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Abstract
We work towards a vocabulary to represent pro-
cesses and temporal logic specifications as graph-
structured data. Different fields use incompatible
terminologies for describing essentially the same
process-related concepts. In addition, processes can
be represented from different perspectives and levels
of abstraction: both state-centric and event-centric
perspectives offer distinct insights into the underly-
ing processes. In this work, we strive to unify the
representation of processes and related concepts
by leveraging the power of knowledge graphs. We
survey approaches to representing processes and
reasoning with process descriptions from different
fields and provide a selection of scenarios to help

inform the scope of a unified representation of pro-
cesses. We focus on processes that can be executed
and observed via web interfaces. We propose to
provide a representation designed to combine state-
centric and event-centric perspectives while incor-
porating temporal querying and reasoning capabilit-
ies on temporal logic specifications. A standardised
vocabulary and representation for processes and
temporal specifications would contribute towards
bridging the gap between the terminologies from
different fields and fostering the broader applica-
tion of methods involving temporal logics, such as
formal verification and program synthesis.
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1:2 Towards Representing Processes and Reasoning with Process Descriptions on the Web
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1 Introduction

Representing knowledge – describing what is true – is a mature field with a well-established
terminology and existing standards. Knowledge representation with ontologies, using graph-
structured representations, is standardised with W3C recommendations around the Resource
Description Framework (RDF) [27], RDF Schema [17] and the Web Ontology Language OWL [11].
The languages specified by the W3C enjoy mature tool support, are widely applied in many
different domains and have a clear connection with web architecture (Linked Data) to share and
access data. The adoption of principles for sharing data in research, especially regarding findability,
accessibility, interoperability and reusability (FAIR data [107]) provides organisational guidance.
However, knowledge representation with ontologies has a focus on describing what is the case.
Although OWL Time [26] provides primitives to represent time, support for representing changes
and temporal aspects is often limited in the existing languages.

Representing processes – describing what is happening – is, in contrast, less standardised and
there is less agreement on terminology and languages across fields. While many research fields
are concerned with the temporal representation of processes and related concepts, each field has
developed their own terminology and methods to address their requirements. Although many fields
try to represent essentially the same concepts, terminology is often incompatible across approaches.
Especially in the Semantic Web community, there is a lack of agreed-upon terminology and lack
of actively-used vocabularies for representing processes and related concepts.

The literature on research around representing and reasoning with processes is vast and scattered
across many fields. There is potential to bring hitherto unconnected languages, approaches and
systems together and put sophisticated methods around model checking and planning into the
hands of more users. Our aim is to try to capture the core of processes and process-related
concepts, applicable to many different domains, by trying to distil essential aspects of events and
processes.

We start with giving a brief historical overview of a selection of general works on events and
processes from a selection of fields.

Philosophy of Language and Linguistics: Publications from the field of philosophy of language
and linguistics provide arguments for approaches to represent actions and events, but little
in terms of mathematical formalisation. Linguistics and philosophy of language had notable
publications starting in the 1950s and 1960s with a focus on understanding the nature of
events. Vendler [105] investigates verb types and distinguishes temporal entities according
to whether they occur gradually or instantaneously and whether they have an endpoint or
not. States describe what is the case and last for a period of time (“A loved somebody from
t1 to t2”), activities are ongoing and do not have an endpoint (“A was running at time t”),
accomplishments are incremental and have an endpoint (“A was drawing a circle at t”), and
achievements occur instantaneously and have an endpoint (“A won a race between t1 and
t2”). Davidson investigates the structure of action sentences [28], assuming a universe that
contains particular events. In a follow-up work, Davidson addresses a criticism regarding
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recurrence of events, i.e., that certain events can occur multiple times [29] and discusses the
possibility of events as universals. More recently, Galton argues that processes are “patterns
of occurrences” [43] and thus treats processes as a kind of universal. The works in the field of
philosophy of language and linguistics provide only rudimentary material that would lead to a
mathematically rigorous formalisation that supports deductive reasoning.

Temporal Logic and Formal Methods: Many of today’s knowledge representation languages
build on subsets or variants of first-order logic, often formalised using interpretations and
models over a universe (or world). The introduction of modal logic brought ways to talk
about necessity and possibility and truth relative to multiple worlds. The formalisation is
based on Kripke structures (or transition systems). Prior developed Tense Logic [91] in the
1950s using modal operators to represent temporal aspects. Pnueli [90] introduced Linear-time
Temporal Logic (LTL) in the 1970s and 1980s to represent and reason about the behaviour of
computer programs. Computational Tree Logic (CTL) [40] is an alternative formalisation to
represent and reason about the behaviour of (technical) systems. While LTL uses a linear time
model, CTL uses a branching time model. Both temporal logics provide the basis for formally
proving correctness of programs via model checking. While LTL and CTL typically operate
over states expressed in propositional logic formulas, Abstract State Machines (ASMs) [53]
(initially called Evolving Algebras) provide support for full first-order logic structures as state
representation. ASMs have been used to formalise the semantics of programming languages,
for instance. A related approach for formally treating the behaviour of systems is described
by McDermott [76]. With the right descriptions of operations (with pre- and postconditions),
a planner can synthesise a program (a sequence of operations) that reaches a given goal.
Many of these approaches focus on representing the dynamics of systems as a progression
of state. Other approaches focus on representing the behaviour and the interaction between
processes. Communicating State Machines [16] formalise processes that can send and receive
messages. Similarly, Communicating Sequential Processes [56] and Milner’s work on a Calculus
of Communicating Systems [77] and the π-calculus [78] have a focus on communication and
interaction between processes.

Business Processes and Workflows: While approaches from the philosophy of language and
linguistics and from temporal logics and formal methods provide theory, the field of business
processes and workflows apply process descriptions and executions in a business context. The
focus in modelling business processes is on what is happening (events) and not what is true
(states). That is, in the business process community [96], processes are primarily modelled as
collections of activities (diverging from Vendler’s definition of activity). Event-driven process
chains [68] are an early approach to represent business processes. Often, Petri nets [88] are
used to formalise the different business process and workflow languages. Process models
(or workflows, i.e., processes that have a unique source place and a unique end place [36])
use a “directly-follows” relation between activities to describe a process. MOBILE [58]
provides a modular workflow model and architecture for implementing business processes
in office environments and distinguishes between functional, behavioural, organisational and
informational aspects. In the workflow field, researchers have identified patterns related to
control flow and data (states) [96] to be able to catalogue the features of workflow languages
and systems. More recently, approaches such as DECLARE [87] and Guard-Stage-Milestone
(GSM) [57] break up the rather rigid description of traditional process models and encode
relations and dependencies between temporal entities in a more flexible manner. Rather
than just using the immediate-next relation to describe processes, these approaches allow for
describing sets of “directly-follows” processes. Finally, in the last decades the field of process
mining [103] has gained prominence, to re-discover the control flow from traces of process
executions.

TGDK
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Next to the overview of general approaches from various fields, we survey the state of the
art concerning representing processes and related concepts with ontological modelling in RDF in
Section 2.

In this work we identify the main concepts that allow the formal representation of processes,
which could later form the basis for a common vocabulary using Semantic Web standards. We
try to be as general as possible, but focus our investigation on processes that can be executed
and observed via a web interface. While our focus is on describing technical processes, we try to
be generic enough to not explicitly exclude physical, chemical, biological or social processes. We
believe that such a formalisation of processes can help going beyond description of physical and
abstract entities, expanding towards the specification of changes, including temporal relationships
and reasoning. To illustrate the different ways of how these process description concepts might
be used, in Section 3 we provide a set of scenarios in which we highlight their respective main
requirements, in terms of process modelling patterns as well as querying and reasoning tasks.

Our idea of process representation includes the definition of steps, events and other elements
relative to process modelling, catering for both the state-centric and the event-centric perspective.
We also identify the need to provide means for distinguishing between particulars (occurrences)
and universals (events, states, processes) and keeping a trace of the events and states during the
unfolding of a process. Moreover, we illustrate how the specification of temporal properties can
be used to encode restrictions on the temporal order of process elements. We develop the core
concepts required for a core process ontology in Section 4.

Our endeavour has the potential to address not only representation of events and processes but
also operational and reasoning tasks, beyond previous attempts with mixed success, such as those
related to Semantic Web Services [75, 94]. Thus, next to aligning terminology and vocabulary, the
overall challenge is to bring the sophisticated methods from temporal logics and formal methods
to the Semantic Web community. We could use process representations to query the graphs
describing the processes (interface with systems around first-order logic, e.g., a query processor
or a reasoner), to query the temporal structure (interface with systems around temporal logic,
e.g., a model checker or a planner), or to generate and accept a sequence of events (interface with
process engines or stream reasoners). Thus, we propose a research agenda focusing on the core
properties needed to represent processes and related concepts and their semantics. We discuss the
main challenges for representing processes on the web in Section 5.

To begin to structure the discussion of processes and related concepts, we have identified five
dimensions, based on a combination of classifications found in the literature [96, 14]. While the
work in [96] distinguishes control, data and resource, the approach in [14] distinguishes process,
knowledge and trace. We believe that process/control and data/knowledge capture a similar
notion, respectively. We also consider that [96] and [14] do not cover operational and architectural
concerns. We want to distinguish between systems that operate offline (e.g., on historical recordings
of process executions) and those that operate online (e.g., managing a set of currently running
processes). See Table 1 for an overview.

The remainder of the paper is structured as follows. We start with a survey of the state
of the art in Section 2. We continue with the presentation of scenarios in Section 3 and then
introduce the assumptions and core concepts related to describing processes in Section 4. Next, we
identify the main challenges for representing processes on the web in Section 5 before concluding
in Section 6.
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Table 1 Dimensions for representing processes and related concepts.

Dimension Description

Control The dimensions refers to the representation of the process control flow, i.e. the
dependencies (temporal or otherwise) between different parts that make up a process.
The most basic control flow construct is that of a sequence. Other constructs include
branching conditions and repetitions. Note that control flow can apply to the level of
particulars (i.e., an occurrence of a process) as well as universals (i.e., a process).

Data The dimension refers to the representation data (i.e., data objects, data items,
knowledge) related to processes. The data related to the various steps could refer to
the state or the lifecycle of the domain objects created or manipulated by the process
at a given point in time. We assume the regular distinction between particulars (i.e.,
instances) and universals (i.e., classes) as in traditional knowledge representation
languages, though not all approaches use an object-oriented paradigm for data.

Resource The dimension refers to the resources that drive the progress of a process (e.g., human
workers, compute threads, organisation and roles). In the resource dimension, often
the distinction between particulars and universals comes up again.

Trace The dimension refers to the representation of “instances” of a process (i.e., an
occurrence of a process) and the associated history of evolution. A trace can contain
both occurrences of events and states. A trace needs to connect the constituent
elements, possibly via shared data objects with unique identifiers (’case ids’).

Online The dimension refers to the underlying system architecture. In particular we dis-
tinguish between online and offline processing. Information about processes and
process executions can be available in batch for offline processing or can be available
at runtime in a live system that makes control information available (e.g., upcoming
next, the process branches according to some conditions).

2 State of the art

Given that process representations are investigated in many fields, in the following we can only
provide an overview of a selection of publications. Our litmus test for inclusion of a work in this
section is that the work considers both processes and ontological modelling or data represented
in RDF. Such works contain ideas, concepts and use-cases from fields such as Upper Ontologies,
(Scientific) Workflow Provenance, Semantic Web Services, Stream and Event Processing, Formal
Methods and Business Process Management.

We group the presentation of publications according to fields. We start each group with a
description of the aim of the field and then present related works and contrast them with our
proposed approach. For comprehensive surveys, see [93], [31] and [9]. We give an overview in
Table 2.

2.1 Upper ontologies
Upper ontologies aim to describe general concepts in modelling such that domain ontologies built
using these upper ontologies follow a principled approach and do not conflate (metaphysical)
categories. Often, upper ontologies distinguish between continuants (endurants) and occurrents
(perdurants). Continuants are “three-dimensional”, i.e., exist in space only, while occurrents are
“four-dimensional”, i.e., can exist in space and time.

The notion of a process appears in domain-independent and upper ontologies. While in the
Descriptive Ontology for Linguistic and Cognitive Engineering (DOLCE) [15] itself does not
specifically consider processes, other works use DOLCE to talk about processes and plans, e.g.,
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Table 2 Ontological and RDF-based works around processes with ideas, concepts and use-cases from
different fields. We give whether (+) or not (-) a work allows for the representation of Control, Data,
Resource, Trace or Online dimension of processes. Note that a + does not imply that semantics are
defined for the representations. For the BPM works, we give their foundation (e.ġ. standard, process
calculus), if applicable.

Field Work C D R T O

Upper Ontologies

DOLCE [15] - - - - -
BFO [84] - - - - -
OntoUML/UFO-B [4] + - + - -
Schema.org [52] + - - - -

(Scientific) Workflow Provenance

PROV-O [59] - - - + -
OPMW [47] + - - + -
ProvONE6 + + - + -
ProvONE+ [18] + + - + -
PWO [44] + - - + -
Taverna [101] + - - + -
Pegasus [50] + - - + -
Kepler [5] + - - + -

Semantic Web Services
Agarwal et al. [1] (π-calculus) + + + - -
OWL-S/DAML-S [8] + + + - -
WSMO [55] + + + - -

Stream and Event Processing
RDF Stream Processors [13, 89, 20] - + - + +
Stream Reasoners [12, 80, 106] - + - + +
Complex Event Processors [7, 6] + + - + +

Formal Methods

Program Ontologies [10, 72, 30] + - - + -
Data Access Tools [73, 85, 98, 71] - + - - +
Transition Systems with KGs [66, 22, 38] + + + - +
Model Checkers [109] + + + + -
Runtime Enforcement [64, 22] + + + - +
Runtime Checking [66, 38] + + + - +

Business Process Management

BPMN ontology [95] (BPMN) + + + - -
BPMO [19] (BPEL/BPMN) + + - - -
Bertoli et al. [14] (BPMN) + + - + -
Koschmider et al. [69] (Petri Nets) + - - - -
Gasevic et al. [48] (Petri Nets) + - - - -
Thomas et al. [99] (EPC) + - + + -
WiLD [61] + + - - +
GSM4LD [63] (GSM/CMMN) + + - - +

[83]. The Basic Formal Ontology (BFO) [84] contains a term for Process1, and [97] details how to
represent continuants (covering space) and occurrents (covering space and time). In the Unified
Foundational Ontology part B (UFO-B), or UFO’s incarnation OntoUML, events are considered [4],

1 http://purl.obolibrary.org/obo/BFO_0000015

http://purl.obolibrary.org/obo/BFO_0000015
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where an event is something that has a beginning and an end in time and where other things
(specifically endurants) may participate. One could compare an event in UFO-B to an activity or
process in the terminology of the other surveyed fields. Then, the participants in an event could
be regarded as the resource dimension. In addition, the mereological (i.e., part-of) and historical
relations between events could be regarded as the control dimension, albeit with only very few
language constructs.

In Schema.org [52], there are no terms to model processes. However, special kinds of processes
can be modelled, such as a how-to description or a (cooking) recipe2, which, at least in the JSON
representation, can consider sequential flow. However, in the translation to RDF, the ordering
gets lost, but there is an ongoing discussion to change that3.

2.2 (Scientific) workflow provenance
Works in Scientific Workflows and Provenance are mainly concerned with modelling entities,
activities that transformed them and agents who carry out the activities. Those works were
developed first for the recording of the activity of scientific labs that process samples, e.g., in
biology.

The Open Provenance Model for Workflows (OPMW) is an ontology to describe the workflow
traces and their templates of scientific processes [45]. Part of the OPMW work is the Provenance
and Plans ontology [46] (P-Plan4), which extends the Provenance Ontology [59] (PROV-O5) with
terminology to describe the plans (that is, the control flow) that govern the execution of scientific
processes. P-Plan can be used to describe plans and establish a relationship between such plans
and the provenance records in PROV-O that provide details with a focus on the entities and steps
of past executions of scientific workflows. However, P-Plan does not capture elaborate control-flow
constructs that are used in other types of workflows. A more recent approach is ProvONE6 for
the publication of scientific workflows [47]. ProvONE provides constructs to model workflow
specifications and workflow execution provenance. The OPMW and ProvONE capture traces
of workflow executions. They aim to provide detailed records of how each step is performed,
which aligns with the trace dimension. ProvONE+ is an extension of ProvONE that specifically
addresses the requirements for capturing the provenance of control-flow-driven workflows [18],
including sequence, parallel split and synchronisation in the control category. ProONE and
ProvONE+, address aspects of the data dimension in terms of how data is managed and utilised in
control-flow-driven workflows. Outside the domain of scientific lab work, the Publishing Workflow
Ontology (PWO) is an ontology for the description of workflows in scientific publishing [44]. They
use ontology design patterns to address modelling requirements of workflows. PWO includes
sequence, parallel split, synchronisation, exclusive choice and simple merge.

Various systems have been proposed to provide the environment for specifying and enacting
workflows such as Taverna and Kepler but each of them partially provides all the patterns in the
control-flow category. Taverna [101] uses SCUFL (the simple conceptual unified flow language, a
data-flow language) to specify control constraints for execution ordering and conditional constructs,
which can encompass various control flow patterns such as if/else or case structures. Kepler [5]
provides support for branching and synchronisation. Wings for Pegasus [50] is a workflow system
that uses semantic representations to describe the constraints of the data and computational

2 http://schema.org/Recipe
3 https://github.com/schemaorg/schemaorg/issues/1910
4 http://purl.org/net/p-plan
5 https://www.w3.org/TR/prov-o/
6 http://purl.org/provone
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steps in the workflow. These works aim to fulfil various requirements related to representing
workflows, capturing provenance information, describing plans and steps, creating workflow
templates, accommodating domain-specific extensions and managing control flow. In provenance
execution, the focus is on capturing the detailed record of the actual execution steps. However,
some of these models have limitations in accurately and fully specifying control-flow patterns for
scientific workflows. This limitation primarily impacts the prospective provenance, which includes
the structure and static context of a workflow. However, their primary focus is not on representing
data or instances of processes but on control and provenance aspects. Moreover, they do not
consider the representation of resources like human resources, computational resources, or roles in
the workflow.

2.3 Semantic web services
Works in Semantic Web Services aim to annotate Web Services in order to facilitate automated
discovery, composition (e.g., into a process), invocation and re-use of such services. Their work
builds on the works in Web Services that typically come without such annotations.

When business processes (e.g., BPMN) are used to describe choreographies and orchestrations
of electronic business activities, even beyond organisational boundaries [79], their execution
requires interoperability between the electronic interfaces. Interoperability standards emerged
from these needs, which in the context of process integration led to the creation of Web Services.
Web Services7 allow for invoking operations tunnelled through HTTP POST requests. There is an
entire family of standards, called ‘WS-*’, in the area of Web Services, which allow for, e.g., service
description or service discovery. To allow for the composition of Web Services, compositions via an
orchestrator can be achieved using process languages such as BPEL8 (also known as BPEL4WS or
WS-BPEL). [79] discusses that the life cycle of process instances and data items can be regarded
as state machines.

Beyond these functionalities, Semantic Web Services aim at describing services through machine
understandable representations, allowing the automated discovery, composition, invocation and
reuse of services on the Web. Different alternatives have been proposed for representing Semantic
Web services most prominently: OWL-S (Web Ontology Language for Web Services)9 and WSMO
(Web Service Modelling Ontology)10. OWL-S (previously called DAML-S [8] – DARPA (Defense
Advanced Research Projects Agency) Agent Markup Language for Services – consist of three main
parts: an ontology describing what a service does; an ontology to describe the service process and
an ontology to specify how to interact with the service. OWL-S contains terminology to describe
(hierarchical) process models with the following control flow elements: Sequence, Split, Split-Join,
Any-Order, Choice. The ‘service grounding’ aspect of OWL-S could be argued to hint at the
resource aspect of processes. The input, output, precondition, effect of OWL-S’s ‘service profiles’
loosely relate to the data aspect. WSMO [94] proposes a conceptual model for describing Web
services, separating the goals or expectations of service requesters from the actual descriptions of
the service features, capabilities and interfaces. WSMO also introduces the concept of mediators
allowing the conciliation of potential discrepancies between services. Execution in the context
of WSMO, WSMX (Web Service Execution Environment) [55], is event-based. The ‘interface’
aspect of WSMO could be argued to hint at the resource aspect of processes. The input, output,
precondition, effect of WSMO’s ‘capability’ loosely relate to the data aspect. Another approach

7 https://www.w3.org/2002/ws/
8 http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
9 http://www.w3.org/Submission/OWL-S/
10 http://www.w3.org/Submission/WSMO/

https://www.w3.org/2002/ws/
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://www.w3.org/Submission/OWL-S/
http://www.w3.org/Submission/WSMO/
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from Semantic Web Services [1] contains a process language with formal semantics based on
the π calculus. This language can express sequential, parallel (‘composition’) and conditional
(‘summation’) control flow. The approach can model agents and services (corresponding to the
resource aspect) next to involved ontologies (corresponding to the data aspect).

2.4 Stream and event processing
Stream processing addresses the problem of efficient managing and querying rapidly changing flows
of data and events, typically augmented with time annotations. Hereby, time is a fundamental
element for representing concepts such as order, simultaneity or concurrence of a given process.
Systems, processing frameworks and query languages have been developed over the years, targeting
the increasing demands of high-velocity data consumers, in multiple domains like healthcare
monitoring, security surveillance, environmental sensing and the industrial Internet of Things.

Nevertheless, traditional stream processing often faces the challenge of handling heterogeneous
data sources and thus different models, which are hard to integrate and reason upon. RDF stream
processing, stream reasoning and complex event processors have been presented in the literature,
addressing this challenge form different perspectives [34].

RDF stream modelling has been presented as an approach to extend RDF with explicit
temporal annotations, in order to enable continuous query processing over events or stream
items [34]. Following a graph-based representation with explicit semantics provides a richer
modelling approach for data streams, also offering ways of overcoming semantic heterogeneity
through streaming data integration, e.g., through methods like ontology-based data access [21].
Existing modelling approaches like RDF Stream Processing in SPARQL (RSP-QL) [33], use
point-in-time or interval semantics to represent time, defined at either the triple or graph level.
Compatible implementations of continuous query processors for RDF streams include Continuous
SPARQL (C-SPARQL) [13], Continuous Query Evaluation over Linked Streams (CQELS) [89],
or SPARQLStream [20]. Processes in these RDF stream systems are often represented as states
that may change over time (e.g., sensor observations denoting the state of a monitored subject)
and the queries are used to formalise specific types of instances or patterns – thus reflecting the
control flow. A first attempt to formalise the description of RDF stream resources and endpoints
is the Vocabulary and Catalog of Linked Streams (VoCaLS) [100], although it does not explicitly
include the specification of streaming processes.

Stream reasoning has taken a step beyond continuous queries, exploring the possibility of
exploiting the semantic relationships among events through reasoning tasks [34]. This sub-field
has studied different approaches, many of which implement variations of incremental reasoning.
View maintenance-inspired approaches include systems like the system by Volz et al. [106], which
is based on the delete and re-derive (DReD) algorithm and in which axioms are added and
removed according to the entailment rules. In these stream reasoners, processes and activities are
not explicitly modelled, but such reasoners allow for reasoning tasks that involve the temporal
structure. Such tasks typically allow for deriving new knowledge (e.g., new events) as a result
stream, thus generating new occurrences. Benchmarking and evaluation of different stream
reasoning approaches is still an area under active exploration [51], given the heterogeneity of
existing reasoning approaches and underlying temporal logics.

Semantic complex event processing (CEP) has studied the modelling and querying of streaming
events, allowing the continuous querying of complex patterns. These patterns include, for example,
finding sequences of events (i.e., when an event e1 is followed by another event e2); or two
evaluate if two events happen simultaneously [7]. CEP query languages like Event Processing
SPARQL (EP-SPARQL) [6] allow using RDF triples to represent these events and add query
language extensions that allow to express these temporal order and simultaneousness patterns,
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which represent the control flow among events. The language includes the SEQ operator to find
sequences of triple patterns according to a time-based order. Similarly, the simultaneous presence
of triple patterns can be detected using the EQUALS operator. Later on, these CEP operators
were formalised and incorporated into the RSEP-QL model that combines both CEP and RSP
query models [32]. In these CEP implementations, the activities and processes are reflected in the
queries, where the expected order of sequences, patterns and other conditions are specified. While
this is convenient for monitoring tasks and summarisation, the definition of explicitly defined
processes could potentially facilitate and optimise the execution of CEP and reasoning query
patterns in streaming environments.

2.5 Formal methods
Formal methods are formal techniques to model and analyse the behaviour of systems. Those
techniques are concerned with modelling a general notion of process, i.e., describing any sequence
of state changes and the nature of these state changes. They can be applied to system designs or
specifications as they can be found in engineered systems, e.g., railway systems [42]. They can also
be applied to more abstract systems, such as programs, where they form the basis to describe both
program semantics [108] and program correctness [54], or indeed any kind of system that inhibits
behaviour, including natural and sociological ones. As such, formal methods, in particular those
targeting programs and program development, are closely related to process modelling, because
both are concerned with describing possible and allowed sequences of states and events. Therefore,
we believe that the rich toolkit of languages and tools from formal methods can successfully be
applied in process modelling.

As we are eventually looking for a formal grounding for a core process ontology, which shall
allow for reasoning about control flow and data as prescribed by a process, we also summarise
related work that connects ontologies with formal methods to describe programs.

Programs are similarly concerned with describing control flow and data, but even though
programs focus on generating traces, the ontologies describing programs and traces formalise
similar ideas as process ontologies and can be a valuable source of inspiration, in particular for
domain-aware simulation.

We subdivide our discussion of ontologies and programs into three groups, depending on their
task: ontologies that describe programs and their output, ontologies that enable data access from
a running program and approaches that tightly couple programs and ontologies that interact
during program execution.

2.5.1 Describing programs and software systems
The following approaches are concerned with the syntax of a program, or the processes and the
final traces generated by the program – during execution these systems are not applicable. On a
purely syntactic level, Atzeni and Atzori [10] propose an ontology to describe the source code of
Java programs, but are not concerned with the runtime semantics, i.e., the generated traces.

On a higher level of abstraction, Diepenbrock et al. [35] focus on describing the architecture
of a microservices system, while Oberle et al. [81, 82] give an ontology for general concepts in
software systems, aiming for, among others, conceptual clarity for middleware. Lee et al. [72]
elaborate an ontology of concepts in Java to help introduce them in courses to novice programmers,
by connecting them to concepts from education. Similarly, de Aguiar [30] have produced an
ontology for concepts in object-oriented programming. Such systems are not targeting to describe
processes, but the concepts in the language and methodology in which the programs/processes
are implemented.
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As for the output of programs, the BOLD tool of Pattipati et al. [86] and Al Haider et al. [2]
use ontologies to describe execution traces, i.e., logs, of programs with the aim to simplify access
to these quickly growing structures for static analysis [110]. In a more specific setting, Din et
al. [37] describe a simulator for the geological process, where the final output trace is exported as a
knowledge graph for easy query access by domain experts. If the program is the description of the
process in question, or a part of the program, e.g., a method, then the output is a description of
the generated traces. The approach is, however, not suitable for the kind of modelling we envision,
as it heavily tends towards low-level implementation details.

2.5.2 Enabling safe data access
To ensure safe interactions between ontologies and programs, one approach is to ensure that data
loaded by some query language adheres to the type system of the program. These approaches
focus exclusively on the relation of occurrence and data. This has been implemented to express
loadable data by using SHACL (Shapes Constraint Language) shapes [73] or SPARQL query
containment [65] as static approaches at compile time, or by generating classes in the programming
language from OWL ontologies, see, e.g., [85, 98, 71].

These approaches focus on RDF data, which may contain the description or parameters of a
process serialised in it, but again focus on low-level implementation details, specifically the class
system of, mostly, object-oriented languages.

2.5.3 Making knowledge available at runtime
The final task we examine is to make knowledge available at runtime. These works are, thus,
concerned with processes (as procedures, etc.), occurrences (as runtime objects) data (as data
types) and resources (as environment). While there are several languages that are concerned
with connecting some kind of knowledge with programs, we focus on those that are designed to
operate either on description logics models or on RDF graphs, or at least have an extension that
does so. One such language is Golog [74] and its concurrent extension ConGolog [49], that uses
first-order logic guards to examine and pick elements from its own state. Zarriess et al. [109]
extend ConGolog to integrate description logic into a concurrent extension of Golog. They also
investigate model checking against CTL (Computation Tree Logic). Model checking does not
execute the program and, thus, has no occurrences. ConGolog is minimalistic and, thus, more
suited for high-level modelling of workflows than low-level approaches.

A more direct connection between knowledge and transition is established by language where
the knowledge, e.g., as a knowledge graph, is external to the program state, but can be queried
and manipulated using special operators. Fagin et al. [41] use epistemic operators to explicitly
distinguish between what an agent believes and what is the case in the world, leading to the concept
of knowledge-based programs. An extension, again using description logics to model knowledge, is
presented by Calvanese et al. [22], which instead of learning focuses on revision [67]: actions change
the (global) knowledge, which must then be revisited and repaired to remain consistent. The
approach is interesting for modelling the behaviour of ‘agents’ and is naturally concurrent, thus
being another possible basis for modelling workflows in collaborative or competitive settings. This
is akin to runtime enforcement, where an additional component fixes the trace during execution
to ensure its some property, which Calvanese et al. understand as logical consistency.

The most direct connection is realised by semantically lifted programs [66], which interpret the
runtime state as a knowledge graph using an external ontology and allow the program to access
this knowledge graph at runtime. Semantically lifted programs support a modelling approach
where knowledge and program data are unified, and a process is ontological and computational at
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the same time, depending on how it is accessed. Ontology-mediated programs [38] work similarly
and interpret parts of the knowledge graph as program variables, but the user must provide the
mapping from program variables themselves. Furthermore, their approach requires the number
of instances to be known upfront. Both approaches allow for checking conditions at runtime to
realise (internalised) runtime monitoring.

Finally, semantic lifting can also be used to enforce that a program adheres to domain knowledge
by a universal guard to check that a transition will result in a consistent, lifted knowledge graph [64].
This is implementing runtime enforcement on a trace level.

2.6 Business process management
The field of Business Process Management is concerned with the modelling of processes in businesses
with the aims of this modelling ranging from communicating how (i.e., according to which process)
things should get done in a business to automating the process using information systems.

Business Process Model and Notation (BPMN) is a visual language to represent processes11.
The BPMN ontology provides a formal representation of the visual concepts defined in BPMN,
such as steps, events, gateways and sequence flows [95]. The ontology in [95], as a representation
of BPMN, covers the corresponding wide range of control flow patterns and allows for the
specification of data requirements, such as input and output data and the assignment of roles
or agents responsible for specific steps. The aim of the ontology was to faithfully represent the
constraints of the visual modelling language, thus the necessary semantics for workflow execution
is out of scope. The BPMN ontology has only limited support for modelling organisational or
resource-related aspects of business processes.

The business process modelling ontology (BPMO) [19] has been developed to represent high-
level business process workflow models, abstracting from existing notations and languages such
as BPMN and BPEL (short for Business Process Execution Language12). BPMO focuses on
the representation of process specification and includes various workflow elements such as tasks,
events, block patterns (inspired by BPEL) and graph patterns (inspired by BPMN 1.0). These
block and graph patterns serve as control flows, representing decision points within the workflow.

The work in [14] builds on [95] and also allows for modelling the data coming from process
executions to enable querying and reasoning over the representations. The representations contain
especially traces of past process executions next to the involved resources and data items. The
authors use OWL reasoning (RDFS and OWL 2 RL) or SPARQL queries (with entailment regimes)
to query processes, data and traces. The inferencing they consider is concerned with the resources
that have been involved in specific traces.

Other works study the representation of Petri Nets using semantic technologies [69, 48]. Petri
Nets are directed graphs consisting of places and transitions representing states and events/activities
respectively. These works aim to enable the sharing of Petri nets in RDF or OWL. While the
foundations of Petri Nets representations allow capturing different workflow patterns (e.g., AND-
Split, OR-Split, Loops, etc.), they are limited in their expressivity to the basic Petri Net language
elements lacking consideration for extensions.

Another graphical modelling notation for business processes is the so-called event-driven process
chain (EPC). EPC can be used to represent process models. Core language elements in EPC are
functions (activities), events, control flow transitions, logical connectors (OR, AND, XOR) and
resources. The authors of [99] investigate the semantic annotation of EPC process models.

11 http://www.omg.org/spec/BPMN/2.0/
12 http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
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Two approaches, WiLD (Workflows in Linked Data) and GSM4LD (Guard-Stage-Milestone
for Linked Data), are designed to describe and execute workflows in Linked Data environments.
WiLD [61] is a hierarchical process model [104], which allows for specifying sequential, parallel and
conditional control flow. WiLD can also model process instances and together with its operational
semantics in ASM4LD [60], workflows in WiLD can be executed. Correspondingly, the approach
needs a notion of the data on which conditions are evaluated. A similar approach is taken in
GSM4LD [63], which brings the Guard-Stage-Milestone (GSM) approach [57] (later standardised
as CMMN – Case Management Model and Notation13) to Linked Data. Control in GSM is entirely
determined data-driven, that is, via conditions evaluated on the environment and process-relevant
milestones. Again, the operational semantics are given in ASM4LD. In contrast to GSM4LD,
an execution of a WiLD workflow can give a light-weight process trace, by assigning finishing
timestamps to finished activities, without additional modelling effort in the operational semantics.
GSM4LD however supports cycles, thus to produce a complete trace would need extra data
structures.

3 Scenarios

In this section, we provide an overview of various application areas that use processes and
review the requirements outlined in these applications to capture various process aspects. These
scenarios collectively cover a wide range of aspects, including control, data, resources, traces and
architecture; the main task over these representations often relates to querying and reasoning
over the representation of processes and related concepts. Additionally, we examine the features
required of a process language, categorised based on workflow patterns [102] and we use WCPn to
indicate patterns related to control and WDPm to indicate patterns related to data.

An aspect that was not explicitly mentioned in other works is that of hierarchies defined
between processes. Concerning sub-process support the language should provide capabilities for
defining a new relationship where the steps of a process include steps from other processes. We use
H to indicate the hierarchical modelling pattern. These process hierarchies can be further divided
into i) include, which indicates that a procedure is included in another procedure by specifying
that the activities within a procedure are inclusive of the activities of another procedure. ii)
extends, which identifies that a procedure presents a list of activities that are a variation of the
activities of another procedure. iii) generalise, which is used in hierarchical process modelling to
represent inheritance or specialisation relationships between processes.

3.1 Manufacturing process documentation
The Manufacturing process documentation use case involves the maintenance and adjustment of
gear head lathe machinery14 as described in a maintenance manual. The process consists of a
sequence of steps that must be completed in a sequential order to address maintenance tasks
and ensure optimal machine performance. It is crucial to record the order in which these steps
are carried out. The initial step in the sequence involves a safety check of the machinery. Upon
completion of the preceding step, the process enables the following steps, including instructions
for adjusting the tension of motor belts, tailstock alignment, and spindle alignment. The spindle
alignment step involves several sub-steps, including loosening the bearing lock nut, tightening the
bearing adjustment nut, testing the spindle by rotating it, and finally re-tightening the bearing

13 https://www.omg.org/spec/CMMN/1.1/
14 This machinery features a gear-driven mechanism, crucial for various metalworking tasks commonly used in

metalworking industries such as turning and threading.
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locking nut, all contributing to the overall spindle alignment step. The process of maintaining and
adjusting gear head lathe machinery involves a series of steps (such as safety checks, adjustments,
and alignments) that transition the machinery between different states (such as operational, under
maintenance, and calibrated).

Assumptions. For the use case we assume a graph-structured representation and basic control
flow patterns.

Core concepts. In terms of control this applies since a sequential process with steps that must
be completed in a specific order is described which may include patterns such as sequence (WCP1).
Data could include information about the state of the machinery, measurements taken during
maintenance, and any data related to the adjustments made thus including patterns such as
case data (WDP5), and environment data (WDP8). In terms of resources, we may represent
information about the individuals performing the maintenance and possibly the tools or equipment
used as resources. In terms of hierarchies between processes, in this use case, we need to represent
the include relationship between processes. Each time someone performs maintenance on the gear
head lathe machinery, a system could generate a trace of the process, documenting how each step
in the maintenance process was carried out, including the spindle alignment sub-steps. In the
online dimension, should the trace be generated automatically, the use case would require some
infrastructure to monitor the unfolding of the process.

Tasks. Queries can serve multiple purposes, including the retrieval of specific processes based
on criteria like process name (i.e., process retrieval), the extraction of specific steps or sub-
steps from processes (i.e., step extraction), and facilitating the comparison and analysis of
multiple processes (i.e., cross-process analysis). Users can query for common steps, shared
sub-steps, or similarities/differences between processes, enabling the identification of reusable
components, standardisation of processes, or the recognition of best practices across different
processes. Reasoning plays a crucial role, contributing to tasks like process validation by employing
logical reasoning rules to detect inconsistencies, contradictions, or missing steps within a process.
Reasoning also supports process execution by determining the appropriate order of steps and
handling dependencies (i.e., process execution).

3.2 Manufacturing data spaces
The Manufacturing data spaces use case involves the cataloguing of data in manufacturing settings,
where the goal is to catalogue the data sets collected during manufacturing, in order for data
scientists to access the appropriate data for downstream data analytics. In this use case, the
position in the manufacturing process must be part of the metadata of the data sets to consider
this context during searches. The manufacturing process follows a stamp-forming flow, involving
steps like heating, pre-forming, stamping, cooling, de-moulding, and reworking, with potential
variations and additional pre- and post-processing steps. The data dimension encompasses the
representation of specific data sets collected during manufacturing. As goods are manufactured,
data is generated, and specific traces and data are recorded.

Assumptions. We assume a graph-based hierarchical process representation. The hierarchy
allows for introducing variations on the lower levels of the process while keeping the high-level flow
the same. Data analytics may involve the time spent on different event instances traces, hence
time stamps are required.
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Core concepts. In terms of control, various patterns are essential, including linear sequences
(WCP1), case data (WDP5), environment data (WDP8), parallel split (WCP2), synchronisation
(WCP3), and hierarchy/subprocesses (H). The aspect of data is relevant, as input and output
materials and their occurrences are modelled. The aspect of resource is of interest, if the person
who conducted the experiments is modelled. The aspect of trace is paramount in this scenario,
as past experiments are recorded in traces for further querying. In this manufacturing data
spaces scenario, the exclusion of the online dimension is justified by focusing on analysing past
experiments rather than performing the analyses in real-time.

Tasks. The main task is querying traces. Queries focus on various aspects of the data and
metadata generated during process instances, such as those related to products meeting key
performance indicators (KPIs) or those executed by specific individuals or on particular days.
Reasoning is limited in the use case, however a need can be foreseen to find the difference between
two hierarchical process models.

3.3 Healthcare and tele-rehabilitation
The Healthcare and tele-rehabilitation use case involves modelling patient states following physical
rehabilitation treatments, such as post-operative recovery, home-based reeducation or post-stroke
physiotherapy. Traditional rehabilitation requires intensive intervention by healthcare professionals
and may not adequately adapt to individual patient characteristics, context, or motivation. Digital
rehabilitation addresses these challenges by offering personalised therapies – such as rehabilitation
exercises – using sensors to monitor exercise performance and physiological markers. The patient’s
process is modelled as a set of states, with transitions triggered by their own decisions and
influenced by a digital assistant’s suggestions. Data gathered from wearable and environmental
devices guide recommendations, such as resting, adjusting exercise intensity, or modifying the
overall treatment based on the patient’s characteristics, motivation, and emotional status.

Assumptions. The scenario assumes representation of events and processes as graphs, and
temporal order among events related to the patients. For instance, exercises can be represented
as events that follow a temporal order, e.g., StartExercising SEQ ExerciseEasy would represent a
sequence of two events: the patient starting to exercise, followed by an easy exercise.

Core concepts. The different steps in the use case can be represented as events (e.g., EasyExercise),
while states can also be used to represent activity stages of a patient (e.g., resting). Thus,
connections among states and events could be possible. For instance an expression as StopExercise
→ resting can represent temporal order among an event and a state. Moreover, occurrences are
needed in order to characterise particular instances of events, i.e., specific exercises performed by
a specific patient.

Tasks. As part of the use case different tasks need to be performed. Among these, continuous
queries have to be performed over the events captured by the motion and activity sensors. These
queries may request sensor data related to exercise performance or the patient’s physical status
within specific time boundaries. These requests are expressed using SPARQL-based queries, for
instance monitoring the number of exercise movements performed as well as the time spanned
in and between exercises. Analysis of exercise progression and order can also be performed, e.g.,
identifying the sequences of exercises over time. Furthermore, queries can also verify the sequence
of correct and incorrect exercises performed during a session. These queries require the notion
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of now, i.e., the moment used as a reference for computing time windows, and/or evaluating the
occurrence of events over time. Query results can be continuously generated and used to create
higher-level events through a stream reasoner, such as determining if a patient is fatigued based
on movement quality, breathing and heartbeat. Additionally, the patient’s treatment pathway
can be modelled over time as a process, enabling the detection of non-compliance or continuous
under-performance among patients, among other insights.

3.4 Domain-aware simulation
In the Domain-aware simulation use case, simulators must schedule and execute tasks in an
initially unknown order to transform an initial state into a result state. To access this simulation
result, they must also provide a means to query the result state and the sequence of executed
tasks leading to it. A simulation task is modelling a state change according to some process in
the domain of the simulation. Thus, they are inherently domain-specific and must have precisely
described conditions for process initiation. These tasks can be modelled ontologically to allow the
simulator to understand both their ontological description (conditions for process initiation) and
computational description (changes needed to transform the current state).

While the domain modelling is often implicit in the simulation software, it can be made explicit.
The simulator queries its state for possible steps at each simulation step, executes them in parallel
for all parts, and analyses whether their changes trigger further tasks in the same simulation
step. This can be done either by querying for newly enabled processes based on the state or by
modelling dependencies between processes.

The geological simulator of Qu et al. [92], which simulates geological processes such as deposition
of material and subsequent chemical process related to hydrocarbon generation, is an example
where the domain modelling is made explicit: Such a domain-aware simulator relates its (internal)
state to (external) geological descriptions, such as composition of geological layers, and its tasks
to geological processes, such as deposition.

Assumptions. The use case assumes a graph representation of the domain, as well as a notion of
sequence – while a transition is realised in the simulator, it must be described and recorded outside
of it.

Core concepts. Concerning the representation of control, one must, beyond basic patterns like
sequences (WCP1), express that all possible tasks must be checked for applicability in some order
and may be executed concurrently (e.g., Interleaved Parallel Routing WCP17, Interleaved-Routing
WCP40) is necessary. For example, geological processes such as deposition can be concurrently
active in different areas, such as erosion on two different mountains, or concurrently in the same
area, such as heating of organic material and compaction, both due to increased pressure.

Representing control also affects data representation, as data may have cause-effect relation-
ships between them, such as in Data-Based Routing (e.g., Task Precondition Data - WDP35,
Task Postcondition Data - WDP37, Data-based Task Trigger - WDP39), which should be able to
interpret the simulated state as a knowledge graph.

The query tasks outlined below require an explicit representation of both the trace, especially
for temporal properties of simulation runs and data, to examine the content of the simulation
state at each point. In case of hyperproperties [24], i.e., specification and comparison of multiple
simulator runs, one also wants to represent, and query, multiple traces. It may, depending on the
application, also be relevant to examine resources, e.g., to examine the scheduling decisions of a
concurrent simulator due to thread synchronisation or load balancing.
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Tasks. The overall task involves executing the simulation and two additional reasoning and
querying subprocesses after completion. First, it requires access to the final state and trace
through queries to retrieve the simulation’s results. Second, as intermediate steps, the simulator
must execute membership queries to determine which tasks can run next. These queries may
target either the current simulation state or the overall sequence of executed tasks, and they
can express specifications over the simulation algorithm or domain-specific constraints on task
sequences. In terms of the aforementioned geological simulator, such a query may retrieve all the
parts of the state, where a certain geological process starts [92].

Beyond querying, one must be able to reason about the simulation runs and results with
respect to the domain. This includes expressing temporal properties over single simulation runs
to express temporal constraints. Potentially, one may need to investigate either all possible runs,
e.g., if certain parameters are not known, or compare multiple runs, to compare the effects of
parameter changes. This is akin to model checking and expressing hyperproperties. Similarly, one
may want to query multiple runs of the simulation.

3.5 Aircraft cockpit design
The Aircraft cockpit design use case focuses on ergonomic analyses of aircraft cockpits in virtual
reality. Aircraft cockpits must be designed for the safe execution of pilot workflows. To support
ergonomic analyses of aircraft cockpits during the early design phase when only CAD models are
available, a workflow-aware analysis tool has been developed [62]. The tool enables the analysis
and visualisation of pilot workflows in aircraft cockpits within a virtual reality environment.
Hierarchical process models are employed to break down the processes pilots perform in aircraft
cockpits. For example, take-off phases (e.g., taxi, climb) are at a higher level, while physical
pilot activities (e.g., moving throttle, engaging autopilot) are at the leaf level. Data includes
information related to aircraft cockpit design specifications, such as data structures in Virtual
Reality derived from CAD models. During ergonomic analyses of aircraft cockpits, occurrences
are generated to gain insights into the progress of pilot workflows and cockpit interactions.

Assumptions. We represent processes with hierarchies as graphs. The hierarchies allow us to
cluster different activities according to domain practices, e.g., to talk about certain phases of
operation (taxi, climb) that involve different activities. Not all parts of the system are synchronised,
but the process runtime aims to be fast to follow what happens in the different other subsystems.
The process runtime does so by sending HTTP GET requests to the other subsystems in order to
observe different states, which those subsystems are in. Thus, the state now can be determined by
sending HTTP GET requests to all resources in all subsystems (or a subset thereof) and taking
the union of the resource state representations in the responses.

