NEOntometrics — A Public Endpoint for Calculating

Ontology Metrics

Achim Reiz &

Rostock University, Germany

Kurt Sandkuhl =

Rostock University, Germany

—— Abstract

Ontologies are the cornerstone of the semantic web
and knowledge graphs. They are available from vari-
ous sources, come in many shapes and sizes, and
differ widely in attributes like expressivity, degree
of interconnection, or the number of individuals.
As sharing knowledge and meaning across human
and computational actors emphasizes the reuse of
existing ontologies, how can we select the ontology
that best fits the individual use case? How do we
compare two ontologies or assess their different ver-
sions? Automatically calculated ontology metrics
offer a starting point for an objective assessment.
In the past years, a multitude of metrics have been
proposed. However, metric implementations and
validations for real-world data are scarce. For most

of these proposed metrics, no software for their cal-
culation is available (anymore). This work aims
at solving this implementation gap. We present
the emerging resource NEOntometrics, an open-
source, flexible metric endpoint that offers (1.) an
explorative help page that assists in understanding
and selecting ontology metrics, (2.) a public metric
calculation service that allows assessing ontologies
from online resources, including GIT-based reposit-
ories for calculating evolutional data, with (3.) a
scalable and adaptable architecture. In this paper,
we first evaluate the state of the art, then show the
software and its underlying architecture, followed
by an evaluation. NEOntometrics is today the most
extensive software for calculating ontology metrics.

2012 ACM Subject Classification Computing methodologies — Ontology engineering; Information
systems — Web Ontology Language (OWL); General and reference — Metrics; General and reference

— Evaluation

Keywords and phrases Ontology Metrics, Ontology Quality, Knowledge Graph Semantic Web, OWL,

RDF
Digital Object Identifier 10.4230/TGDK.2.2.2

Category Resource Paper

Related Version Previous Version: https://ceur-ws.org/Vol-3235/paper16.pdf [25]

Supplementary Material The source code for NEOntometrics is published on Github under the MIT
license, where version 1.1.0 was used for the performance results presented in Section 5.3. The evaluations

are available on Zenodo under a CC-BY license.

InteractiveResource (Project Website): http://neontometrics.com [23]

Software (Source Code): https://github.com/achiminator/neontometrics [21]
archived at swh:1:dir:a0a2d612a4de911f171dadcefb66dcclc5b42bd9
Dataset (Evaluation and Supporting Materials): https://zenodo.org/records/14047141 [30]

Received 2023-12-01 Accepted 2024-10-31 Published 2024-12-18
Editors Aidan Hogan, Ian Horrocks, Andreas Hotho, Lalana Kagal, and Uli Sattler

Special Issue Resources for Graph Data and Knowledge

© Achim Reiz and Kurt Sandkuhl;
33 licensed under Creative Commons License CC-BY 4.0

Transactions on Graph Data and Knowledge, Vol. 2, Issue 2, Article No. 2, pp. 2:1-2:22

\\v TGDK

Transactions on Graph Data and Knowledge
Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:achim.reiz@uni-rostock.de
https://orcid.org/0000-0003-1446-9670
mailto:kurt.sandkuhl@uni-rostock.de
https://orcid.org/0000-0002-7431-8412
https://doi.org/10.4230/TGDK.2.2.2
https://ceur-ws.org/Vol-3235/paper16.pdf
http://neontometrics.com
https://github.com/achiminator/neontometrics
https://archive.softwareheritage.org/swh:1:dir:a0a2d612a4de911f171dadcefb66dcc1c5b42bd9;origin=https://github.com/achiminator/neontometrics;visit=swh:1:snp:bef1a3e62d2cda8af8a28c03e945a5d7ea2d6826;anchor=swh:1:rev:fa616530952d419943a480719c407761ae1cc734
https://zenodo.org/records/14047141
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/tgdk
https://www.dagstuhl.de/tgdk
https://www.dagstuhl.de

2:2

NEOntometrics — Calculating Ontology Metrics

1 Introduction

Ontologies facilitate the shared understanding of a domain between people and systems [15]. They
allow the structuring and contextualizing of data for detecting implicit knowledge, accessing this
knowledge using complex queries, and integrating and interlinking data from various sources while
facilitating a common understanding.

Over time, the semantic web community developed numerous ontologies. To give a perspective,
the vocabulary repository “Linked Open Vocabulary (LOV)” [33] contains 860 ontologies. The
portal “ontologydesignpatterns.org” collects small, reusable ontology patterns and provides 240
artifacts. Bioportal [34], a large repository for biomedical ontologies, contains 1,140 ontologies.
Moreover, many more ontologies are available on different sources like GitHub or private company

repositories’.

While the number of developed ontologies is extensive, just a few means are available to assess
these artifacts quantitatively. For the development team that likes to integrate an ontology into
their system, it is cumbersome to numerically compare the main attributes of two or more available
ontologies that serve the same purpose. For the knowledge engineer, the missing assessment
capabilities hinder tracking how ontology structure evolves throughout the ontology lifetime.

As shown in the next section, the lack of means for numerical assessments does not originate
from a lack of proposed metrics - over time, various metric frameworks have been developed.
What is missing are practical implementations of these metrics. Without a means to put these
metrics into use, further empirical research cannot proceed, and the potential of ontology metrics
remains theoretical.

This work aims to close this gap by presenting a flexible, extensible metric calculation endpoint
for RDFS and OWL-based ontologies. The software enables metrics to be calculated and retrieved
using a graphical user interface (GUI) or an application programming interface (API). It further
aids users in learning about different metrics, their calculations, and possible interpretations
through an interactive explorer for ontology metrics. If several versions of an ontology are available
in a GIT-based repository, the development of the metric values over time can be tracked.

NEOntometrics is the successor of the Ontometrics software [11] and its API endpoint [26].
The new software allows for evolutional analysis, comes with visualization capabilities, calculates
more metrics with improved calculation performance, and is better extensible. Parts of the
NEOntometrics application have been previously published. We presented a poster of an earlier
version of NEOntometrics at the Semantics Conference 2022 [25]. The metric ontology was
presented at the KEOD conference 2022 [26], and the visualization capabilities at the Voild
Workshop 2023 [29]. This contribution combines the various works and extends them with (A.) a
more thorough review of the state of the art, (B.) a more detailed description of the software’s
capabilities and structure, and (C.) an evaluation of the practical relevance and the performance
gains of the calculation engine.

The paper is structured as follows: Section two summarizes the current state-of-the-art
regarding ontology metrics and calculation software. Section three presents NEOntometrics
with its architecture and usage of the API and GUI. In section four, we illustrate the use of
NEOntometrics by presenting a case study and means to adapt the software, followed by the
evaluation of the framework and a conclusion.

b Accessed July 2024

A. Reiz and K. Sandkuhl

2 Related Work

Significant for our research are metric calculation proposals and ontology metric frameworks,
covered in the first part of this section, and possible calculation implementations, covered in the
second part.

There are many different evaluation methods available. Please note that we only consider
criteria-based frameworks that allow for an automatic evaluation based on the structural attributes
of the ontology. Metrics that need human intervention or additional input parameters are not
considered relevant. That excludes evaluation methods based on a gold standard (additional
input parameter is a “perfect” ontology), task-based (additional input parameter is the task
fulfillment level that an ontology can provide in a given context), or corpus-based (additional input
parameters are domain-related documents like a text corpus). Raad and Cruz further describe the
underlying categorization [20].

2.1 Related Quality Frameworks

Lozano-Tello and Gémez-Pérez published the Ontometric framework in 2004. It proposes evaluation
attributes in five criteria: (Development) tool, (ontology) language, context, methodology, and

cost. Arguably, some metrics have become obsolete due to standardization in the past years.

In 2004, the web ontology language (OWL) was just released, and other representations like
OIL, DAML+OIL, and SHOE were still actively used. Here, Ontometric is targeted to make the
influences of the languages explicit and comparable [13]. Today though, regarding the category
languages, RDFS-based ontologies can be considered state-of-the-art and are mostly compatible
with each other. Further, the standardization decoupled the tools from the ontology. Thus, the
tool capabilities do not influence the semantic artifact. Other proposed elements, however, can be

supported by an automatic calculation, like the metric maximum depth in the category content.

While the relevance today might be somewhat limited, Ontometric considerably influenced the
newer frameworks.

Gangemi et al. proposed an ontology evaluation framework based on a semiotic meta-ontology
02 that provides a formal definition for ontologies and their usage. Further, the authors define an
ontology evaluation design pattern (oQual). Based on their O? definition, measurements assessing
structural, task, corpus, and usability-based attributes are proposed [8]. A technical report by
the same authors further suggested 32 metrics in seven categories assessing mostly graph-related
structures like depth, width, modularity, the distribution of siblings, or tangledness [9].

