
Logics for Conceptual Data Modelling: A Review
Pablo R. Fillottrani #

Universidad Nacional del Sur, Bahía Blanca, Argentina
Comisión de Investigaciones Científicas, Provincia de Buenos Aires, Argentina

C. Maria Keet1 #

Department of Computer Science, University of Cape Town, South Africa

Abstract
Information modelling for databases and object-
oriented information systems avails of conceptual
data modelling languages such as EER and UML
Class Diagrams. Many attempts exist to add logical
rigour to them, for various reasons and with dispar-
ate strengths. In this paper we aim to provide a

structured overview of the many efforts. We focus
on aims, approaches to the formalisation, including
key dimensions of choice points, popular logics used,
and the main relevant reasoning services. We close
with current challenges and research directions.

2012 ACM Subject Classification Information systems → Database design and models; Computing
methodologies → Description logics; Software and its engineering → Formal language definitions;
Software and its engineering → Unified Modeling Language (UML); Theory of computation → Data
modeling
Keywords and phrases Conceptual Data Modelling, EER, UML, Description Logics, OWL
Digital Object Identifier 10.4230/TGDK.2.1.4
Category Survey
Received 2023-09-14 Accepted 2024-02-08 Published 2024-05-03
Editors Aidan Hogan, Ian Horrocks, Andreas Hotho, and Lalana Kagal
Special Issue Trends in Graph Data and Knowledge – Part 2

1 Introduction

Information modelling or conceptual modelling plays an essential role in computing by providing
a structured and abstract representation of complex data that sustains each software system.
It serves as a foundational step in the development lifecycle, facilitating communication and
understanding among stakeholders from the identification of requirements to maintenance. In
addition, it promotes a shared vision and a common understanding of the system’s domain
information that facilitates interoperability with other systems in unforeseen ways at development
time. The latest curriculum recommendations2 include conceptual modelling in the undergraduate
curriculum and pertinent dimensions are listed with multiple terms in the ACM classification
codes, notably, among others: Information management, Data Modeling, Model development and
analysis, Enterprise modeling, Entity relationship model, and Unified Modeling Language (UML).

Storey et al. recently described conceptual modelling as “an activity that occurs during in-
formation systems development and use that involves capturing, abstracting, and representing
relevant aspects of reality, to support understanding, communication, design, and decision making.
Conceptual models are comprised of constructs, such as entities, events, goals, attributes, relation-
ships, roles, and processes, connected by well-defined rules.” (emphasis in original) [116]. Here, we
focus specifically on conceptual data modelling (and thus excluding process and goal modelling)

1 Corresponding author
2 Accessible at https://www.acm.org/education/curricula-recommendations

© Pablo R. Fillottrani and C. Maria Keet;
licensed under Creative Commons License CC-BY 4.0

Transactions on Graph Data and Knowledge, Vol. 2, Issue 1, Article No. 4, pp. 4:1–4:30
Transactions on Graph Data and Knowledge

T G D K Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:prf@cs.uns.edu.ar
https://orcid.org/0000-0003-0906-867X
mailto:mkeet@cs.uct.ac.za
https://orcid.org/0000-0002-8281-0853
https://doi.org/10.4230/TGDK.2.1.4
https://www.acm.org/education/curricula-recommendations
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/tgdk
https://www.dagstuhl.de/tgdk
https://www.dagstuhl.de

4:2 Logics for Conceptual Data Modelling: A Review

and within that, what has been called structural conceptual data models [56] (and thus excluding
behavioural aspects like UML’s methods). Popular modelling languages over the years include
Extended Entity-Relationship (EER) diagrams for database design [36] and the Natural language
Information Analysis Method that evolved into Object-Role Modeling (ORM) [59], design for
object-oriented programming with Unified Modeling Language’s (UML) Class Diagrams3, and the
Semantics of Business Vocabulary and Business Rules [93] that reuses ORM.

Albeit only one of many topics in computing, conceptual data modelling has been investigated
widely. This has also resulted in several surveys and scoping reviews on conceptual data modelling
broadly but without logics [116], on ontology-driven conceptual modelling aspects from a modelling
side [130, 131] rather than logics, on verification topics for UML class diagrams specifically [52, 109],
or only for conceptual model-like artefacts as it pertains to reasoning in the context of scalable data
management [107]. Those reviews also indicate that conceptual modelling may span (sub)disciplines.
Among others, the human aspects of the modelling process may be assumed to be within the
scope of information systems and their formal aspects are within the scope of the computing
discipline. The latter involves their quality assessment, and algorithms to, among others, convert
such specifications into databases and software applications. Conceptual data models are also
used in Artificial Intelligence (AI) to drive the design of intelligent information systems, provided
they are given a logic-based specification. By being formalised, complex knowledge – entity types,
relationships, attributes, and constraints holding over them – can be captured accurately and
passed on to a range of computational tasks. Example tasks include using automated reasoners for
classification and satisfiability checking and querying data by making use of, e.g., a Description
Logics reasoner [12], test data generation (e.g., [110]), optimising query compilation [124], and
explainable machine learning processes [83, 117].

This logic-based conceptual data modelling, thus far, has focussed on a number of subtopics,
such as which logic to use to formalise the graphical elements and diagram grammar, which features
of which conceptual data modelling language to include, and whether one could just have one
logic that maps to all major diagram-based conceptual data modelling languages and therewith
functioning as a precise interlingua in the back-end – and that for each purpose or assumed
application. Figure 1 shows three main strands of investigation and related work programmes
with particular aims for logic-based conceptual data modelling together with a few key moments
or the publication of pertinent languages and concepts. They are, roughly:

logic-based reconstructions4 of conceptual data models (CDMs5) and conceptual data modelling
languages (CDMLs) in expressive logics targeting precision and automated reasoning over
them, since around 1990.
runtime usage of CDMs since the early 2000s: ontology-driven information systems including
Ontology-Based Data Access (OBDA) where the ontology is de facto a CDM due to being
tailored to one application, query optimisation, and verification.
reach-out to a broader IT scope and to end users since the mid 2010s, which necessarily
simplifies and upscales it, where the broader access may have to be tolerant of conflicting
information in the model.

3 The first standard listed is version 1.1 from 1997, at https://www.omg.org/spec/UML/1.1; last accessed: 30
Sept. 2023.

4 The term “reconstruction” captures the process more accurately than “formalisation”. We understand by
reconstruction an attempt to get a complete description of information available early at design time, which
goes beyond creating just one of many possible formal representations. It includes also, among others,
assessment of the graphical design’s implicit assumptions and approach to formalisation. Put differently, the
formalisation step forms a part of the reconstruction.

5 The abbreviation is well known; tracing it to its origins among the many mentions, it appeared at least already
in 1991 [37]. Before that, the CDM abbreviation was also used for Common Data Model or Content Data
Model.

https://www.omg.org/spec/UML/1.1

P. R. Fillottrani and C. M. Keet 4:3

Mid 1970s

ER
(sets)

ORM
(FOL)

1990 2000

UML
v1.1

2010 2020

OWL
(DLs)

schema.org
Google KG
(graphs)

1
2

3

OWL2
(DLs)

OBDA
(DLs+DBs)

ICOM

ShEX
SHACL

FaCIL

Figure 1 Timeline of the three identified strands and a selection of the key moments regarding languages,
logics and semantics of the formalisations, and applications. Regarding the latter: ICOM was the first
automated reasoner-enabled conceptual modelling tool, Mastro and QuOnto realised OBDA initially,
Google’s positioning of KGs helped boost graph-based approaches, and recently FaCIL combines languages
and techniques.

Each strand brings with it a different set of requirements for AI theory and techniques, which
we will discuss in detail in the paper, and are summarised as follows. The first strand is mostly
based on a waterfall design approach: design the model well and shelve it once the system is being
implemented. Modellers and domain experts generally develop models only in a graphical language
with none or ambiguous semantics that should be formalised. Those logic-based reconstructions
focus on formalisations to be as expressive as possible. The more features the better, since the
more precision the better, in line with feature extensions from ER to EER [122], ORM to ORM2
[60], and OWL DL to OWL 2DL [38]. In summary, more expressive logics are also more interesting
for a broader range of automated reasoning tasks to further help improve a model’s quality.

The second strand of research shifted the focus to leaner languages, designing computationally
“well-behaved” fragments of the logics used for the formalisation. The key goal is scalability, not
expressiveness, with the logic-based CDM as a component of more advanced AI-driven software
systems. It did not focus on reasoning over the CDM itself, but rather the reasoning service as
part of querying the data using the conceptual model.

The third, and most recent, strand is ongoing, and might be dubbed “modelling for the masses”
and may bifurcate further into new usages. Here, not only scalability is important, but also
ease of use and possibly also permitting contradictions, and thus also lower quality models. The
latter may happen because the representation language can be too weak to be able to detect
quality issues and contradictions. While it may focus on simple queries at most, such basic large
models can be of use already in machine learning and natural language processing (NLP) and
neuro-symbolic approaches for knowledge graph (KG) embeddings to enhance NLP. Example
initiatives that closely relate to CMDs include schema.org, linked data with RDF and optionally
with ShEx [13] and SHACL [77] for constraint validation, and the data and modelling component
of the community-driven Abstract Wikipedia [132]. This line of work runs in parallel with the
first two and may be the most prominent currently.

The different aims of logic-based formalisations, however, do affect how “best” to define that
construction, because what “best” entails is relative to the aim. On top of these different aims
and tasks, including reasoning tasks, there are various formalisation decisions on how to give
semantics to the elements of the diagrammatic notation of the CDM, which, in turn, can affect
the computational complexity and therewith the tasks one actually can use the conceptual model
for. Owing to the diverse lines of work with their aims for formalising CDMs, different approaches
are necessary for assessing a given formalisation in conceptual data modelling. In this condensed

TGDK

4:4 Logics for Conceptual Data Modelling: A Review

review, using the means of a qualitative narrative review, we zoom in on the evaluation of the
aspects that arise in selecting, developing, and applying logic-based semantics in this context. We
seek to answer the following questions:
Q1: What are the tasks and challenges in that formalisation?
Q2: Which logics are popular for which (sub-)aim?
Q3: What are the known benefits of a logic-based reconstruction in terms of the outcome and in

terms of reasoning services that one may use once a CDM is formalised?
Q4: What are some of the outstanding problems in logic-based conceptual data modelling?

The remainder of the paper is structured as follows. We first describe related work on reviews
on conceptual data models in Section 2. Section 3 covers decision points for a formalisation,
the logics used for different purposes, and it outlines the two key different processes to do so,
covering questions Q1 and Q2. Section 4 identifies and evaluates possible reasoning services that
can be applied to CDMs, illustrating with examples two of them. We therewith deal with Q3.
Current challenges and future directions related to Q4 are described in Section 5 and we close
with conclusions in Section 6.

2 Related Work

Several reviews of the state of the art in conceptual data modelling and logic-based reconstructions
of languages exist, but they either cover only the early years or the first strand of the development
of the area [66, 115, 118, 102, 119] or the first and the beginnings of the second strand of the
area [2, 39] and are, by now, outdated. New applications of CDMs since those reviews introduce
distinctive challenges that were not considered before. Key differences are the uptake of Semantic
Web technologies with scalable reasoning over CDMs and runtime usage of CDMs especially for
querying data.

Scoping the related work on reviews for CDM to the last 10-15 years, they focus on the
non-logical aspects [134, 86, 131, 130, 116]. Wen et al. [134] analysed several quality aspects of
conceptual models, such as expressivity, clarity, and semantics, and they evaluated effectiveness
of modelling languages in different fields of applications. The formalisation of the languages is
generally described, i.e., without logical translations, and no detailed comparison of alternative
representations is done.

Other reviews assess CDM from the ontology modelling angle. McDaniel et al. [86] reviewed
publications on domain ontology evaluation. Their work concentrates on the evaluation process,
and even though domain ontologies are related to conceptual data modelling, the modelling
language and their formalisation is not part of the analysed characteristics. Verdonck et al.
[131, 130] conducted a systematic literature mapping and review on the domain of ontology-based
conceptual modelling. They consider ontology-driven conceptual modelling as the utilisation of
ontological techniques, like formal ontology, cognitive science and philosophical logics, to the
practice of conceptual modelling. This analyses CDMs in general, not only those approaches
related to ontologies.

There are also reviews on the collaborations of the field of conceptual modelling with artificial
intelligence [18, 19, 127, 84]. These reviews focus on identifying new research directions and do
not address formalisation details.

Gonzalez et al. [52] conducted a systematic literature review of formal verification of structural
software models in UML, complemented or not with constraints expressed in textual languages like
the Object Constraint Language (OCL). The scope were papers describing research initiatives on
model-driven engineering tools that ensure software correctness, and the results classify the type of
input models, the reasoning support of the tools, and the completeness of the automatic verification

P. R. Fillottrani and C. M. Keet 4:5

Figure 2 Example EER diagram of Example 1.

process. The way models are formalised, and how the tools help to develop this formalisation is
not analysed, only listing the formal languages used. Shaik et al. [109] presents a more recent
literature review with similar aims. They describe language coverage and formalisation techniques
in more depth, but the scope is limited to only verifying UML class diagrams, so new applications
such as querying are not considered and language coverage is limited to classes, associations,
generalisations, compositions, and aggregations. Also, the complexity of formalizations is missing.
While such quantitative surveys are useful, they lack in-depth content assessments.

The most recent review, by Storey et al. [116], presents a comprehensive systematic review
of the literature in conceptual modelling in general with as aim to identify relevant topics and
future research directions. It has a much broader scope including not only static (structural)
modelling but also process and collaboration modelling. They recognise the need to support an
always increasing variety of users and interconnected domains. Another noteworthy result is that
they found out that over the last 15 years, process modelling prevails over data modelling on the
research topics. Being a systematic review of a huge amount of literature with semiautomatic
tools, there is, however, no reference to logic-based semantic constructions.

There is thus no review on logics for conceptual data modelling specifically, let alone on
assessing logic-based formalisations for CDM in view of the current demands and applications not
only from the formal point of view, but also on the design decisions that influence data-driven
applications across different domains.

3 On formalising conceptual data models

Logic-based reconstructions of CDMs and their languages (CDMLs) used to represent them
are motivated by two main key usage scenarios: 1) precision in representation and automated
reasoning over them (and, implicitly: quality) and 2) their use at runtime as part of an intelligent
information system. It also may be the case that the CDML angle is only a possible scenario and
the main aim is to design more logics, whereas from our perspective, the CDMs and CDMLs are
the key focus.

This section will summarise the component tasks and types of challenges first, since they set
the stage for the logics, subsequently discuss the popular logics used for that, and finally describe
the two main approaches typically taken carrying out that task.

3.1 Decision points before the formalisation
This section zooms in on considerations when designing or selecting a logic for creating a logic-
based reconstruction of a conceptual data model or modelling language and the decision points
involved in it.

TGDK

4:6 Logics for Conceptual Data Modelling: A Review

In a recent empirical survey, Valle Souza et al. [128] identify six types of functional goals, and
five types of quality goals for using conceptual data modelling in practice. Before formalising a
CDM, it is important to understand both which subset of the all possible functional goals and
which balance of all quality goals are adequate for the context. Different model properties are
relevant for achieving these goals, mainly reusability, correctness, comprehensibility, completeness,
confinement, and maintainability. Correctness can be further split into precision and coverage.

On the surface, it seems straightforward to formalise CDMs, as something that can be done
promptly with little effort, but to get it right for either the whole CDML or an “interesting”
fragment requires attention to detail and a substantial amount of knowledge and time. This is
due to two key reasons:

the purpose or reason for the formalisation that influences the design process of a language
and therewith the many variations in outcome [46];
where to set the cut-off point for feature (constraint) inclusion, since if a feature is added, it
will be used by someone somewhere and perceived as needed [75].

