
related if they co-occur in any property set ℓE(s) of any vertex s and they are target-related if they
co-occur in any incoming property set ℓ−

E(s) of any vertex s (i. e., the set {ℓE(v, s) | (v, s) ∈ E}).
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4 Structural Graph Summarization by k-Bisimulation

We introduced bisimulation in Section 3.2 as a means of defining equivalence of vertices in a
graph. Bisimulations are specific kinds of equivalence relations that classify vertices v and w as
equivalent if, for each edge (v, v′) with label p, there is an edge (w, w′), also with label p, where w′

is, recursively, equivalent to v′. Complete bisimulation extends this recursively to all distances from
v and w, whereas k-bisimulation only requires equivalence out to distance k. Forward bisimulation
considers outgoing edges to determine equivalence, as described above; backward bisimulation
is analogous but uses incoming edges; backward-forward bisimulation uses both. In addition to
edge labels, bisimulation may also be based on vertex labels or both, but this makes no principal
difference.

In complete bisimulation, for the vertices v and w to be bisimilar, their in-/out-neighbors
must be bisimilar as well. This recursive definition is, essentially, an equivalence relation defined
in terms of itself. Since there is only one equivalence relation, this naturally lends itself to a
quotient representation, as exemplified in Section 2.4. However, stratified bisimulations are more
commonly used for graph summarization, and lead naturally to quotient-based graph summaries,
as we discuss below.

4.1 Stratified Bisimulation to Paths of Length k

As real-world graphs are quite heterogeneous, there may be only a few bisimilar vertices [19] if we
consider full bisimulation. Thus, k-stratified bisimulation is often used, restricting the paths to
length k. This increases the possibility that two vertices are bisimilar and, overall, reduces the
size of the summary.

A k-bisimulation on a graph G considers features a distance at most k from a vertex that is
to be decided equivalent to another vertex [85]. Formally, this can be defined for the forward
bisimulation on the outgoing edges as follows (based on [85]). Backward bisimulation is defined
similarly.

▶ Definition 8 (Stratified Forward Bisimulation based on Edge Labels). The forward k-bisimulation
≈k

fw ⊆ V × V with k ∈ N is defined as follows:
u ≈0

fw v for all u, v ∈ V ,
u ≈k+1

fw v iff u ≈k
fw v and, for every edge (u, u′), there exists an edge (v, v′) with the same label

such that u′ ≈k
fw v′, and vice-versa.

For bisimulation with vertex labels, we modify the base case of the definition so that u ≈0
fw v iff

u and v have the same labels. Note that stratified bisimulation defines a hierarchy of equivalence
relations ≈0

fw, ≈1
fw, . . . ≈k

fw, in contrast to complete bisimulation, which defines a single equivalence
relation, recursively in terms of itself. Thus, stratified bisimulation is best suited to summarization,
rather than quotienting. When producing a summary for k-bisimulation, the relation ≈k

fw will be
the primary equivalence relation, and ≈0

fw, . . . , ≈k−1
fw are secondary.

Bisimulation stratified to paths of length k is a popular technique to compute structural graph
summaries, though often k = 1 is used. We give examples in Table 1 and discuss them in detail
in this section. Note that TermPicker [87] is a relaxed version of bisimulation. Conventional
bisimulation requires the same edge label to the same type of neighbor, whereas TermPicker just
requires the same edge labels and the same neighbor types, without the correlation.

4.2 Examples of Stratified Bisimulation for Graph Summarization
Efficient algorithms for bisimulation have been developed by Paige and Tarjan [78], Kaushik
et al. [53], Dovier et al. [27], Schätzle et al. [88], and others.
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Table 1 Example graph summary models based on bisimulation.

Summary model Depth Labels used Direction Application
Class collection [18] 0 vertex forward query recommendation
Attribute collection [18] 1 edge forward query recommendation
LODex [6], Loupe [71] 1 vertex and edge forward data exploration
SchemEX [43,59] 1 vertex and edge forward data search
TermPicker [87] 1 vertex and edge∗ forward modeling recommendation
Tran et al. [95] k edge backward-forward entity search
A(k)-index [53] k vertex backward general purpose
T -index [72] k vertex backward data indexing
Schätzle et al. [88] k edge forward general-purpose

( ∗ relaxed version of bisimulation; see text)

A notion of k-bisimulation w.r.t. graph indices is introduced by seminal works such as the
k-RO index [76] and the T-index summaries [72]. Milo and Suciu’s T-index [72], the A(k)-Index by
Kaushik et al. [53], and others summarize graphs using backward k-bisimulation. Qun et al. [83]
extend the A(k)-Index to a D(k)-Index, which is also based on bisimulation but focuses on query
optimization. To this end, the D(k)-Index dynamically adapts its structure according to the
current query load. Another work using stratified bisimulation is by Fan et al. [33], for reachability
and graph pattern matching on large graphs.

Conversely, the k-RO index, the Extended Property Paths of Consens et al. [23], the SemSets
model of Ciglan et al. [22], Buneman et al.’s RDF graph alignment [17], and the work of Schätzle
et al. [88] are based on forward k-bisimulation. Buneman et al. use forward k-bisimulation
to summarize the union of two consecutive versions Gunion = G1 ∪ G2 of an RDF graph with
respect to k-bisimulation, which puts vertices to be aligned in the same partition. As well as to
k-bisimulation, they use a similarity measure to further refine the initial k-bisimulation partition,
as it does not capture all vertices to be aligned. The focus of their work is the optimization of
the alignment process so that every node pair (v1, v2), with v1 ∈ G1 and v2 ∈ G2, which have
to be aligned is identified and not the construction of a k-bisimulation-based partition of G.
Schätzle et al. compute a forward k-bisimulation on RDF graphs in sequential and distributed
settings [88]. For a small synthetic dataset (∼1M RDF-triples) the sequential algorithm slightly
outperforms the distributed one; for larger datasets, the distributed algorithm clearly outperforms
the sequential one.

Tran et al. compute a structural index for graphs based on backward-forward k-bisimulation [95].
Moreover, they parameterize their notion of bisimulation to a forward-set L1 and a backward-set
L2, so that only labels l ∈ L1 are considered for forward bisimulation and labels l ∈ L2 for
backward bisimulation. However, similar to Buneman et al., the particular focus of their work is
not the construction of the bisimulation partition. Rather, they evaluate how one can efficiently
optimize query processing on semi-structured data using an index graph based on bisimulation.

There are also structural summarization approaches that determine vertex equivalence only
based on local information (k ≤ 1). As shown in Table 1, many of the summary models introduced
in Section 3.2 are actually very shallow bisimulations.

4.3 Distributed and Parallel Bisimulation
Luo et al. [67, 68] examine structural graph summarization by forward k-bisimulation in a
distributed, external-memory model. They empirically observe that, for values of k > 5, the
summary graph’s partition blocks change little or not at all. Therefore they state that, for
summarizing a graph with respect to k-bisimulation, it is sufficient to summarize up to a value of
k = 5.
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Martens et al. [69] introduce a parallel bisimulation algorithm for massively parallel devices
such as GPU clusters. Their approach is tested on a single GPU with 24 GB RAM, which limits
its use on large datasets. Nonetheless, their proposed blocking mechanism could be combined with
our vertex-centric approach to further improve performance.

5 Structural Graph Summarization and Logics

Logics are a natural framework for defining properties of graphs, queries on graphs, and trans-
formations between graphs. More specifically, logics can be used to define equivalence relations
on the set of vertices V of a graph, partitioning V into disjoint sets [10]. Thus, logics provide a
natural framework for defining structural graph summaries. The partitions and the relationships
between them are interpreted as summaries of the vertices, either in the sense of a quotient or a
structural graph summary. The question is what logics should be used to define graph summaries.

Since Fagin’s discovery [31] that existential second-order logic defines exactly the properties
of graphs in the complexity class NP, the field of descriptive complexity [49] has sought to
understand the relationship between the features of a logical language (e.g., the logical operators
and quantifiers it contains) and the computational complexity of the graph properties it can define.
A paradigmatic tension in descriptive complexity theory is the trade-off between a logic’s expressive
power and the computational cost of evaluating formulas [49,64]. Thus, we seek logics that are
expressive enough to define interesting summaries but not so expressive that summaries cannot
be computed in a reasonable time. To allow summarization of large graphs, it is essential that
formulas can be evaluated in polynomial time. For web-scale graphs, we need even more efficient
evaluation, which can be obtained by syntactically restricting the formulas that can be written,
e.g., by restricting the number of variables in formulas or using guarded fragments of the logics.
For example, evaluating a formula like ∃y P (y) requires searching the whole graph for a vertex
satisfying the predicate P , whereas, for a given vertex x, the guarded formula ∃y (E(x, y) ∧ P (y))
only requires us to search among x’s neighbors. We note that existing graph summaries are
typically expressible using guarded formulas, such as the neighborhood feature in FLUID [10] or
constraints on requiring certain vertex labels to appear with specific edge labels [99].

First-order logic (FO) is powerful but can also be evaluated efficiently. However, from analyzing
the existing graph summary approaches, we see that extensions to FO are needed to express more
complex summaries. For example, extensions with counting quantifiers [49, 64] can count vertices
and edges, and define vertex equivalences based on the number of neighbors of particular kinds,
rather than just the existence of such neighbors. This is required for pattern mining methods
with a min-supp threshold or summarizing vertices based on the number of edges having the same
label. Counting quantifiers and their expressive power have been extensively studied in descriptive
complexity [49,64] and similar ideas have also been introduced in graph pattern matching [36].
One can also express iterative constructs such as loops – as required for computing bisimulations –
by extending FO with fixed-point operators [49] or other recursive mechanisms such as those in
Datalog [21].