In 2005, Burton-Jones et al. presented the semiotic metric suite. It comprises four main
categories (syntactic, semantic, pragmatic, and social quality) and ten quality metrics. While
some of these metrics are based solely on the structure of the ontology itself, others need further
additional external information. Nine of these measurements, in theory, can be calculated
automatically [2]. Practically, some of the required data for some measures will probably not be
available. Examples are the access count of the ontology or the links from other ontologies to the
currently assessed one.

OQuaRE was first proposed in 2011 by Duque-Ramos et al. It has since been used in
several publications, always involving the core team of the proposing authors. OQuaRE offers
19 calculatable metrics and associates these metrics with quality dimensions like readability or
accountability. Further, the framework ties metric results to quality ratings, thus providing an
interpretation of the measurements. This holistic approach to quality is a unique characteristic
among the frameworks [6]. However, during implementation, we experienced several heterogeneities
in the metric definitions of the framework, with metrics having the same name, created by the
same authors, being defined differently in their publications. To facilitate further research on

2:3

TGDK

2:4

NEOntometrics — Calculating Ontology Metrics

Table 1 Metric frameworks with their first publishing date and citations (Semantic Scholar, July 2024).

Framework | [13] [8] 2] [6] [32] [35] [14]
Published 2004 | 2006 | 2005 | 2011 | 2007 | 2005 | 2010
Citations | 424 356 370 115 356 180 52

the framework and to integrate the framework into NEOntometrics, we reworked the OQuaRE
measurements. However, empirical research with the newly implemented metrics showed that
their proposed linkages from measures to ontology quality scores do not sufficiently work [27]. Our
study was the first made by authors not part of the team that proposed the framework; however,
the NEOntometrics applications shall allow more thorough analysis in the future.

Tartir et al. published 19 metrics in the OntoQA framework in 2005 and 2007. While the
framework does not provide a grading system for metrics like OQuaRE, it aids the interpretation
by describing how modeling decisions influence the metric results. Further, the authors propose
measurements applicable not to the ontology as a whole but to the elements in an ontology.
OntoQA also defines class- and relation-specific measurements. The relationship importance, for
example, is calculated once for each relationship [32, 31].

There are further metric frameworks that consider the cohesion of an ontology. Yao et al.
propose a set of measures based on an inheritance tree [35]. In a consecutive paper, the authors
further provide an empirical analysis and interpretation context [17]. Ma et al. examined the
ontology partitions with special consideration of the open world assumption [14].

Over the years, a lot of frameworks have been proposed. As Table 1 shows, these papers have
gathered many citations over the years. Some of these frameworks are merely theoretical in their
proposals; others came with prototypical implementations. Further, tools that do not correspond
to one of the proposed frameworks have been developed.

2.2 Related Metric Calculation Software

The following section shows historical and current software for ontology metric calculation.

OntoKBEval by Lu and Haarslev [19] analyzes the structure of ontologies by providing graph-
related measures like the number of levels or the number of concepts per level. The tool offers
means to grasp clusters in the ontology and developed its own visualization “Xmas”-tree.

Tartir et al. developed a standalone java application for the OntoQA framework [32], imple-
menting measures of the OntoQA framework, including metrics for the individual classes.

OntoCat, proposed by Cross and Pal [3], is a plugin for the Protégé editor and provides size-
and structure-related metrics. They allow the assessment of the ontology as a whole but also
provide metrics concerned with specific subsets of the given ontology.

S-OntoEval by Dividino et al. [4] serves as a calculation tool for, among others, the framework
of Gangemi et al. Its primary focus is on structural evaluation. However, the tool also calculates
usability based on annotations and task performance based on ontology querying.

The Protégé editor [16] offers basic metrics on its landing page that counts the usage of
OWL-specific language constructs like the number of object property domain declarations or the
number of classes.

The developers of the OQuaRE framework introduced a web tool to calculate their proposed
metrics. It integrates a statistical correlation analysis of the metrics and a web service. The tool
suffers from the same issues as the framework [27], and the implemented metrics are heterogeneous
and do not adhere to a clear definition.

Amith et al. developed the Semiotic-based Evaluation Management System (SEMS), later
renamed OntoKeeper [1], which implements the semiotic suite by Burton-Jones et al.

A. Reiz and K. Sandkuhl 2:5

Table 2 The availability of the developed metric software (type: S: Standalone, P+: Protégé plugin,
API: REST-API, WT: Web Tool).

Tool Date Type Available | Open Source Ref
Onto-KBEval | 2006 S No No [19]
OntoQA 2005 S Yes (No)? [32]
OntoCat 2006 P+ No No (3]
S-Onto-Eval | 2008 S No No [4]
Protégé 2015 S Yes Yes [16]
OQuaRE 2018 | WT, API Yes® No [27]
Onto-Keeper | 2017 WT No No 1]
OOPS 2012 | WT, API Yes* No (18]
OntoMetrics | 2015 | WT, API Yes® No [22, 11]

The “OntOlogy Pitfall Scanner” (OOPS) by Poveda-Villalén et al. [18] approaches automatic
ontology evaluation differently: They detect common modeling pitfalls like the use of is relationship
instead of rdfs:subClassOf or wrongful equivalent relations.

OntoMetrics, first developed by Lantow [11], is a web service for calculating several ontology
metrics. It covers most of the OntoQA and oQual ontology metrics and integrates the OWL-based
axiom counts that are also part of Protégé. It was later extended with a web service by Reiz et
al. [22].

2.3 The Need for Another Calculation Tool

As the previous section has shown, many frameworks and tools have been developed over the past
years. That raises the question of whether a new calculation tool is necessary. We argue that our
application fills essential gaps:

Missing Practicality. As Table 2 shows, most of the developed tools are no longer available. Even
if they are available, their usability is often low. Many of the tools were used for the authors’
evaluation efforts and do not come with a state-of-the-art user interface. Further, most of the
software is not maintained. This problem is amplified by the fact that most of the software is:

Closed Source. None of the evaluated tools is fully open source (cf. Table 2). Not only hinders
this reproducibility. It also prevents the community from maintaining the software and building
on this previous research. If there is a need for another kind of evaluation, one has to start
from scratch. We, thus, argue that the closed source leads to:

Isolation. The implementation efforts have stayed mainly isolated from one another. Hardly any
tool has reached a broad acceptance within the community, and the ontology evaluation efforts
of researchers using different tools are often not comparable. While there is a consensus that
ontology evaluation is meaningful, there is no common understanding of how to do it.

https://github.com/Samir-Tartir/OntoQA.Thebinary.jarfilesareavailableunderCClicense.
Thesourcecodeitselfisnotpublic.

http://sele.inf.um.es/ontology-metrics

http://oops.linkeddata.es
https://ontometrics.informatik.uni-rostock.de,opi.informatik.uni-rostock.de

TGDK

https://github.com/Samir-Tartir/OntoQA. The binary .jar files are available under CC license. The source code itself is not public.
https://github.com/Samir-Tartir/OntoQA. The binary .jar files are available under CC license. The source code itself is not public.
http://sele.inf.um.es/ontology-metrics
http://oops.linkeddata.es
https://ontometrics.informatik.uni-rostock.de, opi.informatik.uni-rostock.de

2:6 NEOntometrics — Calculating Ontology Metrics

Table 3 A comparison of the existing OntoMetrics, its API and the new NEOntometrics software.

NEOntometrics OntoMetrics/OPI
GUI Flutter / Material Design | OntoMetrics: Static Web Page
API GraphQL OPI: REST
Technology Microservices Java Webpage
Evolutional Analysis Public Git Repositories No
Async Yes No
Metrics 159 727
Extensibility Good Poor
Open Source Yes No
Performance Fast (cf. Section 5.3) Moderate

3 NEOntometrics

NEOntometrics is the successor of the Ontometrics tool [22, 11] (thus NEOntometrics). The old
Ontometrics is one of the few ontology evaluation tools still available, but it does not scale well,
provides fewer functionalities, sometimes redundant calculations, and is complicated to adapt [26].

The new tool, NEOntometrics, is a complete overhaul of the old software. It consumes public
GIT-based repositories, iterates through all of the commits (a commit is a published change in
a repository), and calculates the metrics of the available ontology files. The software seeks to
solve many of the previously named challenges. It comes with a state-of-the-art user experience,
a GraphQL endpoint, calculates various metrics, is quickly extensible through an ontology for
creating and describing metrics, and is open source under the MIT License®. Table 3 further
shows the application differences.

The following section details the software itself: It presents the different components of the
service, how they interact, and the underlying development decisions. We also present how our
ontology-based metric calculations are extensible for future usage. Afterward, we give an overview
of how to put the software to use.