Purposes such as reusability, comprehensibility, and maintainability favour leaner logics for better
performance. In contrast, a purpose of precision requires a more expressive logic to maximise
coverage of CDML constraints in the ontologically best possible way, which concerns both higher
precision so that more unintended models are excluded [55] and philosophical decisions embedded
in the logic [47]. Feature inclusion decisions can be split up into two categories. One is modelling
features, which concerns whether to include attributes and multi-attribute identifiers, with or
without data properties and data types (concrete domains), and which semantics to choose for
shared and composite aggregation – among the 23 types of elements and 49 types of constraints
across the three main CDML families [76]. The other concerns those that affect the automated
reasoning outputs, notably Open World Assumption vs Closed World Assumption and whether to
honour the implicit disjointness of classes except when they are in a hierarchy.

In addition to these feature decisions where the logic does not adequately cover all the CDML’s
constraints it should be able to express, there is generally a discrepancy in the other direction as
well. This concerns the confinement model property, which refers to the degree to which a model
has only the necessary information to fulfill its purpose [128]. Here, the logic may permit more
than is possible to declare in a diagram due to composition rules of the CDML, with the effect
that the logic falls in a higher complexity class than strictly needed.

An overview of the key dimensions of choice points is included in Table 1, which the au-
thors created by combining an assessment of the published logic-based reconstructions (see also
Section 3.2) and the top-down approach of the language design procedure introduced in [47].
The first row in Table 1 describes the main aim of the reconstruction, which aligns with the
strands 1 vs 2 and 3 introduced in Section 1. The second row presents two approaches to the
formalisation: rule based and mapping based. The choice of the approach commits the modeller to
a given process, with different tools and outcomes. A detailed analysis for this choice is presented
in Section 3.3 and it is further illustrated in the Appendix. Different syntactic and semantic
representations for the underlying logic are shown in the third and fourth rows respectively, which
summarises the various options that are further discussed in Section 3.2. The next three rows show
alternative formalisations for relationship, class disjointness, and how negation is to be treated
(closed world view). Finally, the last row describes the influence of the logic-basic constituents in
the formalisation, which varies greatly across the published logic-based reconstructions (discussed
in Section 3.2.1). The following example illustrates some of these issues, in particular regarding
roles and relationships and disjointness.

P. R. Fillottrani and C. M. Keet 4:7

Table 1 Key dimensions to choose for creating a logic-based reconstruction of a conceptual data model
(see Section 3.1 for details).

Dimension Options Comments

Main aim High feature coverage for [preci-
sion/automated reasoning], limited
features for runtime usage

Mainly a choice between computationally
“well-behaved” logic or not

Approach to
formalisation

Algorithmic/rules, mappings See Section 3.3 for details

Syntax Graphical, textual, both See Section 3.2 for details
Semantics Set-based, model-theoretic, graph-

based, other
First two are most popular; see Section 3.2
for details

Relationships See formalisation options in Ex-
ample 1

Often not stated explicitly which option is
chosen

Class disjoint-
ness

Classes outside a class hierarchy are
disjoint, or not

Most formalisations do not make them dis-
joint (although assumed in the CDM)

World view Open, Closed World Most formalisations are with Open World
Assumption

Language fea-
ture inclusion

Choose types of elements and con-
straints to include

A unifying metamodel for EER, UML class
diagrams, and ORM2 identified 23 types
of elements and 49 constraint types [76] to
choose from; see also Section 3.2.1

▶ Example 1. A sample conceptual data model in one of the EER notations is included in Figure 2
(incomplete with respect to the universe of discourse). There are only regular and electric bicycles
(which are disjoint) that all have a number of wheels and where the latter has an engine as part.
Clients can rent bicycles in a city. Bicycles, engines, and wheels are identified by their respective
ID. The first step is to decide how to formalise this in which logic.

Consider the relationship between the Electric bicycle and Engine. There are multiple options
that may have consequences for the logic and the resultant computational complexity of popular
automated reasoning tasks:
1. One-directional binary relationship; choose either partOf or hasPart.
2. Two-directional binary relationships, partOf and hasPart; choose whether to declare them inverses

or not.
3. One non-directional binary relationship with two roles (as part of the relation) that the

participating entities play, named, say partwhole with as roles [part] and [whole]; choose whether
to define the relationship as having those roles as part.

4. Reify the relationship to a new class and add two new binary relationships to each participating
entity type, e.g., Parthood with as new relationships partOf and hasPart that must have as
domain Parthood; choose whether to approximate the reification (i.e., add only mandatory or
only functional (“at most one”) constraints or both on the two new binaries) or demand logical
equivalence (i.e., also have the external identifier, as in ORM, or owner entity identifier, as in
ER).

5. Acknowledge that relationships in CDMs are local rather than reused like they are in ontologies,
so the parthood relationships between Electric bicycle and Engine and between Cycle and Wheel
must have unique names; choose whether to declare them equivalent or not.

Regarding option 2: adding inverses may or may not change the worst-case computational
complexity of a language: e.g., the Description Logic (DL) ALCQ and ALCQI are both ExpTime-
complete [123], whereas EL (the basis of the OWL 2 EL profile [90]) does not have inverse
properties and is PTime-complete, but adding inverses increases complexity [58].

TGDK

4:8 Logics for Conceptual Data Modelling: A Review

Option 3 requires more machinery in the logic, specifically roles (called role components in
DLs) as core elements and functions to relate the role player to the role, which is used for more
convenient processing. Defining relationships, such as defining (familial) aunt to be precisely one’s
parent’s sister (aunt ≡ hasParent ◦ hasSister), pushes the logic into undecidability in most cases
[85, 135, 106]. The reification-based approach of option 4 is used by, e.g., Wikidata’s data model6.
Logical equivalence with a binary relationship requires an advanced identifier constraint that is
currently only available in DLRifd [31] and CFDI∀−

nc [125] DLs and in full first order logic, but
not in OWL that has ample software infrastructure.

For the disjointness, one could either capture that as the complement or as full disjointness, i.e.,
as Bicycle ⊑ ¬Electrical bicycle or as Bicycle ⊓ Electrical bicycle ⊑ ⊥, respectively. Diagrams show
disjointness declared on the subsumption relation rather than between the entity types, however,
and it thus can be declared only in a class hierarchy, not any number of arbitrary classes in the
CDM.

There are more choices for other elements, which, taken together with the myriad of logics,
easily can lead to a combinatorial explosion of the combination of formalisation choices with the
logic chosen, and which subset of constraints of the CDML is honoured in the formalisation. For
instance, OWL DL [87] does not have qualified cardinality constraints to be able to capture the
constraint on Wheel fully; OWL 2 DL [91] does. ⌟

The different options for this one example are illustrations of how to formalise a particular
element, constraint, or combination thereof. CDMs have only a limited set of such patterns and this
can be defined algorithmically so that the logic-based reconstruction can be done systematically
and a repeat reconstruction will result in the same formalisation, provided the same vocabulary is
used where vocabulary needs to be provided. The designers of the different algorithms have made
different formalisation choices, and thus their corresponding tools will not necessarily result in the
same formalisation given the same CDM.

Finally, an element of the CDML may not be unambiguous and therefore it may be formalised
differently across formalisations. The common example of such an issue is UML’s aggregation
association that was a “semantic variation point” according to the UML v2.4 standard [94] and
its semantics is left to the implementer to specify.

3.2 Popular logics for logic-based reconstructions

Most research has focussed on the motivation of the first strand, expressiveness and model quality,
both from a conceptual modelling and from a logics perspective, such as [7, 15, 59, 120, 70, 104].
Popular logics to give the graphical elements a formal semantics and to use that for automated
reasoning over them at least in theory, are Description Logics (DL) languages but also other
logics have been used (e.g., [7, 15]). Several of those other logics, notably those with some tooling
support, include UML’s object constraint language (OCL) [103], common logic interchange format
CLIF (an ISO-standardised first order logic) [98], Alloy (also first-order logic) [21], and Z (a
typed first order logic) [67]. Conversely, there are also multiple formalisations for one CDML; e.g.,
logic-based reconstructions of ORM include, among others, [48, 50, 59, 120, 71, 133] and for ER
and EER both from a modeller’s perspective [36, 111, 122] and from the logicians’ one with the
DLR family [29, 30, 31] and DL-Lite family [28] of languages.

6 Reification such as described by [62]. See also the data model at https://www.mediawiki.org/wiki/Wikibase/
DataModel; last accessed on 2-1-2024.

https://www.mediawiki.org/wiki/Wikibase/DataModel
https://www.mediawiki.org/wiki/Wikibase/DataModel

P. R. Fillottrani and C. M. Keet 4:9

Table 2 Popular logics for CDMLs and a set of features (adapted and extended from [42]). “–”:
negative/absent; “+”: positive/present; “feature mismatch” refers to the number of constraints (e.g,
disjointness) that can be captured in the logic; roles sensu DL role components or FOL argument places
in relations and relationships.

DL-LiteA (Approx.
OWL 2 QL)

DLRifd OWL 2 DL FOL

Selection of features
– without roles + with roles – without roles – without roles
– no n-aries + has n-aries – no n-aries + has n-aries
+ attributes + attributes + attributes – no attributes
+ has datatypes + has datatypes + has datatypes – no datatypes
– very few language fea-
tures; large mismatch

+ little feature mismatch ± some feature mis-
match, with overlapping
sets

+ little feature mismatch

– logic-based reconstruc-
tions to complete

+ logic-based reconstruc-
tions exist

– logic-based reconstruc-
tions to complete

± logic-based reconstruc-
tions exist

+ modularity (import
statements etc)

– modularity + modularity (import
statements etc)

– modularity

UNA / no UNA no UNA no UNA no UNA
± OWA ± OWA ± OWA ± OWA

Computation and implementability
+ PTIME (TBox); AC0

(ABox)
± ExpTime-complete ± N2ExpTime-complete – undecidable

+ very scalable (TBox
and ABox)

± somewhat scalable
(TBox)

± somewhat scalable
(TBox)

– not scalable

+ relevant automated
reasoners available

– no implementation + relevant automated
reasoners available

± limited automated
reasoners (see text for de-
tail)

+ linking with ontologies
doable

– no interoperability + linking with ontologies
doable

– no interoperability
with widely used infra-
structures

+ modularity infrastruc-
ture

– modularity infrastruc-
ture

+ modularity infrastruc-
ture

– modularity infrastruc-
ture

Alternative approaches consider the verification problem, for which constraint programming
is used [25, 26], and there are a few graph-based approaches [20]. Also, there is the deductive
databases approach based on logic programming [88], in which the concepts of closed world
assumption (CWA) and unique name assumption were first introduced. ConceptBase7 is a
tool that adds conceptual modelling and metamodelling features based on the same logical
representation. Deductive databases focus on a logic-based representation and inference within an
already deployed database system, however, where all choices and decisions about the formalisation
are already made, while conceptual modelling is concerned with creating a high-level, technology-
independent representation of the entire information system during the early stages of development
where there are still plenty of open points to formalise. Although it is possible to do conceptual
modelling in this context, it is not in the main interest of the deductive databases area. Other
attempts, such as exploring category theory [120] for a precise specification, are also considered
out of scope for this review.

The next three paragraphs elaborate on the main trends.

7 https://conceptbase.sourceforge.net

TGDK

https://conceptbase.sourceforge.net

4:10 Logics for Conceptual Data Modelling: A Review

3.2.1 Coverage and DLs

We shall focus on DLs since they are relatively popular thanks to the OWL standard [87, 91],
which is largely based on them [65]8, the software tooling ecosystem that it fostered, more research
has been carried out on logic-based reconstructions into a DL or a DL-based OWL species than for
other logic families, and they enjoy ample insights into the computational complexity of language
feature combinations.

Most logic-based reconstructions consider only one CDML family at a time. Well-known logics
for this purpose are DL-Lite and DLRifd for EER [7] and UML class diagrams [15], and OWL for
(fragments of) ORM and UML class diagrams [133]. The formalisations are typically incomplete
with respect to the full CDML due to limited expressiveness of the logic; among others, omitting
ER’s identifiers (aka keys) [34], excluding n-ary relationships where n may also be ≥ 3 [7, 133], or
no special semantics for UML’s aggregation association nor for its qualified associations [15]. To
some extent, this is unavoidable: ORM and its extended ORM2 are undecidable due to arbitrary
projections over n-aries and due to the acyclic role constraint, and probably also due to the
antisymmetric role constraint. An advantage of all these formalisations in the different logics
covering different features, is that it provides good insight into the computational complexity of
the CDMLs. Table 2 lists these and related aspect for four logics, three of which are expressive
ones. The for CDMLs relatively well-suited DLR family – meaning that there is a comparatively
good language feature alignment of the logics with CDMLs – are all ExpTime-complete. It
varies for the many flavours of DL-Lite for different EER fragments [7]. DL-Lite is included in
the comparison because it is popular in ontology-based data access, where the ontology has to
resemble a CDM for seamless query formulation and execution. OWL 2 DL is included for its
popularity, given that it is standardised and a reconstruction provides instant access to ample
software infrastructure. Their respective language feature sets have some overlap, but either has
features that the other one does not have; among others, OWL does not have n-aries proper, no
external uniqueness/multi-attribute identifiers or qualified associations, no compound attributes,
and no acyclicity, whereas the CDMLs notably do not have property chains and no defined classes.
FOL is a common and very expressive language at least on paper and therefore included. Its
status of “limited” automated reasoners refers to their plug ’n play level of maturity and the
reasoning services they currently offer, as compared to DL-based automated reasoners.

Adding the missing features to any of DL-Lite, DLR or DL-based OWL species is likely to
push them straight into undecidability, if they were not already. This also negatively affects
obtaining interesting results in unifying the CDMLs through one logic foundation as the central
point from which to pivot between graphical CDMs. The typical approach is to identify a common
fragment with features that all CDMLs have in common and devise a suitable logic for that,
such as the DL ALUNI [34] and the tailor-made DLs in the same low expressiveness range for
evidence-based unification of CDMLs [42]. An exception is the framework for the Distributed
Ontology, model, and specification Language (DOL) that uses institutions to provide a framework
to let different languages cooperate, including a logic-based reconstruction of UML class diagrams,
OWL, and CLIF [89, 54].

Given that one easily arrives at a logic that is ExpTime-complete even without covering all
CDML features, little has been done to venture into CDML extensions, although this is also in
part because there are not many temporal or spatial conceptual data modelling languages. The
main line of research where attempts have been made, concerns expressive temporal DLs like

8 OWL DL 2 is based on SROIQ [64], OWL 2 QL is based on DL-Lite [28], OWL 2 EL on EL++ [11], and
OWL 2 RL was inspired by both Description Logic Programs [53] and pD∗ [121].

P. R. Fillottrani and C. M. Keet 4:11

DLRUS [9] that serves as a basis for the temporal EER ERV T [10]. DLRUS was also explored in
context of the MADS spatio-temporal modelling language [99], and ERV T has been extended into
EER++

V T [95] and Trend [74], all of which still can be reconstructed into DLRUS . While DLRUS
turned out to be undecidable [9], this does not need to be the case for all temporal conceptual
data models in existence. Only those that have, among others, the following modelling features,
are: disjointness and covering (total) constraints, sub-relationships, timestamping, and evolution
(i.e., object migration) constraints [6]. Without them, a modeller lacks the ability to represent
temporal constraints such as, e.g., “each alumnus must have been a graduating student before”.

3.2.2 CDM runtime usage and DLs
The second strand of research into logic-based reconstructions of CDMLs, runtime usage, focuses on
(very) lean fragments for scalability. The software system then uses at least the conceptual model’s
vocabulary, relationships, and possibly also its constraints or a subset thereof. Practically, the
CDM is then deemed so-called “background knowledge” of the system, rather than the traditional
view on it as a starting point for software design from a requirements specification. Popular
runtime usages are test data generation for verification and validation [92, 110], query answering
with the principal aim of query execution or user-centred query design [16, 33, 35, 82, 113], and
database query execution during query compilation [124].