Core concepts. In the process model, we tie together activities (i.e., events). Conditions on
system state allow to track the progress of occurrences and inform decisions which branch to
follow in a conditional split. In terms of control, essential patterns include hierarchical modelling
(H), sequential (WCP1), parallel (WCP2, WCP3), conditional (WCP4), any order (WCP40), and
modelling conditions for splits and joins. Activity completion is determined using queries to state
data (e.g., SPARQL ASK queries) (WDP16, WDP35, WDP37, WDP40). Execution also requires
modelling the tasks associated with activities (e.g., unsafe HTTP requests) (WDP15). Similarly,
conditions are evaluated on states. On top, execution requires support for online processing,
i.e., managing multiple process instances alongside models. Resources that drive the progress
are not explicitly modelled, as there is only one agent (i.e., the pilot) under consideration at a
time. The aircraft simulation also in a way can drive the progress by corresponding state changes
represented in the environment, but is also not explicitly modelled. The trace aspect has also
only had a minor role, where timestamps have been attached to finished instances of activities.
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Tasks. Querying is an integral part of the execution semantics, helping find tasks for activities
to be executed or determining the next steps based on the control flow. RDFS Reasoning on the
process model is required to ascertain when complex sub-processes have been completed or to
identify the next task or all upcoming tasks within the hierarchical model’s leaf level.

3.6 Summary of requirements for representation of processes
In addition to representing processes and related concepts to informally specify processes, as done
for example in the various graphical notations, many scenarios require means to carry out tasks
over the process descriptions. Thus, a formal representation of processes and related concepts is
mandatory.

Table 3 gives an overview of the workflow patterns present in each scenario, providing a quick
reference to understand how these patterns are distributed across the scenarios. Starting from
the scenario Manufacturing process documentation, which covers only two workflow patterns,
it is evident that the level of difficulty of each subsequent scenario increases. Therefore, as we
progress to scenario Domain-aware simulation, a more complex use case, we can anticipate that
it will have a broader coverage of workflow patterns. This incremental approach allows for a
systematic exploration of workflow patterns, gradually building up complexity and understanding
as we advance through the scenarios. Both control and data patterns are essential for designing
comprehensive workflow models. They provide a structured way to represent the control logic and
data interactions within a workflow.

3.7 Summary of requirements for querying and reasoning tasks
All scenarios assume that information about processes and related concepts are represented as
graphs. The requirements of the previous scenarios regarding querying and reasoning can be
grouped according to the five dimensions. Please note that the representation influences the kind
of operations that can be applied on the representation (and vice versa). In the following, we thus
outline and summarise typical operations that can be carried out over the state component, i.e.,
mainly the data and resource dimensions in our classification, and typical operations that can be
done on the temporal component, i.e., mainly the control, trace and online dimensions.

If we only operate on the graph structure of the process descriptions, we can use standard graph-
based data models (such as RDF) as basis for querying using SPARQL, possibly in conjunction
with ontologies (RDFS or OWL). The requirements from the various scenarios regarding querying
and reasoning are summarised and generalised in Table 4. In Table 4, we aim to simplify the
presentation by concentrating on the requirements that directly align with the primary objectives
addressed by the use case scenarios. Requirements can be further combined, particularly concerning
the combination of process, data and online.

Next to performing reasoning on just the graph representation (e.g., using RDF or RDFS
semantics, using rules, using OWL DL (direct) semantics), some scenarios also require a way
to perform reasoning on and with the temporal structure. Many graph query languages have
means to deal with sequences, so basic retrieval and query tasks should be possible, including
reachability. When applying reasoning, additional queries can be supported, for example for
declaring a property transitive (e.g., the next property) or declare two properties the inverse of
each other (e.g., next and previous).

More elaborate operations on temporal structure are better supported with dedicated languages
of temporal logics. However, only the Healthcare and tele-rehabilitation and the Domain-aware
simulation scenarios require query and reasoning tasks beyond the standard tasks on graph-
structure representations. The scenario Healthcare and tele-rehabilitation is special concerning the
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Table 3 Dimensions of processes and scenarios that require them. We give specific features for the
dimensions. If there exists a corresponding Workflow Pattern for the feature in [102], we give the name
and its shorthand (WxPn). Features without a workflow pattern are given a single-letter shorthand.

ID Name Scenario

C
on

tr
ol

WCP1 Sequence: steps are executed in a linear order, one after another. Manufacturing process documentation (Sec. 3.1)
Manufacturing data spaces (Sec. 3.2)
Healthcare and tele-rehabilitation (Sec. 3.3)
Domain-aware simulation (Sec. 3.4)
Aircraft cockpit design (Sec. 3.5)

WCP2/3 Parallel Split: the divergence of a branch into two or more parallel
branches each of which executes concurrently.

Manufacturing data spaces (Sec. 3.2)

Synchronisation: activities are executed in parallel, allowing mul-
tiple paths of execution to occur simultaneously.

Aircraft cockpit design (Sec. 3.5)

WCP4 Exclusive Choice: the divergence of a branch into two or more
branches such that when the incoming branch is enabled, the
thread of control is immediately passed to precisely one of the
outgoing branches based on a selection mechanism.

Aircraft cockpit design (Sec. 3.5)

WCP17 Interleaved Parallel Routing: a set of tasks has a partial ordering
that defines the requirements for their execution order.

Domain-aware simulation (Sec. 3.4)

WCP23 Transient Trigger: ability for a task instance to be triggered by a
signal from another part of the process or the environment.

Healthcare and tele-rehabilitation (Sec. 3.3)

WCP40 Interleaved Routing: each member of a set of tasks must be
executed once. They can be executed in any order but no two
tasks can be executed at the same time.

Domain-aware simulation (Sec. 3.4), Aircraft cock-
pit design (Sec. 3.5)

H Hierarchical Modelling Manufacturing process documentation (Sec. 3.1)
Manufacturing data spaces (Sec. 3.2)
Aircraft cockpit design (Sec. 3.5)

O
nl

in
e O Online processing Manufacturing process documentation (Sec. 3.1)

Aircraft cockpit design (Sec. 3.5)
Domain-aware simulation (Sec. 3.4)

Tr
ac

e T Trace Manufacturing process documentation (Sec. 3.1)
Manufacturing data spaces (Sec. 3.2 )
Domain-aware simulation (Sec. 3.4)

D
at

a

WDP1/3 Task data: data elements can be defined by tasks accessible only
within the context of individual execution instances of that task.
Scope data: data elements can be defined which are accessible by
a subset of the tasks in a case.

Healthcare and tele-rehabilitation (Sec. 3.3)

WDP5 Case Data: where data elements which are specific to a process
instance or case are supported.

Manufacturing process documentation (Sec. 3.1)
Manufacturing data spaces (Sec. 3.2)

WDP8 Environment Data: allows data elements from the external op-
erating environment to be accessed by components of processes
during execution.

Manufacturing process documentation (Sec. 3.1)
Healthcare and tele-rehabilitation (Sec. 3.3), Man-
ufacturing data spaces (Sec. 3.2)

WDP15/16 Task to Environment Pull: the ability of a task to request data
elements from resources or services in the operational environment.
Task to Environment Push: the ability of a task to initiate the
passing of data elements to a resource or service in the operating
environment.

Aircraft cockpit design (Sec. 3.5)

WDP35/37 Task precondition Data Value: can be specified for tasks based
on the value of specific parameters at the time of execution. Task
postcondition data value: can be specified for tasks based on the
value of specific parameters at the time of execution.

Domain-aware simulation (Sec. 3.4), Aircraft cock-
pit design (Sec. 3.5)

WDP39 Data-based Task Trigger: provide the ability to trigger a specific
task when an expression based on data elements in the process
instance evaluates to true.

Domain-aware simulation (Sec. 3.4)

WDP40 Data-based Routing: provides the ability to alter the control flow
within a case based on the evaluation of data-based expressions.

Aircraft cockpit design (Sec. 3.5)

R
es

ou
rc

e R Resource Manufacturing process documentation (Sec. 3.1)
Manufacturing data spaces (Sec. 3.2)
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Table 4 List of requirements for querying and reasoning, grouped according to the five dimensions
(Control, Trace, Data, Resource and Online), and pointing to the scenario where they appear.

Dimension Requirement Scenario

Control Procedure Retrieval All
Steps Retrieval All
Sub-procedure Retrieval Manufacturing documentation (Sec. 3.1)

Manufacturing data spaces (Sec. 3.2)
Aircraft cockpit design (Sec. 3.5)

Trace Sequence Analysis All
Cross-procedure Analysis All

Data Retrieval of Domain Data All
Resource Retrieval of Personnel or Equipment All

Resource Allocation Healthcare and tele-rehabilitation (Sec. 3.3)
Domain-aware simulation (Sec. 3.4)

Online Occurrence Retrieval Healthcare and tele-rehabilitation (Sec. 3.3)
Domain-aware simulation (Sec. 3.4)
Aircraft cockpit design (Sec. 3.5)

representation of time. While the other scenarios only require a linear ordering, the querying and
reasoning tasks in the Healthcare and tele-rehabilitation scenario require temporal queries with
an operator defined over moving windows (i.e., different time periods). The need for temporal
logic specifications is the most clear in the scenario Domain-aware simulation. The query and
reasoning tasks for one trace alone must be able to reason about safety and liveness properties,
while comparing two traces is a natural setting for temporal logics.

4 Process description concepts

We start with a set of assumptions to scope our work on a possible core process ontology. The
process ontology core should support a graph representation and temporal order and should
operate in a web environment. For each assumption, we first give an overview of the concepts
underlying a representation of processes and related concepts and then introduce a set of tasks
that operate on the representations.

Graph Representation: We assume a graph representation to describe the concepts of a possible
core process ontology. In particular, for the description of processes and related concepts, we
assume graphs according to the RDF recommendation of the W3C. Graphs provide flexibility
in the descriptions of processes and related concepts, especially allowing for partial descriptions
that just cover certain aspects and for incrementally adding descriptions. Depending on what
is described in the graph, we can bring different methods to bear on the representations.
Time and Temporal Properties: Next, we assume that we need to describe temporal properties
of processes and related concepts. To support temporal reasoning, we need means to qualify
the descriptions in terms of time. As a starting point, we assume discrete metric time, that
is, we assign to each temporal entity a timestamp as integer. We could also assume a weaker
notion of time, linear time, with just a partially ordered relation “happened-before” between
temporal entities. Thus, with metric time, we can arrange temporal entities along a single
global time line, leading to a sequence of temporal entities. With linear time, we do not
necessarily have a single global time line, but may arrive at multiple time lines, leading to
multiple sequences (connected via a “directly-follows” relation).
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The Web: The final assumption relates to infrastructure. The technologies around the web
are widely deployed and can provide the infrastructure for exchanging representations and
executing processes. Thus, we assume that the processes and related concepts we consider
operate in a web environment. Combining graph representations with web architecture, we
arrive at graph representations that are accessible via HTTP (Linked Data). In addition, on
the web, multiple processes may run concurrently and communicate with each other. Thus,
processes must be able to send and receive requests during execution. If we want to support
runtime with some form of online processes, we need a dedicated ’now’ point in the time line,
representing the current point in time.

We now develop some of the core concepts for the representation of processes. Representing
processes can be approached from different perspectives, considering the application domain.
Given that the various fields have different central concerns and methods, the terminologies differ
from field to field. Thus, in the following we attempt to identify concepts shared among different
fields, used as a common foundation to represent processes.

We introduce these main concepts by means of an example, in the style of linguistics [43]. Let
us consider a simple version of a purchasing process in an e-commerce setting.

John bought a pair of socks online last week. He first placed the order, then he paid and
finally he received the socks from the retailer.

The example consists of three steps: John placing an order, John adding payment and John
receiving the shipment. The different steps occur in a certain temporal order. Rather than using
dates and wall clock time, or more abstractly integers to refer to different points in time, we
can also build on a weaker notion of time. We have one relation “happened-before” [70] that we
use also later in the temporal specifications (for example, in linear-time temporal logic). Linear
(total) ordering of temporal entities is sufficient for most of the approaches we consider15. Figure 3
illustrates the temporal ordering of the various steps, i.e., the sequence in which the steps are
occurring.

John places
his order

John adds
payment

John receives
the socks

time

Figure 1 The different steps of the purchasing process happen in sequential order.

We assume temporal entities, i.e., entities which have some attachment to time. Temporal
entities could be distinguished into describing “what is being the case” (states) or “what is
happening” (non-states). For now we assume that anything that can be put into a temporal order
is a temporal entity.

Next to the different steps, in a state-centric perspective the purchasing process – or rather
the data associated to the purchase – is going through various states. First, John’s order is in
the Placed state; next, John’s order is in the Paid state; and finally, John’s order is in the Received
state.

The order object might also contain information about the product being purchased, in the
example one pair of socks. Figure 2 illustrates the different states in a visual representation.

15 Although stream reasoning requires a more expressive way to represent time.
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John’s order
placed

John’s order
paid

John’s order
received

time

Figure 2 The object associated with the purchasing process goes through various states as the process
unfolds.

We now discuss the classification of temporal entities as particulars or universals [93]. When
representing state, an established way to data modelling is the distinction between classes and
instances. Together with various logical modelling constructs, we can refer to ontology languages
such as RDF Schema or OWL.

When it comes to non-states (“what is happening”) we also want to make the distinction
between particulars (the specific temporal entity where John ordered a pair of socks) and universals
(the general temporal entity that describes all of the times when somebody is placing an order).
Thus, we introduce the notion of events, which concern the level of universals, and occurrences
(of events), that concern the level of particulars. We denote as events the different steps (non-
states, “what is happening”) on a terminology or schema level. Figure 3 shows the three steps on
the level of universals. In the example, an occurrence of the Place Order event would be John
placing an order for a pair of socks. An occurrence of the Add Payment event would be John
paying via bank transfer; and for the Receive Goods event, an occurrence would be John receiving
the socks via mail.

Place Order Add Payment Receive Goods

time

Figure 3 The different steps of the purchasing process happen in sequential order.

Similarly, we can consider the different states on the level of universals. First, an order object
is in the Placed state; next, the object is in the Paid state; and finally, the object is in the Received
state.

Placed Paid Received

time

Figure 4 The object associated with the purchasing process goes through various states as the process
unfolds.

To sum up, in event-centric approaches, the constituent elements are occurrences of events,
while in state-centric approaches, the constituent elements are instances of objects. A trace needs
to include information to connect the elements, e.g., via a case identifier.

Each process is an event (and each occurrence of a process is an occurrence of an event). The
distinction between a process and an event comes from whether the behaviour of the event is
further described and separated into different (or events). Until now, we have only considered
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sequences within processes, but more elaborate control constructs are possible. For example,
non-deterministic choice and parallelism (to cater for different agents that drive steps) are other
control flow patterns that we can include into our process modelling approach.

So far, we have only assumed a temporal order in the events (or states) that make up a process.
We now introduce the notion of a control flow that ties together the events. In the simplest case
of sequences, we can tie together the events via a “next” relation (immediately-follows), indicating
(in our example) that the next event after Place Order is Add Payment, and the next event after
Add Payment is Receive Goods. Figure 5 illustrates in a graphical notation in the style of Petri
nets. Circles represent states (related to places in Petri nets) and rectangular shapes represent
activities (related to transitions in Petri nets). Other ways to string together events constituting a
process are possible and are discussed later.

Place Order Placed Add Payment Paid Receive Goods Received

time

Figure 5 The temporal entities of the purchasing process in temporal order with connections indicating
the control flow. Boxes denote events and circles denote states (in the style of Petri nets).

Business processes and workflows use the notion of an event log, i.e., time-stamped occurrences
of events together with an associated “case identifier”. Instead of a process “instance”, which is
commonly used in the class/instance distinction, we introduce the concept of an occurrence of a
process. To be able to capture the history of processes, we introduce the notion of traces. Traces
record the specific occurrences of an event (and possibly of states) together with the temporal
order in which they occurred.

Figure 6 shows a trace involving both the occurrences of events and the respective states.

John places
his order

John’s order
placed

John adds
payment

John’s order
paid

John receives
the socks

John’s order
received

time

Figure 6 The temporal entities (occurrences of events and states) of the purchasing process occurrence
represented as trace. Dashed boxes denote event occurrences and dashed circles denote state occurrences
(in the style of Petri nets). Lines with arrows denote a temporal dependency.

Events might happen without an agent responsible for the event. In the business process
community the non-state (“what is happening”) entities are known as activities on a terminology
or schema level; but the notion of activity implies some sort of agent that carries the activity
out. Although in the example we can identify the different people (or roles) that carry out a step,
in our conceptualisation we aim to be as general as possible and do not assume agents that are
causing a step to happen.

Nevertheless, many scenarios require the identification of the agents (or tools) involved in a
process. Thus, we introduce the notion of resources, that is, the agents being responsible for
carrying out an event (or being patient/participant in an event). We can identify resources both
at the level of particulars or universals (e.g., John vs. customer role).

Next to sequences of “directly-follows” temporal entities, we can also introduce the notion of
choice. Extending our example, we could say that the next event after Place Order is Add Payment
via Bank Transfer or Add Payment via Credit Card.
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For now, we do not further specify the conditions attached to the choice and assume random
(i.e., non-deterministic) choice. In addition, for a more complete description of a process, we could
assume multiple processes that interact with each other. In the purchasing process example, we
would have John’s view on the process and the retailer’s view. After John pays, he awaits delivery
of the socks. After the retailer receives John’s payment, the retailer ships John’s socks. Thus, we
need a way to represent multiple (possibly concurrent) processes.

A final construct that is commonly found in process representations is that of hierarchical
decomposition, which implies a hierarchical relationship between a main process and other processes.
In our example, we could decompose the Add Payment event into a choice between Add Payment via
Bank Account and Add Payment via Credit Card. Furthermore, there can be different relationships
in hierarchical modelling. The relationship may indicate either i) a dependency between a main
process and other processes, i.e., when the main process is executed, simultaneous execution
of other processes is required in the meantime, or ii) a generalisation between a main process
and other processes, i.e., when there are variations in terms of the activities and the number of
activities between the main process and the other processes. Thus, hierarchical modelling may
facilitate the organisation of complex processes.

5 Challenges for a core process vocabulary

Based on the scenarios outlined above, we can identify a number of challenges for representing
processes and related concepts and perform certain reasoning tasks over the representation. We
structure our discussion into challenges related to representing processes as graphs, representing
queries and formulas and reasoning with process descriptions and formulas.

5.1 Representing processes as graphs

A core process vocabulary should be broadly applicable to describe processes and represent a
consensus from different fields on the abstractions and concepts as well as the terminology. All our
use cases take a discrete-time perspective, which we can take as a fundamental assumption going
forward. We have already illustrated why we need support for both state-centric and activity-
centric perspectives. Similarly, all of our scenarios benefit from a representation based on graphs.
We have started to work out required concepts from first principles and distil commonalities
between different fields based on the five dimensions, which we will discuss further in the remainder
of the section. Still, to arrive at a fixed set of vocabulary terms requires a deeper alignment of
concepts and more study of the representations of processes in related fields.

In a process core vocabulary, we have to decide which terms to include and which terms to
possibly relegate to extensions. That is, a process core vocabulary should be layered, where
additional tasks can be supported if the underlying representation is gradually extended. In the
control dimension, the question is what patterns to support next to the sequence pattern (WCP1)
expressing temporal order. More patterns might be useful for a core vocabulary. Especially
the any order pattern (WCP40) could be rather directly supported, as well as the exclusive
choice pattern (WCP4), given that both patterns relate to choice and do not require parallelism.
Parallelism (WCP2 and WCP3) might be a worthwhile pattern to support, especially when the
core vocabulary should include support for multiple roles (see the resources dimension). A process
core could support hierarchical modelling (the “H” pattern in Table 3) to be able to modularise
the process representations and thus help to keep an overview in large and complex processes and
provide a mechanism for iterative modelling. How to provide useful primitives for specialisation
or generalisation is an open question.
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Representing occurrences and traces of processes is also a rather fundamental pattern, so
fundamental in fact that the business process community just silently assumes such a primitive
without explicitly identifying the pattern. We think that the particular/universal distinction in the
context of processes is important, mirroring the type/instance distinction in ontology languages.
Thus, a core vocabulary should make the particular/universal distinction for events and processes
as well. What effects the particular/universal distinction on the side of events and processes
should have on the modelling of data items (and vice versa) is another open question.

Regarding the data dimension, the representation with graphs as syntax allows for more
flexibility compared to a dedicated language with a grammar of its own. In particular, a graph
representation allows for freely extending the graphs with additional data, such as annotations
on the level of the process descriptions, and enables the possibility of querying and deductive
reasoning. Thus, a core vocabulary should include support for data, in particular environment
data (WDP8), and integration with graph-structured data to be able to support data integration.
For example, mappings to other vocabularies (e.g., PROV-O) could be provided.

The representation of agents or roles involved in the process is required. Whether it is enough
to have the flexibility of graphs to allow for such descriptions, or whether we need dedicated terms
as part of a process vocabulary remains to be seen.

5.2 Representing queries and formulas
Representing processes as graphs using a shared vocabulary provides already some benefits, such
as performing query evaluation and certain reasoning tasks on the graph representation. The
scenarios identified various possible querying and reasoning tasks. Overall, the challenge is that the
different querying and reasoning tasks should be possible to perform on a unified representation.
In particular, a major challenge is to combine the purely graph-structured process representations
with specifications of temporal properties for querying and reasoning. To support querying and
reasoning tasks that go beyond checking satisfiability on the graph representation, we require
means to encode queries and logical formulas pertaining to temporal properties.

If we assume a framework of time based on temporal ordering (“happened-before”), we could
use temporal logics that operate over the linear order for specification of temporal properties
to encode restrictions on temporal order. In particular, Linear-time Temporal Logic (LTL) or
Computational Tree Logic (CTL) are temporal logics that can operate over linear time (LTL)
or branching time (CTL). A challenge is that formulas written in temporal logics directly can
be difficult to understand. Thus, a core process vocabulary could use higher-level abstractions
for temporal specification patterns, such as precedence and cause and effect [39]. Using such
high-level specifications presents an opportunity to increase the flexibility when modelling processes
or temporal properties of traces. For example, instead of directly representing processes (e.g.,
first A, then directly followed by B), users could use (weaker) temporal properties to give a
higher-level representation of temporal structure (e.g., A precedes B). More research is required
to investigate the trade-offs regarding modelling flexibility and computational complexity. An
additional challenge using the formalisms of temporal logics is how to bring together the state
perspective and event perspective, as temporal logic formalisms often prefer to specify properties
on sequences of states (and not events) [23].

Another question for a core process vocabulary is whether we should go beyond the simple
“happened-before” relation and assume a richer framework for time. For example, Allen’s interval
algebra [3] supports time points but also intervals and defines relations between time points and
intervals. Similarly, stream reasoning assumes time stamps that can be used within window
operators akin to intervals. An underlying temporal logic to capture such constructs could
be Metric Temporal Logic (MTL). Again, the challenge is to decide on whether the increased
expressive power is required and worth the computational cost.

TGDK



1:26 Towards Representing Processes and Reasoning with Process Descriptions on the Web

In general, representation and reasoning will involve trade-offs depending on the underlying
logics used: while some constructs could be written down using a process core vocabulary,
performing operations (with a desired semantics) over such constructs might be computationally
expensive or even infeasible. Ideally, we would like to find a representation that can in principle
support a broad variety of tasks, with fragments or profiles for specific tasks, such as temporal
querying, planning and synthesis, formal verification or process mining.

5.3 Reasoning with process descriptions and formulas
The range of operations for reasoning with process descriptions and formulas span from relatively
basic queries on the graph structure to more intricate queries concerning the temporal structure of
process representations. These advanced queries essentially encompass operations akin to model
checking and formal verification.

Regarding operations on the graph structure, there are two overarching objectives: query
answering, that is, acquiring solutions to queries, and reasoning, involving the inference of new
formulas when given a set of formulas or a graph. RDF, RDFS, and various OWL profiles in
conjunction with SPARQL support querying and lightweight reasoning on the graph representation
of objects and their associated properties, in particular those in the data and resource dimension.
These operations rely on standard semantics all underpinned by the formal notion of satisfiability.
A possible avenue for further research is to identify whether and to which extent reasoning on the
graph structure might yield simple inferences on the temporal structure, although the specifics of
this interaction remain a topic of exploration.

Of particular interest is the provision of support for operations on the temporal structure. A
fundamental operation relates to checking the satisfiability of temporal specifications, which can
be performed on process descriptions or traces. In addition, other operations are conceivable, such
as finding processes that satisfy temporal specifications, akin to planning or synthesis. Conversely,
another operation would be process mining, i.e., identifying a process that can generate a given
set of occurrences.

As part of a specification of the semantics of a core process vocabulary, generic logic formulas
could be introduced that operate on the temporal structure independently of the domain-specific
elements. These formulas can capture intricate concepts like “happened-before” or the temporal
ordering of events and occurrences. Furthermore, domain-specific formulas can encode restrictions
specific to a given domain, such as the requirement that an order can only be shipped once the
payment has been completed.

Another open challenge involves the interplay between the semantics of objects and data
items and the semantics of the temporal structure. Related is the connection between particulars,
representing instances and occurrences, and universals, embodying classes and events. Combining
state and event perspectives, both on the levels of particulars and universals, presents a challenge
for the development of a semantics, which requires the integration of state descriptions, represented
as objects and their properties in graph form, with event descriptions that influence these states.
Given an occurrence of a process in a specific state and a sequence of events, one should be able to
derive the states of the related objects and data items. Conversely, it should be possible to work
backward: starting with a sequence of states for the data items, one should be able to deduce
the sequence of events that led the data items to those states. Moreover, the possible triggering
of events needs to be evaluated over the state, with the introduction of a condition language to
express “guards”.

A graph-structured representation is advantageous for its flexibility in describing process-related
knowledge. However, different use cases may require different semantic approaches. For instance,
a data integration scenario could benefit from an open-world semantics, allowing partial process
descriptions from multiple sources to be seamlessly combined. In contrast, a process execution use
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case may require a closed-world semantics, particularly because it necessitates making assumptions
about the initiation and completion of processes and the comprehensiveness of each step within a
process. Decisions surrounding whether to open or close the world depend on the specific tasks at
hand.

A final open question relates to specialisation of processes involving hierarchy. In such cases,
a closed-world assumption could become useful. A closed-world assumption would be equally
applicable when working with prototypes [25], as opposed to the classic class-instance distinction
based on sets. Prototypes could also support partial process descriptions that can later be
amalgamated or refined. Issues may arise when one considers formalisms with open world and
closed world side by side and interacting, both on the graph representation and with the temporal
component.

A process core vocabulary which supports all conceivable tasks is likely to be too expressive
and thus prohibitively expensive in terms of computational complexity. Thus, we probably want to
end up with a semantics for the entire vocabulary and define profiles of the vocabulary of different
expressive power suitable for the intended task. One challenge then relates to the identification
and investigation of profiles, i.e., subsets of the vocabulary, that support relevant reasoning tasks,
while avoiding that parts of the vocabulary that have different meaning depending on the context.

6 Conclusion

We have introduced core concepts related to representing processes from different perspectives
(state-centric and event-centric) that can be integrated into a combined perspective. Our aspiration
is that a process core vocabulary should be more broadly applicable than to only business processes,
especially given that such a vocabulary would use a graph representation that can be flexibly
extended. We believe that the development of a process core vocabulary (the syntax for processes
and related concepts as well as temporal properties) in a graph structure and the development of
an associated formal semantics have to go hand in hand and influence each other.

We plan to start with a (minimal) core vocabulary for representing processes, which later can
be extended to cater for more elaborate use cases. While currently only a subset of the scenarios
we have described require querying and reasoning on the temporal structure, the core vocabulary
should support the specification of temporal properties, to later enable querying and reasoning
using such temporal property specifications. A formal semantics for the temporal structure would
enable temporal querying and reasoning functionality on the graph-structured representations.

To connect with the established temporal logics formalisation, we require a combination
of temporal specification patterns with the graph representation of processes, for example via
extraction of temporal logic models from graphs. Such an approach would provide a separation of
concerns and would reuse temporal logics languages and reasoning through a clear interface to the
knowledge representation languages and reasoning systems. However, many questions regarding
the specifics of such an integration remain open.

While the finite-state machine and traces formalisation as well as various temporal logics are
well established, for the (non-technical) terms related to the level of knowledge representation (e.g.,
for the resource dimension) there is currently no consensus across communities. Our paper is to
be seen as a first suggestion of which concepts would go into a broadly applicable vocabulary for
processes and related concepts as well as temporal properties. We plan to continue experimentation
with process descriptions in a variety of use cases, both for representing processes and reasoning
with process descriptions in first implementations based on existing systems (i.e., model checkers,
automated planners or process mining algorithms) to validate the representation in the vocabulary.
We also encourage the community to experiment with process descriptions and report on their
experiences.
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Abstract
In the last decade, there has been a growing in-
terest in applying AI technologies to implement
complex data analytics over data streams. To this
end, researchers in various fields have been organ-
ising a yearly event called the “Stream Reasoning
Workshop” to share perspectives, challenges, and
experiences around this topic.

In this paper, the previous organisers of the
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been discussed during the first six editions of the
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main research areas: The first is concerned with the
technological challenges related to handling large
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and extending existing semantic technologies to
data streams. The third and fourth areas focus
on how to implement reasoning techniques, either
considering deductive or inductive techniques, to
extract new and valuable knowledge from the data
in the stream.

This summary is written not only to provide a
crystallisation of the field, but also to point out dis-
tinctive traits of the stream reasoning community.
Moreover, it also provides a foundation for future
research by enumerating a list of use cases and open
challenges, to stimulate others to join this exciting
research area.
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1 Introduction

Stream Reasoning (SR) has emerged as a branch of artificial intelligence that draws attention
to the need to make decisions incrementally, as soon as possible, and before they are no longer
helpful. Such an ambitious and broad goal requires many competencies as it entails different
research problems. As a result, Stream Reasoning bridges several research communities, such as
Knowledge Representation, Robotics, Data Management, and Semantic Web, and it has found
applications in various application domains, including traffic management, social media analytics,
and robotics.

For more than a decade, the stream reasoning community has proceeded with a shared
vision and provided many independent contributions. In this paper, a few community members,
some active since the beginning and some recently welcomed provide an overview of the leading
research contributions within the Stream Reasoning field discussed during these events. Moreover,
this article aims to crystallise the notion of stream reasoning, examining how these different
communities contributed to various aspects of its research vision and highlighting the overlaps
and peculiarities. The inputs of this crystallisation process were the programs and discussions of
the past workshops and the results of a questionnaire prepared specifically for this article. Some
authors prepared the questionnaire, starting from one of the initial research questions [75], called
Q henceforth, that contributed to the fundamental vision of Stream Reasoning:

(Q) Can we make sense in near real-time of vast, rapidly evolving, constantly
varying, inevitability noisy, incomplete and heterogeneous data streams coming from
complex domains?

This question touches upon the various research dimensions related to SR: Near real-time
pertains to the urgency of obtaining an answer; it is essential to secure a response as swiftly as
possible and definitely before the information loses its value, a notion referred to as velocity. A
unique challenge is given by heterogeneous data, emphasising the variety of data, where data is
not uniformly formatted. The term noisy refers to the inherent uncertainty about and in the data.
When one mentions data being vast, they point to the immense volume of data generated in a
given time frame, signifying scalability challenges. Incomplete data suggests an absence of specific
data or information in the stream. The description rapidly evolving underscores the unpredictable
nature of the stream’s ingestion rate, while constantly varying speaks to the unpredictability of
the content of the stream and its potential constituents. In conclusion, the term Complex domains,
which perhaps distinguishes Stream Reasoning from the related topic of Stream Processing, is
reserved for those application areas where merely validating data is not sufficient; these domains
necessitate capturing and integrating semantics, complex relations between parts, and context
through a more expressive language.
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Question Q can also be used to define a macro-level perspective on decision-making. In social
sciences, macro-level questions correspond to the collective investigation of a research field, i.e.,
they are used to define the research context [131]. As such, they remain unanswered regardless
of individual contributions, and thus, they shall be reduced to simpler lower-level questions. In
particular, two additional levels are expected:

Meso level: adds requirements to limit the research context, but still unsolvable. Meso-level
questions roughly correspond to the investigation of several PhD theses.
Micro level: reduces the investigation to a measurable outcome that can assess the validity
of the contribution, e.g., a research paper.

Therefore, we used the answers to the questionnaire to reformulate Q into meso and micro
questions to characterise the different areas within Stream Reasoning research. Moreover, we
asked the participants to sustain their answers with a thorough analysis of the Stream Reasoning
state of the art. Our goal is indeed grounding the pillars of Stream Reasoning research to the
extent of guiding the future of this research community. The result redefines the aforementioned
terms into four partly overlapping areas of research:

Stream Processing, i.e., the area concerned with developing systems that can efficiently
process large data streams. Given the focus on data management, this research area is traditionally
embedded in the database and complex event processing communities.

Streaming Linked Data, i.e., the area that focuses on extending the Semantic Web stack to
deal with streaming data. Because of this, contributions in this area are primarily presented in
the Semantic Web community.

Deductive Stream Reasoning, i.e., the area that focuses on designing deductive reasoning
techniques that can infer implicit knowledge from the stream. Most techniques in this area are
based on logic-based methods and come from the Knowledge Representation community.

Inductive Stream Reasoning, i.e., the area that studies how we can infer new knowledge
using inductive reasoning techniques. To this end, the most recent contributions exploit the latest
developments in Machine Learning to learn new knowledge from the data.

While SLD encompasses several areas of research that are interested in data sharing and
integration for evolving data, inductive and deductive stream reasoning focus on efficiency and
expressiveness. To clarify the difference between deductive and inductive reasoning, in deductive
reasoning, one evaluates logical statements to make implicit knowledge explicit; prototypical
reasoning is making proofs in a logical calculus, applying rules, etc. For example, from a and
a→ b we may conclude b. Notably, the reasoning is sound. In inductive reasoning, one infers rules
from data; e.g., from images showing white swans, one may infer that, as a rule, swans are white.
In contrast to deductive reasoning, inductive reasoning is not generally sound, and the result
may be incorrect. To address this, inferences may be drawn under uncertainty, often resorting to
probabilities. Notably, deductive reasoning may involve uncertainty, but all knowledge is already
implicit.

We will discuss each of the areas in the following four sections. The discussion will follow the
same structure in each section. First, we will formulate a meso question for that specific sub-area
of stream reasoning, and then we will dig into the following sections:

In the “Make Sense” section, we investigate the standard way to express a Stream Reasoning
problem in that sub-area, e.g., continuous querying or logical program.
In the section “Taming Volume”, we describe what research efforts in that particular sub-area
address the scalability problem, e.g., using distributed systems to scale out;
In the section “Taming Velocity”, we focus on those research efforts in that sub-area that relate
to the hurdle of processing data as soon as possible, e.g., adopting window-based processing;
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In the section “Taming Variety”, we discuss how existing works in that sub-area approach the
challenge of information integration, e.g., using graph-based data models;
In the section “Domain Complexity”, we present the results for representing domain knowledge,
e.g., ontologies;
Finally, in the “Data Quality” section, we discuss what methods were adopted or assumptions
were made regarding data quality issues, e.g., missing data.

We will conclude in Section 6 with a discussion on how the various areas relate, primarily
pointing out when they overlap and how to move forward in this exciting field with a list of what
we view as critical open challenges.

2 Stream Processing

Stream Processing is a technological solution and a research field that first addressed the problem
of continuously analysing data in near-real-time. Stream Processing pre-dates Stream Reasoning
research. Indeed, Execution models for Stream Processing have been around for decades [159].
Therefore, it had a direct influence on Stream Reasoning research. At the same time, the push
towards a broad form of intelligence and decision support that does not neglect reactivity, which
is one common theme in Stream Reasoning research, had a return on Stream Processing as a field.

Thus, it makes sense to look at Stream Processing from a Stream Reasoning perspective, to
understand how it contributes to the latter vision. To this extent, we formulate the research
question below to capture the objectives of Stream Processing research that align with the one
captured by the macro question:

Meso (Stream Processing): Can we continuously query, using declarative SQL-like
languages, vast, rapidly evolving, constantly varying, potentially noisy data streams,
minimising latency and maximising throughput?

In the remainder of the section, we discuss how Stream Processing has answered such a
question.

Stream Processing covers the whole life-cycle of streaming data: from their ingress to manipu-
lation and eventual egress.

2.1 Make Sense
As motivated by Cugola and Margara [67] in their overview of what they call information flow
processing systems:

Many distributed applications require continuous and timely information processing as
they flow from the periphery to the system’s centre.

Such Stream Processing systems are designed to support large applications in which data are
generated from multiple sources and pushed asynchronously to servers responsible for analysing
them [115]. Traditionally, analytics is the main objective of the processing, with Stream Processing
systems focusing on low-latency, high-throughput online analytical processing (OLAP) workloads.

In terms of making sense of the data, Stream Processing introduced the notion of Continuous
Querying, i.e., queries that continuously run against streaming or real-time data to produce results
or output whenever new data meets the query’s conditions. Traditional database queries are
one-time operations: a query is executed and results are obtained based on the current state of
the database. In contrast, continuous queries persist and constantly check incoming data.
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Table 1 Description of the taxi ride stream data. Table 2 Description of the taxi fare stream data.

field | description
rideId | the unique ride id
taxiId | the unique id for the taxi itself

driverId | the unique id of the taxi driver
isStart | has the ride has started or ended

eventTime | timestamp of the event
startLon | the longitude where the ride started
startLat | the latitude where the ride started
endLon | the longitude where the ride ended
endLat | the latitude where the ride ended

passengerCnt | the number of passengers

field | description
rideId | the unique ride id
taxiId | the unique id for the taxi itself

driverId | the unique id of the taxi driver
startTime | the time the ride started

paymentType | the type of payment(cash/card)
tip | the tip amount for the ride

tolls | the amount of tolls payed
totalFare | the total fare

Continuous Queries are more specialised than general coding tasks, and thus, they are typically
supported by algebra or formal semantics. To our knowledge, the first appearance dates back
to the seminal work of Terry et al. [211]. Since then, continuous queries have been discussed
extensively [23, 16, 62]. Limiting our mention to fully-declarative languages, we can distinguish
two families of continuous queries, which differ on the expressivity of the languages they use:

SQL-Like Languages based on the foundational CQL models by Arasu et al [9]. Such languages
allow expression window-based continuous queries over relational data streams. Three types of
windows have been considered: time-based (sliding) window which discards all data beyond a
certain point in time; tuple-based window which dumps all data that has arrived prior to a
predefined number of tuples (e.g., keep only the last 10 facts); partition-based windows, which
partitions the stream in various substreams based on the attributes of the data in the stream.
Complex Event Recognition Languages focus on detecting regular expressions over streams
of typed events. Although operators like Sequence (follow by) and Allen Algebras are well-
accepted, a universally accepted foundational algebra is still missing.

▶ Example 1 (Taxi). To illustrate the difference between the research areas, we provide examples
of various queries typical for each research area. We will utilise the taxi dataset provided by the
ACM DEBS 2015 Grand Challenge1 as an ongoing example. The DEBS challenge centers around
analysing taxi routes within the city of New York. The dataset encompasses two streams: the ride
stream, which describes taxi journeys including (i) taxi specifications, (ii) pick-up and drop-off
details (such as geographical coordinates and timestamps); and (iii) passenger count; and the
fare stream, which describes payment details for the rides (such as tip, payment method, and
total fare). Specifically, Table 1 outlines the attributes found in the ride stream, while Table 2
delineates the attributes in the fare stream. Note that rideId, taxiId, and driverId are contained
in both streams.

Listing 1 shows an example of a CQL query that combines both streams, counting all the rides
over the last hour that had more than 2 passengers and cost more than 10 dollars. The Istream
operator in the Select clause describes that the result of the query will be a new stream containing
the new results within the window of 1 hour.

1 http://www.debs2015.org/call-grand-challenge.html
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1 Select Istream(Count(*))
2 From RideStream [Range 1 Hour Slide 1 Minute]
3 From FareStream [Range 1 Hour Slide 1 Minute]
4 Where RideStream.rideId = FareStream.rideID AND
5 RideStream.passengerCnt > 2 AND
6 FareStream.totalFare > 10

Listing 1 An example of an CQL query on the taxi stream.

Carbone et al. [59] studied the field’s maturity concerning processing. Initially, research focused
on languages and paradigms for continuous querying and designing Data Stream Management
Systems (which extend Data Base Management Systems to support continuous semantics). Later,
research moved towards Scalable Stream Processing, motivated by the advent of Big Data
challenges. More recently, the authors claim, Stream Processing is moving beyond analytical
workloads, welcoming concepts like database transactions, stateful functions, and model serving.
Moreover, Stream Processing has been applied beyond continuous queries, addressing tasks such
as conformance checking [185], continuous pattern-matching streaming graphs [169, 168], and
graph partitioning [1].

2.2 Taming Volume
As highlighted by Carbone et al., the first generation of streaming systems was centred around
proving the feasibility of continuous querying and paying little attention to scalability. Hence,
the first generation of streaming engines is limited to vertical scaling, e.g., IBM System S, Esper,
Oracle CQL/CEP and TIBCO.

Later, due to the introduction of MapReduce and the popularisation of cloud computing,
Stream Processing research and development started shifting to the scalability problem. Although
velocity (described below) was always the priority, data parallel and distributed solutions became
the de facto standard.

In particular, it is worth mentioning Apache Flink [60], which uses a streaming dataflow engine
that provides data distribution, communication, and fault tolerance for distributed computations.
Apache Flink features two relational APIs – the Table API and SQL–for unified stream and
batch processing. Flink’s Streaming SQL support is based on Apache Calcite, which implements
the SQL standard. Apache Spark [11] is a versatile distributed computing platform that offers
convenient programming interfaces in Java, Scala, Python, and R, along with a well-optimised
engine that is capable of handling various execution graphs. At the core of Spark’s abstractions
are resilient distributed datasets, which represent collections of elements distributed across nodes
within the cluster, enabling parallel data processing. Apache Kafka [231] works as a distributed
streaming platform, operating as a cluster on one or more servers called brokers. This cluster can
span across multiple data centres. Kafka’s primary role is to store continuous streams of records
in what are known as topics, which are essentially unbounded, append-only log structures. Each
record within these topics comprises three main components: a key, a value, and a timestamp. A
Stream Processing library called Kafka Streams is also built on Apache Kafka’s producer and
consumer APIs. It operates on a model known as Stream/Table duality [195].

2.3 Taming Variety
The support for data heterogeneity is limited in general streaming systems. Indeed, Data Stream
Management Systems (DSMS) and Complex Event Processing (CEP) engines inherit their data
model and query languages from the database community. The seminal work from Babu et
Widom [16] poses the basis for relational Stream Processing and influences various languages.



P. Bonte et al. 2:7

The data models are evolving, with stream processing systems supporting more complex data
types inspired by object-oriented programming languages. Indeed, Flink, Spark, Kafka Streams
and many more support nested data structures, allowing users to design hierarchies of event types.

Notably, the approach taken from existing DSMSs to address the data variety is rather practical
and lacks formal foundations. Data integration is performed through custom data pipelines rather
than following information integration principles [140]. Conversely, relational languages have
been extended to navigate simple nested structures like JSON. For example, Spark SQL has
included operators to manipulate CSV and JSON data since 2017. KSQL and Flink added the
opportunity to access nested fields in JSON data within the SQL dialect last year. Nonetheless,
data access is managed without source data mapping, making fraternisation somewhat arbitrary
and porting queries across systems nearly impossible when semistructured data are involved.
Although the notion of an event, as a typed notification of fact at a given time, can be seen as a
shared abstraction that can glue DSMS together, few attempts remain in the realm of Stream
Processing systems.

It is worth noticing, though, that there are emerging more specialised Stream Processing
systems capable of handling more sophisticated data structures such as interval-based events [15],
streaming graphs [169], and property graph streams [93].

Orthogonal to the data representation, the Stream Processing literature distinguishes two types
of streaming data, i.e., record streams and change data capture. The former indicates positive
tuples like sensor network observations, while the latter describes changes within a database
(additions and deletions). Although Stream Processing does not typically consider variety in the
data model, these two types of streams typically co-exist in the context of streaming systems [195].
Additionally, in the context of system observability, such a dichotomy has evolved into a trichotomy
including metrics, logs, and traces, which represents numerical observations, factors or changes, as
well as the propagation of information across systems, respectively [199].

2.4 Taming Velocity
Data velocity, i.e., the requirement for processing data as soon as possible and before they are no
longer valuable, is the first and foremost priority for Stream Processing research. The velocity
challenge has a direct impact on data storage. Indeed, putting data at rest and processing them
later is no longer possible, as it would require too much time. In practice, data velocity is treated
by operating in memory. Stream Processing Engines, i.e., systems capable of handling data
with high throughput and low latency, employ sophisticated mechanisms to reduce the memory
footprint without compromising performance.

Their performance is measured alongside two axes, each representing a key performance
indicator, i.e., end-to-end latency (the time passed from when a data point enters the system and
when it exits as part of the output) and maximum throughput, the amount of data processed
within a unit of time, e.g., a second. The two dimensions are in a clear trade-off, pulling the
Stream Processing envelope on from two sides, i.e., incremental vs batch computations.

Another substantial change happens in the query model. Queries are no longer issued online
but are instead registered and compiled into pipelines, which typically avoid loops for efficiency.
As a query can run indefinitely and until explicitly suspended, the result is a stream of answers.
The query evaluation occurs upon the arrival of individual data elements or in small (micro)
batches. Punctuation mechanisms, i.e., the presence of particular landmarks in the data or the
query, are used to progress the execution in a distributed setting. On the data side, punctuation
is the minimal informational unit that constitutes a single item in the stream. On the query side,
punctuation assumes the role of operators, commonly named windows, that allow the gathering of
multiple elements in the stream that should be processed simultaneously. Ultimately, windows can
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introduce a delay in different parts of the framework. Modern engines that simultaneously address
the velocity and volume challenge may consume millions of events per second, guaranteeing an
end-to-end sub-millisecond latency.

2.5 Domain Complexity
In Stream Processing, the complexity of the domain is usually considered relatively limited.
Domain modelling is reduced to relational and document data when considering production-graph
Stream Processing systems like Flink, Spark Streaming and the Kafka suite. Notably, the presence
of a schema, be it relational or document-based, as in the case of binary formats like Avro or
JSON Schema, is essential to decouple the production and consumption of streaming data. In
terms of conceptual modelling, approaches for event data representation emerged, e.g., event
sourcing [35], but only as methods for system integration and without formal semantics [165].
Lastly, in Complex Event Processing, hierarchical data models are often adopted but limited to
taxonomical relations inspired by inheritance in object-oriented programming languages [104].