3.1 The Architecture of the Metric Calculation

One design goal was to create a flexible application for integrating new metrics. A researcher shall
be able to adapt the application to their needs and quickly implement new required metrics.

To achieve this adaptability, we did not encode all of the metrics of the various frameworks
directly in the software but decomposed them into their building blocks. For example, the metric
Aziom/Class Ratio is not calculated during the ontology analysis. Instead, their building blocks
Axioms and Classes are analyzed and saved in the database. The compositional values are then
calculated at the time of querying.

The information on the ontology metrics is stored in an OWL-based metric ontology®. On
startup of the application, multiple SPARQL-queries extract the codified knowledge and set up
the backend and frontend. Thus, changing and adapting the ontology is sufficient to adapt the
measures. The work [26] further details the underlying metric ontology.

Figure 1 presents an example of the metric elements in the ontology. FElemental Metrics
contain the atomic measures that are used to build the compositions. For Axiom Class Ratio, the
FElemental Metrics are Azioms (the number of axioms) and Classes (the number of classes). The

5 https://github.com/achiminator/NEOntometrics
7 As some frameworks propose similar measurements, not all of the metrics are unique.

https://github.com/achiminator/NEOntometrics

A. Reiz and K. Sandkuhl 2:7

Table 4 The Metric Frameworks that are implemented in NEOntometrics.

Name in NEOntometrics Proposed By Ref
Cohesion Metrics Yao et. al [35]
Complexity Metrics Zhang, Ye, Yang [37]
Good Ontology Fernandez et. al [7]
OQuaRE Duque-Ramot et. al | [6, 27]
OQual Gangemi et al. 19, 8]
OntoQA Tartir, Apinar [32, 31]
Complexity Cohesion Orme, Yao, Etzkorn [17]

Elemental
Metrics

. .
Implemented ‘{ Axioms] [Classes }' Implemented

~

by value by value
el [
S - '
. '
- 1
numerator "~ - \ divisor anly
anfy T i

L |
Ratio
il
S
oQual L o .
Transparancy € Logical
Adequacy

¢
NP}jFi -

| i
Dimensions
Structural
Quality
. t Quality
Dimensions
Legend
. Object
) Property
Class ind- 5
vidual Sub Class
oF

Figure 1 The metric ontology (image adapted from [26]).

ontology further specifies mathematical relationships between the metrics. In the given example,
Aziom Class Ratio is the subClassOf (divisor only Classes) and (numerator only Azioms). The
FElemental Metrics are connected to metric instances named identically to the implementation
names in the calculation service and the elements in the database. In the example of the Axioms,
this element has a relationship implementedBy value axioms.

All elements have rich annotations, providing human-centered meaning to the metrics. Some
elements have links to further online resources or scientific publications. The annotations are the
foundation for the Metric Explorer, where users find guidance on the available metrics.

New metrics that build upon the available Elemental Metrics can be created by modeling
them in the ontology. Upon start, the application will make these custom metrics automatically
available in the front- and backend. Table 4 shows the frameworks that are already implemented in
NEOntometrics and part of the Metric Fxplorer and the Calculation Unit at the time of publication.

The case study in Section 4.2 details how to create new frameworks, e.g., for individual metric
frameworks in an organization.

TGDK

2:8

NEOntometrics — Calculating Ontology Metrics

3.2 The Architecture Of The Application

The application is based on a dockerized microservice architecture and consists of five components:
the calculation-unit OPI (Ontology Programming Interface), the API, the worker application, a
database for storing the calculated metrics, and a Redis interface for queueing jobs. The API and
worker share a common codebase. Figure 3 depicts the interaction of the involved services.

The frontend contains the GUI. It is written using the multi-platform UI language flutter
with its underlying client language dart®. Upon loading, the frontend first queries the API for
available ontology metrics based on the metric ontology. This data fills the help section Metric
Ezplorer, which allows users to inform themselves about the various available metrics and the
options for the calculation page. Afterward, the user can retrieve the requested ontology metrics
or put them into the queue if they do not yet exist.

The API is the django-based” endpoint for accessing already calculated metric data or
requesting the analysis of new repositories. During the startup of the software, the application
queries the metric ontology. It builds the frontend data and dynamically creates calculation code
to provide the measurements of the frameworks that build upon the Elemental Metrics. After
startup, a client can exploit GraphQL to check whether the data he requests exists already in the
database. If so, he is able to retrieve all the selected metrics for a given repository. If not, it is
possible to put the calculation of a given repository in the queue and track its progress.

The worker is responsible for the calculation of the metrics itself. It checks whether jobs are
available in the scheduler Redis database. If that is the case, it starts the analysis by first cloning
or pulling the GIT-repository, then iterating through every new file and commit, analyzing the
ontologies using the OPI metrics endpoint. Afterward, the calculation results are stored in the
database. The scheduling mechanism is based on django-rq'®. Even though the worker shares a
code base with the API, it runs as a separate application. The number of parallel calculations can
be scaled by increasing the number of workers.

The calculation service OPI is responsible for calculating metrics out of ontology documents.
While it is based on the calculation service published in [22], most underlying code has been
replaced. The old application struggled with ontology files larger than 10 MB due to inefficient
memory allocation and had no separation of the calculation of the elemental metrics and the
composed metrics of the metric frameworks. The old application was designed as standalone
software, while the new calculation engine is hidden from the user and only accessed by the API.

The backend utilizes two languages: The API is written in python, and the calculation service
OPI builds on Java. While the two languages add complexity to the application design, they
allow the use of established frameworks for their given tasks.

The calculation and retrieval process as a whole is depicted in Figure 2. At first, the frontend
requests whether an ontology is already known in the system. If not, it either returns the queue
information to the end-user or starts another request for the ontology metrics. At the same time,
the worker applications and OPI handle the queued tasks.

The microservice architecture allows utilizing the strengths of the various languages. The Java
calculation unit builds on the OWL-API for an efficient graph traversal. The Python/django
application is easily extensible through the availability of multiple plugins, e.g., for the GraphQL
endpoint and the asynchronous metric calculation. The flutter-based frontend comes with built-in
material design support. Further, the microservices allow for potential horizontal scaling of the
calculation.

8 https://flutter.dev/, https://dart.dev/
9 https://www.djangoproject.com/, https://www.django-rest-framework.org/
Onttps://python-rq.org/patterns/django/

https://flutter.dev/
https://dart.dev/
https://www.djangoproject.com/
https://www.django-rest-framework.org/
https://python-rq.org/patterns/django/

A. Reiz and K. Sandkuhl 2

Frontend API Scheduler DB

Worker OPI
I
par) [API process]
request metric information
check if in queue
| alt [if not in queue]
check if in DB
<
| alt [is in DB]
requests metrics
query metrics
mutate queue
put in queue
R —
queue information H
P
queue information
[Worker process]
Loo) [for job in queue]
ask for available job
loo) [each new commit in repo]
loo] [each changed file in commit]
calculate values
I —
et 1
update job information
save to DB
Frontend AP| Scheduler DB Worker OPI

Figure 2 The process of analyzing and retrieving ontologies with NEOntometrics (without application
startup).

neontometrics.com

.I\.fle';trilc- django

Worker

Figure 3 The NEOntometrics microservice architecture.

DB

TGDK

9

2:10

NEOntometrics — Calculating Ontology Metrics

3.3 The Metric Explorer

The page Metric Explorer is a dynamic help page of available metrics in NEOntometrics. The
two main categories are Elemental Metrics and Quality Frameworks. The former contains the
underlying atomic measurements of the ontologies. The authors of NEOntometrics create all the
information shown in this category. Quality Frameworks, on the other hand, present the ontology
metrics developed by other researchers, like the OntoQA Metrics [32] by Tartir et al., shown in
Section 2.1. Here, all information originates from the authors of the given frameworks.

The Metric Explorer provides information on five categories (though not all are filled for all
the metrics). Metric Definition contains the formal definition of the metrics and how they are
calculated, while Metric Description supplements a more human-readable explanation and, at
times, an example. The Metric Interpretation guides practical usage. Calculation explains their
decomposition into the Elemental Metrics using the metric names that are returned by the API,
and seeAlso links to further resources like the corresponding papers or additional reads.

The interactive help page is closely bound to the metric ontology. Every change will be reflected
in the Metric Ezplorer after a restart, and the ontology provides annotation properties for the
metric definitions, descriptions, and interpretations. The nesting of the measurements is defined by
the subclass relations in the ontology, and the calculation field is defined by the object properties
representing the mathematical relationships (cf. Figure 1).

3.4 A Frontend for Humans and an Interface for Machines

For direct consumption by a user, the tab Calculation Engine (as shown in Figure 5) is the
main entry point for the metric calculation. The end-user first selects the required metrics. The
“Already Calculated” button shows the calculated repositories already stored in the database.
While these repositories can be a starting point for further exploration, the user can also place a
URL in the textbox that points to a new public GIT repository or the location of an ontology file.