6 Summarization of Temporal Graphs

Existing structural graph summarization algorithms are often designed and/or evaluated using
static graphs only [6,22,66,77,87,91]. Few quotient-based structural graph summaries are designed
for evolving graphs [40,59].

There are two ways in which one could consider summarizing temporal graphs. First, we may
have a summary model that is not aware of time, and desire an algorithm that can update the
summary as the data graph changes, considering the changes as a sequence of versions of the
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graph. Second, the summary model itself may depend on temporal features of the graph – that is,
whether two vertices are in the same equivalence class may depend on their history, rather than
just on their current state. The second approach might use temporal logics to define the summary
model [2, 62].

The literature predominantly uses the first approach. Thus, we discuss algorithms that
efficiently recompute quotient-based summaries as a graph changes over time. Subsequently, we
present related approaches to incremental graph indexing and schema discovery. Indices are often
based directly on quotients, often as bisimulations. Schema discovery classifies vertices according
to their properties, naturally defining equivalence classes that can be quotiented.

6.1 Incremental Graph Summarization
Konrath et al. [59] compute their graph summary over a stream of vertex-edge-vertex triples.
They can deal with the addition of new vertices and edges to the graph but not the deletion
of vertices or edges, or modification of their labels. Similarly, Goasdoué et al. [40] present the
summarization tool RDFQuotient, which only supports iterative additions of vertices and edges to
their structural graph summaries, and does not handle deletions. Thus, these approaches are not
suited to updating structural summaries of evolving graphs. Goasdoué et al. also do not support
payload information, which is needed for tasks such as cardinality estimations and data search.
The purpose of their summaries is to visualize them to a human viewer. Finally, Blume, Richerby,
and Scherp [9] propose an incremental algorithm to update graph summaries that also takes
deletions and payload into account. Experiments on benchmark datasets show that using the
incremental algorithm is beneficial even if up to half of the graph has changed from one version to
the next.

6.2 Incremental Subgraph Indices
Often, graph databases use path indices, tree indices, and subgraph indices [46]. A seminal
approach to computing subgraph indices is DataGuide [42], implemented in the Lore database
management system (DBMS) [102]. A DataGuide is a graph index built incrementally while
executing queries on an XML database. It indicates to the query engine if and how a specific
path defined in the query can be reached. To this end, a DataGuide represents all possible paths
between two vertices in an XML file. While DataGuides operate on semi-structured data in terms
of XML trees, a guide is essentially quotienting the graph.

Tran et al. [95,96] took up this idea and applied it to quotienting RDF graphs. Representative
Objects (ROs) by Nestorov et al. [76] take up the ideas of DataGuides and are also implemented in
the Lore DBMS with focus on path queries, query optimization, and schema discovery. While the
Full ROs capture a description of the global structure of the graph, the authors also introduce a
notion of a k-RO. which only considers paths of length up to k. These are examples of bisimulation
in graph summarization.

We now consider incremental subgraph indices based on frequent pattern mining. These
techniques group graph patterns, similarly to structural summarization. For example, Yuan
et al. [104] (see also extensions in [52, 105]) propose an index based on mining frequent and
discriminative features in subgraphs. Their algorithm minimizes index lookups for a given query
and regroups subgraphs based on newly added features.

A work directly based on quotients is Qiao et al. [82] who compute an index of isomorphic
subgraphs in an unlabeled, undirected graph G. The goal is to find the set of subgraphs in G that
are isomorphic to a given query pattern. The result is a compression of the original graph that
can be used to answer, e. g., cardinality queries regarding subgraphs. This is for static graphs,
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but the algorithm of Fan et al. [32] can deal with graph changes for the subgraph isomorphism
problem. Their incremental computation of an index for isomorphic subgraphs is closely related
to structural graph summarization but, unlike in summarization, the graph pattern p is an input
to the algorithm, not the output.

Min et al. [73] propose an algorithm for continuous subgraph matching using a summary-like
data structure that stores the intermediate results between a query graph and a dynamic data
graph. They consider undirected graphs where only vertices are labeled. Dynamic graphs are
updated through a sequence of edge insertions and edge deletions. The TipTap [74] algorithm
computes approximations of the frequent subgraphs on up to k vertices w.r.t. a given threshold.
This is similar to a quotient, but vertices may appear in multiple subgraphs. It does this to count
occurrences of subgraphs in large, evolving graphs, modeled as a stream of updates on an existing
graph. Tesseract [7] is a distributed framework for executing general graph mining algorithms on
evolving graphs. It uses a vertex-centric approach to distribute updates to different workers. It
assumes that most changes affect only local graphs, so few duplicate updates need to be detected.
Tesseract supports the quotient-like ideas of k-clique enumeration, graph keyword search, motif
counting, and frequent subgraph mining.

Another area of incremental subgraph indices considers an evolving set of queries over a static
data graph. Duong et al. [28] propose a streaming algorithm using approximate pattern matching
to determine subgraph isomorphisms. They use k-bisimulation to determine equivalent subgraphs
and store them in an index. However, this index is computed offline for a static graph only and
their algorithm considers a stream of graph queries as input.

6.3 Incremental Schema Discovery
Another area related to quotient-based summarization is incremental schema discovery. Vertices
with the same schema are naturally equivalence classes that can be quotiented. Völker and
Niepert mine logical patterns in the Web Ontology Language from static RDF graphs [99]. Wang
et al. [100] incrementally discover attribute-based schemata from JSON documents. The schema
is computed incrementally as more documents are processed. Baazizi et al. [4] also compute
schemata from JSON objects, focusing on optional and mandatory attributes.

In addition to document-oriented formats like JSON, schema discovery is also used for graph
data. For example, XStruct [47] follows a heuristic approach to incrementally extract the XML
schema of XML documents. However, such schema discovery approaches cannot deal with
modifications or deletions of nodes in the XML tree. Other schema discovery approaches focus on
generating (probabilistic) dataset descriptions. Kellou-Menouer and Kedad [54] apply density-
based hierarchical clustering on vertex and edge labels in a graph database. This computes profiles
that can be used to visualize the schema of the graph. Recently, Bouhamoum et al. [15] used
density-based clustering to extract schema information from an RDF graph and incrementally
update the schema when new RDF instances arrive. While the work can deal with additions, the
deletion of edges and vertices is not considered.

7 Non-Quotient Graph Summaries

The methods for structural graph summarization discussed so far focus on analyzing the graph based
on pre-defined structural features such as paths and subgraphs encountered in the graph [10,19].
These structural graph summaries are based on quotient graphs [19] (see Section 3).

There are also structural summary models that are not formed from quotient graphs, which we
discuss below. Subsequently, we consider approaches for summarization based on pattern mining
and statistical approaches. The organization of the methods in these categories is taken from
Čebirić et al. [20].
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7.1 Non-Quotient Structural Graph Summaries
Non-quotient summaries do not use equivalence relations to summarize a graph. Rather, the
summary graph is composed of vertex summaries vs, which group together vertices v of the
original graph G according to certain criteria [19].

The main difference from quotient summaries discussed above is that, in the non-quotient
summaries, a vertex v can belong to zero, one, or multiple vertex summaries vs. In contrast, in
quotient summaries every vertex v has exactly one corresponding vertex summary vs, which is
the equivalence class of v under ∼ [19].

Early work on non-quotient summarization includes that of Goldman and Widom [42], who
created a vertex summary vs for every labeled path in the original graph G. A vertex v of
G is associated with a vertex summary vs if it is reachable by the corresponding label path.
The summary graph is used as a path index, as well as a tool for understanding the schema
structure in semi-structured databases, and hence finds application in query formulation and
query optimization. Revisiting the summarization tool SchemEX [59], its first layer – the RDF
class layer – consists of vertex summaries vscj

representing all the classes cj present in the
input RDF graph G. A vertex v of G is associated with a vertex summary vscj

, iff v is of the
corresponding type cj . Since a vertex v can have multiple types cj1 , cj2 , . . ., it is possible that v is
associated with several vertex summaries vscj1

, vscj2
, . . . and therefore the index’s RDF class layer

is considered a non-quotient summary. Kellou-Menouer and Kedad [54] perform schema extraction
by using density-based clustering to establish a partition of the vertices based on type profiles.
For each type Tj , a type profile TPj = {(label1, α1), (label2, α2), . . .} is constructed, consisting
of tuples of edge labels for outgoing edges (v, w) and incoming edges (w, v), with v ∈ Tj . The
associated probabilities αi denote how likely it is that a vertex v ∈ Tj has an edge with the
respective labeli. If a type profile TPj contains all entries (labeli, αi) of another type profile TPk

and every αi is greater than a certain threshold θ (e. g., θ = 0.6), then the vertices in Tk are
added to Tj to create overlapping classes. Clustering can be found in more structural non-quotient
approaches [56,63,75,98].

Other structural graph summarization methods that do not use quotients are based on
structural measures such as centrality. They identify the most important vertices, cliques, and
others, and connect them in the summary [19]. The difference from quotient-based summaries
is that some graph vertices may not be represented in the summary, i. e., the summaries are
approximate. Examples of summary methods using structural features are [79,97,107]. These guide
the summaries using vertex centrality measures [12] such as vertex (in/out) degree, betweenness
(how often a vertex lies on the shortest path between two other vertices), (k, h)-cores, and the
well-known information retrieval measures PageRank and HITS (based on eigenvalue analysis
over vertices), as well as further measures of vertex centrality such as those applied by Pappas et
al. [79].

