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Abstract
Reasonable Ontology Templates (OTTR) is a tem-
plating language for representing and instantiating
patterns. It is based on simple and generic, but
powerful, mechanisms such as recursive macro ex-
pansion, term substitution and type systems, and is
designed particularly for building and maintaining
RDF knowledge graphs and OWL ontologies.

In this resource paper, we present the formal
specifications that define the OTTR framework.
This includes the fundamentals of the OTTR lan-
guage and the adaptions to make it fit with stand-
ard semantic web languages, and two serialization
formats developed for semantic web practitioners.

We also present the OTTR framework’s support for
documenting, publishing and managing template
libraries, and for tools for practical bulk instanti-
ation of templates from tabular data and query-
able data sources. The functionality of the OTTR
framework is available for use through Lutra, an
open-source reference implementation, and other in-
dependent implementations. We report on the use
and impact of OTTR by presenting selected indus-
trial use cases. Finally, we reflect on some design
considerations of the language and framework and
present ideas for future work.
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5:2 The Reasonable Ontology Templates Framework

1 Introduction

Abstraction is a fundamental concept in computer science, particularly in software engineering
and information modelling. In these disciplines, abstraction entails identifying and describing
the relevant entities and structures for the problem at hand at a suitable level of detail. Done
correctly, abstraction helps to hide unnecessary detail and presents the essence of the content
that is described to the effect that the content is clearly conveyed and easily understood, and can
hence be more efficiently processed by operations acting on the representation.

Figure 1 displays a simplified comparison of different abstraction levels with two code snippets
that both write “Hello world!” to screen. The first snippet is written in x86 Linux assembly
language1 and the second is written in the high-level programming language Python. There is a
striking difference between the two snippets: the Python code is succinct, easy to read and write
and understand, while the assembly code is far more verbose as it must orchestrate a series of
low-level resources and steps, such as memory locations and sizes, file descriptors and interrupt
handlers, in order to solve the task at hand.2 For most users, the high level of abstraction provided
by the Python snippet is appropriate when all one wants is to write messages to screen – all other
details are hidden. This code is safe and robust for this use case; its succinctness makes it difficult
to use the code in the wrong way. The assembly code is arguably incomprehensible for most users
and appears inefficient to use and manage if the task is just to write messages to screen. However,
for some expert users or use cases the level of detail and control offered by assembly languages to
interact more directly with hardware is exactly what is needed.

Most modern programming languages, like Python, offer mechanisms for different kinds of
user-defined abstractions, such as functions, classes, interfaces, and modules, and it is common
to package and distribute a set of such abstractions in an application programming interface
(API). A well-designed API offers a suitable abstraction level using terminology that is familiar
and natural for its intended users and hides the details of underlying lower-level APIs or systems.
Understanding, managing and designing APIs is a central part of modern software engineering.

The Resource Description Framework (RDF) [27] and the Web Ontology Language (OWL) [40]
are the standard languages for representing knowledge graphs and ontologies. A challenge for the
wider adoption of semantic web languages, and ontology languages in particular, is its inherent
complexity, a steep learning curve and the lack of developer-, and end user-friendly ways to interact
with their artefacts. Thus, interfaces and simplifications for eliciting the content of ontologies
are identified as opportunities for future research [56]. In this regard, it is worth noting that
these languages offer very limited options for user-defined abstractions and provide no means to
represent modelling patterns or templates that can be instantiated in a precise and deterministic
manner, and that can hide details that appear unnecessary and complex to users.

As a case in point, consider the Protégé Pizza Ontology Tutorial3 which models the domain of
pizzas for the purpose of demonstrating and teaching features of OWL and Protégé [37]. This
OWL ontology contains 22 types of pizza that are modelled following the same pattern; the
description logic axioms that represent the Margherita pizza are listed in Figure 2 (the numbers
that follow in parentheses refer to axioms in the figure): every pizza is represented as a subclass of
NamedPizza (1), some pizzas have a country of origin (2), and toppings are expressed by stating
that they are both required (3, 4) and permissible (5) for the pizza. Figure 2 also contains two
different standard serialization formats for OWL: Manchester syntax [17] and RDF Turtle [41, 2].

1 The code snippet is taken from https://gist.github.com/pablocorbalann/f9d39a80e30b8d8230a9760048
d0e575.

2 The interested reader can find more information about the assembly code in the following article:
https://pablocorbalann.medium.com/.

3 http://protege.stanford.edu/ontologies/pizza/pizza.owl

https://gist.github.com/pablocorbalann/f9d39a80e30b8d8230a9760048d0e575
https://gist.github.com/pablocorbalann/f9d39a80e30b8d8230a9760048d0e575
https://pablocorbalann.medium.com/programming-a-hello-world-in-assembly-from-the-first-line-to-the-end-x86-9c48fb499238
http://protege.stanford.edu/ontologies/pizza/pizza.owl
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x86 Linux assembly language:

section .text ; declare the .text section
global _start ; has to be declared for the linker (ld)
_start: ; entry point for _start

mov edx, len ; "invoke" the len of the message
mov ecx, msg ; "invoke" the message itself

mov ebx, 1 ; set the file descriptor (fd) to stdout

mov eax, 4 ; system call for "write"
int 0x80 ; call the kernel

mov eax, 1 ; system call for "exit"
int 0x80 ; call the kernel

section .data ; here you declare the data
msg db "Hello world!" ; the actual message to use
len equ $ -msg ; get the size of the message

Python:

print("Hello world!")

Figure 1 “Hello world!” printed to screen in x86 Linux assembly language, and in Python.

The Manchester syntax lies close to the description logics representation, while the RDF Turtle
serialization is more verbose as all statements are on the form of triples, and must use blank nodes
and resources such as owl:Restriction in order to represent the same information.

The case demonstrates two points: The first point is that RDF and OWL, the standard
knowledge representation languages for the web, appear as expert languages that operate on a
too low level of abstraction for the task of representing ordinary compound modelling patterns,
such as pizzas, in a succinct and readable manner. The representations arguably expose too many
details in the form of logical constructs and language peculiarities in order to be easy to read and
understand for non-experts. The second point is that the lack of abstraction mechanisms for RDF
and OWL forces all statements to be on the form of RDF triples and OWL axioms and limited
to the constructs defined by these standards, such as some/owl:someValuesFrom. This makes
the representations repetitive and verbose. In the code samples this is shown with the repetition
of the existentially quantified axiom and the fact that, e.g., a “macro” symbol [58] that allows
to express the required and permissible pizza toppings in a single statement is not possible to
declare. For the full Pizza Ontology, repetition is also visible with the 22 pizzas using the same
pizza modelling patterns by replicating all the axiom schemata. As a result, the representation of
only the pizzas, according to the pattern in Figure 2, comprises in total 198 OWL axioms and
1106 RDF triples.

The overall effect is that the current standard representation formats for knowledge graphs and
ontology will often appear too far removed from most users’ understanding and conceptualization
of the domain, and is therefore difficult to understand and use. Also, the fact that there is no
explicit representation of a pattern and its instances makes it difficult to identify that any pattern is
followed, which again makes it difficult to ensure consistent modelling. Furthermore, it complicates
consistent and efficient updates of the pattern instances as they are spread across multiple sets
of OWL axioms or RDF triples. The lack of established representation for consistently reusable

TGDK
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Description Logic:

Margherita ⊑ NamedPizza (1)
Margherita ⊑ ∃ hasCountryOfOrigin.{Italy} (2)
Margherita ⊑ ∃ hasTopping.Mozzarella (3)
Margherita ⊑ ∃ hasTopping.Tomato (4)
Margherita ⊑ ∀ hasTopping.(Mozzarella ⊔ Tomato) (5)

Manchester OWL:

Class: Margherita
SubClassOf:

NamedPizza,
hasCountryOfOrigin some { Italy },
hasTopping some Mozzarella,
hasTopping some Tomato,
hasTopping only (Mozzarella or Tomato)

RDF Turtle:

ex:Margherita
rdfs:subClassOf p:NamedPizza ,

[ a owl:Restriction ;
owl:onProperty p:hasCountryOfOrigin ;
owl:hasValue ex:Italy ] ,

[ a owl:Restriction ;
owl:onProperty p:hasTopping ;
owl:allValuesFrom [ a owl:Class ;

owl:unionOf ( ex:Mozzarella ex:Tomato ) ] ] ,
[ a owl:Restriction ;

owl:onProperty p:hasTopping ;
owl:someValuesFrom ex:Tomato ] ,

[ a owl:Restriction ;
owl:onProperty p:hasTopping ;
owl:someValuesFrom ex:Mozzarella ] .

Figure 2 Margherita pizza represented as description logic axioms, in OWL Manchester syntax, and in
RDF Turtle.

modelling patterns is also evident in today’s documentation of vocabularies and ontologies and
ontology design patterns [11, 4]. Here, current practice is usually limited to at most textual
descriptions, illustrative and informal diagrams, and samples of OWL files that describe and
illustrate how to use the resource. These offer little tangible practical help in building knowledge
graphs and ontologies at scale. Following best practice descriptions requires considerable manual
effort and the result is prone to errors due to the tolerant nature of RDF and RDFS vocabularies
unless some constraint language like SHACL [28] is used.

The Reasonable Ontology Templates (OTTR) framework [50, 51, 52] is created to fill these
gaps. OTTR is a macro-like [58] templating mechanism with which modelling patterns can be
represented and instantiated by nested and parameterized templates. Using the OTTR framework,
the pizza pattern used in Figure 2 can be represented by an OTTR Template o-p:NamedPizza
(presented in detail in Section 2), and instances of the template can be used to express replicas of
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o-p:NamedPizza(ex:Margherita, ex:Italy, (ex:Mozzarella, ex:Tomato)) .

Figure 3 Margherita pizza represented as an OTTR template instance.

the pattern; the Margherita pizza in Figure 2 can be represented succinctly and precisely with
the OTTR template instance found in Figure 3 that specifies the arguments to parameterized
template. Templates can be documented and shared as template libraries targeted for different
users at different abstraction levels, and be efficiently instantiated using the OTTR framework’s
bulk instantiation tools.

Introducing the use of succinctly represented patterns and pattern instances to knowledge
graph engineering allows interaction with RDF and OWL knowledge bases at a higher level of
abstraction than that of RDF triples and OWL axioms. This brings with it many favourable
properties such as adherence to the do-not-repeat-yourself (DRY) principle, encapsulation of
complexity, separation of concerns, and better support for different user groups. Templates are
also useful for documenting typical modelling use cases, such as vocabulary uses and ontology
design patterns. Representing modelling patterns as identifiable templates, allows them to be
shared online in a precise and actionable manner, and leads arguably to more modelling uniformity
and increased efficiency and quality of knowledge base modelling tasks.

While OTTR at its core is a generic templating language, it is one of few practical pattern-based
frameworks that is specifically designed for the construction of knowledge graphs and ontologies to
be serialized in RDF, and with demonstrated use in the construction of large-scale ontologies and
knowledge graphs [50, 49, 6, 55]. As such, the OTTR framework is an advance of the state of the
art of ontology engineering [23, 56] and ontology design pattern [11, 4] tools and methodologies.

The OTTR framework has been presented in a series of papers [50, 51, 52, 34]. These papers
have presented and characterized the OTTR language at a conceptual level and demonstrated
different uses of the framework. The OTTR framework has since then gradually matured to a
stable state with multiple different independent implementations and applications by prominent
ontology development projects. The purpose of this resource paper is to give a complete and self-
contained presentation of the resources that now comprise the OTTR framework: specifications,
core template library, reference implementation, and project infrastructure. The paper gives
emphasis to the specifications of the formal syntax and semantics of the OTTR language and
its implementation for semantic web, which is given in Section 3 and Section 4, and the formal
specification of the mapping languages for instantiating templates, which is presented in Section 6.
These introduce an abstract and formal model and vocabulary for characterizing the OTTR
language that form the basis of the reference implementation. These specifications have not been
published before in this rigorous form and are necessary to fully understand the OTTR framework.
Section 5 gives an overview of the motivation and support for developing and maintaining template
libraries. We also give an updated overview of the OTTR framework’s impact, including publicly
available template libraries, implementations of the OTTR framework in Section 7, and a selection
of industrial and academic uses in Section 8. Section 9 presents related work and Section 10
presents lessons learned and ideas for future development of the OTTR framework collected
throughout the project from experience and interaction with its users. Section 11 concludes the
paper. First, Section 2 presents an overview of the OTTR framework to tie all the resources
together and gives examples to establish intuitions for the following more technical sections.

2 Overview

The OTTR framework is formally described by a series of specifications that define:

TGDK
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OTTR
instances

stOTTR, wOTTR

Databases

Tabular
datafiles

OTTR
implementation

Lutra

OTTR template
libraries

stOTTR, wOTTR

OTTR template
HTML doc.

RDF/OWL
output

direct input

bOTTR

tabOTTR

direct input/
fetch online

docTTR

expansion

Figure 4 High-level OTTR framework architecture.

an abstract language for characterizing templates and template instances and the process of
expanding template instances,

serialization formats for representing templates and instances (stOTTR and wOTTR),

a mapping language for consuming data from queryable databases as template instances
(bOTTR), and

a mapping language for annotating and consuming data from tabular datafiles as template
instances (tabOTTR).

Additionally, the framework consists of:

a template library of basic templates called the core template library that mostly contains
templates that represent basic modelling patterns over the vocabularies RDF, RDFS and
OWL,

a tool-supported best practice description of how to document and publish template libraries
(docTTR), and

a reference implementation that supports all the specifications of the framework (Lutra).
Figure 4 shows a high-level architecture diagram of the OTTR framework.

The primary uses of the OTTR framework are to represent and document useful modelling
patterns in a precise and actionable manner as (shared) OTTR template libraries, and to use
such libraries to expand OTTR template instances to RDF data. The consumed instances can
be described either directly using one of the OTTR serialization formats or by way of mappings
that extract or identify instances in tabular data sources such as database query results or tabular
datafiles. The OTTR template language has different features to guarantee the correctness of the
output, and verifying the input according to these correctness measures is a core feature of the
framework. These features also help to reveal the intended and correct instantiations of templates
and play an important role in the documentation of templates. The following sections present an
overview of the OTTR language, the concept behind template libraries and bulk instantiation
of templates.
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ottr:Triple base template:

1 ottr:Triple [
2 ottr:IRI ?subject, ! ottr:IRI ?predicate, rdfs:Resource ?object ] ::
3 BASE .

o-owl-ax:SubClassOf template:

1 o-owl-ax:SubClassOf[
2 owl:Class ?subclass, owl:Class ?superclass ] ::
3 {
4 ottr:Triple(?subclass, rdfs:subClassOf, ?superclass)
5 } .

o-p:NamedPizza template:

1 o-p:NamedPizza[
2 owl:Class ?pizza, ? owl:NamedIndividual ?country, NEList<owl:Class> ?toppings ] ::
3 {
4 o-owl-ax:SubClassOf(?pizza, pz:NamedPizza),
5 o-owl-ax:SubObjectHasValue(?pizza, pz:hasCountryOfOrigin, ?country),
6 cross | o-owl-ax:SubObjectSomeValuesFrom(?pizza, pz:hasTopping, ++?toppings),
7 o-owl-ax:SubObjectAllValuesFrom(?pizza, pz:hasTopping, _:toppingUnion),
8 o-owl-re:ObjectUnionOf(_:toppingUnion, ?toppings)
9 } .

o-p:NamedPizza instances:

1 o-p:NamedPizza(ex:Margherita, ex:Italy, (ex:Mozzarella, ex:Tomato)) .
2

3 o-p:NamedPizza(ex:PlainHam, none, (ex:Mozzarella, ex:Tomato, ex:Ham)) .
4

5 o-p:NamedPizza(ex:Hawaiian, ex:Canada,
6 (ex:Mozzarella, ex:Tomato, ex:Pineapple, ex:Ham)) .