A click on the arrow starts the metric request. Once the data is analyzed, clicking the arrow
leads to the metric results presented as a paginated table, representing the metric values for the
different ontology versions. A drop-down menu in the header allows selecting the various ontology
files, and the download button exports the metrics into a .csv. A click on the button “show the
analytic” opens internal visualizations for displaying the ontology evolution, comparing the various
ontologies in a repository, and assessing the recent changes.

One goal of NEOntometrics is to allow the integration of ontology metrics into semantic web
applications, which requires exposing the service using a standardized interface. Relevant open
standards are REST and GraphQL for the web and SPARQL for querying the semantic web.
NEOntometrics builds on GraphQL.

GraphQL (together with REST) has become a new de facto standard for sharing information
on the web, and there is broad support in various programming languages and frameworks. This
support includes the django web framework used in this project, where the graphene plugin'!
allows utilizing the internal Object Relational Mapping. It allowed us to build the interface with
comparatively little implementation effort, as the requests are translated to database queries
automatically. While these integrations are also available for REST, GraphQL allows for the
traversing of relationships and the precise selection of attributes for querying. Avoiding over-
fetching is highly relevant for this use case, as one ontology version has over 100 ontology metrics,
and the user likely selects just a few.

"nttps://graphene-python.org/

https://graphene-python.org/

A. Reiz and K. Sandkuhl

@) OntoQA ~
(D OntoQA Instance Metrics w =
OntoQA Schema Metrics ~ E

i} OntoQA Attribute Richness
(i) OntoQA Class Inheritance Richness

() OntoQA Inheritance Richness

o

() OntoQA Relationship Diversity
(D) Onto0A Relationship Richness

(D OnteQA Schema Deepness

(D) OmeEtaAl v

Figure 4 The Metric Explorer page in NEOntometrics.

Analytic View
hitps://github.com/evidenceontology/ D

eco.owl

The schema depth of the schema (SD) is defined as
the average number of subclasses per class.
Sh=H/C

This measure describes the distribution of classes
across different levels of the ontology inheritance
tree, This measure can distinguish a shallow
entology from a deep ontolegy. A shallow entology is
an ontology that has a small number of inheritance
levels, and each class has a relatively large number of
subclasses. In contrast, a deep ontology contains a
large number of inheritance levels where classes
have a small number of subclasses
D on
An ontology with a low SD would be deep, which
indicates that the ontology covers a specific domain
in a detailed manner (e.g. ProPre0 [27]), while an
ontology with a high S0 would be a shallow (or
horizontal) ontology (e.g. TAP), which indicates that
the ontology represents a wide range of general
knowledge with a low level of detail.

it
subCiassO f Arioms

evidenceontology/

On this page, the visualization is presented in a different way. The development of the selected metrics over time is

s visualized in a line chart.

« By clicking on the dropdown menu the ontology file can be selected.

+ By clicking on the legend below the metric can be selected or deselected
* The chart can also be scrolled to the right to view all metrics

Vertical Chart - By double clicking the diagram can be enlarged

~
number of commits: 89
40000
o
e
o Size Reading Error Axioms Logical Axioms
Show me the
differences .
25000 o o “
910 13 3
912 1 3
15000
1019 16 4
10000 1134 19 s
5000 1244 2 6
1446 28 E
1445 2 8
- axioms < logcalAxioms
- - Chris Mungall cjm@berkeleybop org ‘Chris Mungall 1553 3 9
S OnioQA
com Marcus Chibucos noreply@github.com GitHub 1672 3 10
°F OrmeEtAl - > el
+ OrmeEtAl Average Fanout of Non|
+ OrmeEtAl Average Fanout per Clag show the analytic
+ OrmeEtAl Maximum Depth of Inhe

https://github,
Already Calculated © hepsdy

NEOntometrics. Impressum

Imprint

Figure 5 The NEOntometrics Frontend.

2:11

TGDK

2:12

NEOntometrics — Calculating Ontology Metrics

The GraphQL endpoint further provides documentation on the various available requests and
possible return values, thus enabling the guided development of new queries. The interface is
accessible through a browser on a GraphiQL interface or any other GraphQL client.

SPARQL, as a graph-based query language, has similar attributes to GraphQL regarding
relationship traversal and attribute selection. Additionally, proving a SPARQL endpoint would
further allow the integration of the metric calculations into existing knowledge bases. Unfortunately,
there is (currently) no support in the form of plugins for integrating such an endpoint into the
used django framework. This lack makes the creation of such an endpoint dissimilar costlier.

4 Bringing NEOntometrics Into Use

The following presents application scenarios for the NEOntometrics application. The first case
study shows the potential of analyzing ontology evolution. The second part presents possible
integration and adaptation scenarios for NEOntometrics.

4.1 Analyzing Ontology Evolution with NEOntometrics

Analyzing ontology metrics over time can tell a lot about underlying design decisions. The size of
the changes indicates if an ontology evolves gradually or has disruptive changes, thus measuring
stability and identifying the disruptive changes. They also allow us to assess how attributes like
the logical complexity (e.g., measures through the number of axioms that incorporate meaning),
the coverage (e.g., measured through the number of classes or individuals), or the shape of the
graph (e.g., measured through depth or breadth) change over time.

This case study analyzes the Evidence and Conclusion Ontology (ECO). ECO captures the
biological coherences like “gene product X has function Y as supported by evidence Z” [10].
The NEOntometrics authors have no affiliation with the authors of the ontology nor with the
biomedical field of research. Further, the goal of the section is not to evaluate quality but to
observe the development of the ontology over time to give an impression of possible assessments.
Previous work discussed the connection between metrics and development decisions from an
ontology engineering perspective [24, 36].

The ECO repository has 856 commits in 17 ontology files. For this analysis, we were interested
in the main ontologies in this repository. Thus, we only assessed the ontologies in the root
structure, resulting in three ontology files. eco.owl with 89 versions, eco-basic.owl with 44, and
eco-base.owl with 45 versions. We first examined the axiom count of the ontologies and then used
Tartir et al’s OntoQA framework [32, 31] for further analysis. The corresponding source files in
Jupyter Notebooks are available online!?.

The first analysis is concerned with the development of the ontology size. Figure 6 presents
the three ontology files in their different versions and plots the development of axioms with time.
While the solid line represents all axioms overall, the dashed line only accounts for such that
incorporate a logical meaning in RDFS or OWL syntax. The difference between the dashed and
the solid lines are, thus, annotations or custom-defined properties.

An insight of the chart in Figure 6 is the variances of the logical axioms and the axioms in
general. While the size of the ontology overall fluctuates intensely, the number of parts of the
ontology that incorporate logical meaning stays relatively stable. One significant spike occurred
between 2018 and 2019, which we will scrutinize further. Analysis reveals that a more extensive
restructuring of the ontology drives this increase in logical axioms. The classes in eco doubled

12 40i.org/10.5281/zenodo . 14047141

doi.org/10.5281/zenodo.14047141

A. Reiz and K. Sandkuhl

Ontology File Axiom Type
—— eco.owl —— Axioms
eco-base.owl! —=—=- Logical Axioms

—— eco-basic.owl

35000 A
30000 A
25000 A
20000 A
15000 +

Axioms

10000 A
5000 A

O -
2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
Commit Time

Figure 6 The change of axioms over time in the ECO-ontologies.

from around 900 to a little over 2,000, then increased to over 3,000. The number of defined object
properties jumps from three to above 50, and the relation on classes through object properties
increases from 350 to almost 2,500, then drops to around 1,600. This change event also marked
the introduction of eco-base and eco-basic.

Figure 7 shows the relationship richness and schema deepness defined in the OntoQA framework.
The former is defined as the number of non-inheritance relationships divided by the sum of non-
inheritance relationships and inheritance relationships, and the latter is the number of subclasses
per class [32].

Figure 7 (left) shows that, after an initial increase due to the rise in object properties, the
relationship richness of eco drops with the increase in classes and subClassOf statements. Also,
object properties were introduced. Later, a decline in object properties, combined with the further
increase in classes and subClassOf statements, partially reverses the growth.

The right diagram in Figure 7 provides more insights into the role of sub-class relationships.
At first, a lot more subClassOf relationships than classes were introduced. However, the number
of subClassOf relations later stagnated, even getting smaller. In contrast, the number of classes
increased steadily. This suggests that the rebound in the relationship richness is driven more by
the decline in object properties than the increase in subClassOf relationships. While the number
of logical axioms is more or less stable, the underlying logical attributes of the ontology that
constitute how the ontology is structured are still subjected to changes.