7.2 Pattern-Mining Approaches for Graph Summarization
Pattern-mining approaches identify frequent patterns in the input graph G, which are then used
to construct the summary graph SG [19]. Song et al. [90] construct d-summaries to summarize a
knowledge graph G. A summary P , which is a graph pattern found in G, is considered a d-summary,
iff all the summary vertices u ∈ P are d-similar (Rd) to all their respective original vertices v ∈ V .
Informally, uRdv iff (1) u and v share the same label and (2) for every neighbor u′ ∈ P of u

connected over an edge with label p there exists a respective neighbor v′ ∈ V connected via the
same edge label and u′Rd−1v′. Their definition of d-similarity is very similar to k-bisimulation
(Section 4) and mainly differs in the domain on which it is defined, namely summary vertices and
original vertices.
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Pattern mining methods for graph summarization discover frequently occurring patterns in
the data [19]. Various algorithms exist for graph pattern mining, based either on the well-known
Apriori principle (e. g., [61]) or pattern-growth algorithms (e. g., [103]). These define a minimum
support (min-supp) threshold over subgraphs X ⊆ G. Only patterns that are frequent enough
are included in the summary. Pattern mining methods are approximate summaries of the input
graph G, as they do not include subgraphs that occur infrequently (thus, the summarization
function is no longer homomorphic). However, setting min-supp = 1 usually produces a lossless
summary, equivalent to a structural summary computation, as no subgraphs are omitted. Pattern
mining methods also have interesting features such as automatically mining specific types of
subgraphs like cliques, (bipartite) cores, stars, and chains [37,60]. While star-shaped subgraphs
and chains are in principle also supported by quotient summaries, the difference here is that the
selection of edges in star patterns and the length of the chains is determined in a data-driven
way, rather than being pre-defined in a summary model. Finally, some pattern mining methods
are also approximate because they use approximate methods such as locality-sensitive hashing
(LSH) to assign graph vertices to the summary [65]. This is an inaccuracy introduced by the LSH
function but not a characteristic of the underlying frequent pattern mining algorithms.

7.3 Statistical Methods for Graph Summarization
Statistical methods for graph summarization summarize the contents of a graph quantitatively
such as by counting occurrences of edge labels or computing histograms over the labels [19] and
define further constraints on the summary models. For example, in k-SNAP [94], the number k of
summary vertices in a summary graph can be specified by the user, which controls the size of the
summaries. The summarization operation k-SNAP [93] minimizes a function based on occurrences
of user-selected edge labels to produce a summary graph SG, which contains exactly k vertex
summaries. In its top-down approach, it starts by partitioning the graph based on user-selected
vertex attributes. Afterward, the algorithm splits elements (vertex summaries) of the partition
based on the aforementioned function, until the partition’s size is k. Combining the first step,
partitioning vertices by label, and the second step, minimizing a function that considers edge
labels, k-SNAP can be considered a hybrid approach, combining structural and statistical concepts.
CANAL is an extension of k-SNAP that supports numeric edge attributes [106]. Summarizing
edges labeled with numeric values is approached by bucketing the values into predefined categories.
Thus, the problem of supporting unbounded numerical values is reduced to summarizing graphs
with discrete categories only.

8 Conclusion and Outlook

8.1 Conclusion
We delved into the domain of graph summarization, a process aimed at generating concise
representations of input graphs while preserving specific structural attributes. Particularly, we
focus on structural graph summaries that can be applied to semantic graphs, i. e., labeled graphs
such as in the RDF or provided as labeled property graphs.

Different approaches and algorithms have been developed to address graph summarization.
Our focus has been on exploring the state-of-the-art methods for structural graph summarization
based on quotients. We have examined the relationship of structural summarization with other
pertinent fields, like the well-known k-bisimulation. A noteworthy observation is the natural
connection between structural summarization and logics, owing to the discrete structures under
consideration.
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Finally, there are also hybrid approaches for graph summarization. They combine features of
quotient-based structural and non-quotient statistical and pattern mining techniques [19]. One
such example is the combination of bisimulation with clustering [3]. Hierarchical complete-link
clustering is applied over vertex features to group the vertices. Similar, Wang et al. cluster paths
in a graph to compute an approximate summary [101].

8.2 Outlook
This research contributes to a deeper understanding of graph summarization techniques and opens
avenues for future advancements in this domain. As directions of future research, we see:
1. Multi summaries: Existing works summarize a graph with respect to a single, defined summary

model only. Multi-summaries compute multiple condensed representations of the input graph
at once, stored in a joined data structure.

2. Summaries on temporal graphs: while there are already graph summarization approaches for
temporal graphs, including incremental summarization [9], there is still a lot of work to be
done. For example, we are currently missing approaches for summarization of rapidly evolving
graphs such as social media graphs.

3. Task-specific learned summaries: Graph summarization addresses different application needs.
Example applications are outlined in Section 2. Interesting future work would be to automati-
cally learn which features of a summary model are most relevant to a task (in general) or to
the workload of a task (e. g., the kinds of queries executed in the data search scenario).

4. Exploiting modern hardware such as GPUs: We have already briefly reflected on parallel and
distributed computation of graph summaries in Section 4.3. First steps have been taken on
using GPUs but there is still a lack of research in this direction.

5. PyGraphSum: Each graph summarization model and algorithm typically comes with its own
implementation, datasets, and evaluation measures. Comparing different algorithms and
methods is difficult and cumbersome, as a common standard library for efficient distributed
summarization of static and temporal graphs is missing. A standardized library that is used
among industry and researchers alike will contribute not only to more transparency and
comparability of the different approaches but also accelerate research in the field by facilitating
reuse.
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Abstract
In this position paper, we propose that Knowledge
Graphs (KGs) are one of the prime approaches
to support the programming of autonomous soft-
ware systems at the knowledge level. From this
viewpoint, we survey how KGs can support differ-
ent dimensions of autonomy in such systems: For
example, the autonomy of systems with respect
to their environment, or with respect to organisa-
tions; and we discuss related practical and research
challenges. We emphasise that KGs need to be
able to support systems of autonomous software
agents that are themselves highly heterogeneous,
which limits how these systems may use KGs. Fur-
thermore, these heterogeneous software agents may
populate highly dynamic environments, which im-

plies that they require adaptive KGs. The scale
of the envisioned systems – possibly stretching to
the size of the Internet – highlights the maintain-
ability of the underlying KGs that need to contain
large-scale knowledge, which requires that KGs are
maintained jointly by humans and machines. Fur-
thermore, autonomous agents require procedural
knowledge, and KGs should hence be explored more
towards the provisioning of such knowledge to aug-
ment autonomous behaviour. Finally, we highlight
the importance of modelling choices, including with
respect to the selected abstraction level when mod-
elling and with respect to the provisioning of more
expressive constraint languages.
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1 Introduction: Autonomy

Knowledge exists in different forms and for different purposes. Some of this knowledge may
describe how the world or the universe works, and thus is ontological in nature: It describes what
entities exist, how they can be categorised, and how they relate to each other. This knowledge,
coupled with propositional knowledge (i.e., beliefs or assertions, which themselves may be true or
false), can be used by computational entities (e.g., autonomous agents), to take informed decisions
as to whether action is currently required. However, such knowledge does not typically describe
what an agent needs to do in order to achieve a specific goal, and cannot be directly used by an
agent to decide on what their next action or task should be. Conversely, knowledge may hence be
procedural, in that it describes how an agent can achieve a task, either in isolation or through
collaboration with other agents or services within its environment. This is analogous to, for
example, the use of a user-manual that contains information about how customers can assemble
their furniture by themselves, or the instructions for an espresso machine that allows the user
to independently diagnose and rectify malfunctions. Knowledge may also be normative [20] (i.e.,
expressing notions such as prohibition, permission, obligation, or dispensation), which can be used
to describe communities of agents and their inherent organisation (for example, when describing
institutions [63]). This knowledge may be represented by, for example, a charter for a group that
defines the mission of that group and the different roles that members may adopt, together with
corresponding obligations that constrain their autonomy to actions that are in conformance with
the group’s objectives; or the terms of use of a service such as an auction house that defines the
rules that must be followed when bidding for goods without explicitly hard-coding this behaviour,
thus allowing bidders to decide whether or not to comply with the rules – or to understand the
sanctions that may be imposed if the rules are violated.

These different types of knowledge sources hold much of the information necessary for agents –
natural or artificial – to facilitate their autonomy. To express such knowledge, the use of Knowledge
Graphs (KGs) [38] has gained prominence across numerous research areas and application domains,
due to its interconnected nature, expressivity, and the increasing variety of tools and techniques to
support querying and reasoning at scale. KGs build upon a graph representation whereby objects
(e.g., things, actions, tasks, affordances, methods, and capabilities) are represented as nodes and
the relationships between them as edges. This type of representation, instantiated in the Resource
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Description Framework (RDF) data model [22], has been used not only to represent ontological
definitions and propositional definitions, but also normative knowledge [33], as we discuss in
Section 4. As such, we claim that KGs are particularly useful in facilitating autonomy; KGs can be
used to identify the specific vocabulary needed to represent autonomy and the types of reasoning
tasks that are supported by the associated ontological models. This can be facilitated through the
development of KG schemas that model autonomous behaviour, including the definition of entities
(in terms of modules or fragments of hierarchical knowledge) that represent both static (e.g., agent,
object, or scene) and dynamic (e.g., task, goal, or action) aspects of autonomy. The possibility
to reuse and augment KGs promotes interoperability, which is further supported through the
existence of highly interconnected and expressive schemata.