The adoption of Stream Processing systems into application domains that require strong
consistency guarantees, e.g., financial analysis or traffic management applications, called for more
sophisticated domain modelling techniques. While on the conceptual level, everything remains
unchanged, at lower levels of abstraction, the Stream Processing engines require awareness of
partitioning schemes, possible faults, and out of order. To this extent, researchers have focused
on consistency in terms of transactional behaviour [238, 2, 50]. The ACID properties, which are
standard in the database context, ensure that the (database) state is consistent to the degree
required by a given isolation level. In Stream Processing, the focus shifted to the interaction
across systems. Thus, the notion of consistency is discussed in terms of delivery guarantees:
At-least-once ensures that input data are not lost, at-most-once eliminates duplicate processing,
and exactly-once combines both, ensuring the absence of input data losses and repeated delivery
of results [212]. The definition of such guarantees is expressed at the logical level: individual
data items are extended with metadata to be used downstream for controlling consumption.
Transactional Stream Processing is an ongoing research that is gaining traction at the industrial
level2.

Last but not least, the role of provenance in Stream Processing represents the most notable
attempt to manage additional domain complexity, i.e., reason about the why and the how of
continuous query answers [105]. Vijayakumar et Plale [224] first proposed a low-latency method
for generating coarse-grained provenance information that focuses on capturing dependencies
between different data streams instead of individual tuples. Wang et al. [232] spot the limita-
tions of techniques based on annotations and suggest a rule-based approach for provenance in
Stream Processing applied to the medical domain. However, this approach requires access to all
intermediate streams, making it less suitable for modern Stream Processing systems. Glavic et
al. [106] proposed a set of instrumented operators to track the provenance of select-project-join
queries in Stream Processing scenarios. More recently, the works of Palyvos-Giannas explore richer
provenance models, in particular: Ananke allows users to track richer provenance information,
not only specifying which source tuples contribute to which query results but also whether each
source tuple can potentially contribute to future results [171]. GeneaLog is similar to Ananke but
with a focus on the edge [170]. Finally, Erebus investigates the aspect of completeness, relying on
why-provenance [172] for identifying missing answers in the result by explaining the mismatch
between actual and expected answers for continuous queries. As such, explaining the inconsistency
of continuous queries is not applicable.

2 https://github.com/ververica/streaming-ledger
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2.6 Data Quality
Several factors impact streaming data quality, e.g., noisiness, incompleteness, and timeliness.
Stream Processing systems must be able to handle situations where individual data points are
missing, entire data streams stop suddenly, or queries are changed. These situations can occur as
the result of for example data loss during transmission, changing streaming resources, or changing
user/agent needs. This can be regarded as an orchestration problem, where resources are carefully
managed to minimise latency and maximise throughput even in the face of changing circumstances.

3 Streaming Linked Data

Throughout the years, the Semantic Web has built and standardised a stack of technologies that
enable the vision of publishing, accessing, and processing data on the Web, as if in a database [34].
Among these technologies and standards, IRIs [88] are used to identify resources, RDF provides a
data model to describe such resources and their relations in graph-based data structures, ontologies
such as RDFS/OWL offer languages to specify schemas (consisting of concepts and the relations
between these concepts), and SPARQL provides a declarative query language to execute CRUD
operations on RDF graphs (to Create, Read, Update, and Delete resources).

These technologies were built without including time as an intrinsic part of their data model.
While it is easy to understand this choice – many systems do not deal with time or delegate
its management to the application layer – data evolves, and it is often necessary to address it.
Therefore, the community started to build time-aware solutions on top of the Semantic Web stack.
For instance, there have been initiatives at the modelling level, such as OWL-Time [65] that
allow defining temporal concepts, or the Semantic Sensor Network ontology [64], which provides a
vocabulary to describe sensor observations over time. The Semantic Web standards themselves
evolved, accounting for time. For example, the RDF 1.1 recommendation [69] states:

The RDF data model is atemporal: RDF graphs are static snapshots of information. [...]
RDF graphs can express information about events and temporal aspects of other entities,
given appropriate vocabulary terms.

In practice, this implies that time information can be included within an RDF graph, without
time-specific semantics. In addition to use cases where it is necessary to account for time, a second
need emerged: responsiveness. An increasing number of applications require not only managing
temporal data, but also timely processing of results. These requirements are frequent in a large
number of domains including social media analytics on the Web, or data management for the Web
of Things (WoT). In these applications, it is vital to provide instantaneous query and analysis
results, for which time order and recency play a crucial role.

These needs led to a novel research area within the Semantic Web community, under the
denominations of RDF Stream Processing (RSP) or Streaming Linked Data (SLD) [217]. RSP
research has focused more on the temporal extensions for RDF data and query modelling, while
SLD has centred on the implications of Stream Processing for graphs that comply with the Linked
Data principles [41, 46]. Beyond these minor differences, this line of research has delineated an
agenda that has studied the following aspects:

Modelling data streams and complex events using RDF graphs, including syntactic, semantic,
and operational implications.
Extending RDF query languages with streaming data operators.
Building RDF stream Continuous Query processors, including different reasoning and processing
variants.
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Evaluating and benchmarking Stream Processing engines, including performance, and correct-
ness, among other metrics.
Interconnecting RDF stream processors through Web interfaces.

This allows us to reformulate the macro-level research question to the following specific
meso-level research question for RSP/SLD:

Meso (Streaming Linked Data): Can we evaluate Continuous Queries, expressed
as a dialect of the SPARQL language, over RDF streams with limited latency while
incorporating domain knowledge through RDFS ontologies?

This and other subsequent research questions have been explored and discussed, many of which
converged around the RDF Stream Processing Community Group (RSP CG), within the context
of the W3C3. This group served as a central discussion square that led to different formalisation,
implementation, and benchmarking initiatives in this area.

RSP/SLD has been successfully used in a variety of use cases, ranging from social media
analytics [20], traffic monitoring in Smart Cities [139], large-scale streaming data retrieval in Smart
Farming [124], to monitoring the performance of athletes [158] and the health of patients [71].

We will now explain how RSP/SLD research has targeted different aspects of the original
Stream Reasoning macro-level research question.

3.1 Make Sense
In order to process RDF streams, it was observed that Semantic Web technologies and Stream
Processing technologies are complementary for solving the problems that Stream Reasoning tries
to tackle. In terms of making sense of the data, RSP and SLD are fundamentally based on
continuous querying and data integration approaches. The former, takes the idea from SP, where
queries are registered only once and continuously produce results as they are evaluated over
streams of data. Moreover, RSP and SLD inherit the data integration capabilities from the
Semantic Web, as they seamlessly integrate Stream Processing and Semantic Web technologies.
Through the use of ontology models to represent the stream data elements, these query languages
were able to integrate different data sources, including both static and streaming data.

Over the years, several languages have been proposed. Most of them aim to process extensions
of RDF where triples or graphs are annotated with temporal information, such as individual
timestamps or time intervals. Examples of these languages include C-SPARQL [24], Streaming
SPARQL [43], CQELS-QL [134], or SPARQL-Stream [55]. Most of these languages extend the
SPARQL syntax with time-based sliding window operators, as found in Stream Processing; and
in some cases, additional query functions. The semantics of how these windows work, however,
were not uniform and were shown to have different operational behaviours. In consequence, these
languages disagreed on the correctness of query results in certain cases [81], as they had different
properties that made them difficult to compare,

To address this issue, a unifying formalisation of continuous query processing over RDF streams
was proposed in [78], named RSP-QL. This model was able to include streaming query evaluation
semantics, as well as operational semantics of windows, thus allowing to characterise existing
extensions of SPARQL for continuous querying. The ability to represent different types of queries
using RSP-QL is a first step towards the standardisation of continuous querying extensions for

3 W3C RSP Community Group: https://www.w3.org/community/rsp/.

https://www.w3.org/community/rsp/
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RDF streams. However, RSP-QL still inherits practical inconveniences from SPARQL, such as
the difficulty of generating and re-consume RDF stream results (e.g., through using the SPARQL
CONSTRUCT clause).

There are more operators beyond the sliding window operator. Examples include basic CEP
sequence matching, which was integrated into RSP-QL through RSEP-QL [82], and monotonicity
conditions, which were proposed in STARQL [166]. Nevertheless, these elements add substantial
complexity to the formalisation and eventually to the implementation of querying engines, as we
will see next.

3.2 Taming Volume
Although most of the contributions in the SLD research area have focused on addressing the
inherent velocity of data streams, taming volume has not been thoroughly investigated. There
have been some efforts, such as CQELS-Cloud [135] and Strider [189] that build upon the elasticity
of existing Stream Processing frameworks, respectively Apache Storm and Apache Spark. However,
the focus of taming huge volumes of data has been rather limited.

Nevertheless, this dimension has indirectly been addressed through the analysis of query
execution efficiency and response time constraints. Velocity can be analysed in terms of volume
over time, which was analysed in RSP benchmarking efforts [239, 133]. Among the works specifically
targeting stream data volume we can mention efforts for reducing the actual size of serialised
RDF streams, using the compressed ERI interchange format [94]. The usage of reduced formats
for RDF stream data exchange are of primary importance for IoT environments where message
volume is critical [122], such as constrained devices, limited network bandwidth, and reduced
storage sensors.

Other approaches addressed volume from the processing perspective, for instance proposing
load-shedding techniques to limit the number of stream data items to be processed [33], or data
eviction strategies to reduce the cardinality in join operations over RDF streams [100].

3.3 Taming Variety
RDF graphs allow modelling all sorts of information on the Web, enabling wide exchange and
interoperability. However, these graphs are atemporal, and RSP needs an adequate data model
to publish and exchange data streams while handling data variety. RDF streams address this
challenge by extending the RDF model with notions of time-based order. The initial attempts to
define RDF streams were crystallised by the RSP CG, which proposed the following requirements
for the abstract model of RDF streams [7]:

R1 It should be possible to represent RDF streams with an abstract RDF-based model,
whose semantics should provide the basis for producing and consuming streams.

R2 It should be possible to identify an RDF stream usingIRIs.
R3 It should be possible to serialise the RDF stream abstract model into RDF formats

derived from existing standards, extending them only when necessary.
R4 It should be possible for RDF Stream to have timestamps based on different notions of

time (time instants, intervals) with different semantics (application, validity, transac-
tional).

R5 In case no timestamp is associated with an RDF stream data element, the system should
be responsible for managing the time-based ordering of stream elements.

R6 It should be possible to restrict the RDF stream model to facilitate implementation and
support efficient representation.

TGDK
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1prefixes:
2taxi: "http :// linkeddata.stream/ontologies/taxi#"
3

4mappings:
5rides:
6s: taxi:ride/$(rideId)
7po:
8- [a, taxi:RideEvent]
9- [taxi:hasEndLon , $(endLon)]
10- [taxi:hasEndLat , $(endLat)]
11...

Listing 2 An example RML Mapping on the taxi dataset.

The above requirements call for reusing existing Semantic Web technologies and account
for different types of temporal information. One can consider an RDF stream as a sequence
of RDF graphs, each identified by an IRI and optionally associated with temporal annotations,
such as creation time or validity interval. The generality of the RDF streams definition aims at
opening the door to different kinds of streams, which may occur in different application scenarios.
However, it also implies the challenge of dealing with the complexity of covering modelling
variations. This specification led to the implementation of systems capable of producing streams
of RDF data [24, 136, 216]. At the simplest level, plain RDF can be used to represent streaming
information without specific semantics for time annotations. For example, the Linked Sensor
Data [175] initiative proposed the publication of meteorological sensor data using stored RDF.
Although these RDF graphs represent observations that were originally streamed by sensors, with
explicitly recorded time annotations, the system only provided static access to the data. RDF
libraries such as Jena4, RDF4J5, or RDFLib6 provide IO methods to read and write plain RDF
graphs in a streaming fashion, but they do not support producing and consuming RDF streams.

TripleWave [150] is one of the systems that addressed this limitation, proposing a full pipeline
for the generation of RDF streams. It included the production of live RDF streams consisting of
time-annotated graphs, which could be fed from non-RDF data sources.

More recently, RMLStreamer was introduced, focusing on the generation of RDF streams
in a low latency and high throughput fashion. RMLStreamer is a parallel and scalable Stream
Processing engine built on Apache Flink that is able to generate RDF streams from heterogeneous
data streams of any format (e.g., JSON, CSV, XML, etc.), using RML mappings [83].

▶ Example 2 (Taxi cont’d). SLD allows to integrate the taxi streams with additional static
information, e.g., a dataset that describes Points of Interest (POI) within the city. The use of
SLD enables this integration, even though the underlying data representation of the POI dataset
is not compatible with the raw taxi streams. Mapping the taxi streams and POI dataset to RDF
allows to smoothly integrate both datasets, allowing to make more informed decisions regarding
the available data. The taxi streams can be mapped to RDF in a streaming fashion through the
RMLStreamer. Listing 2 shows how this mapping can be defined in YARRML [114], i.e., a more
concise RML syntax. The mapping defines how various fields of the taxi dataset, e.g., rideId,
endLon and endLat, can be converted to RDF triples. A similar mapping can be conducted for
the POI dataset, regardless of its underlying data format.

The example RSP-QL query in Listing 3 counts all taxi drop offs near a hospital in the last
hour, which has been mode possible through the integration of the POI dataset. Joins in RSP-QL
can be applied to a combination of both windows and stored graphs as seen in the example.

4 https://jena.apache.org/
5 https://rdf4j.org/
6 https://rdflib.dev/

https://jena.apache.org/
https://rdf4j.org/
https://rdflib.dev/
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RSP and SLD are thus able to tame data stream variety by reusing and extending Semantic
Web technologies, by introducing fundamental temporal semantics into the data model, and by
providing tools that implement them.

3.4 Taming Velocity
Each query language designed to process RDF streams was accompanied by working prototypes,
also called RSP engines. The first contributions investigated how Semantic Web technologies can
be combined with DSMS and CEP engines in order to incorporate Stream Processing capabilities
that could target velocity. These systems propose different approaches to continuous query
answering over data streams, shifting from the query-response paradigm of conventional SPARQL
engines. In addition, these systems have a special focus on reactive question answering, proposing
methods that allow for delivering results as soon as possible. Each of these systems incorporates
variations of windowing implementations, in order to limit the possibly unbounded stream in
processable chunks.

Among the first generation of RSP engines, C-SPARQL [24] adapts a black box approach by
pipelining a DSMS with a SPARQL engine. The DSMS is used for handling the Stream Processing
capabilities of the engine, e.g., windowing the stream into processable chunks. Each window is
then fed to the SPARQL engine for evaluation of the query. In contrast, the CQELS engine [134]
employs a white box approach; instead of pipelining existing systems, it integrates the Stream
Processing operators in the evaluation of the SPARQL query, opening up various opportunities
for optimisation. Morph-streams [56] takes a different approach and uses Ontology Based Data
Access (OBDA, or Virtual Knowledge Graphs) to virtually process RDF streams, while their
underlying representation is still the raw data (e.g., a relational data stream, or a streaming CSV).
It uses a mapping language, i.e., R2RML7, to define the relation between the underlying relational
data and RDF. Morph-streams uses query rewriting to virtually answer SPARQL-like queries over
relational data streams, giving the illusion data is available in RDF.

Other approaches focused on extending existing infrastructures for distributed data processing,
such as the aforementioned Strider (see Section 3.2). Regarding the integration and interoperability
of RSP engines, RSP4J [216] proposed an API for the development of RSP engines under RSP-QL
semantics, providing many of the needed abstractions and interfaces that can be used for building
blocks when creating new RSP engines or testing out algorithms and optimisations. RSP4J

7 https://www.w3.org/TR/r2rml/

1 PREFIX taxi: <http://linkeddata.stream/ontologies/taxi#>
2 PREFIX : <http://linkeddata.stream/resource/>
3 SELECT (COUNT(?d) AS ?num_hospitalDropOff)
4 FROM NAMED <citymap.rdf>
5 FROM NAMED WINDOW <w> ON :taxiStream [RANGE PT1H STEP PT5M]
6 WHERE {
7 Graph <citymap.rdf> {?place :hasLat ?lat; :hasLon ?lon; :hasPOI ?poi.
8 ?poi a Hospital. }
9 WINDOW <w> { ?d a taxi:DropOffEvent; taxi:hasEndLon ?lon; taxi:hasEndLat ?lat. }

10 }

Listing 3 An example of an RSP-QL query on the taxi stream.

TGDK
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also provides two implementations, Yasper and CSPARQL2.0, that follow the RSP4J interfaces.
Following the principles of RSP4J, but written in Rust, RoXi [44] brings RSP engines to the
browser through WebAssembly support.

There have been a number of contributions centred on the evaluation of RSP engines. As
for Stream Processing solutions, the principal metrics are latency (the time required to process
a stream) and throughput (the amount of data processed in a given amount of time). Further
metrics include memory footprints, expressiveness (which query operators are supported), and
correctness (compliance of a system to its evaluation semantics). Among the proposed benchmarks,
LSBench [239] and SRBench [133] proposed re-playable data streams, evaluation queries and a
set of metrics to assess the performance and expressiveness of the engines. The YABench [128]
framework proposed a more comprehensive coverage of RSP features, while Citybench [4] proposed
more realistic and configurable testing datasets. Finally, RSPLab [219] focused on the provision
of an open-source environment for RSP reproducibility.

3.5 Domain Complexity

In RSP and SLD, the incorporation of complex domain modelling is usually satisfied by using
RDF and RDFS ontologies. In general, the domain complexity in RSP is kept low in order to
realise highly reactive systems, given the potential latency that reasoning can add to the query
processing stack. Nevertheless, there are some hybrid approaches where RSP and reasoning overlap,
for instance, incorporating query rewriting through ontology-based data access or materialising
window content and enabling Datalog reasoning. Some of these hybrid approaches are further
described in Section 6. When increased domain complexity and expressivity are needed, a sacrifice
in latency and throughput is acceptable. To the opposite extreme of this trade-off, we enter
the realm of Deductive Stream Reasoning (Section 4), which privileges domain complexity in a
dynamic environment.

3.6 Data Quality

Handling veracity and incompleteness has so far not received much attention within RSP, given that
in many cases, the RDF streams are previously pre-processed or fed through streaming pipelines
that already perform minimal data cleansing (e.g., through Kafka pipelines [126]). Otherwise,
stream data quality control is seldom incorporated into RSP engines. In some cases, Continuous
Queries filter out anomalous data, or external data mining and outlier detection modules are
employed before the RSP engine receives the stream. When dealing with constantly-varying data,
Strider and CQELS provide optimisations to reorder the execution of their query execution plans
based on the rates of the various streams that are being processed. When the rates of the streams
change, the execution plans are reordered to maintain reactivity. The quality of Continuous Query
results may sometimes degrade when the stream rate rises. In consequence, it can be helpful in
use load-shedding and similar techniques to limit the number of stream items to be consumed [33].

Finally, quality can also be considered regarding the correctness of the Continuous Query
processor. In the case of RSP engines, this topic was addressed in [81], which verified that
seemingly similar queries resulted in different answers, in some cases not entirely predictable.
Based on these results, the operational semantics of RSP query languages have been further
studied [78], and other benchmarking frameworks have adopted correctness criteria for their test
suites [219].
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4 Deductive Stream Reasoning

The contributions presented in the previous sections assume that all the knowledge is stated
explicitly in the data streams. In some cases, however, there is a wealth of implicit knowledge that
can be inferred with some non-trivial computation.

We refer to systems that do this by evaluating logic-based statements in a deductive manner
as Deductive Stream Reasoners (DSRs). Inductive Stream Reasoning, which aims at inferring new
knowledge from data, will be considered in the next section.

PLAN LINE
L From To Dur ID L

ℓ1 s1 s3 8 tr1 ℓ1

ℓ2 s2 s3 3 tr2 ℓ2

. . . . . .

ℓ2

ℓ1

s1

s3

s2 s4

t
36 40

tram(tr1, s1)

tram(tr2, s2)
43 44

waiting
time

Figure 1 Transportation example.

▶ Example 3 (Vienna tram connection). Staying in the transport sector, let us exemplify the
general notions of DSRs on the following navigation problem, this time considering public transport
instead of taxis: Samantha is travelling in Vienna with her baby and a stroller on a tram ℓ2 from
s2 to s4, which is served by the line ℓ1. Thus, Samantha needs to change the line on the stop s3.

According to the plan, shown in Figure 1, a vehicle tr1 that serves the line ℓ2 requires 3 minutes
to reach s3 from s2 and a vehicle tr1 needs 8 minutes to get from s1 to s3. A transportation
application that Samantha is using must solve at least the following two problems: (i) get
information about the current schedule and delays of trams running on ℓ1 and (ii) find expected
good connections between s2 to s4 with less than 5 minutes waiting time at s3.

An application based on a DSR gets its knowledge about the transportation problem explicitly,
i.e., an expert provides it as a knowledge base KB, such as an ontology or a logic program. DSR
then uses KB to solve various problems, e.g., to find suitable routes or inform users about expected
arrivals. A data stream comprising information about the current state of the transportation
system is pushed to the DSR from sensors and other systems. DSR systems can represent these
streams in two possible ways: point-wise or interval-wise. In the point-wise representation DSR
discretises the time into a set of time point, e.g., a second or a minute, depending on the system
architecture. The encoding of data might also vary. Thus, many rule-based DSR systems require
incoming data to be encoded as facts, which are associated with time points when they were
received, e.g., 36→ {tram(tr1, s1)}. Other popular representations include database tables, RDF
triples, and labelled values in a similar way as the atoms above. The interval-wise representation
appears to be more natural since time discretisation is not required as in the point-wise case.
Hence, a DSR system might associate a set of intervals with every data value appearing in the
stream. The main caveat of this representation is that it requires DSR systems to determine the
end of each interval. Thus, if a movement sensor reports only changes in tram velocity between
the stations, the system cannot determine if the tram is still moving at a constant speed or if the
sensor is malfunctioning.

TGDK
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Given the background knowledge about timetables and a stream comprising facts about the
positions of trams on their lines, the application needs to retrieve data relevant to Samantha’s
situation. Most DSR systems use various kinds of window functions to retrieve relevant parts of
the stream, similar to the windowing introduced in Stream Processing. In our transportation
example, a time-based window for the interval [35, 45] will return {tram(tr1, s1), tram(tr2, s2)},
and a tuple-based window of size 1 from t = 45 will return only {tram(tr2, s2)}.

In general, DSRs are useful in complex domains where applications should be able to con-
tinuously make decisions using knowledge explicitly provided by experts. That is, in contrast to
the inductive systems, it is not realistic to expect that knowledge required for decision-making
is provided in the stream data, like observations and/or labels. Such domains include Cyber-
Physical Systems (CPS), Digitalization of Industry, Internet of Things (IoT), and Social Networks.
Examples of such applications are

monitoring and surveillance, e.g., of gas turbines [52], maritime vessels [194], or healthcare [111];
decision making, e.g., for video streaming and games [28, 6];
planning, e.g., trajectory planning for UAVs [112];
analysis and query answering, e.g., in social networks [25], smart infrastructures [178], and in
intelligent transportation systems [89, 197].

The macro-level SR research question can be reformulated to the following generic meso question
for DSR:

Meso (Deductive Stream Reasoning): How can we make knowledge about complex
domains, represented in expressive Knowledge Representation languages, available for
Stream Reasoning in the realm of vast, rapidly evolving, constantly varying, inevitability
noisy, incomplete and heterogeneous data streams?

This generic question gives rise to several concrete meso-level questions that need attention:
1. How can we reuse previously inferred knowledge to minimise the reasoning time upon receiving

updates respectively changes in data?
2. How can we extend existing Knowledge Representation languages suitably with temporal

operators?
3. How can we achieve a balance between the expressiveness of the Knowledge Representation

and the efficiency of reasoning in particular for maintaining a high throughput?
4. How to deal with noise and uncertainty appropriately in expressive Knowledge Representation

formalisms, both regarding the quality of results and performance?

Solutions to these questions will be instrumental for achieving the macro goal of Stream
Reasoning from above, as rich Knowledge Representation formalisms allow us to express and
reason about properties and relationships between data at a deeper level. They enable us to
obtain more insight transparently, and provide a basis for developing explanation and justification
facilities that will aid in analytics and increase transparency, and hence, trustworthiness.

The first question is at the heart of Stream Reasoning, and requires to face the challenge
that conclusions may be obtained by reasoning processes that involve several steps of inferences,
depending on the complexity of the underlying Knowledge Representation. Materialisation, i.e.,
computing and storing the valuation of predicates/relations that are defined from given data,
and related techniques play an essential role here [156, 225, 157, 221, 177, 118, 222]. Data
parallelisation, i.e., enabling parallelism in reasoning by data partitioning, has also been considered
and investigated as a possible way to tackle this issue [180, 179]. However, for expressive Knowledge
Representation languages, incremental evaluation under frequently changing data is not at a level
of performance as one would desire in real-time applications like traffic monitoring.
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The second question has led to several works in which (static) Knowledge Representation
formalisms have been extended with operators and constructs from temporal logics and reasoning,
e.g., [86, 112, 52, 29, 226, 58]. However, they are quite diverse and it is at this point open whether
the requirements of Stream Reasoning are well covered and which selection and combination of
operators would be beneficial, and whether novel operators should be introduced.

The third question is important as, intuitively, constructs in a language that allows for expressing
more involving relationships (e.g., joins with negation, nested relations, or recursion) require more
computational resources for evaluation [102]. However, even comparatively high resources may not
empower one to compute answers over varying inputs, as well-known from descriptive complexity
theory [121] and researched extensively in databases and knowledge representation. In DSR, this
question–in particular with an eye on high throughput–has been not been much explored yet.

The fourth question arises as commonly declarative languages based on logic assume a well-
behaved environment in which data is consistent and uncertainty, if at all, is limited to missing or
indefinite information. In the streaming context, this calls for extensions of DSR formalisms that
can deal with inconsistent data, outliers, and quantitative uncertainty, especially with probabilistic
information. This has been addressed in several works, e.g., [161, 214, 51, 90, 181, 74, 215], but
there is no gence nor uniform approach to serve this need, and performance guarantees are an
issue. In general, blending uncertainty with logic is a popular topic of interest in AI, with many
ongoing works in several communities. In a streaming context, we identify two main research
avenues. The first is studying whether existing techniques, in particular those that use deep
learning architectures in static contexts, can be successfully adapted so that they can work in
a streaming context. The second avenue consists of designing novel techniques specifically for
streaming scenarios. This type of combination will be discussed in more detail in Section 5
dedicated on inductive Stream Reasoning.

We conclude by emphasising the critical importance of establishing comprehensive metrics and
clear evaluation criteria for assessing contributions to the aforementioned research questions. This
is a problem that has been receiving considerable attention in the community (see, e.g., [196]),
especially for the following reasons:

If two solutions implement two different formalisms, then it can be that it is precisely the
differences between the two which are responsible for a certain increase/decrease of performance.
Thus, it is hard to distinguish the value of a certain solution;
If we adopt absolute metrics, like runtime or memory consumption, then it becomes arguable
when a solution is “good enough” since small variations in the use case can lead to a completely
different outcome;
It is also difficult (or even impossible) to determine which are the most important without
resorting to concrete use cases.

As previously mentioned, several RSP benchmarking efforts were developed [239, 133]. These
platforms require a graph-based data model and are tailored towards benchmarking query answer-
ing, hence are well suited for OWL-based languages. For instance in [57], the authors showed that
queries with an OWL2 QL-based engine could be answered up to a throughput of 200K triples/s.
Since the mentioned efforts do not cover more challenging reasoning tasks and program sizes,
some researchers rely on artificial micro-benchmarks to conduct the experiments and to report
empirical evaluations. For instance in [27], LARS-based implementations were compared among
themselves and against RSP engines featuring that a response time below 100ms can be achieved
for multi-rule programs with a throughput of 800 triples/s. It is likely that a more widespread
adoption of DSRs in the real world will guide the research community in choosing more meaningful
evaluation criteria.
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4.1 Make Sense
A central problem for DSR systems is to promptly answer the question “What is true now?”,
which has been a widely-studied problem in Knowledge Representation since the inception of the
field [96]. The number of contributions made in this area is so high that it is not possible to present
a concise summary without running the risk of missing out on some important work. Therefore,
we will limit ourselves to pointing the reader to some encyclopedic texts [153, 95, 85, 116, 96] and
focus instead on the most recent works that are closely connected to the ones in the other sections.

First of all, let us define a DSR as a system that receives as input a data stream and possibly
some background knowledge, either in the form of facts or more complex expressions like rules.
The system aims to process the data stream to infer new conclusions using a deductive logic-based
process. The computation is specified in a declarative manner, that is, we tell the system what to
compute and let it decide how to do it. Typically, it is expected to yield the answers to a given
query. For instance, a DSR may receive as input a query in the form of a set of rules and use
those to compute the answers.

Since the deductive process is based on logic, DSRs require that the input (stream, query,
background knowledge, etc.) is expressed with a formal language. Different such languages have
been proposed, based on temporal logic as in the DyKnow framework [112], on extensions of
description logics as in SPARQLstream [57] and STARQL [167], or on logical rules as in the
popular LARS [29] and DatalogMTL [52, 227] formalisms. The first is grounded on Answer Set
Programming (ASP) [53], one of the most well-known languages in the Knowledge Representation
community while the other is grounded on Datalog [61], another established formalism in the
community. These two languages define the semantics (what does it mean to answer a query?) and
the supportive expressive power (what kind of queries can we write?) in a formal and unambiguous
way. In general, we observe here a trade-off that is common with logic-based reasoning: the higher
the expressive power is, the more challenging the computation becomes, to the point it is no longer
feasible. This trade-off has motivated the design of formalisms, like LARS and DatalogMTL, that
have computational bounds that meet the demands of streaming scenarios.

4.2 Taming Volume
First of all, it is essential to mention that while some approaches assume that the stream is infinite
(e.g., DatalogMTL [227]), others (e.g., LARS [29]) assume that there is a time point in the future
when the stream ends, respectively data beyond it will be ignored. Of course, from a practical
point of view, we can set the time when the stream ends to a point which is very far in the
future to simulate the case of an infinite stream. From a more formal point of view, however, the
assumption that the stream is finite has essential consequences related to the decidability of some
critical operations like query answering.

In this context, a data stream is often viewed as an ordered collection of timestamped facts,
e.g., in Example 3 it consists of tram(36, tr1, s1) and tram(40, tr2, s2). The facts become available
as time passes by, which means that the system does not have immediate access to all the data.
The data stream is augmented with timestamped atoms that are derived, which in Example 3 may
be exp(44, tr1, s3) and exp(43, tr2, s3) for the projection of the expected arrival times of tram tr1
and tr2, respectively, at stop s3. Since we are often interested in obtaining answers immediately,
the system must continuously re-evaluate the input queries as new data becomes available. Clearly,
to support large volumes of data, it is more efficient to reuse all the inferences previously derived
instead of re-computing them from scratch. In a static setting, this problem has been widely
studied and is commonly referred to as “incremental reasoning” or “knowledge base maintenance”.
Indeed, some of the techniques used for incremental reasoning can be adapted to work on data
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streams. For instance, a well-known technique developed for Datalog is semi-naïve evaluation
[21], which prevents a rule instantiation being evaluated more than once. This technique has
been adapted, with some modifications, to work with data streams [27]. Other techniques include
multi-shot solving [164], overgrounding of rules [119], and truth-maintenance methods [30] for
ASP based stream reasoners.

4.3 Taming Variety

Streams may originate from various sources, such as sensors with different modalities, but also as
output of processing components in a system. This naturally leads to a variety of data formats
that would need to be accommodated. However, DSR has so far not put much emphasis on
heterogeneous data streams, and the systems and approaches available focus on a specific data
format. Specifically, as mentioned above symbolic streams are commonly represented as collections
of ground atoms that represent any input; the proper treatment and reconstruction of the meaning
of the data lies with the stream queries using them. While plain, this approach akin to data
models in relational databases still allows for embracing a number of data domains. In some
cases like e.g., for RDF, mapping data into logical atoms while preserving the meaning is rather
easy, while for richer data formats, such as (part of) a knowledge graph or graph data generated
by a camera describing a scene and how it is evolving may be more demanding; flattening, i.e.,
converting structured to plain relation data may serve here as a key technique and predefined data
schemes of fixed structure can be used to ease the meaning reconstruction for query answering.

4.4 Taming Velocity

In order to provide responses that are still valuable and not outdated, limiting the data to
snapshots is a common approach, in which merely data available at some specific time point is
considered. By doing so, one is taking into account that the answer may possibly diverge from
the one when the evaluation would happen over the whole stream. Windowing is an essential
notion in this context, shared among the various approaches, which can be defined as input or
dynamically computed. In the first case, the user decides for how long in the past (or in the
future) the system is allowed to consider input data. This can be done through time-, tuple- or
partition-based windows, similar to the windowing functionality in Stream Processing and SLD. In
the second case, a reasoner may infer automatically when some data in the past (or in the future)
should be ignored. An important aspect in both cases is whether forgetting respectively ignoring
data will affect the reasoning outcome; clearly one desires (or may even request) that this is not
the case. Unfortunately, the deductive setting comes with computational obstacles: for temporal
Datalog, which is a core rule language for temporal reasoning, it is in general undecidable whether
forgetting data using finite sliding windows is possible without loss of inferences, as well as to
recognize suitable sizes of such windows [191]. Thus, either a (deliberate) loss of inferences is
accepted or restrictions on the programs and/or assumptions on the data have to be adopted. In
frameworks like LARS, windows can be nested, which seems to occur less frequently in practice.
In addition, time points may be abstracted in a window, such that data occurrence somewhere
(i.e., at some specific point in time) or, dually, everywhere (i.e., at all time points) in the window
is considered; e.g., DatalogMTL [52, 227] and LARS [29] offer this feature. The language of the
i-dlv-sr stream reasoner [58], which leverages on Apache Flink and the incremental ASP solver
i2-dlv [119], supports moreover non-contiguous windows that may be time- or tuple-based; however,
the rules of a program must use stratified negation, i.e., negation can be evaluated in a layered
fashion.
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4.5 Domain Complexity
This research dimension is inherently tied to a selected domain language family and the reasoning
task at hand, which leads to a wide range of approaches, mainly covered by the fields of Semantic
Web technologies and Logic Programming, which adhere to different views of how the world of
interest is modelled; this in particular concerns incompleteness of data, which will be addressed in
Section 4.6 below.

Temporal Logic. As stream reasoning involves time, temporal logic is a natural basis for DSR.
Linear time logic (LTL) [182] is perhaps the most prominent temporal logic. Besides Boolean
connectives, temporal operators are available that allow for expressing statements X ϕ and ϕUψ,
which informally mean that ϕ holds in the next stage resp. that ϕ holds always until ψ holds at
some stage; Fϕ and Gϕ are shortcuts where ϕ = ⊤ (truth) and ψ = ⊥ (falsity). respectively,
meaning that ψ holds at some stage resp. that ϕ always holds. Formulas are evaluated over infinite
paths s0, s1, . . . , si, . . . in a Kripke structure, which intuitively is a transition graph over truth
assignments to a set of propositional atoms; this provides a natural link to (infinite) streams. For
example, the formula ϕ1 = G g → F r intuitively expresses that whenever a request (r) is made, it
will be granted (g) instantly or at some later stage, while ϕ1 = G g → X r expresses that whenever a
request (r) is made, it will be granted (g) in the next stage; the formula ϕ3 = ¬g U r intuitively says
that no grant occurs prior to the first request. On the infinite path ∅, ∅, {r}, ∅, {g}, {r}, {g}, ∅ω,
where each set are the atoms assigned true at the respective state, formula ϕ1 evaluates to true,
while ϕ2,evaluates to false: r is true at stage 2, while g is false at stage 3. The formula ϕ3 evaluates
to true on this path, since r is true at stage 2 and g is false at stages 0 and 1.

Beyond a simple ordinal timeline of consecutive stages 0, 1, 2, . . ., metric temporal logic (MTL)
[130] and variants are considered in DSR in which G and F are relative to an interval I = [a, b],
written ⊞I resp. ♢+I , such that ⊞Iϕ (resp. ♢+I) is true at time t in a path, if ϕ is true at every
(some) time t′ where t+a ≤ t′ ≤ t+b. This in particular allows for modelling data snapshots
respectively windows as described above, where only part of the stream data is considered for
evaluation.

Relational Domains. In a plain relational setting, a domain is similar as with relational databases
more or less given by a list of elementary predicates, and any relationships among them have to
be expressed by statements in the program or theory for Stream Reasoning.

MTL is used for Stream Reasoning in planning and execution monitoring is [86], which is
part of the DyKnow framework [112]. The latter streams data to a monitor which continuously
evaluates formulas over them. E.g.,

⊞((¬onroad(car1)∨ slow(car1))→ ♢+[0,30](⊞[0,10]onroad(car1) ∧ travel_speed(car1))

may express that if car1 is off-road or at slow speed, it will within 30 secs be for at least 10 secs
on the road at travel speed. The stream is incrementally incorporated into the formulas by means
of the progression syntactic rewriting process [17]; this also enables runtime verification.

Rule-based languages can be used to capture complex domains where we distinguish between
Prolog-, Datalog-, and ASP-based languages that share rules of the form:

a0 ← a1, . . . , an, not an+1, . . . , not am

where the ai’s are first-order atoms and not is negation-as-failure (aka default negation).
Pure Prolog was used for implementing real-time complex event detection, such as shown

in ETALIS [8] and RTEC [14], as one if its strength is efficient list processing. Prolog was also
more tailored for “native” Stream Processing by lazy evaluation techniques [173] and stream
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transducers [174]. The first “streamed Datalog” language is Streamlog [236], which uses the
notion of progressive closing world assumption (PCWA) to deal with stream data, considered
in Section 4.6 below. Recursive queries further extended the initial language and aggregates in
[70]. A different approach was pursued with DatalogMTL extensions [52, 226, 227] allowing for
MTL operators in rules that are evaluated over a dense timeline. DatalogMTL was subsequently
extended with stratified negation in rules [66] and recently with stable semantics for unstratified
rules [229, 228].

Answer Set Programming is well-suited for reasoning tasks that require to model and solve
NP-hard search problems. ASP evolved for Stream Reasoning on the level of modelling/language
features with StreamRule [152], C-ASP [178] and LARS [29], where all languages introduce various
window operators and the latter lifted answer sets to answer streams inheriting their properties
(e.g., minimality) and allowing for LTL operators (without next nor until) to be evaluated over
a window. LARS was later extended to model quantitative extensions in stream reasoning [90],
while StreamRule was later extended to cater for uncertainty [162, 163]. On the level of processing
features, the multi-shot solving feature of Clingo facilitated the continuous evaluation of changing
logic programs [101]. Fragments of the LARS language were implemented in Ticker [30] and Laser
[27], where the later is geared for high throughput on large data volumes with the restriction to
stratified programs. Distributed evaluation of LARS programs was introduced in [92], where a
program can be decomposed and evaluated by several engines using an interval-based semantics.

Ontologies. Different from the rule-based formalisms above, other DSR languages leverage an
ontology of the domain that is given in a customary language, such as the RDF(S) and the
OWL2 standard. A basis for temporal reasoning in Description Logics (DL), on which several
languages of OWL2 are based, was given in [12], which extended DL with LTL, allowing for
temporal operators in DL axioms, with two-sorted semantics for objects and the temporal domain.
Furthermore, temporal query answering was investigated, e.g., in [13, 49], where query rewriting
over DL-Lite ontologies was extended for LTL operators in queries. A direct extension for
RDF(S) ontologies as used in RDF Stream Processing are OWL-based ontology languages such
as OWL2 RL, OWL2 QL or OWL2 DL [110]. In particular, OWL2 QL is well-suited for Stream
Reasoning since it is first-order-rewritable and can be evaluated on a streaming database system
(DBS), i.e., a data management system geared to store and process an incoming data stream in
real time. SPARQLstream [57], STARQL framework [167], and the work of [89] allow for query
rewriting over a streaming DBS, where the ontology is rewritten into the query that supports
window operators. OWL2 RL reasoning that comprises also recursive rules is supported by RDFox
[160], where the combination of a main-memory DBS and incremental update enable the use in a
stream reasoning setting. An approach that supports more expressive ontologies is TrOWL [213]
where the combination of incremental reasoning and with semantic and syntactic approximation of
OWL2-DL by OWL2-QL and of OWL2 by OWL2-EL allows for query answering and classification,
respectively, over streams of ontologies.

Stochastic Domains. In real-world domains, dealing with quantified uncertainty is an important
aspect, which has been addressed in several extensions of DSR languages. PrASP [161] is a
probabilistic extension of ASP, which offers probabilistic annotations of formulas, including
facts and rules, which induce a possible worlds semantics. LARS has been extended to model
quantitative extensions in stream reasoning [90]. Among them is probabilistic reasoning, which has
been demonstrated for object tracking in [181]. P-MTL [214] and ProbSTL [215] are probabilistic
extensions of MTL and STL respectively, which allow for incremental runtime verification with
explicit constraints over deterministic observations and uncertain predictions inside the logic itself.
Notably, ProbSTL can express confidence in predictive capabilities by comparing past predictions
of the present state with estimations of the current state.
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In conclusion, various domain complexities are supported in Deductive Stream Reasoning,
ranging from low language complexity as with OWL2 QL and positive Datalog programs, to
ASP-related languages, DatalogMTL, and TrOWL, which offer the highest degree of language ex-
pressiveness on the level of program structure, temporal operators, and ontology model, respectively.
Furthermore, some support of probabilistic reasoning is available.

4.6 Data Quality
Veracity. In approaches based on a crisp 2-valued logical semantics, the data in a stream is
expected to be pre-processed and is assumed to be verified in a credible manner. However, facts
might still be checked for inconsistencies with respect to the domain knowledge using constraints
in rule-based languages, or disjointness in ontology-based languages. In [51], the authors suggested
temporal query answering in OWL2 QL over inconsistent data streams with three inconsistency-
tolerant semantics designed to automatically repair inconsistencies, e.g., a brave semantics in
respect to rigid concepts/roles. If veracity is caused by a sense-reasoning gap between a lower-level
probabilistic inference and a higher-level logical reasoning, probabilistic reasoning methods are
applied to bridge this gap [113]. Notably, the DyKnow extensions [86] of P-MTL [214] and
ProbSTL [215] allow Stream Reasoning with probabilistic temporal logics, where complex formulas
can be embedded in probability conditions such as Pr(a← b) < 1. In [181], the authors followed
a different approach by designing a neuro-symbolic stream fusion framework, which includes
the learning of rule weights that are mutually independent probabilities. The LARS language
was generalised to quantitative extensions in [90] using weighted logic over semirings, which are
algebraic structures with multiplication and addition, e.g., the natural numbers, the integers, etc.,
obeying specific reasonable axioms. Weighted LARS allows lifting several quantitative extensions
of logic programming to the streaming setting, among them Problog [184], P-Log [22], and LPMLN

[233]. In particular, weighted rules of the form 0.8 : a← b are supported that induce a probability
distribution over the possible answer sets (models) of a program.

Incompleteness. Incompleteness occurs on the level of missing facts in a stream but might also
include missing domain knowledge. In rule-based languages, it is handled by non-monotonic and
default reasoning approaches that work under the Closed World Assumption (CWA)[188], thus
stating that a lack of knowledge evidence that a statement is true entails its falsity. Tightly
connected to CWA is weak negation, also called negation as failure (NAF) in logic programs,
which allow the use of NAF literals, i.e., literals of the form not a, to express that the atomic
formula a is not derivable by the program. The already mentioned approaches of the Datalog,
DatalogMTL, and ASP-families support CWA (and possible extensions such as PCWA) as well as
NAF, whereas certain restrictions are imposed regarding the usage of NAF literals in programs,
e.g., stratified programs. In particular, the PCWA addresses the issue of stream data that is not
(yet) available at the time when a literal not a in a rule is evaluated. For example, Datalog rules
last(T ,E)← occurs(T ,E), not later(T ,E) and later(T ,E)← occurs(T1 ,E),T < T1 where the
first argument encodes time, informally capture the last occurrence of an event E; however, when
the event E occurs at time T , evaluation of the first rule is blocked since later(T ,E) has to be
evaluated, which by the second rule may be postponed indefinitely. To avoid such blocking of the
evaluation, only references to past or current data is permitted. The PCWA principle may then be
applied: “If stream(T , . . .) is observed in the input stream, conclude not stream(T1 , . . .), provided
that T1 < T and stream(T1 , . . .) is not entailed by the fact base augmented with the stream facts
having some timestamp T0 ≤ T .” Syntactically, PCWA can be enforced using local stratification
on time. For ontology-based languages, handling incompleteness needs to be addressed differently
as they work under the Open World Assumption (OWA), which means that a lack of current
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knowledge leaves both possibilities for a statement, being true or false, open. This indicates that
missing facts for these approaches either could be settled in a pre-processing step or be asserted
by the use of existential quantifiers as available in OWL2 languages. Incompleteness may be also
described using quantitative methods, where e.g., the weight of a fact expresses the certainty
or probability that an observation is made, whereas the latter values 1 and 0 recover complete
knowledge. Other work [73, 74] considered the handling of incomplete information in state streams
for runtime verification with MTL. Here, vertices in a progression graph represent formulas, with
directed labelled edges between vertices indicating that a formula can be obtained from progressing
another (input) formula with a state indicated in the edge’s label. A probability mass – representing
the ratio of progression paths having reached a formula so far – is pushed between nodes, with
terminal nodes representing verdicts (i.e., ⊤, ⊥) and their associated probabilities, allowing for
the tracking of verdict probability during progression with incomplete state information.

Constantly-varying. The aspect of constantly changing streams is less of a focus in current
research due to three reasons. First, the availability of new data might not trigger the re-evaluation
of the conclusions as some approaches are pull-based, whereas in push-based approaches a re-
evaluation is triggered. Second, a central processing feature of these approaches is incremental
updates, where the variation in the number of updated terms and not the size of updated data
matters. For instance, a single ground fact deletion can trigger the re-evaluation of the full
knowledge base. Note that not all mentioned approaches in this section support incremental
updates. Third, variability can be considered from the semantic point of view, when the meaning
of categories, concepts, or relationships changes over time. This concept drift [99] requires a DSR
to include monitoring and learning components that can detect and address the drift, respectively.
Automatic addressing the drift might be especially complicated since it might require updating
the knowledge of a DSR, e.g., add, delete, or update rules in the case of a relational DSR. For
instance, in [181], the authors equip their system with a learning algorithm to learn weights of
rules and thus counteract the concept drift. The authors of [63] go even further and directly
address concept drifts by applying semantic embeddings, i.e., vectors capturing KB consistency,
and supervised learning to detect concept drifts in ontology streams. Nevertheless, the problem of
concept drift remains largely unaddressed by modern DSR.