Query answering has received most attention in AI under the name of ontology-based data
access (OBDA) [100] and related implementations generally [136, 17, 82, 124, 3], and specific
use cases such as EPNet [27] whose “ontologies” are de facto conceptual data models (see for a
comparison, e.g., [73]). An alternative approach to the same problem uses transformations rather
than a mapping layer, availing of the DL CFDI∀−

nc and an abstract relational model [125, 105].
CFDI∀−

nc has been shown to cover a substantial number of constraints used in ORM in its ORM2cfd

fragment [48] and the approach fits well also with EER [47]. Thanks to the transformations and
the assumption of materialising deductions, the expressivity of the logic for the CDML may be
higher in this configuration compared to the logic for the CDML in the OBDA approach; other
trade-offs are discussed in [47].

For the computationally “well-behaved” lean logics, the key challenge is that the formalisation
of a CDM becomes so complicated that it borders cognitive overload for the modeller, if they
have to do it all at once. That is, to have to combine in one view and all at the same time the
understanding of the universe of discourse, to model it right in the CDM, to know enough of
logics, and be fully conversant with its workarounds, convoluted encodings, and approximations.
In theory, this should be solvable with good modelling software.

As with the CDM reconstructions that focus on coverage, also here there are steps toward lean
temporal fragments, which are motivated mainly by spatio-temporal stream queries with OBDA
[69, 40, 97].

3.3 Approaches to the formalisation
Once the CDML, or a fragment thereof, and the logic are chosen there are two main ways to
create the logic-based reconstruction, whose components and their interactions are illustrated
in Figure 3. The distinction between the two is important, because they meet different sets of
formalisation and deployment requirements. One option is to do it algorithmically with a series of
rules stating what axiom(s) must be added to the knowledge base for each element encountered
in the CDM that needs to be formalised (e.g., [15, 42, 103]). This is like converting an existing
informal CDM to the logic. Practically, a particular model is deconstructed into component parts
where each component – a pattern or unit for formalisation – may be formalised in a single axiom

TGDK

4:12 Logics for Conceptual Data Modelling: A Review

implement()*

purpose
formalisation options

Logic-based
reconstruction

name

Conceptual
Data Model

implement() {during design,
as elements are added}

semantics[1..*]
Mapping-based Approach

implement() {after design,
selecting relevant patterns}

semantics[1]
Rule-based Approach

name
Element type

1..*

1..*

.
pattern

1..*

.

textual
representation

for

for

reconstruction

1..*0..*

1

mapped into

has

maps to

identifier
Element

1

0..*

instantiates

0..*

0..*

0..10..1

used for
0..*

Figure 3 Conceptual model describing the characteristics of the two main approaches used for creating
logic-based reconstructions of conceptual data models: Mapping-based and rule-based.

or several axioms, depending on the pattern and logic, which are then added one-by-one to a
logical theory. This resultant logical theory may be a semantically complete reconstruction of
the original CDM or only resembling the original CDM, for it may be missing an element (e.g., a
cardinality of “2-4” appears as “∃” in the logical theory) or approximating one (e.g., reification of
an n-ary without the identification constraint).

The other option is to declare a new textual syntax of the modelling language, map that
syntax to the graphical elements of the CDML, specify the semantics for the syntax, and then
show it can be represented in the chosen logic (e.g., [7, 48]). In this second option, the graphical
elements in the CDM are effectively a syntactic sugar coating in the modelling process that is
already logic-based from the start. With the mapping based approach, it is fully reconstructed by
design if the mapping were 1:1 and any excluded features could not be used to begin with, else it
is also only an approximation. That is: the details of the reconstruction into the logic vary by
proposal and are embedded in the creation of the mapping.

The rules-based approach is illustrated in Appendix A.1, where we adapt the “positionalist
core profile” DCp of [42] for the occasion, which contains the features used most across UML class
diagrams, EER, and ORM2, into DL syntax (and thus semantics) [12] with the specific DL role
component notation as in the DLR family of DLs [29]. The mapping-based approach is illustrated
in Appendix A.2, also with the DCp language. It is clearly more verbose in its specification than
the rules-based one, and takes more time to specify. We illustrate some formalisations with both
approaches in the following example.

▶ Example 2. Consider again the bicycles of Figure 2. Let us formalise a section of it into the
DL fragment for DCp, using the rules listed in Appendix A.1:

≥ 1[whole]PW ⊑ ElectricBicycle

≥ 1[part]PW ⊑ Engine

Engine ⊑ ∃power.T ⊓ ≤ 1 power

ElectricBicycle ⊑ Cycle

ElectricBicycle ⊑ ≤ 1[whole]PW ⊓ ≥ 1 [whole]PW

The same section of the model can be formalised a different set of rules for a different logic. For
instance, let us take the same section in OWL 2 DL: we first need to somehow add directionality to

P. R. Fillottrani and C. M. Keet 4:13

the nondirectional PW relationship. Further, one could argue about whether the PW relationship
should be typed with a domain and range axiom, since it is used twice and so without typing, one
can then obtain a more elegant formalisation. If so, it would be, at least:

SubClassOf(ObjectSomeValuesFrom(ex : hasPart) ex : ElectricBicycle)
SubClassOf(ObjectSomeValuesFrom(ex : isPartOf) ex : Engine)
SubClassOf(ex : Engine (ObjectIntersectionOf (DataSomeValuesFrom(ex : power)

FunctionalDataProperty(ex : power)))
SubClassOf(ex : ElectricBicycle ex : Cycle)
SubClassOf(ex : ElectricBicycle ObjectExactValuesFrom(1ex : hasPart))

and optionally with the additional assertion that hasPart is the inverse of isPartOf. If one were
to decide against typing relationships in the rules-based approach, still for OWL 2 DL, then
the following set of axioms approximates it by exploiting the qualified cardinality constraint feature:

SubClassOf(ex : Engine (ObjectIntersectionOf (DataSomeValuesFrom(ex : power)
FunctionalDataProperty(ex : power)))

SubClassOf(ex : ElectricBicycle ex : Cycle)
SubClassOf(ex : ElectricBicycle ObjectExactValuesFrom(1 ex : hasPart ex : Engine))

The mapping approach, on the other hand, is laborious to define (recall Appendix A.2), but then
results in a succinct notation in the formalisation, for one can use the textual version of the CDML.
The same model snippet is then:

rel(PW) = {whole : ElectricBicycle, part : Engine}
att(Engine) = {power : T}

isa(ElectricBicycle, Cycle)
cmin(ElectricBicycle, PW, whole) = 1

cmax(ElectricBicycle, PW, whole) = 1

This notation is likely to be more readable for users who are not logicians, because a term like att for
attribute or, say, Attribute in full, is closer to common terminology than FunctionalDataProperty,
and likewise a simple comma to separate the part and whole versus a “⊓” symbol. ⌟

As can be seen in the example, a different set of rules may result in a knowledge base that
is never equivalent, regardless whether that was into the same logic or into different logics with
an isomorphism. For instance, with the “bumping up the role names”-approach rather than the
roles-based approach, it would not be equivalent due to having created two independent OWL
object properties, hasP and isofP, whereas there is only one relationship (PW) in the DCp-based
knowledge base. This also motivates that each CDM-to-logic-X converter would need to be explicit
on the rules the algorithm uses.

It must be noted that the resultant logic needed to encode all DCp knowledge bases, those
language features in that DL syntax allow formulas that are not DCp knowledge bases, or: this
logic is more expressive than DCp. For example, a knowledge base using that DL fragment may
contain A ⊑ ∃a.T⊓ ≤ 1a⊓ ∀a.T , but it cannot be obtained from the translation of any conceptual
data model that has only DCp’s elements. This is a feature that holds for all such reconstructions:
it is a one-way direction from conceptual data model into the logic, but not vice versa.

Observe that since a rule-based construction procedure is linear in the number of elements
in the CDM, as most of them are, the overall complexity of translation and any subsequent
automated reasoning on the theory remains the same as for the logic. The overall complexity
of the mapping-based approach depends on its realisation. If one can model only with what is
declared in that mapping, then the complexity is the same as in the logic, which is more efficient

TGDK

4:14 Logics for Conceptual Data Modelling: A Review

Table 3 Summary of differences between the rule-based and mapping-based approaches, principally
emanating from both the different components and relations between them (see Figure 3) and from how
the two approaches are currently realised (see the Appendix for an illustration).

Rule-based Mapping-based

Logic is more expressive than the CDML The logic is/can be as expressive as the CDML
When mapped into that logic, the only semantics
is that of that logic

Can swap the semantics or declare multiple and
choose, like set-based for model-theoretic

Formalisation decisions “hidden” in the algorith-
m/rules

Ontological commitments explicit in the text-based
version and what maps to what

May be with information loss (i.e., less in the
formalisation than was modelled in the diagram)

Typically, it is information-preserving

Relatively quick specifications for the formalisa-
tion

It is more verbose in its specification and takes more
time to specify

Goes in one direction only, from diagram to the
axioms

Two-way direction between the CDM and logic

Executed post hoc after completion of the model,
or needs to be re-run each time a change has
been made

Formalised at modelling time with formalisation
and diagram updated in real-time. Computationally
faster than re-running the formalisation in the rule-
based approach

Graphical elements in the CDM take precedence Graphical elements in the CDM are effectively a
syntactic sugar coating in the modelling process
that is already logic-based from the start

than the rules-based approach thanks to not having to do the linear translation. If one can model
independently from the CDML in the mapping, then one has to add the pattern-finding complexity
to the complexity for the logic.

The approaches also can be merged. For instance, a rules-based approach that transforms
EER to an intermediary abstract relational model [47], which has its own syntax that is closer to
the relational model with its semantics and a mapping from that abstract relational model to a
logic (a DL in the case of [17, 82, 124]).

4 Reasoning over and with Conceptual Data Models

Depending on the aims of the modeller, it may already suffice to have a logic-based reconstruction
for precision and elimination of ambiguity of the language. It may also be the case that the
CDM is formalised in order to use it with automated reasoning services. The principal reasoning
tasks assumed for DL-formalised CDMs are the so-called standard reasoning services for DL
knowledge bases and OWL ontologies: satisfiability, consistency, instance checking, and querying
[12]. Satisfiability and consistency are interesting theoretically, and deducing implicit information
can improve on the model’s quality, but for this to be useful during the modelling stage, the
available CDML features need to be used more often than currently done [75]. In particular:
disjointness constraints, cardinalities beyond 1, and role and relationship subsumption ought, or
would need, to be used more often to obtain most benefits. Discovering unsatisfiable classes are
useful because if undetected, they result in necessarily empty database tables in a database or
OOP classes in the application cannot have any objects. Upfront correction before implementation
is better than revising after unit test failures. Detecting implicit cardinality constraints is useful
so that they can be made explicit in the database or application, which enhances data integrity.
These benefits can be obtained thanks to having formalised the CMD in order to enable automated
reasoning over it, which results in a better quality CDM. This is illustrated in the next example.

P. R. Fillottrani and C. M. Keet 4:15

Figure 4 EER diagram of Example 3, where a modeller created a relationship but forgot to specify it
further, and asserted an electrical bicycle to be both a motorised vehicle and a bicycle.

Figure 5 EER diagram of Figure 4 with deductions shown: the Electric bicycle is unsatisfiable (due to
the multiple inheritance and disjointness) and the stronger constraints of the parent PW relationship is
inherited down the hierarchy.

▶ Example 3. Consider the CDM about bicycles in Figure 4: Vehicles may have at most two engines
as part and each engine is part of exactly one vehicle. Bicycles and motorised vehicles (which
are disjoint) are vehicles, and electric bicycles are both a type of bicycle and a type of motorised
vehicle. In addition, the modeller created a part-whole relationship between motorised vehicle and
engine, declared it a subrelationship of the former, but forgot to specify the cardinality constraints,
which defaults to 0..n. A logic-based reconstruction of the EER diagram is straightforward in either
of the languages in the DLR family as well as in OWL 2 and thus also in first order predicate
logic, be it following the rules-based or mapping-based approach.

Running the automated reasoner, there are three deductions, which are highlighted in Figure 5.
First, the Electric Bicycle class is unsatisfiable: no individual electric bicycle can be both a bicycle
and a motorised vehicle, according to this model, because of the disjointness constraint on the entity
type subsumption. Additionally, thanks to the subsumption axiom between the PW between vehicle
and engine and motorised vehicle and engine, we obtain two more deductions: the subsumed PW
relationship inherits two stronger cardinality constraints declared over the parent relationship. ⌟

Example 3 is a variation on examples and tooling that exists since 2000 with the ICom tool
for EER diagrams [49], its evolution with its own notation9 and better module management to
declare inter-model assertions [43], and subsequent bifurcation into ORMie for reasoning over
ORM2 diagrams [114] and crowd2 that supports reasoning over ORM2, EER, and UML class
diagrams and swapping between them [23]. They mostly use the DL ALCQI either directly or
they use a behind-the-scenes reification of n-aries by rewriting them into n binaries in case n ≥ 3.
That is, common automated reasoners for OWL 2 DL, such as HermiT [51] or Racer [57], can be,
and are, used in these implementations.

9 There are other tools that provide a diagrammatic interface to OWL that resemble EER, UML or ORM to a
greater or lesser extent, most recently by [79], but the reverse is a different problem and outside the scope of
this review, as are graphical notations that are not conceptual data models.

TGDK

4:16 Logics for Conceptual Data Modelling: A Review

The notion of finite satisfiability – i.e., the problem of deciding whether a knowledge base
has a finite non-empty model – in the context of DL-based formalisations is sometimes also
considered [14, 15]. If so, this is done more often from the viewpoint of model verification in
software engineering and also availing of constraint programming or OCL besides, or instead of,
FOL, DL, or HOL, it is focussed on UML class diagrams only, and the majority has only a Yes/No
type of output [25, 26, 52, 109].

The reasoning service of instance checking in the DL and OWL sense is not relevant in
conceptual model development, for it is focussed on type-level information only, i.e., the TBox
in DL terminology. Where instances can, and do, feature in the modelling processes are all
in different tasks, being: 1) in the specification of small sample populations to help derive the
participation constraints [60], 2) automatic test data generation from CDMs [110], and 3) in a
test-driven development method [126]. Because of the absence of an ABox and considering regular
conceptual modelling practices, it is hard to obtain an inconsistent CDM and therefore it is, to
the best of our knowledge, fully ignored in the research.

Querying over a CDM has not received particular attention, unlike the Query-By-Diagram
idea since 1990 [4] and the scalable ontology-based data access that evolved from it [100], which
includes using a graphical conceptual data model for it, notably ORM and ORM-like notations
(e.g., [33, 35]; see [112] for a review). The first basic task is to use the conceptual data model
to “point and click” to select the elements to query, which is then translated into a SPARQL
query and from there into SQL, or straight to SQL, to fetch the data from the data store. The
more advanced option uses the knowledge represented in the CDM to enhance the query. The
enhancement can occur at the level of the TBox, where the query itself is rewritten taking the
logic-based reconstruction of the CDM into account, or it is used to compute the deductions over
the instances to subsequently materialise the results (i.e., append to the database), which is then
queried with the plain query. The general idea is illustrated in Example 2.

▶ Example 4. Consider the following simple conceptual data model CDM that consists of a
fragment of the EER diagram in Figure 4:

CDM = {Bicycle ⊑ Vehicle, MotorisedVehicle ⊑ Vehicle, Bicycle ⊑ ¬MotorisedVehicle}
A corresponding database may have three tables, assuming each entity type has its own database
table, and at least one instance each:

DB = {Bicycle(b1), MotorisedVehicle(mv1), Vehicle(v1)}
Consider now the query “Retrieve all vehicles”, i.e., SELECT * FROM Vehicle for a relational
database. A regular RDBMS returns only {v1} as answer, it being the only tuple in that table.

Now consider OBDA with the query rewriting approach. The abstract representation of the
query is: q(x) ← V ehicle(x). In evaluating the query, it first consults CDM: the algorithm
detects the two subsumption axioms and rewrites the query as q(x)← V ehicle(x) ∨Bicycle(x) ∨
MotorisedV ehicle(x). This rewritten query is converted into SQL, which amounts to a union
of SELECT * FROM Vehicle, SELECT * FROM MotorisedVehicle, and SELECT * FROM Bicycle.
It returns {b1, mv1, v1}, which is what a typical user would expect when asking for all the
vehicles.