Sharing the goal of making data machine-readable and machine-understandable, KGs are
well-aligned with the Semantic Web, which today consists of a plethora of knowledge sources
that are interlinked and discoverable through a variety of different mechanisms. This provides
more than simple access to static knowledge: Online services, data sources, and IoT devices that
perform actions and perceive their environment all make up a rich and dynamic resource that is
inherently human focused. This human focus is primarily due to the Web’s hypermedia-driven
interaction model that has already made much of the (human) Web content intuitively explorable
and usable by humans without specialised training. The emergence of the Semantic Web has
facilitated machine-oriented access and comprehension to much of this knowledge and, through the
integration of KGs, it has recently become an increasingly rich knowledge base that can support
autonomous behaviour by artificial agents, i.e., autonomous software systems, on the Web. Already
today, the Web enables a variety of heterogeneous stakeholders to achieve their goals; whether
they are reactive agents that are triggered to perform actions based on a set of preconditions, or
humans who meet, transact, and interact. Furthermore, experiences by and interactions between
these heterogeneous agents, through services (such as marketplaces and electronic banking), or
social media (such as collaborative software development or data curation) can be interpreted as
early signs of life of an emerging global social machine [78].

In this paper, we argue that autonomy and KGs are mutually supportive and beneficial, with
the potential for both to gain from the resulting synergy. While many of our observations also hold
for intelligent agents in general (including humans), our paper is focused on Web-based software
agents. And we argue that there is a need to create systems that support the programming of such
artificial agents at the knowledge level. Our central claim is that many of the underlying tenets of
autonomy can be represented using KGs, autonomous agents may emerge that can transact across
the Web – without the need for developers to encode specific protocols that the agents should use
to interact with Web resources, specific information about other agents that they may encounter,
or specific information about normative relationships. Likewise, by providing the procedural
frameworks that permit agents to interact with services and institutions that they may encounter,
the agents can potentially operate with a similar sense of autonomy that human users exhibit.
Furthermore, since this Web-embedded knowledge is not read-only, autonomous Web Agents2

may construct and expose new knowledge, and they may evolve knowledge that they find to be
stale. We explore how any autonomous agent on the Web – human as well as artificial – could
benefit from such knowledge, and how they may evolve this knowledge in turn. We examine how
KGs provide a natural abstraction for representing the knowledge required by autonomous agents
on an open, dynamic Web, and consider the current limitations of using such a formalism for
autonomy. Our aim is not to provide an exhaustive treatment of KGs, but rather to provide the
foundations for discussing how KGs have been used or could be used to support different aspects

2 See https://www.w3.org/community/webagents/
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of autonomy. This allows us to map the different characteristics of autonomy to the knowledge
needed to support them and their representation, thereby highlighting the role that KGs play in
current autonomous applications and pave the way for identifying challenges and open problems.

We first provide a brief introduction to KGs and the way they are represented. This is followed,
in Section 3, by a discussion of how KGs can be used to support autonomy with respect to its
individual dimensions as identified by Castelfranchi and Falcone [17]; we also discuss the evolution
of KGs themselves in such open environments. While we argue that KGs are well suited to
overcome many of the obstacles on the way to the programming of agents on the knowledge level,
many hurdles still remain, as identified in Section 4. We therefore present the limitations of KGs
with respect to supporting autonomy – at the moment and in principle – in Section 5, and we
distill open questions from our discussion in Section 6.

2 Knowledge Graphs from an Autonomous Agents’ Perspective

Autonomous software agents can be characterised as computational systems that acquire data
from their environment (both sensory and from interactions with others), and reason about some
course of action that may bring them closer to achieving their goals. These actions are then
realised; this could be through the usage of some service, collaboration with other agents (through
an appropriate communication mechanism), the creation of new knowledge, or the curation or
modification of existing knowledge. This cycle repeats, typically without the direct intervention
of humans in the goal-achievement process, which results in autonomous behaviour that can be
proactive as well as reactive. However, for each step, the agents require a variety of different
types of knowledge that may describe: their environment (see Section 3.1); other agents and
their abilities (see Section 3.2); the relations, roles, and any form of normative organisation that
they or others may be part of (see Section 3.3); and the structure of the problem domain (see
Section 3.4). Although this knowledge is typically encoded implicitly or assumptions are made by
many closed multi-agent systems, the ability to share this knowledge (e.g., for service discovery
or to facilitate adherence to a normative institution) and to together evolve it (see Section 3.5)
facilitates interoperability and reuse across different agent communities, which in turn can also
increase reliability, veracity, and scalability for numerous agent tasks. By representing and sharing
this knowledge in the form of KGs, we argue that the synergy and opportunities for agents within a
knowledge- and service-rich environment are greatly increased, especially when the agents interact
in open environments such as on the Web.

The use of KGs is today becoming more prominent across research areas and application
domains, and within systems where graph-oriented data representation is used alongside relational
databases or proprietary format files. Yet despite their increasing popularity, there is no single
accepted definition of a KG [28]. In this context, we define a KG as a directed, edge-labelled
multi-graph (whereby there may be different edges between two nodes that may have different
relationships or types). In a KG, the nodes (or vertices) are labelled and represent real-world
entities of interest (e.g., objects, actions, tasks, affordances, methods, and capabilities) whereas
directed edges between a source and a target node are labelled with names that represents the
relationships between these entities. This can lead to the simple formalisation of a KG as a set of
triples “node–edge–node”, which is typically instantiated in the RDF data model [22]. However,
other more involved structures may exist, such as property graphs [61] that allow nodes and edges
to have a structure of their own. Whilst there is no commonly accepted definition of KGs, there is
some agreement on the characteristics they should exhibit, based on the initial characterisation
proposed by Paulheim [70], in that they:
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1. represent (semantically-described) real-world entities and their interrelations by means of links,
which are organised in a graph;

2. define entities and their relations by means of data models referred to as ontologies (vocabularies
or schemata);

3. support potentially interrelating arbitrary entities with each other;
4. cover a variety of domains that span different topics and are often expressed at different levels

of granularity, ranging from common-sense knowledge to domain- and task-specific knowledge.

KGs integrate both static data collections and stream data from multiple sources, thereby
supporting sophisticated querying and exploration of this data in a seamless way [52]. This helps
overcome the inherent abstraction gap that exists in the environment between raw sensor data and
the higher-level knowledge needed by artefacts that produce and consume complex data to capture
realistic models of the world. Thus, KGs have been used in a number of different contexts, including
life sciences and linguistics, and a number of representations have been proposed. A symbolic
language representation has typically been used by those KGs that aim to support autonomy,
particularly those with precise semantics that support agreement on the vocabulary used and the
reasoning services that infer new facts and check the consistency of the dataset. Semantic Web
languages such as RDF3 and OWL [69] have become prominent candidates as: 1) they combine
machine-readable syntax with a clear formal semantics; 2) they are sufficiently expressive to model
vocabularies for disparate domains with sufficient detail; and 3) they provide extensive reasoning
capabilities that range from type inheritance and type inference (RDFS) to richer reasoning
services, e.g., classification, consistency checking, entailment checking, explanations and instance
realisation (OWL), facilitated by the existence of different reasoner implementations.

Depending on the expressivity required by the downstream application, KGs can be distin-
guished as those that only possess relational statements in the form of RDF triples with no schema,
and those that conform to an explicit schema (i.e., an ontology) that is expressed in RDFS or OWL.
In the latter case, the expressivity of the schema depends on the constructors used in its axiom
definitions.4 Expressive ontologies are highly interconnected, promote semantic interoperability
between systems, and better support collaborative decision-making [1, 13]. However, despite efforts
to promote the establishment of semantic mappings between entities [49, 66] and interlinking of
data, data sources are often siloed, existing in isolation and are not interlinked with other sources,
or they may be schema-less (or use a proprietary, unpublished, schema), with limited reuse or
mappings to other data sources [36].

In addition to representing data and their schema in KGs using formal languages (i.e., RDF
for data and RDFS or OWL for the schema), the Semantic Web stack also provides a standard
for validating graphs in order to ensure the quality of data. The Shapes Constraint Language
(SHACL) [46] is used to validate RDF graphs against a set of conditions described as “shapes”
of data over nodes and edges on top of a KG schema expressed in OWL. Shapes are applied to
“targets” and form a shapes graph defining constraints, i.e., the conditions against which a data
graph is evaluated. A data graph is deemed valid if all the targets conform to their related shapes;
furthermore, the result of the validation is a report expressed in RDF that can also be processed
and queried using the same software used to manipulate the data graphs. SHACL has recently
been used to model constraints of various type in virtual institutions and organisations [20]. The
constraint components supported by SHACL are of two types: core constraint and SPARQL-based
constraint. Core constraint components are those supported by SHACL-compliant systems, and
can be divided into the following categories [68]:

3 RDF Syntax [77] and RDF Schema (RDFS) [15]
4 The direct semantics of OWL are expressed in Description Logic style and we refer the interested reader to

Krötzsch et.al. [48] for a self-contained introduction to Description Logic.
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Graph Structure Constraints: These are constraints evaluated over the statements in the data
graph and include, for example, minimum and maximum cardinality constraints satisfied by a
focus node for some given paths, type of inference with respect to a focus node, and property
pair equality and disjointedness, verifying whether two sets of nodes reachable from different
paths are equal or disjoint.
Filter Constraints: These constraints are typically evaluated at node level, they are independent
from the statements in the data graph and verify whether a focus node is of a particular type
(e.g., IRI, literal or blank node); a given RDF term or a literal that satisfies certain conditions,
e.g., a literal that is of type xsd:integer.
Logical Constraints: These are standard logical operators (conjunction, disjunction, and
negation) defined over other constraints.

SPARQL constraints support the ability to embed queries in SHACL constraints, therefore
enhancing their expressivity. However, the inclusion of constraints that are potentially arbitrarily
complex can come to the detriment of their usability and cause performance issues.