5 Inductive Stream Reasoning

Inductive Stream Reasoning (ISR) aims to support reasoning with new knowledge that is generated
bottom-up from the data itself, which then may be used to augment deductive reasoning. In
particular, this includes integrating knowledge generated by Deep Neural Networks (DNNs) from
sub-symbolic inputs using machine learning algorithms, e.g., object or activity classification, but
also extracting rules from stream data. In this context, dealing with uncertainty is a key issue.
Applications are widespread and include critical areas such as social media analytics [25], robotics,
traffic surveillance [87, 76], and autonomous driving [197]. From a sub-symbolic method perspective,
a data stream can be seen as an unbounded ordered sequence of data points S : d1, d2, ..., di, di+1, ...

with i ∈ N. Each data point is represented by a feature vector Xi [242]. The different data points
are generated over time, and the method cannot access the entire data stream simultaneously.
Usually, most of the methodologies in this context focus on the data stream classification problem,
where the goal is to predict the target label yi associated with each data point di whenever di is
generated. Since existing Machine Learning solutions are not intended for use in a pure streaming
scenario where the learning algorithm continuously learns from an ongoing data stream, two main
areas emerged: Streaming Machine Learning (SML) [38] and Continual Learning (CL) [141].
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The macro-level Stream Reasoning research question can be reformulated to the following
generic meso question for ISR:

Meso (Inductive Stream Reasoning): How can we continuously make up-to-date
predictions over raw data formats, e.g. sensory observations, that are constantly changing
and inevitably noisy?

5.1 Make Sense
By quantifying uncertainty and creating probabilistic models, ISR systems can make more nuanced
decisions based on available data streams. One of the most generic formalisations so far towards
probabilistic reasoning is proposed in [91]. In another significant development, neuro-symbolic
approaches [181] have been formulated to combine the generalisation ability of neural networks
with the structural rigour of symbolic logic. By accommodating semantic streams embedded
with probabilistic [215] and temporal dimensions [72], the ISR models become highly capable of
adapting to dynamic, real-world conditions.

More concretely, given a data stream S of data points, each represented by a vector Xi, a
sub-symbolic method produces a data stream of insights generated by implementing a specific
learning algorithm. The potential integration of sub-symbolic methods with deductive reasoning
offers various architectural possibilities. One approach involves the integration of deductive
reasoning with insights generated by sub-symbolic methods. In a notable example, Kirkpatrick et
al. [125] leverage sub-symbolic methods across heterogeneous data streams. The varied insights
derived are then unified and employed by a deductive reasoner. Belcao et al. [32] use a similar
approach to propose a bridge between Big Data Analytics and Semantic Technologies. Conversely,
an alternate solution follows a different path. Here, a deductive reasoner is directly applied
to a data stream, leading to continuous deduction and transformation. The transformed data
becomes the canvas for sub-symbolic methods to apply inductive reasoning and yield outputs, as
demonstrated by Barbieri et al.[26]. To make this integration between deductive and inductive
reasoning more concrete, let’s introduce a practical problem.

▶ Example 4 (Taxi cont’d). Suppose a taxi driver must answer questions like “What museum can
I reach in less than 25 minutes leaving at this exact moment?” To solve this problem, Della Valle
et al. [76] use different types of information. Firstly, the work retrieves monuments, attractions,
exhibitions, and events in the city of Milan from different open data in RDF format. It also
adds the topology of the city’s streets, detections of traffic sensors and weather information. For
each traffic sensor, a specific sub-symbolic method is applied. Particularly, the authors train
Recurrent Neural Networks to forecast traffic. The different sensors’ predictions are propagated to
generalise beyond the sensors’ locations by exploiting the street graph topology. Ultimately, a
deductive stream reasoner comes into play, addressing user queries through deductive reasoning.
This reasoner seamlessly integrates RDF data and traffic predictions obtained from sub-symbolic
methods.

5.2 Taming Volume
The massive volume of streaming data in real-time from various sources is another issue that
ISR aims to tackle. A robust sub-symbolic streaming method should be easily embeddable in a
stream processing pipeline capable of running multiple concurrent queries on big data volumes
while dealing with high update loads. In terms of data volume, it could range from megabytes in



P. Bonte et al. 2:25

nanoseconds to terabytes in minutes, depending on the specific requirements of an application.
For example, autonomous cars generate around 25 Gigabytes of data per hour including 4-6
radars (0.1-15Mbit/s), 1-5 LIDARs(20-100/Mbit/s), 6-12 cameras (500-3500Mbit/s) and under
0.01Mbit/s sensors such as Ultrasonic, Vehicle motion, GNSA and IMU. Moreover, most of the
systems have to deal with multiple concurrent queries on big data volume paired with high update
loads generated continually from multiple streams from multiple sources. On top of that, it
depends on the reactiveness constraint. It can be MB in nanoseconds, GB in seconds, TB in
minutes. As mentioned above, it should be impossible to tame that volume, ignoring the streaming
nature of the data.

5.3 Taming Variety
Streaming sub-symbolic methods can support different natures of data. SML is usually applied
to structured data streams containing data points with tens of features. Classical real-world
benchmarks include Airline [120], containing flight arrival and departure details; Forest Cover
Type [42], representing forest cover types of specific geographical areas based on different attributes
determined by the US Forest Service; and KDDCup99 [210], including data for intrusion detection
in a network. On the contrary, CL usually deals with unstructured data like images. Each data
point can contain hundreds of thousands of features. Standard benchmarks include streaming
versions of the most known computer vision benchmarks (MNIST [237, 108] or CIFAR [147]). An
interesting case is represented by the OpenLORIS [201] benchmark, which provides a comprehensive
set of visual, inertial, and odometry data captured with real robots in authentic scenes. The goal
of the learning model can be scene understanding or evaluating Simultaneous Localisation and
Mapping.

Moreover, more complex multi-model data streams can be supported, such as in autonomous
driving applications, where data originates from various sensors, each providing a unique lens
through which to view the environment. For instance, as shown in [197], an autonomous vehicle
may use radar, lidar, and cameras to understand its surroundings, requiring the reasoning system
to integrate and make sense of this disparate data using deep neural networks and other signal
processing components to lift these raw data into symbolic forms to symbolic solvers or reasoners.
In essence, DSRs above can then be used as an underlying component to make logical decisions
regarding the observed data.

5.4 Taming Velocity
One of the most critical aspects of ISR is its near real-time decision-making capabilities. For
instance, in traffic surveillance applications, the system must make immediate decisions based
on incoming data. It cannot afford to wait for the entire data set before beginning the analysis.
This is especially true for trajectory predictions, where potential paths or actions are inferred
even before complete data is received. Additionally, as soon as data becomes available, immediate
insights are formulated and communicated, ensuring minimal delay. However, this challenges
existing machine learning and reasoning systems, which may not have been designed to handle
the high-speed, ever-changing nature of data streams.

Regarding the sub-symbolic methods, an SML learning model aims to predict the label ŷi

whenever a new data point is generated. It assumes that the actual label yi arrives after casting the
prediction. The model is updated incrementally whenever a new yi is available. SML models can
use each data point only once. In Batch Incremental Learning (BIL), data points are accumulated
in fixed-size batches containing tens of them [186]. The model is updated once the mini-batch
fills up. SML prioritizes computational efficiency in time and memory. Following BIL’s direction,
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CL assumes the data points will be grouped into large batches called experiences. However, each
experience ei can contain thousands of data points (rather than tens), randomly accessible as
many times as the model requires. A CL strategy can process each ei for as long as necessary
before accepting a new experience.

Concept drift. Concept drift is a critical aspect associated with the evolving environment of data
streams. The traditional Machine Learning assumption that data is independent and identically
distributed does not hold in this context, where data can change its distribution. A concept is
the unobservable random process producing data points [97]. Concept drift is a phenomenon in
which the statistical properties of a domain change over time in an arbitrary way [148]. We can
categorise concept drift into two primary types: virtual and real. Virtual concept drifts occur
when the probabilities P (X|y) or P (y) change. Real concept drifts happen, instead, when there is
a change in the P (y|X) probability. Therefore, a virtual concept drift does not affect the class
boundary, while a real concept drift introduces a change. Additionally, in cases of abrupt drifts,
the new concept instantaneously replaces the old one. Conversely, the new concept gradually
or incrementally replaces the old in gradual and incremental drifts. Lastly, it’s also possible for
concepts to re-occur over time. SML assumes the distribution within a concept to be fixed. SML
literature puts a strong effort into automatically detecting concept drifts. These solutions can deal
with all concept drifts. Conversely, CL assumes that each new experience introduces an abrupt
concept drift. For this reason, it does not use concept drift detectors.

Temporal dependence. Numerous data streams exhibit dependencies on their past values [40,
242]. For instance, an attribute value may result from an auto-regressive transformation applied
to preceding instances, such as the fluctuation in commodity prices like electricity [36] or the
evolution of weather conditions [84]. Modelling the evolving temporal patterns, e.g., trends
or seasonalities, can be challenging, and traditional methods assuming independence between
observations are unsuitable [241]. Consequently, addressing this intricate issue requires the
development of specialised methods capable of capturing the dependencies inherent in the data.
While there has been significant emphasis on detecting concept drifts and developing techniques
to adapt to such changes, the issue of independence has received comparatively less attention.
Approaching this matter from a SML standpoint, the filtering task within a sequential-state space
model, such as Kalman Filters, emerges as a promising avenue for managing concept drift and
temporal dependence [240]. Similarly, applying CL methods on Recurrent Neural Networks to learn
sequences within a data stream presents another encouraging approach to address this complex
problem, as evidenced by the introduction of Continuous Progressive Neural Networks [103].

The challenge of temporal evolution extends to the integration between ISR and DSR. Envision-
ing an inductive reasoner, such as SML or CL models, processing data and recognizing the entities
for input to a deductive reasoner introduces potential issues when entities undergo evolution over
time, necessitating adaptive responses from inductive reasoners. In such instances, the challenge
may not be adapting to a concept drift but learning the entity’s natural evolution. Consequently,
accounting for temporal coherence within the data streams becomes crucial. Notably, intriguing
benchmarking datasets are showcasing temporal dependencies within the Continual Learning (CL)
field. Recent studies [143, 235] introducing datasets with inherent temporal aspects and concepts
like temporal distribution shift and coherence, underscore a growing community interest in this
direction.

Learning goals and evaluation. Despite both SML and CL learning from data streams and
managing concept drifts, they have different objectives. The main goal of SML is to detect concept
drifts automatically and quickly adapt to new concepts. An SML model must learn fast, react
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quickly to concept drift, and perform well on the current concept. It is also subjected to strict
constraints on time and memory consumption. Conversely, CL addresses the stability-plasticity
dilemma [151]. When learning new experiences, the model may forget what it has learned during
the previous ones. The ability to remember past knowledge is called stability, while learning
new knowledge is called plasticity. Too much stability could lead to difficulties in learning new
knowledge. Conversely, too much plasticity may lead to forgetting past knowledge and raising
the problem known as catastrophic forgetting [132]. The goal is to achieve a trade-off between
stability and plasticity. A CL strategy must perform well on all the seen experiences from the
first to the current one. This difference in objectives is reflected in different evaluation procedures.
SML does not distinguish between training and test data, and each data point is used for both
purposes. The evaluation protocols usually include a prequential evaluation [98]. Each time a new
data point is generated, the SML model predicts its label ŷi. When the actual label yi is available,
the protocol updates the evaluation metric (usually accuracy or Cohen’s Kappa Score) and then
trains the model on di. Conversely, CL evaluates the model’s ability to mitigate forgetting and
learning new experiences [141]. Each experience ei is split into a training set Dtrain

i and a test set
Dtest

i . All the Dtest
i are always available, while the Dtrain

i are provided over time. Different types
of metrics exist [141]. Accuracy is usually evaluated, after each experience’s training, how the
model performs on the current experience’s test set and all the previous experiences’ test sets.
Average accuracy evaluates the model’s overall performance after the last experience’s training by
considering the average accuracy on all the Dtest

i . The Backward Transfer Metric measures the
stability of the model and, more in general, how the final version of the model has improved or
decreased the performance of the previous versions. After training on the last experience, for each
previous experience ei, it subtracts the accuracy of the model trained on the experience ei from
the one of the current model tested on Dtest

i . A negative value indicates forgetting. Finally, the
Forward Transfer Metric measures how the training on the current experience is useful also for
learning the next experience. For each experience ei, it subtracts the accuracy of a random model
tested on Dtest

i from the one achieved by the model after the training on ei−1. A positive value
indicates that the current training positively affects the performance for the next experience.

5.5 Domain Complexity
The main focus of inductive reasoning is on the data and the signals it carries. When extracted,
such signals can be used to construct the domain. In this context, the domain complexity is usually
a tuned parameter: it is up to the scientist or engineer to determine the adequate complexity of
the model that will fit the data. Existing solutions try to build models of various complexities.
Lecue and Pan [138] propose an approach that extracts association rules from streaming data.
Balduini et al. [19] study how to extend inductive reasoning methods to a streaming scenario. The
resulting system uses RDF streams to create matrices, which are fed to an inductive reasoner,
SUNS, to recommend items.

Learning algorithms. For the sub-symbolic part, different choices are possible. SML usually
applies simple models, often based on Statistical Machine Learning. Frequency-based methods track
feature frequencies and calculate posterior probabilities using Bayes’s theorem. Neighbourhood-
based techniques identify neighbours for new samples based on distance, often using a sliding
window to manage recent instances. Tree-based classification algorithms are streaming versions of
decision trees that use the Hoeffding bound [117] for incremental split node decisions. Techniques
like Hoeffding Adaptive Trees (HAT) [37] address concept drift, incorporating concept drift
detectors. Ensemble-based methods combine predictions from individual models to enhance
generalisation with well-known techniques like Online Bagging, Leveraging Bagging, and Adaptive

TGDK



2:28 Grounding Stream Reasoning Research

Random Forests [107]. Conversely, CL usually applies more complex models based on Deep
Learning. It employs three main categories of strategies [141]. Replay approaches (e.g., [176, 183, 5])
store a subset of examples encountered during training in external memory to combat forgetting.
They blend this memory with the current data during each iteration to update the model. In
this context, Generative Replay methods (e.g., [202]) employ generative models to recreate
past examples as needed, eliminating the need for external memory. Regularisation strategies
(e.g., [142, 127]) bolster the loss function with additional terms to enhance model stability and
mitigate forgetting. They can, for instance, restrict changes in parameters crucial for previous data
or enforce consistent network activation over time. Architectural strategies (e.g., [145, 193, 200])
adapt the model’s architecture to incorporate new knowledge while minimising forgetting. Popular
techniques include expanding the number of layers or units over time and compressing or freezing
previous model components. Hybrid approaches (e.g., [147, 187, 198]) that combine elements from
more strategy families are often highly effective.

Frameworks. Various frameworks facilitate the application of SML and CL algorithms. Notably,
almost all existing frameworks are mainly used for research, as they still have significant limitations
for industrial applications. The Massive Online Analysis (MOA) framework [39] presents a broad
spectrum of algorithms designed for multiple tasks related to data stream analysis. MOA’s
tasks encompass classification, regression, multi-label, multi-target, clustering, outlier detection,
concept drift detection, active learning, and more. In addition to learning algorithms, MOA offers
data generators (e.g., AGRAWAL, Random Tree Generator, and SEA), evaluation methods (e.g.,
periodic holdout, test-then train, prequential), and statistics (CPU time, RAM-hours, Kappa).
The Scalable Advanced Massive Online Analysis (SAMOA)[155] is both a framework and a library
that combines stream mining and distributed computing (i.e., MapReduce). SAMOA allows users
to abstract the underlying stream processing execution engine and concentrate on the learning
problem. It provides adapted versions of stream learners for distributed processing, including
the Vertical Hoeffding Tree algorithm[129], bagging, and boosting. Vowpal Wabbit (VW) is an
open-source machine learning library featuring an efficient and scalable implementation with
several learning algorithms. VW has demonstrated its capability by learning from a tera feature
dataset using 1000 nodes in approximately an hour [3]. StreamDM, an open-source framework for
big data stream mining, utilizes the Spark Streaming extension of the core Spark API. One notable
advantage of StreamDM over existing frameworks is its direct integration with the Spark Streaming
API, which efficiently handles complex issues arising from the underlying data sources, such as
out-of-order data and recovery from failures. There has been a significant recent development in
SML algorithms for Python, with the River package [154] being particularly noteworthy. River
supports various ML tasks, including regression, classification, and clustering. Moreover, River is
versatile enough for ad hoc tasks, such as computing online metrics and detecting concept drift.
Finally, Avalanche [146] deserves mention as the first experiment of an end-to-end Library for
reproducible CL research and development. It encompasses implementing state-of-the-art CL
strategies, standard benchmarks, evaluation metrics, and evaluation scenarios.

5.6 Data Quality
ISR has the potential, to address data imperfections, such as incompleteness and noise, that can
have a disruptive effect on Deductive Stream Reasoning. Data incompleteness arises in sensor
networks due to factors like sensor battery depletion or network link interruptions. In social media,
instead, it arises due to limited sampling rates in social stream APIs or – in a certain sense luckily
– because conversations also occur outside social networks. Noise issues encompass sensor network
imperfections or operational deviations. In processing unstructured data such as text, sounds,
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images and videos, it occurs due to low accuracy in tools used for analysing them such as the
inability to catch irony, difficulties in transcribing phonetically ambiguous words, or in evaluating
occlusions in object detection and tracking.

DSMS and CEP have traditionally handled noise [68]. Two main types of noise have been
identified, affecting content and temporal annotations. Content noise pertains to inaccuracies in
data from sensors or human interactions, potentially leading to incorrect conclusions. Statistical
methods can manage noise in simple schemas, but more complex schemas require advanced
techniques such as [137]. Researchers can explore streaming machine learning approaches to
process noisy data, coupled with deductive reasoning techniques like inconsistency repair [10, 51],
and belief revision [192, 190]. Temporal annotation noise involves out-of-order data items,
particularly when multiple streams with different time annotations are involved. Solutions exist for
handling temporal noise, with room for semantic enhancements [203, 144]. Addressing temporal
noise may involve aligning diverse temporal annotations from different sources. Existing solutions
can be adapted, with semantic enhancements offering promising opportunities [51].

In summary, ISR must increase efforts in tackling imperfections like incompleteness and noise,
necessitating innovative solutions and approaches for both content and temporal issues.

6 Discussion

This paper grounds the Stream Reasoning research, by providing a clear overview of its different
constituent research areas, and explaining how each of these areas target its different dimensions.
For over a decade, practitioners from different research communities have contributed to Stream
Reasoning research, each from within their perspective and background. Since 2015, researchers
in these different communities have organised the Stream Reasoning Workshops, a recurring event
with the purpose of sharing perspectives, challenges, and experiences around Stream Reasoning
topics.

This paper provides an overview of the main research contributions discussed during the Stream
Reasoning Workshops. Moreover, this paper provides a crystallisation of how each of the different
research areas within Stream Reasoning perceive and tackle the Stream Reasoning research
dimensions. By understanding how the different areas differ and relate and how they perceive the
various Stream Reasoning research dimensions, this paper grounds the Stream Reasoning research.
We conclude with a discussion of the take-away messages and open challenges for the next years.

6.1 Discussion of the Research Dimensions
We will now discuss how the different areas differ or relate in tackling the dimensions introduced
by the original SR research questions. Table 3 summarises the discussion by providing an overview
of how the different areas target the research dimensions.

Making Sense: Even though each area has a different focus when making sense of the data
streams, e.g., Stream Processing focuses on Continuous Querying, RSP/SLD on Continuous
Data Integration and Querying, DSR on incremental materialisation, model checking and
planning, each area has a continuous component when making sense and is typically done
through some kind of query. In Stream Processing this is an SQL-like language, in RSP/SLD
a dialect of SPARQL, while in DSR this is mostly done through rules.
Taming Volume: Volume has not been the main point of focus for any of the approaches,
except for Stream Processing which incorporates techniques to scale horizontally. The mechan-
isms to tame variety, as in RSP/SDL, or to incorporate rich domain complexity, as in DSR,
have a negative impact on the volume of data that can be processed.
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Table 3 Continuous Querying (CQ); Consistency (C); Data Integration (DI); Model Checking (MC);
Materialisation (MAT); Planning (P); Clustering (CLU); Classification (CLA); Temporal Logic (TL);
Incompleteness (I); Noise (N); Volatility (V).

Dimension SP SLD DSR ISR

Making Sense CQ C, DI MAT/MC/P CLU/CLA

Velocity Sub-millisecond Milliseconds Seconds Milliseconds

Variety Relational,
Document RDF Relational Multimodal

Volume
(Scale Up/Out) Yes/Yes Yes/Limited Yes/No Yes/Edge

Domain
Complexity Data Schema RDFS+ OWL2,

ASP, TL Variable

Data Quality I, N I I, C I, V, N

Taming Variety: Stream Processing requires a manual mapping to the used relational schema,
which is not a flexible approach and is typically not well-suited for data integration purposes.
RSP/SLD are able to solve a data integration problem in a continuous fashion by relying on
RDF and the extension of the Semantic Web stack and is thus the best-suited approach for
handling variety. DSR and ISR typically map to RDF to increase the support of data variety,
but do not directly build upon the Semantic Web stack. ISR tames variety in a different way
by supporting multi-modal streams, e.g. integrating video with numerical sensor readings.

Taming Velocity: All approaches use some form of windowing to deal with data streams,
however, the requirements in terms of responsiveness differ, Stream Processing focuses on
sub-milliseconds latency, RSP/SLD and ISR focus on milliseconds latency, while DSR is
satisfied with latency in terms of seconds. Stream Processing is the fastest, as it does not
require any overhead to perform data integration such as RSP/SLD, checking models and
incorporating complex domains as in DSR, or performing predictions as in ISR.

Domain Complexity: DSR allows the incorporation of the most complex domain knowledge,
at the cost of performance. RSP/SLD supports little domain complexity in order to prioritise
responsiveness. Although the focus is growing, Stream Processing has limited support for
domain complexity, rather than focusing on volume and velocity.

Data Quality has not been properly addressed by the different approaches. ISR has valuable
solutions for veracity through predictions, while DSR can handle incompleteness very well by
inferring missing facts in a deductive manner through the incorporation of domain knowledge.
Stream Processing solutions to deal with constantly varying data, which have been adopted to
some extent by SLD and RSP. Different areas have focused to some extent on the different
aspects of data quality, however, none of the approaches has targeted them simultaneously.

It is clear that each area has tackled different aspects of the original SR research dimensions.
Some dimensions have been tackled by all of them, e.g. Velocity, while others have received
more attention in one of the areas, e.g. Variety in RSP/SLD, Domain Complexity in DSR, and
incompleteness in ISR. In order to realise the SR vision, cross-pollination between different areas
is needed to cover all the dimensions simultaneously.
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6.2 Overlapping Approaches

Even though the large body has been done in the distinct areas of the SR research, there has been
research conducted that combines ideas from multiple areas:

Streaming Linked Data & Deductive Stream Reasoning

From within RSP/SLD, there has been a quest to increase the expressiveness of the reasoning
capabilities and thus increase the domain complexity. This has led to an investigation into how
more expressive reasoners can be combined or integrated with RSP engines.

Morph-Streams [56] and OntopStream [32], which employ an OBDA approach can support
OWL2 QL ontologies through their rewriting regimes. RoXi [44] is a recent effort to increase
the domain complexity of RSP engines to OWL2 RL, through various optimisations to enable
Datalog reasoning over RDF streams in an efficient fashion, e.g., through efficient maintenance of
the materialisation in the window [79] or pruning of the reasoning rules [47].

However, in general, there is a mismatch between the complexity of more expressive reasoning
algorithms and the change frequency of the data streams that RSP engines try to tackle. To
solve this mismatch, the vision of Cascading Reasoning [204] emerged, which suggests a layered
approach of processing and reasoning engines where the lower layers process the high-velocity data
with techniques of limited complexity, going up in the layers, the amount of data decreases while
the complexity of data increasing, ultimately resulting in support for expressive reasoning over
high-velocity streams. There have been first realisations in this area, such as StreamRule [152],
which combines the CQELS engine for RSP with ASP reasoning, and Streaming Massif [48],
which combines C-SPARQL with the HermiT reasoner for Description Logic and features complex
event processing capabilities. However, these initial approaches still require manually defining the
processing at each layer and thus do not constitute a generic approach to define the reasoning and
processing across various layers. Some interesting early developments in that area aim to rewrite
registered continuous queries and to prune datalog rules in order to push the processing to lower
layers in the hierarchy [45].

Streaming Linked Data & Inductive Stream Reasoning

In the early days of Stream Reasoning, there were several attempts to combine Inductive and
RSP for the analysis of social media streams. The first seminal work [25] introduced a pipeline
combining the deduction of a C-SPARQL engine [24] with a long and with a short window,
whose contents is transformed into a matrix factorisation system, in order to recommend links
in a bipartite graph that pairs users to movies. The combination of a long and short window
allows to capture both long lasting knowledge and hype effects. A similar approach was further
developed in [19]. Follow-up work led to demonstration of the applicability of this schema to
venue recommendation [18].

CQELS 2.0 [136] extends the CQELS engine with more powerful inductive capabilities such
as Deep Neural Networks, and it allows for the fusion of various multi-modal data streams. For
example, by fusing object detection on video streams with sensor readings of location and velocity
and by converting the results to the RDF model, the streams can be queried continuously in order
to solve multi-object tracking in a declarative fashion.

Interestingly, the approaches in this overlap augment the data itself and extend the query
language in order to support query answering over certain predictions as a result of the inductive
part.
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Deductive Stream Reasoning & Inductive Stream Reasoning

Above we presented ISR as a method to generate new knowledge that can be used in combination
with deductive reasoning. A natural question is then a fruitful combination of symbolic deductive
reasoning techniques with inductive techniques. Induction may further be interrelated with
abductive reasoning for learning, by generating hypothetical facts from which new complex
knowledge may be inferred, possibly in a cycle [123]. For such learning, dealing with uncertainty
is an important aspect. Specifically, in the PrASP [161] approach programs may inductively learn
from data streams and can be incrementally evaluated. For Stream Reasoning programs in [181],
merely the weights of rules as independent probabilities can be learned; that work showed how the
potential of combining DSR and ISR in the realm of object tracking under uncertainty in traffic
monitoring, demonstrated in [205], can be pushed to real-time performance with proper Stream
Reasoning infrastructure. These hybrid approaches are also particularly important in applications
like robotics, where generalisation and structured knowledge are vital [214].

6.3 Open Challenges
In terms of open challenges, we discuss the open opportunities for each research area that should
be solved in the next years in order to push the field closer to the true realisation of the Stream
Reasoning vision.

6.3.1 Stream Processing
With the availability of several large-scale technological infrastructures for stream processing,
which have been successfully deployed in multiple industries, it may be tempting to consider
stream processing as a solved problem. We warn the reader to make such a conclusion as we
believe that there are still several important challenges that need to be addressed.

First of all, current solutions, e.g., Apache Flink, are designed to be general-purpose solutions.
Such solutions sacrifice some performance to support a wider range of applications. Since
approaches for RSP, SLD, DSR, and ISR can be computationally demanding, we argue that an
important challenge is:

How can we optimise current general-purpose solutions for stream processing to support more
efficient reasoning applications?

An alternative approach consists of improving current reasoning solutions exploiting what has
been learned while developing the current state-of-the-art for generic stream processing. Hence
another important challenge is:

How can we improve the state-of-the-art for stream reasoning adopting the best practices in
large-scale stream processing?

In both cases, the challenges call for a deeper collaboration between members of various
communities. This collaboration has a huge potential, not only to solve the problem at hand but
also to discover new research avenues that can benefit both sides.

6.3.2 Streaming Linked Data
There are still various open challenges in the realm of RSP and SLD. We summarise the most
important ones in the form of micro questions:

How can we increase the expressivity of the ontologies when supporting reasoning in SLD?
Most approaches provided limited to no reasoning capabilities or simple regimes such as RDFS.
The reason is that there is a mismatch between the complexity of the algorithms to perform
more expressive reasoning and the responsiveness and low latency requirements of many of the
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use cases targeted in RSP. One vision to mitigate this is the idea of Cascading Reasoning [204],
which suggests a layered approach of processing and reasoning engines where the lower layers
process the high-velocity data with techniques with limited complexity, going up in the layers,
the amount of data decreases and the complexity of data increasing, ultimately resulting in
supporting expressive reasoning over high-velocity streams. There have been first realisations
in this area, such as Streaming Massif [48], however, it is still required to manually define the
processing at each layer.
How can virtual processing of RDF Streams be integrated with techniques that process “real”
RDF Streams? Both techniques have their benefits, but they have not been combined in order
to reap the benefits of both approaches. Doing so would allow various optimisations as the
conversion from virtual to “real” RDF Streams could be done in an optimal fashion, while
integrating different sources of data. This could lead to more flexible RSP engines, able to
adapt to RDF and non-RDF streams through virtualisation. The question of seamless mapping
of these sources to WoT or IoT ontologies can also be beneficial, especially for environments
where native RDF is not necessarily the most efficient option.
How can we use SLD as the basis for autonomous computing on the Web in rapidly changing
environments? The linked nature of SLD has only been exploited to a limited extent [54].
However, the potential for autonomous agency in stream processors [218] is high in terms
of distribution of query processing load, and local processing capabilities – e.g., for WoT
environments. For this to be properly implemented, it would be necessary to specify agent-
based primitives such as goals, intentions, or beliefs, related to the capabilities of RSP engines.
Moreover, it would be necessary to include scheduling and coordination mechanisms for enabling
efficient interactions among the autonomous RDF stream engines [209]. Moreover, when data
streams are managed using the web as the processing platform, new problems may emerge,
in particular when publishing personal data which may contain sensitive information. It is
therefore important to account for the privacy issues that may arise [77].
How can agents on the web collaborate to answer continuous queries? Although the vision of
interconnected RSP engines has been discussed in the past [80], its realisation is yet to become
a reality. It will be necessary to further investigate decentralised query processing for stream
environments, as well as explore how to formalise the semantics of cascading stream processing,
including how temporal aspects are affected by distributed query answering.
How can we continuously query RDF streams that have a much higher change frequency than the
milliseconds change frequency that SLD solution can currently handle? To cope with streaming
loads under high demand as it is currently done in non-RDF systems, hybrid approaches
that combine RSP and native stream data processing can lead to promising solutions. This
would require further exploring optimisation opportunities, as well as exploiting OBDA-based
approaches using underlying high-performance native engines.
How can we perform data integration continuously over data streams of different formats?
Although this topic has been addressed through virtualisation and materialisation to some
extent, most streams on the Web are not RDF nor follow RDF-like formats. Moreover, in
many cases there is no interest in necessarily transforming all of the contents into RDF. Hence,
there is a challenge to manage hybrid RDF streams, which could be processed by engines that
can handle different stream models.

6.3.3 Deductive Stream Reasoning
There are numerous challenges related to the development of DSRs. Among the most important
ones are undoubtedly those concerning the efficiency of the reasoning process so that it can meet
the requirements of a typical streaming scenario. In this context, we can distinguish two main
challenges:
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How can we shorten the response time of query answering with current formalisms such as
LARS and DatalogMTL? Examples of works in this category are the ones that focus on
maintaining the materialisation after updates [27], or the ones that combine materialisation
with other techniques [230].
Can we find a good balance between the expressivity of the reasoning while still maintaining
a high throughput? For instance, works in this category are the ones that restrict existing
formalisms to allow a faster execution [27] or the ones that provide extensions to support
higher expressivity without compromising performance [223]. Another type of approaches
falling into this category is focused on formal analysis of the input stream for data and/or
reasoning parallelisation [179, 92].

Another important challenge consists of improving the usability of DSRs. Currently, the
usage of a DSR requires a good understanding of the underlying technology and a proper way to
represent the domain using a formal language. It may be challenging to meet these requirements
in practice. Hence, two important research directions are:

How can we automatically capture knowledge in a formal language so that DSRs can use it to
reason over the data streams? Although inductive logic programming systems are available for
popular languages like Prolog or ASP, as far as we know, this research question has not been
properly investigated yet.
How can we communicate to users that are not familiar with formal languages why a reasoner
has returned some particular information? This topic has become particularly important since
AI is being adopted in an increasing number of domains. Like the previous question, this topic
of research on streaming scenarios has not yet been studied, although in this case there are
numerous works in static contexts that can be used as a starting point. Furthermore, recent
developments in large language models open an interesting perspective for user-friendly com-
munication between formal-language based systems and humans with little formal background
and training. Current attempts to exploit such models in fields like planning, argumentation,
and temporal logic may be lifted to the DSR setting.

Finally, another important topic of research consists of combining the power of logic-based
reasoning with techniques that can deal with uncertain data. This combination will allow us
to counter more effectively all the challenges related to data quality. Moreover, uncertainty is
inherently present in many domains and dealing with it is becoming increasingly important as
more and more machine learning techniques are being introduced in key decision processes.

Also in this case we identify two main research directions:
How can we include uncertainty, either aleatoric or epistemic, into the query answering process?
This question can be investigated by trying to adopt existing approaches to uncertainty such
as the possible world semantics [207] into a DSR or by the development of completely new
frameworks tailored to the needs of streaming scenarios. The PrASP system [161] discussed in
Section 4.5 represents a preliminary attempt to rely on possible world semantics to handle
uncertainty in an ASP-based stream reasoner, but the limited scalability makes it unsuitable
for real-world scenarios. This calls for the investigation of better sampling strategies and
uncertainty reasoning that does not necessarily rely on external solvers, but specifically tailored
to work with data streams.
How can we exploit stream reasoning with uncertainty to formulate what-if scenarios? This
problem is particularly important when a DSR is used to help decision processes when errors
can be very costly. Reasoning to determine not only what is true now, but also what can/cannot
be true in the near future can be invaluable as it could help to prevent malfunctioning in power
plants or disasters in crowd management. Unfortunately, as far as we know this topic has not
been investigated yet in a streaming setting.
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The aforementioned list is by no means a complete enumeration of all issues. There are also
several other problems which are equally valuable and deserve much attention by the community.
For instance, currently we lack solid and fair evaluation frameworks to compare the performance
of DSRs. In other more mature fields, the community has agreed on establishing an independent
team, which include many representatives from industry and academia, to define comprehensive
benchmarks. Examples of such initiatives are the TPC-H benchmark suite [220] and the LDBC
consortium [208]. Doing so also for DSR systems or, more in general, for stream reasoning in
general is a natural next step. Another important problem relates to the development of tools
that are beyond proof-of-concepts and which are robust enough to be used outside the community.

6.3.4 Inductive Stream Reasoning
By addressing challenges related to real-time decision-making, data variety, veracity, and massive
volumes, an ISR system aims to offer a robust framework for reasoning in dynamic environments.
Meso-level questions, like how to ground multi-modal data into high-level reasoning, still require
further exploration and implementation to be used in killer applications such as autonomous
vehicles and robotics. Likewise, the application of model checking under conditions of uncertainty
and incompleteness remains a vital area for future research. Therefore, as we move towards
an increasingly connected and data-intensive world, the role of inductive stream reasoning as a
harmonising factor between traditional models and complex reality is set to become even more
crucial. In this context, we identify the following research challenges:

How to ground multimodal sub-symbolic data streams into high-level reasoning? The neural-
symbolic field proposes several solutions to connect sub-symbolic data and high-level reasoning
facts and rules, such as DeepProblog [149] and NeurASP [234]. However, there are only a
few works, such as [206] and [181] considering streaming aspects of data. Most of them only
address this problem in very narrow domains or specific types of data and rules. Hence, this
calls for a systematic investigation of stream-first approaches, including learning to inference
phases of grounding multimodal stream data into high-level stream reasoning.
How to implement performant and scalable ISR systems for real world applications? Most of the
motivated applications for ISR have very critical requirements for low-latency in conjunction
with data volume like pointed out in Section 5. However, so far, there is no implementation that
can deal with the data scale of the targeted applications, e.g., autonomous driving, robotics,
and automation. To make ISR usable for such targeted applications, there is an urgent need
for more systems taking operational requirements seriously to make real-life impact to relevant
industries.
Can we perform model checking under uncertainty applied to signals modelled as streams
representing the physical world, when that incomplete and rapidly-available information is
assumed to evolve over time as the result of external processes? Model checking has the
potential to introduce formal verification in stream processing pipelines [31], thus contributing
to verifying correctness of processing results, identifying problematic stream processes, or
providing resource allocation information. Run time verification of observations and events in
data streams can also benefit from these works [109], although current approaches do not fully
incorporate uncertainty and domain knowledge as it is the case in ISR.

6.4 Summary
For more than a decade, researchers and practitioners from different communities have contributed
to advance Stream Reasoning, each from within their area and perspective. Since 2015, members
of these communities have organised the Stream Reasoning Workshop, an annually recurring event
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with the purpose of sharing perspectives, challenges, and experiences around the Stream Reasoning
topic. This paper not only reviews the main research contributions discussed at these workshops,
but provides a clear overview of the different areas that constitute the research field. Furthermore,
it crystallises how each of these areas perceives and tackles the various dimensions of Stream
Reasoning research. By understanding the views of these areas and how they relate and differ,
the Stream Reasoning research is grounded in sense. Future research efforts in the areas may be
aligned and benefit from each other based on our analysis, leading to powerful stream reasoning
technology and systems that are urgently needed in an ever streaming world.
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Abstract
Ever since the vision was formulated, the Seman-
tic Web has inspired many generations of innova-
tions. Semantic technologies have been used to
share vast amounts of information on the Web,
enhance them with semantics to give them mean-
ing, and enable inference and reasoning on them.
Throughout the years, semantic technologies, and
in particular knowledge graphs, have been used in
search engines, data integration, enterprise settings,
and machine learning.

In this paper, we recap the classical concepts
and foundations of the Semantic Web as well as
modern and recent concepts and applications, build-
ing upon these foundations. The classical topics

we cover include knowledge representation, creating
and validating knowledge on the Web, reasoning
and linking, and distributed querying. We enhance
this classical view of the so-called “Semantic Web
Layer Cake” with an update of recent concepts that
include provenance, security and trust, as well as
a discussion of practical impacts from industry-led
contributions. We conclude with an outlook on the
future directions of the Semantic Web.
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3:2 Semantic Web: Past, Present, and Future

1 Introduction

The vision of the Semantic Web as coined by Tim Berners-Lee, James Hendler, and Orla Lassila [19]
in 2001 is to develop intelligent agents that can automatically gather semantic information from
distributed sources accessible over the Web, integrate that knowledge, use automated reasoning [64],
and solve complex tasks as such as schedule appointments in negotiation of the preferences of the
involved parties. We have come a long way since then. In this paper, we reflect on the past, i. e.,
the ideas and components developed in the early days of the Semantic Web. Since the beginning,
the Semantic Web has tremendously developed and undergone multiple waves of innovation. The
Linked Data movement has especially seen uptake by industries, governments, and non-profit
organizations, alike. We discuss those present components and concepts that have been added
over the years and shown to be very useful. Although many concepts of the initial idea of the
Semantic Web have been implemented and put into practice, still further research is needed to
reach the full vision. Thus, this paper concludes with an outlook to future directions and steps
that may be taken.

For the novice reader of the Semantic Web, we provide a brief historical overview of the
developments and innovation waves of the Semantic Web: At the beginning of the Semantic Web,
we were mainly talking about publishing Linked Data on the Web [73], i. e., semantic data typically
structured using the Resource Description Framework (RDF)1 that is accessible on the Web using
URIs/IRIs to identify entities, classes, predicates, etc. By referencing entities from other websites
and Web-accessible sources, i. e., dereferencable via HTTP, the data becomes naturally linked. By
using standardized vocabularies and ontologies the information then becomes more aligned and
easier to use across sources. These principles have allowed non-profit organizations, companies,
governments, and individuals to publish and share large amounts of interlinked data, which has led
to the success of the Linked Open Data cloud2 since 2007. Since many of the large interconnected
semantic sources are accessible via interfaces understanding structured query languages (SPARQL
endpoints), federated query processing methods were developed that allow exploiting the strengths
of structured query languages to precisely formulate an information need and optimize the query
for efficient execution in a distributed setting.

When Google launched its Knowledge Graph in 20123, semantic technologies experienced
another wave of new applications in the context of searching information. Whereas search engines
before mainly relied on keyword search and string-based matches of the keywords in the websites’
text, the knowledge graph enabled including semantics to capture the user’s information need as
well as the meaning of potentially relevant documents. To achieve this purpose, Google’s knowledge
graph integrates large amounts of machine-processable data available on the Web and uses this
information not only to improve search results but also to display infoboxes for entities identified
in the user’s keywords. It is only since 2012 that we have widely used the term “knowledge graph”
to refer to semantic data, where entities are connected via relationships and form large graphs of
interconnected information, typically with RDF as a common standard language. In recent years
though (labeled) property graphs (LPG) have been used to manage knowledge graphs. We refer
to the literature for a detailed comparison of RDF graphs and LPGs [78] and also like to point
out that they can be converted into each other [23]. In this article, we consider knowledge graphs
from the perspective of the Semantic Web, i. e., we consider RDF graphs.

1 http://www.w3.org/TR/rdf-primer/
2 https://lod-cloud.net/
3 https://blog.google/products/search/introducing-knowledge-graph-things-not/
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A few years later, semantic technologies found another novel application in enterprise settings as
enterprise knowledge graphs [55, 108] and data integration [33, 160]. Since all kinds of information
can be structured as a graph, knowledge graphs can be used as a common structure to integrate
heterogeneous information that is otherwise locked up in silos in different branches of a company.
Integrating the data into a knowledge graph then allows for an integrated view, efficiently retrieving
relevant information from this view once needed, and integrating external information that is
available in the form of knowledge graphs, for instance on the Semantic Web. After all, online
analytical processing-style queries can also be formulated with SPARQL4 and evaluated on
(distributed) knowledge graphs.

In the past few years, learning on graph data became one of the fastest growing and most
active areas in machine learning [71]. Graph representation learning has created a new wave of
graph embedding models and graph neural networks on knowledge graphs for tasks such as entity
classification and link prediction. Natural Language Processing (NLP) has been another important
field of the Semantic Web since the early years to extract knowledge from textual data and make
it machine readable. Another field where NLP meets the Semantic Web is user interfaces for
search on structured data to enable intuitive, natural language querying for graph data [69] similar
to web search engines. At the end of 2022, ChatGPT5 emerged as the first publicly available
end-consumer tool based on a Large Language Model (LLM). Since then, the GPT-based family
of LLMs has stirred up research and business alike and demonstrated impressive performance
on many NLP tasks, including generating structured queries from user prompts and extracting
structured knowledge from text [145].

The capabilities of tools like Bing Chat6 with underlying access to the World Wide Web are
reminding one of the intelligent agents that were envisioned 20 years before. For example, at the
time of writing, the GPT4-based tool Bing7 can internally generate SPARQL queries and execute
them, while the structured response is seamlessly embedded into its natural language outputs to
the users.8 While it already addresses some of the early visions of the Semantic Web, particularly
the complex planning and reasoning capabilities of LLMs are – due to their nature of focusing on
generating and processing text – still limited. We hypothesize that advances in neuro-symbolic
AI and semantic technologies will be key for improving LLMs and bringing generative AI tools
like Bing and the Semantic Web further together. We are keen to witness this next era of the
Semantic Web.

In this paper, we provide a comprehensive overview of the Semantic Web with its semantic
technologies and underlying principles that have been inspiring and driving the multiple waves
of innovations in the past two decades. Section 2 provides a motivating example for the classic
Semantic Web. We refer back to this example throughout the paper. Section 3 presents the
principles and the general architecture of the Semantic Web along with the basic semantic
technologies it is founded upon. Besides classical components, we are also describing recent
developments, and pointing out components that are still being researched and developed. Section 4
shows how to represent distributed knowledge on the Semantic Web. The creation and maintenance
of graph data is described in Section 5. Section 6 discusses the principle of reasoning and logical
inference. Section 7 then shows how to query over the (distributed) graph data on the Semantic

4 http://www.w3.org/TR/sparql11-query/
5 https://chat.openai.com/
6 http://bing.com
7 https://www.bing.com/
8 Based on a sequence of prompts ran on January 22, 2024, using the GPT-4 model provided on the Bing

Chat mobile app. The prompt sequence is: “do you have access to DBpedia”, “how do you access DBpedia”,
“please give me an example where you access DBpedia in response”.
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Web. We discuss the trustworthiness and provenance of data on the Semantic Web in Section 8.
We provide extensive examples of applications based on and using the Semantic Web and its
technologies in Section 9. Finally, we reflect on the impact the Semantic Web has on practitioners
in Section 10. Finally, we conclude with a brief outlook on future developments for the Semantic
Web.

2 Motivating Example

On the Semantic Web, knowledge components from different sources can be intelligently integrated
with each other. As a result, complex questions can be answered, questions like “What types
of music are played on British radio stations? At which time and day of the week?” or “Which
radio station plays songs by Swedish artists?” In this section, we provide an overview of how the
Semantic Web can be employed to answer those questions. We provide details of the components
of the Semantic Web in the following sections.

We consider the example of the BBC program ontology with links to various other ontologies
such as for music, events, and social networks as shown in Figure 1. We start with the BBC
playlists of its radio stations. The playlists are published online in Semantic Web formats. We
can leverage the playlist to get unique identifiers of played artists and bands. For example, the
music group “ABBA” has a unique identifier in the form of a URI (https://www.bbc.co.uk/
programmes/b03lyzpr). This URI can be used to link the music group to information from
the MusicBrainz9 music portal. MusicBrainz knows the members of the band, such as Benny
Andersson, as well as the genre and songs. In addition, MusicBrainz is linked to Wikipedia10

(not shown in the figure), e. g., to provide information about artists, such as biographies on
DBpedia [11]. Information about British radio stations can be found in the form of lists on Web
pages such as Radio UK11, which can also be converted into a representation in the Semantic
Web.

We can see that the required information is distributed across multiple knowledge components,
e. g., BBC Program, MusicBrainz, and others. Each knowledge component can in principle provide
different access to the data and utilize various ways to describe the data. Consequently, to answer
the questions the data must be integrated. On the Semantic Web, data integration relies on
ontologies describing data and the meaning of relations in data.

Colloquially, an ontology is a description of concepts and their relationships. Ontologies
are used to formally represent knowledge on the Semantic Web.12 For example, Dublin Core13

provides a metadata schema for describing common properties of objects, such as the creator of
the information, type, date, title, usage rights, and so on. Figure 1 presents ontologies used to
describe data in our example. For example, the Playcount ontology14 of the BBC is used to model
which artist was played and how many times in the programs. Ontologies can be interconnected
in the Semantic Web. For example, the MusicBrainz ontology is connected to the BBC ontology
using the Playcount ontology. Different ontologies with varying degrees of formality and different
relationships to each other are used by the BBC to describe their data (see also [122]).