Figure 5 OTTR templates and instances representing different pizzas.

2.1 Language
The OTTR language and its features will be introduced in an incremental and example-driven
approach that builds on the example established in the introduction. The complete specification
of the OTTR language is found in Section 3.

2.1.1 Templates, base templates and instances
A template has a signature that assigns an IRI to the template and lists its parameters that specify
its permissive instances. An instance refers to a template’s IRI and lists arguments that must
match the parameters of the referenced template. The template body contains instances of other
templates and specifies hence how its instances can be expanded into instances of templates at a
lower level of abstraction; this hierarchy of templates is required to be non-cyclic. At the lowest
level of abstraction in the hierarchy of templates are base templates that specify how instances
should be interpreted into a different representation language, such as RDF. Base templates do
not have a body; the translation of base template instances to the underlying representation
language is handled by an OTTR implementation that must follow a textual specification of how
base templates must be interpreted.

TGDK



5:8 The Reasonable Ontology Templates Framework

o-owl-ax:SubClassOf and ottr:Triple instances:

1 o-owl-ax:SubClassOf(ex:A, ex:B) .
2

3 ottr:Triple(ex:A, rdfs:subclassOf, ex:B) .

Expansion result:
⟨ ex:A, rdfs:subClassOf, ex:B ⟩

Figure 6 o-owl-ax:SubClassOf and ottr:Triple instances, and their expansion result.

▶ Example 1. Figure 5 contains three templates, the base template ottr:Triple, and the (regular)
templates o-owl-ax:SubClassOf and o-p:NamedPizza; and instances of the o-p:NamedPizza
template. All examples in this section are serialized using the stOTTR format. The example
templates are formatted so that their signatures are contained in the two first lines of each of the
code listings. The remaining lines contain the template body. Instead of a body, the ottr:Triple
base template is marked with the token BASE.

Template instances are expanded by recursively replacing an instance with its referenced
template’s body’s instances where the parameters are appropriately substituted by the instance’s
arguments, akin to unfolding macros. This process terminates with a set of base template instances
that can be translated to the underlying representation language as per the specification. A
template can hence be understood to represent a mapping from its signature instance format
to a set of statements over an underlying language represented by base templates, via a nested
non-cyclic template structure.

▶ Example 2. The signature of the ottr:Triple template in Figure 5 specifies three parameters:
?subject, ?predicate and ?object. (The example also includes parameter types and modifiers
which will be explained shortly.) The body of the o-owl-ax:SubClassOf template contains
one instance of the ottr:Triple template where the parameters of the o-owl-ax:SubClassOf
template are used as parameters. Figure 6 demonstrates the expansion of instances; the example
instance of the o-owl-ax:SubClassOf instance in line 1 is expanded in one step to the ottr:Triple
instance in line 3, which represents the RDF triple as shown in the figure.

▶ Example 3. The o-p:NamedPizza template in Figure 5 is a faithful representation of the pizza
modelling pattern used in the Pizza Ontology. The body of the o-p:NamedPizza template contains
instances of the o-owl-ax:SubClassOf template and other templates that represent common
OWL axioms and constructs. The first template instance in Figure 5 expressing a Margherita
pizza expands in multiple steps to an RDF graph that is equivalent to the RDF graph found in
Figure 2 on page 4.

2.1.2 Parameter types and non-blank flags
Parameter types are used to check that templates are correctly instantiated and specified; the
arguments’ types must be compatible with the types of the parameters where the arguments
are used, and this must also hold when parameters are used as arguments in template bodies.
The OTTR language also contains parameter modifiers, where non-blank is one such parameter
modifier that forbids RDF blank nodes as arguments. OTTR implementations must emit errors
when instances and template violate these parameter type specifications.

▶ Example 4. The signature of the ottr:Triple template assigns types to its parameters; the
?subject and ?predicate parameters have the type ottr:IRI, and the ?object has the type
rdfs:Resource. These parameter types guarantee that no ottr:Triple instance can, for example,
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have a literal in subject position, which would be a violation of the RDF specification [27], since
the type assigned to literals is specified by the type system as incompatible with the parameter
type ottr:IRI. The following ottr:Triple instance contains two type errors: the literal values
"A" and "B" are arguments to parameters with the type ottr:IRI.

ottr:Triple("A", "B", "C") .

▶ Example 5. In the body of the o-owl-ax:SubClassOf template, the types of the parameters
?subclass (owl:Class) and ?superclass (also owl:Class) must be compatible with the types
of the first (ottr:IRI) and third parameter (rdfs:Resource) of the ottr:Triple template,
respectively – which they are. Furthermore, the parameter types of o-owl-ax:SubClassOf
template force for example the parameter type of o-p:NamedPizza’s ?pizza parameter to have a
type that is compatible with owl:Class, since ?pizza is passed on as an argument to a parameter
with this type.

▶ Example 6. The ottr:Triple signature specifies, using an exclamation mark !, the ?predicate
parameter to be non-blank. This ensures that no RDF triple constructed using this template
will end up with a blank node in predicate position, which would be a violation of the RDF
specification [27]. The following ottr:Triple instance violates the non-blank modifier.

ottr:Triple(ex:A, _:blank, "C") .

2.1.3 Optional parameters and none values
Parameters may be specified as being optional, whereas parameters that are not optional are
called mandatory. Whether a parameter is optional or not has consequences for the treatment of
none values, which in OTTR is represented by the reserved token none and is used to indicate a
missing value. In the expansion of instances, a none value given as an argument to a mandatory
parameter is simply ignored and will not contribute to the end result of the expansion – the
instance is simply removed. A none value given to an optional argument, on the other hand, will
be passed on to body template instances just like other arguments.

▶ Example 7. The second argument of the o-p:NamedPizza template is marked as optional,
using a question mark ?. This means that instances of the template do not need to specify a
country of origin. The ex:PlainHam example instance demonstrates this. Here, the none value
will be passed on as an argument to the third parameter of the o-owl-ax:SubObjectHasValue
template. This parameter is mandatory, hence there will be no OWL axiom in the expansion
result that expresses the country of origin of the ex:PlainHam pizza, however, the other axioms
will remain. If the ?country parameter of the o-p:NamedPizza had not been marked as optional,
then the ex:PlainHam instance would have been simply removed in the first expansion step.

2.1.4 Default values
Parameters may be given a default value. This default value is used whenever a none value is
given as an argument to the parameter.

▶ Example 8. Figure 7 demonstrates the use of a default valued parameter using an alternative
signature to the o-p:NamedPizza template that assigns ex:Italy as the default value to the
second argument. The ex:PlainHam example instance in Figure 5 would under this signature get
ex:Italy as its country of origin.

TGDK
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1 o-p:NamedPizza[
2 owl:Class ?pizza,
3 owl:NamedIndividual ?country = ex:Italy,
4 NEList<owl:Class> ?toppings
5 ] .

Figure 7 o-p:NamedPizza with default valued parameter.

2.1.5 Expansion modes and list values
Template instances can be marked with an expansion mode which is only applicable to instances
that have arguments that are lists. An expansion mode applied to an instance with one list
argument specifies that the selected instance will be instantiated multiple times, one per element
in the marked argument list. There are different expansion modes that behave differently when
multiple lists are marked in an instance.

▶ Example 9. The o-p:NamedPizza template makes use of expansion modes, indicated with the
token cross and by marking the list-typed parameter ?toppings with ++:

6 cross | o-owl-ax:SubObjectSomeValuesFrom(?pizza, pz:hasTopping, ++?toppings),

The effects of the expansion mode are that one instance of the o-owl-ax:SubObjectSomeValues-
From template will be created for each element in the ?toppings list, e.g.,

cross | o-owl-ax:SubObjectSomeValuesFrom(ex:Margherita, pz:hasTopping,
++(ex:Mozzarella, ex:Tomato)) .

will expand in one step to:

o-owl-ax:SubObjectSomeValuesFrom(ex:Margherita, pz:hasTopping, ex:Mozzarella) .
o-owl-ax:SubObjectSomeValuesFrom(ex:Margherita, pz:hasTopping, ex:Tomato) .

2.2 Template Libraries
A template library is a collection of templates developed and curated for a particular purpose,
such as representing patterns for a given vocabulary, domain, or project. The ability to share
and reuse templates for common modelling patterns is central to the OTTR framework and will
be further elaborated in Section 5. By following best practices and principles similar to linked
open data [19] and ontology publication, templates and template libraries are expected to be
published and interconnected in a distributed and decentralized manner, promoting their reuse
and community-driven curation. Our intention is that template libraries should be developed
alongside the development of vocabularies and ontologies which are intended for reuse, in order to
promote and simplify correct and consistent typical use of the vocabulary or ontology. Given that
a template’s signature is clearly documented and understood, there is no need to understand how
the template is implemented in order to correctly instantiate the template. Templates at different
abstraction levels, and templates and their instances, target different users and use cases, and can
hence be created and managed separately and by different users.

▶ Example 10. The o-p:NamedPizza template is published at its IRI, https://tpl.ottr.xyz/
p/pizza/0.2/NamedPizza, using content negotiation [44] to serve different presentations of the
template,4 including an HTML documentation page generated by the OTTR’s docTTR tool which

4 https://tpl.ottr.xyz/p/pizza/0.2/NamedPizza.html,

https://tpl.ottr.xyz/p/pizza/0.2/NamedPizza
https://tpl.ottr.xyz/p/pizza/0.2/NamedPizza
https://tpl.ottr.xyz/p/pizza/0.2/NamedPizza.html
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Figure 8 The generated docTTR documentation page for the o-p:NamedPizza template.

TGDK
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Figure 9 Layered dependencies between templates used by the o-p:NamedPizza template.

is shown in Figure 8. The o-p:NamedPizza template is an example template in the Core OTTR
template library [52], which is available at https://tpl.ottr.xyz. The Core OTTR template
library contains all the templates used in the examples.

Figure 9 shows the dependency graph with the o-p:NamedPizza on top and the base template
ottr:Triple at the bottom. Observe that the graph is divided into different layers: the “user-
facing” o-p:NamedPizza, “logical” OWL templates, including o-owl-ax:SubClassOf, “utility”
templates that represent OWL restrictions and different RDF list patterns, and the low-level
base template ottr:Triple. Each layer represents different a level of abstractions that hide the
complexity of lower levels.

2.3 Template Instantiation

Efficient instantiation of templates is also central to the OTTR framework. For this task, it is
natural to consider a template as a mapping from its signature input format to the pattern of
its expansion. The OTTR framework provides two specifications, bOTTR and tabOTTR, for
selecting and translating data from structured sources into template instances, which in turn
can be expanded into a knowledge graph or ontology according to the corresponding template
definitions. These are presented in Section 6. The bOTTR specification defines an RDF vocabulary
with which mappings from database query results to templates may be specified. The tabOTTR
specification describes a simple “markup” language for defining mappings to templates directly
in tabular datafiles, such as CSV, TSV or Excel files. These specifications permit the OTTR
framework to become a part of a complete data transformation pipeline, where external tools
may be used to cleanse and prepare data for template instantiation, and the OTTR framework’s
mapping specification may be used to collect and integrate data from multiple sources to build
knowledge graphs and ontologies at scale.

▶ Example 11. Figure 10 demonstrates the use of tabOTTR. It shows a spreadsheet that contains
arguments to 22 instances of the o-p:NamedPizza template in Figure 5, and that uses tabOTTR
processing instructions to describe how the data is to be understood as instances.

https://tpl.ottr.xyz/p/pizza/0.2/NamedPizza.stottr,
https://tpl.ottr.xyz/p/pizza/0.2/NamedPizza.ttl.

https://tpl.ottr.xyz
https://tpl.ottr.xyz/p/pizza/0.2/NamedPizza.stottr
https://tpl.ottr.xyz/p/pizza/0.2/NamedPizza.ttl
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Figure 10 Spreadsheet using tabOTTR to specify 22 instances of the o-p:NamedPizza template.

2.4 History
An early predecessor and inspiration to OTTR templates dates back to 2008 [26]. Here, a template
mechanism was developed for “lifting” compact data representations, typically tabular data, to
rich semantic format according to a complex upper level ontology. A prototype of the template
mechanism was implemented using OWL and SWRL rules [18].

The practical and theoretical aspects of OTTR templates were first introduced in 2017, where
OTTR templates were defined parameterized knowledge bases using a dedicated OWL ontology [48],
and as description logic macros [10].5

The formulation of the OTTR language later matured into a dedicated representation of
templates and template instances [50, 51]. The OTTR language has since then evolved into
a framework and reached the state of stable resource, far beyond a research prototype – with
multiple users from different communities and industries, multiple independent implementations
initiated, and several publicly available template libraries.

2.5 Resources
All publicly available resources managed by the OTTR team are available from the project
web page: https://ottr.xyz. The formal specifications and software are hosted in the Git
repository at: https://gitlab.com/ottr/. Stable releases are also published at Zenodo: https:
//zenodo.org/communities/ottr/.

3 Fundamentals

This section defines the formal templating mechanism that underlies the OTTR framework. The
presentation follows three tracks that are given in tandem: (1) definition blocks define the concep-
tual and formal aspects of the OTTR framework, such as template, template instances, validity of

5 The name “Reasonable Ontology Templates” comes partly from the fact that in the first version of OTTR,
templates were parameterized OWL ontologies that could be directly reasoned over. Also, “reasonable” has
a suitable double meaning of “being reasonable” and “being subject to reasoning”. The acronym OTTR is
inspired by OWL.

TGDK

https://ottr.xyz
https://gitlab.com/ottr/
https://zenodo.org/communities/ottr/
https://zenodo.org/communities/ottr/


5:14 The Reasonable Ontology Templates Framework

templates, and instance expansion; (2) implementation blocks describe how the conceptual model
is adapted to semantic web technologies, with the specific purpose of using the OTTR framework
to produce RDF graphs; and (3) syntax blocks specify the stOTTR serialization format for OTTR;
more details on OTTR serialization format are given in Section 4.