3 Knowledge Graphs and the Dimensions of Autonomy

Following our introduction of KGs from the perspective of autonomous agents, we next discuss in
greater detail the different types of knowledge that support autonomous behaviour – in principle,
and specifically on the Web. We structure this discussion according to the dimensions of autonomy
that are introduced by Castelfranchi and Falcone [17] and concern the environment (see Section 3.1),
other agents (see Section 3.2), organisations (see Section 3.3), and the agent’s own goal-setting
and execution (see Section 3.4). These are aligned with other meta-models for autonomous (multi-
agent) systems, such as the JaCaMo meta-model [12] that distinguishes between the environment,
agent, and organisation dimensions. We furthermore discuss the construction and evolution of
knowledge by agents (see Section 3.5).

3.1 Knowledge supports Autonomy in Relation to the Environment
The first dimension of autonomy that we consider is the autonomy of an agent in relation to its
environment. According to Castelfranchi and Falcone [17], this relates to agents being able to act
in an environment based on their perception of this environment while maintaining autonomy
from the perceived stimuli and from the environment itself. This is illustrated in [17] with with a
billiard ball – which is not autonomous with respect to its environment – and it is argued that
agents who indeed are independent from their environment instead feature teleonomic behaviour,
i.e., that they actively perceive and interpret their environment and the effects of their actions,
that they orient themselves towards the input, and that their behaviour depends on internal states
with their own evolution principles – rather than merely receiving an environmental “force” [17]
as the billiard ball does. With respect to the environment dimension, the autonomy of an agent
in an environment is increased when this agent gains knowledge about artifacts that are present
(or likely present) in that environment. This includes knowing how it could successfully carry
out low-level interactions with these artifacts – that is, information about the user interface or
API of the artifact; it furthermore encompasses knowledge about how to discover artifacts in
an environment (e.g., through an artifact registry or through broadcasting), and knowledge that
permits an agent to establish that a specific artifact is relevant to an agent’s course of action –
i.e., that using the artifact would be beneficial for the agent to achieve its goal.

The benefits of creating agents that are more autonomous from their environment are sought
after across many fields: In software engineering, this relates to the creation of software systems
that emphasise the non-functional properties of adaptability and resilience – that is, systems that
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are still able to perform their core function even if their environment changes. These properties are
typically – and, often, consciously – traded-off against performance: In a system that emphasises
performance over adaptability, there is a high incentive to tightly couple even low-level interactions
and to forgo run-time discovery capabilities by rather hard-coding device addresses and service
APIs. Increasing the autonomy of a system with respect to its environment thus requires, explicitly
or implicitly, to implement such systems in a way that does not couple their function to the
interfaces of specific artifacts in the environment (e.g., by hard-coding a specific HTTP request);
one layer above such interface coupling, the same goal motivates the creation of systems whose
functions are not even coupled to specific artifacts – such systems hence need to be enabled to
discover artifacts at run time [80], and then require an (internal or external) way to evaluate
whether using these artifacts would contribute to the agents achieving their goals (e.g., a planner).
The same fundamental principle is mirrored in education, a seemingly vastly different domain: In
a similar way as it might be desirable to implement a software system that has enough knowledge
to reason about the usage of specific artifacts while not being hard-coded to use them, we typically
teach children in a way that increases their autonomy from specific environmental artifacts. To
illustrate this, it is perfectly feasible to instruct a child – at the interface level – to use a specific
means of public transport at a specific time and location to reach a specific destination – “To
get to your Judo class, you need to always use bus line #2 at 5:37pm”. However, parents who
emphasise autonomy of their child in relation to the environment will rather opt for explaining
to the child – at the knowledge level – how a public transport system is used in general, which
involves knowledge about public transportation, ticketing, routes, schedules, and possibly even
how to read maps or use digital tools for navigation. This provides the child with information
about how to navigate their environment effectively even when the environment is dynamic, and
hence increases the child’s autonomy in the environment – e.g., when bus #2 is cancelled.

We argue that KGs are highly suited to support this type of autonomy of agents from their
environment, i.e., with respect to the specifics of how to interact with things, by furnishing them
with information about the artifacts in the environment and where this information is compatible
with the information in the agents’ own knowledge base – in this case, this knowledge can be readily
integrated and processed by the agent. Information about how to interact with (heterogeneous)
artifacts in an environment would build on top of a basic (homogeneous) interaction ability; on
the Web, this ability is hypermedia-based interaction, i.e., that an agent is able to use hypermedia
controls (including unparameterised hyperlinks as well as forms). The first steps towards this
have already been made, and have even been standardised by the World Wide Web Consortium
(W3C): the goal of the W3C Web of Things Thing Description5 (W3C WoT TD) is precisely to
permit agents that understand this standard to use any W3C WoT TD-described device they
encounter in their environment. This is accomplished by conveying details about the usage
of the interface of this device at run time. This is not only academically interesting, but has
convincing practical application: For example, it means that a W3C WoT TD-described sensor
can be upgraded to a better model without the requirement to update clients of the sensor, as
long as the two sensors’ outputs are compatible with respect to the clients’ common knowledge.
Further, while W3C WoT TDs today remain limited, they may be generalised to what is referred
to as Artifact Profiles: “structured data describing the artifact through signifiers and general
(domain- and application-specific) metadata” [87]. Such profiles hence describe features of an
environmental artifact beyond its interface, and can be used by agents at run time to determine
whether an artifact is interesting to them in their current situation – again increasing the agents’
environmental autonomy. It has also been proposed that such profiles could be brokered to agents

5 https://www.w3.org/TR/wot-thing-description11/

TGDK

https://www.w3.org/TR/wot-thing-description11/


13:8 Autonomy in the Age of Knowledge Graphs

based on the current situation and abilities of the agent; this information is in this case shared
in the form of an Agent Profile [54, 87]. In this scope, the SHACL vocabulary can be used to
define behaviour specifications that describe to agents how to use an artifact (e.g., how to adjust
a lamp’s brightness through an HTTP API) [83].

3.2 Knowledge supports Autonomy in Relation to other Agents
Regarding the second dimension of autonomy – social autonomy – the autonomy of an agent in
its environment is also increased when this agent has sufficient knowledge about other agents
that are present in this environment, which should not depend on the hard-wiring of agents’
social capabilities (either directly or through their environment). Similar to autonomy from
the environment, we also consider social autonomy when training autonomous agents – this is
less prevalent in software engineering, where software programs (themselves) are not yet being
considered primarily as social entities, but it is highly visible in human education. In fact, this
includes core tenets of education itself, including the ability to speak (multiple languages) and
read, as well as neurological maturation. For example, the development of Theory of Mind (cf. [72])
in infants and, with it, the knowledge that one’s own beliefs, desires, emotions, and thoughts
are different from those of others, is considered crucial for successful everyday social interactions
among heterogeneous humans.

Following Castelfranchi and Falcone [17], we may distinguish between autonomy as independence
– the ability of an agent to reach its goals without the help of other specific agents – and autonomy in
delegation, i.e., an agent’s ability to achieve delegated tasks without detailed imperative instructions
(colloquially: without micro-management). We argue that both of these sub-dimensions of
autonomy can benefit from KGs in similar ways, as they require similar technical capabilities:

i) self-sufficiency is a key requirement that provides the basic abilities necessary to achieve a
goal or complete a delegated task, irrespective of the particular environment and the agents
therein; and

ii) in either case, generally applicable social communication abilities enable the utilisation of
other agents’ abilities and resources in order to complete the goal or task given the current
specifics of the environment.

In Section 3.1, we discussed how interface specifications can avoid the hard-wiring of two specific
system interfaces to each other (including the tight coupling of agents to environment specifics),
and introduced that this supports autonomy – specifically, by facilitating adaptability and resilience
through dynamic (re)composability. In the same way, agents may avoid tight coupling with other
agents by utilising knowledge about their social environment together with generic abilities to
discover new knowledge by means of interacting with other agents. Concretely, and mirroring
the environment dimension, such agents would not be hard-coded to interact with specific other
agents in specific ways, but would rather be equipped with more broadly applicable knowledge
about other agents – this knowledge might include that other agents might have specific abilities,
that the agent might consult with them or delegate tasks to them, and that the likelihood of
other agents to engage in an interaction is determined through social relationships between agents.
An agent that is equipped with this knowledge – much like a human who understands social
relationships – is much better suited to navigate a social situation, and hence features increased
social autonomy.

KGs are very well suited to implement this type of knowledge-based programming, as they can
augment an agent’s interactive capabilities and hence decrease its dependency on other specific
agents. As in the case of autonomy from the environment, autonomous agents in this context
may also benefit from both accessing external KGs and maintaining their own ones. Agents may
then use internal KGs to maintain knowledge that is specific to the agent and knowledge that is
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sufficiently important for being logically grouped with a given agent, thus facilitating this agent’s
independence. Some of the internal knowledge may be strictly private, while other knowledge
can be shared with other agents, or be entirely public. For example, the agent may maintain
lookup services of its own capabilities, used for provisioning and planning, many of which can be
shared publicly, which facilitates collaboration with other agents. In contrast, knowledge about
other specific agents that the agent maintains, e.g., for the purpose of strategic reasoning and
negotiation, might remain private to start with. It may be disclosed eventually however, if by
doing so, this is useful in the context of a specific objective, e.g., during a multi-agent dialogue.
Finally, privacy-relevant knowledge such as health information about a natural person will typically
remain private, but may be shared with authorised agents on a need-to-know basis. When KGs
are applied within an agent, they can be seen as knowledge representation tools that are used
to persist an agent’s belief base, or snapshots thereof, considering that it may not be feasible
to capture all belief revision operations that are executed in the course of the agent’s reasoning
cycle. In case external KGs are provided as part of the environment, agents might use them for
stigmergy, i.e., for coordination through environmental artefacts that are created or manipulated
by the agents [73, 76] (see Section 3.1). This can facilitate multi-agent coordination and relax the
coupling between agent instances, thus facilitating resilience and ability to respond to change.