9 http://musicbrainz.org/
10 https://www.wikipedia.org/
11 https://www.radio-uk.co.uk
12 An ontology definition is provided in Section 4.2.
13 http://dublincore.org/documents/dc-rdf/
14 http://dbtune.org/bbc/playcount/

https://www.bbc.co.uk/programmes/b03lyzpr
https://www.bbc.co.uk/programmes/b03lyzpr
http://musicbrainz.org/
https://www.wikipedia.org/
https://www.radio-uk.co.uk
http://dublincore.org/documents/dc-rdf/
http://dbtune.org/bbc/playcount/
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Figure 1 Example of the BBC ontology with links to other ontologies (notation based on UML, here
without prefix for namespaces).

As all this data is available and interconnected by ontologies, a user of the Semantic Web
can directly ask for answers to questions in this and other scenarios. To make this possible, the
Semantic Web requires generic software components, languages, and protocols that can interact
seamlessly with each other. We introduce the classical and modern components of the architecture
of the Semantic Web in Section 3.

In addition to the above example, the Semantic Web can be used for a variety of other
applications (see examples in Section 9). Apart from technical aspects, the Semantic Web should
also be understood as a socio-political phenomenon. Similar to the World Wide Web, various
individuals and organizations publish their data on the Semantic Web and collaborate to link and
improve this data. This impact on practitioners is discussed in Section 10.

3 Architecture of the Semantic Web

The example in Section 2 describes what the Semantic Web is as an infrastructure, but not how
this is achieved. In fact, the capabilities of the Semantic Web in a small scale have already been
implemented by some knowledge-based systems originating from artificial intelligence research,
e. g., Heinsohn et al [76]. However, for the implementation of the vision on a large scale, i. e, the
Web, these knowledge-based systems lacked flexibility, robustness, and scalability. In part, this
was due to the complexity of the algorithms used. For example, knowledge bases in description
logic in the 1990s, which serve as the basis of Web ontologies, were limited regarding their size
such that they could handle at the most some hundred concepts [76].

In the meantime, enormous improvements have been achieved. Greatly increased computational
power and optimized algorithms allow a practical handling of large ontologies like Simple Knowledge
Organization System (SKOS)15, Gene Ontology16, Schema.org, and SNOMED-CT17. However,

15 https://www.w3.org/TR/skos-reference/
16 https://geneontology.org/
17 https://www.snomed.org/
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there are some fundamental differences between traditional knowledge-based systems and the
Semantic Web. Data management in traditional knowledge-based systems has weaknesses in
terms of handling large amounts of data and data sources, among other things because of different
underlying formalisms, distributed locations, different authorities, different data quality, and a
high frequency of change in the data used.

The Semantic Web applies fundamental principles to deal with these problems; they represent
the basis for the architecture of the Semantic Web. This architecture’s building blocks can roughly
be categorized into groups, covering the entire life cycle of handling and managing graph data
on the Web. These groups are graph data representation, creation and validation of graph data,
reasoning over and linking of graph data, (distributed) querying of graph data, crypto, provenance,
and trustworthiness of graph data, and user interfaces and applications.

Below, we first introduce the principles of the Semantic Web, from which we derive the
architecture and its main components. Subsequently, we describe the groups of the architecture.
The principles of the Semantic Web are:
1. Explicit and simple data representation: A general data representation abstracts from the

underlying formats and captures only the essentials.
2. Distributed systems: A distributed system operates on a large set of data sources without

centralized control that regulates which information belongs where and to whom.
3. Cross-references: The advantages of a network of data in answering queries are not based

solely on the sheer quantities of data but on their interconnection, which allows reusing data
and data definitions from other sources.

4. Loose coupling with common language constructs: The World Wide Web and likewise the
Semantic Web are mega-systems, i. e., systems consisting of many subsystems, which are
themselves large and complex. In such a mega-system, individual components must be
loosely coupled in order to achieve the greatest possible flexibility. Communication between
the components is based on standardized protocols and languages, whereby these can be
individually adapted to specific systems.

5. Easy publishing and easy consumption: Especially in a mega-system, participation, i. e.,
publishing and consumption of data, must be as simple as possible.

These principles are achieved through a mix of protocols, language definitions, and software
components. Some of these components have already been standardized by the W3C, which has
defined both syntax and formal semantics of languages and protocols. Other components are
not yet standardized, but they are already provided for the so-called Semantic Web Layer Cake
by Tim Berners-Lee (cf. http://www.w3.org/2007/03/layerCake.png). We present a variant
of the Semantic Web architecture, distinguishing between standardized languages and current
developments. A graphical representation of the architecture can be found in Figure 2.

Identifier for Resources: HTTP, URL, DID

Entities (also called resources) are identified on the Internet by so-called Uniform Resource
Identifiers (URIs) [17]. When a URI holds a dereferenceable location of the resource, in other
words, it can be employed to get access to the resource via HTTP, it is called a Uniform Resource
Locator (URL) [20, 18]. Furthermore, Internationalized Resource Identifiers (IRIs) [45] supplement
URIs with international character sets from Unicode/ISO10646. URIs are globally and universally
used but are usually not under our control. A recent W3C recommendation, the Decentralized
Identifiers (DIDs), introduces an alternative approach to the above identifiers [137]. A DID is by
default decentralized and allows for self-sovereign management of the identity, i. e., the control of
a DID and its associated data is with the users.
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Identifier: HTTP, URL, DID

Syntax: XML

Data representation: RDF, JSON-DL, RDFa

Queries:
 SPARQL

Ontologies:
RDFS, OWL

Rules: RIF, 
SWIRL, R2RML

Shapes:
SHACL, ShEx

Crypto

Identification and linkage

Provenance and trustworthiness

User interface and applications

Figure 2 Representation of the components of the so-called “Semantic Web Layer Cake”. W3C language
standards are shown in dark gray. Current developments are shown in light gray.

In our example in Section 2, a URI 18 describes the musician Benny Andersson of the Swedish
pop group ABBA. A user can dereference a URI that refers to ABBA, e. g., by performing
a so-called look-up using HTTP to obtain a detailed description of the URI. We refer to the
referenced standards for details.

For a detailed discussion of the role of dereferenceable URIs on the Semantic Web, we refer to
the Linked Data principles described in Section 4.1.

Syntax for Data Exchange: XML, JSON-LD, RDFa

The Extensible Markup Language (XML)19 is used to structure documents and enables the
specification and serialization of structured data. In addition, other data formats were introduced
to facilitate for serialization of RDF data, often replacing XML. We can view those formats as
forming two groups. The first group consists of formats designed specifically for RDF data, such as
Turtle20, N-triple21, and TRIG22. These are easier to view in a text editor, compared to XML, and
thus easier to understand and modify. While initially not included in standards, their popularity
has led to them being official W3C recommendations since 2014. The other group of formats is
built by extending existing data formats. As a result, those can be employed to add RDF to
existing systems. Examples of such formats are JSON-LD23, CSV on the Web (CSVW)24, and
RDFa25 extending JSON, CSV, and (X)HTML, respectively.

Graph Data Representation: RDF

In addition to the referencing of resources and a uniform syntax for the exchange of data, a data
model is required that allows resources to be described both individually and in their entirety

18 http://www.bbc.co.uk/music/artists/2f031686-3f01-4f33-a4fc-fb3944532efa#artist
19 https://www.w3.org/TR/xml/
20 https://www.w3.org/TR/turtle/
21 https://www.w3.org/TR/n-triples/
22 https://www.w3.org/TR/trig/
23 https://www.w3.org/TR/json-ld/
24 https://www.w3.org/TR/tabular-data-primer/
25 https://www.w3.org/TR/rdfa-primer/
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and how they are linked [73, 75]. An integrated representation of data from multiple sources
is provided by a data model based on directed graphs [114]. The corresponding W3C standard
language is RDF (Resource Description Framework)26.

An RDF graph consists of a set of RDF triples, where a triple consists of a subject, predicate
(property), and object. An RDF graph can be given an identifier, such a graph is called a named
graph [29]. RDF graphs can be serialized in several ways (see Syntax for Data Exchange above).
It is important to note that some formats (e. g., Turtle) do not support named graphs. Finally,
RDF-star (aka RDF*)27,28 was introduced to allow nesting of triples and thus enables an efficient
way to make statements about statements while avoiding reification and the increased number of
triples and complexity that come along with it.

The representation of graph data is further discussed in Section 4.

Creation and Validation of Graph Data: RIF, SWRL, [R2]RML, and SHACL

In the RDF context, a rule is a logical statement employed to infer new facts from existing graph
data or to validate the data itself. RIF (Rule Interchange Format)29 is a W3C recommendation
format designed to facilitate the seamless interchange of rules between different rule engines.
This enables the extraction of rules from one engine, their translation into RIF, publication, and
subsequent conversion into the native syntax of another rule engine for execution. SWRL30 is a
rule-based language designed for representing complex relationships and reasoning.

Rules can also be used to state the correspondence between data sources and RDF graphs.
The RDB to RDF Mapping Language (R2RML)31 and the RDF Mapping Language (RML)32

correspond to rule-based mapping languages for the declarative definition of RDF graphs. R2RML
is the W3C recommendation for representing mappings from relational databases to RDF datasets,
while RML extends R2RML to express rules not only from relational databases but also from
data in the format of CSV, JSON, or XML.

Validating constraints, representing syntactic and semantic restrictions in RDF graphs, is
essential for ensuring data quality. In addition to rule-based languages, shapes allow for the
specification of conditions to meet data quality criteria and integrity constraints. A shape
encompasses a conjunction of constraints representing conditions that nodes in an RDF graph
must satisfy [79]. A shapes graph is a labeled directed graph where nodes correspond to shapes,
and edges denote interrelated constraints. The Shapes Constraint Language (SHACL) [95] and
Shape Expressions (ShEx) [117]) are two W3C-recommendations to express shapes graphs over
RDF [119].

The creation and validation of graph data are described in detail in Section 5.

Reasoning and Linking of Graph Data: RDFS, OWL

Data from different sources may be heterogeneous. In order to deal with this heterogeneity and
to model the semantic relationships between resources, the RDF Schema (RDFS)33 vocabulary

26 https://www.w3.org/RDF/
27 https://w3c.github.io/rdf-star/
28 https://blog.liu.se/olafhartig/2019/01/10/position-statement-rdf-star-and-sparql-star/
29 http://www.w3.org/2005/rules/wiki/RIF_Working_Group
30 https://www.w3.org/submissions/SWRL/
31 https://www.w3.org/TR/r2rml/
32 https://rml.io/specs/rml/
33 https://www.w3.org/TR/rdf11-schema/

https://www.w3.org/RDF/
https://w3c.github.io/rdf-star/
https://blog.liu.se/olafhartig/2019/01/10/position-statement-rdf-star-and-sparql-star/
http://www.w3.org/2005/rules/wiki/RIF_Working_Group
https://www.w3.org/submissions/SWRL/
https://www.w3.org/TR/r2rml/
https://rml.io/specs/rml/
https://www.w3.org/TR/rdf11-schema/
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extends RDF by modeling types of resources (so-called RDF classes) and semantic relationships
on types and properties in the form of generalizations and specializations. Likewise, it can be
used to model the domain and range of properties.

RDFS is not expressive enough to merge data from different sources and define consistency
criteria about it, such as the disjointness of classes or the equivalence of resources. The Web
Ontology Language (OWL)34 [155] is an ontology language with formally defined meaning based
on description logic. This allows for reasoning services to be provided by knowledge-based systems
for OWL ontologies. OWL can be exchanged using RDF data formats. Compared to RDFS,
OWL provides more expressive language constructs. For example, OWL allows the specification
of equivalences between classes and cardinality constraints on properties [155].

Reasoning over RDF graphs, incorporating RDFS and OWL models enhances semantic
expressiveness and inferential capabilities. This involves making implicit information explicit,
inferring new triples, and validating the RDF graph’s consistency against defined ontological
constraints. RDFS provides basic entailment regimens, creating hierarchies and simple inferencing
via sub-class and sub-property relationships. In contrast, OWL introduces advanced constructs
such as property characteristics (e. g., functional, inverse, symmetric properties), cardinalities, and
disjointness axioms, enabling more expressive and complex modeling. Integrating RDFS and OWL
reasoning mechanisms empowers applications to derive insights, discover implicit knowledge, and
ensure adherence to specified ontological constraints within RDF-based knowledge representations.

Graph data aggregated from many data sources, such as in our example in Section 2, may
contain many different identities. But those identities may represent the same set of real-world
objects. Integration and linkage mechanisms allow references to be made between data from
different sources. A popular approach to state the identity of two resources v and w is the
owl:sameAs feature of OWL.

We discuss the reasoning over and linking of graph data in Section 6.

Querying of Graph Data: SPARQL

Since RDF makes it possible to integrate data from different sources, a query language is needed
that allows formulating queries over individual RDF graphs as well as over the combination of
multiple RDF graphs across multiple sources. SPARQL35 (a recursive acronym for SPARQL
Protocol and RDF Query Language) is a declarative query language for RDF graphs that enables
us to formulate such queries. SPARQL 1.136 is the current version of SPARQL, which includes
the capability to formulate federated queries over distributed data sources.

The basic building blocks of a SPARQL query are triple and graph patterns. A triple pattern
corresponds to an RDF triple but where one, two, or all three of its components are replaced by
variables (denoted with a leading “?”). These triple patterns with variables are to be matched in
the queried graph. Multiple triple patterns can be combined into more complex graph patterns
describing the connections between multiple nodes in the graph. The solution to such a SPARQL
query then corresponds to all the subgraphs in an RDF graph matching this pattern.

Finally, there is RDF-star (aka RDF*)37,38 – along with the corresponding SPARQL-star/
SPARQL* extension – was proposed and since then was implemented by several triple stores [2]
that often provide publicly accessible SPARQL endpoints. The key idea with RDF/SPARQL-star

34 https://www.w3.org/OWL/
35 http://www.w3.org/TR/rdf-sparql-query/
36 http://www.w3.org/TR/sparql11-query/
37 https://w3c.github.io/rdf-star/
38 https://blog.liu.se/olafhartig/2019/01/10/position-statement-rdf-star-and-sparql-star/
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is to allow the nesting of triples to enable an efficient way to allow statements about statements
while avoiding reification and the increased number of triples and complexity that come along
with it.

We describe SPARQL and federated querying in Section 7.

Crypto, Provenance, and Trustworthiness of Graph Data

Other aspects of the Semantic Web are encryption and authentication to ensure that data
transmissions cannot be intercepted, read, or modified. Crypto modules, such as SSL (Secure
Socket Layer), verify digital certificates and enable data protection and authentication. In addition,
there are digital signatures for graphs that integrate seamlessly into the architecture of the Semantic
Web and are themselves modeled as graphs again [93]. This allows graph signatures to be applied
iteratively and enables to building trust networks. The Verifiable Credentials Data Model, a
recent W3C recommendation, introduces a standard to model trustworthy credentials for graphs
on the web39. Data on the Semantic Web can be augmented with additional information about
its trustworthiness and provenance.

Aspects of trustworthiness and provenance of graph data as well as crypto are discussed in
Section 8.

User Interfaces and Applications

A user interface enables users to interact with data on the Semantic Web. From a functional
perspective, some user interfaces are generic and operate on the graph structure of the data, whereas
others are tailored to specific tasks, applications, or ontologies. New paradigms are exploring the
spectrum of possible user interfaces between generality and specific end-user requirements.

Semantic Web applications are discussed in Section 9. The impact on practitioners is described
in Section 10.

4 Representation of Graph Data

The Linked Open Data principles are notably the most successful and widely adopted choice for
representing RDF graph data on the web. Thus, we first introduce the reader to how to represent
graph data as Linked Data. Subsequently, we introduce the notion of ontologies. This is followed
by a more detailed analysis of the different types of ontologies. We give examples of ontologies
throughout the sections. With this background in mind, we reconsider our running example
from Section 2 and analyze the given distributed network of ontologies. In this context, we also
introduce and discuss the notion of ontology design patterns.

4.1 Linked Graph Data on the Web
The Linked Data principles40 define the methods for representing, publishing, and using data on
the Semantic Web. They can be summarized as follows:
1. URIs are used as names for entities.
2. The HTTP protocol’s GET method is used to retrieve descriptions for a URI.
3. Data providers shall return relevant information in response to HTTP GET requests on URIs

using standards, e. g., in RDF.
4. Links to other URIs shall be used to facilitate knowledge discovery and use of additional

information.

39 https://www.w3.org/TR/vc-data-model/
40 http://www.w3.org/DesignIssues/LinkedData.html
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Publishing data using Linked Data principles allows easy access to data via HTTP. This allows
exploration of resources and navigation across resources on the Semantic Web. URIs (see 1.) are
dereferenced using HTTP requests (2.) to obtain additional information about a given resource.
In particular, using standardized syntax (3.), this information may also contain links to other
resources (4.).

Figure 3 represents an example of Linked Data about the pop group ABBA. The example
describes several relationships linking entities to ABBA’s URI, such as foaf:member and rdf:type.
In the figure “ABBA”, or more precisely the URI of ABBA, is the subject, “Property” refers to
relationships, and “Value” represents objects of the RDF triples. The relation owl:sameAs will
be explained in more in Section 6. The prefixes foaf, rdf, and owl refer to vocabularies of the
FOAF ontology41, and the W3C language specifications of RDF and OWL, respectively.

Figure 3 Linked Data example for ABBA.

4.2 Ontologies

An ontology is commonly defined as a formal, machine-readable representation of key concepts
and relationships within a specific domain [111, 109]. In essence, ontologies capture a shared
perspective [111] that is, the formal conceptualization of ontologies expresses a consensus view
among different stakeholders. Visualizing ontologies is akin to viewing a spectrum, with a
specificity of concepts, their relationships, and the granularity of meaning representation varying
along this continuum [101, 149, 148]. A controlled vocabulary corresponds to the less expressive
form of ontology, comprising a restrictive list of words or terms used for labeling, indexing, or
categorization. The Clinical Data Interchange Standards Consortium (CDISC) Terminology is an

41 http://xmlns.com/foaf/spec/
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exemplary vocabulary that harmonizes definitions in clinical research.42 A thesaurus is located
next in the spectrum; they enhance controlled vocabularies with information about terms and their
synonyms and broader/narrower relationships. The Unified Medical Language System (UMLS)
integrates medical terms and their synonyms.43 Next, taxonomies are built over controlled
vocabularies to provide a hierarchical structure, e. g., parent/child relationship. SNOMED-
CT44 (Systematized Nomenclature of Medicine Clinical Terms) provides a terminology and coding
system used in healthcare and medical fields; medical concepts organized in a hierarchical structure
enabling a granular representation of clinical information. The Simple Knowledge Organization
System (SKOS)45 is a W3C standard to describe knowledge about organizational systems. Lastly,
ontologies are at the highest extreme of the spectrum, integrating sets of concepts with attributes
and relationships to define a domain of knowledge.

Note, SKOS is a popular standard for modeling domain-specific taxonomies in the different
scientific communities such as economics, social sciences, etc. to represent concepts and their
relationships, most importantly narrower, broader, and related. However, it does not have the
expressiveness of OWL with its complex expressions on classes and relations. For a detailed
discussion, we refer to the literature such as [89] and the W3C on using OWL and SKOS46.

4.3 Types and Examples of Ontologies
A network of ontologies, such as the example shown in Figure 1, may consist of a variety of ontologies
created by different actors and communities. Ontologies may be the result of a transformation
or reengineering activity of a legacy system, such as a relational database or existing taxonomy
such as the Dewey Decimal Classification47 or Dublin Core. Other ontologies are created from
scratch. This involves applying existing methods and tools for ontology engineering and choosing
an appropriate representation language for the ontology (see Section 6).

Ontology engineering deals with the methods for creating ontologies [65] and has its origins in
software engineering in the creation of domain models and in database design in the creation of
conceptual models. A good overview of ontology engineering can be found in several reference
books [65]. Ontologies vary greatly in their structure, size, development methods applied, and
application domains considered. Complex ontologies are also distinguished in terms of their
purpose and granularity.

Domain Ontologies represent knowledge specific to a particular domain [48, 109]. Domain
ontologies are used as external sources of background knowledge [48]. They can be built on
foundational ontologies [110] or core ontologies [131], which provide precise structuring to the
domain ontology and thus improve interoperability between different domain ontologies. Domain
ontologies can be simple such as the FOAF ontology or the event ontology mentioned above, or
very complex and extensive, having been developed by domain experts, such as the SNOMED
medical ontology.

Core Ontologies represent a precise definition of structured knowledge in a particular domain
spanning multiple application domains [131, 109]. Examples of core ontologies include core
ontologies for software components and web services [109], for events and event relationships [129],
or for multimedia metadata [126]. Core ontologies should thereby build on foundational ontologies

42 https://datascience.cancer.gov/resources/cancer-vocabulary/cdisc-terminology
43 https://www.nlm.nih.gov/research/umls/index.html
44 https://www.snomed.org/value-of-snomedct
45 https://www.w3.org/TR/skos-reference/
46 https://www.w3.org/2006/07/SWD/SKOS/skos-and-owl/master.html
47 http://dewey.info/

https://datascience.cancer.gov/resources/cancer-vocabulary/cdisc-terminology
https://www.nlm.nih.gov/research/umls/index.html
https://www.snomed.org/value-of-snomedct
https://www.w3.org/TR/skos-reference/
https://www.w3.org/2006/07/SWD/SKOS/skos-and-owl/master.html
http://dewey.info/
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to benefit from their formalization and strong axiomatization [131]. For this purpose, new concepts
and relations are added to core ontologies for the application domain under consideration and are
specialized by foundational ontologies.

Foundational Ontologies have a very wide scope and can be reused in a wide variety
of modeling scenarios [24]. They are therefore used for reference purposes [109] and aim to
model the most general and generic concepts and relations that can be used to describe almost
any aspect of our world [24, 109], such as objects and events. An example is the Descriptive
Ontology for Linguistic and Cognitive Engineering (DOLCE) [24]. Such basic ontologies have
a rich axiomatization that is important at the developmental stage of ontologies. They help
ontology engineers to have a formal and internally consistent conceptualization of the world,
which can be modeled and checked for consistency. For the use of foundational ontologies in a
concrete application, i. e., during the runtime of an application, the rich axiomatization can often
be removed and replaced by a more lightweight version of the foundational ontology.

In contrast, domain ontologies are built specifically to allow automatic reasoning at runtime.
Therefore, when designing and developing ontologies, completeness and complexity on the one
hand must always be balanced with the efficiency of reasoning mechanisms on the other. In
order to represent structured knowledge, such as the scenario depicted in Figure 1, interconnected
ontologies are needed, which are spanned in a network over the Internet. For this purpose, the
ontologies used must match and be aligned with each other.

4.4 Distributed Network of Ontologies and Ontology Patterns
A network of ontologies must be flexible with respect to the functional requirements imposed on it.
This is because systems are modified, extended, combined, or integrated over time. In addition, the
networked ontologies must lead to a common understanding of the modeled domain. This common
understanding can be achieved through a sufficient level of formalization and axiomatization, and
through the use of ontology patterns. An ontology pattern, similar to a design pattern in software
engineering, represents a generic solution to a recurring modeling problem [131]. Ontology patterns
allow to select parts from the original ontology. Either all or only certain patterns of an ontology
can be reused in the network. Thus, to create a network of ontologies, e. g., existing ontologies
and ontology patterns can be merged on the Web. The ontology engineer can drive or explicitly
provide for the modularization of ontologies using ontology patterns. Core ontologies represent
one approach to designing a network of ontologies (see in detail [131]). They allow to capture
and exchange structured knowledge in complex domains. Well-defined core ontologies fulfill the
properties mentioned in the previous section and allow easy integration and smooth interaction of
ontologies (see also [131]). The networked ontologies approach leads to a flat structure, as shown
in Figure 1, where all ontologies are used on the same level. Such structures can be managed up
to a certain level of complexity.

The approach of networked core ontologies is illustrated by the example of ontology layers
starting from foundational to core to domain ontologies. As shown in Figure 4, DOLCE is the
foundational ontology at the bottom layer, the Multimedia Metadata Ontology (M3O) [126] as
the core ontology for multimedia metadata, and an extension of M3O for the music domain.
Core ontologies are typically defined in description logic and cover a field larger than the specific
application domain requires [57]. Concrete information systems will typically use only a subset
of core ontologies. To achieve modularization of core ontologies, they should be designed using
ontology patterns. By precisely matching the concepts in the core ontology with the concepts
provided in the foundational ontology, they provide a solid foundation for future extensions. New
patterns can be added and existing patterns can be extended by specializing the concepts and
roles. Figure 4 shows different patterns of the M3O and DOLCE ontologies.
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Figure 4 Ontology layers combining the foundational ontology DOLCE, the multimedia metadata
ontology M3O, domain-specific extensions to M3O for annotating audio data and music, and a domain
ontology for albums and tracks.

Ideally, the ontology patterns of the core ontologies are reused in the domain ontologies [57], as
shown in Figure 4. However, since it cannot be assumed that all domain ontologies are aligned with
a foundational or core ontology, the option that domain ontologies are developed and maintained
independently must also be considered. In this case, domain knowledge can be reused in core
ontologies by applying the Descriptions and Situations (DnS) ontology pattern of the foundational
ontology DOLCE. The DnS ontology pattern is an ontological formalization of context [109] by
defining different views using roles. These roles can refer to domain ontologies and allow a clear
separation of the structured knowledge of the core ontology and domain-specific knowledge. To
model a network of ontologies, such as the example described above, the Web Ontology Language
(OWL) and its ability to axiomatize using description logic [12] is used. In addition to being used
to model a distributed knowledge representation and integration, OWL, is also used in particular
to derive inferences from this knowledge, which is described in Section 6.

5 Creation and Validation of Graph Data

In this section, we describe the creation of graph data from legacy data. Many tools are available
for this task, which support various mappings and transformations. Subsequently, we discuss data
quality and the validation of knowledge graphs, including the recent approaches on shapes. We
also reflect on the role of the open-world versus closed-world assumption with respect to validating
data.

5.1 Graph Data Creation
Graph data can be created by transforming legacy data via a data integration system [98], which
consists of a unified schema, data sources, and mapping rules. These mapping rules define the
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concepts within the schema and establish links to the data sources. By employing declarative
definitions, knowledge graph creation promotes modularity and reusability. This approach allows
users to trace the entire graph creation process, leading to improved transparency and ease of
maintenance.

To enable comprehensive and extensive graph specification, mappings and transformations
have been developed to convert data from various storage models into Semantic Web data models
like RDF. These mappings and transformations facilitate the mapping of data into RDF, thereby
supporting the integration of diverse data sources into the Semantic Web.

The mapping language R2RML [37] defines mapping rules from relational databases (relational
data models) to RDF graphs. These mappings themselves are also RDF triples [15]. Because
of its compact representation, Turtle is considered a user-friendly notation of RDF graphs. The
structure of R2RML is illustrated in Figure 5; essentially, table contents are mapped to triples by
the classes SubjectMap, PredicateMap, and ObjectMap. If the object is a reference to another
table, this reference is called RefObjectMap. Here, SubjectMap contains primary key attributes
of the corresponding table. Thus, there exists a mapping rule representable in RDF graphs by
means of which tables of relational databases can be represented as RDF graphs.

Figure 5 Structure of a relational data mapping (source: [37]).

The RDF Mapping Language (RML)[42] extends R2RML to encompass the definition of logical
sources in various formats, including CSV, JSON, XML, and HTML. This enhancement enables
RML to introduce new operators that facilitate the integration of data from diverse sources into
the Semantic Web. Thus, instead of LogicalTable, RML includes the tag LogicalSource, to
allow for the retrieval of data in several formats. Additionally, RML resorts to W3C-standardized
vocabularies and enables the definition of retrieval procedures to collect data from Web APIs or
databases. R2RML and RDF mapping rules are expressed in RDF, and their graphs document how
classes and properties in one or various ontologies that are part of an RDF graph are populated
from data collected from potentially heterogeneous data sources.
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Over time, the Semantic Web community has actively contributed to addressing the challenge
of integrating heterogeneous datasets, resulting in the development of several frameworks for
executing declarative mapping rules [34, 28, 116]. A rich spectrum of tools (e. g., RMLMapper [42],
RocketRML [136], CARML48, SDM-RDFizer [87], Morph-KGC [8], and RMLStreamer [112]) offers
the possibility of executing R2RML and RML rules and efficiently materializing the transformed
data into RDF graphs. Van Assche et al. [10] provided an extensive survey detailing the main
characteristics of these engines. Despite significant efforts in developing these solutions, certain
parameters can impact the performance of the graph creation process [31]. Existing engines may
face challenges when handling complex mapping rules or large data sources. Nonetheless, the
community continues to collaborate and address these issues. An example of such collaboration is
the Knowledge Graph Construction Workshop 2023 Challenge49 that took place at ESWC 2023.
This community event aims to understand the strengths and weaknesses of existing approaches
and devise effective methods to overcome existing limitations.

RDF graphs can also be dynamically created through the execution of queries over data
sources. These queries involve the rewriting of queries expressed in terms of an ontology, based
on mapping rules that establish correspondences between data sources and the ontology. Tools
such as Ontop [28], Ultrawrap [135], Morph [116], Squerall [100], and Morph-CSV [32] exemplify
systems that facilitate the virtual creation of RDF graphs.

5.2 Quality and Validation of Graph Data
Quality and validation of the graph data are crucial to maintaining the integrity of the Semantic
Web [44, 38, 163]. The evaluation of integrity constraints allows for the identification of inconsis-
tencies, inaccuracies, or contradictions within the data. They also help maintain consistency by
ensuring related data elements remain coherent. Constraints are logical statements – expressed in
a particular language – that impose restrictions on the values taken for target nodes in a given
property.

Constraints can be expressed using OWL [144], SPARQL queries [97], or using shapes. However,
the interpretation of the results depends on the semantics followed to interpret the failure of an
integrity constraint. For example, constraints expressed in OWL are validated using an Open-
World Assumption (OWA) (i. e., a statement cannot be inferred to be false based on failures to
prove it) and under the absence of the Unique Name Assumption (UNA) (i. e., two different names
may refer to the same object). These two features make it difficult to validate data in applications
where data is supposed to be complete. Definitions of integrity constraint semantics in OWL using
the Closed-World Assumption [103, 104, 144] overcome these issues.

Contrarily, constraints expressed using SPARQL queries or shapes will be evaluated under
the Closed-World Assumption (CWA) and following the Unique Name Assumption (UNA).
Nevertheless, some constraints may be difficult to express in SPARQL, and the specification
process is prone to errors and difficult to maintain.

Data quality conditions and integrity constraints can also be expressed as graphs of shapes or
the so-called shapes schema. A shape corresponds to a conjunction of constraints that a set of
nodes in an RDF graph must satisfy [79]. These constraints can restrict the types of nodes, the
cardinality of certain properties, and the expected data types or values for specific properties. A
shape can target the instances of a class, the domain or range of a property, or a specific node in
the RDF graph. A shape or node in a shapes graph is validated in an RDF graph, if and only if,
all the target nodes in the RDF graph satisfy all the constraints in the shape. Figure 6 presents a

48 https://github.com/carml/carml
49 https://zenodo.org/record/7689310
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shapes graph of three shapes targeting the classes Brand, Playcount, and MusicArtist. Each of
the shapes comprises one constraint. In the shapes Brand and MusicArtist the properties title
and name can take more than one value, while the shape Playcount states that each instance
of the class Playcount must have exactly one value of the property count. Additionally, the
instances of the class Brand must be related to valid instances of the class Playcount which should
also be related to valid instances of the class MusicArtist.

Figure 6 Shapes for Graph Data. A shapes graph comprises three shapes interlinked by the
properties playcount and objects between the target classes Brand, Playcount, and MusicArtist.

There are two standards for defining shapes, ShEx (Shape Expressions) [117]) and SHACL
(Shapes Constraint Language) [95]). Both define shapes over the attributes (i. e., owl:Datatype-
Properties), and constraints on incoming/outgoing arcs, cardinalities, RDF syntax, and extension
mechanism. These inter-class constraints induce a shape network used to validate the integrity
and data quality properties of an RDF graph.

SHACL and ShEx, although sharing a common goal, adopt distinct approaches. ShEx seeks
to offer a language serving as a grammar or schema for RDF graphs, delineating RDF graph
structures for validation. On the other hand, SHACL is positioned as the W3C recommendation
for validating RDF graphs against a conjunction of constraints, emphasizing a constraint language
for RDF. Despite their analogous roles in specifying shapes and constraints for RDF data, ShEx
and SHACL differ in syntax, expressiveness, and community adoption [59].

The evaluation results of a SHACL shape network over an RDF graph are presented in
validation reports using a controlled vocabulary. A validation report includes explanations about
the violations, the severity of the violation, and a message describing the violation. SHACL is the
language selected by the International Data Space (IDS) to express the restrictions that state the
integrity over RDF graphs [96]. Besides the integrity validation of an RDF graph, SHACL can
be utilized to describe data sources and the certification of a query answer [124], as metadata to
enhance the performance of a SPARQL query engine [118], to certify access policies [125], and to
provide provenance as a result of the validation of integrity constraints [40].

In the context of a quality assessment pipeline, one crucial step involves validating the shape
schema against a graph. It is important to mention that the validation of recursive shape schemas
is not explicitly addressed in the SHACL specification [95]. To address this gap, Corman et al. [36]
introduce a semantic framework for validating recursive SHACL. They also demonstrated that
validating full SHACL features is an NP-hard problem. Building on these insights, they proposed
specific fragments of SHACL that are computationally tractable, along with a fundamental
algorithm for validating shape schemas using SPARQL [35]. In a related vein, Andresel et al. [7]
propose a stricter semantics for recursive SHACL, drawing inspiration from stable models employed
in Answer Set Programming (ASP). This innovative approach enables the representation of SHACL
constraints as logic programs and leverages existing ASP solvers for shape schema validation.
Importantly, this approach allows for the inclusion of negations in recursive validations. Further,
Figuera et al. [51] present Trav-SHACL, an approach that focuses on query optimization techniques
aimed at enhancing the incremental behavior and scalability of shape schema validation.

While SHACL has been adopted in a broad range of use cases, given a large graph it remains a
challenge how to define shapes efficiently [119]. In many industrial settings with billions of entities
and facts [108] creating shapes manually simply is not an option. The current state of the art
can automatically extract shapes on WikiData (ca. 2 Billion facts) in less than 1.5 hours while
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filtering shapes based on the well-established notions of support and confidence to avoid reporting
thousands of shapes that are so rare or apply to such a small subset of the data that they become
meaningless [120]. Still, more work is needed to increase scalability further and also to help users
make good use of the mined shapes [121] and, e. g., interactively use them to correct and improve
the quality of their graphs.

6 Reasoning over and Linking of Graph Data

Section 3 introduced several formal languages for knowledge representation on the Semantic
Web. RDF allows the description of simple facts (statements with subject, predicate, and object,
so-called RDF triples), e. g., “Anni-Frid Lyngstad” “is a member of” “ABBA”. RDFS allows the
definition of types of entities (classes), relationships between classes, and a subclass and superclass
hierarchy between types (analogously for relations). OWL is even more expressive than RDF and
RDFS. For example, OWL allows the definition of disjoint classes or the description of classes in
terms of intersection, union, and complement of other classes.

Below, we first introduce the reasoning over RDFS and OWL at the example of our BBC
scenario from Section 2. Subsequently, we discuss works on linking data objects and concepts.

6.1 Reasoning over Graph Data

Based on formal languages representing graph data and their semantics, further (implicit) facts
can be derived from the knowledge base by deductive inference. In the following, we exemplify
the derivation of implicit facts from a set of explicitly given facts using the RDFS construct
rdfs:subClassOf and the OWL construct owl:sameAs. The property rdfs:subClassOf describes
hierarchical relationships between classes and with owl:sameAs two resources can be defined as
identical.

As a first example, we consider the class foaf:Person, which is defined in the FOAF ontology,
and the classes mo:Musician and mo:Group, which are defined in the music ontology. In the music
ontology, there is an additional axiom that defines mo:Musician as a subclass of foaf:Person
using rdfs:subClassOf. Given this axiom, it can be deduced by deductive inference that instances
of mo:Musician are also instances of foaf:Person. Now if there is such a hierarchy of classes and
in addition a statement that Anni-Frid Lyngstad is of type mo:Musician, then it can be inferred
by inference that Anni-Frid Lyngstad is also of type foaf:Person. This means that all queries
asking for entities of type foaf:Person will also include Anni-Frid Lyngstad in the query result,
even if that entity is not explicitly defined as an instance of foaf:Person. Figure 7 represents
these facts and the corresponding class hierarchy in RDFS as a directed graph.

In the second example, the OWL construct owl:sameAs is used to define two resources
as identical, for example http://www.bbc.co.uk/music/artists/d87e52c5-bb8d-4da8-b941-
9f4928627dc8#artist and http://dbpedia.org/resource/ABBA. Identical here means that
these two URIs represent the same real-world object. By inference, information about ABBA
from different sources can now be linked. Since ontologies are created independently on the web,
and URIs are subject to local naming conventions, a real-world object may be represented by
multiple URIs (in different ontologies).

OWL offers a variety of other constructs for the description of classes, relationships, and
concrete facts. For example, OWL allows the declaration of transitive relations and inverse
relations. For example, the relation “is-member” is inverse to “has-member”. OWL reasoning
allows, among other things, consistency checking of an ontology or checking the satisfiability of
classes [80]. A class is satisfiable if there can be instances of that class.

http://www.bbc.co.uk/music/artists/d87e52c5-bb8d-4da8-b941-9f4928627dc8#artist
http://www.bbc.co.uk/music/artists/d87e52c5-bb8d-4da8-b941-9f4928627dc8#artist
http://dbpedia.org/resource/ABBA
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Figure 7 Visualization of RDF sample data about ABBA and Anni-Frid Lyngstad to illustrate inference
in RDFS.

For a detailed discussion about OWL reasoning, we refer to the literature such as [80, 13].
Different reasoners for OWL have seen widespread adoption in the community such as the well-
known Pellet50 and Hermit [62]. Finally, a combination of description logic and rules is also
possible. For example, Motik et al. [105] presented a combination of description logic and rules
that allows tractable inference on OWL ontologies.

6.2 Linking of Objects and Concepts
In the Semantic Web, it cannot be assumed that two URIs refer to two different real-world objects
(cf. unique name assumption in Section 5.2). A URI by itself, or in itself, has no identity [70].
Rather, the identity or interpretation of a URI is revealed by the context in which it is used on
the Semantic Web. Determining whether or not two URIs refer to the same entity is not a simple
task and has been studied extensively in data mining and language understanding in the past.
For example, to identify whether or not the author names of research papers refer to the same
person, it is often not sufficient to resolve the name, venue, title, and co-authors [90]. The process
of determining the identity of a resource is often referred to as entity resolution [90], coreference
resolution [156], object identification [123], and normalization [156, 157]. Correctly determining
the identity of entities on the Web is important as more and more records appear on the Web and
this presents a significant hurdle for very large Semantic Web applications [61].

To address this, a number of services exist that can recognize entities and determine their
identity: Thomson Reuters offers OpenCalais51, a service that can link natural language text
to other resources using entity recognition. Another commercial tool that allows for extracting
knowledge graphs from text is provided by DiffBot.52 Recently, the language model ChatGPT
has been compared to the specialized entity and relation extraction tool REBEL [27] for the task
of creating knowledge graphs from sustainability-related text [145]. The experiments suggest that
large language models improve the accuracy of creating knowledge graphs [145]. The sameAs53

service aims to detect duplicate resources on the Semantic Web using the OWL relationship
owl:sameAs. This can be used to resolve coreferences between different datasets. For example,

50 https://github.com/stardog-union/pellet
51 https://www.refinitiv.com/en/products/intelligent-tagging-text-analytics
52 https://www.diffbot.com/
53 http://sameas.org/
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for the query with the URI http://dbpedia.org/resource/ABBA, a list of over 100 URIs is
returned that also references the music group ABBA. One of them is BBC with the resource
http://www.bbc.co.uk/music/artists/d87e52c5-bb8d-4da8-b941-9f4928627dc8#artist.

Furthermore, the problem of schema matching [157] is very related to the problem of entity
resolution, co-reference resolution, and normalization. The goal of schema matching is to address
the question of how to integrate data [157], which is non-trivial even for small schemas. In the
Semantic Web, schema matching means the matching of different ontologies, respectively the
concepts defined in these ontologies. Various (semi-)automatic or machine learning techniques for
matching ontologies have been developed in the past [49, 46, 22]. Core ontologies as illustrated
in Figure 4.3 represent generic modeling frameworks for integration and alignment with other
ontologies. In addition, core ontologies can also integrate Linked Open Data, which typically
contains no or very little schema information. The YAGO ontology [140] was generated from the
fusion of Wikipedia and Wordnet using rule-based and heuristic methods. A manual assessment
showed an accuracy of 95%.

Manual matching of different data sources is also pursued in the Linked Open Data project
of the German National Library54. For example, the database containing the authors of all
documents published in Germany was manually linked with DBpedia and other data sources. A
particular challenge was to identify the authors, as described above. For example, former German
Chancellor Helmut Kohl has a namesake whose work should not be linked to the chancellor’s
DBpedia entry. Relationships between keywords used to describe publications are asserted using
the SKOS (Simple Knowledge Organization System) vocabulary.55 For example, keywords are
related to each other using the relation skos:related. Hyponyms and hypernyms are expressed
by the relations skos:narrower and skos:broader. Finally, the Ontology Alignment Evaluation
Initiative56 should be mentioned, which aims to achieve an established consensus for evaluating
ontology matching methods.

7 Querying of Linked Data

Queries over Linked Data can be processed using link traversal [74], i. e., the query processor
would use one of those IRIs given directly in the query as starting point and query the respective
source for more triples involving the IRI. By iteratively doing this for more IRIs and with respect
to the graph pattern defined in the query, a local set of triples is collected over which the given
query can be evaluated.

More conveniently, queries over RDF and Linked Data can be formulated in SPARQL57, if a
corresponding endpoint to the graph data is made available. Whereas such queries can target
graphs that are stored in a single graph store, Linked Data often requires formulating and executing
queries across multiple graphs that are stored at distributed data sources.

Below, we first introduce the basic query processing of SPARQL queries along with our running
example. This is followed by discussing RDFS/OWL entailment regimes and querying. Finally,
we present approaches for distributed querying over multiple SPARQL endpoints.

54 http://www.d-nb.de/
55 https://www.w3.org/TR/2009/REC-skos-reference-20090818/
56 http://oaei.ontologymatching.org/
57 http://www.w3.org/TR/sparql11-query/
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7.1 Basic Query Processing

In principle, a SPARQL query is evaluated by comparing the graph pattern defined in the query
to the RDF graph and reporting all matches as results. The set of results can be restricted by
additional criteria, such as filters, i. e., conditions on variables and triple patterns that additionally
need to be fulfilled.

As an example, let us consider the query illustrated in Figures 8 and 9 that we want to execute
over our example MusicBrainz graph from Section 2. We are now interested in the musicians of
ABBA who are also members of other bands. If we follow the Linked Data principles and evaluate
the query using link traversal [74], this would mean first querying for triples including the IRI
that represents ABBA, then navigating to the individual band members, and then following the
links to all of the members’ bands and query more relevant triples.

Figure 8 Graphical representation of a query for music groups (represented by the variable ?groupName),
whose members are also members of ABBA. The variable ?m refers to the members of ABBA. The vertex
labeled “ABBA” represents the URI for ABBA. The prefix mo refers to the music ontology, foaf to the
FOAF ontology, and rdf to the vocabulary of the RDF specification.

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX mo: <http://purl.org/ontology/mo/>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX bbc: <http://www.bbc.co.uk/music/>
SELECT ?memberName ?groupName
WHERE { bbc:artists/d87e52c5-bb8d-4da8-b941-9f4928627dc8#artist mo:member ?m .

?x mo:member ?m .
?x rdf:type mo:MusicGroup .
?m foaf:name ?memberName .
?x foaf:name ?groupName }

FILTER (?groupName <> "ABBA")

Figure 9 SPARQL query for music groups whose members are also members of ABBA. In the first
triple pattern of the WHERE part, the URI of ABBA is the subject.

Similar to relational database systems, there exist several dedicated graph stores (aka triple
stores) that are optimized for RDF graphs and evaluating SPARQL queries. Some of the most
popular triple stores are RDF4J [26], Jena [159], Virtuoso58, and GraphDB59. They are building
upon concepts and techniques known from relational database systems [83, 106] and expand them
with graph-specific optimizations [153, 138, 68, 99, 50].

58 http://virtuoso.openlinksw.com
59 https://graphdb.ontotext.com/
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7.2 Entailment Regimes and Query Processing

In addition to explicitly querying existing facts, SPARQL provides inferencing support through
so-called entailment regimes. They correspond to logical consequences describing the relationship
between the statements that are true when one statement logically follows from one or more
statements. Entailment regimes specify an entailment relation between well-formed RDF graphs,
assuming that a graph G entails another graph E (denoted G |= E) if there is a logical consequence
from G to E. A regime extends the query of explicitly existing facts with facts that can be inferred
using RDFS and OWL constructs (cf. Section 6), such as the extension of facts about subclasses
using rdfs:subClassOf.

Depending on the feature set of the respective SPARQL triple store, different (or even no)
entailment regimes are supported. They differ in terms of their power in the supported inference
capabilities over RDFS/OWL classes and relationships. SPARQL query engines such as GraphDB
adopt a materialized approach, wherein they compute the closure of the input RDF graph G over
a set of relevant entailment rules R. Conversely, approaches grounded in query rewriting expand
the SPARQL query itself rather than altering the RDF graph. Sub-queries are aligned with the
entailment rules through backward chaining, and when the consequent of an entailment rule is
matched, the antecedent of the rule is added to the query in the form of disjunctions.

Although both approaches yield equivalent answers for a given SPARQL query, their perfor-
mance can diverge significantly. Materialized RDF query processing may outperform on-the-fly
execution of the rewritten query, but it may consume more memory [63]. Nevertheless, various
optimization techniques have been proposed to mitigate the overhead caused by the on-the-fly
evaluation of entailment regimes [146]. These optimizations are required particularly in the
presence of the owl:sameAs. This predicate corresponds to logical equivalence and involves the
application of the Leibniz Inference Rule [66] to deduce all the equivalent triples entailed by
equivalent resources based on owl:sameAs relation. This process may lead to many intermediate
results, impacting the query engine’s performance. Xiao et al. [161] propose query rewriting
techniques to efficiently evaluate SPARQL queries with owl:sameAs employing equivalent SQL
queries.