Consider again the same query, but now we incorporate the knowledge of the CDM in the
database before we run the same query, also called ABox rewriting or the combined approach.
The algorithm detects the Bicycle ⊑ Vehicle and updates the database:

DB = {Bicycle(b1), MotorisedVehicle(mv1), Vehicle(v1), Vehicle(b1)}
and likewise for the motorised vehicle:

DB = {Bicycle(b1), MotorisedVehicle(mv1), Vehicle(v1), Vehicle(b1), Vehicle(mv1)}
The query q(x)← V ehicle(x) translates to SELECT * FROM Vehicle, but now that table has the
other instances as well, and so the query answer is {b1, mv1, v1} as well. This approach permits
more advanced queries, such as with path queries that have been shown to be more effective [82]. ⌟

P. R. Fillottrani and C. M. Keet 4:17

Notwithstanding that the intuitive idea is seemingly straightforward, the logics and algorithms
for the various options are rather involved and depend on the logic used for the TBox; for an
early overview on query rewriting see [100], for the first database completion, see [81], and an
overview with many further references can be found in Section 3.1 of Schneider and Simkus’ recent
review on linking ontologies to databases [107]. In addition, each option has its pros and cons
regarding computational complexity, query expressiveness, expressivity of the logic for the CDM,
and optimal usage scenarios [47].

Finally, two orthogonal choices that affect reasoning are choosing between the Closed (CWA)
vs Open (OWA) world assumptions and whether to choose for the unique name assumption
(UNA) or not. No UNA negatively affects computational complexity especially for the lean OBDA
logics [8]. CWA vs OWA principally affects the deductions and it is mostly left implicit that the
logic-based reconstructions use OWA since logics in AI assume this unless stated otherwise. CWA
is often used in situations where the knowledge is assumed to be complete and where uncertainty
is not explicitly represented or tolerated. OWA is used in situations where uncertainty is explicitly
acknowledged and where it is important to represent and reason about incomplete information.
OWA is more flexible and allows for the representation of unknown or partially known facts. In
principle, a CDM may include both approaches.

5 Challenges and future directions

We describe some challenges that emerge from the discussion in previous sections. We classify
them along three lines of inquiry: CDM languages, CDM integration with related areas, and CDM
applications.

5.1 CDML design
In this section, we analyse challenges in formalisation and expressivity of CDML design. The
formalisation space to a logic of choice is crowded with many attempts and assigning semantics to
a CDML appears a solved problem, or if not solved, admitted to be intractable in the sense that it
will never meet all demands at the same time – good in the formalisation, good in tooling support,
and effective use throughout applications. Yet another formalisation of plain EER, ORM2, or
UML class diagrams in yet another logic may only make a marginal contribution to the body
of knowledge. Also the CDM interoperability, or logic as unifier, task has been well explored
(see [42, 22] and references therein), albeit with limited tools and mostly covering a small set of
constraints. From our own experiences by both authors, it is tedious, time-consuming, and difficult
to publish because from the outside it looks like just more of the same without an appreciation
of the thorny finer details and principal differences and consequences thereof. There may be a
higher chance of more impact by considering extensions, notably logic-based temporal conceptual
data modelling for stream processing or for process mining, and to investigate how to transform a
logic-based temporal CDM into a temporal database. This may also connect with the process
modelling that Storey et al.’s review highlighted as a general trend in conceptual data modelling
[116].

The different clusters of formalisations have different sets of shortcomings and one that they
all share, except for the CDML profiles in [42]: none of them is evidence-based regarding what
features conceptual modellers use and to prioritise accordingly. In addition, user evaluations
on usability and understandability are mostly lacking. When carried out, it is about the non-
logical additional graphical or textual notation, such as for the logic-based Trend temporal
conceptual data modelling language [74] or diagrammatic preferences only (e.g., [129]). Among
others, neither the effects of using an automated reasoner in a conceptual data modelling task has

TGDK

4:18 Logics for Conceptual Data Modelling: A Review

been investigated with human modellers, nor the perceptions of modelling for OBDA. To attain
scientific progress, such experiences need to go beyond anecdotes in a few use cases and they need
to be tested in a controlled setting, or at least documented and analysed systematically when
pooling together a set of use cases.

In addition, to the best of our knowledge, there are no methodologies that incorporate logic-
based reconstructions and automated reasoning over the CDM, other than stating it as part of a
workflow in FaCiL [22] and it is alluded to in test-driven development of CDM in [126]. Perhaps
these gaps contribute to the, to date, limited uptake of logic-based conceptual data modelling in
industry. Another reason for that may be that modellers do not use as many language features
as they ought to [75] to get the most out of the automated reasoning and thus may need to be
trained better in logic-based conceptual data modelling. Another reason may be the relative
immaturity of the sparse logic-based conceptual data modelling tools that are mostly of the
level of proof-of-concept or prototype [21, 23, 41, 43, 114], rather than full-fledged end-user and
commercial-level applications. The underlying issues and opportunities are still unexplored.

Recently, there has been a decline in interest to develop logic-based reasoners [1], most of
them being nowadays discontinued in their development. It seems that the mere availability of
reasoners is not enough for widespread usage. Much effort is necessary to develop tools that
integrate reasoning with real world applications. CDMs may present an opportunity to investigate
new tools that demand reasoning services, with the objective to improve the modelling process
and enhance the quality of conceptual models, and, just as important, their runtime usage in
intelligent information systems.

5.2 CDM integration with related research areas
Ontologies and knowledge graphs are well established research areas that are closely related to
CDMs. There are numerous practices that attempt to blur the lines between CDMs and ontologies
[45], both in OBDA and elsewhere, as well as recognising the differences but then facing the
challenge of how exactly how to relate the two artefacts (e.g., [32, 68]). This involves both how to
map between the two at the language level and at the modelling pattern level, and the processes for
the various use cases. For instance, top-down generation of candidate CDMs from an ontology, as
Jarrar et al.’s aim was [68], requires different procedures from the original motivation for ontologies,
as a bottom-up approach to provide a common vocabulary that all CDMs can link to [73]. Their
precise interaction – why, when, and how – may be informally clear to some, but that is still
non-trivial to apply in practice and does not appear to be clear to the practitioner community.
What exactly is missing to fully resolve it both in theory, including with which methods and
techniques, and for deployment, is yet to be addressed fully.

This review being a narrative review about the logics rather than a systematic review of both
logics and automated reasoning services that are more popular in the ontology engineering field,
there is the risk of some bias in the selection of sources. For Section 4, this was intentionally
limited to “standard” reasoning services to illustrate some benefits of a logic-based approach. A
systematic or broader narrative review about reasoning services for logic-based CDMs may provide
additional insight.

From a different angle, and looking at both older and more recent techniques and standards
than the most popular – by a large margin in terms of research efforts – logic-based reconstructions,
are knowledge graphs that also do relate in some way to CDMs and the logics. Graph-based
approaches are expected to (re)gain in popularity. We do not refer to choosing a graph-based
semantics after transforming a CDM into OWL or OWL 2 syntax [87, 91], though possible, but
the transformation of the CDMs into graphs directly or them being graphs from the outset. The
former was proposed by Boyd and McBrian who used hypergraphs for interoperability among the

P. R. Fillottrani and C. M. Keet 4:19

established CDMLs [20] that is based on their graph-based data model [101]. An example of the
latter is the TEGeL modelling language, which is a type graph from the outset and has a set of
new icons; its formalisation is only assumed in [108], however, and its aim is specifically for a
translation into a graph database only. One could link it to the formal definitions in Appendix B of
[63], to RDF [61] or RDFS [24], and with or without constraints, be they with ShEx [13] or SHACL
[77] or their logic-based foundation (see [96] for a recent brief overview and references therein), or
another approach, such as extending a DL with more options for attributes, as in [78]. This is
fertile ground for research whose outcomes may, in turn, feed into the neuro-symbolic strand of
usage through KG embeddings that presumably would be improved by such logic-enhanced KGs
and it would offer new means for quality control of the information represented in the KG.

5.3 CDM applications in other and new contexts
Other subtopics within the scope of logic-based CDMs are automated content learning, evolution
of CDMs, and automated adaptation of CDMs and their database based on the queries posed.
Automated CDM content learning should be able to leverage the advances made on corpus-based
KG and ontology learning and may also make use of research on automated database-driven
logic-based CDM creation that maintains the intermediate state [80]. Dynamic CDM optimisation
from database usage patterns concerns updating the CDM by taking into account what data is
queried from the database [137]. For instance, if only a fraction of the attributes are queried
most of the time, the rarely used ones can be relegated to a separate entity type, like given a
Person with attributes tel.no and address where only their tel.no is queried in 95% of the queries,
then the optimisation suggestion would be to create a separate entity type Address with a binary
relationship to Person. This can save time in query answering and possibly simplify the query
interface of an OBDA system.

Further automation in creation, quality control, and use of CDMs does receive interest, as
noted in Section 2 and with recent reviews such as [109] on verification. They all do need a
formalised CDM to ensure correct operation, yet more such UML advances are still to be ported
to other CDMLs and embedded in CDM development methodologies and usage process.

CDM evolution has been well-researched under the term schema evolution at least since the
1990s with renewed interest in the 2000s thanks to ontology evolution and those logics specifically.
Ontology evolution is known to be far from trivial, however, which carries over to logic-based
CDMs at least to some extent. Given that CDMs have a more restrictive grammar than most of
the logics used, it may be less hard, and use cases with current relevance should be specified to
limit the possibilia to increase the possibility to find a solution.

Finally, multilingual modelling may become an area of interest, as it is in ontology development
for the past 15 years and increasingly for knowledge graphs as well, but it has received little
attention in combination with logic-based conceptual modelling [5].

6 Conclusions

Information modelling with conceptual data modelling languages such as EER, UML Class
Diagrams, and ORM has been augmented with logic-based reconstructions mainly for precision,
quality, and runtime usage for querying and verification. Many logics have been used for many
different conceptual data modelling fragments, having used either a rules-based or a mapping-
based approach to the formalisation. This paper provided a succinct overview of key choice
points in the aims to formalise, approaches to the formalisation, popular logics used, and the
principal relevant reasoning services. Current challenges and research directions include the
modeller’s perspective (with user evaluations), interaction with ontologies, and a renewed interest
in graph-based approaches.

TGDK

4:20 Logics for Conceptual Data Modelling: A Review

References
1 Sunitha Abburu. A survey on ontology reasoners

and comparison. International Journal of Com-
puter Applications, 57(17):33–39, 2012.

2 Miguel I. Aguirre-Urreta and George M. Marakas.
Comparing conceptual modeling techniques: a crit-
ical review of the eer vs. oo empirical literature.
ACM SIGMIS Database: The DATABASE for Ad-
vances in Information Systems, 39(2):9–32, 2008.
doi:10.1145/1364636.1364640.

3 Lina Al-Jadir, Christine Parent, and Stefano Spac-
capietra. Reasoning with large ontologies stored in
relational databases: The OntoMinD approach.
Data & Knowledge Engineering, 69:1158–1180,
2010. doi:10.1016/j.datak.2010.07.006.

4 Michele Angelaccio, Tiziana Catarci, and Giuseppe
Santucci. QBD*: A graphical query language with
recursion. IEEE Transactions on Software Engin-
eering, 16(10):1150–1163, 1990. doi:10.1109/32.
60295.

5 Kutz Arrieta, Pablo R. Fillottrani, and C. Maria
Keet. Cosmo: A constructor specification language
for abstract wikipedia’s content selection process.
Technical report, aug 2023. doi:10.48550/arXiv.
2308.02539.

6 Alessandro Artale. Reasoning on temporal con-
ceptual schemas with dynamic constraints. In
Proceedings. 11th International Symposium on
Temporal Representation and Reasoning, 2004.
TIME 2004., pages 79–86. IEEE, 2004. doi:
10.1109/time.2004.1314423.

7 Alessandro Artale, Diego Calvanese, Roman
Kontchakov, Vladislav Ryzhikov, and Michael Za-
kharyaschev. Reasoning over extended ER mod-
els. In Christine Parent, Klaus-Dieter Schewe,
Veda C. Storey, and Bernhard Thalheim, edit-
ors, Proceedings of the 26th International Confer-
ence on Conceptual Modeling (ER’07), volume
4801 of LNCS, pages 277–292. Springer, 2007.
Auckland, New Zealand, November 5-9, 2007.
doi:10.1007/978-3-540-75563-0_20.

8 Alessandro Artale, Diego Calvanese, Roman
Kontchakov, and Michael Zakharyaschev. DL-Lite
without the unique name assumption. In Pro-
ceedings of the 22nd International Workshop on
Description Logic (DL’09), volume 477 of CEUR-
WS, 2009. URL: http://ceur-ws.org/Vol-477/
paper_11.pdf.

9 Alessandro Artale, Enrico Franconi, Frank Wolter,
and Michael Zakharyaschev. A temporal de-
scription logic for reasoning about conceptual
schemas and queries. In S. Flesca, S. Greco,
N. Leone, and G. Ianni, editors, Proceedings of
the 8th Joint European Conference on Logics in
Artificial Intelligence (JELIA-02), volume 2424
of LNAI, pages 98–110. Springer Verlag, 2002.
doi:10.1007/3-540-45757-7_9.

10 Alessandro Artale, Christine Parent, and Stefano
Spaccapietra. Evolving objects in temporal in-
formation systems. Annals of Mathematics and
Artificial Intelligence, 50(1-2):5–38, 2007. doi:
10.1007/s10472-007-9068-z.

11 Franz Baader, Sebastian Brandt, and Carsten Lutz.
Pushing the EL envelope. In Proceedings of the
19th Joint International Conference on Artificial

Intelligence (IJCAI’05), volume 5, pages 364–369,
2005. URL: http://ijcai.org/Proceedings/05/
Papers/0372.pdf.

12 Franz Baader, Diego Calvanese, Deborah L.
McGuinness, Daniele Nardi, and Peter F. Patel-
Schneider, editors. The Description Logics Hand-
book – Theory and Applications. Cambridge Uni-
versity Press, 2 edition, 2008.

13 Thomas Baker and Eric Prud’hommeaux. Shape
expressions (shex) 2.1 primer – final community
group report. W3C Recommendation, 2019. URL:
http://shex.io/shex-primer/.

14 Mira Balaban and Azzam Maraee. A UML-based
method for deciding finite satisfiability in descrip-
tion logics. In Franz Baader, Carsten Lutz, and
Boris Motik, editors, Proceedings of the 21st Inter-
national Workshop on Description Logics (DL’08),
volume 353 of CEUR-WS, 2008. Dresden, Ger-
many, May 13–16, 2008. URL: https://ceur-ws.
org/Vol-353/BalabanMaraee.pdf.

15 Daniela Berardi, Diego Calvanese, and Giuseppe
De Giacomo. Reasoning on UML class diagrams.
Artificial Intelligence, 168(1-2):70–118, 2005. doi:
10.1016/j.artint.2005.05.003.

16 Anthony C. Bloesch and Terry A. Halpin. Con-
ceptual Queries using ConQuer-II. In Proceed-
ings of ER’97: 16th International Conference
on Conceptual Modeling, volume 1331 of LNCS,
pages 113–126. Springer, 1997. doi:10.1007/
3-540-63699-4_10.

17 Alexander Borgida, David Toman, and Grant Wed-
dell. On referring expressions in information sys-
tems derived from conceptual modelling. In Isa-
belle Comyn-Wattiau, Katsumi Tanaka, Il-Yeol
Song, Shuichiro Yamamoto, and Motoshi Saeki,
editors, Conceptual Modeling (ER’16), volume
9974 of LNCS, pages 183–197. Springer, 2016.
doi:10.1007/978-3-319-46397-1_14.

18 Dominik Bork. Conceptual modeling and arti-
ficial intelligence: Challenges and opportunities
for enterprise engineering: Keynote presentation
at the 11th enterprise engineering working con-
ference (eewc 2021). In Enterprise Engineering
Working Conference, pages 3–9. Springer, 2021.
doi:10.1007/978-3-031-11520-2_1.