There are many more aspects that one could analyze for the given repository, and this section is
merely a short demonstration of the value of environmental metrics. As the last diagram indicates,
many more fluctuations are worth looking at. The variations affect the relationships between
non-hierarchical and hierarchical relationships, classes, and graph-related structures like the width
or depth, individuals, or data properties.

4.2 Adapting NEOntometrics by Adapting the Metric Ontology

A recent empirical analysis of 69 ontology evolution processes (based on NEOntometrics) has
shown that the developments are highly heterogeneous and that assumptions on stereotypical
development processes do not apply: There is no common rule or joint history that ontologies
share [28]. If the ontologies are highly diverse, so is the required evaluation. This diversity of
ontologies and their metrics emphasizes the careful selection of the latter. One person might

2:13

TGDK

2:14 NEOntometrics — Calculating Ontology Metrics

—— eco.owl eco-base.owl —— eco-basic.owl
Measure = OntoQA - Schema Deepness Measure = OntoQA - Relationship Richness
2.2 0.407
0.35 A
2.0 A
1.8
0.25 4
[
S 1.6
= 0.20 4
>
1.44 0.15 4
1.24 0.10 1
0.05 A
1.0
0.00 A
2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
Commit Time Commit Time

Figure 7 The development of OntoQA’s Relationship Richness and Schema Deepness.

build a taxonomy with rich human-readable annotations and other targets to infer knowledge
by modeling complex class relationships. A successfully applied metric by the first person might
not work for the second. While the Metric Explorer supports the selection process, a person
might develop their measure to intertwine two metrics in a way that has not been done before.
Organizations may want to select and reorder the metrics or limit the display to only relevant ones.
The following subsection explains how to adapt the application by altering the metric ontology.
While every ontology editor can be utilized for editing, this section builds on the open-source
software Protégé [16]. The metric ontology is stored in the GitHub repository!?

4.2.1 Restructuring the Ontology Metrics

The two classes Elemental _Metrics and Quality Frameworks are at the core of the metric calcu-
lation. The former represents the measurable ontology attributes and their implementation in
NEOntometrics, and should only be changed if there is a need to define additional measurable
ontology attributes. The Elemental Metrics subclasses are essential for the startup of the applica-
tion, and their alteration or deletion can lead to undesired behaviors. Thus, the individualization
effort should occur in the subclasses of the Quality Frameworks.

Reusing the existing metrics is possible by creating new, individual subclass structures for
dedicated purposes. After restart, the software reads the new structure and injects it into the
code. As an effect, the frontend displays the new categories, and the new subgroups can be quickly
selected, reducing the complexity for the metric consumer. The example of Figure 8 illustrates
custom-ordered metric categories in Protégé.

4.2.2 Creating New Ontology Metrics

The currently implemented quality frameworks based on the literature (cf. Table 4) already
provide various metrics covering many use cases. However, reusing the existing metrics might not
be sufficient depending on the individual challenges. In these cases, creating custom metric classes
can provide a possible solution.

13 https://raw.githubusercontent .com/achiminator/NEOntometrics/master/Git-Extension/rest/
metricOntology/OntologyMetrics.owl

https://raw.githubusercontent.com/achiminator/NEOntometrics/master/Git-Extension/rest/metricOntology/OntologyMetrics.owl
https://raw.githubusercontent.com/achiminator/NEOntometrics/master/Git-Extension/rest/metricOntology/OntologyMetrics.owl

A. Reiz and K. Sandkuhl

v ® owl:Thing v-= owl:topObjectProperty
v ® Quality_Frameworks v-m= calculatedBy
M JE nterprise_Metrics_A - -multiplication

CohesionMetrics_NoR -l .
ComplexityMetrics_Max_Path_Length directlyUsesMetric

OntoQA_Class_Utilization v-=division
» ® OQual_Measures_for_modularity = divisor
»-© Enterpise_Metrics_B = numerator

Figure 8 Screenshots Protégé: Left: Example of custom quality frameworks, Right: The formalized
mathematical relationships for connecting the subclasses of Quality Frameworks to Elemental Metrics.

The ontology provides formalized properties for the extension of the ontology. The annotation
properties MetricDefinition, MetricDescription, and MetricInterpretation fill the respective fields
in the Metric Explorer (cf. Figure 4) to help the metric consumer to select suitable measures.

The object properties facilitate the connection of the reused or self-created Quality_Frameworks
to the Elemental Metrics and are the backbone for setting up the calculation unit. The subclasses
of calculatedBy contain relations to describe the mathematical calculation operations of the
application (cf. Figure 8).

The relation directlyUsesMetric states that a metric from a quality framework directly accesses
an Elemental Metric, e.g., the OQual_Absolute_Depth metric is a subclass of directly UsesMetric
only Total Depth. Commutative operations like sum or multiplication are combined using the AND
operator, e.g., sum only (Subclasses _Of Thing and Super__Classes). Division and subtraction
have further subclass for linking the elements. The mathematical relationships can be nested to
create more complex queries.

As an example, the class with the name Average Paths_Per _Concept, having a relationship
SubClassOf (divisor only Classes) and (numerator only (sum only (Subclasses_Of _Thing and
Super_Classes))) is first connected to the names of the given implemented database fields,

represented by the connected individuals. Afterward, it is injected into NEOntometrics as:
rootClasses+superClasses
classes

5 Evaluation

While Section 4 focused on demonstrating the applicability of NEOnto, this section describes
how the systematic evaluation of NEOnto against the objectives motivating our research was
performed. As indicated in the introductory part of this paper, the development of NEOnto aimed
at (a) supporting understanding and selecting ontology metrics, (b) a public metric calculation
service that allows assessing ontologies from online resources, including calculation of evolutional
data, and (c) with a scalable and adaptable architecture. Section 5.1 introduces the evaluation
strategy applied, Section 5.2 summarizes the different evaluation episodes and their results, and
Section 5.3 presents an additional evaluation episode focusing on performance improvement.

5.1 Evaluation Strategy

The aims motivating the development of NEOntometrics express the importance of creating an
approach that is mature enough to be applied in the ontology engineering community without
substantial development efforts. Our assumption is that the more an approach has been evaluated

2:15

TGDK

2:16

NEOntometrics — Calculating Ontology Metrics

Table 5 Validation steps according to Lincoln and Guba.

Theory Practice
Internal, Validation against state of research, internal | Prototype implementation for check-
Dewvelop- consistency checks ing feasibility, test in lab environment

ment Team

Ezxternal, in | Peer-review of publications describing approach | Case studies with application part-
validation and concepts, comparison to known best prac- | ners using the artifacts for evalu-
context tices of the domain. ation purposes, Application of the
developed artifacts in cooperation /
under instruction from developers

External, in | Development of extensions or enhancements of | Use of the artifacts developed (e.g.
application the concepts and approaches by external actors | algorithms, methods, software com-
context Application of the artifacts for creation of new | ponents) for solutions
theoretical knowledge,
Comparison with related approaches

in theory and practice, the more mature and useful it is. Among the many scientific approaches
for evaluating research results, we base our evaluation strategy on the work of Lincoln and Guba
[12, p. 289 ff.] on “naturalistic inquiry”.

Lincoln and Guba distinguish between theoretical and practical validation. Theoretical
validation means assessing an approach within the theories of the domain to which the approach
is part or supposed to contribute. In the context of ontology metrics, this means assessing the
soundness, feasibility, and consistency within the body of knowledge, such as ontology engineering
and knowledge engineering. Practical validation encompasses all kinds of application of the
approach for evaluation purposes, which requires defined procedures and documenting results.
This could be simple lab examples illustrating the approach, controlled experiments in a lab
setting, applications in industrial cases, etc.

Furthermore, Lincoln and Guba also consider the context of validation and distinguish between
validation by the approach’s developers in their internal environment, validation by the developers
outside the internal environment, and validation by actors other than the developers. Combining
these two perspectives leads to a two-by-three matrix, as depicted in Table 5. The cells of this
table show typical ways of validation for the different combinations of the two perspectives.

Usually, validation starts on the “internal, development team” level with validation in theory
followed by validation in practice, and proceeds “downward” in the matrix with alternating theory
and practice validation to “external, in application context”. Thus, the highest validation status
would be reached if all cells in the matrix were covered.

As described above, Lincoln and Guba focus on validating research results, i.e., to check whether
or not a certain result from research is appropriate for its purpose. In our case, the purpose of
NEOntometrics is defined by the objectives (see introduction to this section 5). Validation and
evaluation, even though different from each other, are very much linked. Evaluation is the process
of assessing (and often computing) key characteristics of the research results, which can be used
for validation purposes. As many of the NEOntometrics objectives require measurements instead
of only checking characteristics, we use the term evaluation episodes in the next section.