7.3 Federated Query Processing

Federations provide another perspective on querying linked data over multiple sources. A federation
of knowledge graphs shares common entities while potentially providing different perspectives on
those entities. Each knowledge graph within the federation operates autonomously and can be
accessed through various Web interfaces, such as SPARQL endpoints or Linked Data Fragments
(LDFs) [151]. SPARQL endpoints offer users the ability to execute any SPARQL query against
multiple SPARQL endpoints. In contrast, LDFs enable access to specific graph patterns, such as
triple patterns [150] or star-shaped graph patterns [5], allowing retrieval of fragments from an
RDF knowledge graph. A star-shaped subquery is a conjunction of triple patterns in a SPARQL
query that share the same subject variable [153]. An LDF client can submit requests to a server,
which then delivers results based on a data shipping policy and partitions results into batches
of specified page sizes. Query processing in a federation of graphs differs from querying a single
source because it enables real-time data integration of graphs from multiple sources. For example,
Figure 10 depicts a SPARQL query whose execution requires the evaluation of subqueries over
three knowledge graphs: a Cancer Knowledge Graph (CKG) [6], DBpedia, and Wikidata. This
query could not be executed over a single data source unless the three knowledge graphs were
physically materialized into one. Subqueries with a specific shape (e. g., star-shaped subqueries)
need to be identified and posed against the knowledge graph(s) that is able to answer a particular
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part of the query. The federated query engine has to decompose input queries into these subqueries,
find a plan to execute them and collect and merge the answers from the subqueries to produce a
federated answer.

A federated SPARQL query engine typically follows a mediator and wrapper architecture,
which has been established in previous research [158, 162]. Wrappers play a crucial role in
translating SPARQL subqueries into requests sent to SPARQL endpoints, while also converting
the endpoint responses into internal structures that the query engine can process. The mediator,
on the other hand, is responsible for rewriting the original queries into subqueries that can be
executed by the data sources within the federation. Additionally, the mediator collects and merges
the results obtained from evaluating the subqueries to produce the final answer to the federated
query. Essentially, the mediator consists of three main components:

Source selection and query decomposition. This component decomposes queries into subqueries
and selects the appropriate graphs (sources) capable of executing each subquery. Simple
subqueries typically consist of a list of triple patterns that can be evaluated against at least one
graph. Formally, source selection corresponds to the problem of finding the minimal number
of knowledge graphs from the federation that can produce a complete answer to the input
query. On the other hand, query decomposition requires partitioning the triple patterns of a
query into a minimal number of subqueries, such that each subquery can be executed over
at least one of the selected knowledge graphs. Commonly, federated query engines follow
heuristic-based methods to solve these two problems. For example, for query decomposition,
heuristics based on exclusive groups [134] or star-shaped subqueries [153, 152, 102] enable to
efficiently solve source selection and query decomposition in queries free of general predicates
(e. g., owl:sameAs or rdf:type).
Query optimizer. This component identifies execution plans by combining star-shaped sub-
queries (SSQs) and utilizing physical operators implemented by the query engine. Formally,
optimizing a query corresponds to the problem of finding a physical plan for the query that
minimizes the values of a utility function (e. g., execution time or memory consumption). To
maximize the utility function, query optimizers consider plans with different orders of execut-
ing operators, alternative implementations of operators, such as joins, as well as particular
execution alternatives for certain query types, e. g., queries involving aggregation [86]. In
general, finding an optimal solution is computationally intractable [85], while the problems
of constructing a bushy tree plan [132] and finding an optimal query decomposition over the
graphs [152] are NP-Hard. A bushy tree plan is a query execution plan that represents a
query as a tree structure with multiple branches or subqueries, which can also be bushy-tree
plans. Query plans can be generated following the traditional optimize-then-execute paradigm
or re-optimize and adapt a plan on the fly according to the conditions and availability of
selected graphs [47]. Alternatively, the query optimizer may resort to a cost model to guide
the search on the space of query plans and identify the one that minimizes the values of the
utility function [102].
Query engine. This component of a federated query engine implements the physical operators
necessary to combine tuples obtained from the graphs. These physical operators are designed
to support logical SPARQL operations such as JOIN, UNION, or OPTIONAL [115]. Physical
operators can be empowered to adapt execution schedulers to the current conditions of a
group of selected graphs. Thus, adaptivity can be achieved at the intra-operator level, where
the operators can detect when graphs become blocked or data traffic bursts. Additionally,
intra-operator opportunistically produce results as quickly as data arrives from the graphs,
and can produce results incrementally. Some opportunistic approaches [4, 82, 56, 3] combine
producing results quickly in an incremental fashion with greedy source selection so that the
system stops querying additional graphs once the user’s wishes, e. g., in terms of the minimum
number of obtained results, are fulfilled.
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During the query optimization process, a plan is generated as a bushy tree that comprises four
join operators. This is shown in Figure 10.

PREFIX ex: <http://http://example.com/vocab/>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX wdt: <http://www.wikidata.org/prop/direct/>
PREFIX dbp: <http://dbpedia.org/property/>
PREFIX owl: <http://www.w3.org/2002/07/owl#>

SELECT DISTINCT ?drug ?excretion ?metabolism ?routes ?actIng ?mass 
WHERE {
  

}

t1 ?patient rdf:type ex:CPatient .
t2 ?patient ex:hasBio ex:EGFR .
t3 ?patient ex:hasSmokingHabit ex:NonSmoker .
t4 ?patient ex:sex ex:Female .
t5 ?patient ex:hasTreatmentEpisode ?treatment .
t6 ?treatment ex:hasDrug ?drug .
t7 ?drug owl:sameAs ?drug1 .
t8 ?drug owl:sameAs ?drug2 .
t9 ?drug1 dbp:excretion ?excretion .
t10 ?drug1 dbp:metabolism ?metabolism .
t11 ?drug1 dbp:routesOfAdministration ?routes 
t12 ?drug2 wdt:P592 ?idDrug .
t13 ?drug2 wdt:P3780 ?actIng .
t14 ?drug2 wdt:P2067 ?mass .

(a) Federated Query

SSQ1 SSQ2 SSQ3 SSQ4

SSQ5
t12 t13 t14

@Wikidata

t9 t10 t11
@DBpedia

t7 t8
@CKG

t1 t2 t3 t4 t5
@CKG@CKG
t6

(b) Bushy-Tree Plan

Figure 10 Federated query. a) SPARQL query comprising 14 triple patters to be executed over
a federation including Cancer Knowledge Graph (CKG), DBpedia, and Wikidata. b) A query plan
composed of five star-shaped subqueries SSQ1, SSQ2, SSQ3, SSQ4, and SSQ5 corresponding to the query
decomposition. Each SSQ is executed over the graph that can answer the SSQ. The execution engine
follows the query plan; the execution of four joins merges the SSQ answers and produces the federated
query answer.

8 Trustworthiness and Provenance of Graph Data

Trustworthiness of web pages and data on the web can be detected by various indicators, e. g.,
by certificates, by the placement of search engine results, and by links (forward and backward
links) to other pages. However, on the Semantic Web, there are few ways for users to assess the
trustworthiness of individual data. Rules can be utilized to define policies and business logic over
the web of data, and transparently used to infer data that validate or do not validate these policies.
The trustworthiness of inferred data can be assessed through its provenance, which encompasses
metadata detailing how the data was acquired and verified [94].

The trustworthiness of data on the web can be inferred from the trustworthiness of other users
(“Who said that?”), the temporal validity of facts (“When was a fact described?”), or in terms of
uncertainty of statements (“To what degree is the statement true?”). Artz and Gil [9] summarize
trustworthiness as follows: “Trust is not a new research topic in computer science, spanning
areas as diverse as security and access control in computer networks, reliability in distributed
systems, game theory and agent systems, and policies for decision-making under uncertainty.
The concept of trust in these different communities varies in how it is represented, computed,
and used.” Although trustworthiness has long been considered in these areas, the provision and
publication of data by many users to multiple sources on the Semantic Web introduces new and
unique challenges.



A. Scherp, G. Groener, P. Škoda, K. Hose, and M.-E. Vidal 3:25

One way of facilitating trust on the Semantic Web is to capture and provide the provenance
of data with the PROV ontology (PROV-O)60. It captures information about which Agents
cause data Entities to be processed by which Activities. Capturing such information requires the
use of known tools for modeling metadata for RDF data, e. g., reification, singleton properties,
named graphs, or RDF-star61. While some approaches use these constructs to capture provenance
information for each triple individually [54], others exploit the fact that typically multiple triples
share the same provenance [72] so that they can be combined into the same named graph encoding
the provenance information only once for a set of triples. Delva et al. [40] introduce the notion of
shape fragments, which entail the validation of a given shape through the neighborhood of a node,
along with the node’s provenance and the rationale behind its validation.

Furthermore, trustworthiness also plays a role in inference services on the Semantic Web, as
data inference must consider specifications related to trustworthiness and data must be evaluated
for trustworthiness. Important aspects for trustworthiness of data include [9]: the origin of the
data, trust already gained based on previous interactions, ratings assigned by policies of a system,
and access controls and, in some cases, security and importance of information. These aspects are
realized in different systems.

In general, data provenance and trustworthiness of data on the Semantic Web have been
addressed for RDF data [43, 52] as well as for OWL and rules in [43]. In addition, there are some
recent approaches on supporting how-provenance for SPARQL queries [60, 77, 53] with the goal
of providing users with explanations on how the answers to their queries were derived from the
underlying graphs. Other work deals with access controls over distributed data on the Semantic
Web [58]. Furthermore, there are approaches to computing trust values [139] and informativeness
of subgraphs [91]. There are also digital signatures for graphs [16]. Analogous to digital signatures
for documents, entire graphs or selected vertices and edges of a graph are provided with a digital
signature to ensure the authenticity of the data and thus detect unauthorized modifications [92].
In the approach for digital graph signatures developed by Kasten et al., graph data on the Web is
supported in RDF format as well as in OWL [93]. The digital graph signature is itself represented
as a graph again and can thus be published together with the data on the Web. The link between
the signature graph and the signed graph is established by the named graph mechanism [93],
although other mechanisms are also possible. Through this mechanism, it is possible to combine
and nest signed graphs. It is thus possible to re-sign already signed graphs together with other,
new graph data, etc. This makes it possible to build complex chains of trust between publishers
of graph data and to be able to prove the origin of data [93, 92].

9 Applications

With the increasing spread and use of semantic and linked data on the Web, the requirements
for Semantic Web applications have increased at the same time as their application possibilities.
The general requirements for applications based on semantic data on the Web are given by their
flexible and diverse representation and descriptions. Applications that use data from relational
databases or XML documents can start from a fixed schema. However, this cannot be assumed
for data on the Web. Often, neither the data sources nor the type and amount of data in a source
are fully known. The dynamics of semantic data on the Web must be taken into account by
applications accordingly, both when querying and aggregating data, and when visualizing data.
Thus, the real challenge of Semantic Web applications is to guarantee the best possible flexibility
of the application to take into account the dynamics of data sources, data, and schemas during
input, processing, and output.

60 https://www.w3.org/TR/prov-o/
61 https://w3c.github.io/rdf-star/
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In the following, selected examples of Semantic Web applications or application areas are
presented. They illustrate how flexibility and quality of search, integration, aggregation, and
presentation of data from the Web can be implemented. At the same time, they show the potential
of Semantic Web applications. First, uniform vocabularies and schemas are presented using the
example of schema.org. These serve as a basis for semantic search to provide search engines with
information about the meaning of web document content. The search and integration of data
from different sources is supported by Sig.ma, a semantic web browser. Other applications provide
semantic search through other representation formalisms, e. g., Knowledge Graphs). Subsequently,
the Facebook Graph-API, an application programming interface (API ) to the Facebook (Knowledge)
Graph, is introduced.

9.1 Vocabularies and Schemas: Schema.org
In HTML documents, the structure and composition of pages can be described with tags, but not
the meaning of the information. Vocabulary, schemas, and microdata can be used as mark-up
in HTML documents to describe information about page content and its meaning in a way that
search engines can process this information.

Schema.org62 is a collection of vocabularies and schemas to enrich HTML pages with additional
information. The vocabulary of Schema.org includes a set of classes and their properties. A
universal class “thing” is the most general, which is a kind of umbrella term for all classes. Other
common classes are Organization, Person, Event, and Place. Properties are used to describe
classes in more detail. For example, a person has the properties such as name, address, and date
of birth.

In addition to vocabularies, Schema.org also specifies the use of HTML microdata, with the
goal of representing data in HTML documents in as unambiguous a form as possible so that search
engines can interpret it correctly. An example of this is formats for unique dates and times, which
can also describe intervals to indicate the duration of events.

Schema.org is supported by the search engines Bing, Google, and Yandex, among others. There
are extensions and libraries for various programming languages, including PHP, JavaScript, Ruby,
and Python, to create web pages and web applications using vocabularies and microdata from
Schema.org. Likewise, there are mappings from Schema.org vocabularies and microdata to RDFS.

9.2 Semantic Search
A classic web browser enables the display of web pages. A semantic web browser goes one step
further by additionally allowing the user to visualize the underlying information of individual
pages, for example in the form of RDF metadata. Semantic Web browsers are also referred to
as hyperdata browsers because they allow navigation between data while also allowing one to
explore the connection to information about that data. Thus, ordinary users can use and exploit
Semantic Web data for their information search.

Sig.ma [147] was an application for (browsing) Semantic Web data, which may come from
multiple distributed data sources. Sig.ma provided an API for automatically integrating multiple
data sources on the Web. The requested data sources describe information in RDF. A search in
Sig.ma was initiated by a textual query from the user. Entities such as people, places, or products
can be searched for. Results of a query are presented in aggregated form, that is, properties of the
searched entity, such as a person, are presented in aggregated form from different data sources.

62 http://schema.org

http://schema.org
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For example, in a person search, information such as e-mail address, address, or current employer
can be displayed. In addition to the actual information, links to the underlying data sources are
also displayed to allow users to navigate to refine their search. Sig.ma also supported structured
queries in which specific characteristics can be requested for an entity, such as contact information
for a specific person.

Queries to data sources occur in parallel. The results from each data source in the form of
RDF graphs are summarized by using properties of links in RDF data, such as owl:sameAs, or
inverse-functional predicates. When searching data sources, techniques such as indexes, logical
inference, and heuristics are used for data aggregation. OntoBroker63 [39] and OntoEdit [142] are
ontology editors with search and inference systems for ontologies. Using OntoBroker, complex
queries over distributed Semantic Web resources, e. g., represented in OWL, RDF, RDFS, SPARQL,
and also F-Logic) can be efficiently processed.

9.3 Knowledge Graphs and Wikidata
There is an increasing number of knowledge bases and representations of structured data. For
example, the secondary database Wikidata64 [154]. A secondary database includes, in addition
to the (actual) statements, relationships to their sources and other databases (called secondary
information). Wikidata is a shared database between Wikipedia and Wikimedia. Wikidata mainly
contains a collection of objects, which are represented as triples over the objects’ properties and
the corresponding values. Semantic MediaWiki65 is an extension of MediaWiki. It serves as a
flexible knowledge base and knowledge management system. Semantic MediaWiki extends a classic
wiki with the ability to enrich content in a machine-readable way using semantic annotations.

Another knowledge base was Freebase66, also an open and collaborative platform initiated in
2007 and acquired by Google in 2010. The content from Freebase was taken from various sources,
including parts from the MusicBrainz ontology mentioned earlier. The success and widespread
use of Wikidata prompted Google to migrate Freebase to Wikidata [143]. This strengthened the
goal to develop a comprehensive, collaborative basis of structured data.

Google offers a semantic search function with Google Knowledge Graph67,68. A knowledge
graph, like an RDF graphs, is a set of triples representing links between entities. This forms a
semantic database. Possible entity types are described on schema.org, among others. If a search
term occurs in a query, the corresponding entity is searched for in the knowledge graph. Starting
from this entity, it is then possible to navigate to further entities by means of the links.

9.4 API-Access to Social Networks
A social network is essentially a graph in which connections are formed from users to other users,
e. g., in the form of a friendship relationship or to events and groups. Facebook’s Graph API
describes a programming interface to the Facebook Graph (called Open Graph). Within the
graph, people, events, pages, and photos are represented as objects, with each object having a
unique identifier. For example, https://graph.facebook.com/abba is the identifier of ABBA’s
Facebook page. There are also unique identifiers for the possible relationship types of an object,
which allow navigating from one object to all connected objects with respect to a particular
relationship.

63 https://www.semafora-systems.com/ontobroker-and-ontostudio-x
64 https://www.wikidata.org/wiki/Wikidata:Introduction/de
65 https://www.semantic-mediawiki.org/wiki/Semantic_MediaWiki
66 https://www.freebase.com
67 http://www.google.com/insidesearch/features/search/knowledge.html
68 https://developers.google.com/knowledge-graph/
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The Graph API allows one to navigate the Facebook Graph and read objects, including their
properties and relationships to other objects, as well as creating new objects in the Facebook
Graph and deploying applications. The API also supports requests for an object’s metadata, such
as when and by whom an object was created.

10 Impact for Practitioners

Linking and using graph data on the Web has become a widespread practice. Today, there is a
large amount of open data in various formats and domains, such as bibliographic information
management, bioinformatics, and e-government. DBpedia is the central hub in this context,
around which different datasets and domains are grouped (cf. [21]). This is illustrated, e. g., by
the tremendous growth of the Linked Open Data Cloud69 since 2007. Two of the latest notable
supporters of graph-based data are online auctioneer eBay with their graph database70 and the
U.S. space agency NASA with the unification of internal distributed case databases as knowledge
graphs71. These and other success stories of the Semantic Web in industries and industry-scale
knowledge graphs are described by Noy et al. [107]. Further analyses and surveys arguing about
the importance but also challenges of using graph data can be found in the literature like the 2020
survey of Sahu et al. [127] and the 2021 reflection about the future of graphs by Sakr et al. [128].
The usefulness of knowledge graphs and semantic-based data modeling for complex systems is
also discussed in the 2024 book by Abonyi et al. [1].

Regarding lightweight open graph data, Schema.org defines schemas for modeling data on
web pages to provide information about the underlying data structures and meaning of the data.
Search engines can use this additional information to better analyze the content of web pages. As
mentioned above, Schema.org is supported by search engines such as Bing, Google, and Yandex.
Studies on selected sources have shown that web pages among the top 10 results have up to
15 % higher click-through rate72. Other companies like BestBuy.com even report up to 30 %
higher click-through rates since adding semantic data to their websites (cf. Section 9) in 2009.
BestBuy.com uses the GoodRelations vocabulary73 to describe online offers. Similarly, Google
uses semantic data from online commerce portals that use the GoodRelations vocabulary and
takes it into account when searching74.

Another success is the publication of government data. For example, the U.S. government
makes government data publicly available with data.gov75, and U.S. Census76 publishes statistical
data about the United States. In the UK, data.gov.uk77 is a key part of a program to increase
data transparency in the public sector. The European Commission operates data.europa.eu78,
a European data portal with metadata about the member states. Among others, it provides a
SPARQL endpoint to access the data.

69 The growth of the Linked Open Data Cloud is documented at: http://linkeddata.org/.
70 https://github.com/eBay/akutan
71 https://blog.nuclino.com/why-nasa-converted-its-lessons-learned-database-into-a-knowledge-

graph
72 http://developer.yahoo.net/blog/archives/2008/07/
73 http://www.heppnetz.de/projects/goodrelations/
74 http://www.ebusiness-unibw.org/wiki/GoodRelationsInGoogle
75 http://www.data.gov/
76 http://www.rdfabout.com/demo/census/
77 http://data.gov.uk
78 https://data.europa.eu/
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Finally, a strong growth of semantic biomedical data on the Web can be noted. As part of
Bio2RDF79, many bioinformatics databases have been linked. Transinsight GmbH offers the
knowledge-based search engine GoPubMed80 to find biomedical research articles. Ontologies are
used for searching.

Regarding more heavyweight ontologies in OWL, there has also been movement in recent years.
In addition to numerous research-derived inference engines such as Pellet and Hermit mentioned
above, inference mechanisms for OWL can now be found in commercial graph databases such as
neo4j81. Furthermore, pattern-based core ontologies can also be found in software development
workflows [133]. The development and use of core ontologies is part of a continuous delivery
process that is used in practice.

11 Summary and Outlook

The Semantic Web consists of a variety of techniques that have been heavily influenced by
long-term artificial intelligence research and its results. The current state is also driven by an
industry uptake under the umbrella term of Knowledge Graphs and reflected in various activities
as described. In summary, therefore, it can be observed that semantic data on the Web is having
a real impact on commercial providers of products and services, as well as on governments and
public administrations.

Despite all the research and industrial developments, the full potential of the Semantic Web
has not yet been exploited. Some important components of the Semantic Web architecture are still
being explored, such as data provenance and trustworthiness. Below, we describe three example
directions for future work.

Neuro-symbolic systems: As mentioned in the introduction, we see as an important direction
of future work the combination of symbolic AI and subsymbolic AI. By combining the strength
of Large Language Models (LLM), i. e., generative AI, in processing and generating natural
language text and accessing structured data and logical reasoning capabilities of the Semantic
Web, a next step towards the vision of automated agents that perform complex planning tasks
may be reached. An example is performing A* search with an LLM [164]. Specifically, LLMs
might comprehensively capture and acquire human knowledge [41], but current LLMs lack
responding to simple questions of non-existing facts in their training data [41], may not contain
all facts [141], and thus return less accurate answers [84]. To leverage the distinct capabilities
of both LLMs and the Semantic Web, the integration of neuro-symbolic systems appears to
offer a viable solution [113]. Neuro-symbolic systems could also address the problem that
LLMs’ output is based on the most probable answer, which sometimes leads to wrong answers
– often referred to as “hallucinations” [14, 81, 141].
Natural interfaces between machine and users: A key to successful applications of the Semantic
Web is intuitive user interfaces. Users must be offered applications that are intuitive and
easy to use. This includes improving interfaces based on natural language for formulating
queries and accessing structured data stored in SPARQL endpoints. Again, the use and deeper
integration of LLMs with Knowledge Graphs shows a promising direction.
Semantic Web components: There are still components of the architecture (see Section 3)
where active development and research are conducted. Most notably, there are crypto and
trust. Recent new W3C standards such as DID and Verifiable Credentials have been developed.
However, one can expect more work and development in this direction.

79 http://bio2rdf.org/
80 http://www.gopubmed.org/
81 https://neo4j.com/blog/neo4j-rdf-graph-database-reasoning-engine/
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Finally, we like to point to existing literature discussing the future directions of research on the
Semantic Web [30] and Knowledge Graphs [44]. Breit et al. [25] conducted a survey on the fusion
of Semantic Web and Machine Learning, exploring the opportunities arising from the convergence
of these two paradigms.
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Abstract
Information modelling for databases and object-
oriented information systems avails of conceptual
data modelling languages such as EER and UML
Class Diagrams. Many attempts exist to add logical
rigour to them, for various reasons and with dispar-
ate strengths. In this paper we aim to provide a

structured overview of the many efforts. We focus
on aims, approaches to the formalisation, including
key dimensions of choice points, popular logics used,
and the main relevant reasoning services. We close
with current challenges and research directions.
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1 Introduction

Information modelling or conceptual modelling plays an essential role in computing by providing
a structured and abstract representation of complex data that sustains each software system.
It serves as a foundational step in the development lifecycle, facilitating communication and
understanding among stakeholders from the identification of requirements to maintenance. In
addition, it promotes a shared vision and a common understanding of the system’s domain
information that facilitates interoperability with other systems in unforeseen ways at development
time. The latest curriculum recommendations2 include conceptual modelling in the undergraduate
curriculum and pertinent dimensions are listed with multiple terms in the ACM classification
codes, notably, among others: Information management, Data Modeling, Model development and
analysis, Enterprise modeling, Entity relationship model, and Unified Modeling Language (UML).

Storey et al. recently described conceptual modelling as “an activity that occurs during in-
formation systems development and use that involves capturing, abstracting, and representing
relevant aspects of reality, to support understanding, communication, design, and decision making.
Conceptual models are comprised of constructs, such as entities, events, goals, attributes, relation-
ships, roles, and processes, connected by well-defined rules.” (emphasis in original) [116]. Here, we
focus specifically on conceptual data modelling (and thus excluding process and goal modelling)

1 Corresponding author
2 Accessible at https://www.acm.org/education/curricula-recommendations
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and within that, what has been called structural conceptual data models [56] (and thus excluding
behavioural aspects like UML’s methods). Popular modelling languages over the years include
Extended Entity-Relationship (EER) diagrams for database design [36] and the Natural language
Information Analysis Method that evolved into Object-Role Modeling (ORM) [59], design for
object-oriented programming with Unified Modeling Language’s (UML) Class Diagrams3, and the
Semantics of Business Vocabulary and Business Rules [93] that reuses ORM.

Albeit only one of many topics in computing, conceptual data modelling has been investigated
widely. This has also resulted in several surveys and scoping reviews on conceptual data modelling
broadly but without logics [116], on ontology-driven conceptual modelling aspects from a modelling
side [130, 131] rather than logics, on verification topics for UML class diagrams specifically [52, 109],
or only for conceptual model-like artefacts as it pertains to reasoning in the context of scalable data
management [107]. Those reviews also indicate that conceptual modelling may span (sub)disciplines.
Among others, the human aspects of the modelling process may be assumed to be within the
scope of information systems and their formal aspects are within the scope of the computing
discipline. The latter involves their quality assessment, and algorithms to, among others, convert
such specifications into databases and software applications. Conceptual data models are also
used in Artificial Intelligence (AI) to drive the design of intelligent information systems, provided
they are given a logic-based specification. By being formalised, complex knowledge – entity types,
relationships, attributes, and constraints holding over them – can be captured accurately and
passed on to a range of computational tasks. Example tasks include using automated reasoners for
classification and satisfiability checking and querying data by making use of, e.g., a Description
Logics reasoner [12], test data generation (e.g., [110]), optimising query compilation [124], and
explainable machine learning processes [83, 117].

This logic-based conceptual data modelling, thus far, has focussed on a number of subtopics,
such as which logic to use to formalise the graphical elements and diagram grammar, which features
of which conceptual data modelling language to include, and whether one could just have one
logic that maps to all major diagram-based conceptual data modelling languages and therewith
functioning as a precise interlingua in the back-end – and that for each purpose or assumed
application. Figure 1 shows three main strands of investigation and related work programmes
with particular aims for logic-based conceptual data modelling together with a few key moments
or the publication of pertinent languages and concepts. They are, roughly:

logic-based reconstructions4 of conceptual data models (CDMs5) and conceptual data modelling
languages (CDMLs) in expressive logics targeting precision and automated reasoning over
them, since around 1990.
runtime usage of CDMs since the early 2000s: ontology-driven information systems including
Ontology-Based Data Access (OBDA) where the ontology is de facto a CDM due to being
tailored to one application, query optimisation, and verification.
reach-out to a broader IT scope and to end users since the mid 2010s, which necessarily
simplifies and upscales it, where the broader access may have to be tolerant of conflicting
information in the model.

3 The first standard listed is version 1.1 from 1997, at https://www.omg.org/spec/UML/1.1; last accessed: 30
Sept. 2023.

4 The term “reconstruction” captures the process more accurately than “formalisation”. We understand by
reconstruction an attempt to get a complete description of information available early at design time, which
goes beyond creating just one of many possible formal representations. It includes also, among others,
assessment of the graphical design’s implicit assumptions and approach to formalisation. Put differently, the
formalisation step forms a part of the reconstruction.

5 The abbreviation is well known; tracing it to its origins among the many mentions, it appeared at least already
in 1991 [37]. Before that, the CDM abbreviation was also used for Common Data Model or Content Data
Model.

https://www.omg.org/spec/UML/1.1
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Figure 1 Timeline of the three identified strands and a selection of the key moments regarding languages,
logics and semantics of the formalisations, and applications. Regarding the latter: ICOM was the first
automated reasoner-enabled conceptual modelling tool, Mastro and QuOnto realised OBDA initially,
Google’s positioning of KGs helped boost graph-based approaches, and recently FaCIL combines languages
and techniques.

Each strand brings with it a different set of requirements for AI theory and techniques, which
we will discuss in detail in the paper, and are summarised as follows. The first strand is mostly
based on a waterfall design approach: design the model well and shelve it once the system is being
implemented. Modellers and domain experts generally develop models only in a graphical language
with none or ambiguous semantics that should be formalised. Those logic-based reconstructions
focus on formalisations to be as expressive as possible. The more features the better, since the
more precision the better, in line with feature extensions from ER to EER [122], ORM to ORM2
[60], and OWL DL to OWL 2DL [38]. In summary, more expressive logics are also more interesting
for a broader range of automated reasoning tasks to further help improve a model’s quality.

The second strand of research shifted the focus to leaner languages, designing computationally
“well-behaved” fragments of the logics used for the formalisation. The key goal is scalability, not
expressiveness, with the logic-based CDM as a component of more advanced AI-driven software
systems. It did not focus on reasoning over the CDM itself, but rather the reasoning service as
part of querying the data using the conceptual model.

The third, and most recent, strand is ongoing, and might be dubbed “modelling for the masses”
and may bifurcate further into new usages. Here, not only scalability is important, but also
ease of use and possibly also permitting contradictions, and thus also lower quality models. The
latter may happen because the representation language can be too weak to be able to detect
quality issues and contradictions. While it may focus on simple queries at most, such basic large
models can be of use already in machine learning and natural language processing (NLP) and
neuro-symbolic approaches for knowledge graph (KG) embeddings to enhance NLP. Example
initiatives that closely relate to CMDs include schema.org, linked data with RDF and optionally
with ShEx [13] and SHACL [77] for constraint validation, and the data and modelling component
of the community-driven Abstract Wikipedia [132]. This line of work runs in parallel with the
first two and may be the most prominent currently.

The different aims of logic-based formalisations, however, do affect how “best” to define that
construction, because what “best” entails is relative to the aim. On top of these different aims
and tasks, including reasoning tasks, there are various formalisation decisions on how to give
semantics to the elements of the diagrammatic notation of the CDM, which, in turn, can affect
the computational complexity and therewith the tasks one actually can use the conceptual model
for. Owing to the diverse lines of work with their aims for formalising CDMs, different approaches
are necessary for assessing a given formalisation in conceptual data modelling. In this condensed
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review, using the means of a qualitative narrative review, we zoom in on the evaluation of the
aspects that arise in selecting, developing, and applying logic-based semantics in this context. We
seek to answer the following questions:
Q1: What are the tasks and challenges in that formalisation?
Q2: Which logics are popular for which (sub-)aim?
Q3: What are the known benefits of a logic-based reconstruction in terms of the outcome and in

terms of reasoning services that one may use once a CDM is formalised?
Q4: What are some of the outstanding problems in logic-based conceptual data modelling?

The remainder of the paper is structured as follows. We first describe related work on reviews
on conceptual data models in Section 2. Section 3 covers decision points for a formalisation,
the logics used for different purposes, and it outlines the two key different processes to do so,
covering questions Q1 and Q2. Section 4 identifies and evaluates possible reasoning services that
can be applied to CDMs, illustrating with examples two of them. We therewith deal with Q3.
Current challenges and future directions related to Q4 are described in Section 5 and we close
with conclusions in Section 6.

2 Related Work

Several reviews of the state of the art in conceptual data modelling and logic-based reconstructions
of languages exist, but they either cover only the early years or the first strand of the development
of the area [66, 115, 118, 102, 119] or the first and the beginnings of the second strand of the
area [2, 39] and are, by now, outdated. New applications of CDMs since those reviews introduce
distinctive challenges that were not considered before. Key differences are the uptake of Semantic
Web technologies with scalable reasoning over CDMs and runtime usage of CDMs especially for
querying data.

Scoping the related work on reviews for CDM to the last 10-15 years, they focus on the
non-logical aspects [134, 86, 131, 130, 116]. Wen et al. [134] analysed several quality aspects of
conceptual models, such as expressivity, clarity, and semantics, and they evaluated effectiveness
of modelling languages in different fields of applications. The formalisation of the languages is
generally described, i.e., without logical translations, and no detailed comparison of alternative
representations is done.

Other reviews assess CDM from the ontology modelling angle. McDaniel et al. [86] reviewed
publications on domain ontology evaluation. Their work concentrates on the evaluation process,
and even though domain ontologies are related to conceptual data modelling, the modelling
language and their formalisation is not part of the analysed characteristics. Verdonck et al.
[131, 130] conducted a systematic literature mapping and review on the domain of ontology-based
conceptual modelling. They consider ontology-driven conceptual modelling as the utilisation of
ontological techniques, like formal ontology, cognitive science and philosophical logics, to the
practice of conceptual modelling. This analyses CDMs in general, not only those approaches
related to ontologies.

There are also reviews on the collaborations of the field of conceptual modelling with artificial
intelligence [18, 19, 127, 84]. These reviews focus on identifying new research directions and do
not address formalisation details.

Gonzalez et al. [52] conducted a systematic literature review of formal verification of structural
software models in UML, complemented or not with constraints expressed in textual languages like
the Object Constraint Language (OCL). The scope were papers describing research initiatives on
model-driven engineering tools that ensure software correctness, and the results classify the type of
input models, the reasoning support of the tools, and the completeness of the automatic verification
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Figure 2 Example EER diagram of Example 1.

process. The way models are formalised, and how the tools help to develop this formalisation is
not analysed, only listing the formal languages used. Shaik et al. [109] presents a more recent
literature review with similar aims. They describe language coverage and formalisation techniques
in more depth, but the scope is limited to only verifying UML class diagrams, so new applications
such as querying are not considered and language coverage is limited to classes, associations,
generalisations, compositions, and aggregations. Also, the complexity of formalizations is missing.
While such quantitative surveys are useful, they lack in-depth content assessments.

The most recent review, by Storey et al. [116], presents a comprehensive systematic review
of the literature in conceptual modelling in general with as aim to identify relevant topics and
future research directions. It has a much broader scope including not only static (structural)
modelling but also process and collaboration modelling. They recognise the need to support an
always increasing variety of users and interconnected domains. Another noteworthy result is that
they found out that over the last 15 years, process modelling prevails over data modelling on the
research topics. Being a systematic review of a huge amount of literature with semiautomatic
tools, there is, however, no reference to logic-based semantic constructions.

There is thus no review on logics for conceptual data modelling specifically, let alone on
assessing logic-based formalisations for CDM in view of the current demands and applications not
only from the formal point of view, but also on the design decisions that influence data-driven
applications across different domains.

3 On formalising conceptual data models

Logic-based reconstructions of CDMs and their languages (CDMLs) used to represent them
are motivated by two main key usage scenarios: 1) precision in representation and automated
reasoning over them (and, implicitly: quality) and 2) their use at runtime as part of an intelligent
information system. It also may be the case that the CDML angle is only a possible scenario and
the main aim is to design more logics, whereas from our perspective, the CDMs and CDMLs are
the key focus.

This section will summarise the component tasks and types of challenges first, since they set
the stage for the logics, subsequently discuss the popular logics used for that, and finally describe
the two main approaches typically taken carrying out that task.

3.1 Decision points before the formalisation
This section zooms in on considerations when designing or selecting a logic for creating a logic-
based reconstruction of a conceptual data model or modelling language and the decision points
involved in it.

TGDK
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In a recent empirical survey, Valle Souza et al. [128] identify six types of functional goals, and
five types of quality goals for using conceptual data modelling in practice. Before formalising a
CDM, it is important to understand both which subset of the all possible functional goals and
which balance of all quality goals are adequate for the context. Different model properties are
relevant for achieving these goals, mainly reusability, correctness, comprehensibility, completeness,
confinement, and maintainability. Correctness can be further split into precision and coverage.

On the surface, it seems straightforward to formalise CDMs, as something that can be done
promptly with little effort, but to get it right for either the whole CDML or an “interesting”
fragment requires attention to detail and a substantial amount of knowledge and time. This is
due to two key reasons:

the purpose or reason for the formalisation that influences the design process of a language
and therewith the many variations in outcome [46];
where to set the cut-off point for feature (constraint) inclusion, since if a feature is added, it
will be used by someone somewhere and perceived as needed [75].

Purposes such as reusability, comprehensibility, and maintainability favour leaner logics for better
performance. In contrast, a purpose of precision requires a more expressive logic to maximise
coverage of CDML constraints in the ontologically best possible way, which concerns both higher
precision so that more unintended models are excluded [55] and philosophical decisions embedded
in the logic [47]. Feature inclusion decisions can be split up into two categories. One is modelling
features, which concerns whether to include attributes and multi-attribute identifiers, with or
without data properties and data types (concrete domains), and which semantics to choose for
shared and composite aggregation – among the 23 types of elements and 49 types of constraints
across the three main CDML families [76]. The other concerns those that affect the automated
reasoning outputs, notably Open World Assumption vs Closed World Assumption and whether to
honour the implicit disjointness of classes except when they are in a hierarchy.

In addition to these feature decisions where the logic does not adequately cover all the CDML’s
constraints it should be able to express, there is generally a discrepancy in the other direction as
well. This concerns the confinement model property, which refers to the degree to which a model
has only the necessary information to fulfill its purpose [128]. Here, the logic may permit more
than is possible to declare in a diagram due to composition rules of the CDML, with the effect
that the logic falls in a higher complexity class than strictly needed.

An overview of the key dimensions of choice points is included in Table 1, which the au-
thors created by combining an assessment of the published logic-based reconstructions (see also
Section 3.2) and the top-down approach of the language design procedure introduced in [47].
The first row in Table 1 describes the main aim of the reconstruction, which aligns with the
strands 1 vs 2 and 3 introduced in Section 1. The second row presents two approaches to the
formalisation: rule based and mapping based. The choice of the approach commits the modeller to
a given process, with different tools and outcomes. A detailed analysis for this choice is presented
in Section 3.3 and it is further illustrated in the Appendix. Different syntactic and semantic
representations for the underlying logic are shown in the third and fourth rows respectively, which
summarises the various options that are further discussed in Section 3.2. The next three rows show
alternative formalisations for relationship, class disjointness, and how negation is to be treated
(closed world view). Finally, the last row describes the influence of the logic-basic constituents in
the formalisation, which varies greatly across the published logic-based reconstructions (discussed
in Section 3.2.1). The following example illustrates some of these issues, in particular regarding
roles and relationships and disjointness.
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Table 1 Key dimensions to choose for creating a logic-based reconstruction of a conceptual data model
(see Section 3.1 for details).

Dimension Options Comments

Main aim High feature coverage for [preci-
sion/automated reasoning], limited
features for runtime usage

Mainly a choice between computationally
“well-behaved” logic or not

Approach to
formalisation

Algorithmic/rules, mappings See Section 3.3 for details

Syntax Graphical, textual, both See Section 3.2 for details
Semantics Set-based, model-theoretic, graph-

based, other
First two are most popular; see Section 3.2
for details

Relationships See formalisation options in Ex-
ample 1

Often not stated explicitly which option is
chosen

Class disjoint-
ness

Classes outside a class hierarchy are
disjoint, or not

Most formalisations do not make them dis-
joint (although assumed in the CDM)

World view Open, Closed World Most formalisations are with Open World
Assumption

Language fea-
ture inclusion

Choose types of elements and con-
straints to include

A unifying metamodel for EER, UML class
diagrams, and ORM2 identified 23 types
of elements and 49 constraint types [76] to
choose from; see also Section 3.2.1

▶ Example 1. A sample conceptual data model in one of the EER notations is included in Figure 2
(incomplete with respect to the universe of discourse). There are only regular and electric bicycles
(which are disjoint) that all have a number of wheels and where the latter has an engine as part.
Clients can rent bicycles in a city. Bicycles, engines, and wheels are identified by their respective
ID. The first step is to decide how to formalise this in which logic.

Consider the relationship between the Electric bicycle and Engine. There are multiple options
that may have consequences for the logic and the resultant computational complexity of popular
automated reasoning tasks:
1. One-directional binary relationship; choose either partOf or hasPart.
2. Two-directional binary relationships, partOf and hasPart; choose whether to declare them inverses

or not.
3. One non-directional binary relationship with two roles (as part of the relation) that the

participating entities play, named, say partwhole with as roles [part] and [whole]; choose whether
to define the relationship as having those roles as part.

4. Reify the relationship to a new class and add two new binary relationships to each participating
entity type, e.g., Parthood with as new relationships partOf and hasPart that must have as
domain Parthood; choose whether to approximate the reification (i.e., add only mandatory or
only functional (“at most one”) constraints or both on the two new binaries) or demand logical
equivalence (i.e., also have the external identifier, as in ORM, or owner entity identifier, as in
ER).

5. Acknowledge that relationships in CDMs are local rather than reused like they are in ontologies,
so the parthood relationships between Electric bicycle and Engine and between Cycle and Wheel
must have unique names; choose whether to declare them equivalent or not.

Regarding option 2: adding inverses may or may not change the worst-case computational
complexity of a language: e.g., the Description Logic (DL) ALCQ and ALCQI are both ExpTime-
complete [123], whereas EL (the basis of the OWL 2 EL profile [90]) does not have inverse
properties and is PTime-complete, but adding inverses increases complexity [58].

TGDK
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Option 3 requires more machinery in the logic, specifically roles (called role components in
DLs) as core elements and functions to relate the role player to the role, which is used for more
convenient processing. Defining relationships, such as defining (familial) aunt to be precisely one’s
parent’s sister (aunt ≡ hasParent ◦ hasSister), pushes the logic into undecidability in most cases
[85, 135, 106]. The reification-based approach of option 4 is used by, e.g., Wikidata’s data model6.
Logical equivalence with a binary relationship requires an advanced identifier constraint that is
currently only available in DLRifd [31] and CFDI∀−

nc [125] DLs and in full first order logic, but
not in OWL that has ample software infrastructure.

For the disjointness, one could either capture that as the complement or as full disjointness, i.e.,
as Bicycle ⊑ ¬Electrical bicycle or as Bicycle ⊓ Electrical bicycle ⊑ ⊥, respectively. Diagrams show
disjointness declared on the subsumption relation rather than between the entity types, however,
and it thus can be declared only in a class hierarchy, not any number of arbitrary classes in the
CDM.

There are more choices for other elements, which, taken together with the myriad of logics,
easily can lead to a combinatorial explosion of the combination of formalisation choices with the
logic chosen, and which subset of constraints of the CDML is honoured in the formalisation. For
instance, OWL DL [87] does not have qualified cardinality constraints to be able to capture the
constraint on Wheel fully; OWL 2 DL [91] does. ⌟

The different options for this one example are illustrations of how to formalise a particular
element, constraint, or combination thereof. CDMs have only a limited set of such patterns and this
can be defined algorithmically so that the logic-based reconstruction can be done systematically
and a repeat reconstruction will result in the same formalisation, provided the same vocabulary is
used where vocabulary needs to be provided. The designers of the different algorithms have made
different formalisation choices, and thus their corresponding tools will not necessarily result in the
same formalisation given the same CDM.

Finally, an element of the CDML may not be unambiguous and therefore it may be formalised
differently across formalisations. The common example of such an issue is UML’s aggregation
association that was a “semantic variation point” according to the UML v2.4 standard [94] and
its semantics is left to the implementer to specify.

3.2 Popular logics for logic-based reconstructions

Most research has focussed on the motivation of the first strand, expressiveness and model quality,
both from a conceptual modelling and from a logics perspective, such as [7, 15, 59, 120, 70, 104].
Popular logics to give the graphical elements a formal semantics and to use that for automated
reasoning over them at least in theory, are Description Logics (DL) languages but also other
logics have been used (e.g., [7, 15]). Several of those other logics, notably those with some tooling
support, include UML’s object constraint language (OCL) [103], common logic interchange format
CLIF (an ISO-standardised first order logic) [98], Alloy (also first-order logic) [21], and Z (a
typed first order logic) [67]. Conversely, there are also multiple formalisations for one CDML; e.g.,
logic-based reconstructions of ORM include, among others, [48, 50, 59, 120, 71, 133] and for ER
and EER both from a modeller’s perspective [36, 111, 122] and from the logicians’ one with the
DLR family [29, 30, 31] and DL-Lite family [28] of languages.

6 Reification such as described by [62]. See also the data model at https://www.mediawiki.org/wiki/Wikibase/
DataModel; last accessed on 2-1-2024.

https://www.mediawiki.org/wiki/Wikibase/DataModel
https://www.mediawiki.org/wiki/Wikibase/DataModel
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Table 2 Popular logics for CDMLs and a set of features (adapted and extended from [42]). “–”:
negative/absent; “+”: positive/present; “feature mismatch” refers to the number of constraints (e.g,
disjointness) that can be captured in the logic; roles sensu DL role components or FOL argument places
in relations and relationships.

DL-LiteA (Approx.
OWL 2 QL)

DLRifd OWL 2 DL FOL

Selection of features
– without roles + with roles – without roles – without roles
– no n-aries + has n-aries – no n-aries + has n-aries
+ attributes + attributes + attributes – no attributes
+ has datatypes + has datatypes + has datatypes – no datatypes
– very few language fea-
tures; large mismatch

+ little feature mismatch ± some feature mis-
match, with overlapping
sets

+ little feature mismatch

– logic-based reconstruc-
tions to complete

+ logic-based reconstruc-
tions exist

– logic-based reconstruc-
tions to complete

± logic-based reconstruc-
tions exist

+ modularity (import
statements etc)

– modularity + modularity (import
statements etc)

– modularity

UNA / no UNA no UNA no UNA no UNA
± OWA ± OWA ± OWA ± OWA

Computation and implementability
+ PTIME (TBox); AC0

(ABox)
± ExpTime-complete ± N2ExpTime-complete – undecidable

+ very scalable (TBox
and ABox)

± somewhat scalable
(TBox)

± somewhat scalable
(TBox)

– not scalable

+ relevant automated
reasoners available

– no implementation + relevant automated
reasoners available

± limited automated
reasoners (see text for de-
tail)

+ linking with ontologies
doable

– no interoperability + linking with ontologies
doable

– no interoperability
with widely used infra-
structures

+ modularity infrastruc-
ture

– modularity infrastruc-
ture

+ modularity infrastruc-
ture

– modularity infrastruc-
ture

Alternative approaches consider the verification problem, for which constraint programming
is used [25, 26], and there are a few graph-based approaches [20]. Also, there is the deductive
databases approach based on logic programming [88], in which the concepts of closed world
assumption (CWA) and unique name assumption were first introduced. ConceptBase7 is a
tool that adds conceptual modelling and metamodelling features based on the same logical
representation. Deductive databases focus on a logic-based representation and inference within an
already deployed database system, however, where all choices and decisions about the formalisation
are already made, while conceptual modelling is concerned with creating a high-level, technology-
independent representation of the entire information system during the early stages of development
where there are still plenty of open points to formalise. Although it is possible to do conceptual
modelling in this context, it is not in the main interest of the deductive databases area. Other
attempts, such as exploring category theory [120] for a precise specification, are also considered
out of scope for this review.