19 Dominik Bork, Syed Juned Ali, and Ben Roelens.
Conceptual modeling and artificial intelligence: A
systematic mapping study. Technical report, 2023.
doi:10.48550/arXiv.2303.06758.

20 Michael Boyd and Peter McBrien. Comparing
and transforming between data models via an in-
termediate hypergraph data model. Journal on
Data Semantics, IV:69–109, 2005. doi:10.1007/
11603412_3.

21 Bernardo F. B. Braga, João P. A. Almeida, Gian-
carlo Guizzardi, and Alessander Botti Benevides.
Transforming OntoUML into Alloy: towards con-
ceptual model validation using a lightweight formal
methods. Innovations in Systems and Software
Engineering, 6(1-2):55–63, 2010. doi:10.1007/
s11334-009-0120-5.

22 Germán Braun, Pablo R. Fillottrani, and C. Maria
Keet. A framework for interoperability between

https://doi.org/10.1145/1364636.1364640
https://doi.org/10.1016/j.datak.2010.07.006
https://doi.org/10.1109/32.60295
https://doi.org/10.1109/32.60295
https://doi.org/10.48550/arXiv.2308.02539
https://doi.org/10.48550/arXiv.2308.02539
https://doi.org/10.1109/time.2004.1314423
https://doi.org/10.1109/time.2004.1314423
https://doi.org/10.1007/978-3-540-75563-0_20
http://ceur-ws.org/Vol-477/paper_11.pdf
http://ceur-ws.org/Vol-477/paper_11.pdf
https://doi.org/10.1007/3-540-45757-7_9
https://doi.org/10.1007/s10472-007-9068-z
https://doi.org/10.1007/s10472-007-9068-z
http://ijcai.org/Proceedings/05/Papers/0372.pdf
http://ijcai.org/Proceedings/05/Papers/0372.pdf
http://shex.io/shex-primer/
https://ceur-ws.org/Vol-353/BalabanMaraee.pdf
https://ceur-ws.org/Vol-353/BalabanMaraee.pdf
https://doi.org/10.1016/j.artint.2005.05.003
https://doi.org/10.1016/j.artint.2005.05.003
https://doi.org/10.1007/3-540-63699-4_10
https://doi.org/10.1007/3-540-63699-4_10
https://doi.org/10.1007/978-3-319-46397-1_14
https://doi.org/10.1007/978-3-031-11520-2_1
https://doi.org/10.48550/arXiv.2303.06758
https://doi.org/10.1007/11603412_3
https://doi.org/10.1007/11603412_3
https://doi.org/10.1007/s11334-009-0120-5
https://doi.org/10.1007/s11334-009-0120-5

P. R. Fillottrani and C. M. Keet 4:21

models with hybrid tools. Journal of Intelli-
gent Information Systems, 60:437–462, 2023. doi:
10.1007/s10844-022-00731-7.

23 Germán Braun, Giuliano Marinelli, Emiliano
Rios Gavagnin, Laura A. Cecchi, and Pablo R.
Fillottrani. Web interoperability for ontology
development and support with crowd 2.0. In
30th International Joint Conference on Artificial
Intelligence, IJCAI’21, pages 4980–4983, 2021.
doi:10.24963/ijcai.2021/707.

24 Dan Brickley and R. V. Guha. Rdf schema 1.1.
Standard, W3C, 2014. URL: https://www.w3.
org/TR/2014/REC-rdf-schema-20140225/.

25 Jordi Cabot, Robert Clarisó, and Daniel Riera.
Verification of UML/OCL class diagrams using
constraint programming. In Model Driven Engin-
eering, Verification, and Validation: Integrating
Verification and Validation in MDE (MoDeVVA
2008), 2008. doi:10.1109/ICSTW.2008.54.

26 Marco Cadoli, Diego Calvanese, Giuseppe De Gi-
acomo, and Toni Mancini. Finite model reason-
ing on UML class diagrams via constraint pro-
gramming. In Proc. of AI*IA 2007, volume
4733 of LNAI, pages 36–47. Springer, 2007. doi:
10.1007/978-3-540-74782-6_5.

27 Diego Calvanese, Benjamin Cogrel, Sarah Komla-
Ebri, Roman Kontchakov, Davide Lanti, Mar-
tin Rezk, Mariano Rodriguez-Muro, and Guo-
huia Xiao. Ontop: Answering SPARQL queries
over relational databases. Semantic Web Journal,
8(3):471–487, 2017. doi:10.3233/SW-160217.

28 Diego Calvanese, Giuseppe De Giacomo, Domen-
ico Lembo, Maurizio Lenzerini, and Riccardo Ros-
ati. Tractable reasoning and efficient query an-
swering in description logics: The DL-Lite family.
Journal of Automated Reasoning, 39(3):385–429,
2007. doi:10.1007/s10817-007-9078-x.

29 Diego Calvanese, Giuseppe De Giacomo, and Maur-
izio Lenzerini. On the decidability of query contain-
ment under constraints. In Proceedings of the 17th
ACM SIGACT SIGMOD SIGART Symposium on
Principles of Database Systems (PODS’98), pages
149–158, 1998. doi:10.1145/275487.275504.

30 Diego Calvanese, Giuseppe De Giacomo, and
Maurizio Lenzerini. Reasoning in expressive de-
scription logics with fixpoints based on auto-
mata on infinite trees. In Proceedings of the
16th International Joint Conference on Artifi-
cial Intelligence (IJCAI’99), pages 84–89, 1999.
doi:10.5555/1624218.1624231.

31 Diego Calvanese, Giuseppe De Giacomo, and
Maurizio Lenzerini. Identification constraints
and functional dependencies in description lo-
gics. In Bernhard Nebel, editor, Proc. of the
17th Int. Joint Conf. on Artificial Intelligence (IJ-
CAI 2001), pages 155–160. Morgan Kaufmann,
2001. Seattle, Washington, USA, August 4-10,
2001. doi:10.5555/1642090.1642111.

32 Diego Calvanese, Tahir Emre Kalayci, Marco
Montali, Ario Santoso, and Wil van der Aalst.
Conceptual schema transformation in ontology-
based data access. In Catherine Faron Zucker,
Chiara Ghidini, Amedeo Napoli, and Yannick Tous-
saint, editors, Proceedings of the 21st Interna-
tional Conference on Knowledge Engineering and
Knolwedge Management, volume 11313 of LNAI.

Springer, 2018. 12-16 Nov 2018, Nancy, France.
doi:10.1007/978-3-030-03667-6_4.

33 Diego Calvanese, C. Maria Keet, Werner Nutt,
Mariano Rodríguez-Muro, and Giorgio Stefan-
oni. Web-based graphical querying of databases
through an ontology: the WONDER system. In
Sung Y. Shin, Sascha Ossowski, Michael Schu-
macher, Mathew J. Palakal, and Chih-Cheng Hung,
editors, Proceedings of ACM Symposium on Ap-
plied Computing (ACM SAC’10), pages 1389–1396.
ACM, 2010. March 22-26 2010, Sierre, Switzerland.
doi:10.1145/1774088.1774384.

34 Diego Calvanese, Maurizio Lenzerini, and Daniele
Nardi. Unifying class-based representation formal-
isms. Journal of Artificial Intelligence Research,
11:199–240, 1999. doi:10.5555/3013545.3013550.

35 Diego Calvanese, Pietro Liuzzo, Alessandro Mo-
sca, José Remesal, Martin Rezk, and Guillem Rull.
Ontology-based data integration in epnet: Pro-
duction and distribution of food during the ro-
man empire. Engineering Applications of Artifi-
cial Intelligence, 51:212–229, 2016. doi:10.1016/
j.engappai.2016.01.005.

36 Peter P. Chen. The entity-relationship model—
toward a unified view of data. ACM Trans-
actions on Database Systems, 1(1):9–36, 1976.
doi:10.1145/320434.320440.

37 HD Crockett, J Guynes, and CW Slinkman. Frame-
work for development of conceptual data modelling
techniques. Information and Software Technology,
33(2):134–142, 1991. doi:10.1016/0950-5849(91)
90058-J.

38 Bernardo Cuenca Grau, Ian Horrocks, Boris Motik,
Bijan Parsia, Peter Patel-Schneider, and Ulrike
Sattler. OWL 2: The next step for OWL. Journal
of Web Semantics: Science, Services and Agents
on the World Wide Web, 6(4):309–322, 2008. doi:
10.1016/j.websem.2008.05.001.

39 Islay Davies, Peter Green, Michael Rosemann,
Marta Indulska, and Stan Gallo. How do practi-
tioners use conceptual modeling in practice? Data
& Knowledge Engineering, 58(3):358–380, 2006.
doi:10.1016/j.datak.2005.07.007.

40 Thomas Eiter, Josiane Xavier Parreira, and Pat-
rik Schneider. Spatial ontology-mediated query
answering over mobility streams. In E. Blomqv-
ist et al., editors, Proceedings of the 13th Ex-
tended Semantic Web Conference (ESWC’17),
volume 10249 of LNCS, pages 219–237. Springer,
2017. 30 May - 1 June 2017, Portoroz, Slovenia.
doi:10.1007/978-3-319-58068-5_14.

41 Carles Farré, Anna Queralt, Guillem Rull, Ern-
est Teniente, and Toni Urpí. Automated reas-
oning on UML conceptual schemas with derived
information and queries. Information and Soft-
ware Technology, 55(9):1529–1550, 2013. doi:
10.1016/j.infsof.2013.02.010.

42 Pablo Fillotrani and C. Maria Keet. Evidence-
based lean conceptual data modelling languages.
Journal of Computer Science and Technology,
21(2):e10, oct 2021. doi:10.24215/16666038.21.
e10.

43 Pablo R. Fillottrani, Enrico Franconi, and Ser-
gio Tessaris. The ICOM 3.0 intelligent concep-
tual modelling tool and methodology. Semantic

TGDK

https://doi.org/10.1007/s10844-022-00731-7
https://doi.org/10.1007/s10844-022-00731-7
https://doi.org/10.24963/ijcai.2021/707
https://www.w3.org/TR/2014/REC-rdf-schema-20140225/
https://www.w3.org/TR/2014/REC-rdf-schema-20140225/
https://doi.org/10.1109/ICSTW.2008.54
https://doi.org/10.1007/978-3-540-74782-6_5
https://doi.org/10.1007/978-3-540-74782-6_5
https://doi.org/10.3233/SW-160217
https://doi.org/10.1007/s10817-007-9078-x
https://doi.org/10.1145/275487.275504
https://doi.org/10.5555/1624218.1624231
https://doi.org/10.5555/1642090.1642111
https://doi.org/10.1007/978-3-030-03667-6_4
https://doi.org/10.1145/1774088.1774384
https://doi.org/10.5555/3013545.3013550
https://doi.org/10.1016/j.engappai.2016.01.005
https://doi.org/10.1016/j.engappai.2016.01.005
https://doi.org/10.1145/320434.320440
https://doi.org/10.1016/0950-5849(91)90058-J
https://doi.org/10.1016/0950-5849(91)90058-J
https://doi.org/10.1016/j.websem.2008.05.001
https://doi.org/10.1016/j.websem.2008.05.001
https://doi.org/10.1016/j.datak.2005.07.007
https://doi.org/10.1007/978-3-319-58068-5_14
https://doi.org/10.1016/j.infsof.2013.02.010
https://doi.org/10.1016/j.infsof.2013.02.010
https://doi.org/10.24215/16666038.21.e10
https://doi.org/10.24215/16666038.21.e10

4:22 Logics for Conceptual Data Modelling: A Review

Web Journal, 3(3):293–306, 2012. doi:10.3233/
SW-2011-0038.

44 Pablo R. Fillottrani and C. Maria Keet. Concep-
tual model interoperability: a metamodel-driven
approach. In A. Bikakis et al., editors, Proceed-
ings of the 8th International Web Rule Symposium
(RuleML’14), volume 8620 of LNCS, pages 52–66.
Springer, 2014. August 18-20, 2014, Prague, Czech
Republic. doi:10.1007/978-3-319-09870-8_4.

45 Pablo R. Fillottrani and C. Maria Keet. Di-
mensions affecting representation styles in ontolo-
gies. In 1st Iberoamerican conference on Know-
ledge Graphs and Semantic Web (KGSWC’19),
volume 1029 of CCIS, pages 186–200. Springer,
2019. 24-28 June 2019, Villa Clara, Cuba. doi:
10.1007/978-3-030-21395-4_14.

46 Pablo R. Fillottrani and C. Maria Keet. An
analysis of commitments in ontology language
design. In B. Brodaric and F. Neuhaus, edit-
ors, Proceedings of the 11th International Confer-
ence on Formal Ontology in Information Systems
(FOIS’20), volume 330 of Frontiers in Artificial
Intelligence and Applications, pages 46–60, 2020.
doi:10.3233/FAIA200659.

47 Pablo R. Fillottrani and C. Maria Keet. KnowID:
An architecture for efficient knowledge-driven in-
formation and data access. Data Intelligence,
2(4):487–512, 2020. doi:10.1162/dint_a_00060.

48 Pablo R. Fillottrani, C. Maria Keet, and David
Toman. Polynomial encoding of orm concep-
tual models in CFDI∀−

nc . In Diego Calvanese
and B. Konev, editors, Proceedings of the 28th
International Workshop on Description Logics
(DL’15), volume 1350 of CEUR-WS, pages 401–
414, 2015. 7-10 June 2015, Athens, Greece. URL:
https://ceur-ws.org/Vol-1350/paper-50.pdf.

49 E. Franconi and G. Ng. The ICOM tool for
intelligent conceptual modelling. In 7th Work-
shop on Knowledge Representation meets Data-
bases (KRDB’00), 2000. Berlin, Germany, 2000.
doi:10.5555/2590200.2590206.

50 Enrico Franconi, Alessandro Mosca, and Dmitry
Solomakhin. The formalisation of ORM2 and its
encoding in OWL2. KRDB Research Centre Tech-
nical Report KRDB12-2, Faculty of Computer Sci-
ence, Free University of Bozen-Bolzano, Italy, mar
2012.

51 Birte Glimm, Ian Horrocks, Boris Motik, and Gior-
gos Stoilos. Optimising ontology classification. In
The Semantic Web–ISWC 2010: 9th International
Semantic Web Conference, ISWC 2010, Shang-
hai, China, November 7-11, 2010, Revised Selected
Papers, Part I 9, pages 225–240. Springer, 2010.
doi:10.1007/978-3-642-17746-0_15.

52 Carlos A. González and Jordi Cabot. Formal veri-
fication of static software models in mde: A sys-
tematic review. Information and Software Techno-
logy, 56(8):821–838, 2014. doi:10.1016/j.infsof.
2014.03.003.

53 Benjamin N. Grosof, Ian Horrocks, Raphael Volz,
and Stefan Decker. Description logic programs:
Combining logic programs with description logic.
In Proceedings of the 12th International World
Wide Web Conference (WWW’03), pages 48–57,
2003. Budapest, Hungary. doi:10.1145/775157.
775160.

54 Object Management Group. Distributed ontology,
model, and specification language, feb 2018. URL:
http://www.omg.org/spec/DOL/.

55 Nicola Guarino. Formal ontology and informa-
tion systems. In N. Guarino, editor, Proceed-
ings of Formal Ontology in Information Systems
(FOIS’98), Frontiers in Artificial intelligence and
Applications, pages 3–15. Amsterdam: IOS Press,
1998.

56 Giancarlo Guizzardi. Ontological Foundations for
Structural Conceptual Models. Phd thesis, Univer-
sity of Twente, The Netherlands. Telematica In-
stituut Fundamental Research Series No. 15, 2005.

57 Volker Haarslev, Kay Hidde, Ralf Möller, and Mi-
chael Wessel. The racerpro knowledge representa-
tion and reasoning system. Semantic Web Journal,
3(3):267–277, 2012. doi:10.3233/SW-2011-0032.