5.2 Evaluation Episodes

Table 6 shows the performed validation episodes following Lincoln and Guba’s naturalistic inquiry
framework. This section aims to summarize the intention and results of the different episodes.
To emphasize the importance of the usefulness and applicability of the tool for the ontology

A. Reiz and K. Sandkuhl

engineering community, we put a focus on external validation. Many external validation episodes
were published in peer-reviewed publications, and peer-reviewing was also used as an instrument
for external validation. In total, six publications contribute to the evaluation steps.

Internal, Development Team. Internally, we first validated that the results of the newly designed
measures are consistent with the ones from the old application. This shall ensure continuity for
analyses regardless of the used calculation backend. Further, the shortcomings of the predecessor
OntoMetrics motivated the creation of the NEOntometrics tool. The technical shortcomings of
the predecessor are described in section 3 and originated from a practical application with an
industry partner, resulting in the feature list of Table 3. Regarding the practical evaluation, we
tested the performance of the reworked measures. The results are shown in 5.3.

External, in Validation Context. Two papers are part of the external validation context: The
homogenization of ontology metrics in the metric ontology [26] and an early validation of the
usefulness of analyzing evolutional ontology metrics [24].

The metric ontology (cf. Figure 1) was presented at the Conference on Knowledge Engineering
and Ontology Design [26]. While many frameworks have been published over the years (cf. Section
2.1), no common language exists for naming measured elements. That led to similar metrics
included in different frameworks, which is only apparent after close examination. The metric
ontology homogenizes the various notions into one machine-readable notation that serves as the
backbone of the NEOntometrics application and is served through the Metric Explorer.

A practical validation of the usefulness of analyzing evolutional ontology metrics was performed
before the development of the NEOntometrics tooling and presented at the Business Informatics
Research Conference [24]. This paper showed the potential of analyzing changes in ontology
metrics over time by giving an abstract yet objective account of how development decisions
influenced the ontology structure. Also, several obsolete axioms and areas that had not been
developed further were identified.

External, in Application Context. For the theoretical validation context, NEOntometrics was
extended with a visualization capability [29]. In a practical setting, the tool examined various
ontology versions to identify stereotypical development behavior [28], investigated and invalidated
the broad quality claims made by the OQuaRE framework [27], and analyzed semantic media
wikis [5].

One theoretical validation in the application context was performed as part of the Voila
Workshop for ontology visualization [29]. Here, we described how newly added visualization
features can be used to compare various ontologies in a repository, analyze the evolution of one
ontology throughout its lifetime, and a feature to compare the changes between the two most
recent versions.

For the practical validation, we looked out for active use of the tool in research papers. First,
the tool scrutinized stereotypical development behavior in dormant ontologies, published as part
of the invited extended conference papers on Knowledge Engineering and Ontology Development
(KEOD) 2022 [28]. Using public git repositories, 7,053 ontology versions of 69 ontologies showed
the heterogeneous development of ontologies throughout their lifetime. We could invalidate many
commonly held assumptions with the numerical assessments, like “ontologies tend to get larger
over their lifetime” or “ontologies get more complex with increasing maturity”.

The next analysis concerned the quality statements of the often-cited OQuaRE framework; this
analysis was published as an extended version of the contribution of the International Conference
on Information Systems (ICEIS) 2022 [27]. OQuaRE not only recommends ontology measures but

2:17

TGDK

2:18

NEOntometrics — Calculating Ontology Metrics

Table 6 Evaluation Steps according to Lincoln and Guba’s Naturalistic Inquiry Framework.

Theory Practice
Internal, De- | Internal Checks for consistent Measurement of | Test of calculation performance (cf.
velopment the old and new metric calculation engine. Section 5.3).
Team Feature requirements out of the predecessors’

shortcomings. (cf. Section 3.1)

External, in | Metric Ontology containing the implemented | Case-Study on the value of evolu-
validation ontology metrics [26]. tional metric analysis [24].
context

External, in | Extending the software with metric Visualiza- | Analysis on stereotypical ontology
application tion Capabilities [29]. evolutional processes [28].

context An empiric examination of the
OQuaRE quality claims [27].
Evaluating Semantic Media Wikis [5].

also desirable value ranges for the given measurements. However, while integrating the ontology
metrics in the NEOntometrics metric ontology, we identified several inconsistencies in their metric
proposal, leading to a homogenization effort of the various measures. Further examination based
on the data collected with NEOntometrics on the validity of the made quality statements through
the analysis of 4,094 ontologies found that the framework’s quality statements likely do not reflect
the actual performance of the modeled artifacts.

Finally, the calculation software was used by Dobriy et al. [5] in an analysis of semantic media
wikis, presented at the Extended Semantic Web Conference (ESWC) 2024. The authors analyzed
a corpus of 1,029 datasets containing wikis for various use cases. The authors found significant
deviations between the structures of the semantic media wikis and the linked open data cloud,
especially regarding the use of RDFS and OWL semantics.

5.3 Evaluation of Computational Performance

Besides the additional functionality powered by the microservice architecture of NEOntometrics,
the calculation engine has also been reworked to improve performance and resource consumption.
The following evaluation compares the old OntoMetrics [25] with the performance of the reworked
metric calculation (cf. Figure 3). The old Ontometrics engine calculates 72 measurements, 16
of these measurements are ratio-based metrics. The new calculation engine only measures the
underlying atomic measures, 83 in total.

For the test, we run both calculation services in dockerized environments on the same machine
(Lenovo z13 G2, 64GB Ram, AMD Ryzon Pro 7840U). We run a calculation of three different
ontologies: The puppet-Disco inferred ontology'*, the larger human disease (DOID) ontology
with 24MB'®, and the ECO ontology of Section 4.1 with 7.2MB!6. Ten times, we send the puppet
ontology, then human disease, and finally, the ECO ontology to the new calculation service and
then the old one. We measured the response time and queried the docker stats to analyze memory
footage. The jupyter notebook used for analysis is available online'?. The first analysis presented
in Figure 9 displays the average calculation times for each of the ontologies. The small Puppet
Ontology is sped up 35 times in its analysis, while the human disease ontology calculates 6.5 times
faster, and ECO 29 times faster.

M https://raw.githubusercontent .com/kbarber/puppet-ontologies/master/puppet-disco/inferred.owl

S https://raw.githubusercontent.com/DiseaseOntology/HumanDiseaseOntology/main/src/ontology/
doid.owl

nttps://raw.githubusercontent .com/evidenceontology/evidenceontology/master/eco. owl

https://raw.githubusercontent.com/kbarber/puppet-ontologies/master/puppet-disco/inferred.owl
https://raw.githubusercontent.com/DiseaseOntology/HumanDiseaseOntology/main/src/ontology/doid.owl
https://raw.githubusercontent.com/DiseaseOntology/HumanDiseaseOntology/main/src/ontology/doid.owl
https://raw.githubusercontent.com/evidenceontology/evidenceontology/master/eco.owl

A. Reiz and K. Sandkuhl

Calculation Engine
I NEOntometrics
EE Ontometrics

Response time (s)
N
o

o B
X 2 O
QQQ & <&
& Oe’%
Qo
@
&
Ontology

Figure 9 The average calculation time of the old and new calculation service.

60001 calculation Engine

[NEOntometrics
5000 1 EEE Ontometrics

Memory Usage in MB
N w B
o o o
o o o
o o o
! \ \

1000 A

1 2 3 4 5 6 7 8 9 10
Run-Nr.

Figure 10 The memory consumption of the old and new microservices throughout the runs.

The second analysis in Figure 10 measures the engine’s memory consumption by extracting
the docker statistics after each run. Here, the rework of the calculation engine cut the required
memory of the analysis to a fifth.

6 Conclusion

Ontologies are in use in various applications, facilitating meaning between human and computa-
tional actors and enabling these actors to harness the full potential of structured knowledge. The
rising number of developed ontologies emphasizes the need for practical evaluations.

The research community has identified this need for quite some time. Many ontology metric
frameworks have been proposed that assess a variety of ontology attributes. However, implement-
ations of these frameworks have been scarce. The missing software hinders the research progress:
While the definition of measurements is important, it is then crucial to put these metrics into use
to perform further evaluations.

The application proposed in this paper aims at closing this gap. We presented NEOntometrics,
an open-source software to calculate ontology metrics. The application integrates several metric
frameworks and is easily extensible. It is possible to analyze the development of metrics over time

2:19

TGDK

2:20

NEOntometrics — Calculating Ontology Metrics

by analyzing GIT-based ontology repositories. Further, the user can inform themselves of available
calculations and possible implications using an interactive Metric Explorer. The ontology metrics
can be calculated and retrieved either using a graphical user interface or a GraphQL-API. While
the former is targeted at knowledge engineers, the latter shall allow developers of semantic-based
applications to integrate metrics into their software.