We start by defining terms and types, before we introduce template instances and template
objects. We then introduce template expansion, and end by defining libraries and datasets and
their properties, such as correctness.

3.1 Terms and Types
OTTR is a language for expressing statements, in particular for ontologies and knowledge graphs
represented using OWL and RDF. The basic building blocks for such statements are terms. As
different terms may play different roles within these statements, and denote, e.g., relationships,
entities, or data values, OTTR introduces a type system over the terms to ensure that terms are
used correctly. The type system assigns a type to each term and uses subtype and compatibility
relationships between types to check correct and consistent use of terms across ontologies and
knowledge graphs. Below we introduce these terms and type systems.

▶ Definition 12. We assume we have a (possibly countably infinite) set C of constants at least
containing the elements nil and none. Furthermore, we assume we have a countably infinite set V
of variables. Let the set of terms E be defined inductively as follows: All elements of C and V are
terms, and for any finite list of terms e1, e2, . . . , en ∈ E then ⟨e1, e2, . . . , en⟩ ∈ E. Elements of E
of the form nil and ⟨e1, e2, . . . , en⟩ are called list terms or simply lists. We let length(l) denote
the length of the list l and l(i) denote the ith term (1-indexed) of the list l if i ≤ length(l) and
none otherwise.

Note that list terms can be nested arbitrarily, so if e1, e2, e3 are terms, then, e.g., ⟨e1, ⟨e2, e3⟩, nil⟩
is also a term. The special constant none denotes a missing value, similar to how NULL or null
is used in SQL and many programming languages. This constant is not intended to be used in
the final statements that become part of constructed the knowledge graph, but only within the
OTTR framework’s definitions.

▶ Definition 13. The set of basic types B is a set that contains at least the elements ⊤ and ⊥,
and that is partially ordered by the subtype relation ≤ such that for any t ∈ B we have ⊥ ≤ t and
t ≤ ⊤. The inverse relation of subtype is called supertype.

▶ Definition 14. The set of types T is the smallest set such that
B ⊆ T
if t ∈ B, then LUB⟨t⟩ ∈ T
if t ∈ T , then List⟨t⟩ ∈ T
if t ∈ T , then NEList⟨t⟩ ∈ T

Furthermore, ≤ is extended to T as follows:
if t1 ≤ t2 for t1, t2 ∈ T , then NEList⟨t1⟩ ≤ NEList⟨t2⟩ and List⟨t1⟩ ≤ List⟨t2⟩
if t ∈ B, then NEList⟨t⟩ ≤ List⟨t⟩
if t ∈ B, then LUB⟨t⟩ ≤ t

All non-list terms have a unique type given by the typing relation written e : t for a term e

with type t, where none : ⊥. The typing relation is extended to list-terms as follows:
nil : List⟨⊥⟩
⟨e1, e2, . . . , en⟩ : NEList⟨LUB⟨⊤⟩⟩
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We call types of the form List⟨t⟩ and NEList⟨t⟩ (non-empty list) for list types. These types
have terms that are lists, i.e., ordered collections of terms. Note that we distinguish, at the type
level, between empty and non-empty lists. Types of the form LUB⟨t⟩ are called LUB-types where
LUB is short for least upper bound. The motivation for the latter type constructor builds on the
following definition.

▶ Definition 15. Let ▷ be the least relation between types such that whenever t1 ≤ t2 then:
t1 ▷ t2
LUB⟨t2⟩▷ t1

If t1 ▷ t2 we say that t1 is compatible with t2.

The intuition behind the compatibility relation between types is to permit the use of terms in
places that are compatible with their type. We use the notion of compatible types to check correct
use of terms and consistent use of terms. Correct use means that a term may only be used in
places where its type is compatible with the expected type. Consistent use, which is only relevant
for LUB-typed terms, means that a term is not used in multiple places that are incompatible.

LUB-types are required when the lexical form of terms is alone not sufficient to determine its
type, which is typically when there are more types than different lexical forms. In these cases,
one needs to examine the expected types of where the terms are used to establish if the term is
used consistently. For the semantic web languages RDF and OWL, this is relevant as the IRIs
and blank nodes of RDF may be used to designate different types of entities in OWL that are
necessary to keep apart to ensure their correct and consistent use. For instance in OWL, object
properties and datatype properties are disjoint types, yet, it is not possible to determine based on
the lexical representation alone if an IRI represents an object property or a datatype property. For
these terms, we only give an upper bound (LUB) of what types they can have. A term to which
we assign the type LUB⟨t⟩ may have a type that is a subtype of t, and may therefore be used any
place where any subtype t′ of t is expected. However, terms must also be used consistently, so the
same term cannot then be used in a place where a type not compatible with t′ is expected.

Note how we exploit LUB-types when we assign non-empty list terms the type List⟨LUB⟨⊤⟩⟩.
Since all list elements are type-checked, it is unnecessary to give a more specific type to the list
itself. Any type violation of a non-empty list is either due to the list itself is given to an argument
expecting a non-list, or that a term “inside” the list is of an incompatible type. The type assigned
to the list term itself need only account for the first of these two cases. However, to type-check
the terms inside lists we need to know how deeply nested a term is inside a list, and how deeply
nested a given type is inside a list type. This is captured in the following definitions.

▶ Definition 16. We define δE to be a binary function from pairs of terms to natural numbers as
follows:

δE(a, a) = 0 for any a ∈ E
if δE(a, b) = n, then δE(a, ⟨e1, . . . , b, . . . , en⟩) = n + 1, for any a, b, e1, . . . , en ∈ E

If δE(e1, e2) = n, we say that e1 occurs at depth n in e2.

▶ Definition 17. Let δT be a binary function from pairs of types to natural numbers as follows:
δT (t, t) = 0, for any t ∈ T
δT (t1, t2) = n then δT (t1, List⟨t2⟩) = n + 1 and δT (t1, NEList⟨t2⟩) = n + 1 for any pair
t1, t2 ∈ T

If δT (t1, t2) = n, we say that t1 occurs at depth n in t2.

As an example, in the type NEList⟨List⟨t⟩⟩, t occurs at depth 2.
The definition is used to relate depths of terms in lists to the type at corresponding depths in

nested list types. However, note that for LUB⟨t⟩, t must be a basic type and, e.g., not a list type.
It is therefore no n such that t occurs at depth n in LUB⟨t⟩, but, e.g., LUB⟨t⟩ occurs at depth 1
in NEList⟨LUB⟨P ⟩⟩.
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We now introduce the implementation of terms and types to be used for creating knowledge
graphs and ontologies in RDF and OWL.

▶ Implementation 18. All vocabulary terms defined in the OTTR framework use the following
namespace, unless otherwise noted:

@prefix ottr: <http://ns.ottr.xyz/0.4/> .

▶ Implementation 19. Let E be the set of all valid RDF terms, i.e., IRIs, literals and blank
nodes [27]. Variables are designated by blank nodes, so let V be an infinite set of blank nodes. All
IRI terms have type LUB⟨ottr:IRI⟩, all non-list blank nodes have type LUB⟨rdfs:Resource⟩,
and all literals have a type equal to their specified datatype or xsd:string if no datatype is given.
The term rdf:nil denotes nil and has the type List⟨rdfs:Resource⟩. All other RDF lists denote
the corresponding list term and have the type NEList⟨LUB⟨rdfs:Resource⟩⟩.

▶ Syntax 20. Terms in stOTTR share the same syntax as terms in Turtle [2], both for IRIs, blank
nodes, literals and lists, except that lists are written surrounded with parenthesis with elements
separated by commas. stOTTR also adopts Turtle’s syntax for defining prefixes. Variable terms
are written using Turtle’s syntax for blank node labels, prefixed by a question mark. We may
write none for the term none, and () for the empty list nil. stOTTR is space-insensitive.

▶ Implementation 21. All basic types are listed in Table 1. All of these, except those prefixed
by ottr: are IRIs taken from the RDF, RDFS, OWL and XSD standards. ottr:Bot denotes ⊥,
whereas rdfs:Resource denotes ⊤. The types are presented with a description taken from the
respective standards, and possibly given a supertype that follows this description and which forms
the basis of determining compatibility between types. The type hierarchy is published at Zenodo:
https://zenodo.org/records/12607216.

▶ Syntax 22. Basic types are denoted by their IRI as defined above, using the syntax for IRIs
from Turtle. For complex types, we write LUB<t>, List<t> and NEList<t>, where t is a type.

▶ Example 23. The term "3"^^xsd:int has type xsd:int, and since xsd:int is a subtype of
xsd:long, and xsd:long is a subtype of xsd:integer, we have that xsd:int is compatible with
xsd:integer and can use "3"^^xsd:int where a value of type xsd:integer is expected.

The term ex:mary is an IRI, and therefore has type LUB<ottr:IRI>. Since owl:Named-
Individual is a subtype of ottr:IRI, we have that LUB<ottr:IRI> is compatible with
owl:NamedIndividual, and can therefore use the term ex:mary where a term of type
owl:NamedIndividual is expected.

The following illustrates an interesting feature of OTTR’s type system. Some types of the
OWL ontology language are defined to be disjoint, such as OWL object properties and datatype
properties, and should raise an error in the case that an IRI is assigned multiple such types. Other
cases of assigning multiple types to the same IRI can result in what is called punning, e.g., stating
that Eagle is both a owl:NamedIndividual and a owl:Class, which is permissible in OWL, but
may not always be desirable. The type hierarchy presented in Table 1 above does not permit
punning, as there is no subtype of, e.g., owl:NamedIndividual and owl:Class that is different
from ⊥. However, it is easy to extend the type hierarchy with types to allow for punning. Table 2
lists the necessary extensions of types to allow for punning according to the OWL standard. This
example is further developed in Example 53 on page 26.

https://zenodo.org/records/12607216


M. G. Skjæveland and L. H. Karlsen 5:17

Table 1 The basic types of the OTTR type system.

Type Supertype Description
rdfs:Resource All things described by RDF
ottr:Bot Empty type
ottr:IRI rdfs:Resource An IRI (Internationalized Resource Identi-

fier)
owl:Class ottr:IRI OWL Classes (understood as sets of individu-

als)
owl:NamedIndividual ottr:IRI Individuals in OWL 2
owl:ObjectProperty ottr:IRI Properties connecting pairs of individuals
owl:DatatypeProperty ottr:IRI Properties connecting individuals with liter-

als
owl:AnnotationProperty ottr:IRI Properties used to provide an annotation for

an ontology, axiom, or an IRI
rdfs:Datatype ottr:IRI Data values
rdfs:Literal rdfs:Resource Literal values such as strings and integers
ottr:string rdfs:Literal Character strings with or without language

tag
xsd:string ottr:string Character strings
xsd:normalizedString xsd:string Whitespace-normalized strings
xsd:token xsd:normalizedString Tokenized strings
xsd:language xsd:token Language tags per [BCP47]
rdf:langString ottr:string Character strings with language tag
xsd:Name xsd:token XML Names
xsd:NCName xsd:Name XML NCNames
xsd:NMTOKEN xsd:Name XML NMTOKENs
owl:real rdfs:Literal All real numbers
owl:rational owl:real All rational numbers
xsd:decimal owl:rational Arbitrary-precision decimal numbers
xsd:integer xsd:decimal Arbitrary-size integer numbers
xsd:long xsd:integer 64 bit signed integers
xsd:int xsd:long 32 bit signed integers
xsd:short xsd:int 16 bit signed integers
xsd:byte xsd:short 8 bit signed integers
xsd:nonNegativeInteger xsd:integer Integer numbers ≥ 0
xsd:positiveInteger xsd:nonNegativeInteger Integer numbers > 0
xsd:unsignedLong xsd:positiveInteger 64 bit unsigned integer
xsd:unsignedInt xsd:unsignedLong 32 bit unsigned integer
xsd:unsignedShort xsd:unsignedInt 16 bit unsigned integer
xsd:unsignedByte xsd:unsignedShort 8 bit unsigned integer
xsd:nonPositiveInteger xsd:integer Integer numbers ≤ 0
xsd:negativeInteger xsd:nonPositiveInteger Integer numbers < 0
xsd:double rdfs:Literal 64-bit floating point numbers incl. +-Inf,

+-0, NaN
xsd:float rdfs:Literal 32-bit floating point numbers incl. +-Inf,

+-0, NaN
xsd:date rdfs:Literal Dates (yyyy-mm-dd) with or without

timezone
xsd:dateTime rdfs:Literal Date and time with or without timezone
xsd:dateTimeStamp xsd:dateTime Date and time with timezone
xsd:time rdfs:Literal Times (hh:mm:ss.sss...) with or without

timezone
xsd:gYear rdfs:Literal Gregorian calendar year
xsd:gMonth rdfs:Literal Gregorian calendar month
xsd:gDay rdfs:Literal Gregorian calendar day of the month
xsd:gYearMonth rdfs:Literal Gregorian calendar year and month
xsd:gMonthDay rdfs:Literal Gregorian calendar month and day
xsd:duration rdfs:Literal Duration of time
xsd:yearMonthDuration xsd:duration Duration of time (months and years only)
xsd:dayTimeDuration xsd:duration Duration of time (days, hours, minutes,

seconds only)
xsd:hexBinary rdfs:Literal Hex-encoded binary data
xsd:base64Binary rdfs:Literal Base64-encoded binary data
xsd:boolean rdfs:Literal true, false
xsd:anyURI rdfs:Literal Absolute or relative URIs and IRIs
rdf:HTML rdfs:Literal HTML content
rdf:XMLLiteral rdfs:Literal XML content
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Table 2 Examples of types that would allow punning.

Type Supertypes
:Punned-Class-NamedIndividual owl:Class, owl:NamedIndividual
:Punned-Class-ObjectProperty owl:Class, owl:ObjectProperty
:Punned-Class-DatatypeProperty owl:Class, owl:DatatypeProperty
:Punned-Class-AnnotationProperty owl:Class, owl:AnnotationProperty
:Punned-Datatype-NamedIndividual rdfs:Datatype, owl:NamedIndividual
:Punned-Datatype-ObjectProperty rdfs:Datatype, owl:ObjectProperty
:Punned-Datatype-DatatypeProperty rdfs:Datatype,

owl:DatatypeProperty
:Punned-Datatype-AnnotationProperty rdfs:Datatype,

owl:AnnotationProperty
:Punned-NamedIndividual-ObjectProperty owl:NamedIndividual,

owl:ObjectProperty
:Punned-NamedIndividual-DatatypeProperty owl:NamedIndividual,

owl:DatatypeProperty
:Punned-NamedIndividual-AnnotationProperty owl:NamedIndividual,

owl:AnnotationProperty
:Punned-Class-NamedIndividual-ObjectProperty owl:Class, owl:NamedIndividual,

owl:ObjectProperty
:Punned-Class-NamedIndividual-DatatypeProperty owl:Class, owl:NamedIndividual,

owl:DatatypeProperty
:Punned-Class-NamedIndividual-AnnotationProperty owl:Class, owl:NamedIndividual,

owl:AnnotationProperty
:Punned-Datatype-NamedIndividual-ObjectProperty rdfs:Datatype,

owl:NamedIndividual,
owl:ObjectProperty

:Punned-Datatype-NamedIndividual-DatatypeProperty rdfs:Datatype,
owl:NamedIndividual,
owl:DatatypeProperty

:Punned-Datatype-NamedIndividual-AnnotationProperty rdfs:Datatype,
owl:NamedIndividual,
owl:AnnotationProperty

3.2 Template Instances
Statements in OTTR are expressed by template instances. Before we can introduce these, we need
a couple of utility definitions specific to the use of lists in statements. OTTR has special support
for lists in the form of list expanders, which are functions that allow a single statement to expand
to multiple statements by replacing a list of terms with the elements of the list, in different ways.