58 Christoph Haase and Carsten Lutz. Complexity
of subsumption in the EL family of description lo-
gics: Acyclic and cyclic tboxes. In Malik Ghallab,
Constantine D. Spyropoulos, Nikos Fakotakis, and
Nikolaos M. Avouris, editors, ECAI 2008 - 18th
European Conference on Artificial Intelligence,
Patras, Greece, July 21-25, 2008, Proceedings,
volume 178 of Frontiers in Artificial Intelligence
and Applications, pages 25–29. IOS Press, 2008.
doi:10.3233/978-1-58603-891-5-25.

59 Terry Halpin. A logical analysis of inform-
ation systems: static aspects of the data-
oriented perspective. PhD thesis, Univer-
sity of Queensland, Australia, 1989. URL:
https://search.library.uq.edu.au/permalink/
f/l3gdeh/61UQ_ALMA2179989800003131.

60 Terry Halpin and Tony Morgan. Information mod-
eling and relational databases. Morgan Kaufmann,
2nd edition, 2008.

61 Patrick J. Hayes and Peter F. Patel-Schneider.
RDF 1.1 Semantics. W3c recommendation, World
Wide Web Consortium, feb 2014. URL: http:
//www.w3.org/TR/rdf11-mt/.

62 Daniel Hernández, Aidan Hogan, and Markus
Krötzsch. Reifying RDF: what works well with
wikidata? In Thorsten Liebig and Achille Fokoue,
editors, Proceedings of the 11th International
Workshop on Scalable Semantic Web Knowledge
Base Systems 2015), volume 1457 of CEUR-WS,
pages 32–47. CEUR-WS.org, 2015. Bethlehem, PA,
USA, October 11, 2015. URL: https://ceur-ws.
org/Vol-1457/SSWS2015_paper3.pdf.

63 Aidan Hogan, Eva Blomqvist, Michael Cochez,
Claudia d’Amato, Gerard de Melo, Claudio Gutiér-
rez, José Emilio Labra Gayo, Sabrina Kirrane, Se-
bastian Neumaier, Axel Polleres, Roberto Navigli,
Axel-Cyrille Ngonga Ngomo, Sabbir M. Rashid,
Anisa Rula, Lukas Schmelzeisen, Juan F. Se-
queda, Steffen Staab, and Antoine Zimmermann.
Knowledge graphs. Technical report, 2020. doi:
10.48550/arXiv.2003.02320.

64 Ian Horrocks, Oliver Kutz, and Ulrike Sattler. The
even more irresistible SROIQ. In Proceedings
of the Tenth International Conference on Prin-
ciples of Knowledge Representation and Reason-
ing (KR’06), KR’06, pages 57–67. AAAI Press,
2006. URL: http://www.aaai.org/Library/KR/
2006/kr06-009.php.

https://doi.org/10.3233/SW-2011-0038
https://doi.org/10.3233/SW-2011-0038
https://doi.org/10.1007/978-3-319-09870-8_4
https://doi.org/10.1007/978-3-030-21395-4_14
https://doi.org/10.1007/978-3-030-21395-4_14
https://doi.org/10.3233/FAIA200659
https://doi.org/10.1162/dint_a_00060
https://ceur-ws.org/Vol-1350/paper-50.pdf
https://doi.org/10.5555/2590200.2590206
https://doi.org/10.1007/978-3-642-17746-0_15
https://doi.org/10.1016/j.infsof.2014.03.003
https://doi.org/10.1016/j.infsof.2014.03.003
https://doi.org/10.1145/775157.775160
https://doi.org/10.1145/775157.775160
http://www.omg.org/spec/DOL/
https://doi.org/10.3233/SW-2011-0032
https://doi.org/10.3233/978-1-58603-891-5-25
https://search.library.uq.edu.au/permalink/f/l3gdeh/61UQ_ALMA2179989800003131
https://search.library.uq.edu.au/permalink/f/l3gdeh/61UQ_ALMA2179989800003131
http://www.w3.org/TR/rdf11-mt/
http://www.w3.org/TR/rdf11-mt/
https://ceur-ws.org/Vol-1457/SSWS2015_paper3.pdf
https://ceur-ws.org/Vol-1457/SSWS2015_paper3.pdf
https://doi.org/10.48550/arXiv.2003.02320
https://doi.org/10.48550/arXiv.2003.02320
http://www.aaai.org/Library/KR/2006/kr06-009.php
http://www.aaai.org/Library/KR/2006/kr06-009.php

P. R. Fillottrani and C. M. Keet 4:23

65 Ian Horrocks, Peter F. Patel-Schneider, and Frank
van Harmelen. From SHIQ and RDF to OWL:
The making of a web ontology language. Journal
of Web Semantics, 1(1):7, 2003. doi:10.1016/j.
websem.2003.07.001.

66 Richard Hull and Roger King. Semantic database
modeling: Survey, applications, and research issues.
ACM Computing Surveys (CSUR), 19(3):201–260,
1987. doi:10.1145/45072.45073.

67 Amir Jahangard Rafsanjani and Seyed-Hassan
Mirian-Hosseinabadi. A Z Approach to Formaliza-
tion and Validation of ORM Models. In Ezendu
Ariwa and Eyas El-Qawasmeh, editors, Digital
Enterprise and Information Systems, volume 194
of CCIS, pages 513–526. Springer, 2011. doi:
10.1007/978-3-642-22603-8_45.

68 Mustafa Jarrar, Jan Demey, and Robert Meersman.
On using conceptual data modeling for ontology
engineering. Journal on Data Semantics, 2003.
doi:10.1007/978-3-540-39733-5_8.

69 Elem Güzel Kalayci, Guohui Xiao, Vladislav
Ryzhikov, Tahir Emre Kalayci, and Diego Cal-
vanese. Ontop-temporal: A tool for ontology-based
query answering over temporal data. In Proceed-
ings of the 27th ACM International Conference on
Information and Knowledge Management, CIKM
2018, Torino, Italy, October 22-26, 2018, pages
1927–1930, 2018. doi:10.1145/3269206.3269230.

70 Ken Kaneiwa and Ken Satoh. Consistency check-
ing algorithms for restricted uml class diagrams. In
Jürgen Dix and Stephen J. Hegner, editors, Found-
ations of Information and Knowledge Systems,
pages 219–239, Berlin, Heidelberg, 2006. Springer.
doi:10.1007/11663881_13.

71 C. Maria Keet. Mapping the Object-Role Model-
ing language ORM2 into Description Logic lan-
guage DLRifd. Technical Report 0702089v2,
KRDB Research Centre, Free University of Bozen-
Bolzano, Italy, apr 2009. arXiv:cs.LO/0702089v2.
doi:10.48550/arXiv.cs/0702089.

72 C. Maria Keet. Ontology-driven formal concep-
tual data modeling for biological data analysis.
In Mourad Elloumi and Albert Y. Zomaya, ed-
itors, Biological Knowledge Discovery Handbook:
Preprocessing, Mining and Postprocessing of Bio-
logical Data, chapter 6, pages 129–154. Wiley, 2013.
doi:10.1002/9781118617151.ch06.

73 C. Maria Keet. An introduction to ontology engin-
eering, volume 20 of Computing. College Publica-
tions, UK, 2018. 334p.

74 C. Maria Keet and Sonia Berman. Determining the
preferred representation of temporal constraints
in conceptual models. In H.C. Mayr et al., edit-
ors, 36th International Conference on Conceptual
Modeling (ER’17), volume 10650 of LNCS, pages
437–450. Springer, 2017. 6-9 Nov 2017, Valencia,
Spain. doi:10.1007/978-3-319-69904-2_33.

75 C. Maria Keet and Pablo R. Fillottrani. An ana-
lysis and characterisation of publicly available
conceptual models. In P. Johannesson, M. L.
Lee, S.W. Liddle, A. L. Opdahl, and O. Pas-
tor López, editors, Proceedings of the 34th In-
ternational Conference on Conceptual Modeling
(ER’15), volume 9381 of LNCS, pages 585–593.
Springer, 2015. 19-22 Oct, Stockholm, Sweden.
doi:10.1007/978-3-319-25264-3_45.

76 C. Maria Keet and Pablo R. Fillottrani. An
ontology-driven unifying metamodel of UML Class
Diagrams, EER, and ORM2. Data & Know-
ledge Engineering, 98:30–53, 2015. doi:10.1016/
j.datak.2015.07.004.

77 Holger Knublauch and Dimitris Kontokostas.
Shapes constraint language (shacl). W3C Recom-
mendation, 2017. https://www.w3.org/TR/shacl/.

78 Markus Krötzsch, Maximilian Marx, Ana Ozaki,
and Veronika Thost. Attributed description lo-
gics: Reasoning on knowledge graphs. In Proceed-
ings of the Twenty-Seventh International Joint
Conference on Artificial Intelligence (IJCAI’18),
pages 5309–5313. International Joint Conferences
on Artificial Intelligence Organization, jul 2018.
doi:10.24963/ijcai.2018/743.

79 Domenico Lembo, Valerio Santarelli, Domenico Fa-
bio Savo, and Giuseppe De Giacomo. Graphol: A
graphical language for ontology modeling equi-
valent to owl 2. Future Internet, 14(3), 2022.
doi:10.3390/fi14030078.

80 Lina Lubyte and Sergio Tessaris. Automated ex-
traction of ontologies wrapping relational data
sources. In Proceedings of International Confer-
ence on Database and Expert Systems Applica-
tions (DEXA’09), pages 128–142. Springer, 2009.
doi:10.1007/978-3-642-03573-9_10.

81 Carsten Lutz, David Toman, and Frank Wolter.
Conjunctive query answering in the description
logic el using a relational database system. In
Proceedings of the International Joint Confer-
ence on Artificial Intelligence (IJCAI’09), pages
2070–2075. ACM, 2009. URL: http://ijcai.org/
Proceedings/09/Papers/341.pdf.

82 Weicong Ma, C. Maria Keet, Wayne Oldford,
David Toman, and Grant Weddell. The util-
ity of the abstract relational model and attrib-
ute paths in sql. In Catherine Faron Zucker,
Chiara Ghidini, Amedeo Napoli, and Yannick
Toussaint, editors, Proceedings of the 21st In-
ternational COnference on Knowledge Engineer-
ing and Knowledge Management (EKAW’18)),
volume 11313 of LNAI, pages 195–211. Springer,
2018. 12-16 Nov. 2018, Nancy, France. doi:
10.1007/978-3-030-03667-6_13.

83 Wolfgang Maass, Arturo Castellanos, Monica C.
Tremblay, Roman Lukyanenko, and Veda C. Storey.
AI explainability: Embedding conceptual models.
In Niels Bjørn-Andersen, Roman Beck, Stacie Pet-
ter, Tina Blegind Jensen, Tilo Böhmann, Kai-Lung
Hui, and Viswanath Venkatesh, editors, Proceed-
ings of the 43rd International Conference on In-
formation Systems, ICIS 2022, Digitization for the
Next Generation, Copenhagen, Denmark, Decem-
ber 9-14, 2022. Association for Information Sys-
tems, 2022. URL: https://aisel.aisnet.org/
icis2022/data_analytics/data_analytics/12.

84 Wolfgang Maass and Veda C Storey. Pairing con-
ceptual modeling with machine learning. Data &
Knowledge Engineering, 134:101909, 2021. doi:
10.1016/j.datak.2021.101909.

85 Fabio Massacci. Decision procedures for expressive
description logics with intersection, composition,
converse of roles and role identity. In Proceedings
of the 17th International Joint Conference on Ar-

TGDK

https://doi.org/10.1016/j.websem.2003.07.001
https://doi.org/10.1016/j.websem.2003.07.001
https://doi.org/10.1145/45072.45073
https://doi.org/10.1007/978-3-642-22603-8_45
https://doi.org/10.1007/978-3-642-22603-8_45
https://doi.org/10.1007/978-3-540-39733-5_8
https://doi.org/10.1145/3269206.3269230
https://doi.org/10.1007/11663881_13
https://doi.org/10.48550/arXiv.cs/0702089
https://doi.org/10.1002/9781118617151.ch06
https://doi.org/10.1007/978-3-319-69904-2_33
https://doi.org/10.1007/978-3-319-25264-3_45
https://doi.org/10.1016/j.datak.2015.07.004
https://doi.org/10.1016/j.datak.2015.07.004
https://doi.org/10.24963/ijcai.2018/743
https://doi.org/10.3390/fi14030078
https://doi.org/10.1007/978-3-642-03573-9_10
http://ijcai.org/Proceedings/09/Papers/341.pdf
http://ijcai.org/Proceedings/09/Papers/341.pdf
https://doi.org/10.1007/978-3-030-03667-6_13
https://doi.org/10.1007/978-3-030-03667-6_13
https://aisel.aisnet.org/icis2022/data_analytics/data_analytics/12
https://aisel.aisnet.org/icis2022/data_analytics/data_analytics/12
https://doi.org/10.1016/j.datak.2021.101909
https://doi.org/10.1016/j.datak.2021.101909

4:24 Logics for Conceptual Data Modelling: A Review

tificial Intelligence (IJCAI’2001), pages 193–198,
2001.

86 Melinda McDaniel and Veda C Storey. Evaluating
domain ontologies: clarification, classification, and
challenges. ACM Computing Surveys (CSUR),
52(4):1–44, 2019. doi:10.1145/3329124.

87 Deborah L. McGuinness and Frank van Harmelen.
OWL Web Ontology Language Overview. W3C
Recommendation., 2004. URL: http://www.w3.
org/TR/owl-features/.

88 Jack Minker. Foundations of deductive databases
and logic programming. Morgan Kaufmann, 2014.

89 Till Mossakowski, Christoph Lange, and Oliver
Kutz. Three semantics for the core of the Distrib-
uted Ontology Language. In Michael Grüninger,
editor, Proceedings of the 7th International Con-
ference on Formal Ontology in Information Sys-
tems (FOIS’12). IOS Press, 2012. 24-27 July, Graz,
Austria. doi:10.3233/978-1-61499-084-0-337.

90 Boris Motik, Bernardo Cuenca Grau, Ian Hor-
rocks, Zhe Wu, Achille Fokoue, and Carsten Lutz.
OWL 2 Web Ontology Language Profiles. W3C
recommendation, W3C, 27 October 2009. URL:
http://www.w3.org/TR/owl2-profiles/.

91 Boris Motik, Peter F. Patel-Schneider, and Bijan
Parsia. OWL 2 web ontology language structural
specification and functional-style syntax. W3c
recommendation, W3C, 27 October 2009. URL:
http://www.w3.org/TR/owl2-syntax/.

92 Matthew Nizol, Laura K. Dillon, and R. E. K.
Stirewalt. Toward tractable instantiation of concep-
tual data models using non-semantics-preserving
model transformations. In Proceedings of the 6th
International Workshop on Modeling in Software
Engineering (MiSE’14), pages 13–18. ACM Con-
ference Proceedings, 2014. Hyderabad, India, June
02-03, 2014. doi:10.1145/2593770.2593771.

93 Object Management Group. Semantics of Business
Vocabulary and Rules (SBVR) – OMG released
versions of SBVR, formal/2008-01-02, jan 2008.
URL: http://www.omg.org/spec/SBVR/1.0.

94 Object Management Group. Superstructure spe-
cification. Standard 2.4.1, Object Management
Group, 2012. URL: http://www.omg.org/spec/
UML/2.4.1/.

95 E. A. N. Ongoma. Formalising temporal attributes
in temporal conceptual data models. Msc thesis,
Department of Computer Science, 2015.

96 Magdalena Ortiz. A short introduction to SHACL
for logicians. In Helle Hvid Hansen, Andre Sced-
rov, and Ruy J. G. B. de Queiroz, editors, Pro-
ceedings of the 29th International Workshop on
Logic, Language, Information, and Computation
(WoLLIC’23), volume 13923 of LNCS, pages 19–32.
Springer, 2023. Halifax, NS, Canada, July 11-14,
2023. doi:10.1007/978-3-031-39784-4_2.