The next three paragraphs elaborate on the main trends.

7 https://conceptbase.sourceforge.net

TGDK
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3.2.1 Coverage and DLs

We shall focus on DLs since they are relatively popular thanks to the OWL standard [87, 91],
which is largely based on them [65]8, the software tooling ecosystem that it fostered, more research
has been carried out on logic-based reconstructions into a DL or a DL-based OWL species than for
other logic families, and they enjoy ample insights into the computational complexity of language
feature combinations.

Most logic-based reconstructions consider only one CDML family at a time. Well-known logics
for this purpose are DL-Lite and DLRifd for EER [7] and UML class diagrams [15], and OWL for
(fragments of) ORM and UML class diagrams [133]. The formalisations are typically incomplete
with respect to the full CDML due to limited expressiveness of the logic; among others, omitting
ER’s identifiers (aka keys) [34], excluding n-ary relationships where n may also be ≥ 3 [7, 133], or
no special semantics for UML’s aggregation association nor for its qualified associations [15]. To
some extent, this is unavoidable: ORM and its extended ORM2 are undecidable due to arbitrary
projections over n-aries and due to the acyclic role constraint, and probably also due to the
antisymmetric role constraint. An advantage of all these formalisations in the different logics
covering different features, is that it provides good insight into the computational complexity of
the CDMLs. Table 2 lists these and related aspect for four logics, three of which are expressive
ones. The for CDMLs relatively well-suited DLR family – meaning that there is a comparatively
good language feature alignment of the logics with CDMLs – are all ExpTime-complete. It
varies for the many flavours of DL-Lite for different EER fragments [7]. DL-Lite is included in
the comparison because it is popular in ontology-based data access, where the ontology has to
resemble a CDM for seamless query formulation and execution. OWL 2 DL is included for its
popularity, given that it is standardised and a reconstruction provides instant access to ample
software infrastructure. Their respective language feature sets have some overlap, but either has
features that the other one does not have; among others, OWL does not have n-aries proper, no
external uniqueness/multi-attribute identifiers or qualified associations, no compound attributes,
and no acyclicity, whereas the CDMLs notably do not have property chains and no defined classes.
FOL is a common and very expressive language at least on paper and therefore included. Its
status of “limited” automated reasoners refers to their plug ’n play level of maturity and the
reasoning services they currently offer, as compared to DL-based automated reasoners.

Adding the missing features to any of DL-Lite, DLR or DL-based OWL species is likely to
push them straight into undecidability, if they were not already. This also negatively affects
obtaining interesting results in unifying the CDMLs through one logic foundation as the central
point from which to pivot between graphical CDMs. The typical approach is to identify a common
fragment with features that all CDMLs have in common and devise a suitable logic for that,
such as the DL ALUNI [34] and the tailor-made DLs in the same low expressiveness range for
evidence-based unification of CDMLs [42]. An exception is the framework for the Distributed
Ontology, model, and specification Language (DOL) that uses institutions to provide a framework
to let different languages cooperate, including a logic-based reconstruction of UML class diagrams,
OWL, and CLIF [89, 54].

Given that one easily arrives at a logic that is ExpTime-complete even without covering all
CDML features, little has been done to venture into CDML extensions, although this is also in
part because there are not many temporal or spatial conceptual data modelling languages. The
main line of research where attempts have been made, concerns expressive temporal DLs like

8 OWL DL 2 is based on SROIQ [64], OWL 2 QL is based on DL-Lite [28], OWL 2 EL on EL++ [11], and
OWL 2 RL was inspired by both Description Logic Programs [53] and pD∗ [121].
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DLRUS [9] that serves as a basis for the temporal EER ERV T [10]. DLRUS was also explored in
context of the MADS spatio-temporal modelling language [99], and ERV T has been extended into
EER++

V T [95] and Trend [74], all of which still can be reconstructed into DLRUS . While DLRUS
turned out to be undecidable [9], this does not need to be the case for all temporal conceptual
data models in existence. Only those that have, among others, the following modelling features,
are: disjointness and covering (total) constraints, sub-relationships, timestamping, and evolution
(i.e., object migration) constraints [6]. Without them, a modeller lacks the ability to represent
temporal constraints such as, e.g., “each alumnus must have been a graduating student before”.

3.2.2 CDM runtime usage and DLs
The second strand of research into logic-based reconstructions of CDMLs, runtime usage, focuses on
(very) lean fragments for scalability. The software system then uses at least the conceptual model’s
vocabulary, relationships, and possibly also its constraints or a subset thereof. Practically, the
CDM is then deemed so-called “background knowledge” of the system, rather than the traditional
view on it as a starting point for software design from a requirements specification. Popular
runtime usages are test data generation for verification and validation [92, 110], query answering
with the principal aim of query execution or user-centred query design [16, 33, 35, 82, 113], and
database query execution during query compilation [124].

Query answering has received most attention in AI under the name of ontology-based data
access (OBDA) [100] and related implementations generally [136, 17, 82, 124, 3], and specific
use cases such as EPNet [27] whose “ontologies” are de facto conceptual data models (see for a
comparison, e.g., [73]). An alternative approach to the same problem uses transformations rather
than a mapping layer, availing of the DL CFDI∀−

nc and an abstract relational model [125, 105].
CFDI∀−

nc has been shown to cover a substantial number of constraints used in ORM in its ORM2cfd

fragment [48] and the approach fits well also with EER [47]. Thanks to the transformations and
the assumption of materialising deductions, the expressivity of the logic for the CDML may be
higher in this configuration compared to the logic for the CDML in the OBDA approach; other
trade-offs are discussed in [47].

For the computationally “well-behaved” lean logics, the key challenge is that the formalisation
of a CDM becomes so complicated that it borders cognitive overload for the modeller, if they
have to do it all at once. That is, to have to combine in one view and all at the same time the
understanding of the universe of discourse, to model it right in the CDM, to know enough of
logics, and be fully conversant with its workarounds, convoluted encodings, and approximations.
In theory, this should be solvable with good modelling software.

As with the CDM reconstructions that focus on coverage, also here there are steps toward lean
temporal fragments, which are motivated mainly by spatio-temporal stream queries with OBDA
[69, 40, 97].

3.3 Approaches to the formalisation
Once the CDML, or a fragment thereof, and the logic are chosen there are two main ways to
create the logic-based reconstruction, whose components and their interactions are illustrated
in Figure 3. The distinction between the two is important, because they meet different sets of
formalisation and deployment requirements. One option is to do it algorithmically with a series of
rules stating what axiom(s) must be added to the knowledge base for each element encountered
in the CDM that needs to be formalised (e.g., [15, 42, 103]). This is like converting an existing
informal CDM to the logic. Practically, a particular model is deconstructed into component parts
where each component – a pattern or unit for formalisation – may be formalised in a single axiom

TGDK
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Figure 3 Conceptual model describing the characteristics of the two main approaches used for creating
logic-based reconstructions of conceptual data models: Mapping-based and rule-based.

or several axioms, depending on the pattern and logic, which are then added one-by-one to a
logical theory. This resultant logical theory may be a semantically complete reconstruction of
the original CDM or only resembling the original CDM, for it may be missing an element (e.g., a
cardinality of “2-4” appears as “∃” in the logical theory) or approximating one (e.g., reification of
an n-ary without the identification constraint).

The other option is to declare a new textual syntax of the modelling language, map that
syntax to the graphical elements of the CDML, specify the semantics for the syntax, and then
show it can be represented in the chosen logic (e.g., [7, 48]). In this second option, the graphical
elements in the CDM are effectively a syntactic sugar coating in the modelling process that is
already logic-based from the start. With the mapping based approach, it is fully reconstructed by
design if the mapping were 1:1 and any excluded features could not be used to begin with, else it
is also only an approximation. That is: the details of the reconstruction into the logic vary by
proposal and are embedded in the creation of the mapping.

The rules-based approach is illustrated in Appendix A.1, where we adapt the “positionalist
core profile” DCp of [42] for the occasion, which contains the features used most across UML class
diagrams, EER, and ORM2, into DL syntax (and thus semantics) [12] with the specific DL role
component notation as in the DLR family of DLs [29]. The mapping-based approach is illustrated
in Appendix A.2, also with the DCp language. It is clearly more verbose in its specification than
the rules-based one, and takes more time to specify. We illustrate some formalisations with both
approaches in the following example.

▶ Example 2. Consider again the bicycles of Figure 2. Let us formalise a section of it into the
DL fragment for DCp, using the rules listed in Appendix A.1:

≥ 1[whole]PW ⊑ ElectricBicycle

≥ 1[part]PW ⊑ Engine

Engine ⊑ ∃power.T ⊓ ≤ 1 power

ElectricBicycle ⊑ Cycle

ElectricBicycle ⊑ ≤ 1[whole]PW ⊓ ≥ 1 [whole]PW

The same section of the model can be formalised a different set of rules for a different logic. For
instance, let us take the same section in OWL 2 DL: we first need to somehow add directionality to
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the nondirectional PW relationship. Further, one could argue about whether the PW relationship
should be typed with a domain and range axiom, since it is used twice and so without typing, one
can then obtain a more elegant formalisation. If so, it would be, at least:

SubClassOf(ObjectSomeValuesFrom(ex : hasPart) ex : ElectricBicycle)
SubClassOf(ObjectSomeValuesFrom(ex : isPartOf) ex : Engine)
SubClassOf(ex : Engine (ObjectIntersectionOf (DataSomeValuesFrom(ex : power)

FunctionalDataProperty(ex : power)))
SubClassOf(ex : ElectricBicycle ex : Cycle)
SubClassOf(ex : ElectricBicycle ObjectExactValuesFrom(1ex : hasPart))

and optionally with the additional assertion that hasPart is the inverse of isPartOf. If one were
to decide against typing relationships in the rules-based approach, still for OWL 2 DL, then
the following set of axioms approximates it by exploiting the qualified cardinality constraint feature:

SubClassOf(ex : Engine (ObjectIntersectionOf (DataSomeValuesFrom(ex : power)
FunctionalDataProperty(ex : power)))

SubClassOf(ex : ElectricBicycle ex : Cycle)
SubClassOf(ex : ElectricBicycle ObjectExactValuesFrom(1 ex : hasPart ex : Engine))

The mapping approach, on the other hand, is laborious to define (recall Appendix A.2), but then
results in a succinct notation in the formalisation, for one can use the textual version of the CDML.
The same model snippet is then:

rel(PW) = {whole : ElectricBicycle, part : Engine}
att(Engine) = {power : T}

isa(ElectricBicycle, Cycle)
cmin(ElectricBicycle, PW, whole) = 1

cmax(ElectricBicycle, PW, whole) = 1

This notation is likely to be more readable for users who are not logicians, because a term like att for
attribute or, say, Attribute in full, is closer to common terminology than FunctionalDataProperty,
and likewise a simple comma to separate the part and whole versus a “⊓” symbol. ⌟

As can be seen in the example, a different set of rules may result in a knowledge base that
is never equivalent, regardless whether that was into the same logic or into different logics with
an isomorphism. For instance, with the “bumping up the role names”-approach rather than the
roles-based approach, it would not be equivalent due to having created two independent OWL
object properties, hasP and isofP, whereas there is only one relationship (PW) in the DCp-based
knowledge base. This also motivates that each CDM-to-logic-X converter would need to be explicit
on the rules the algorithm uses.

It must be noted that the resultant logic needed to encode all DCp knowledge bases, those
language features in that DL syntax allow formulas that are not DCp knowledge bases, or: this
logic is more expressive than DCp. For example, a knowledge base using that DL fragment may
contain A ⊑ ∃a.T⊓ ≤ 1a⊓ ∀a.T , but it cannot be obtained from the translation of any conceptual
data model that has only DCp’s elements. This is a feature that holds for all such reconstructions:
it is a one-way direction from conceptual data model into the logic, but not vice versa.

Observe that since a rule-based construction procedure is linear in the number of elements
in the CDM, as most of them are, the overall complexity of translation and any subsequent
automated reasoning on the theory remains the same as for the logic. The overall complexity
of the mapping-based approach depends on its realisation. If one can model only with what is
declared in that mapping, then the complexity is the same as in the logic, which is more efficient
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Table 3 Summary of differences between the rule-based and mapping-based approaches, principally
emanating from both the different components and relations between them (see Figure 3) and from how
the two approaches are currently realised (see the Appendix for an illustration).

Rule-based Mapping-based

Logic is more expressive than the CDML The logic is/can be as expressive as the CDML
When mapped into that logic, the only semantics
is that of that logic

Can swap the semantics or declare multiple and
choose, like set-based for model-theoretic

Formalisation decisions “hidden” in the algorith-
m/rules

Ontological commitments explicit in the text-based
version and what maps to what

May be with information loss (i.e., less in the
formalisation than was modelled in the diagram)

Typically, it is information-preserving

Relatively quick specifications for the formalisa-
tion

It is more verbose in its specification and takes more
time to specify

Goes in one direction only, from diagram to the
axioms

Two-way direction between the CDM and logic

Executed post hoc after completion of the model,
or needs to be re-run each time a change has
been made

Formalised at modelling time with formalisation
and diagram updated in real-time. Computationally
faster than re-running the formalisation in the rule-
based approach

Graphical elements in the CDM take precedence Graphical elements in the CDM are effectively a
syntactic sugar coating in the modelling process
that is already logic-based from the start

than the rules-based approach thanks to not having to do the linear translation. If one can model
independently from the CDML in the mapping, then one has to add the pattern-finding complexity
to the complexity for the logic.

The approaches also can be merged. For instance, a rules-based approach that transforms
EER to an intermediary abstract relational model [47], which has its own syntax that is closer to
the relational model with its semantics and a mapping from that abstract relational model to a
logic (a DL in the case of [17, 82, 124]).

4 Reasoning over and with Conceptual Data Models

Depending on the aims of the modeller, it may already suffice to have a logic-based reconstruction
for precision and elimination of ambiguity of the language. It may also be the case that the
CDM is formalised in order to use it with automated reasoning services. The principal reasoning
tasks assumed for DL-formalised CDMs are the so-called standard reasoning services for DL
knowledge bases and OWL ontologies: satisfiability, consistency, instance checking, and querying
[12]. Satisfiability and consistency are interesting theoretically, and deducing implicit information
can improve on the model’s quality, but for this to be useful during the modelling stage, the
available CDML features need to be used more often than currently done [75]. In particular:
disjointness constraints, cardinalities beyond 1, and role and relationship subsumption ought, or
would need, to be used more often to obtain most benefits. Discovering unsatisfiable classes are
useful because if undetected, they result in necessarily empty database tables in a database or
OOP classes in the application cannot have any objects. Upfront correction before implementation
is better than revising after unit test failures. Detecting implicit cardinality constraints is useful
so that they can be made explicit in the database or application, which enhances data integrity.
These benefits can be obtained thanks to having formalised the CMD in order to enable automated
reasoning over it, which results in a better quality CDM. This is illustrated in the next example.
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Figure 4 EER diagram of Example 3, where a modeller created a relationship but forgot to specify it
further, and asserted an electrical bicycle to be both a motorised vehicle and a bicycle.

Figure 5 EER diagram of Figure 4 with deductions shown: the Electric bicycle is unsatisfiable (due to
the multiple inheritance and disjointness) and the stronger constraints of the parent PW relationship is
inherited down the hierarchy.

▶ Example 3. Consider the CDM about bicycles in Figure 4: Vehicles may have at most two engines
as part and each engine is part of exactly one vehicle. Bicycles and motorised vehicles (which
are disjoint) are vehicles, and electric bicycles are both a type of bicycle and a type of motorised
vehicle. In addition, the modeller created a part-whole relationship between motorised vehicle and
engine, declared it a subrelationship of the former, but forgot to specify the cardinality constraints,
which defaults to 0..n. A logic-based reconstruction of the EER diagram is straightforward in either
of the languages in the DLR family as well as in OWL 2 and thus also in first order predicate
logic, be it following the rules-based or mapping-based approach.

Running the automated reasoner, there are three deductions, which are highlighted in Figure 5.
First, the Electric Bicycle class is unsatisfiable: no individual electric bicycle can be both a bicycle
and a motorised vehicle, according to this model, because of the disjointness constraint on the entity
type subsumption. Additionally, thanks to the subsumption axiom between the PW between vehicle
and engine and motorised vehicle and engine, we obtain two more deductions: the subsumed PW
relationship inherits two stronger cardinality constraints declared over the parent relationship. ⌟

Example 3 is a variation on examples and tooling that exists since 2000 with the ICom tool
for EER diagrams [49], its evolution with its own notation9 and better module management to
declare inter-model assertions [43], and subsequent bifurcation into ORMie for reasoning over
ORM2 diagrams [114] and crowd2 that supports reasoning over ORM2, EER, and UML class
diagrams and swapping between them [23]. They mostly use the DL ALCQI either directly or
they use a behind-the-scenes reification of n-aries by rewriting them into n binaries in case n ≥ 3.
That is, common automated reasoners for OWL 2 DL, such as HermiT [51] or Racer [57], can be,
and are, used in these implementations.

9 There are other tools that provide a diagrammatic interface to OWL that resemble EER, UML or ORM to a
greater or lesser extent, most recently by [79], but the reverse is a different problem and outside the scope of
this review, as are graphical notations that are not conceptual data models.
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The notion of finite satisfiability – i.e., the problem of deciding whether a knowledge base
has a finite non-empty model – in the context of DL-based formalisations is sometimes also
considered [14, 15]. If so, this is done more often from the viewpoint of model verification in
software engineering and also availing of constraint programming or OCL besides, or instead of,
FOL, DL, or HOL, it is focussed on UML class diagrams only, and the majority has only a Yes/No
type of output [25, 26, 52, 109].

The reasoning service of instance checking in the DL and OWL sense is not relevant in
conceptual model development, for it is focussed on type-level information only, i.e., the TBox
in DL terminology. Where instances can, and do, feature in the modelling processes are all
in different tasks, being: 1) in the specification of small sample populations to help derive the
participation constraints [60], 2) automatic test data generation from CDMs [110], and 3) in a
test-driven development method [126]. Because of the absence of an ABox and considering regular
conceptual modelling practices, it is hard to obtain an inconsistent CDM and therefore it is, to
the best of our knowledge, fully ignored in the research.

Querying over a CDM has not received particular attention, unlike the Query-By-Diagram
idea since 1990 [4] and the scalable ontology-based data access that evolved from it [100], which
includes using a graphical conceptual data model for it, notably ORM and ORM-like notations
(e.g., [33, 35]; see [112] for a review). The first basic task is to use the conceptual data model
to “point and click” to select the elements to query, which is then translated into a SPARQL
query and from there into SQL, or straight to SQL, to fetch the data from the data store. The
more advanced option uses the knowledge represented in the CDM to enhance the query. The
enhancement can occur at the level of the TBox, where the query itself is rewritten taking the
logic-based reconstruction of the CDM into account, or it is used to compute the deductions over
the instances to subsequently materialise the results (i.e., append to the database), which is then
queried with the plain query. The general idea is illustrated in Example 2.

▶ Example 4. Consider the following simple conceptual data model CDM that consists of a
fragment of the EER diagram in Figure 4:

CDM = {Bicycle ⊑ Vehicle, MotorisedVehicle ⊑ Vehicle, Bicycle ⊑ ¬MotorisedVehicle}
A corresponding database may have three tables, assuming each entity type has its own database
table, and at least one instance each:

DB = {Bicycle(b1), MotorisedVehicle(mv1), Vehicle(v1)}
Consider now the query “Retrieve all vehicles”, i.e., SELECT * FROM Vehicle for a relational
database. A regular RDBMS returns only {v1} as answer, it being the only tuple in that table.

Now consider OBDA with the query rewriting approach. The abstract representation of the
query is: q(x) ← V ehicle(x). In evaluating the query, it first consults CDM: the algorithm
detects the two subsumption axioms and rewrites the query as q(x)← V ehicle(x) ∨Bicycle(x) ∨
MotorisedV ehicle(x). This rewritten query is converted into SQL, which amounts to a union
of SELECT * FROM Vehicle, SELECT * FROM MotorisedVehicle, and SELECT * FROM Bicycle.
It returns {b1, mv1, v1}, which is what a typical user would expect when asking for all the
vehicles.

Consider again the same query, but now we incorporate the knowledge of the CDM in the
database before we run the same query, also called ABox rewriting or the combined approach.
The algorithm detects the Bicycle ⊑ Vehicle and updates the database:

DB = {Bicycle(b1), MotorisedVehicle(mv1), Vehicle(v1), Vehicle(b1)}
and likewise for the motorised vehicle:

DB = {Bicycle(b1), MotorisedVehicle(mv1), Vehicle(v1), Vehicle(b1), Vehicle(mv1)}
The query q(x)← V ehicle(x) translates to SELECT * FROM Vehicle, but now that table has the
other instances as well, and so the query answer is {b1, mv1, v1} as well. This approach permits
more advanced queries, such as with path queries that have been shown to be more effective [82]. ⌟
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Notwithstanding that the intuitive idea is seemingly straightforward, the logics and algorithms
for the various options are rather involved and depend on the logic used for the TBox; for an
early overview on query rewriting see [100], for the first database completion, see [81], and an
overview with many further references can be found in Section 3.1 of Schneider and Simkus’ recent
review on linking ontologies to databases [107]. In addition, each option has its pros and cons
regarding computational complexity, query expressiveness, expressivity of the logic for the CDM,
and optimal usage scenarios [47].

Finally, two orthogonal choices that affect reasoning are choosing between the Closed (CWA)
vs Open (OWA) world assumptions and whether to choose for the unique name assumption
(UNA) or not. No UNA negatively affects computational complexity especially for the lean OBDA
logics [8]. CWA vs OWA principally affects the deductions and it is mostly left implicit that the
logic-based reconstructions use OWA since logics in AI assume this unless stated otherwise. CWA
is often used in situations where the knowledge is assumed to be complete and where uncertainty
is not explicitly represented or tolerated. OWA is used in situations where uncertainty is explicitly
acknowledged and where it is important to represent and reason about incomplete information.
OWA is more flexible and allows for the representation of unknown or partially known facts. In
principle, a CDM may include both approaches.

5 Challenges and future directions

We describe some challenges that emerge from the discussion in previous sections. We classify
them along three lines of inquiry: CDM languages, CDM integration with related areas, and CDM
applications.

5.1 CDML design
In this section, we analyse challenges in formalisation and expressivity of CDML design. The
formalisation space to a logic of choice is crowded with many attempts and assigning semantics to
a CDML appears a solved problem, or if not solved, admitted to be intractable in the sense that it
will never meet all demands at the same time – good in the formalisation, good in tooling support,
and effective use throughout applications. Yet another formalisation of plain EER, ORM2, or
UML class diagrams in yet another logic may only make a marginal contribution to the body
of knowledge. Also the CDM interoperability, or logic as unifier, task has been well explored
(see [42, 22] and references therein), albeit with limited tools and mostly covering a small set of
constraints. From our own experiences by both authors, it is tedious, time-consuming, and difficult
to publish because from the outside it looks like just more of the same without an appreciation
of the thorny finer details and principal differences and consequences thereof. There may be a
higher chance of more impact by considering extensions, notably logic-based temporal conceptual
data modelling for stream processing or for process mining, and to investigate how to transform a
logic-based temporal CDM into a temporal database. This may also connect with the process
modelling that Storey et al.’s review highlighted as a general trend in conceptual data modelling
[116].

The different clusters of formalisations have different sets of shortcomings and one that they
all share, except for the CDML profiles in [42]: none of them is evidence-based regarding what
features conceptual modellers use and to prioritise accordingly. In addition, user evaluations
on usability and understandability are mostly lacking. When carried out, it is about the non-
logical additional graphical or textual notation, such as for the logic-based Trend temporal
conceptual data modelling language [74] or diagrammatic preferences only (e.g., [129]). Among
others, neither the effects of using an automated reasoner in a conceptual data modelling task has

TGDK



4:18 Logics for Conceptual Data Modelling: A Review

been investigated with human modellers, nor the perceptions of modelling for OBDA. To attain
scientific progress, such experiences need to go beyond anecdotes in a few use cases and they need
to be tested in a controlled setting, or at least documented and analysed systematically when
pooling together a set of use cases.

In addition, to the best of our knowledge, there are no methodologies that incorporate logic-
based reconstructions and automated reasoning over the CDM, other than stating it as part of a
workflow in FaCiL [22] and it is alluded to in test-driven development of CDM in [126]. Perhaps
these gaps contribute to the, to date, limited uptake of logic-based conceptual data modelling in
industry. Another reason for that may be that modellers do not use as many language features
as they ought to [75] to get the most out of the automated reasoning and thus may need to be
trained better in logic-based conceptual data modelling. Another reason may be the relative
immaturity of the sparse logic-based conceptual data modelling tools that are mostly of the
level of proof-of-concept or prototype [21, 23, 41, 43, 114], rather than full-fledged end-user and
commercial-level applications. The underlying issues and opportunities are still unexplored.

Recently, there has been a decline in interest to develop logic-based reasoners [1], most of
them being nowadays discontinued in their development. It seems that the mere availability of
reasoners is not enough for widespread usage. Much effort is necessary to develop tools that
integrate reasoning with real world applications. CDMs may present an opportunity to investigate
new tools that demand reasoning services, with the objective to improve the modelling process
and enhance the quality of conceptual models, and, just as important, their runtime usage in
intelligent information systems.

5.2 CDM integration with related research areas
Ontologies and knowledge graphs are well established research areas that are closely related to
CDMs. There are numerous practices that attempt to blur the lines between CDMs and ontologies
[45], both in OBDA and elsewhere, as well as recognising the differences but then facing the
challenge of how exactly how to relate the two artefacts (e.g., [32, 68]). This involves both how to
map between the two at the language level and at the modelling pattern level, and the processes for
the various use cases. For instance, top-down generation of candidate CDMs from an ontology, as
Jarrar et al.’s aim was [68], requires different procedures from the original motivation for ontologies,
as a bottom-up approach to provide a common vocabulary that all CDMs can link to [73]. Their
precise interaction – why, when, and how – may be informally clear to some, but that is still
non-trivial to apply in practice and does not appear to be clear to the practitioner community.
What exactly is missing to fully resolve it both in theory, including with which methods and
techniques, and for deployment, is yet to be addressed fully.

This review being a narrative review about the logics rather than a systematic review of both
logics and automated reasoning services that are more popular in the ontology engineering field,
there is the risk of some bias in the selection of sources. For Section 4, this was intentionally
limited to “standard” reasoning services to illustrate some benefits of a logic-based approach. A
systematic or broader narrative review about reasoning services for logic-based CDMs may provide
additional insight.

From a different angle, and looking at both older and more recent techniques and standards
than the most popular – by a large margin in terms of research efforts – logic-based reconstructions,
are knowledge graphs that also do relate in some way to CDMs and the logics. Graph-based
approaches are expected to (re)gain in popularity. We do not refer to choosing a graph-based
semantics after transforming a CDM into OWL or OWL 2 syntax [87, 91], though possible, but
the transformation of the CDMs into graphs directly or them being graphs from the outset. The
former was proposed by Boyd and McBrian who used hypergraphs for interoperability among the
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established CDMLs [20] that is based on their graph-based data model [101]. An example of the
latter is the TEGeL modelling language, which is a type graph from the outset and has a set of
new icons; its formalisation is only assumed in [108], however, and its aim is specifically for a
translation into a graph database only. One could link it to the formal definitions in Appendix B of
[63], to RDF [61] or RDFS [24], and with or without constraints, be they with ShEx [13] or SHACL
[77] or their logic-based foundation (see [96] for a recent brief overview and references therein), or
another approach, such as extending a DL with more options for attributes, as in [78]. This is
fertile ground for research whose outcomes may, in turn, feed into the neuro-symbolic strand of
usage through KG embeddings that presumably would be improved by such logic-enhanced KGs
and it would offer new means for quality control of the information represented in the KG.

5.3 CDM applications in other and new contexts
Other subtopics within the scope of logic-based CDMs are automated content learning, evolution
of CDMs, and automated adaptation of CDMs and their database based on the queries posed.
Automated CDM content learning should be able to leverage the advances made on corpus-based
KG and ontology learning and may also make use of research on automated database-driven
logic-based CDM creation that maintains the intermediate state [80]. Dynamic CDM optimisation
from database usage patterns concerns updating the CDM by taking into account what data is
queried from the database [137]. For instance, if only a fraction of the attributes are queried
most of the time, the rarely used ones can be relegated to a separate entity type, like given a
Person with attributes tel.no and address where only their tel.no is queried in 95% of the queries,
then the optimisation suggestion would be to create a separate entity type Address with a binary
relationship to Person. This can save time in query answering and possibly simplify the query
interface of an OBDA system.

Further automation in creation, quality control, and use of CDMs does receive interest, as
noted in Section 2 and with recent reviews such as [109] on verification. They all do need a
formalised CDM to ensure correct operation, yet more such UML advances are still to be ported
to other CDMLs and embedded in CDM development methodologies and usage process.

CDM evolution has been well-researched under the term schema evolution at least since the
1990s with renewed interest in the 2000s thanks to ontology evolution and those logics specifically.
Ontology evolution is known to be far from trivial, however, which carries over to logic-based
CDMs at least to some extent. Given that CDMs have a more restrictive grammar than most of
the logics used, it may be less hard, and use cases with current relevance should be specified to
limit the possibilia to increase the possibility to find a solution.

Finally, multilingual modelling may become an area of interest, as it is in ontology development
for the past 15 years and increasingly for knowledge graphs as well, but it has received little
attention in combination with logic-based conceptual modelling [5].

6 Conclusions

Information modelling with conceptual data modelling languages such as EER, UML Class
Diagrams, and ORM has been augmented with logic-based reconstructions mainly for precision,
quality, and runtime usage for querying and verification. Many logics have been used for many
different conceptual data modelling fragments, having used either a rules-based or a mapping-
based approach to the formalisation. This paper provided a succinct overview of key choice
points in the aims to formalise, approaches to the formalisation, popular logics used, and the
principal relevant reasoning services. Current challenges and research directions include the
modeller’s perspective (with user evaluations), interaction with ontologies, and a renewed interest
in graph-based approaches.
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A Examples of both approaches to the logic-based reconstruction

Since both approaches for CDM or CDML formalisation work in principle for any conceptual
data modelling language, as described in Section 3.3, we first harmonise terminology across such
CDMLs, using the unified metamodel [76]: Relationship (also called association or fact type),
Role (relationship component, association end), Object Type (entity type, class), Attribute10, and
Data Type. Second, the different properties of the rules-based vs. the mapping-based approach,
as also depicted in Figure 3, practically result in different sequences of steps for how to create
that logic-based reconstruction. The ones we followed in this appendix are graphically depicted
in Figure 6, where steps 2 and 3 are illustrated in this appendix; step 1 was taken from other
work and steps 4 and 5 are realised in crowd2. Note that the aim is to illustrate the way these
logic-based reconstructions are done in the literature and these two approaches are our distillation
of the two key distinct approaches researchers have taken. It is not meant to be prescriptive and
there is no official or investigated method for carrying out this task.

We use the DCp “positionalist core profile” of [42] to illustrate both approaches, because it
respects the positionalist ontological commitment of those languages and it is a relatively simple
language with few features that are those that have been shown to be used most in UML class
diagrams, EER, and ORM2. Specifically, based on the analysis of the 101 publicly available CDMs
[75], the feature list of DCp is expressive enough to include 87.57% of the entities (elements and
constraints) used in all the 101 models analysed, and 91,88% of the entities in the UML models,
73.29% of the contents of the ORM and ORM2 models, and 94.64% of the ER and EER models
[42].

A.1 Rule-based approach
First, we specify the rules for the algorithmic conversion for any CDM within the DCp feature list:

▶ Definition 5 (Syntax of DCp [42]). Given a conceptual model in any of UML class diagrams,
EER, and ORM2, take the set of all object types ranging over symbols A, B, ..., binary relationships
P , datatypes T and attributes a in the conceptual data model as the basic elements in the knowledge
base. Then construct a knowledge base in DCp by applying the rules:

10 ORM does not have “attribute” as such, but a value type has an attribute, it being a binary relation between
a class and a data type. This is a straight-forward conversion procedure; see [44] for details.
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1. Make choices:
- purpose
- formalisation options
- logic framework

2a. For each CDM element 
included, write axiom 

pattern to add to the theory 

3a. Define semantics for 
those axiom patterns

2b. Define textual syntax 
for each CDM element 
included (mapped to its 

graphical notation) 

3b. Define semantics for 
those textual elements

2.5c. Map to DL (or another 
logic) syntax

3c. Use the usual DL (resp. 
the other logic) semantics

4. Implement (or assume so)

mapping-based approachrules-based approach

5a. Take a CDM. For each 
element: select relevant 

axiom pattern, instantiate 
with the CDM vocabulary, 

add to the theory 

5bc. Formalise CDM during 
its design, as elements are 

added

Figure 6 Possible sequences of steps for creating logic-based reconstructions of conceptual data models.

1. For each relationship P between object types A and B, add to the knowledge base
≥ 1[1]P ⊑ A and ≥ 1[2]P ⊑ B

2. For each attribute a of datatype T within an object type A (including the transformation of
ORM’s Value Type following the rule in [44]), add

A ⊑ ∃a.T⊓ ≤ 1a

3. Subsumption between two object types A and B is formalised by adding the assertion
A ⊑ B

4. For each object type cardinality m..n in relationship P with respect to its i-th component A,
add

A ⊑≤ n[i]P ⊓ ≥ m[i]P

5. Add for each mandatory constraints of a concept A in a relationship P either the axiom
A ⊑≥ 1[1]P or A ⊑≥ 1[2]P

depending on the position played by A in P . This is a special case of the previous one, with
n = 1.

6. For each single identification in object type A with respect to an attribute a of datatype T , add
id A a

Given the formalisation rules in Definition 5, the DL for DCp would result in the following
syntax: starting from atomic elements, we can construct binary relationships R, arbitrary concepts
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C and axioms X as follows:

C −→⊤ |A | ≤ k[i]R | ≥ k[i]R | ∀a.T | ∃a.T |
≤ 1 a |C ⊓D

R −→⊤2 |P | (i : C)
X −→C ⊑ D | id C a

where i = 1, 2 and 0 < k (roles may be numbered or named, and are not ordered).
Then, for the second step in the algorithmic procedure, the semantics. For DLs, it can avail of

the model-theoretic semantics with its customary notation, as included in Definition 6:

▶ Definition 6 (Semantics of DCp [42]). An DCp interpretation I = (·IC , ·IT , ·I) for a knowledge base
in DCp consists of a set of objects ∆I

C , a set of datatype values ∆I
T , and a function ·I satisfying

the constraints shown in Table 4. It is said that I satisfies the assertion C ⊑ D iff CI ⊆ DI ; and
it satisfies the assertion id C a iff there exists T such that CI ⊆ (∃a.T⊓ ≤ 1a)I (mandatory 1)
and for all v ∈ T I it holds that #{c|c ∈ ∆I

C ∧ (c, v) ∈ aI} ≤ 1 (inverse functional).

Table 4 Semantics of DCp (Source: [42]).

⊤I ⊆ ∆I
C

AI ⊆ ⊤I

⊤I
2 = ⊤I × ⊤I

P I ⊆ ⊤I
2

T I ⊆ ∆I
T

aI ⊆ ⊤I × ∆I
T

(C ⊓ D)I = CI ∩ DI

(≤ k[i]R)I = {c ∈ ∆I
C |#{(d1, d2) ∈ RI .di = c} ≤ k}

(≥ k[i]R)I = {c ∈ ∆I
C |#{d1, d2) ∈ RI .di = c} ≥ k}

(∃a.T )I = {c ∈ ∆I
C |∃v ∈ ∆I

T .(c, v) ∈ aI ∧ v ∈ T I}
(∀a.T )I = {c ∈ ∆I

C |∀v ∈ ∆I
T .(c, v) ∈ aI → v ∈ T I}

(≤ 1 a)I = {c ∈ ∆I
C |#{(c, v) ∈ aI} ≤ 1}

(i : C)I = {(d1, d2) ∈ ⊤I
2 |di ∈ CI}

An alternative option is to choose either of the five relationship formalisation options described
in Example 1, create a conversion algorithm from the positionalist relationships of conceptual
data models to that choice, and then create a different profile accordingly with, say, OWL in the
formalisation rules. The “bumping up the role names to relationships” choice and DL OWL2
syntax then would add the following axioms to the knowledge base, respectively in the same order
as in Definition 5:
1. SubClassOf(ObjectSomeValuesFrom(ex:hasP) ex:A) and

SubClassOf(ObjectSomeValuesFrom(ex:isOfP) ex:B)
2. SubClassOf(ex:A (ObjectIntersectionOf (DataSomeValuesFrom(ex:a)

FunctionalDataProperty(ex:a)))
3. SubClassOf(ex:A ex:B)
4. SubClassOf(ex:A ObjectIntersectionOf(ObjectMinCardinality(n ex:hasP)

ObjectMaxCardinality(m ex:hasP)))
5. SubClassOf(ex:A ObjectSomeValuesFrom(ex:hasP)) or

SubClassOf(ex:A ObjectSomeValuesFrom(ex:isOfP))
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6. SubClassOf(ex:A DataExactCardinality(1 ex:a)) and
SubClassOf(ex:A DataSomeValuesFrom(ex:a))

Alternatively, the relationship is not typed but qualified cardinality constraints are used, or hasP
and isOfP are declared inverses, or only one of the two is introduced with an inverse feature where
needed.

An example of this approach with a concrete CDM is illustrated in Example 2.

A.2 Mapping-based approach
The first step in the mapping approach is to declare the textual syntax which, if that were to have
been done for DCp, would have looked like as in Definition 7. For comprehensiveness, a table with
textual elements mapping to the respective graphical elements of the selected modelling language
should be done as well (Figure 7), then to declare the semantics (Definition 8). It can stop here,
or be mapped into a a logic of choice to obtain either a precise or approximate indication of the
computational complexity of the language needed for the CDM or chosen fragment thereof, as
shown in Definition 9 for a DL. The ones here are based on [72], but includes only those features
that are in DCp to facilitate a comparison with the first approach.

▶ Definition 7 (Conceptual Data Model DCp syntax)). A DCp conceptual data model is a tuple
Σ = (L, rel, att, cardR, cardA, isa, id) such that:
1. L is a finite alphabet partitioned into the sets: C (class symbols), A (attribute symbols), R

(relationship symbols), U (role symbols), and D (domain symbols); the tuple (C,A,R,U ,D) is
the signature of the conceptual model Σ.

2. att is a function that maps a class symbol in C to an A-labeled tuple over D, att : A 7→ D,
so that att(C) = {A1 : D1, . . . , Ah : Dh} where h a non-negative integer.

3. rel is a function that maps a relationship symbol in R to an U-labeled tuple over C, rel(R) =
{U1 : C1, U2 : C2}, if (Ui, Ci) ∈ rel(R) (with i = {1, 2}), then player(R, Ui) = Ci and
role(R, Ci) = Ui. The signature of the relation is σR = ⟨U , C, player, role⟩, where for all
Ui ∈ U , Ci ∈ C, if ♯U ≥ ♯C then for each ui, ci, rel(R), we have player(R, Ui) = Ci and
role(R, Ci) = Ui, and if ♯U > ♯C then player(R, Ui) = Ci, player(R, Ui+1) = Ci and
role(R, Ci) = Ui, Ui+1.

4. cardR is a function cardR : C ×R× U 7→ N× (N ∪ {∞}) denoting cardinality constraints.
We denote with cmin(C, R, U) and cmax(C, R, U) the first and second component of cardR.

5. cardA is a function cardA : C ×A 7→ N × (N ∪ {∞}) denoting multiplicity constraints for
attributes. We denote with cmin(C, A) and cmax(C, A) the first and second component of
cardA, and cardA(C, A) may be defined only if (A, D) ∈ att(C) for some D ∈ D;

6. isa is a binary relationship isa ⊆ C × C.
7. id is a function, id : C 7→ A, that maps a class symbol in C to its key attribute and A ∈ A is

an attribute already defined in att(C), i.e., id(C) may be defined only if (A, D) ∈ att(C) for
some D ∈ D.

▶ Definition 8 (DCp Semantics). Let Σ be a DCp conceptual data model. An interpretation for
the conceptual model Σ is a tuple I = (∆I ∪∆I

D, ·I), such that:
∆I is a nonempty set of abstract objects disjoint from ∆I

D;
∆I

D =
⋃

Di∈D ∆I
Di

is the set of basic domain values used in Σ; and
·I is a function that maps:

Every basic domain symbol D ∈ D into a set DI = ∆I
Di

.
Every class C ∈ C to a set CI ⊆ ∆I .
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Figure 7 Sample mapping of the DCp textual elements from Definition 7 to graphical elements of one
of the EER notational flavours and to UML Class Diagram elements.

Every relationship R ∈ R to a set RI of U-labeled tuples over ∆I – i.e. let R be an
binary relationship connecting the classes C1, C2, rel(R) = {U1 : C1, U2 : C2}, then,
r ∈ RI → (r = {U1 : o1, U2 : o2} ∧ ∀i ∈ {1, 2}.oi ∈ CI

i ).
Every attribute A ∈ A to a set AI ⊆ ∆I ×∆I

D, such that, for each C ∈ C, if att(C) =
{A1 : D1, . . . , Ah : Dh}, then, o ∈ CI → (∀i ∈ {1, . . . , h}, ∃di. ⟨o, di⟩ ∈ AI

i ∧ ∀di.⟨o, di⟩ ∈
AI

i → di ∈ ∆I
Di

).
I is said a legal database state or legal application software state if it satisfies all of the constraints
expressed in the conceptual data model:

For each C1, C2 ∈ C: if C1 isaC C2, then CI
1 ⊆ CI

2 .
For each R ∈ R with rel(R) = {U1 : C1, U2 : C2}: all instances of R are of the form
{U1 : o1, U2 : o2} where oi ∈ CI

i , Ui ∈ UI
i , and 1 ≤ i ≤ 2.

For each cardinality constraint cardR(C, R, U), then:
o ∈ CI → cmin(C, R, U) ≤ #{r ∈ RI | r[U ] = o} ≤ cmax(C, R, U).
For each multiplicity constraint cardA(C, A), then:
o ∈ CI → cmin(C, A) ≤ #{(o, a) ∈ AI} ≤ cmax(C, A).
For each C ∈ C, A ∈ A such that id(C) = A, then A is an attribute and ∀d ∈ ∆I

D.#{o ∈ CI |
⟨o, d⟩ ∈ AI} ≤ 1.

▶ Definition 9 (Mapping DCp into DLR). Let Σ = (L, rel, att, cardR, cardA, isa, id) be a
DCp conceptual data model. The DLR knowledge base, K, mapping Σ is as follows.

For each A ∈ A, then, A ⊑ From :⊤ ⊓ To :⊤ ∈ K;
If C1 isa C2 ∈ Σ, then, C1 ⊑ C2 ∈ K;
If rel(R) = {U1 :C1, U2 :C2} ∈ Σ, then R ⊑ U1 :C1 ⊓ U2 :C2 ∈ K;
If att(C) = {A1 : D1, . . . , Ah : Dh} ∈ Σ, then, C ⊑ ∃[From]A1⊓. . .⊓∃[From]Ah⊓∀[From](A1 →
To : D1) ⊓ . . . ⊓ ∀[From](Ah → To : Dh) ∈ K;
If cardC(C, R, U) = (m, n) ∈ Σ, then, C ⊑ ∃≥m[U ]R ⊓ ∃≤n[U ]R ∈ K;
If cardA(C, A) = (m, n) ∈ Σ, then, C ⊑ ∃≥m[U ]R ⊓ ∃≤n[U ]R ∈ K;
If id(C) = A ∈ Σ, then, K contains: C ⊑ ∃=1[From]A; ⊤ ⊑ ∃≤1[To](A ⊓ [From] : C);

An example of this approach with a concrete CDM is illustrated in Example 2.
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knowledge engineering, will advance the ongoing
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5:2 Reference Architectures for Knowledge Engineering

1 Introduction

Knowledge engineering (KE) is the collection of activities for eliciting, capturing, conceptualizing,
and formalizing knowledge to be used in information systems [72]. KE includes two broader tasks
of creating and maintaining knowledge [3]. Throughout the history of computer science and AI, KE
workflows have been a critical component when building reliable intelligent agents across domains
and tasks [53]. Indeed, it has been intuitive that developing trustworthy models for applications,
from common sense to traffic, crime, and weather, requires well-understood knowledge processes
[51]. Similarly, task solutions within these domains, including question answering, summarization,
and forecasting, are expected to incorporate standardized KE procedures to be meaningfully
applicable and compatible with humans [89].

The importance of knowledge production processes has yielded many notable architectures over
the past decades, which aim to synthesize dominant patterns and best practices. As apparent from
these architectures, the dominant paradigm of KE has been shifting through the history of AI,
from its early days through the eras of expert systems and semantic web. Expert system workflows,
like CommonKADS [77], enable the extraction of expert knowledge into knowledge bases based
on lifecycle analysis and corresponding models. Many Semantic Web applications can be aligned
to a general layered template, most famously the Semantic Web Layer Cake and its contemporary
variants [31, 39, 9, 50]. Knowledge graph (KG) workflows [84] and comprehensive toolkits [43]
aim to bridge the gap between knowledge bases and their applications, showing a larger emphasis
on extensional and possibly less precise modeling of knowledge [79]. Knowledge graph engineering
(KGE) emerged as a variant of KE geared towards capturing, representing, and utilizing complex
information about entities, their relationships, and their underlying semantics [79, 33]. Researchers
and domain experts have devised KGE workflows that are tailored to the needs of a variety
of domains like biomedicine [54], library and information sciences [87], web democracy [90],
commonsense knowledge [44], and publications [68]. Analogously, enterprise infrastructures,
such as the Amazon Product Knowledge Graph [98], have been devised for commercial settings,
without clear reference to a standardized workflow. The recent trends in KE, such as the
consideration of large language models (LLMs) as knowledge artifacts [64] and the prominence
of neurosymbolic systems [92, 72], bring a new perspective to KE. The role of LLMs in KE
workflows is studied actively to understand the potential of LLMs to enhance, replace, or add
KE components [34]. Meanwhile, recent work based on abstracting semantic web and machine
learning systems (SWeMLS) [21] indicated the prominence of KE in neurosymbolic systems, with
around a quarter of all SWeMLS patterns corresponding to a KE process.