3.3 Knowledge supports Autonomy in Relation to Organisations
Going beyond the interactions of agents where agent goals are generally aligned, organisations
provide a deontic framework for agents to operate in by specifying joint objectives, norms, and
policies. On the meta-level, they also permit agents to participate in organisational governance.
The idea of virtual organisations as a means to facilitate autonomous (multi-agent) systems is a
research direction that emerged at the turn of the century [18, 32, 67] and has since continued as
a vibrant area of research [44]. While applications of multi-agent organisations in the sense of
the holistic academic vision are nascent, most real-world organisations have by now some (often
crucially important) form of electronic representation, and substantial efforts are incurred to
ensure organisational compliance, e.g., with respect to privacy regulations [23].

In the context of organisational governance, KGs already exist in industry organisations for
providing shared domain models that can be used across software systems and application scenarios,
thus facilitating interoperability and centralising some of the knowledge maintenance efforts [40].
Beyond such current scenarios, at the organisational level, KGs are well-suited to enable agents
to adjust to and switch between organisational contexts with greater independence, covering a
broad range of concerns in the context of organisational autonomy. Goal-driven agents may act
in a system containing several organisations, and interact with these organisations considering
agent-internal goals. We claim that an agent that is aware of organisations (in general) and can
hence better understand specific organisations it encounters at run time is able to reach higher
autonomy. Such an agent would, for instance, know that another agent is deontically bound to
performing a specific service, and that it may hence interact with that agent towards fulfilling a
goal that requires this service. This is again similar to human interactions: Humans learn that
they may trust a bus driver to share accurate information about bus routes. Crucially, they further
know that this trust is modulated not by the bus driver (as an autonomous agent) but it is due to
the bus driver being bound by the organisational principles of the public transport company they
work for. In addition to interacting with organisations, agents might join organisations to then
achieve an alignment of potentially conflicting knowledge or goals. That is, an agent’s decision
to join a specific organisation and to adopt a particular organisational role can be informed by
knowledge that the agent obtains about the organisation, prior to joining.
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Technically, this may be enabled through agents exchanging knowledge about organisations
through KGs directly, or by making this information discoverable through environmental artifacts;
the latter case also can be extended to permit (sufficiently authorised) agents to modify organisa-
tional knowledge at run time and hence allows groups of agents to evolve organisations together.
Furthermore, KGs can provide agents that join an organisation with fundamental knowledge
that is required for successful (inter-)action in the context of this organisation; i.e., knowledge
about the available roles and objectives, and even knowledge that helps an agent decide about
whether it should commit to a specific role in the organisation. To this end, KGs can provide
deontic specifications of the organisation’s objectives, as well as of the policies and norms that
agents must and should, respectively, comply with in order to reach the organisational objectives
or agent-specific goals. Since these goals may conflict with organisational objectives and with the
goals of other agents, knowledge about sanctioning mechanisms may also be shared, which again
leads to an increase in an agent’s autonomy with respect to the organisation. Equipped with
this knowledge, it can now make an informed decision about whether or not to break norms that
are set by the organisation. Here, one can view the interaction of agents with the organisation
(or with each other through the organisation) from a governance perspective: the organisation
governs agent behaviour through norms and policies, and the organisation’s agents govern the
organisation, e.g., by changing organisational policies or by gradually evolving norms. Then, KGs
can provide a transparent representation not only of the objectives, policies, and norms, but
also about the meta-framework that governs them, thus enabling agents to affect organisational
change in a structured manner. With respect to technologies, constraints on KGs – which can be
represented using languages such as SHACL – can play an important role for organisations of
autonomous agents. For example: constraints that are to be satisfied in the future may model
organisational goals; constraints that have to be satisfied amount to policies; and constraints that
should typically be satisfied may represent norms.

3.4 Knowledge supports Internal Autonomy
So far, we have discussed how knowledge can support autonomy from an external perspective: an
agent is typically situated in an environment (see Section 3.1) and interacts with artifacts and
other agents (see Section 3.2), and potentially as part of an organisation (see Section 3.3). Across
these dimensions, we argued that a formal, explicit, knowledge-level representation of relevant
entities allows the agent to reason and decide about its interactions with the rest of the system.

We now finally survey the agent’s internal perspective, where autonomy relates to the agent’s
freedom of selecting the goals it is working towards, and of executing a course of action for
achieving selected goals. Following Castelfranchi and Falcone [17], an agent has goal autonomy
if: i) it is endowed with its own goals (e.g., at design time); or ii) it adopts goals received from
other agents only when the adopted goals enable some of its own goals. The latter relates to the
discussion in Section 3.2 about autonomy in delegation, but from an internal perspective that
focuses on the receiving agent’s ability to select its own goals. Goal autonomy hence is compatible
with social ability: If an agent interacts with other agents and can adopt goals from them, then the
agent is susceptible to influence – but the agent still preserves its goal autonomy if it can reason
about the relations between candidate goals and its own goals, and if it can select specific goals
to be adopted based on this reasoning. We argue that, similar to how KGs enable an agent to
achieve autonomy with respect to the environment, other agents, and organisations, KGs may also
help an agent in this very reasoning process, and hence help it achieve goal autonomy. KGs would
do this by representing explicitly or implicitly relations between candidate goals and the agent’s
own goals; they may also represent commonsense knowledge (e.g., see [42]), thereby providing a
foundation for the agent’s reasoning about goal adoption.
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After selecting a goal, an agent will typically strive to execute a course of action towards
achieving that goal. To do this, it requires procedural knowledge, which can take various forms:
For example, procedural knowledge can be defined in terms of plans that specify sequences of
actions and are programmed by a developer. Conversely, within a marketplace, an auctioneer may
need to declare formally the dimensions along which the auction protocols may vary (ascending
or descending, sealed-bid or open-cry, single-shot or continuous, first or second price, etc.) to
allow agents to reason whether or not they should engage in the auction, as well as providing
evidence to bidders of the auction outcome [6]. In the case of a reinforcement learning agent,
procedural knowledge takes the form of a policy that is learned through repeated interactions with
the environment. In other systems, from a practical/industry-oriented perspective, procedural
knowledge could be represented through workflows, processes, or standard procedures [5, 74].
Agents’ goal achievement autonomy – that is, their executive autonomy – is increased if agents are
able to acquire procedural knowledge at run time. However, the means to represent procedural
knowledge depend on the internals of the agents using the knowledge. In some cases, KGs might
provide a suitable solution for representing such knowledge themselves [88]. In the more general
case, KGs may provide a uniform way of describing and linking to procedural knowledge such that
agents can then acquire the knowledge in the context of their operation. We hence propose that
KGs may not only directly enable executive autonomy, but that they may – across many scenarios
– provide a uniform interface to procedural knowledge that itself is represented in diverse formats.

3.5 Knowledge Construction and Evolution
We propose that KGs provide a solid foundation for supporting autonomy at different levels,
including environmental, social, and deontic aspects as well as an agent’s internal goal-selection and
execution. However, this knowledge is neither static nor immutable [24]: In the case of knowledge
regarding the agents’ environment, this may change over the course of time, and represent variations
in the conditions and stimuli accessible to the agents. Individual and communal knowledge evolves
according to the changes in the internal state of the agents, as well as according to the different
interactions that they may engage in. Moreover, this knowledge is not simply available for querying
as a set of read-only resources, but it is actually subject to modifications by the very autonomous
agents that use it. Using KGs to represent this knowledge caters to these requirements: KGs –
and the contained entities – feature unique identifiers and can hence be easily and unambiguously
addressed and, if need be, versioned, in centralised as well as decentralised settings.

The way these KGs are constructed may differ in terms of approach and/or underlying
technologies [89]: Individual autonomous agents might develop their own knowledge independently
of their peers, where they will in the case of KGs typically use at least a common standard
ontology or controlled vocabulary, in order to allow interoperability at the time of inter-agent
interactions. On the other hand, if agents are limited to updating existing knowledge with new
information (e.g., in the case of new observations from a sensor), the knowledge structure does
not change often, but the observations may rapidly become stale [59]. This is often the case in
IoT environments, where sensors and actuators rely on knowledge that takes the form of dynamic
streams of data [79]. Agents need to react in a timely fashion to these data streams, so as to
update their beliefs or revise their intentions. Although certain extensions exist for allowing KGs
to integrate stream reasoning [26] and continuous querying capabilities [25, 51, 9], the usage of
streaming KGs by autonomous entities is still incipient. Beyond traditional pipelines of data
streams, the employment of streaming KGs in multi-agent systems and in general by decentralised
autonomous entities has the potential to boost the exploitation of local and personal information
captured by devices on the edge and other sensing agents.
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Moreover, autonomous systems need to be able to represent and reason with knowledge about
external entities (the environment, other agents, organisations) but also with internal knowledge
about their goals, tasks and capabilities. The former is primarily knowledge that naturally emerges
from heterogeneous agents cooperating to reach some common goal. Knowledge is hence created
and exchanged following agent communication and social mechanisms [16]. This knowledge
may emerge from the agreements and deliberations that arise during the lifetime of autonomous
entities [55]. Ontologies may then be constructed from commonly learned facts contributed by
autonomous agents, thus constituting an interaction-driven KG. Given that this knowledge is
built from diverse and potentially contradicting sources, different methods of reconciliation and
mediation have been explored; for example by relying on ontology alignment techniques [14, 31],
or distributed ontology evolution [56].