▶ Definition 24. A list expander is a function from a list of list terms to a set of lists of terms.

▶ Implementation 25. We define the following list expanders:

id(⟨l1, . . . , ln⟩) = {⟨l1, . . . , ln⟩}
cross(⟨l1, . . . , ln⟩) = {⟨e1, . . . , en⟩ | ei ∈ li}

zipMin(⟨l1, . . . , ln⟩) = {⟨l1(i), . . . , ln(i)⟩ | 1 ≤ i ≤ min
k≤n

length(lk)}

zipMax(⟨l1, . . . , ln⟩) = {⟨l1(i), . . . , ln(i)⟩ | 1 ≤ i ≤ max
k≤n

length(lk)}
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That is, id is the identity function, cross is the cross product of its argument lists, zipMin is the
convolution restricted to the shortest list, and zipMax is the convolution where all lists are made
of equal length by padding none-terms at the end (remember that L(i) = none if i > length(L)).

▶ Example 26. This shows the behaviour of the list expanders on the same input.

cross(⟨1, 2, 3⟩, ⟨4, 5⟩) = {⟨1, 4⟩, ⟨2, 4⟩, ⟨3, 4⟩, ⟨1, 5⟩, ⟨2, 5⟩, ⟨3, 5⟩}
zipMin(⟨1, 2, 3⟩, ⟨4, 5⟩) = {⟨1, 4⟩, ⟨2, 5⟩}
zipMax(⟨1, 2, 3⟩, ⟨4, 5⟩) = {⟨1, 4⟩, ⟨2, 5⟩, ⟨3, none⟩}

▶ Definition 27. Let L be a set of list expanders that contains at least cross, zipMin and zipMax.

The list expanders defined above will be used in the definition of instance expansion, Section 3.4.
With this, we are ready to define the notion of template instance.

▶ Definition 28. A template instance (or just instance) is a 4-tuple (t, A, E, e) of
a constant term t, called the instance’s template name,
a list of terms A called the instance’s arguments,
a set of indices E, denoting which arguments to apply a list expander to,
and a list expander e.

The arity of an instance is the size of its argument list. A ground template instance is a template
instance where the value of every argument is a constant.

A template instance can be viewed as a call to a template. A template is a definition of a
pattern of statements, and a template instance denotes one instance of the template’s pattern.

▶ Syntax 29. Instances have the form t(a1, . . . , an) . where t is a template name in the form of
an IRI, and each ai is an argument term. List expanders are written before the template name
followed by a | (where the id-expander is always omitted), with the argument terms to expand
marked with ++. Examples:

Structure Syntax
(t, ⟨a1, . . . , an⟩, ∅, id) t(a_1, ..., a_n) .
(t, ⟨a1, a2, a3⟩, {1}, cross) cross | t(++a_1, a_2, a_3) .
(t, ⟨a1, a2, a3⟩, {1, 3}, zipMin) zipMin | t(++a_1, a_2, ++a_3) .

▶ Example 30. The following are examples of written instances:

ex:Person(ex:mary, "Mary Smith", "1980-02-03"^^xsd:date) .

ex:Person(ex:peter, "Peter Smith", "1984-10-01"^^xsd:date) .

ex:Person(ex:bob, "Bob Green", none) .

cross | ex:HasFamilyRelation(
++(ex:peter, ex:mary),
++(ex:carl, ex:nora),
ex:parentOf) .

zipMax | ex:HasFamilyRelation(
++(ex:eric, ex:hannah, ex:bob),
ex:peter,
++(ex:father, ex:mother)) .

TGDK



5:20 The Reasonable Ontology Templates Framework

The corresponding templates to these instances are defined in Example 44 and their corresponding
RDF statements can be seen in Example 48. The first three instances each describe a person,
where the first argument is the person’s IRI, the second argument is the person’s name, and the
final argument is the person’s birthdate. Note that for the final instance, there is no value (i.e.,
none) given for the birthdate, e.g., the birthdate is unknown. The fourth instance uses the cross
list-expander to create ex:HasFamilyRelation instances with the ex:parentOf property, for all
combinations of elements from the two lists, thus stating that ex:peter and ex:mary are the
parents of ex:carl and ex:nora. The final instance also instantiates ex:HasFamilyRelation ,
but uses a zipMax list expander to pair people with their relation to ex:peter, thus making
ex:eric the ex:father of ex:peter, whereas ex:hannah is his ex:mother. For ex:bob, there
is no given property, i.e., the value is none, and its up to the definition of the template, whether
this parameter is optional or not, how this is handled.

3.3 Templates
A template is a parameterized set of statements – which themselves are template instances. Thus,
templates are a recursive structure where a template is defined in terms of other templates.
Base templates are the exception, and are used to represent basic statements in a different data
representation language.

Before we can define our notion of templates, we need to establish some preliminary definitions.

▶ Definition 31. Let M be a set of tokens, called modifiers, that contains at least the token
optional, denoting an optional value.

The optional modifier is used to control how the none term behaves during expansion. This
is defined in Section 3.4. However, the intuition is that we specify a parameter as optional if
none is a meaningful argument, and omit optional when it is not. All statements with a none as
arguments to a non-optional are discarded. This allows templates to contain subpatterns that are
only used when specific values are present (i.e., not none).

▶ Implementation 32. We extend M with an additional modifier called nonBlank, that specifies
that the value is not a blank node. Its behaviour is defined in Implementation 55.

Recall that our implemented terms contain blank nodes, and that blank nodes are, according
to the RDF specification [27], not permitted as predicates in RDF triples. Blank nodes can also be
undesirable in certain other settings, for example, if concrete values are required to be meaningful
for their intended use. The nonBlank modifier is introduced to control where blank nodes are
permitted and not. That is, a blank node is not allowed as an argument to a parameter marked
with nonBlank.

▶ Definition 33. A parameter is a 4-tuple (v, t, d, M) consisting of:
a variable term v different from none, called the parameter variable
a type t

a (possibly none) constant term d, called the parameter’s default value
a (possibly empty) set of modifiers M .

In the above definition, we use none to denote that a parameter does not have a default value,
and say that a parameter does not have a default value if the parameter’s default value is none.

▶ Syntax 34. A parameter is written with modifiers first, where a question mark denotes optional
and an exclamation mark denotes nonBlank, and nothing is written for the empty set of modifiers.
Following this comes the parameter’s type. We can omit writing the type rdfs:Resource. Then
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follows the parameter’s variable. Finally, if the default value is not none, the value is written at
the end separated from the variable with an equals sign. Examples:

Structure Syntax
(v, t, none, ∅) t ?v
(v, t, none, {optional}) ? t ?v
(v, t, d, {optional, nonBlank}) !? t ?v=d

▶ Definition 35. A template signature (or just signature) is a triple (t, P, N) of
a constant term t, called the signature’s template name,
a list of parameters P such that all parameter variables in a signature’s list of parameters are
different,
and a set of annotations N , which is a set of ground template instances; we call these annotation
instances.

The arity of a signature is the size of its parameter list. The type of a variable is the type of its
parameter within the signature’s parameter list.

As we shall see, a signature is part of the definition of a template. However, a signature is
also meaningful on its own, as documentation of how to use a template, similar to function and
method signatures in programming languages.

A signature may contain a set of ground instances called annotations. These are meant to be
used for documenting the signature (similar to Javadoc in Java or Docstrings in Python), such as
who created the template, the version of the template, and a description of the template pattern.

▶ Syntax 36. A signature is written starting with the template name, followed by the list of
parameters enclosed in square braces. Annotations, if any, are listed after this, separated by
commas and prefixed with @@. Examples:

Structure Syntax
(t, P, ∅) t[P] .
(t, P, {(i1, a1), (i2, a2)}) t[P] @@i_1(a_1), @@i_2(a_2) .

A signature ends with a dot.

▶ Definition 37. A base template is a pair (S, base) of a template signature and the token base.

A base template denotes a parameterized basic statement that cannot be broken down into a
set of smaller (parameterized) statements. Base template instances can either be used directly in
an OTTR serialization, or, more commonly, be transformed into statements in a different language
and serialization format.

▶ Syntax 38. A base template is written similarly to a template, except that the pattern is
replaced with the BASE keyword, that is:

Structure Syntax
(S, base) S :: BASE .

▶ Implementation 39. Our implementation contains one base template that denotes an RDF
triple:

((ottr:Triple,

⟨(subject, ottr:IRI, ∅),
(predicate, ottr:IRI, {nonBlank}),
(object, rdfs:Resource, ∅)⟩, ∅),

base)

or, equivalently in stOTTR format:
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ottr:Triple [
ottr:IRI ?subject,
! ottr:IRI ?predicate,
rdfs:Resource ?object

] :: BASE .

One can imagine implementations supporting other base templates: Base templates for RDF
quadruples, OWL expressions, rows in tabular files, or SQL INSERT statements.

We are now ready to define the central concept of a template.

▶ Definition 40. A template is pair (S, B) of a template signature S and a set of template
instances B called the template’s pattern; we call these pattern instances.

A template is the core construct in OTTR, and is the primary means of abstraction. Using
templates, we can create complex parameterized statements that are easy to reuse. A template
can either be defined in terms of base templates directly, or by instantiating other templates (or
a combination). Taking a bottom-up approach, this supports layers of abstractions, each layer
creating more complex statements that are closer to the terminology of that of a concrete domain
to be modelled. To use a template, all one needs to know is its signature. The signature states
the arguments a user must provide, and may also contain annotations that further describe the
intended use of the template.

▶ Syntax 41. A template is written with the signature first (as described above) except the final
dot, followed by ::, and then the pattern instances separated by comma an enclosed in curly
braces, and finally ends with a dot. Examples:

Structure Syntax
(S, ∅) S :: .
(S, {i1, i2}) S :: i_1, i_2 .

▶ Definition 42. Let S be the set of all signatures, B be the set of all base templates, and T be the
set of all templates. Let O = S ∪ B ∪ T, and let the elements of O be called template objects.

Furthermore, let σ be a function from sets of template objects to sets of signatures, such that
σ(O) is the set of all template signatures contained either directly in O, or within a template or
base template in O.

▶ Definition 43. We say that a template instance I is the instance of a template signature T if T

has the same template name as I. For an argument a in instance I of signature T , we say that its
corresponding parameter of T is the parameter with the same index in the parameter list as the
index of a in the argument list of I.

▶ Example 44. The templates used in Example 30 are defined as follows:

ex:Person[ owl:NamedIndividual ?p, xsd:string ?name, ? xsd:date ?born ]
@@ottr:Triple(ex:person, ex:madeBy, ex:leifhka),
@@ottr:Triple(ex:person, rdfs:label, "Person Template")

:: {
o-rdf:Type(?p, ex:Person),
ottr:Triple(?p, ex:hasName, ?name),
ottr:Triple(?p, ex:born, ?born)

} .
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ex:HasFamilyRelation [
owl:NamedIndividual ?p1,
owl:NamedIndividual ?p2,
! owl:ObjectProperty ?r=ex:isFamilyRelatedTo

] :: {
ottr:Triple(?p1, ?r, ?p2)

} .

Note that we have given the property parameter a default value, so if none is given as argument,
the default value ex:isFamilyRelatedTo is used. The ?born parameter is specified as optional,
hence a missing birthdate will still create a person with an IRI and name, but no birthdate.

One can now use these templates to register complete families, where input is given as lists
of IRIs and names for parents and children per family. We can capture both the creation of the
persons and their relations with a single template as follows:

ex:NuclearFamily[
List<owl:NamedIndividual> ?parents,
List<xsd:string> ?parentNames,
List<owl:NamedIndividual> ?children,
List<xsd:string> ?childrenNames

] :: {
zipMax | ex:Person(++?parents, ++?parentNames, none),
zipMax | ex:Person(++?children, ++?childrenNames, none),
cross | ex:HasFamilyRelation(++?parents, ++?children, ex:parentOf)

}

As we assume that input does not contain any dates of birth, the ex:NuclearFamily template
uses a none value as argument for the corresponding parameter in the ex:Person template.

3.4 Instance Expansion
We have now defined the core constructs in the OTTR framework, and will proceed to define the
process of instance expansion, which is to iteratively transform instances into ultimately instances
of base templates only.

We treat list expansion separately first, as this is technically the most complex part of the
expansion process. List expansion is specified using two functions, where the first selects the lists
to expand from the instance and expands them using the given list expander function, while the
second creates one instance per element in the result of this function application. The full list
expansion is the composition of these two functions.

▶ Definition 45. Let I = (t, A, E, e) be an instance of arity m with list expander indices E =
{i1, . . . , in} where ik < ik+1. Define the function ϵ1 from instances to set of argument lists as
follows:

ϵ1((t, A, {i1, . . . , in}, e)) = e(⟨A(i1), . . . , A(in)⟩)

Here we use A(ik) to denote the ik’th element of A. Furthermore, let

ϵ2(A, L, E, i) =
{

L(E′(i)), if i ∈ E

A(i), otherwise

where E′(i) is the position of i in E in ascending order. Finally, let

ϵ((t, A, E, e)) = {t(ϵ2(A, L, E, 1), . . . , ϵ2(A, L, E, m)) | L ∈ ϵ1(t, A, E, e)}
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The function ϵ takes an instance and produces a set of instances by first selecting the argument
lists that are to be expanded and applies the list expander function (with ϵ1), and then creates new
instances based on the expanded lists by combining elements of the expansion with the original
non-expanded values of the argument instance (with ϵ2).

▶ Definition 46. The direct expansion δ(I) of a ground instance I = (t, A, E, e), where t

corresponds to the template object T , is defined as follows:
1. if E ̸= ∅, then the direct expansion of I is ϵ(I).
2. if there is an i such that ai = none and its corresponding parameter is not optional and has no

default value, then δ(I) = ∅.
3. if T is a base template or a signature (and not a template), then δ(I) = {I}.
4. otherwise, let T = (S, B) and build the induced substitution σ of T and I by considering each

argument ai of I and its corresponding parameter Pi with variable xi in T :
if ai has value none and pi has a default value d, then σ := σ ∪ {xi/d}
otherwise, σ := σ ∪ {xi/ai}

Then let δ(I) = Bσ, that is, σ applied to the pattern B of T .