In a case study, we briefly presented possible applications. The evaluation further shows that
the software works with large ontologies on an average machine and demonstrates how it has
already enabled research on ontology evolution and existing metric frameworks.

The software still has limitations, which motivates further work. One active task is adding
more potential metric sources, like private repositories or enabling the manual upload of new
graph versions. Further, we aim to add metrics on the specific elements within an ontology, like
class-specific and relation-specific measurements. The OntoQA framework by Tartir et al. [32, 31]
has some element-specific measures that are a potential starting point. Finally, since most of
the frameworks were proposed over 10 years ago, the semantic web community moved forward
quite considerably in terms of new vocabularies: The Shape Constraint Language (SHACL) was
proposed and is increasingly adopted, and there is a growing need to create evaluations to the
constraint specifics of the language.

Our perception is that quantitative ontology research offers much potential for future research,
which benefits from continuous interaction in the community. In this context, we are interested in
the aspects the community would like to see implemented in our tool and ask for participation!”.

Further research will be concerned with analyzing the metric data itself. There are many more
aspects worth looking at regarding empirical ontology development studies, like comparing typical
development processes in different fields (e.g., industrial vs. biomedical ontologies), the usefulness
of the proposed frameworks, and the modeling preferences of different persons, to name a few. In
the long term, we hope that NEOntometrics impacts the use and research of ontology metrics and
that it can help us empirically understand ontology modeling better.

— References

1 Muhammad Amith, Frank Manion, Chen Liang,
Marcelline Harris, Dennis Wang, Yongqun He,
and Cui Tao. OntoKeeper: Semiotic-driven On-
tology Evaluation Tool For Biomedical Ontolo-
gists. Journal of biomedical semantics, 8(1), 2017.
doi:10.1109/BIBM.2018.8621458.

5 Daniil Dobriy, Martin Beno, and Axel Polleres.
Smw Cloud: A Corpus of Domain-Specific Know-
ledge Graphs from Semantic MediaWikis. In The
Semantic Web - 21st International Conference,
ESWC 2024, Hersonissos, Crete, Greece, May
26-30, 2024, Proceedings, Part II, pages 145—161,

2 Andrew Burton-Jones, Veda C. Storey, Vijayan 2024. doi:10.1007/978-3-031-60635-9_9.

Sugumaran, and Punit Ahluwalia. A semiotic
metrics suite for assessing the quality of ontolo-
gies. Data & Knowledge Engineering, 55(1):84-102,
2005. doi:10.1016/j.datak.2004.11.010.

3 Valerie Cross and Anindita Pal. Ontocat: An onto-

6 Astrid Duque-Ramos, J. T. Ferndndez-Breis,
R. Stevens, and Nathalie Aussenac-Gilles.
OQuaRE: A SQuaRE-based Approach for Evaluat-
ing the Quality of Ontologies. Journal of Research
and Practice in Information Technology, 43(2):159—

logy consumer analysis tool and its use on product
services categorization standards. In Proceedings
of the First International Workshop on Applica-
tions and Business Aspects of the Semantic Web,
2006.

Renata Dividino, Massimo Romanelli, and Daniel
Sonntag. Semiotic-based ontology evaluation tool
S-OntoEval. In Proceedings of the International
Conference on Language Resources and Evalu-
ation, 2008.

176, 2011. URL: http://ws.acs.org.au/jrpit/
JRPITVolumes/JRPIT43/JRPIT43.2.159.pdf.

Miriam Fernandez, Chwhynny Overbeeke, Marta
Sabou, and Enrico Motta. What Makes a Good
Ontology? a Case-Study in Fine-Grained Know-
ledge Reuse. In The semantic web - Fourth
Asian Conference, ASWC 2009, Shanghai, China,
December 6-9, 2008. Proceedings, volume 5926
of Lecture motes in computer science, pages

17 Contributors or users are asked to create an issue in the GitHub repository to start a discussion on a new
feature or potential bug: https://github.com/achiminator/NEOntometrics/issues

https://doi.org/10.1109/BIBM.2018.8621458
https://doi.org/10.1016/j.datak.2004.11.010
https://doi.org/10.1007/978-3-031-60635-9_9
http://ws.acs.org.au/jrpit/JRPITVolumes/JRPIT43/JRPIT43.2.159.pdf
http://ws.acs.org.au/jrpit/JRPITVolumes/JRPIT43/JRPIT43.2.159.pdf
https://github.com/achiminator/NEOntometrics/issues

A. Reiz and K. Sandkuhl

10

11

12

13

14

15

16

17

18

19

20

61-75, Berlin, 2009. Springer. doi:10.1007/
978-3-642-10871-6_5.

Aldo Gangemi, Carola Catenacci, Massimiliano
Ciaramita, and Jos Lehmann. Modelling Ontology
Evaluation and Validation. In The semantic web:
research and applications, volume 4011 of Lecture
notes in computer science, pages 140—154, Berlin,
2006. Springer. doi:10.1007/11762256_13.

Aldo Gangemi, Carola Catenacci, Massimiliano
Ciaramita, Jos Lehmann, Rosa Gil, Francesco Bol-
ici, and Strignano Onofrio. Ontology evaluation
and validation: An integrated formal model for
the quality diagnostic task, 2005.

Michelle Giglio, Rebecca Tauber, Suvarna
Nadendla, James Munro, Dustin Olley, Shoshan-
nah Ball, Elvira Mitraka, Lynn M. Schriml, Pas-
cale Gaudet, Elizabeth T. Hobbs, Ivan Erill, De-
borah A. Siegele, James C. Hu, Chris Mungall,
and Marcus C. Chibucos. ECO, the Evidence
& Conclusion Ontology: community standard for
evidence information. Nucleic Acids Research,
47(D1):D1186-D1194, 2019. doi:10.1093/nar/
gky1036.

Birger Lantow. OntoMetrics: Putting Metrics into
Use for Ontology Evaluation. In Proceedings of the
8th IC3K 2016 International Joint Conference on
Knowledge Discovery, Knowledge Engineering and
Knowledge Management (KEOD), pages 186-191,
2016. doi:10.5220/0006084601860191.

Yvonna Lincoln and Egon Guba. Naturalistic In-
quiry. SAGE Publications, Inc, 1985.

Adolfo Lozano-Tello and Asuncién Gémez-Pérez.
ONTOMETRIC: A Method to Choose the Appro-
priate Ontology. Journal of Database Management,
15(2):1-18, 2004. doi:10.4018/jdm.2004040101.
Yinglong Ma, Beihong Jin, and Yulin Feng. Se-
mantic oriented ontology cohesion metrics for
ontology-based systems. Journal of Systems and
Software, 83(1):143-152, 2010. doi:10.1016/j.
jss.2009.07.047.

C.J.H. Mann. Ontologies: A Silver Bullet for
Knowledge Management and Electronic Commerce.
Kybernetes, 33(7), 2004. doi:10.1108/k.2004.
06733gae.001.

Mark A. Musen. The Protégé Project: A Look
Back and a Look Forward. AI matters, 1(4):4-12,
2015. doi:10.1145/2757001.2757003.

Anthony Mark Orme, Haining Yao, and Letha H.
Etzkorn. Indicating Ontology Data Quality, Stabil-
ity, and Completeness Throughout Ontology Evol-
ution. Journal of Software Maintenance and Evol-
ution, 19(1):49-75, 2007. doi:10.1002/smr.341.
Maria Poveda-Villalon, Asunciéon Gémez-Pérez,
and Mari Carmen Sudrez-Figueroa. OOPS! (OntO-
logy Pitfall Scanner!). Semantic Web and Inform-
ation Systems, 10(2):7-34, 2014. doi:10.4018/
ijswis.2014040102.

Qing Lu and Volker Haarslev. OntoKBEval: A
Support Tool for DL-based Evaluation of OWL
Ontologies. In OWLED - OWL: Experiences and
Directions, 2006.

Joe Raad and Christophe Cruz. A Survey on On-
tology Evaluation Methods. In Proceedings of the
7th International Joint Conference on Knowledge
Discovery, Knowledge Engineering and Knowledge

21

22

23

24

25

26

27

28

29

Management, pages 179-186, Setubal, 2015. SciTe-
Press. doi:10.5220/0005591001790186.

Achim Reiz. neontometrics. Software, swhld:
swh:1:dir:a0a2d612a4de911f171dadcefb66dcclc
5b42bd9 (visited on 2024-12-09). URL: https:
//github.com/achiminator/neontometrics, doi:
10.4230/artifacts.22597.

Achim Reiz, Henrik Dibowski, Kurt Sandkuhl,
and Birger Lantow. Ontology Metrics as a Ser-
vice (OMaaS). In Proceedings of the 12th Inter-
national Joint Conference on Knowledge Discov-
ery, Knowledge Engineering and Knowledge Man-
agement, pages 250-257, 02.11.2020 - 04.11.2020.
doi:10.5220/0010144002500257.