97 Özgür Lütfü Özçep, Ralf Möller, and Christian
Neuenstadt. Stream-query compilation with on-
tologies. In Bernhard Pfahringer and Jochen
Renz, editors, Proceedings of the 28th Australasian
Joint Conference on Advances in Artificial In-
telligence (AI’15), volume 9457 of LNCS, pages
457–463. Springer, 2015. Canberra, ACT, Aus-
tralia, November 30 – December 4, 2015. doi:
10.1007/978-3-319-26350-2_40.

98 Wen-Lin Pan and Da-xin Liu. Mapping object role
modeling into common logic interchange format. In
Proceedings of the 3rd International Conference on
Advanced Computer Theory and Engineering (IC-
ACTE’10), volume 2, pages 104–109. IEEE Com-
puter Society, 2010. doi:10.1109/ICACTE.2010.
5579141.

99 Christine Parent, Stefano Spaccapietra, and
Esteban Zimányi. Conceptual modeling for tra-
ditional and spatio-temporal applications—the
MADS approach. Berlin Heidelberg: Springer Ver-
lag, 2006. doi:10.1007/3-540-30326-X.

100 Antonella Poggi, Domenico Lembo, Diego Cal-
vanese, Giuseppe De Giacomo, Maurizio Lenzer-
ini, and Riccardo Rosati. Linking data to ontolo-
gies. Journal on Data Semantics, X:133–173, 2008.
doi:10.1007/978-3-540-77688-8_5.

101 Alexandra Poulovassilis and Peter McBrien. A gen-
eral formal framework for schema transformation.
Data & Knowledge Engineering, 28(1):47–71, 1998.
doi:10.1016/s0169-023x(98)00013-5.

102 Sandeep Purao and Veda C. Storey. A
multi-layered ontology for comparing relation-
ship semantics in conceptual models of data-
bases. Applied Ontology, 1(1):117–139, 2005.
URL: http://content.iospress.com/articles/
applied-ontology/ao000011.

103 Anna Queralt, Alessandro Artale, Diego Calvanese,
and Ernest Teniente. OCL-Lite: Finite reason-
ing on UML/OCL conceptual schemas. Data
& Knowledge Engineering, 73:1–22, 2012. doi:
10.1016/j.datak.2011.09.004.

104 Anna Queralt and Ernest Teniente. Decidable
reasoning in UML schemas with constraints. In
Zohra Bellahsene and Michel Léonard, editors,
Proceedings of the 20th International Conference
on Advanced Information Systems Engineering
(CAiSE’08), volume 5074 of LNCS, pages 281–295.
Springer, 2008. Montpellier, France, June 16-20,
2008. doi:10.1007/978-3-540-69534-9_23.

105 Jason Saint Jacques, David Toman, and Grant E.
Weddell. Object-relational queries over cfdinc
knowledge bases: OBDA for the sql-literate. In
Subbarao Kambhampati, editor, Proceedings of
the Twenty-Fifth International Joint Conference
on Artificial Intelligence, IJCAI 2016, New York,
NY, USA, 9-15 July 2016, pages 1258–1264. IJ-
CAI/AAAI Press, 2016. URL: http://www.ijcai.
org/Abstract/16/182.

106 Manfred Schmidt-Schauß. Subsumption in KL-
ONE is undecidable. In Proceedings of the 1st
International Conference on Principles of Know-
ledge Representation and Reasoning, pages 421–
431, 1989.

107 Thomas Schneider and Mantas Šimkus. Onto-
logies and data management: A brief survey.
KI-Künstliche Intelligenz, 34(3):329–353, 2020.
doi:10.1007/s13218-020-00686-3.

108 Matthias Sedlmeier and Martin Gogolla. Design
and prototypical implementation of an integrated
graph-based conceptual data model. In Bernhard
Thalheim, Hannu Jaakkola, Yasushi Kiyoki, and
Naofumi Yoshida, editors, Proceedings of the 24th
International Conference Information Modelling
and Knowledge Bases (EJC’14), volume 272 of

https://doi.org/10.1145/3329124
http://www.w3.org/TR/owl-features/
http://www.w3.org/TR/owl-features/
https://doi.org/10.3233/978-1-61499-084-0-337
http://www.w3.org/TR/owl2-profiles/
http://www.w3.org/TR/owl2-syntax/
https://doi.org/10.1145/2593770.2593771
http://www.omg.org/spec/SBVR/1.0
http://www.omg.org/spec/UML/2.4.1/
http://www.omg.org/spec/UML/2.4.1/
https://doi.org/10.1007/978-3-031-39784-4_2
https://doi.org/10.1007/978-3-319-26350-2_40
https://doi.org/10.1007/978-3-319-26350-2_40
https://doi.org/10.1109/ICACTE.2010.5579141
https://doi.org/10.1109/ICACTE.2010.5579141
https://doi.org/10.1007/3-540-30326-X
https://doi.org/10.1007/978-3-540-77688-8_5
https://doi.org/10.1016/s0169-023x(98)00013-5
http://content.iospress.com/articles/applied-ontology/ao000011
http://content.iospress.com/articles/applied-ontology/ao000011
https://doi.org/10.1016/j.datak.2011.09.004
https://doi.org/10.1016/j.datak.2011.09.004
https://doi.org/10.1007/978-3-540-69534-9_23
http://www.ijcai.org/Abstract/16/182
http://www.ijcai.org/Abstract/16/182
https://doi.org/10.1007/s13218-020-00686-3

P. R. Fillottrani and C. M. Keet 4:25

FAIA, pages 376–395. IOS Press, 2014. doi:
10.3233/978-1-61499-472-5-376.

109 Asadullah Shaikh, Abdul Hafeez, Asif Ali
Wagan, Mesfer Alrizq, Abdullah Alghamdi, and
Mana Saleh Al Reshan. More than two decades
of research on verification of UML class mod-
els: A systematic literature review. IEEE Ac-
cess, 9:142461–142474, 2021. doi:10.1109/ACCESS.
2021.3121222.

110 Yannis Smaragdakis, Christoph Csallner, and
Ranjith Subramanian. Scalable satisfiability check-
ing and test data generation from modeling dia-
grams. Automated Software Engineering, 16:73–99,
2009. doi:10.1007/s10515-008-0044-6.

111 Il-Yeol Song and Peter P. Chen. Entity relation-
ship model. In Ling Liu and M. Tamer Özsu, edit-
ors, Encyclopedia of Database Systems, volume 1,
pages 1003–1009. Springer, 2009. doi:10.1007/
978-0-387-39940-9_148.

112 Ahmet Soylu, Martin Giese, Ernesto Jimenez-Ruiz,
Evgeny Kharlamov, Dmitriy Zheleznyakov, and
Ian Horrocks. Ontology-based end-user visual
query formulation: Why, what, who, how, and
which? Universal Access in the Information
Society, 16(2):435–467, jun 2017. doi:10.1007/
s10209-016-0465-0.

113 Ahmet Soylu, Evgeny Kharlamov, Dimitry
Zheleznyakov, Ernesto Jimenez Ruiz, Martin Giese,
Martin G. Skjaeveland, Dag Hovland, Rudolf Sch-
latte, Sebastian Brandt, Hallstein Lie, and Ian
Horrocks. OptiqueVQS: a visual query system over
ontologies for industry. Semantic Web Journal,
9(5):627–660, 2018. doi:10.3233/sw-180293.

114 Francesco Sportelli and Enrico Franconi. Form-
alisation of orm derivation rules and their map-
ping into owl. In OTM Conferences in Com-
puter Science, volume 10033, pages 827–843, 2016.
doi:10.1007/978-3-319-48472-3_52.

115 Veda C. Storey. Relational database design based
on the entity-relationship model. Data & know-
ledge engineering, 7(1):47–83, 1991. doi:10.1016/
0169-023X(91)90033-T.

116 Veda C. Storey, Roman Lukyanenko, and Ar-
turo Castellanos. Conceptual modeling: Topics,
themes, and technology trends. ACM Comput.
Surv., 55(14s), jul 2023. doi:10.1145/3589338.

117 Veda C. Storey, Roman Lukyanenko, Wolfgang
Maass, and Jeffrey Parsons. Explainable AI. Com-
mun. ACM, 65(4):27–29, 2022. doi:10.1145/
3490699.

118 Vijayan Sugumaran and Veda C Storey. Onto-
logies for conceptual modeling: their creation,
use, and management. Data & knowledge en-
gineering, 42(3):251–271, 2002. doi:10.1016/
S0169-023X(02)00048-4.

119 Vijayan Sugumaran and Veda C Storey. The
role of domain ontologies in database design: An
ontology management and conceptual modeling
environment. ACM Transactions on Database
Systems (TODS), 31(3):1064–1094, 2006. doi:
10.1145/1166074.1166083.

120 Arthur H. M. ter Hofstede and Henderik A. Proper.
How to formalize it? formalization principles for in-
formation systems development methods. Inform-
ation and Software Technology, 40(10):519–540,
1998. doi:10.1016/S0950-5849(98)00078-0.

121 Herman J. ter Horst. Completeness, decidabil-
ity and complexity of entailment for rdf schema
and a semantic extension involving the owl vocabu-
lary. Journal of Web Semantics, 3(2):79–115, 2005.
doi:10.1016/j.websem.2005.06.001.

122 Bernhard Thalheim. Extended entity relationship
model. In Ling Liu and M. Tamer Özsu, edit-
ors, Encyclopedia of Database Systems, volume 1,
pages 1083–1091. Springer, 2009. doi:10.1007/
978-0-387-39940-9_157.

123 Stephan Tobies. Complexity Results and Prac-
tical Algorithms for Logics in Knowledge Rep-
resentation. PhD thesis, RWTH Aachen,
2001. URL: http://sylvester.bth.rwth-aachen.
de/dissertationen/2001/082/01_082.pdf.

124 David Toman and Grant E. Weddell. Funda-
mentals of Physical Design and Query Com-
pilation. Synthesis Lectures on Data Manage-
ment. Morgan & Claypool, 2011. doi:10.1007/
978-3-031-01881-7.

125 David Toman and Grant E. Weddell. On adding
inverse features to the description logic CFD∀nc.
In PRICAI 2014: Trends in Artificial Intelligence
- 13th Pacific Rim International Conference on
Artificial Intelligence, Gold Coast, QLD, Aus-
tralia, December 1-5, 2014., pages 587–599, 2014.
doi:10.1007/978-3-319-13560-1_47.

126 Albert Tort, Antoni Olivé, and Maria-Ribera San-
cho. An approach to test-driven development of
conceptual schemas. Data & Knowledge Engin-
eering, 70:1088–1111, 2011. doi:10.1016/j.datak.
2011.07.006.

127 Juan Trujillo, Karen C Davis, Xiaoyong Du, Ern-
esto Damiani, and Veda C. Storey. Conceptual
modeling in the era of big data and artificial intel-
ligence: Research topics and introduction to the
special issue, 2021. doi:10.1016/j.datak.2021.
101911.

128 Isadora Valle Sousa, Tiago Prince Sales, Eduardo
Guerra, Luiz Olavo Bonino da Silva Santos, and
Giancarlo Guizzardi. What do I get from mod-
eling? an empirical study on using structural
conceptual models. In International Conference
on Enterprise Design, Operations, and Comput-
ing, pages 21–38. Springer, 2023. doi:10.1007/
978-3-031-46587-1_2.

129 John R. Venable and John C. Grundy. Integrat-
ing and supporting entity relationship and object
role models. In Mike P. Papazoglou, editor, Pro-
ceedings of the 14th International Conference on
Object-Oriented and Entity-Relationship Model-
ling (ER’95), volume 1021 of LNCS, pages 318–328.
Springer, 1995. doi:10.1007/BFb0020543.

130 Michaël Verdonck, Frederik Gailly, and Sergio
de Cesare. Comprehending 3d and 4d ontology-
driven conceptual models: an empirical study.
Information Systems, 93:101568, 2020. doi:10.
1016/j.is.2020.101568.

131 Michaël Verdonck, Frederik Gailly, Sergio
De Cesare, and Geert Poels. Ontology-driven con-
ceptual modeling: A systematic literature mapping
and review. Applied Ontology, 10(3-4):197–227,
2015. doi:10.3233/AO-150154.

132 Denny Vrandecic. Building a multilingual Wiki-
pedia. Communications of the ACM, 64(4):38–41,
2021. doi:10.1145/3425778.

TGDK

https://doi.org/10.3233/978-1-61499-472-5-376
https://doi.org/10.3233/978-1-61499-472-5-376
https://doi.org/10.1109/ACCESS.2021.3121222
https://doi.org/10.1109/ACCESS.2021.3121222
https://doi.org/10.1007/s10515-008-0044-6
https://doi.org/10.1007/978-0-387-39940-9_148
https://doi.org/10.1007/978-0-387-39940-9_148
https://doi.org/10.1007/s10209-016-0465-0
https://doi.org/10.1007/s10209-016-0465-0
https://doi.org/10.3233/sw-180293
https://doi.org/10.1007/978-3-319-48472-3_52
https://doi.org/10.1016/0169-023X(91)90033-T
https://doi.org/10.1016/0169-023X(91)90033-T
https://doi.org/10.1145/3589338
https://doi.org/10.1145/3490699
https://doi.org/10.1145/3490699
https://doi.org/10.1016/S0169-023X(02)00048-4
https://doi.org/10.1016/S0169-023X(02)00048-4
https://doi.org/10.1145/1166074.1166083
https://doi.org/10.1145/1166074.1166083
https://doi.org/10.1016/S0950-5849(98)00078-0
https://doi.org/10.1016/j.websem.2005.06.001
https://doi.org/10.1007/978-0-387-39940-9_157
https://doi.org/10.1007/978-0-387-39940-9_157
http://sylvester.bth.rwth-aachen.de/dissertationen/2001/082/01_082.pdf
http://sylvester.bth.rwth-aachen.de/dissertationen/2001/082/01_082.pdf
https://doi.org/10.1007/978-3-031-01881-7
https://doi.org/10.1007/978-3-031-01881-7
https://doi.org/10.1007/978-3-319-13560-1_47
https://doi.org/10.1016/j.datak.2011.07.006
https://doi.org/10.1016/j.datak.2011.07.006
https://doi.org/10.1016/j.datak.2021.101911
https://doi.org/10.1016/j.datak.2021.101911
https://doi.org/10.1007/978-3-031-46587-1_2
https://doi.org/10.1007/978-3-031-46587-1_2
https://doi.org/10.1007/BFb0020543
https://doi.org/10.1016/j.is.2020.101568
https://doi.org/10.1016/j.is.2020.101568
https://doi.org/10.3233/AO-150154
https://doi.org/10.1145/3425778

4:26 Logics for Conceptual Data Modelling: A Review

133 Heba M. Wagih, Doaa S. El Zanfaly, and Mo-
hamed M. Kouta. Mapping Object Role Mod-
eling 2 schemes into SROIQ(d) description lo-
gic. International Journal of Computer The-
ory and Engineering, 5(2):232–237, 2013. doi:
10.7763/ijcte.2013.v5.684.

134 Kunmei Wen, Yong Zeng, Ruixuan Li, and Ji-
anqiang Lin. Modeling semantic information in
engineering applications: a review. Artificial In-
telligence Review, 37:97–117, 2012. doi:10.1007/
s10462-011-9221-2.

135 Michael Wessel. Obstacles on the way to qual-
itative spatial reasoning with description logics:
some undecidability results. In Carole A. Goble,
Deborah L. McGuinness, Ralf Möller, and Peter F.
Patel-Schneider, editors, Proceedings of the Inter-
national Workshop in Description Logics (DL’01),

volume 49 of CEUR WS, 2001. Stanford, CA,
USA, August 1-3, 2001. URL: https://ceur-ws.
org/Vol-49/Wessel-122start.ps.

136 Guohui Xiao, Linfang Ding, Benjamin Cogrel, and
Diego Calvanese. Virtual knowledge graphs: An
overview of systems and use cases. Data Intel-
ligence, 1:201–223, 2019. doi:10.1162/dint_a_
00011.