The present landscape of KE methodologies and tools lacks a comprehensive framework of
user needs and available paradigms, as each subsequent KE era does not necessarily include the
benefits brought by its predecessors [3]. KE systems require a principled way of considering
different user requirements, paradigms, and use cases, thus combining human, social, and technical
factors [40]. To address this need, recent work has proposed the formalism of a boxology: a
hierarchical taxonomy of systemic design patterns expressed in a graphical notation (cf. Figure 2
and the upper right hand corner of Figure 4) [92, 72]. Boxologies provide an opening for aligning
the requirements and use cases of knowledge engineering with the systems, components, and
software that can satisfy them best, however, this direction has not been explored to date. We
see an urgency to understand the scope and purpose of KE in the latest evolving AI landscape,
aiming to devise a general framework characterized by requirement-driven best practices. Such a
framework should ideally support the perspectives of existing and emerging KE paradigms, enable
a flexible definition and support for stakeholder requirements and priorities, and build on top of
prior work on KE workflows and systemic patterns. Given the dynamic nature of KE, it should
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also provide mechanisms to adapt to evolving requirements over time and across applications. It
should provide a prescriptive framework that standardizes best practices while allowing them to
be customized to specific circumstances.

This paper proposes a vision of harmonizing the field of knowledge engineering by leveraging
the software engineering methodology of devising a reference architecture (RA), inspired by
successful RAs designed and applied in domains such as the automotive sector, e-government,
and service-oriented solutions [29]. RAs serve as a framework that standardizes a community of
practice through a software engineering artifact, based on a survey of relevant stakeholders, their
requirements, existing community-based workflows, and suitable evaluation. RAs are developed
in a human-centric and iterative manner, which makes them particularly suitable for dynamic
and frequently changing disciplines such as KE. They provide a common framework, while
simultaneously enabling users to design specific RAs for their narrow use cases. The proposal
to develop a methodology for devising RAs for KE is in line with the suggestions in [40]: we
hypothesize that the development of RAs will make KE and related knowledge technologies
accessible for outsiders and newcomers from disciplines such as software engineering and data
science that have compatible goals.

We consider how RAs can be iteratively designed and implemented to associate user needs with
recurring systemic patterns, building on top of existing KE workflows and boxologies. Section 2
provides an extended problem statement that motivates the need to consolidate KE practices
by building on top of existing boxology patterns. Section 3 provides relevant background on
existing RAs and common methodologies for their principled development, and reviews state-of-
the-art architectures for KE. Section 4 details a six-step methodology to design and implement a
human-centric reference architecture that standardizes KE practices, consisting of scope definition,
selection of information sources, architectural analysis, synthesis of an architecture based on
the information source analysis, evaluation through instantiation, and, ultimately, instantiation
into a concrete software architecture. We describe an initial design of the architectural scope,
information sources, and analysis, and prescribe the processes for the design, evaluation, and
instantiation of the architecture, as the latter steps are highly use-case dependent. The paper is
concluded in Section 5. We expect that following through on this vision will lead to well-grounded
reference architectures for knowledge engineering, and will facilitate further links to the software
architectures and data science communities.

2 Why a Reference Architecture Framework for KE?

The pursuit of a general reference architecture framework for KE is motivated in this section
by three key factors. First, the KE paradigms have been shifting over time, each following one
addressing pain points of the existing paradigms, but often failing to address other requirements.
Second, KE users vary greatly, and while the user needs have been often discussed in the context
of a specific application, a broad view of connecting users, their tasks, and their corresponding
requirements is lacking. Third, the emerging boxology of neurosymbolic systems, with its recent
link to knowledge engineering, provides a unique opportunity to exploit emerging patterns as
components of a more comprehensive architecture.

2.1 Historiographic perspective: Consolidation of the KE paradigms
Prior research on KE is rich, spanning from the 1950s, through the expert systems era of the
1980s, the Semantic Web era, and the recent view of language modeling as a knowledge production
process [70, 57, 24, 25, 77, 11, 64, 40, 43, 10, 36, 86, 2]. These different periods have approached
KE following the contemporary technological, scientific, and societal focus. We provide a brief
historiographic view on KE here, for an extended discussion we refer the reader to [3].

TGDK
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In the 1960s, researchers like Newell and Simon [57] were hopeful about the ability of goal-
directed search with heuristics to perform practical general-purpose problem-solving. However, by
the 1970s, it became evident that these systems were not easy to scale to complex applications.
During the mid-1970s, Feigenbaum [24], influenced by Newell and Simon’s work, maintained that
focusing on specific domains was crucial for successful knowledge engineering. Knowledge engineers
worked on the elicitation of domain-specific knowledge with high quality and expressivity, and
domain-independence and scalability were often not prioritized. This period saw a surge in creating
expert systems for decision support in businesses, but by the early 1990s, it was clear that these
systems had limitations, being brittle and hard to maintain. Efforts to address these limitations
included the development of structured methodologies for knowledge engineering during the late
1990s [77]. Feigenbaum [25] persisted in exploring the idea of domain-specific applications but
suggested that future systems should be scalable, globally distributed, and interoperable. These
ideas, ahead of their time, foreshadowed some aspects of what later became the World Wide Web.

In the era of the Semantic Web, Tim Berners-Lee [11] advocated the use of specific open
standards (e.g., RDF and SPARQL) to encode knowledge in Web content, to improve access and
discoverability of Web content, and to enable automated reasoning. However, adoption of Semantic
Web technology was slow, ultimately leading researchers to seek ways to align these standards
and principles more closely with general software industry norms and make them more developer-
friendly. Recent efforts, particularly in commercial knowledge graphs developed by companies
like Google and Amazon [98], have shown a shift towards custom architectures, often based on
property graphs. This shift, while innovative, often sidesteps the interoperability and federation
ideals of early visionaries like Feigenbaum and Berners-Lee. As a result, there’s a growing need to
refine what KE offers developers, focusing on comprehensive, scalable, customizable, and modular
infrastructures that integrate with common data formats. KE should be domain-independent,
supporting a wide range of use cases with user-friendly interfaces.

The rise of connectionist methods and graphical processing hardware in the 2010s has introduced
new possibilities for knowledge production using large language models (LLMs). LLMs have been
shown to be a means to provide robustness to missing schema and better generalization across
domains and knowledge types. Two main perspectives have emerged regarding the relationship
between LLMs and knowledge bases [2]. The first sees LLMs as standalone, queryable knowledge
bases that can learn from unstructured text with minimal human intervention [64]. This method
challenges traditional, labor-intensive KE processes, but raises concerns about accuracy, ethical
use, interoperability, and curatability. The second, more cautious perspective views language
models as components in a KE workflow, combining new and traditional methods [43]. This
approach emphasizes accessibility, manual editing of extracted knowledge, and explanation of
reasoning methods, addressing the limitations of earlier technologies. Both perspectives highlight
the importance of sustainability and affordability in KE processes.

2.2 Social perspective: Systematic procedures for incorporating stakeholder
tasks and needs

KE tasks can be roughly split into two main categories in terms of their goal: creating and
maintaining knowledge artifacts. Here, the knowledge artifacts are typically knowledge graphs,
ontologies, and taxonomies [72]. Representative KE tasks are shown in Table 1. These include
tasks of creating an ontology or refining that ontology, for example, to include a newly discovered
concept or relationship [58, 26, 83]. KE tasks include ingesting and transforming data from
multiple data sources into a single artifact, or performing data integration between different
schemas [45, 19]. Resulting KGs can be further refined to address issues such as inconsistencies
of modeling, contradictions of factual information, outdated information, or missing/incomplete
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Table 1 Representative user tasks and scenarios for knowledge engineering.

Task Scenario

Ontology creation A new domain is identified, for which an ontology needs to be created.

Ontology refinement A new concept or relationship is identified in the domain, and the
ontology needs to be modified to support it without disruptions.

Data ingest and trans-
formation

Multiple data sources provide overlapping or complementary information.
The system needs to transform and normalize this data to ensure
consistency in the knowledge graph.

Data source integration A new data source, in a previously unsupported schema, needs to be
incorporated into the knowledge graph while ensuring data quality.

Anomaly detection The system flags a potential inconsistency or contradiction in the know-
ledge graph, which needs to be resolved.

Knowledge graph com-
pletion

The system flags a missing or incomplete statement, which needs to be
automatically inserted.

Human oversight of
knowledge graph quality

A subject matter expert (SME) identifies a piece of outdated or incorrect
information in the knowledge graph, which needs to be flagged to initiate
a correction.

Human feedback As SMEs interact with the system, they might have insights or sugges-
tions based on their domain expertise, which needs to be supported and
incorporated into the refinement process.

statements, to improve their quality [63]. Such issues may be raised by automated systems [78] as
well as human subject matter experts (SMEs) [65]. Finally, humans interacting with the knowledge
artifact may have further suggestions or feedback for refinement [43].

Commonly, KE procedures identify local requirements for an artifact, with an implicit assump-
tion of the user profile. Meanwhile, user studies are increasingly present in KE research [1, 42],
a trend that can be enriched by considering the natural plurality of users. While early KE
might have been carried out by computer science practitioners, today it often includes domain
experts interacting with knowledge directly, knowledge engineers building ontologies, knowledge
editors fixing outdated information, data scientists developing knowledge completion systems, and
business/organizational stakeholders that stress-test the available knowledge to understand its
value [42]. Considering the example tasks in Table 1, we note that the tasks of ontology creation
and data integration require expertise from knowledge engineers and subject matter experts.
Refining of knowledge artifacts can be performed by knowledge engineers or data scientists,
whereas providing human feedback and oversight requires subject matter experts. Many of these
tasks may also benefit from the inputs from business and organizational stakeholders. While here
we refer to stakeholders as humans that create and maintain knowledge engineering processes,
there is an additional set of tasks and users that use the artifact resulting from the knowledge
engineering process, such as data scientists developing AI prototypes that reason over knowledge
and software developers that build knowledge-infused chatbots.

2.3 Component perspective: Preliminary source of architectural patterns
Driven by societal and technical needs for explainability, robustness, and collaboration, neur-
osymbolic AI has been growing in popularity recently, emerging as one of the key trends of AI
research [46, 72]. Each neurosymbolic system combines neural, machine-learning components with
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symbolic manipulation. Given the breadth of this definition, there have been attempts to organize
neurosymbolic systems by abstracting their architectures using recurring patterns. Following the
boxology approach [92, 72], data structures can be symbols or data, whereas algorithmic modules
are either inductive (machine learning) or deductive (based on knowledge representation and
reasoning formalisms). Then, each boxology pattern is a combination of alternating data structure
and algorithmic module boxes. The initial boxology work identified 15 such patterns. 11 of these,
together with 33 new patterns, were found in the systems systematically surveyed in [14]. The
44 patterns have been classified into a pattern typology based on their complexity, e.g., simple
patterns have a single processing unit. Sample patterns from this boxology are illustrated in
Figure 2, which we describe in more detail in Section 4.

The question emerges: what is the role of KE in NeSy AI systems? How often do NeSy
architectures represent KE processes? An insight into these questions is provided by [72], who
coined the term neurosymbolic knowledge engineering and analyzed the NeSy approaches that
combine machine learning and semantic web components. While we see such component analysis
as a step in the right direction of organizing neurosymbolic KE, we identify three challenges for
state-of-the-art KE that are apparent from the boxology framework. Challenge 1: The patterns
should be associated with user requirements, tasks, and application needs to enable their efficient
and precise application. The present boxology patterns do not include this information, nor have
the mechanism built in to include it in the future. Challenge 2: Mechanisms for aligning with
ongoing trends and shifting requirements are lacking. These are needed as the set of boxology
patterns and their specification (e.g., type constraints) are still largely in flux, as apparent from
the large number of newly discovered patterns in [14], and given the lack of specification of how
the boxology primitives align with popular NeSy processes (e.g., fine-tuning) and artifacts (e.g.,
knowledge graphs). Challenge 3: There is a lack of a standard for communicating the KE boxology
patterns to non-knowledge engineers, including software engineers, data scientists, domain experts,
and business stakeholders. While the abstraction of the boxology patterns makes a step towards
facilitating broader comprehension, the patterns are still meant for experts.

3 Related Work

The previous section discussed three considerations that motivate the need for a reference archi-
tecture framework for the standardization of KE practices. This section summarizes definitions,
practices, and methodologies associated with work on RAs, and describes how research in the
areas of data, knowledge, and ontology engineering can contribute to the establishment of reference
architectures for KE, towards the end of consolidating the three motivating perspectives.

3.1 Reference architectures

Definition and uses A reference architecture is a framework that aligns stakeholders’ requirements
with design patterns through a final architecture and a corresponding software system. As such,
an RA serves as a generic architecture for a class of information systems within a software
engineering community of practice [5]. RAs have several shared characteristics: they provide the
highest level of abstraction, they heavily emphasize architectural qualities, their stakeholders are
considered but absent from the architecture, they promote adherence to common standards, and
are effective for system development and communication [7]. Notably, while architectures capture
software structures, not every structure is architectural: architecture is an abstraction that should
emphasize the attributes that are important to stakeholders [8]. For a comprehensive review of
software RAs, we refer the reader to [29].
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RAs are driven by two emerging trends [18]. First, an increasing complexity, scope, and size of
the system of interest, its context, and the organizations creating the system. Second, increasing
dynamics and integration, i.e., shorter time to market, more interoperability, rapid changes, and
adaptations in the field. In [8], the authors identify thirteen uses for developing a central reference
architecture. A key aspect of reference architectures, along with related types of architectural
artifacts, is that they are key to the creation of a technology strategy that drives consensus across
multiple groups of stakeholders with an enterprise engaged in software application development for
business purposes. Other benefits include that RAs enable the system’s quality attributes, enable
early prediction of system qualities, encode fundamental design decisions, support the training
of new team members, reduce system complexity, and facilitate reuse. Reference architectures
provide a common lexicon and taxonomy, a common architectural vision, and modularization [18].
Notably, good architecture is necessary but not sufficient to ensure quality.

Many RAs have been proposed in the past decades, some of which have gained wide adoption in
their domains. Well-known examples are AUTOSAR for automotive sector [81], CORBA for object
integration through brokers [12], S3 for service-oriented solutions [6], EIRA for e-Government
systems,1 and NIST’s Big Data Interoperability Framework [27]. We describe AUTOSAR in
greater detail to provide an example of a typical RA. First introduced in 2003, AUTOSAR was
developed as a cooperative effort between major automotive manufacturers, suppliers, and tool
developers. The primary goal of AUTOSAR is to enable the development of highly modular,
scalable, and reusable software components for automotive applications. By providing a common
software infrastructure and standardized interfaces, AUTOSAR aims to reduce development costs,
improve software quality, and facilitate the integration of software components from multiple
suppliers.

Ironically, while the field of Semantic Web puts a lot of emphasis on developing artifacts
like ontologies and knowledge graphs that enable common understanding between humans and
machines, it has not caught up on the idea of developing architectures, such as AUTOSAR, that
will provide a common framework in which different concerns can be expressed, negotiated, and
resolved among stakeholders for large, complex knowledge systems [8].

Methodologies for creating RAs. A method to design a software architecture has been proposed
by [56], consisting of five steps: establishing its scope, selecting and investigating information
sources, performing an architectural analysis to identify architecturally significant requirements,
carrying out synthesis of the reference architecture, and evaluating the architecture through
surveys as well as its instantiation and use. Typical RAs for big data usually follow a three-step
lifecycle consisting of data ingestion, transformation, and serving [7]. Their major architectural
components can be roughly grouped into 1) big data management and storage, 2) data processing
and application interfaces, and 3) big data infrastructure. Two types of requirements are commonly
used to describe stakeholder needs for such software architectures: functional requirements (FRs)
and quality attributes (QAs) [8]. Functional requirements typically describe what the system
components are responsible for, i.e., they state what the system must do and how it must behave or
react to runtime stimuli. They are satisfied by assigning an appropriate sequence of responsibilities
throughout the architectural design. Quality attribute is “a measure or testable property of a
system that is used to indicate how well the system satisfies the needs of its stakeholders.” Quality
attributes must be characterized using one or more scenarios, and they must be unambiguous and
testable.

1 https://joinup.ec.europa.eu/collection/european-interoperability-reference-architecture-
eira/about
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An example of the application of RAs to knowledge engineering is the work of Ocaño et
al. on an RA for integrating artificial intelligence and knowledge bases to support journalists
and newsrooms [61]. They apply a methodology similar to that of [56], taking domain-specific
requirements for the effective support of journalistic activities, defining a reference architecture,
and then implementing a prototype instantiation of that architecture. This architecture provides
a crucial example of what a realization of an RA for KE would look like for a particular domain.
This paper provides a streamlined procedure for instantiating other procedures based on a general
RA framework. In the case of general RAs for KE, prior work has devised a set of QAs and
FRs [3] based on a historiographic analysis. The present paper considers how this effort can be
advanced to result in a general-purpose RA framework for KE.

3.2 Methodologies and workflows for knowledge engineering
Reference architectures can serve as a framework that shapes and optimizes knowledge engineering
workflows, ensuring they are efficient, scalable, and compliant with best practices and standards;
conversely, knowledge engineering methodologies and workflows can drive the definition of RAs by
providing structured approaches to requirements specification and providing specific choices of
technologies that constrain the design of a reference architecture.

Knowledge engineering. From the earliest days of the expert systems era there was a recognition
that KE needed a principled methodology [38], but the first complete realization of such a method-
ology came in the 1990s with the development of KADS [94] and subsequently CommonKADS [77].
CommonKADS is a methodology for the extraction of expert knowledge into knowledge bases
based on lifecycle and corresponding models. CommonKADS has been applied to a variety of
domains, from e-governance [96] to multi-agent scenarios [41]. The models formalized by Com-
monKADS are complemented by MIKE’s [4] formalization of the execution of the model, and the
Protege [30] software for collaborative knowledge production and maintenance. The primary focus
of this work is on aspects of task selection, knowledge modeling, and knowledge elicitation, and
relatively little attention was paid to architectural aspects and deployment in modern Web-based
applications and services, except for the linked data community’s emphasis on the use of W3C
linked data stack and standards [39]. More recently, the growth of Semantic Web applications
has resulted in research into semantic patterns [28] and boxologies that organize systems using
abstract components [92]. While these boxologies originally aimed to capture purely automated
processes, there have been attempts to include human agents, either as process initiators [91] or
following the human-in-the-loop paradigm [95]. With the emergence of knowledge graphs, recent
work has devised corresponding workflows for particular domains like the Library and Information
Studies (LIS) [87] community, e-commerce applications like the Amazon Product KG [98], and
generic workflows for the biomedical domain [55]. Finally, there have been attempts to identify
common patterns in knowledge graph workflows [84] and design toolkits [43] that implement these
patterns as reusable pipelines of commands.

Ontology engineering. A specific area of focus within knowledge engineering is ontology en-
gineering (OE) [32]. The Semantic Web era is characterized by a strong focus on the manual
development of ontologies [58] and their publishing on the Web using linked data principles, with a
strong focus on interoperability, reuse, and integration [66]. Methodologies for ontology engineering
developed over the past thirty years include METHONTOLOGY [26], Kendall and McGuinness’s
Ontology Development 101 [48], and NeOn [83]. As with the KE methodologies described in the
previous section, OE methodologies are concerned with the organizational structures and workflows
associated with ontology design, knowledge representation (e.g. the modeling of spatio-temporal
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modeling [35, 23]), and ontology matching [62]. There has been limited work in understanding
the relationship between data governance [49] and ontology engineering; while both disciplines
overlap in their concerns for structuring and managing data, the integration of data governance
principles into ontology engineering workflows remains a less explored area. OE and KE workflows
are abstracted through the neurosymbolic boxology patterns [72], which enables them to be
represented in an overarching architecture that is composed of those patterns.

Data engineering. Data engineering (DE) itself has provided a wide range of best practices and
workflows in common use across the industry. Standard architectural models of data processing
systems include data warehouses [16], data lakes [71], and distributed data processing platforms
such as Apache Spark [74]. Recent work on DataOps [22] as an adaptation of DevOps principles
and best practices to the design and operation of data processing workflows has established many
concepts towards the end of ensuring that data ingestion and integration are smooth, continuous,
and error-free. These principles include the monitoring of the quality of data to prevent poor quality
or inconsistent data from compromising data integrity of the knowledge graph; data versioning,
supporting the ability to revert to previous states of the data or understand changes over time;
and designing workflows such that the system can scale accordingly without a compromise in
performance [7, 82]. All of these techniques can inform the design of architectures for knowledge
engineering. The Andreessen Horowitz reference architecture [13] for emerging data infrastructure
and platforms is a snapshot of the current industry stack and trends that subsume most current
uses of data within an enterprise. This architecture includes several high-level elements, such as
sources, ingestion and transport, storage, query and processing, transformation, and analysis and
output. It is noteworthy that, while this architecture has been adapted for artificial intelligence
and machine learning workflows, it does not refer at all to knowledge graphs or Semantic Web
concepts or products, especially given the care it takes to address specific use cases related to
machine learning.

4 A six-step roadmap to an RA for KE

By using a requirements-driven approach [8, 5, 18], RA methodologies, informed by recent work
on DE, KE, and OE methodologies and workflows, can support the consolidation of different
perspectives and paradigms under a single umbrella (challenge 1 ). RAs provide a suitable
approach for technological alignment by first identifying, consolidating, and prioritizing user
needs, followed by formalizing these needs into functional requirements and quality attributes,
and, finally, following an iterative development and evaluation of architectures that satisfy these
requirements best. Addressing challenge 2, using a requirements-driven iterative design, RAs
are developed to suit current technological trends and to be dynamically adapted in the future
when the underlying requirements shift significantly. In other words, RAs are designed to be
representative of the current technological trends and are flexible to be enhanced over time to
suit further developments that are likely to occur in a dynamic field such as KE. As mainstream
software engineering artifacts, RAs can facilitate smoother adoption of KE by software engineers
and computer/data scientists (challenge 3 ). An RA is a mechanism for meeting practitioners in
such fields halfway and enabling a bridge for seamless integration and collaboration between these
fields and KE.

We propose that RAs for KE should be designed by applying the mainstream software
engineering techniques described in the previous section. We adopt the methodology proposed
by Nakagawa et al. [56], consisting of five steps: scope identification (including extraction of
requirements), selecting and investigating information sources, architectural analysis, synthesizing
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Figure 1 Pipeline for devising an RA for KE. First, we identify the scope by defining stakeholders and
use cases, ultimately resulting in a set of quality attributes and functional requirements [3]. Second, we
select and investigate information sources, according to the SWeMLS corpus of neurosymbolic systems
and patterns for KE [21, 72]. Third, we connect these components through architectural analysis, yielding
information about the fit of various patterns for requirements and use cases. Based on these insights, the
fourth step synthesizes an RA from these patterns. Fifth, the RA is evaluated through instantiation and
use using a standard software architecture methodology. Finally, the RA is instantiated into software.

an RA, and evaluating the RA through instantiation and use. We include an additional step of
instantiating the RA in software, resulting in a six-step procedure. We see the last three steps as
iterative steps, which can be modified given the shifting stakeholder requirements, the modular
design of the architecture, and the dynamic nature of the underlying technology for the software
implementation. The methodology for devising an RA for KE is summarized in Figure 1.

4.1 Scope identification and extraction of requirements

We take inspiration from the software engineering practice of using reference architectures as
consolidation mechanisms. On the one hand, the RA framework needs to cover the use cases
that fall under the task of KE. According to our definition and following [72], KE is a knowledge
process that includes knowledge creation (e.g., ontology creation, data ingest) and refinement
(e.g., ontology refinement, knowledge graph completion, anomaly detection). The scope of the RA
framework should enable machine, human, and joint machine-human knowledge processes [89].
The set of tasks that fall within the scope of KE are listed in Table 1, together with a typical
scenario and a question that an RA should be designed to solve. For example, the knowledge graph
refinement task can be illustrated with a system flagging a potential inconsistency or contradiction.
A question for an RA is how it can facilitate the resolution of such quality challenges.

On the other hand, the RA framework must identify and support the requirements of
the relevant stakeholders. In software architecture development [18, 85, 8], requirements serve
as a common denominator to align the needs of the stakeholders and the technical patterns.
While stakeholders may include both knowledge engineers and beneficiaries of KE (e.g., data
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scientists building applications), we focus on the requirements of knowledge engineers, i.e., users
that perform the aforementioned knowledge graph creation and refinement tasks. As is common
in software engineering [8], the requirements can be translated into two categories: functional
requirements and quality attributes. In recent work [3], we devised a set of 23 quality attributes
and 8 functional requirements for KE, based on a historiographic analysis of the field of KE
(similar to Subsection 2.1). We show an excerpt of five quality attributes and five functional
requirements in Table 2. These requirements are manually selected to show diverse representative
FRs and QAs. Their role is to illustrate to the reader what FRs and QAs for KE (may) look
like. An example of QA is modularity, namely, a requirement that the components of the KE
workflow enable selective composition for supporting particular use cases. An example of an FR is
the import of common data formats, including mainstream semantic web and software sources, as
well as serializations. While we consider [3] to provide an initial set of FRs and QAs, we note
that the review of papers in this prior work is not based on a systematic selection. The work
on analyzing Semantic Web and Machine Learning Systems (SWeMLS) identifies three other
requirements: maturity, transparency, and auditability, based on a systematically collected set of
papers [72]. Critical future work is to explore how to automatically derive FRs and QAs from
such a systematically collected set of papers, based on formally defined requirements. Moreover,
given a particular, more narrow scope, the users are expected to define a subset of high-priority
requirements that will guide the construction of their RA.

4.2 Selection and investigation of information sources

A systematic analysis of the NeSy landscape, aiming to characterize SWeMLS published between
2010 and 2020, resulted in a corpus of 476 system papers [14]. In this work, each of the papers
was annotated with bibliographic information (authors, institutions, publication year, and venue),
domain of application, task solved, input/output system architecture, characteristics of the machine
learning and the semantic web modules, and levels of maturity, transparency, and provenance.
The system components are aligned to the boxology for neurosymbolic systems [92]. In total, 44
patterns were discovered, classified into a typology of six types according to their shapes. Some
example boxology patterns from the SWeMLS corpus are shown in Figure 2. The F2 pattern
(short for fusion-2 ) is described in [93] as a simple fusion design pattern that takes both symbolic
(s) and unstructured data (d) as inputs and produces symbolic data (s) as output using a model
M. The F2 pattern corresponds to two specific systems, one being a geological text document
classifier [69], and the other an application that classifies heterogeneous web content to create
symbolic data extending an enterprise knowledge graph [80].

The data from the study by [21] is made available as a knowledge graph. The ontology of
this knowledge graph is centered around the class System, which belongs to one Pattern and
has N System Component values. Using SPARQL queries against the SWeMLS knowledge graph,
we identified a subset of 139 papers as KE-related, consisting of papers whose systems perform
Graph creation or Graph extension tasks, and produce Symbol as the final output. In doing
so, we followed the procedure described in [72]. We use this set of 139 KE papers in the rest of
our methodology, given the systematic approach to collecting them, their rich annotation, and
their alignment with the NeSy boxology components. This procedure illustrates how the selection
of information sources can be achieved - in practice, RA developers may decide to focus on a
different set of sources, e.g., covering a larger set of papers or a particular subarea of KE for better
representativeness to their envisioned use cases.
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Table 2 Example QAs and FRs for KE from [3], extended with evaluation criteria. We refer to each
requirement with “should” signifying a uniform level of importance. The priority scale of the requirements
can be further distinguished according to the specific use case requirements.

requirement description evaluation criteria
interoperability
[25]

the knowledge produced by the
KE process should be easy to
share across sites and applica-
tions

compatibility with different data formats and
standards; ease of integration with other systems;
number of supported interfaces/APIs

curatability
[10]

the KE process should support
human curation of automatically
extracted and/or inferred know-
ledge

effectiveness of human curation interfaces; balance
between automation and human oversight; quality
control measures for curated knowledge

scalability [25] the KE process should scale eco-
nomically with the amount of
knowledge produced (measured
in terms of rules, triples, nodes,
edges, etc.)

performance under increasing amounts of know-
ledge (e.g., response times, throughput); cost-
effectiveness at different scales; system behavior
under concurrent user loads

modularity
[43]

the components of the know-
ledge engineering process should
be selectively composable to suit
a specific use case

independence and interchangeability of system
components; ability to integrate or detach mod-
ules based on need; impact of module changes on
overall system performance

customizability
[43]

the components of the KE pro-
cess should be modifiable to sup-
port specific use cases

ease and extent of system modifications; number
of customizable components; user feedback on cus-
tomization features

supports se-
mantic web
standards [11]

the KE process should support
the use of W3C semantic web
standards

use of standard knowledge representation (e.g.,
RDF, property graphs), serializations (e.g. Turtle,
JSON-LD) and query languages (e.g., SPARQL,
Cypher), evaluated by ontology quality metrics,
pitfall scanning

imports com-
mon data
formats [43]

the KE process should support
the import of data and/or know-
ledge from data sources

use of standard serializations (e.g., CSV, JSON,
Parquet), evaluated by ontology quality metrics,
parsing error rate

exports com-
mon data
formats [43]

the produced knowledge should
be exportable to software
industry-standard data delivery
mechanisms

use of software industry-standard data storage
mechanisms (e.g., relational databases, RDF
data dumps, search engine indexes) and integra-
tion standards (e.g., serialized data dumps, pub-
lish/subscribe messaging, REST APIs), evaluated
by time to deploy, storage and compute costs

provides user-
friendly inter-
faces [43]

the knowledge produced by the
KE process should be accessible
and applicable by end users

industry-standard user experience (e.g., command
line interfaces, visual editors and browsers, report-
ing and analytics dashboards) measured by time
to complete tasks, user satisfaction surveys

supports het-
erogeneous
query [36]

the knowledge produced by the
KE process should be searchable
using multiple query languages

use of industry-standard query languages (e.g.,
SQL, Cypher, SPARQL) and query execution
strategies (e.g., federated query, centralized query,
find-and-follow), with developer experience meas-
ured by time to complete tasks, user satisfaction
surveys
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Figure 2 Simple neurosymbolic system design patterns from the SWeMLS KG, as shown in [93]. The
F2 design pattern, appearing on the right of the figure, is a simple fusion that takes both symbolic (s)
and unstructured data (d) as inputs and produces symbolic data (s) as output using a model M.

Figure 3 Preliminary analysis of the relationships between quality attributes for KE identified in [3]
and the KE design patterns from [72] that are associated with knowledge graph creation and extension.
The number in each cell is the count of occurrences of the quality attributes assigned to papers by the
zero-shot text classifier that describes systems with the given pattern.

4.3 Architectural analysis

The next step is to perform a preliminary analysis of the extent to which quality attributes for
KE are supported within specific SWeMLS patterns. We illustrate this analysis over the SWeMLS
KG, where papers describe a system, and each system is associated with a specific pattern. To
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establish a connection between quality attributes and patterns, we utilize the SerpApi Google
Scholar API to obtain snippets from the abstracts of each of the 139 papers described in the
previous section.2 We then construct a zero-shot text classifier using prompt programming of
ChatGPT [75] that, given an article’s snippet and title, assigns one or more quality attributes to
each paper. Here, we used the 23 QAs identified in the first step. We then aggregate the quality
attributes for each paper’s system’s pattern across all of the papers and patterns. This allows us
to derive a matrix relating quality attributes to patterns, as shown in Figure 3. From this
initial analysis, we find that the A1, A2, F2, and T1 patterns cover the most quality attributes.
Namely, A1 covers 20 of the 23 QAs, except for affordability, ethicality, and sustainability; A2 and
T1 only lack the QA of distributivity; and F2 covers 20 QAs lacking only distributivity, domain
independence, and ethicality. We find these insights to be largely intuitive, as many systems belong
to patterns such as A1 and F2. Among the quality attributes, we note that most patterns capture
domain-specificity and scalability, whereas ethicality and distributivity are rare. This indicates
the tendency of neurosymbolic KE systems to focus on scalability and domain-specificity, whereas
aspects such as sustainability, ethicality, and distributivity are gradually gaining momentum but
are not yet a primary consideration for most systems.

We emphasize that the corpus used for our analysis is not comprehensive and that the specific
analytical methodology followed in this paper may exhibit classification bias. Thus, the significance
of this analysis is mainly to show an illustration of how architectural patterns and quality attributes
can be linked together. This provides us with a means to determine, given the quality attributes
and functional requirements from the scope identification and requirements extraction steps,
which pattern(s) are candidates for RA synthesis. We leave it to future work to further tune this
procedure, generalize it to a larger dataset, and devise a more robust classification engine. Finally,
we note that an analogous procedure can be followed for aligning functional requirements with
boxology patterns.

4.4 RA synthesis from patterns

4.4.1 Procedure

Given the architectural analysis of the patterns from the boxology and from other prominent
workflows, the construction of the RA follows as a natural synthesis step. Namely, the RA
consolidates the discovered pattern(s) with consideration for their adequacy for addressing the use
cases and the derived requirements. The benefit of this synthesis is that it prescribes a global view
of how a given pattern addressed the stakeholder needs, how the different patterns fit together if a
complex pattern is being composed of simpler patterns, and how the architectural pattern(s) can
be technically realized; all of that, while aligning with state-of-the-art workflows as reported in
the literature.

How would this synthesis of patterns into an RA be realized in practice? As the synthesis is
highly dependent on the high-priority requirements of the RA stakeholders, it is impossible to
prescribe a one-size-fits-all architecture. Instead, we describe the procedure of how an RA would
be synthesized for a specific use case, illustrated in Figure 4. With the prioritized QAs (from Step
1) as a guide, components (from Step 2) that address these attributes (using the analysis from
Step 3) will be identified and integrated into the architecture. Practically, an initial design meeting
would be scheduled to review the existing workflows and patterns concerning the requirements.
During this meeting, a candidate RA will be crafted, following high-level architectural principles

2 https://serpapi.com/google-scholar-api, accessed: 2024-01-05.

https://serpapi.com/google-scholar-api
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Figure 4 An example of RA synthesis. Stakeholders have identified a set of QAs (scalability, domain-
specificity, and extensibility) and a specific use case (graph extension of an enterprise KG). The team of
architects has taken this as input, selected an adequate pattern F2 (fusion 2) based on its support for
the indicated QAs and use case, and synthesized a proposed RA that uses a trained subject classifier to
perform graph extension based on the KG and data from a content repository. After a process of iterative
refinement, choices are made about specific technologies to use, and a concrete RA is proposed.

and approaches. A core team of architects is then essential to conduct a collaborative design
session. In this session, the RA’s architecture, its components, and their interactions are laid out,
creating a platform for real-time discussions and potential modifications. During these discussions,
the SWeMLS knowledge graph can provide information about potential alternative technologies
for the components. To refine the design further, a series of subsequent sessions can be organized
that invite a broader set of participants. The feedback gathered from these sessions can be used
to iterate and enhance the design.

Following a similar procedure, an example RA for KE in the domain of newsrooms and
journalism has been provided by [61]. A critical future work is to apply our process to other use
cases with potentially different requirements.

4.4.2 Hypothetical scenario
We proceed to illustrate this process with a hypothetical scenario (Figure 4). Business stockholders
at a large enterprise have identified that there is a need to improve the discoverability of content
on a corporate website. The company has a repository of content, including product information,
articles, blog posts, case studies, and user guides. However, users often struggle to find the content
they need, leading to frustration, reduced engagement, and potentially lost sales opportunities.
The company recognizes that better content recommendations and more intuitive navigation can
significantly enhance the user experience and drive business outcomes.
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Based on their understanding of industry best practices, the stakeholders determine that a
solution that performs subject tagging of content using a domain-specific ontology will support
the discoverability of content for tasks their users are attempting to accomplish. They identify
several quality attributes that they want to ensure such a solution addresses:

Scalability: The solution should handle a large and growing volume of content and user
interactions.
Domain-specificity: The solution should provide subject tagging from a domain-specific
taxonomy of vocabulary terms and definitions.
Extensibility: The solution should be extensible as new content and subjects become available.

These QAs, along with additional FRs, are presented to a team of architects. The architects
review the design patterns captured in the SWeMLS KG to determine which of the identified
design patterns most closely address these QAs and requirements. The knowledge graph supports
the review process by surfacing relevant papers, case studies, and benchmarks for similar systems
and use cases. Querying the KG, the architects identify the F2 design pattern as describing
systems that match the stakeholder QAs and the use case. Both of the systems corresponding to
F2 are similar to the stakeholder use case, and both provide evidence that the pattern can address
the specified QAs. Based on this review, the F2 design pattern is selected.

The architects then specify how the requirements and use case can be addressed by instantiating
the components in the F2 design pattern into a proposed RA, as follows:

The input symbolic representation (s) is an enterprise KG that captures the semantics of the
content repository and application domain, including the domain subject taxonomy. The KG
should capture key entities like products, articles, and customer segments, along with their
relationships.
The input data (d) is the content on the corporate website.
The model (M) component is a combination of ML and NLP technologies that given the KG
and content, classifies the content according to the domain-specific subject taxonomy.
The output symbolic representation (s) are relations to be added to the knowledge graph to
link content on the website to relevant concepts in the vocabulary.

Given these decisions, the architects then proceed to make additional choices for what specific
technologies are to be used to implement each component into a concrete RA:

Knowledge graph (s): this could be stored in a labeled property graph database, an RDF triple
store, or a relational database with a graph-friendly schema.
Content repository (d): given the existing website, the input data may reside in various enter-
prise systems like content management systems or customer-customer relationship management
systems.
Model (M): the model is responsible for producing multi-class subject classifications from the
input data and KG, and updating the KG with this new knowledge. Suitable approaches could
include hybrid models that combine text, user interactions, and graph structure, e.g., using
transformer architectures like BERT or pre-trained language models like GPT-4.

The architects additionally consider factors such as the volume and variety of input data, the
complexity of the topic taxonomy, explainability requirements, and the team’s AI/ML skills in
making their decisions about how to instantiate the RA, including the following considerations:

The iterative nature of the F2 pattern, where the output enhances the KG, can support
continuous improvement of recommendations as new content is incorporated.
The use of a KG as the core representation to aid explainability, as the relationships between
content and topics can be traced and visualized, potentially helping content managers optimize
the content strategy and troubleshoot issues.
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The separation of concerns in the F2 design pattern, with dedicated components for data
ingestion, model training, and KG management, promotes scalability and performance, as each
component can be independently optimized and scaled based on the workload.

The architects then go through a final process of determining the final proposed architecture,
potentially including:

Assessing the current state of the KG and identifying gaps in topic coverage
Inventorying available data sources and evaluating their relevance and quality
Experimenting with different modeling approaches and comparing their accuracy, scalability,
and interpretability
Validate model outputs with subject matter experts and through user testing

The final proposed architecture is then documented to support the evaluation process described
in the next phase of the process. Once the reference architecture has been defined, it can be stored
in the SWeMLS KG. This allows the RA to be shared and reused in other content classification
applications within the enterprise. Some examples of how elements of the reference architecture
definition can be mapped into the SWeMLS knowledge graph are:

The overall RA for content recommendation can be represented as an instance of the
swemls:System class. The specific pattern it implements (F2) can be indicated using the
swemls:hasCorrespondingPattern property.
The business problem of improving content discoverability on the corporate website can be
described using the swemls:Task class.
The various data sources used to build and enhance the KG, such as content metadata, user
interaction logs, and external taxonomies, can be captured using the swemls:Data class.
The KG serving as the core symbolic representation can be modeled as an instance of the
swemls:SemanticWebResource class. The specific KG technology used can be specified using
the swTechnology property.
The machine learning model used to learn topic classifications can be represented using the
swemls:Model class.
The process of training the machine learning models using the input data and KG can be
represented using the swemls:ProcessingEngine class.
The specific tools, libraries, and frameworks used to implement the RA components can be
captured as instances of the relevant classes, including swemls:Data, swemls:Model, and
swemls:SemanticWebResource.

By mapping the RA to the SWeMLS ontology in this way, we establish a structured and
semantically rich representation of the architectural knowledge that can be a resource in the
evaluation process described in the next section. The ontology classes, properties, and relationships
provide a standardized vocabulary to describe the various aspects of the RA, from the business
goals and QAs to the technical components and best practices. This consistent representation
facilitates comparison, integration, and reasoning across different RAs and domain applications.

4.5 RA evaluation through instantiation and use
Once specified, architectures synthesized in this manner from design patterns can then be evaluated
through a lightweight version of the Architecture Tradeoff Analysis Method (ATAM). ATAM
[47] is a risk-mitigation process used to identify architectural risks that have implications in
fulfilling quality attributes. As originally proposed by CMU’s Software Engineering Institute, this
process involved a multi-day face-to-face gathering of stakeholders and architects. A lightweight
ATAM process [73] is a streamlined version of the traditional ATAM, focusing on a shorter,
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more rapid timeframe and often less resource-intensive evaluation of architectural decisions. The
use of web-conferencing and real-time collaborative document editors allows this process to be
conducted remotely, increasing the ability to gather a large and diverse group of stakeholders.
First, we will identify and recruit a set of stakeholders for an ATAM session. On the day of the
session, the stakeholders will be presented with an agenda for the session that defines the scope
of the evaluation and presents the RA, identifying architectural approaches used. This will be
followed by a presentation of user scenarios relative to evaluating the RA. The user scenarios for
knowledge creation and maintenance processes should include capabilities for data integration
from multiple structured sources [20], data quality checks [67], entity resolution [17], ontology
merging and alignment [15, 62], query optimization [37], and natural language processing [76] (cf.
Table 1). Moreover, the production processes should be automated to enable efficient updates and
maintenance of the knowledge artifact [59]. In cases where the KE involves the use of personally
identifiable information or other sensitive data for knowledge elicitation or training ML components,
there is the danger of leakage of sensitive information; in addition, ML components themselves can
inadvertently leak data under adversarial attack [60]. Therefore, the production process should
incorporate mechanisms for security and privacy, as well as access control mechanisms to ensure
that the data stays secure and that only authorized users have access. It is worth observing that
many of these issues have been explored to date in the more generic context of data engineering
and data science architectures and platforms. Once the stakeholders have considered the various
scenarios, they can proceed to collaboratively analyze the scenarios, identifying risks and trade-offs,
and gathering feedback, focusing on potential refinements and architectural alternatives. The
stakeholders will then document risks, trade-offs, architectural decisions, and the reasons for them,
finishing by summarizing the final consensus RA.

4.6 RA instantiation in a concrete software architecture
Given a consensus RA, we can proceed to finalize a comprehensive architectural blueprint. The RA
does not provide absolute recommendations on such choices, assuming that those are stakeholder
need-dependent. It does, however, prescribe an association between different requirements,
architectural patterns, and adequate implementations. For each component, the range of options
for its instantiation using existing software packages or through bespoke development will be
identified. Here, we are inspired by recent toolkits for knowledge graphs, like KGTK [43], which
connect knowledge engineering operations by defining a universal interface format and abstracting
the implementation of each component from the user. The implementation of each component
relies on thorough research and consideration of the best existing tool or implementation that can
be wrapped, i.e., that the software can provide an interface to. For instance, one could provide an
interface to Pytorch-Biggraph [52] for knowledge completion, Shape expressions (Shex) tools [88]
for using constraints to evaluate quality, and RLTK [97] for record linkage across knowledge
artifacts. However, as KGTK and similar toolkits are built based on an implicit set of use cases
and user requirements, further investigation is required to assess whether they will align with
emerging architectural contributions like the set of boxology patterns.

A strategic approach to instantiating an RA involves a phased implementation. Each phase
should predominantly focus on one specific component. During this development phase, constant
testing and evaluation of each component will be performed to ensure the component aligns with
the predefined QAs and specific scenarios. After the conclusion of each phase, feedback will
be gathered from all involved stakeholders. This iterative process will ensure the architecture
remains relevant and effective, as necessary revisions based on the feedback can be made. The
resulting implementation will be open-sourced and thoroughly documented in a publicly accessible
code repository. After the entire process is complete, the system’s efficacy will be tested in pilot
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trials facilitated by the stakeholders. During these trials, relevant data on system performance
and quality assessment will be collected to ensure the architecture’s robustness and efficiency.
Notably, the implemented RA would serve as a comprehensive framework that enables decisions on
technology for representation, integration, and quality assurance, among others, to be made based
on high-priority requirements. While the implementation is meant to be prescriptive and enable
efficient KE by profiles with various backgrounds, goals, and levels of expertise, we acknowledge
that these recommendations should be considered relative to the stakeholders’ needs.

5 Conclusions

Knowledge engineering, as a process of creating and maintaining knowledge artifacts, has remained
relevant throughout the history of AI. In light of the heterogeneous requirements and KE use cases,
on the one hand, and the emergence of architectural components and partial workflows, on the other
hand, this paper makes a case for developing reference architectures for KE. Following software
engineering practices, an RA would provide an organizational principle for isolated systemic
patterns, thus providing a key contribution to this ongoing work that enables the knowledge
engineering field to be systematized. A reference architecture consolidates the patterns while
simultaneously considering its scope, defined through a set of use cases and their corresponding
requirements, distilled as quality attributes and functional requirements. The synthesis of the
architecture is an iterative process, inspired by success stories of reference architectures for service-
oriented design, e-government, and the automotive sector. A key aspect of the development is its
evaluation through instantiation and use with representative users for representative KE tasks.
As a final step, the reference architecture components need to be instantiated into software, thus
closing the cycle between user needs and existing technological capabilities.

While this paper outlines a roadmap for devising comprehensive and requirement-grounded
RAs for KE, its realization in practice is partial at present. We present a broad definition of
scope through a definition of representative tasks and distillation of 23 quality attributes and 8
functional requirements, which could be narrowed down given a specific use case. We take the
recently identified collection of system patterns for neurosymbolic KE as information sources,
providing initial components that can be used to construct an RA. We present an architectural
analysis, as a direct mapping between QAs and the identified architectural patterns, detecting
requirements with various levels of support. The steps of synthesizing an RA from patterns,
evaluating the RA through instantiation and use, and instantiating the RA into software are
presented as prescriptive, consolidating best practices and methodologies from software engineering
through step-by-step processes, because these steps are highly dependent on the specific use cases.
Each of these steps requires the dedicated effort of iterative design, development, implementation,
and evaluation of an RA, which we plan to pursue as the next steps for representative subsets
of tasks and domains. We believe that the presented methodology for devising RAs for KE
provides an important extension of emerging work that systematizes KE methods, by providing
a mechanism to associate architectural patterns with user requirements and identify potential
gaps. We invite the broader community of interested researchers and developers to join us in these
discussions and complement our future efforts in consolidating KE practices.
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