In the above definition, the first case is performing the list expansion defined in the previous
definition. The second case handles none values, where none values given to non-optional
parameters (without default value) result in an empty expansion, i.e., the instance is discarded,
and none values given to parameters with a default value are replaced with that default value.
The third case states that the expansion of a base template (or a signature, i.e., the case where we
do not have the full definition of a template object) is just the base template itself (however, note
that step comes after the former two, so these steps apply first). The final case is the replacement
of an instance to a template with the pattern the template denotes, where parameter values are
substituted with argument values.

This denotes a single step in the expansion, the full expansion of an instance is simply the
fix-point of this process.

▶ Definition 47. The expansion of a set of ground instances I is the fix-point of the following
function:

η(I) =
⋃
{δ(I) | I ∈ I}

Example 48 gives an example of the expansion process of the previously exemplified instances
and templates.

▶ Example 48. The example demonstrates the expansion of selected instances from Example 30.
For the two first examples, we show the step-wise expansion process.

The following instance:

ex:Person(ex:mary, "Mary Smith", "1980-02-03"^^xsd:date) .

. . . expands in one step to:

o-rdf:Type(ex:mary, ex:Person),
ottr:Triple(ex:mary, ex:hasName, "Mary Smith"),
ottr:Triple(ex:mary, ex:born, "1980-02-03"^^xsd:date)

. . . which expands in one step to:

ottr:Triple(ex:mary, rdf:type, ex:Person),
ottr:Triple(ex:mary, ex:hasName, "Mary Smith"),
ottr:Triple(ex:mary, ex:born, "1980-02-03"^^xsd:date)
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. . . which is equivalent to the following RDF graph:

ex:mary rdf:type ex:Person ;
ex:hasName "Mary Smith" ;
ex:born "1980-02-03"^^xsd:date .

The following instance:

ex:Person(ex:bob, "Bob Green", none) .

. . . expands in one step to:

o-rdf:Type(ex:bob, ex:Person),
ottr:Triple(ex:bob, ex:hasName, "Bob Green"),
ottr:Triple(ex:bob, ex:born, none)

. . . which expands in one step to:

ottr:Triple(ex:bob, rdf:type, ex:Person),
ottr:Triple(ex:bob, ex:hasName, "Bob Green")

. . . which is equivalent to the following RDF graph:

ex:bob rdf:type ex:Person ;
ex:hasName "Bob Green" .

The following instance:

cross | ex:HasFamilyRelation(
++(ex:peter, ex:mary),
++(ex:carl, ex:nora),
ex:parentOf) .

. . . expands to the following RDF graph:

ex:peter ex:parentOf ex:carl, ex:nora .
ex:mary ex:parentOf ex:carl, ex:nora .

The following instance:

zipMax | ex:HasFamilyRelation(
++(ex:eric, ex:hannah, ex:bob),
ex:peter,
++(ex:fatherOf, ex:motherOf)) .

. . . expands to the following RDF graph:

ex:eric ex:fatherOf ex:peter .
ex:hannah ex:motherOf ex:peter .
ex:bob ex:isFamilyRelatedTo ex:peter .

Finally, we define the process of annotation expansion.

▶ Definition 49. The annotation expansion of a template signature is the result of replacing the
annotation instances of the template signature with their expansion.
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3.5 Template Library and Dataset
In this section, we will define what it means for a set of template objects and instances to be
correct, e.g., with respect to the type system and template signature specifications. We start by
defining the notions of template library and dataset.

▶ Definition 50. A template library is a set of template objects. A template dataset is a pair
(L, I) of a template library L and a set of ground template instances I.

▶ Definition 51. For a term v occurring in an instance (t, ⟨a1, . . . , an⟩, E, e), we say that v has
inferred type p if v is a term in an argument ai at depth n and either:

i /∈ E, with a corresponding parameter with a type having the type p at depth n

i ∈ E, with a corresponding parameter with a type having p at depth n− 1

The inferred type of a term is the type the term is used as. A term may therefore have many
inferred types, one for each time the term occurs in any instance.

▶ Definition 52. A term v is consistently typed in a set of instances if there exists a type p

unequal to ⊥ such that
p is a subtype of all inferred types of v, and
the type of v is compatible with p.

In other words, a term is consistently typed if there is a type one can assign it that is a subtype
of all of its inferred types and that is compatible with the actual type of the term. Note that
this definition covers both the consistent use of terms and correct typing as discussed above. For
example, if a term v is used both as an xsd:int and as a xsd:string, this is a case of inconsistent
use of the term v, as there is no subtype for these inferred types (unequal to ⊥), which violates
the first point. If the term v has type xsd:int but is used as a xsd:string, then it is a case of
incorrect typing and a violation of the second point of the definition.

▶ Example 53. Assume the IRI ex:Eagle is used both as a owl:NamedIndividual and a
owl:Class. Under the type hierarchy given in Table 1 there exists no subtype of these types,
hence ex:Eagle is not consistently typed. Under the type hierarchy given in Table 2 there exists a
subtype of these types, :Punned-Class-NamedIndividual, hence ex:Eagle is consistently typed.

▶ Definition 54. An instance is modifier correct if all of its arguments satisfy the corresponding
parameter modifiers.

▶ Implementation 55. Any non-blank constant and any variable of a parameter marked with
nonBlank satisfies the nonBlank modifier.

Note that the definition above ensures that the nonBlank modifier is propagated upwards in the
dependency graph of templates so that any variable used as an argument to a nonBlank-parameter
must be marked as nonBlank.

▶ Definition 56. A set of instances is consistently typed (modifier correct) if every term occurring
in it is consistently typed (modifier correct). A template library is consistently typed (modifier
correct) if the set of all instances occurring in it is consistently typed (modifier correct).

This covers the correct use of terms.
We now define correctness of the interplay between template objects and between templates

and instances by way of several properties that combined form the notion of correctness.

▶ Definition 57. A template T directly depends on a template object S if T has a pattern that
contains an instance of S. A template library is acyclic if the directly depends relation is acyclic.
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Acyclicity ensures that instance expansion terminates and is finite. Note that this also disallows
recursively defined templates. However, we have no means of manipulating or producing new
terms apart from through list expansion. Under the current type system, we are unable to define
a template that can apply a list expander to an instance of itself, as this would not be consistently
typed. Thus, a recursive call within a template’s pattern can only reuse the same arguments it was
originally given or have constants as arguments, thus creating an infinite loop in the expansion.

▶ Definition 58. A set of instances I has referential integrity with respect to a template library L
if every instance has a name corresponding to a template signature in σ(L), and that the arity of
the instance equals the arity of the corresponding template signature.

A template library has referential integrity if no two non-signature template objects have the
same name and the set of all instances occurring in it has referential integrity with respect to it.

Referential integrity ensures that all instances refer to a unique template object, and that the
number of arguments equals the number of parameters in the corresponding signature.

▶ Definition 59. A template object is well-founded if it is a base template or if it is a template
that depends only on well-founded templates. A template library is well-founded if it contains only
well-founded templates.

Well-foundedness is a property that ensures that all templates are properly defined, that is,
there are no templates that depend on a template object that is a signature only. It characterizes
the fact that instances can be expanded all the way to instances of base templates only. Note
that well-foundedness is not the same as acyclicity. A template that depends on a template object
which is a signature is non-well-founded but acyclic, while a template that directly depends on a
base template and itself (recursively) is well-founded and cyclic.

▶ Definition 60. A semi-valid template library is a template library that is consistently typed,
modifier correct, acyclic, and has referential integrity.

▶ Definition 61. A valid template library is a semi-valid template library that is well-founded.
A valid template dataset is a template dataset where its template library is valid, and its set of
instances is consistently typed and has referential integrity with respect to the template library.

The difference between a semi-valid and a valid library is whether all template objects are
properly defined or not.

▶ Example 62. Below are examples of violations of correctness of instances and templates as
defined above, based on the templates from Example 44.

ex:Person(ex:bob, "Bob Green") .
ex:Person(_:bob, ex:bob_green, none) .
ex:Person(_:b, _:b, none) .
ex:HasFamilyRelation(ex:bob, ex:mary, _:someProp) .

The errors in the above instances are:
1. The instance has two arguments, but the signature requires three.
2. The IRI ex:bob_green is given as an argument to a parameter of the incompatible type

xsd:string.
3. The blank node _:b is used inconsistently; it is used as an argument to two parameters with

the types owl:NamedIndividual and a xsd:string that have no common subtype unequal
to ⊥.

4. The blank node _:someProp is used as an argument to a parameter with a nonBlank modifier.
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ex:ErrTemplate1 [ owl:ObjectProperty ?r ] :: {
ex:HasFamilyRelation(ex:bob, ex:mary, ?r) } .

ex:ErrTemplate2 [ ottr:IRI ?p ] :: {
ex:Person(?p, "Mr. P", none) } .

ex:ErrTemplate3 [ owl:NamedIndividual ?p, xsd:string ?n ] :: {
ex:MakePerson(?p, ?n) } .

ex:ErrTemplate4 [ ottr:IRI ?p ] :: {
ex:ErrTemplate4(?p) } .

The errors in the above templates are:
In ex:ErrTemplate1, the parameter ?r has no nonBlank modifier and is used as argument to
a template parameter with a nonBlank modifier.
In ex:ErrTemplate2, the parameter ?p has the type ottr:IRI and is used as an argument to
a template parameter with the incompatible type owl:NamedIndividual.
ex:ErrTemplate3 depends on an undefined template ex:MakePerson.
ex:ErrTemplate4 has a cyclic definition.

4 Serialization Formats

The OTTR framework offers two serialization formats for representing templates and instances, a
special-purpose format called stOTTR, and an RDF-based format specified using the wOTTR
vocabulary.

4.1 stOTTR: Terse OTTR Syntax
The stOTTR serialization format is designed to be a terse and easy to read and write syntax for
representing OTTR templates and instances following the abstract model and syntax as defined
in Section 3. The stOTTR grammar takes the Turtle RDF grammar [2] as starting point and
expands this to support expressing templates and instances. Formally, stOTTR is specified in
Antlr6 Extended Backus-Naur form (EBNF) that extends relevant parts of the formal Turtle
grammar which is used for the representation of terms, i.e., IRIs, blank nodes and literals. The
stOTTR grammar specification is developed in GitLab,7 and published at ottr.xyz8 and Zenodo.9
Figure 5 on page 7 demonstrates the stOTTR format on the o-p:NamedPizza template.

4.2 wOTTR: RDF Vocabulary
wOTTR is an RDF vocabulary for expressing OTTR templates and instances in an RDF format.
The motivation for an RDF-based serialization format for OTTR is to support a development
and management environment for OTTR based only on semantic web standards, using, e.g.,
triple stores, SPARQL, OWL, and rule languages to manipulate and manage templates and
their instances. The vocabulary is designed to result in a compact and readable representation
of templates and instances in Turtle format exploiting in particular Turtle’s compact RDF list

6 https://www.antlr.org/
7 https://gitlab.com/ottr/spec/stOTTR
8 https://spec.ottr.xyz/stOTTR/0.1.4/
9 https://zenodo.org/records/12568905

https://www.antlr.org/
https://gitlab.com/ottr/spec/stOTTR
https://spec.ottr.xyz/stOTTR/0.1.4/
https://zenodo.org/records/12568905
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1 o-p:NamedPizza rdf:type ottr:Template ;
2 ottr:parameters
3 ( [ ottr:type owl:Class ; ottr:variable _:pizza ]
4 [ ottr:modifier ottr:optional ; ottr:type owl:NamedIndividual ;
5 ottr:variable _:country ]
6 [ ottr:type ( ottr:NEList owl:Class ) ; ottr:variable _:toppings ] ) ;
7 ottr:pattern
8 [ ottr:of o-owl-ax:SubObjectHasValue ;
9 ottr:values ( _:pizza pz:hasCountryOfOrigin _:country ) ] ,

10 [ ottr:of o-owl-ax:SubObjectSomeValuesFrom ;
11 ottr:modifier ottr:cross ;
12 ottr:arguments
13 ( [ ottr:value _:pizza ]
14 [ ottr:value pz:hasTopping ]
15 [ ottr:modifier ottr:listExpand ; ottr:value _:toppings ] ) ] ,
16 [ ottr:of o-owl-ax:SubClassOf ;
17 ottr:values ( _:pizza pz:NamedPizza ) ] ,
18 [ ottr:of o-owl-re:ObjectUnionOf ;
19 ottr:values ( _:b0 _:toppings ) ] ,
20 [ ottr:of o-owl-ax:SubObjectAllValuesFrom ;
21 ottr:values ( _:pizza pz:hasTopping _:b0 ) ] .

Figure 11 The o-p:NamedPizza template in wOTTR syntax.

representation for expressing parameter lists, argument lists and complex type specifications.
The entities defined in the wOTTR vocabulary lie close to the formal vocabulary established in
Section 3; the classes, properties and named individuals of the vocabulary are listed in Table 3,
Table 4, and Table 5, respectively. The wOTTR vocabulary is developed in GitLab,10 and
published at ottr.xyz11 and Zenodo.12

Although the mapping from the wOTTR vocabulary to the formally defined concepts of OTTR
should be immediate, there are some design choices and peculiarities that are due to the wish for
a compact and readable representation, and the constraints of the RDF and OWL standards. We
will illustrate these by using the o-p:NamedPizza template represented in the wOTTR vocabulary,
which is listed in Figure 11.
Variables As RDF does not include variables we have chosen to use blank nodes for representing

a template’s parameters. The variables of a template are specified as a list of parameters using
the predicate ottr:variable, see, e.g., line 3 in Figure 11. Care must then be taken to not
use the same blank nodes as constants.

Lists The wOTTR language makes frequent use of RDF lists as a means to represent an ordering
of resources. We do this since RDF lists have a succinct serialization in RDF Turtle and as it
is syntactically similar to ordinary function calls and predicates. In Figure 11, lists are used
for parameter lists (starting on line 3), instance argument lists (e.g., on line 13), instance
argument value lists (e.g., on line 9), and complex type specifications; line 6 specifies the type
NEList<owl:Class>.

Annotation properties All properties of the wOTTR vocabulary are annotation properties. This
is to indicate that the vocabulary is not intended to be used for reasoning over templates and
instances. The use of RDF lists, as explained above, also places the vocabulary outside the
OWL 2 DL fragment, as RDF lists are used in the serialization of OWL.

10 https://gitlab.com/ottr/spec/wOTTR
11 https://spec.ottr.xyz/wOTTR/0.4.5/
12 https://zenodo.org/records/12581215
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Table 3 wOTTR vocabulary classes and their definition. The ottr: prefix is omitted.