In this kind of scenario, knowledge is heterogeneous and distributed, and therefore interaction
mechanisms and protocols cannot assume that agents share common knowledge beyond what is
required to establish their interactions. This heterogeneity also implies that agents can use both
(onto)logical or, more broadly, symbolic knowledge as well as numerical, sub-symbolic knowledge
representation. The evolution of this type of knowledge cannot happen in a siloed manner, since
each type of knowledge representation is essential to cover different aspects; i.e., abstracting from
and making sense of stimuli from the environment. Furthermore, autonomous and cooperative
decision-making implies that all the systems inhabiting the environment have to respond to the
same type of demands, therefore it does not make sense for them to react to these demands in
isolation, especially when they are cooperating towards a common goal.

Any knowledge evolution model should hence consider the abilities of the autonomous agents to:
i) reason and evolve their own knowledge, which may be modelled using disparate formalisms; ii)
reason about the different demands they perceive from the environment they are immersed in; iii)
deliberate about the knowledge to evolve, given conflicting demands (and ultimately knowledge);
and iv) interact with other autonomous systems to communicate and cooperatively decide the
best course of action.

4 KGs and Autonomy

Section 3 identifies how knowledge supports different dimensions of autonomy, with respect to
the environment, other agents, organisations, and internally, regarding executive and goal-setting
autonomy. This knowledge, as discussed in Section 3.5, is dynamically constructed and evolves as
a result of decision making by autonomous systems that have a common goal. The use of KGs in
autonomous systems is quite disparate, and KGs are often used to support only some aspects of
autonomy, e.g., knowledge about the environment in W3C WoT TD, or about the capabilities of
other autonomous systems, e.g., as in the MARIO reference architecture for social robots [4].

Following from the discussion in the previous section, we argue that all of these dimensions of
autonomy can benefit from the use of KGs, where the use of Semantic Web languages such as
RDFS and OWL overcomes syntactic interoperability issues and makes the vocabulary to use in
communicative acts (and any constraints on its use) explicit.

In the remainder of this section we identify the characteristics that KGs should exhibit in order to
enable the holistic view of autonomy we discussed so far: i.e., the expressivity of the representation
language used to model the KG (in terms of the primitives and the consequent reasoning services)
and the coverage of vocabulary used. These should promote autonomous behaviour by supporting
the mechanisms used for interaction, governance with respect to organisational autonomy, and an
explicit representation of how to perform a given task.
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4.1 Expressivity and Coverage of KGs Supporting Autonomy

A recent systematic review [2] surveyed a number of knowledge-enabled approaches to develop
and deploy autonomous robots in order to assess whether current state of the art ontology-based
approaches model those concepts and relations that are necessary to represent knowledge about
other autonomous entities and the environment; i.e., the ability to model and reason about the
system’s own capabilities and the capabilities of others. This study argues that the key factors
for the success of knowledge-based autonomous systems is the use of explicit ontological models
to support autonomous systems in understanding and reasoning about their environment, their
own internal knowledge and knowledge about other agents and organisations. The systematic
review is based on Langley’s characterisation of autonomy with respect to abstract reasoning
tasks such as recognition and categorisation, decision-making and choice, problem solving and
planning, as well as perception and situation assessment [50]. Langley distinguishes between: i)
what, i.e., the functional capabilities that an autonomous system should exhibit; and ii) the way
in which these functional modules should interconnect (how). Functional capabilities and their
interconnections determine the specific vocabulary needed to represent autonomy and the types of
reasoning tasks that are supported by different ontological models. These interconnections are
supported by the exchange of data and knowledge that is often both produced and consumed by
autonomous systems.

KG schemata modelling autonomous behaviour should include the definition of entities (in
terms of modules or fragments of hierarchical knowledge) that represent both static (e.g., agent,
object, or scene) and dynamic (e.g., task, goal, or action) aspects of autonomy. We follow the same
characterisation and we discuss the ways KGs are currently used to support autonomy, as a way
to identify the limitations (which are introduced in Section 5).

As discussed in Section 2, there is no accepted definition of KG, and as a result the term
KG is used to refer to different data sources, and for example, to model both real-time data
generated by sensors that does not conform to some schema, or a graph of interrelated data
that is modelled according to some explicit schemata that often includes standard foundational
(upper-level) and domain-specific ontologies, as well as organisation-specific schemata (which
might be proprietary). Foundational ontologies such as SUMO [62] or Dolce [35] and its simplified
version in OWL, Dolce+DnS Ultralite6 are used to model domain-independent concepts, e.g., time,
object or event, and support interoperability at the highest level of abstraction. Domain-specific
vocabularies have emerged in many domains to provide common ground for communication and
have become standards to model data for the specific domain. Examples of such standards are the
Semantic Sensor Network (SSN) ontology7 [37], and the provenance ontology Prov-O8 [53]. SSN is a
modular ontology that also includes a self-contained core ontology modelling Sensors, Observations,
Samples, and Actuators (SOSA). SSN and SOSA can support a variety of applications and use
cases, including satellite imagery, large-scale scientific monitoring, and use cases across the Web of
Things [43]. PROV-O is an OWL ontology that describes the classes, properties and restrictions
describing the provenance data model, used to integrate provenance information in different
systems and based on different contexts. More recently, the W3C WoT TD [43] standard provides
the vocabulary for describing the metadata and interfaces for a “Thing”, i.e., an abstraction of an
entity (physical or virtual) that interacts with and participates in the Web of Things, thereby
endowing agents with higher autonomy with respect to their environment (see Section 3.1).

6 http://www.ontologydesignpatterns.org/ont/dul/DUL.owl
7 https://www.w3.org/TR/2017/REC-vocab-ssn-20171019/
8 https://www.w3.org/TR/prov-o/
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4.2 KGs Supporting Autonomous Agents’ Governance
Regarding organisational autonomy (see Section 3.3), a similar issue manifests itself when rep-
resenting and reasoning with obligations and norm governance in general [44]. The ODRL
standard9 is a formal language, expressed in RDF, for modelling policies regulating the use of
digital rights. However, the ODRL core that models the components of a policy expression does
not provide any formal specification of its semantics, and it provides only informal semantics
described in English [81]. Recently, some extensions have been proposed, based on the work in
Normative MAS, where autonomy determines the decision-making processes [20]. For example,
Fornara and Colombetti [33] aim to fully capture the formalisation of norms used to express
obligations, permissions and prohibitions by modelling the operational semantics of conditional
obligations using OWL, possibly extended with SWRL [39] rules to overcome OWL’s limited
expressivity with respect to the state of an interaction and the rules for computing the state of
obligations [33]. SWRL adds Horn-style rules to OWL, thus permitting the modelling of additional
domain knowledge that cannot be done by OWL alone. Both OWL and SWRL adopt the Open
World assumption, whereby the absence of a statement does not necessarily mean that it can
be inferred to be true or false. This is in contrast with SHACL, which adopts the Closed World
Assumption (a statement that is not known to be true must be false). More recently, SHACL has
been proposed to model more complex type of norms, such as compensatory norms [75].

4.3 KGs Supporting Agent Interaction
Several conceptual architectures and programming platforms that support autonomous beha-
viour are currently available (e.g., JaCaMo [12] or KnowRob [85]), and they rely on domain and
foundational ontologies and KGs for representing and sharing declarative knowledge. However,
many of the reasoning tasks underlying executive autonomy (see Section 3.4) involve procedural
knowledge that is not typically captured by KGs. The execution of complex tasks involving several
autonomous entities in open environments requires them to interact with each other and the envir-
onment, and to coordinate their executions; e.g., to support autonomy in delegation. Interaction
protocols (also called choreographies within the service community) are formal specifications of
these interactions, which describe the roles played by the autonomous systems, the allowed actions
and choices, and the states and termination conditions [8]. Similarly, communication protocols
specify the rules of interactions governing a dialogue between autonomous systems [29, 34, 71].
Typically, these protocols are expressed in some protocol language based on different abstractions
and operational assumptions that are difficult to compare. An exhaustive description of these
protocols is outside the scope of this paper, but we refer to the work by Chopra and colleagues for
a review of the main formalisms and a comparison framework [21]. These protocols ground the
meaning of the different concepts involved in some ontology, therefore implicitly establishing an
a-priori commitment to a shared understanding of the terms being communicated [41], where the
procedural part of the model and the execution traces are typically not included in KGs.

4.4 How to: KGs for Supporting Agents in Performing Tasks
Various efforts in robotics have also attempted to model and execute procedural knowledge about
some tasks, e.g., kitting, where a robot places (a set of) parts on a tray and carries them to an
assembly cell, using a knowledge-enabled approach. For example, the KnowRob [85] architecture
has been extended with OWL based assembly planning, where assembled products are modelled

9 https://www.w3.org/TR/odrl-model/
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according to ontologies, which are then used to plan the next action according to faulty and missing
assertions in the robot’s beliefs about an ongoing assembly task [11]. Other knowledge-enabled
approaches, however, convert OWL descriptions into PDDL [58] specifications [7, 47].

Multi-dimensional event knowledge graphs (EKGs) [30] have been proposed as a way to
represent process events in a way that supports the execution and inspection of process traces.
Recently, EKGs have also been proposed to model process logs [45] in order to support process
analysis.