Achim Reiz and Kurt Sandkuhl. neontometrics
online calculation. InteractiveResource (visited
on 2024-12-09). URL: http://neontometrics. com,
doi:10.4230/artifacts.22599.

Achim Reiz and Kurt Sandkuhl. Design Decisions
and Their Implications: An Ontology Quality Per-
spective. In Perspectives in Business Informatics
Research, volume 398 of Lecture Notes in Business
Information Processing (LNBIP), pages 111-127,
Vienna, 2020. doi:10.1007/978-3-030-61140-8_
8.

Achim Reiz and Kurt Sandkuhl. NEOntomet-
rics: A Flexible and Scalable Software for Calcu-
lating Ontology Metrics. In Proceedings of Poster
and Demo Track and Workshop Track of the 18th
International Conference on Semantic Systems
co-located with 18th International Conference on
Semantic Systems (SEMANTiCS 2022), Vienna,
2022. CEUR-WS.

Achim Reiz and Kurt Sandkuhl. An Ontology
for Ontology Metrics: Creating a Shared Under-
standing of Measurable Attributes for Humans
and Machines. In Proceedings of the 14th In-
ternational Joint Conference on Knowledge Dis-
covery, Knowledge Engineering and Knowledge
Management, pages 193-199. SCITEPRESS - Sci-
ence and Technology Publications, 2022. doi:
10.5220/0011551500003335.

Achim Reiz and Kurt Sandkuhl. A Critical View
on the OQuaRE Ontology Quality Framework. In
Enterprise Information Systems, volume 487 of
Lecture Notes in Business Information Processing,
pages 273—-291. Springer Nature Switzerland,
Cham, 2023. doi:10.1007/978-3-031-39386-0_
13.

Achim Reiz and Kurt Sandkuhl. Evolution of Com-
putational Ontologies: Assessing Development Pro-
cesses Using Metrics. In Knowledge Discovery,
Knowledge Engineering and Knowledge Manage-
ment - 14th International Joint Conference, IC3K
2022, Valletta, Malta, October 24—26, 2022, Re-
vised Selected Papers, volume 1842 of Communica-
tions in Computer and Information Science, pages
217-238. Springer Nature Switzerland, Cham,
2023. doi:10.1007/978-3-031-43471-6_10.
Achim Reiz and Kurt Sandkuhl. Visualizing Onto-
logy Metrics In The NEOntometrics Application.
In Proceedings of the 8th International Workshop
on the Visualization and Interaction for Onto-
logies, Linked Data and Knowledge Graphs co-
located with the 22nd International Semantic Web
Conference (ISWC 2028), 2023.

2:21

TGDK

https://doi.org/10.1007/978-3-642-10871-6_5
https://doi.org/10.1007/978-3-642-10871-6_5
https://doi.org/10.1007/11762256_13
https://doi.org/10.1093/nar/gky1036
https://doi.org/10.1093/nar/gky1036
https://doi.org/10.5220/0006084601860191
https://doi.org/10.4018/jdm.2004040101
https://doi.org/10.1016/j.jss.2009.07.047
https://doi.org/10.1016/j.jss.2009.07.047
https://doi.org/10.1108/k.2004.06733gae.001
https://doi.org/10.1108/k.2004.06733gae.001
https://doi.org/10.1145/2757001.2757003
https://doi.org/10.1002/smr.341
https://doi.org/10.4018/ijswis.2014040102
https://doi.org/10.4018/ijswis.2014040102
https://doi.org/10.5220/0005591001790186
https://archive.softwareheritage.org/swh:1:dir:a0a2d612a4de911f171dadcefb66dcc1c5b42bd9;origin=https://github.com/achiminator/neontometrics;visit=swh:1:snp:bef1a3e62d2cda8af8a28c03e945a5d7ea2d6826;anchor=swh:1:rev:fa616530952d419943a480719c407761ae1cc734
https://archive.softwareheritage.org/swh:1:dir:a0a2d612a4de911f171dadcefb66dcc1c5b42bd9;origin=https://github.com/achiminator/neontometrics;visit=swh:1:snp:bef1a3e62d2cda8af8a28c03e945a5d7ea2d6826;anchor=swh:1:rev:fa616530952d419943a480719c407761ae1cc734
https://github.com/achiminator/neontometrics
https://github.com/achiminator/neontometrics
https://doi.org/10.4230/artifacts.22597
https://doi.org/10.4230/artifacts.22597
https://doi.org/10.5220/0010144002500257
http://neontometrics.com
https://doi.org/10.4230/artifacts.22599
https://doi.org/10.1007/978-3-030-61140-8_8
https://doi.org/10.1007/978-3-030-61140-8_8
https://doi.org/10.5220/0011551500003335
https://doi.org/10.5220/0011551500003335
https://doi.org/10.1007/978-3-031-39386-0_13
https://doi.org/10.1007/978-3-031-39386-0_13
https://doi.org/10.1007/978-3-031-43471-6_10

2:22

NEOntometrics — Calculating Ontology Metrics

30

31

32

33

34

Achim Reiz and Kurt Sandkuhl. neontometrics
TGDK dataset, November 2024. doi:10.5281/
zenodo.14047141.

Samir Tartir and I. Budak Arpinar. Ontology Eval-
uation and Ranking using OntoQA. In Interna-
tional Conference on Semantic Computing, 2007,
pages 185-192, Los Alamitos, Calif., 2007. IEEE
Computer Society. doi:10.1109/ICSC.2007.19.
Samir Tartir, I. Budak Arpinar, Michael Moore,
Amit P. Sheth, and Boanerges Aleman-Meza. On-
toqa: Metric-Based Ontology Quality Analysis. In
IEEE Workshop on Knowledge Acquisition from
Distributed, Autonomous, Semantically Heterogen-
eous Data and Knowledge Sources, 2005.
Pierre-Yves Vandenbussche, Ghislain A. Atemez-
ing, Maria Poveda-Villalén, and Bernard Vatant.
Linked Open Vocabularies (LOV): A gateway to re-
usable semantic vocabularies on the web. Semantic
web, 8(3):437-452, 2016. doi:10.3233/SW-160213.
Patricia L. Whetzel, Natasha Noy, Nigam Haresh
Shah, Paul R. Alexander, Csongor Nyulas, Tania

35

36

37

Tudorache, and Mark A. Musen. BioPortal: en-
hanced functionality via new web services from
the National Center for Biomedical Ontology to
access and use ontologies in software applica-
tions. Nucleic Acids Research, 39, 2011. doi:
10.1093/nar/gkr469.

Haining Yao, Anthony Mark Orme, and Letha Et-
zkorn. Cohesion Metrics for Ontology Design and
Application. Journal of Computer Science, 1(1),
2005. doi:10.3844/jcssp.2005.107.113.
Jonathan Yu, James A. Thom, and Audrey Tam.
Requirements-oriented methodology for evaluating
ontologies. Information Systems, 34(8):766-791,
2009. doi:10.1016/j.is.2009.04.002.

Dalu Zhang, Chuan Ye, and Zhe Yang. An Evalu-
ation Method for Ontology Complexity Analysis in
Ontology Evolution. In Managing knowledge in a
world of networks - 15th International Conference,
EKAW 2006, Podebrady, Czech Republic, Octo-
ber 6-10, 2006, Proceedings, volume 4248, 2006.
doi:10.1007/11891451_20.

https://doi.org/10.5281/zenodo.14047141
https://doi.org/10.5281/zenodo.14047141
https://doi.org/10.1109/ICSC.2007.19
https://doi.org/10.3233/SW-160213
https://doi.org/10.1093/nar/gkr469
https://doi.org/10.1093/nar/gkr469
https://doi.org/10.3844/jcssp.2005.107.113
https://doi.org/10.1016/j.is.2009.04.002
https://doi.org/10.1007/11891451_20

	1 Introduction
	2 Related Work
	2.1 Related Quality Frameworks
	2.2 Related Metric Calculation Software
	2.3 The Need for Another Calculation Tool

	3 NEOntometrics
	3.1 The Architecture of the Metric Calculation
	3.2 The Architecture Of The Application
	3.3 The Metric Explorer
	3.4 A Frontend for Humans and an Interface for Machines

	4 Bringing NEOntometrics Into Use
	4.1 Analyzing Ontology Evolution with NEOntometrics
	4.2 Adapting NEOntometrics by Adapting the Metric Ontology
	4.2.1 Restructuring the Ontology Metrics
	4.2.2 Creating New Ontology Metrics

	5 Evaluation
	5.1 Evaluation Strategy
	5.2 Evaluation Episodes
	5.3 Evaluation of Computational Performance

	6 Conclusion