Class Definition
:Signature A signature specifies the permissible input for instances. It does this through

its list of parameters. The IRI of the signature is a unique name that its
instances must reference.

:Template A template is a signature that additionally specifies a pattern. The pattern,
which is a set of instances, determines the result of the direct expansion (1-step
expansion) of an instance of the template.

:BaseTemplate A base template is a signature with no pattern. The expansion of an instance
of a base template is the instance itself.

:Parameter A parameter specifies the variable terms or resources of a pattern and the
permissible values for the corresponding instance arguments.

:ParameterModifier A parameter modifier is a flag or marker that is set on a parameter to
alter the permissible corresponding argument values and/or the behaviour of
expanding instances.

:Instance An instance is an instantiation of a signature, template or base template.
The instance must refer to a signature and provide arguments that match the
corresponding parameters of the signature.

:ExpansionModifier An expansion modifier is a flag or marker that is used to alter the behaviour
of expanding the marked instance.

:Argument An argument specifies an input value for a given instance.
:ArgumentModifier An argument modifier is a flag or marker that is used to identify that the

argument plays a special role in modified expansions. See also ExpansionModi-
fier.

Two instance shapes Template instances are stated using the property ottr:of which specifies
the template. Instances may be specified using two different shapes, called compact and
canonical. The compact shape uses the property ottr:values and an RDF list to directly
give the argument values of the instance, very similar to how instances are written in stOTTR;
line 9 shows an example. The canonical shape uses the property ottr:arguments and an RDF
list of arguments, where each argument, usually represented by blank node, has a ottr:value
property that sets the argument value; line 15 shows an example. The canonical shape can be
used in all cases, but must be used when more data than just the argument value is required,
as line 15 exemplifies by marking the argument for list expansion.

5 Template Libraries

A template library is a collection of templates developed and curated for a particular purpose, such
as representing patterns for a given vocabulary, domain, or project. The ability to share and reuse
templates for common modelling patterns is a core feature of the OTTR framework. This section
gives an overview of the vision behind OTTR template libraries and the support and developments
made towards the vision. Large parts of this section are taken from previous publications [52, 34]
and are included here to give a complete presentation of the OTTR framework.

The vision of template libraries is similar to the role APIs and repositories of API source
code play in software engineering. Just as software projects rely on stable access to APIs and
documentation to work and be understood and used, ontology engineering projects using OTTR
must be able to rely on the availability and documentation of templates. For this reason, it is
critical that a published template does not change in any way that may affect the expansion of
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Table 4 wOTTR vocabulary properties, indicating their domain and range. The ottr: prefix is
omitted.

Property Domain Range Definition
:parameters :Signature List of :Parameter Associates a signature with one required list

of parameters.
:annotation :Signature :Instance Associates a signature with an optional set

of annotation instances.
:variable :Parameter rdfs:Resource Sets the required variable of a parameter.
:type :Parameter (List of) rdfs:Resource Sets an optional type of a parameter. A

missing type implicitly sets the type to the
most general type.

:default :Parameter rdfs:Resource Sets an optional default value of a parameter.
The default value is used in case an argument
value is unspecified or is ottr:none.

:pattern :Template :Instance Associates a template with an optional set
of pattern instances.

:name xsd:token A human readable name or label.
:of :Instance :Signature Associates an instance with its required sig-

nature.
:arguments :Instance List of :Argument Associates an instance with a list of argu-

ments.
:values :Instance List of rdfs:Resource Associates an instance with a list of argu-

ment values
:value :Argument rdfs:Resource Associates an argument with its argument

value.
:modifier

Table 5 wOTTR vocabulary individuals and their type. The ottr: prefix is omitted.

Named Individual Class Definition
:optional :ParameterModifier optional is a parameter modifier which makes the value

none a permissible instance argument value for this para-
meter.

:nonBlank :ParameterModifier nonBlank is a parameter modifier which makes blank
nodes illegal instance argument values for this parameter.

:cross :ExpansionModifier cross is an expansion modifier which sets the list expan-
sion operation to cross product.

:zipMax :ExpansionModifier zipMax is an expansion modifier which sets the list
expansion operation to zip, extending smaller list to the
length of the longest list by appending empty values.

:zipMin :ExpansionModifier zipMin is an expansion modifier which sets the list ex-
pansion operation to zip with the shortest list as length.

:listExpand :ArgumentModifier listExpand is an argument modifier that selects argu-
ments for list expansion.

:none rdfs:Resource none is an individual which is used to designate a missing
argument value.

:Triple :BaseTemplate Triple is a base template that represents an RDF triple.
:NullableTriple :BaseTemplate NullableTriple is a base template that represents an

RDF triple and permits none value arguments.
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its instances, and that the expansion can be performed at any time. The meaning of a template
instance must stay constant; an instance should be considered as semantically equivalent to its
expansion. This places strong requirements on the availability and versioning of templates.

To support the quality of template libraries and the management of these, concepts and proced-
ures for library governance, together with methods for library maintenance and methodologies for
library construction have been developed. A documentation system together with a purpose-built
set of documentation templates is available for annotating templates to generate user-friendly
documentation pages for publishing template libraries. This is presented in more detail below.

5.1 Template Life-cycle Management

To aid the life-cycle management of templates in the library, a set of template statuses and an
interpretation of versioning categories for templates has been proposed [52].

5.1.1 Status

A template’s status indicates the maturity of the template and its level of support and endorsement.
Each template has exactly one of the following statuses, here ordered from low to high:

incomplete < draft < candidate < proposed recommendation < recommendation

A template should not depend on templates of lower status than the template’s own status. A
template may additionally have the status of deprecated. The statuses are described in more detail
below.

An incomplete template is of the lowest status, which is the default if no status is stated for a
template. The only requirement for an incomplete template is that it must be syntactically
correct according to its serialization format, but need not otherwise be a valid template. This
means is it permissible for an incomplete template to, for example, depend on templates that
do not (yet) exist or that contain type errors. An incomplete template is typically a placeholder
for future work and should not be published for public use.

A draft template must be a syntactically correct and well-founded template, i.e., the template is
completely defined and does not contain any formal errors. A draft template should not be
considered mature or stable. In terms of its life-cycle, it is published in order to be available
to others, both for use and for further development.

A candidate template is a draft template which additionally contains a complete set of metadata
and is endorsed by a named individual or organization that aims to promote the template to
recommendation status. The endorser is expected to actively participate in the support and
promotion of the template; failure to do so may result in the deprecation of the template. A
candidate template should be considered stable.

After a period in candidate status, a candidate template may be proposed as a recommendation
and given the status of proposed recommendation. This triggers a public vote to promote
the template to recommended status. Relevant comments and issues collected during the
voting phase must be addressed if the template can be given the status of recommended.

A recommended template is of the highest status. This means that the template is of high
quality and is well-integrated into the library.

A deprecated template is discouraged from use. An explanation for why a template is deprecated
should be given.
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5.1.2 Versioning
Each time a template is published, a new version number must be assigned to the template
using semantic versioning13 and the numbering scheme major.minor.patch, e.g., 0.2.3. In our
translation of these types of updates to OTTR templates the notions of the expansion of a template
and its signature are central. Any changes to the signature of a template which make existing
instances incompatible with the updated template are backwards incompatible changes. For
OTTR templates we use the following definitions:

Patch updates are backwards compatible changes that do not affect the expansion of a template.
These changes will neither affect existing instances of the updated template nor their expansion.

Minor updates are backwards compatible changes that may alter the expansion of the template.
An example is adding or removing body instances. This means that existing instances of the
template remain legal and valid for the new version of the template, but their expansion will
be different.

Major updates are backwards incompatible changes. An example is adding or removing a
parameter to/from the template signature, or restricting the type of a parameter. This means
that existing instances of the template will not be legal instances of the updated template.

In the case that the update greatly changes the perceived meaning of the template, the update
should be categorized as a greater change than according to the above descriptions.

Draft templates are exempted from the above rules. Following the semantic versioning
specification we require that draft templates have a version number with the major version 0,
which signals that anything may change at any time and the public API should not be considered
stable. When a template reaches the next status of candidate, the major version must be set to 1.

5.2 Metadata
Template metadata, like the status and version of a template, but also textual explanations,
examples and provenance information, is captured by annotation instances placed on templates.
The docttr package of the core template library contains templates created specifically for this
purpose. The following lists the templates in the package and the information they are designed
to capture:
Signature: label, description, scope and editorial notes, related resources
Provenance: time of creation and update, authors and contributors
Version: status, version number, references to previous and next versions
ChangeNote: change description, including author and timestamp of the change
Example: explanatory examples of the template
Deprecated: mark the template as deprecated, including an explanation of why
Parameter: parameter description, example, notes
The documentation of the template package is found at http://tpl.ottr.xyz/p/docttr/.

5.3 docTTR: Template Documentation System
The documentation system for OTTR templates is called docTTR. docTTR reads as input all the
templates that constitute a library and produces a set of interlinked HTML pages. All pages are
presented in an HTML frameset layout, inspired by Javadoc,14 a documentation system for Java.

13 https://semver.org/spec/v2.0.0.html
14 https://www.oracle.com/java/technologies/javase/javadoc-tool.html
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Each template documentation page contains the metadata captured by annotation instances, a
list describing its parameters, the template rendered in different serialization formats, a generated
sample instance of the template in all formats with its resulting expansion, both visualized and in
RDF Turtle format; an expansion of the sample instance, a dependency graph showing all the
templates that the template, and a list of the vocabulary elements that the template introduces.

5.4 Template Relations for Library Maintenance
Using the formal fundamentals of the OTTR language it is possible to define logical relationships
between templates that describe characteristics that concern the quality of template libraries. We
focus in particular on removing redundancy within a library, where we distinguish two different
types of redundancy: a lack of reuse of existing templates, as well as recurring patterns not
captured by templates within the library. To this end, we use the following template relations.

▶ Definition 63. Let T1 = ((t1, P1, A1), B1) and T2 = ((t2, P2, A2), B2) be two templates (that is,
template Ti has name ti, parameters Pi, annotations Ai and pattern Bi). We say that T1 overlaps
T2 if there exist sets of template instances I1 ⊆ B1 and I2 ⊆ B2 and substitutions ρ1 and ρ2 of
respectively P1 and P2 such that ρ1(I1) = I2 and ρ2(I2) = I1.

Furthermore, we say that T1 contains T2 if there exists a substitution ρ of the parameters of
T2 such that ρ(B2) ⊆ B1.

Using these relations, we can now formally define notions of redundancy in template libraries.

Lack of reuse is a redundancy where a template S has a contains relationship to another template
T , instead of a dependency relationship to T . That is, S duplicates the pattern represented by
T , rather than instantiating T . This can be removed by replacing the offending portion of the
pattern of S with a suitable instance of T .

Uncaptured pattern is a redundancy where a pattern of template instances is used by multiple
templates, but this pattern is not represented by a template. In order to find uncaptured
patterns one must analyse in what manner multiple templates depend on the same set of
templates. If multiple templates overlap as defined above, this is a good candidate for an
uncaptured pattern. However, an overlap does not necessarily need to occur for an uncaptured
pattern to be present.

We have implemented an algorithm for efficiently identifying uncaptured patterns in large
template libraries, and used it to successfully refactor a real-world template library [50].

5.5 Template Development Methodologies
The recursive structure of OTTR templates supports a top-down modelling approach to template
library development, where complex modelling patterns are iteratively broken down into less
complex patterns.

Lupp et al. [34] use this approach, and identify different informal layers to a template library:
Base templates are at the lowest level and specify patterns over an underlying data representation

language.
Utility templates are used to improve template formulation by grouping base template instances

to avoid unnecessary repetition. Utility templates represent patterns that are typically only
meaningful for users familiar with the language that the base templates abstract over, e.g.,
RDF.

Logical templates represent ontological axioms and convenient combinations of axioms, such as
subclass relationship and concept partitioning.



M. G. Skjæveland and L. H. Karlsen 5:35

Domain templates represent modelling patterns in a specific domain. They are independent of
specific input formats and represent common domain conceptualizations.

System/User-facing templates record patterns that represent end-user or system formats which
typically involve complex combinations of domain statements. A system template is hence
only required if the system representation differs from the domain conceptualization and if the
format is useful to represent as a template. This may be the case when the format is common,
e.g., if the system is a de facto standard in the domain.

Each layer provides an “interface” for the layers above it to use, hence hiding the complexity of
lower layers. The layering helps with the construction and maintenance of a template library in
that the various layers typically fit different competencies and may be managed by people with
different expertise – possibly with the assistance of ontology experts.

Blum et al. [5] give insights from an OTTR-specific ontology engineering methodology similar
to that of Lupp et al. [34]. They characterize their methodology as both bottom-up, in the sense
that existing data is taken as the starting point for developing templates, and top-down, as the
methodology exploits the recursive structure of OTTR templates to incrementally break down the
more complex data-facing templates to OWL and RDF templates. In their work, they found that
OTTR templates helped simplify the communication between subject-matter experts and ontology
experts in that it allows them to focus on what to model – the information content, represented
by template signatures – without the need to consider how to model it, which is later represented
by template bodies.

5.6 Public Template Libraries
There are a handful of publicly available OTTR template libraries:

Core OTTR Library [52] This library is developed and maintained by the OTTR team. It
contains about 200 templates that predominantly represent common patterns over the OWL,
RDFS and RDF vocabularies. It is intended to be a central resource for all OTTR users and
other template libraries. The library is available at https://tpl.ottr.xyz.

POSC Caesar Association The POSC Caesar Association (PCA) has published the Product
Life-cycle Management Reference Data Library (PLM-RDL) OTTR Library at https://rds.
posccaesar.org/ontology/plm/tpl/0.1/:

The PLM-RDL OTTR library is specifically intended to cover the process industry domain
and the templates will, in general, make direct reference to resources from the PLM-RDL.
If you wish to build ontologies that extend on the PLM-RDL, using these templates will
help ensure that your modelling patterns are fully consistent with those of the PCA ISO
15926-14 compliant ontologies.

DiProMag The DiProMag project has published an OTTR template library for modelling certain
characteristics of chemical elements at https://www.dipromag.de/dipromag_onto/. (See
also Section 8.4.)

Aspect OWL The ontology design patterns for representing context in ontologies using As-
pectOWL [45] are encoded by an OTTR template library available at https://odp.aspectowl.
xyz/.

6 Instantiation Tools

The tabular format specified by OTTR template signatures is well-suited for consuming and
converting tabular data to RDF by way of OTTR’s expansion mechanism. Assuming the format
of the input table matches the template signature, each row in the input table is naturally mapped
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to a template instance. To this end, the OTTR framework specifies two methods for selecting
and converting tabular data to OTTR template instances: tabOTTR specifies a small markup
language for mapping tabular data files to OTTR template, and bOTTR is an RDF vocabulary
for specifying mappings from database query results to OTTR template instances.