KGs have also been explored as a possible source of knowledge to be injected in reinforcement
learning approaches [1, 3], where autonomous agents use sequential decisions to learn and adapt
through interactions with their environment by trying to find (near-) optimal policies to perform
an intended task [84]. In these approaches, commonsense KGs such as Wikidata [90] or CSKG,
the Commons Sense Knowledge Graph [42] are exploited to model commonsense notions such as
spatial, part-whole, or temporal relations, and even affordances [19]. In line with our discussion in
Section 3.5, we propose that such usage of KGs represents only the beginning of a movement to
the more active curation of KGs by autonomous software agents themselves.

Recently, both KGs and architectures for autonomous agents have emerged as promising
facilitators of autonomy in the context of generative AI and specifically Large Language Models
(LLMs) [65, 82]. In this context, KGs are typically envisioned as providers of reliable, “hard”
knowledge that LLMs are not capable of producing. While this emphasises the relevance and
timeliness of research on KGs as facilitators of autonomy, we deliberately choose to present
perspectives in this paper that can be considered orthogonal to LLMs and generative AI in order
to avoid a tunnel view that is focused on current hype topics.

5 Limitations of Knowledge Graphs for Supporting Autonomy

Whilst there are successful examples of KGs that facilitate autonomy across the different dimensions
of autonomy, employing KGs as facilitators of autonomy may bring substantial challenges with it,
depending on context and scale. This section describes where KGs are in principle not suitable
or are not sufficient to support autonomy, as well as where they are not yet suitable. From the
resulting list of limitations, we identify challenges that exist today, and provide initial sketches
of how these challenges could be addressed. We claim that the following factors can limit the
applicability of KGs as facilitators of autonomy:
1. Dynamics of participating systems. Autonomous software systems can be expected to

appear in highly dynamic environments, and they may frequently change, often without direct
human involvement (cf. Section 4.4). Consequently, KGs need to be able to accommodate and
adapt to frequent changes in the knowledge they provide; otherwise, knowledge consumers risk
basing their decisions and actions on stale or deprecated knowledge that no longer reflects the
environment they act in. A key question in this context is to what extent KGs can maintain
models of dynamic behaviour as first-class abstractions, making it easier to adjust to change
and to mitigate the resulting uncertainty.

2. Scale of knowledge. The content of knowledge-based systems (such as KGs) is notoriously
effortful to maintain. While the maintenance issues on schema-level are alleviated by (schema-
free) KGs (in contrast to traditional knowledge-based systems), the challenge of maintaining
the contained knowledge at scale remains. Specifically, a common challenge – in addition to
stale knowledge, as mentioned above – is that ensuring consistency will become an increasingly
tedious task with growing KGs. Currently, it is not clear which use cases are favourable to
large-scale knowledge maintenance of KG content and which are not. Our assumption is that
given current practices, not all potential use cases of KGs for autonomous agents are viable
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at scale and that viability can depend on a number of factors, such as the economic and
technical resources available for knowledge maintenance and the extent to which the knowledge
is open and considered generally useful beyond a specific target use case. For example, we
expect that open knowledge that is managed by long-lived communities is more scalable than
domain-specific knowledge that remains in silos. On a per-case basis, the maintainability of a
KG will partially depend on the selected technologies and hence on the diversity and maturity
of the KG technology ecosystem (cf. Section 4.1).

3. Knowledge maintenance by humans and machines. A key challenge that might, if
overcome, mitigate the scalability issue mentioned above, is to have knowledge maintained
jointly by humans and machines, serving the needs of both (as hinted at in Section 4.4). In
particular, knowledge that machines can efficiently consume may be hard to interpret for
humans, and vice versa. At the same time, duplication of knowledge should be avoided and
joint knowledge maintenance can facilitate efficient knowledge maintenance, if accessibility
and interpretability of both humans and machines can be guaranteed.

4. Heterogeneity of participating systems. A Web of autonomous agents will in practice
be heterogeneous from architectural and technological perspectives; a substantial part of this
heterogeneity will stem from legacy software that does not follow the idiomatic principles
of conceptual meta-models (cf. Section 4.3) that will ideally emerge for future Web-based
systems. These legacy software systems will not be able to utilise KGs in a comprehensive
manner and their ability to be active and passive facilitators of autonomy will be limited:
without tight coupling, these legacy systems will not be able to explore the Web, nor will they
be straightforwardly discoverable by others. Also, interoperability issues can be expected to
render governance (cf. Section 4.2) of legacy software-heavy agents a difficult task. Proposals
for facilitating autonomy must account for such limitations, i.e., they must not assume that all
systems relevant in a given application context are “good citizens” given idealistic architectural
requirements.

5. Knowledge modelling and representation choices. KGs allow for a plethora of ways to
model knowledge (cf. Section 4.1). However, inappropriate knowledge modelling may over-
complicate KG usage. For example, certain ontologies are too detailed and too complicated for
use cases that do not benefit from the level of precision and granularity that these ontologies
provide. An agent specialised for working in a domain such as healthcare may benefit from
access to the corresponding ontologies; for simpler use cases, it may be better to merely expose
a subset of the knowledge in a more straightforward manner, and hence to modularise the
underlying knowledge [64]. Towards addressing the same challenge of real-world applicability,
the KG community should consider more actively managing interfaces to systems that (for
organisational or technological reasons) are not willing to adopt elements of the Semantic Web
stack, and instead prefer shallow representations such as plain JSON. Such systems can still
actively participate in a global knowledge organisation as envisioned in this paper, but the
interfaces need to be maintained.

6. Modelling of procedural knowledge. As mentioned in Section 3.4, the provision of
procedural knowledge is key to enabling and augmenting autonomous behaviour. However,
while several works propose and study the management of procedural knowledge with KGs
(cf. Subsection 4.4), KGs do not provide first-class abstractions of procedural knowledge; and
in industry applications, the management of procedural knowledge such as business process
specification on the one hand and the maintenance of domain models in KGs and ontologies
on the other are seen as orthogonal tasks. Integration of these types of knowledge is still an
understudied challenge.
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Given the challenges presented above, we identify the following research directions that can
help mitigate them, although each of them will require substantial further investigation.

Hybrid representation of knowledge. The flexible nature of KGs allows for the integration of
data in various ways that does not reflect the graph structure; e.g., knowledge does not
necessarily need to be represented in a particular, rigid manner (think of RDF triples), but may
as well be embedded as literals or be referenced through Internationalized Resource Identifiers
(IRIs), as shown for example in [60]. Such flexibility mitigates the unsuitability of KGs to
certain kind of information, such as procedural knowledge and constraints (Challenge 6) and
allows for nuanced and pragmatic modelling decisions (Challenge 5), thus facilitating KG
maintenance at scale (Challenge 2). Still, open questions remain regarding the trade-offs that
need to be made when compromising on knowledge representation (from a KG perspective),
and when implementing reasoning and decision-making capabilities. With these trade-offs,
one can properly interpret external knowledge or knowledge represented as literals, which
essentially requires lifting basic knowledge representation and reasoning tasks to the business
logic layer.

Ontology summarisation. Knowledge in KGs may not be particularly accessible for some agents,
either because it is hard to find given the agents’ limitations (Challenge 4), or because it
is not modelled on the abstraction level that the agent requires (Challenge 5). Ontology
summarisation approaches [86] can be applied to extract concise aggregations of knowledge
that is relevant in a given context from a KG, thus making the content in a KG easier to
consume for humans or machines.

Modularity of knowledge. In many scenarios, agents may only be able to work with a sub-graph
of a given KG, either because of partial semantic interoperability or partial agreement and
trust [27]. It can therefore make sense to take a modular view on KGs, for example by
modularising knowledge into run-time-loadable “knowledge packs” such as proposed in [57].
In such systems, an individual agent may decide to work only with the sub-graph it can
understand and considers reliable in the broader sense, whereas a group of agents may agree
on a sub-graph as a joint ground truth. Thus, modular KGs can facilitate applicability in
the context of heterogeneous, partially interoperable sub-systems (Challenges 4 and 5) and
account for heterogeneity of content, e.g., regarding the frequency of updates (Challenge 1)
and the general state of maintenance (Challenge 3).

(Semi-)Automating knowledge graph maintenance. To increase the feasibility of large-sale KGs
(Challenge 2), their maintenance can be partially automated by utilising software agents
of various degrees of autonomy and technical sophistication. Agents in the broader sense –
i.e., simple bots for information crawling and the propagation of simple updates – already
play a role in maintaining KGs today. Thus, social machines of humans and artificial agents
that jointly maintain knowledge could profit from the use of organisational abstractions from
multi-agent systems research, as shown in [91]. How to best advance the joint human-machine
maintenance of knowledge is, however, an open question (Challenge 3), which must be carefully
approached considering current hypes and trends: the emergence of LLM-based bots and
the resulting threat of low-quality, technically wrong, intransparent, or otherwise undesirable
“knowledge” [10] makes structured approaches to knowledge management and maintenance
even more important.
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6 Conclusions

In open systems, the management of knowledge is a crucial enabler of autonomous interaction
among autonomous agents, including humans and software systems. We provide a conceptual
vision of how KGs can be key facilitators of such autonomy. We propose that KGs enable the
programming of artificial agents at the knowledge level – thus alleviating the need for low-level
hard-wiring across the dimensions of autonomy – and discuss their merit with a special focus on
the Web as an environment where interactions between autonomous agents take place. Based
on an overview of current and fundamental limitations of KGs, we furthermore outline a set
of challenges affecting the use of KGs as facilitators of autonomy; in particular, it is crucial to
enable the joint human-machine maintenance of knowledge in highly dynamic and heterogeneous
Web-scale systems. We then briefly discuss potential approaches, such as hybrid and modular
knowledge representation, to address the challenges. Overall, this paper informs cross-community
efforts to move towards reliable and resilient autonomous systems at Web scale.
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