137 Tilmann Zäschke, Stefania Leone, Tobias
Gmünder, and Moira C. Norrie. Optimising con-
ceptual data models through profiling in object
databases. In Wilfred Ng, Veda C. Storey, and
Juan Trujillo, editors, Proceedings of the 32th In-
ternational Conference on Conceptual Modeling
(ER’13), volume 8217 of LNCS, pages 284–297.
Springer, 2013. Hong-Kong, November 11-13, 2013.
doi:10.1007/978-3-642-41924-9_24.

A Examples of both approaches to the logic-based reconstruction

Since both approaches for CDM or CDML formalisation work in principle for any conceptual
data modelling language, as described in Section 3.3, we first harmonise terminology across such
CDMLs, using the unified metamodel [76]: Relationship (also called association or fact type),
Role (relationship component, association end), Object Type (entity type, class), Attribute10, and
Data Type. Second, the different properties of the rules-based vs. the mapping-based approach,
as also depicted in Figure 3, practically result in different sequences of steps for how to create
that logic-based reconstruction. The ones we followed in this appendix are graphically depicted
in Figure 6, where steps 2 and 3 are illustrated in this appendix; step 1 was taken from other
work and steps 4 and 5 are realised in crowd2. Note that the aim is to illustrate the way these
logic-based reconstructions are done in the literature and these two approaches are our distillation
of the two key distinct approaches researchers have taken. It is not meant to be prescriptive and
there is no official or investigated method for carrying out this task.

We use the DCp “positionalist core profile” of [42] to illustrate both approaches, because it
respects the positionalist ontological commitment of those languages and it is a relatively simple
language with few features that are those that have been shown to be used most in UML class
diagrams, EER, and ORM2. Specifically, based on the analysis of the 101 publicly available CDMs
[75], the feature list of DCp is expressive enough to include 87.57% of the entities (elements and
constraints) used in all the 101 models analysed, and 91,88% of the entities in the UML models,
73.29% of the contents of the ORM and ORM2 models, and 94.64% of the ER and EER models
[42].

A.1 Rule-based approach
First, we specify the rules for the algorithmic conversion for any CDM within the DCp feature list:

▶ Definition 5 (Syntax of DCp [42]). Given a conceptual model in any of UML class diagrams,
EER, and ORM2, take the set of all object types ranging over symbols A, B, ..., binary relationships
P , datatypes T and attributes a in the conceptual data model as the basic elements in the knowledge
base. Then construct a knowledge base in DCp by applying the rules:

10 ORM does not have “attribute” as such, but a value type has an attribute, it being a binary relation between
a class and a data type. This is a straight-forward conversion procedure; see [44] for details.

https://doi.org/10.7763/ijcte.2013.v5.684
https://doi.org/10.7763/ijcte.2013.v5.684
https://doi.org/10.1007/s10462-011-9221-2
https://doi.org/10.1007/s10462-011-9221-2
https://ceur-ws.org/Vol-49/Wessel-122start.ps
https://ceur-ws.org/Vol-49/Wessel-122start.ps
https://doi.org/10.1162/dint_a_00011
https://doi.org/10.1162/dint_a_00011
https://doi.org/10.1007/978-3-642-41924-9_24

P. R. Fillottrani and C. M. Keet 4:27

1. Make choices:
- purpose
- formalisation options
- logic framework

2a. For each CDM element
included, write axiom

pattern to add to the theory

3a. Define semantics for
those axiom patterns

2b. Define textual syntax
for each CDM element
included (mapped to its

graphical notation)

3b. Define semantics for
those textual elements

2.5c. Map to DL (or another
logic) syntax

3c. Use the usual DL (resp.
the other logic) semantics

4. Implement (or assume so)

mapping-based approachrules-based approach

5a. Take a CDM. For each
element: select relevant

axiom pattern, instantiate
with the CDM vocabulary,

add to the theory

5bc. Formalise CDM during
its design, as elements are

added

Figure 6 Possible sequences of steps for creating logic-based reconstructions of conceptual data models.

1. For each relationship P between object types A and B, add to the knowledge base
≥ 1[1]P ⊑ A and ≥ 1[2]P ⊑ B

2. For each attribute a of datatype T within an object type A (including the transformation of
ORM’s Value Type following the rule in [44]), add

A ⊑ ∃a.T⊓ ≤ 1a

3. Subsumption between two object types A and B is formalised by adding the assertion
A ⊑ B

4. For each object type cardinality m..n in relationship P with respect to its i-th component A,
add

A ⊑≤ n[i]P ⊓ ≥ m[i]P

5. Add for each mandatory constraints of a concept A in a relationship P either the axiom
A ⊑≥ 1[1]P or A ⊑≥ 1[2]P

depending on the position played by A in P . This is a special case of the previous one, with
n = 1.

6. For each single identification in object type A with respect to an attribute a of datatype T , add
id A a

Given the formalisation rules in Definition 5, the DL for DCp would result in the following
syntax: starting from atomic elements, we can construct binary relationships R, arbitrary concepts

TGDK

4:28 Logics for Conceptual Data Modelling: A Review

C and axioms X as follows:

C −→⊤ |A | ≤ k[i]R | ≥ k[i]R | ∀a.T | ∃a.T |
≤ 1 a |C ⊓D

R −→⊤2 |P | (i : C)
X −→C ⊑ D | id C a

where i = 1, 2 and 0 < k (roles may be numbered or named, and are not ordered).
Then, for the second step in the algorithmic procedure, the semantics. For DLs, it can avail of

the model-theoretic semantics with its customary notation, as included in Definition 6:

▶ Definition 6 (Semantics of DCp [42]). An DCp interpretation I = (·IC , ·IT , ·I) for a knowledge base
in DCp consists of a set of objects ∆I

C , a set of datatype values ∆I
T , and a function ·I satisfying

the constraints shown in Table 4. It is said that I satisfies the assertion C ⊑ D iff CI ⊆ DI ; and
it satisfies the assertion id C a iff there exists T such that CI ⊆ (∃a.T⊓ ≤ 1a)I (mandatory 1)
and for all v ∈ T I it holds that #{c|c ∈ ∆I

C ∧ (c, v) ∈ aI} ≤ 1 (inverse functional).

Table 4 Semantics of DCp (Source: [42]).

⊤I ⊆ ∆I
C

AI ⊆ ⊤I

⊤I
2 = ⊤I × ⊤I

P I ⊆ ⊤I
2

T I ⊆ ∆I
T

aI ⊆ ⊤I × ∆I
T

(C ⊓ D)I = CI ∩ DI

(≤ k[i]R)I = {c ∈ ∆I
C |#{(d1, d2) ∈ RI .di = c} ≤ k}

(≥ k[i]R)I = {c ∈ ∆I
C |#{d1, d2) ∈ RI .di = c} ≥ k}

(∃a.T)I = {c ∈ ∆I
C |∃v ∈ ∆I

T .(c, v) ∈ aI ∧ v ∈ T I}
(∀a.T)I = {c ∈ ∆I

C |∀v ∈ ∆I
T .(c, v) ∈ aI → v ∈ T I}

(≤ 1 a)I = {c ∈ ∆I
C |#{(c, v) ∈ aI} ≤ 1}

(i : C)I = {(d1, d2) ∈ ⊤I
2 |di ∈ CI}

An alternative option is to choose either of the five relationship formalisation options described
in Example 1, create a conversion algorithm from the positionalist relationships of conceptual
data models to that choice, and then create a different profile accordingly with, say, OWL in the
formalisation rules. The “bumping up the role names to relationships” choice and DL OWL2
syntax then would add the following axioms to the knowledge base, respectively in the same order
as in Definition 5:
1. SubClassOf(ObjectSomeValuesFrom(ex:hasP) ex:A) and

SubClassOf(ObjectSomeValuesFrom(ex:isOfP) ex:B)
2. SubClassOf(ex:A (ObjectIntersectionOf (DataSomeValuesFrom(ex:a)

FunctionalDataProperty(ex:a)))
3. SubClassOf(ex:A ex:B)
4. SubClassOf(ex:A ObjectIntersectionOf(ObjectMinCardinality(n ex:hasP)

ObjectMaxCardinality(m ex:hasP)))
5. SubClassOf(ex:A ObjectSomeValuesFrom(ex:hasP)) or

SubClassOf(ex:A ObjectSomeValuesFrom(ex:isOfP))

P. R. Fillottrani and C. M. Keet 4:29

6. SubClassOf(ex:A DataExactCardinality(1 ex:a)) and
SubClassOf(ex:A DataSomeValuesFrom(ex:a))

Alternatively, the relationship is not typed but qualified cardinality constraints are used, or hasP
and isOfP are declared inverses, or only one of the two is introduced with an inverse feature where
needed.

An example of this approach with a concrete CDM is illustrated in Example 2.

A.2 Mapping-based approach
The first step in the mapping approach is to declare the textual syntax which, if that were to have
been done for DCp, would have looked like as in Definition 7. For comprehensiveness, a table with
textual elements mapping to the respective graphical elements of the selected modelling language
should be done as well (Figure 7), then to declare the semantics (Definition 8). It can stop here,
or be mapped into a a logic of choice to obtain either a precise or approximate indication of the
computational complexity of the language needed for the CDM or chosen fragment thereof, as
shown in Definition 9 for a DL. The ones here are based on [72], but includes only those features
that are in DCp to facilitate a comparison with the first approach.

▶ Definition 7 (Conceptual Data Model DCp syntax)). A DCp conceptual data model is a tuple
Σ = (L, rel, att, cardR, cardA, isa, id) such that:
1. L is a finite alphabet partitioned into the sets: C (class symbols), A (attribute symbols), R

(relationship symbols), U (role symbols), and D (domain symbols); the tuple (C,A,R,U ,D) is
the signature of the conceptual model Σ.

2. att is a function that maps a class symbol in C to an A-labeled tuple over D, att : A 7→ D,
so that att(C) = {A1 : D1, . . . , Ah : Dh} where h a non-negative integer.

3. rel is a function that maps a relationship symbol in R to an U-labeled tuple over C, rel(R) =
{U1 : C1, U2 : C2}, if (Ui, Ci) ∈ rel(R) (with i = {1, 2}), then player(R, Ui) = Ci and
role(R, Ci) = Ui. The signature of the relation is σR = ⟨U , C, player, role⟩, where for all
Ui ∈ U , Ci ∈ C, if ♯U ≥ ♯C then for each ui, ci, rel(R), we have player(R, Ui) = Ci and
role(R, Ci) = Ui, and if ♯U > ♯C then player(R, Ui) = Ci, player(R, Ui+1) = Ci and
role(R, Ci) = Ui, Ui+1.

4. cardR is a function cardR : C ×R× U 7→ N× (N ∪ {∞}) denoting cardinality constraints.
We denote with cmin(C, R, U) and cmax(C, R, U) the first and second component of cardR.

5. cardA is a function cardA : C ×A 7→ N × (N ∪ {∞}) denoting multiplicity constraints for
attributes. We denote with cmin(C, A) and cmax(C, A) the first and second component of
cardA, and cardA(C, A) may be defined only if (A, D) ∈ att(C) for some D ∈ D;

6. isa is a binary relationship isa ⊆ C × C.
7. id is a function, id : C 7→ A, that maps a class symbol in C to its key attribute and A ∈ A is

an attribute already defined in att(C), i.e., id(C) may be defined only if (A, D) ∈ att(C) for
some D ∈ D.

▶ Definition 8 (DCp Semantics). Let Σ be a DCp conceptual data model. An interpretation for
the conceptual model Σ is a tuple I = (∆I ∪∆I

D, ·I), such that:
∆I is a nonempty set of abstract objects disjoint from ∆I

D;
∆I

D =
⋃

Di∈D ∆I
Di

is the set of basic domain values used in Σ; and
·I is a function that maps:

Every basic domain symbol D ∈ D into a set DI = ∆I
Di

.
Every class C ∈ C to a set CI ⊆ ∆I .

TGDK

4:30 Logics for Conceptual Data Modelling: A Review

C Entity
Type

ID

A

m..n

Class

Mapping
to EER

Mapping
to UML

Textual
notation

R

ATT

ID

ISA

CARDR
m..n

m..n
R

U U U

A:D
Class

A:[1]D
Class

CARDA m..n
A:[m..n]D

Class

Mapping
to EER

Mapping
to UML

Textual
notation

Figure 7 Sample mapping of the DCp textual elements from Definition 7 to graphical elements of one
of the EER notational flavours and to UML Class Diagram elements.

Every relationship R ∈ R to a set RI of U-labeled tuples over ∆I – i.e. let R be an
binary relationship connecting the classes C1, C2, rel(R) = {U1 : C1, U2 : C2}, then,
r ∈ RI → (r = {U1 : o1, U2 : o2} ∧ ∀i ∈ {1, 2}.oi ∈ CI

i).
Every attribute A ∈ A to a set AI ⊆ ∆I ×∆I

D, such that, for each C ∈ C, if att(C) =
{A1 : D1, . . . , Ah : Dh}, then, o ∈ CI → (∀i ∈ {1, . . . , h},∃di. ⟨o, di⟩ ∈ AI

i ∧ ∀di.⟨o, di⟩ ∈
AI

i → di ∈ ∆I
Di

).
I is said a legal database state or legal application software state if it satisfies all of the constraints
expressed in the conceptual data model:

For each C1, C2 ∈ C: if C1 isaC C2, then CI
1 ⊆ CI

2 .
For each R ∈ R with rel(R) = {U1 : C1, U2 : C2}: all instances of R are of the form
{U1 : o1, U2 : o2} where oi ∈ CI

i , Ui ∈ UI
i , and 1 ≤ i ≤ 2.

For each cardinality constraint cardR(C, R, U), then:
o ∈ CI → cmin(C, R, U) ≤ #{r ∈ RI | r[U] = o} ≤ cmax(C, R, U).
For each multiplicity constraint cardA(C, A), then:
o ∈ CI → cmin(C, A) ≤ #{(o, a) ∈ AI} ≤ cmax(C, A).
For each C ∈ C, A ∈ A such that id(C) = A, then A is an attribute and ∀d ∈ ∆I

D.#{o ∈ CI |
⟨o, d⟩ ∈ AI} ≤ 1.

▶ Definition 9 (Mapping DCp into DLR). Let Σ = (L, rel, att, cardR, cardA, isa, id) be a
DCp conceptual data model. The DLR knowledge base, K, mapping Σ is as follows.

For each A ∈ A, then, A ⊑ From :⊤ ⊓ To :⊤ ∈ K;
If C1 isa C2 ∈ Σ, then, C1 ⊑ C2 ∈ K;
If rel(R) = {U1 :C1, U2 :C2} ∈ Σ, then R ⊑ U1 :C1 ⊓ U2 :C2 ∈ K;
If att(C) = {A1 : D1, . . . , Ah : Dh} ∈ Σ, then, C ⊑ ∃[From]A1⊓. . .⊓∃[From]Ah⊓∀[From](A1 →
To : D1) ⊓ . . . ⊓ ∀[From](Ah → To : Dh) ∈ K;
If cardC(C, R, U) = (m, n) ∈ Σ, then, C ⊑ ∃≥m[U]R ⊓ ∃≤n[U]R ∈ K;
If cardA(C, A) = (m, n) ∈ Σ, then, C ⊑ ∃≥m[U]R ⊓ ∃≤n[U]R ∈ K;
If id(C) = A ∈ Σ, then, K contains: C ⊑ ∃=1[From]A; ⊤ ⊑ ∃≤1[To](A ⊓ [From] : C);

An example of this approach with a concrete CDM is illustrated in Example 2.

	1 Introduction
	2 Related Work
	3 On formalising conceptual data models
	3.1 Decision points before the formalisation
	3.2 Popular logics for logic-based reconstructions
	3.2.1 Coverage and DLs
	3.2.2 CDM runtime usage and DLs

	3.3 Approaches to the formalisation

	4 Reasoning over and with Conceptual Data Models
	5 Challenges and future directions
	5.1 CDML design
	5.2 CDM integration with related research areas
	5.3 CDM applications in other and new contexts

	6 Conclusions
	A Examples of both approaches to the logic-based reconstruction
	A.1 Rule-based approach
	A.2 Mapping-based approach