6.1 tabOTTR: Tabular OTTR Template Instances
The intended use of tabOTTR is to annotate existing tabular datafiles, such as CSV files and
spreadsheets, with instructions that specify the data to select and how to transform it to the
correct datatypes for OTTR template instantiation.

In order to generalize over different tabular file formats we use the terms file, table, column,
row and cell. Tables, columns and rows within a file have a unique index which is a positive
integer number assumed to be numbered in a straight-forward ordered consecutive manner. A cell
has a 3-dimensional coordinate given by the indices: (table, column, row). For CSV files, we call
the entire contents of the file a table and assign this the index 1. For spreadsheets, such as in MS
Excel files, each sheet in a file represents a table.

The results of processing a file according to the tabOTTR specification is a set of template
instances. Processing instructions are inserted directly into tables with the token #OTTR. This
token must appear in the first column of the table, and the cell to the right of the token must
contain a processing instruction name with possible instruction arguments given in consecutive
cells immediately to the right of this cell. Each table can contain multiple processing instructions,
and when processing a file all tables in the file are processed. There are three such processing
instructions: end, prefix and template, which will be discussed below. An instruction dictates
the interpretation of subsequent rows, and the scope of the instruction is the following rows until
a row containing a new instruction or until the end of the table. Rows which are not in the
scope of an instruction are not processed. All processed cells are trimmed for leading and trailing
whitespace. All IRIs may be given using a QName, using prefixes set with the prefix instruction.

The instructions are defined as follows:
end instruction The end instruction takes no arguments. It is a no-operation instruction that

takes no arguments and whose purpose is simply to terminate the previous instruction. We
recommend to always use the end instruction to terminate an instruction, so that the scope of
an instruction is made explicit.

prefix instruction The prefix instruction declares namespace prefixes that may be used in other
instructions and that will be included in the processed output. The prefix instruction takes
no arguments. Each following row declares a namespace prefix, where the

1. column contains the prefix name, and the
2. column contains the namespace name.

All other columns are ignored. The scope of the defined prefixes is the whole input file.
Conflicting declarations of the same prefix name must raise an error.

template instruction The result of processing a template instruction is a set of template instances.
A template instruction takes one argument: a template IRI. Subsequent rows have special
meaning; assume the template instruction is on a row with index r, then:

Row r + 1 contains cells that specify the template argument index of the template instances.
Cell values must be a non-negative integer or the empty string.
Row r +2 contains cells that specify the type instruction of the template instance arguments.
Cell values must have a legal type instruction; they are listed in Table 6.
Row r + 3 is ignored. This row can be used for informative content such as column headers.
The following rows, rows > r + 3, in the scope of the template instruction specify each
one instance of the template whose IRI is specified by the template instruction. The cells
in these rows contain instance argument values. Each argument value is together with its
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Table 6 Permissible type instructions and their RDF resource interpretation.

Type instruction RDF value interpretation
iri IRI
blank blank node
text untyped literal
an IRI typed literal
auto determined by value, see below
X+, where X is one of the above type instructions RDF list with list items determined by X

corresponding type instruction (as specified in row r + 2) translated into an RDF resource
following Algorithm 1. Each row then represents an argument list to a template instance
ordered according to the positive integer indices of row r + 1.

▶ Example 64. This table contains a prefix instruction that declares two prefixes: ex and foaf.
The prefix instruction is terminated by an end instruction.

#OTTR prefix
ex http://example.net#
foaf http://xmlns.com/foaf/0.1/#
#OTTR end

The result of processing the above table is equivalent to the following RDF Turtle.

@prefix ex: <http://example.net#> .
@prefix foaf: <http://xmlns.com/foaf/0.1/#> .

Type instructions are required for describing how values in tabular data files, which may not
have any typing information, are to be translated into RDF resources. This makes it possible
to for instance create an IRI or an RDF literal from the string value http://example.com/Bob.
The values from columns that are auto typed are translated based on their string value and may
hence end up as RDF resources of different RDF types.

Example 65 gives a simple demonstration of the template instruction. Table 7 demonstrates
the translation of auto typed values. Figure 10 on page 13 shows a spreadsheet that specify 22
instances of the o-p:NamedPizza template listed in Figure 5.

▶ Example 65. The table below contains one template instruction, declaring instances of the
ottr:Triple template, as prescribed by the first row. The next row selects which columns to use
as arguments to the template (which takes 3 arguments). Columns with a value 0 will be ignored
and can be, e.g., used for comments or spreadsheet formula calculations of intermediate values.
The next row sets the type instruction for the columns which contain arguments, in this example,
all columns have the type instruction iri which means that argument values are interpreted as
IRIs. The next row is ignored and may be used for a descriptive label. The following rows specify
instances of the templates. The end instruction closes the scope of the template instruction.

#OTTR template ottr:Triple
2 1 3 0 0
iri iri iri
Predicate Subject Object
foaf:knows ex:Ann ex:Bob
foaf:knows ex:Bob ex:Carl
#OTTR end
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Algorithm 1 Pseudo algorithm for translating tabular file argument values to RDF resources.

function translate( typeInstruction, value)
Output : RDF resource

if value = empty string then
return ottr:none

else if typeInstruction is of the form X+ then
items ← split value by | ;
foreach item in items do item ← translate(X, item);
return RDF list of items

else if typeInstruction = iri then
return IRI of value, accepting QNames and full IRIs

else if typeInstruction = blank then
if value = * then

return Fresh blank node
else

return Blank node with label value
end

else if typeInstruction is of the form of a QName or full IRI then
return Typed literal with lexical value value and datatype typeInstruction

else if typeInstruction = text then
return Untyped literal with lexical value value

else if typeInstruction = auto then
if value is of the form textˆˆtype then

return Typed literal with the lexical value text and type
else if value is of the form text@@lang then

return Language tagged literal with the lexical value text and language tag lang
else if value = true, TRUE, false or FALSE then

return Literal with boolean value of value and datatype xsd:boolean
else if value is of the form of a decimal number then

return Literal with lexical value value and datatype xsd:decimal
else if value is of the form of an integer number then

return Literal with lexical value value and datatype xsd:integer
else if value is of the form of an RDF Turtle labelled blank node then

return Blank node with label value
else if value is of the form of a QName or full IRI then

return IRI of value
else

return Untyped literal with lexical value value
end

else
return Untyped literal with lexical value value

end
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Table 7 Examples of the translation using auto type instruction.

value with auto instruction RDF resource RDF type
* [] fresh blank node
_:myBlank _:myBlank labelled blank node
myBlank "myBlank" untyped literal
ex:Ann ex:Ann IRI
http://other-example#Bob <http://other-example#Bob> IRI
Carl "Carl" untyped literal

ottr:none IRI, special none value
true "true"^^xsd:boolean xsd:boolean
True "True" untyped literal
1 "1"^^xsd:integer xsd:integer
-1.2 "-1.2"^^xsd:decimal xsd:decimal

The table specifies the following template instances:
ottr:Triple(ex:Ann, foaf:knows, ex:Bob) .
ottr:Triple(ex:Bob, foaf:knows, ex:Carl) .

6.2 bOTTR: Batch Instantiation of OTTR Templates
bOTTR is an RDF vocabulary for specifying mappings between queries over the sources to given
templates. bOTTR hence allows multiple data sources on different formats to be integrated via
OTTR templates into a single RDF/OWL representation. The bOTTR vocabulary is specified by
an OWL ontology that extends the wOTTR vocabulary (See Section 4.2), and provides terms for
specifying sources, queries over these sources, and how to map the query results into instances of
a specified OTTR template. The bOTTR specification is developed in GitLab,15 and published at
ottr.xyz16 and Zenodo.17

The classes ottr:InstanceMap, ottr:Source and its subclasses, and ottr:ArgumentMap,
which specify respectively the mappings, the source and the translation of source values to
template instance arguments, are described below.

6.2.1 InstanceMap
The central notional of bOTTR is ottr:InstanceMap. An ottr:InstanceMap specifies a mapping
between one ottr:query over a given ottr:Source and one ottr:Template. The result of
applying the mapping is that each record in the query result set becomes an ottr:Instance of
the specified ottr:Template. The ottr:argumentMaps specify how source values are translated
to instance arguments.

An ottr:InstanceMap must specify a ottr:template, a ottr:source, a ottr:query, which
must be a valid query over the specified ottr:Source, and optionally a list of ottr:argumentMaps.
If set, the size of the argument map list must match the size of the query result records. These
specify how query result values are translated to instance argument values. The result of processing
a set of ottr:InstanceMaps is the set of instances resulting from each of the ottr:InstanceMaps.

15 https://gitlab.com/ottr/spec/bOTTR
16 https://spec.ottr.xyz/bOTTR/0.1.2/
17 https://zenodo.org/records/12607264
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6.2.2 Sources

A ottr:Source defines a source of data and how it can be accessed. The location of the source
is specified with ottr:sourceURL, this can be either a URL or a file path. There are two main
types of ottr:Sources: ottr:StringSource and ottr:RDFSource. These source types again
have subclasses. All query result values from a ottr:StringSource are assumed to be strings,
and if no ottr:argumentMaps are set, then these source values are represented as untyped literals
when transforming them into instance arguments. A ottr:StringSource makes no assumption
on the type of its ottr:query, this must be specified by using a subclass of ottr:StringSource.
For an ottr:RDFSource, all values are assumed to be RDF resources. If no ottr:argumentMaps
are set then the values are left as they are when used as instance arguments. An ottr:RDFSource
accepts only SPARQL queries.

There are four types of sources:
ottr:RDFFileSource is an ottr:RDFSource which is specified by one or more RDF files using

the ottr:sourceURL property.
ottr:SPARQLEndpointSource is an ottr:RDFSource which is specified by a single SPARQL

endpoint address using the ottr:sourceURL property.
ottr:JDBCSource is a ottr:StringSource which is specified using a single JDBC connection

string using the ottr:sourceURL property. Additionally, a ottr:JDBCSource can specify a
ottr:jdbcDriver, ottr:username, and ottr:password for connecting to the database, and
set a ottr:fetchSize to indicate the number of query result rows retrieved on each fetch.

ottr:H2Source specifies a temporary H2 database source which is useful for loading and querying
a CSV file using functionality supported by the H2 SQL query language. The path given to
CSVREAD may use the special constant @@THIS_DIR@@ within the path to denote the directory
of the bOTTR input file.

An example of each source can be seen in Example 66.

▶ Example 66. Below are examples of all the four sources. For the ottr:H2Source, we give a
full instance map to illustrate the use of the CSVREAD function in the query.

[] a ottr:RDFFileSource ;
ottr:sourceURL <http://example.com/file1.ttl>, <http://example.com/file2.ttl> .

[] a ottr:SPARQLEndpointSource ;
ottr:sourceURL <http://example.com/sparql/> .

[] a ottr:JDBCSource ;
ottr:sourceURL "jdbc:mysql://localhost/mydb" ;
ottr:jdbcDriver "com.mysql.jdbc.Driver" ;
ottr:username "Ann" ;
ottr:password "password123" .

[] a ottr:InstanceMap ;
ottr:source [ a ottr:H2Source ] ;
ottr:query """

SELECT ’First Name’, ’Age’, ’City’, ’Homepage’
FROM CSVREAD(’@@THIS_DIR@@/data/address.csv’);

""" ;
ottr:template ex:Person .



M. G. Skjæveland and L. H. Karlsen 5:41

6.2.3 ArgumentMap
An ottr:ArgumentMap specifies how source values are mapped to OTTR template instance
arguments, i.e., RDF terms. In case no argument maps are specified, defaults apply from the
choice of ottr:Source defined above. When applying an argument map to a source value, we
sometimes refer to the string value of the source value. In case the source is a ottr:StringSource,
then the string value of a source value x is x. In case the source is an ottr:RDFSource, the string
value is of an RDF resource x is:

the lexical value of x, if x is a literal
the IRI of x, if x is a IRI,
the blank node label of x, if x is a blank node

An ottr:ArgumentMap is defined by the following properties, each specifies how values are
transformed to RDF terms. The properties are applied in the order they are presented below.
ottr:nullValue Specifies the argument value to be used in case the source value is unspecified

or NULL (as defined in the source’s format). This value may be any RDF resource.
ottr:labelledBlankPrefix Selects which values to translate to labelled blank nodes. The

default value is _:. If the string value of the source value starts with and is longer than the
ottr:labelledBlankPrefix, then the argument value becomes a labelled blank node where
the string value of the source value following the ottr:labelledBlankPrefix becomes the
label. Example: if the ottr:labelledBlankPrefix is "ABC" and the source value is "ABCDEF",
then a labelled blank node _:DEF is created.

ottr:languageTag Specifies the language tag of the argument value. If this value is set, then
the source value becomes a language tagged literal (and automatically gets ottr:type
rdf:langString) where the lexical value is the string value of the source value.

ottr:listStart, ottr:listEnd, ottr:listSep Specifies how to translate source values into lists
using the string value of the source value. The default values are respectively: ( , ) and ,. A
value may represent a nested list of arbitrary depth. ottr:listStart and ottr:listEnd must
be a one-character string that specifies respectively the start and end of a list. ottr:listSep
is a string that specifies how the list elements are separated. The list element values are
trimmed for white space. These properties may only be used if the ottr:type is a list type.
Example: if the source value is "(( a , b ), (c , d))", and the ottr:type is (rdf:List
rdf:List xsd:string), then the value becomes the RDF list (( "a" "b" )("c" "d")).

ottr:type Specifies the ottr:Type of the argument value (using the wOTTR encoding of our type
system). If the source is an ottr:RDFSource and the type of the source value is compatible
with the specified ottr:type, then the argument value is equal to the source value (the
argument map leaves the value unchanged). If the value is not compatible or the source
is a ottr:StringSource, then the string value of the source value is cast to the specified
ottr:type. This may result in an error if the cast is not possible. This property may not be
used if ottr:labelledBlankPrefix is used.

▶ Example 67. This example is an adaption of Example 66 to illustrate the functionality of
argument maps.

[] a ottr:InstanceMap ;
ottr:source [ a ottr:H2Source ] ;
ottr:query """

SELECT ’Homepage’, ’First Name’ || ’ ’ || ’Last Name’ AS fullName, ’Bdate’
FROM CSVREAD(’people.csv’);

""" ;
ottr:template ex:Person ;
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ottr:argumentMaps (
[ ottr:type ottr:IRI ]
[ ] ## empty Argument map
[ ottr:type xsd:date; ottr:nullValue ottr:none ]

) .

Assuming that the contents of people.csv are

First Name Last Name Bdate City Homepage
Ann Annsen 1990-12-01 Amsterdam http://example.com/Ann
Bob Bobson 1987-03-23 Berlin http://example.com/Bob
Carl Carlson NULL Cairo http://example.com/Carl

then the instance map will produce the following instances:

ex:Person( <http://example.com/Ann>, "Ann Annsen", "1990-12-01"^^xsd:date ) .
ex:Person( <http://example.com/Bob>, "Bob Bobson", "1987-03-23"^^xsd:date ) .
ex:Person( <http://example.com/Carl>, "Carl Carlson", none ) .

7 Implementations

There exist multiple implementations of the OTTR framework. One of these is a reference
implementation that is developed and maintained by the OTTR project and which supports all
the OTTR specifications. The other implementations are developed independently of the OTTR
project and are motivated in part by the need to make the OTTR framework available in other
platforms and programming languages than that of the reference implementation.

7.1 Lutra: The Reference Implementation of OTTR
Lutra is the reference implementation for the OTTR framework, written and actively maintained
by the developers of OTTR. It is an open-source project under an LGPL licence, available at
GitLab,18 at a mirror repository at GitHub,19 and with released sources also stored in Zenodo.20

Lutra is written in Java and is built with Maven; the Maven artefacts are available through
the Sonatype repository under the Java namespace ottr.lutra.21 The codebase is developed
following various established best practices: semantic versioning,22 code style profile, static code
analysis, unit testing, continuous integration and continuous deployment (CI/CD),23 and the
git-flow branching model.24

Lutra supports all the specifications presented in this paper:
Expanding instances and templates
Type checking templates and instances according to the type hierarchy of Table 1
Reading and writing templates and instances in the stOTTR and wOTTR serialization formats
Generating docTTR documentation for template libraries
Processing tabOTTR spreadsheets, supporting only Excel spreadsheet input
Processing bOTTR specifications, supporting all types of sources mentioned in Section 6.2

18 https://gitlab.com/ottr/lutra/lutra
19 https://github.com/rtto/lutra-mirror
20 https://zenodo.org/records/10954639
21 https://central.sonatype.com/search?q=ottr.lutra
22 https://semver.org/
23 https://about.gitlab.com/topics/ci-cd/
24 https://nvie.com/posts/a-successful-git-branching-model/
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https://nvie.com/posts/a-successful-git-branching-model/


M. G. Skjæveland and L. H. Karlsen 5:43

Usage: lutra [-fhV] [--debugStackTrace] [--quiet] [--stdout] [-F=<fetchFormat>]
[--haltOn=<haltOn>] [-I=<inputFormat>] [-L=<libraryFormat>]
[-m=<mode>] [--messageLinePrefix=<linePrefix>] [-o=<out>]
[-O=<outputFormat>] [-p=<prefixes>] [-e=<extensions>[,
<extensions>...]]... [-E=<ignoreExtensions>[,
<ignoreExtensions>...]]... [-l=<library>]... [<inputs>...]

Figure 12 Lutra’s command line interface options and flags as reported by its –help option. (The help
output also gives an explanation of the options and flags which is not shown here.)

There are three available modes of using Lutra: (1) as a command line interface (CLI) serviced
by a Java executable JAR file, (2) as a Java API, or (3) as a web application. The available
options and flags of CLI are listed in Figure 12. Possible modes of operation (set with option -m)
are:
expand expands the input instances according to the specified template libraries and fetched

templates, and writes the expansion result to the specified output format.
format (re)formats the input instances to the specified output format.
expandLibrary expands the specified template libraries.
formatLibrary (re)formats the specified template libraries to the specified output format.
docttrLibrary generates documentation pages for the specified template libraries.
lint checks the input instances or templates for errors.
checkSyntax runs a syntax check of the input, typically for use as an external service for editors.

The API provided by the Java project is documented using Javadoc.25 The central class is
TemplateManager26 that is responsible for orchestrating the reading and writing of templates and
instances. It contains methods for reading a library of templates from a file or folder, checking
its correctness, reading instances from files, folders or mappings (both bOTTR and tabOTTR),
expanding the instances and checking that the instances are correct with respect to a template
library, translate instances or templates from one serialization to another, and more.

A web application variant of the CLI, called WebLutra, is available at https://weblutra.
ottr.xyz. The intention of WebLutra is to make the OTTR framework available for simple use
and experimentation without the need for installing and running software locally. WebLutra
also serves the interactive examples that are part of the online primer for OTTR available at
https://primer.ottr.xyz. It is implemented as a simple “wrapper” over the CLI interface
exposing certain operations through a simple web form. WebLutra is packaged as a Docker image
that is available from GitLab’s container registry.27

7.2 maplib: Support for Data Frame Mappings with OTTR
maplib [1] is a library written in Rust using Apache Arrow,28 Polars29 DataFrames and with
Python bindings, which allows data frames, a popular data structure used in data analytics tools,
to be mapped to RDF by way of OTTR templates.30 By exploiting libraries and formats built for

25 https://javadoc.io/doc/xyz.ottr.lutra
26 https://javadoc.io/doc/xyz.ottr.lutra/lutra-core/latest/xyz/ottr/lutra/TemplateManager.html
27 https://gitlab.com/ottr/lutra/lutra/container_registry/1986127
28 https://arrow.apache.org/
29 https://pola.rs/
30 https://pypi.org/project/maplib/
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data processing, maplib is able to perform OTTR instance expansion with high performance. It
also brings OTTR closer to use for data analytics and in platforms such as Jupyter.31 From the
documentation the library appears to only support templates in stOTTR syntax and it is not
clear if the library supports all language features of OTTR. maplib is open source32 and in active
development.

7.3 OTTR Extension: Semantic MediaWiki Extension

OTTR Extension33 is an extension for Semantic MediaWiki (SMW) [30] which enables some of
OTTR’s functionality within SMW [5]. The OTTR Extension allows templates and instances in
stOTTR format to be entered directly into SMW pages. Taking an OTTR template as input,
the OTTR Extension can generate an input web form in SMW that matches the signature of the
template and with which instances of the template can be created by filling in the form. These
instances expand to triples, as per its template definition, that are available in the page of the
created template instance. The latest release is dated March 2023.

7.4 pyOTTR: Python Packages

There are two packages that implement OTTR functionality for Python, one developed by GitHub
user Callidon34 and one developed by GitHub user michalporeba.35 Both packages are called
pyOTTR, although they appear as two separate projects.

Callidon’s pyOTTR package supports reading templates and instances in stOTTR format and
expanding instances to RDF. The package is limited to supporting only the stOTTR format and
does not support the complete functionality of the OTTR language, in particular, list expansion
modes are listed as in development. However, the project appears abandoned as the latest code
update was five years ago.

michalporeba’s pyOTTR package appears to support reading templates in stOTTR format,
and expanding instance data read from CSV files to RDF. Whether the package supports the full
OTTR language is not clear from the documentation. The package appears to be in a state of
early and active development.

7.5 emacs-ottr-toolkit

The emacs-ottr-toolkit36 is a collection of Emacs scripts to facilitate OTTR operations in GNU
Emacs org-mode.37 It uses existing Emacs extensions like Flycheck38 and the Lutra CLI executable
(Section 7.1) to offer shortcut commands and code snippet functionality that simplifies operations
such as writing templates, syntax checking, and template instantiation from tables and query
result sets.

31 https://jupyter.org/
32 https://github.com/DataTreehouse/maplib
33 https://www.mediawiki.org/wiki/Extension:OttrParser
34 https://github.com/Callidon/pyOTTR
35 https://github.com/michalporeba/pyOTTR
36 https://ottr.xyz/event/2021-06-18-user-forum/ottr-toolkit-20210618.html
37 https://orgmode.org/
38 https://www.flycheck.org
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8 Uses

The OTTR project has nurtured a healthy collaborative environment with its users particularly
through the organization of several OTTR user forums39 where OTTR developers and users
have met to exchange experiences and future directions. These events were hosted by SIRIUS,
a Norwegian Centre for Research-driven Innovation to address the problems of scalable data
access in the oil & gas industry, and therefore attracted participants specifically from this and
supporting industries. The findings from these forums are that industrial users of OTTR share
similar requirements to the construction and management of knowledge graphs that fit well with
the features provided by OTTR. Summarized they need support for:

Large-scale knowledge graph development, since ontologies can reach sizes of 100,000’s of
classes.
Uniform modelling: this is necessary to ensure that access to and use of the constructed know-
ledge base can be performed in a uniform and predictive manner, and to reduce management
and maintenance costs.
Transformation of data sourced from different formats and schemas: the input data to create
the knowledge graph that typically comes from different domain standard representations that
represent similar types of data differently needs harmonization.
Subject-matter expert (SME) involvement: SMEs need to partake in the design of the inform-
ation in the knowledge graph and be able to verify its quality.
Collaborative development environments: Development is often performed in teams, with
additional stakeholders that need to interact with the results in different ways.
Automated mechanisms for quality assessment and verification are required due to the size
and complexity of the modelling and representation task.

The current tools on offer for large-scale ontology development are few. The participants of the
OTTR user forums report that editors like Protégé do not meet their requirements since this mode
modelling with a desktop/client application is unsuited for uniform and collaborative modelling at
the scale required. Also, the fact that these tools typically operate on low-level constructs, such
as OWL axioms, makes them difficult for SMEs to understand and use.

In the following, we report from selected prominent industrial and academic uses of the OTTR
framework to serve as examples of its utility.

8.1 Grundfos’ Industrial Ontology Engineering Platform
At Grundfos, Brynildsen et al. have built what they call the Industrial Ontology Engineering
Platform (IOEP), where OTTR is an integral part, “to support domain experts in using and
implementing ontologies while reducing the workload for ontology engineering specialists” [6]. The
tool provides web-based tabular input user interfaces that are aligned with signatures of OTTR
templates prepared by ontology experts. Subject-matter experts build ontologies by populating
the user interface, supported by helpful editor features such as auto-generated IRIs and metadata,
label lookups and searches. The tabular data is transformed using the OTTR templates to an
ontology with a build service that relies on Lutra (See Section 7.1). The deployment of the tool
is reported as successful in that improves ontology engineering scalability: the reuse of OTTR
templates across different ontology development projects reduces ontology design efforts and

39 https://www.ottr.xyz/event/2021-01-28-user-forum/,
https://www.ottr.xyz/event/2021-06-18-user-forum/,
https://www.ottr.xyz/event/2022-05-11-user-forum/
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hence the workload for ontology engineering practitioners. Also, OTTR templates have helped to
position SMEs as the primary owners and contributors of new ontological models by hiding the
complexity of upper-level ontology away from the SME [6].

8.2 Bosch’s Ontology-Enhanced Machine Learning System
A similar approach to that of Grundfos’ is followed at Bosch [55]. In their Ontology-Enhanced
Machine Learning (SemML) system, OTTR templates are part of the Ontology extender component
“that allows domain experts to describe domains in terms of an upper-level ontology by filling in
templates. Data scientists then also use templates to annotate domain terms with quality-related
information” [55]. Domain experts describe the domain by filling in simple forms that are generated
to match the signature of OTTR templates. The forms produce template instances that are
expanded to OWL axioms. “Templates guarantee uniformity of the updates and the consistency
of the updated ontology, as well as the relative simplicity of the ontology extension process.” [55]
The ontology extender component is evaluated in a user study giving positive results with respect
to correctness of use.

8.3 CapGemini and Norwegian Maritime Authority: Modelling Regulatory
Requirements as SHACL Shapes

CapGemini and Norwegian Maritime Authority use the OTTR framework as part of a tool-chain
where regulatory requirements are expressed as SHACL shapes [14]. Requirements are extracted
from text using natural language processing and named entity recognition techniques. The
resulting data is then transformed to RDF and SHACL using an OTTR template library for
SHACL shapes.

8.4 DiProMag: Ontology of Magnetocaloric Materials
The goal of the DiProMag project is the digitization of a process chain for the production,
characterization and prototypical application of magnetocaloric alloys.40 To support this work,
Blum et al. [5] have created OTTR Extension (see Section 7.3) and a template library to allow
domain experts to build an ontology of magnetocaloric materials by filling in generated forms.

8.5 Aibel: Identifying Redundancies in a Large Template Library
Aibel, a global engineering company, has developed the “Material Master Data ontology”, a
comprehensive representation of engineering requirements and specifications that contains in the
range of 100,000 classes across a hierarchy of OWL ontologies.41 Aibel applies automated reasoning
and querying to support the selection of designs, and matching designs with products [49]. The
ontology is predominately generated from numerous spreadsheets, prepared by ontology experts
and populated by domain experts. A custom-built pipeline translates the spreadsheets into
template instances, and then into ontologies following template specifications

To evaluate the feasibility of the OTTR approach to ontology engineering and maintenance,
the complete set of spreadsheet specifications was translated into a library of 1185 OTTR
templates, some of which contain more than 30 parameters. Analysis of the generated template

40 https://www.dipromag.de/
41 An obfuscated version of the ontology is published at https://github.com/Sirius-sfi/aibel-mmd-ontology

with the “intent of providing researchers and software developers with free access to a large-scale real industrial
ontology”.
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library revealed many redundancies, largely attributable to the limited expressive power of the
spreadsheet template language. Using a semi-automated approach, we were able to identify
uncaptured patterns representing relevant domain conceptualizations, dramatically reducing the
number of redundancies [50]. This use case shows that the expressive power of OTTR templates
can bring substantial benefits, in particular for industrial domains where there is a high degree of
regularity in the patterns used. It also demonstrates the usefulness of maintenance techniques of
template libraries.

9 Related Work

In this section, we introduce work that is related to the OTTR framework when considering it as a
framework for pattern-based ontology engineering supported by a shared library of reusable patterns
and tools for practical pattern instantiation for large-scale knowledge graph construction and
maintenance. This makes for a very wide scope of related work, so our discussion will necessarily
be limited to a selection of illustrative works. Yet, there are to our knowledge few works that
fall into the same description as the OTTR framework, so our presentation will cover the most
relevant ones.

Pattern-based ontology engineering is closely connected to ontology design patterns (ODPs) [11,
15]. Similar to software design patterns, ODP is a modelling solution to solve a recurrent ontology
design problem that is recorded and shared to simplify ontology development and use. ODPs
serve the purpose of alleviating some of the difficulties involved with creating ontologies by
offering reusable, best-practice building blocks and structures for ontology construction, commonly
implemented and published as small OWL ontologies. Methods for combining and instantiating
ODPs are described [43, 13], and a methodology for building ontologies using patterns exists [3].
ODPs are documented and published in open repositories, such as the OntologyDesignPatterns.org
portal,42 MODL [47], and the Manchester Catalogue.43 There are tools, such as XDP [12] and
CoModIDE [46], which are built on top of WebProtégé [57], as convenient tools for modelling with
and instantiating ODPs. However, while ODPs are often presented as “practical building blocks”
[43], we argue that ODPs in their current form, i.e., as found at OntologyDesignPatterns.org,
featuring a graphical representation, a description and a “reusable OWL building block”, are not
practical enough, especially for the development of large ontologies. Using and adapting ODPs
to a particular modelling task will normally require considerable manual work and ODPs do not
describe a precise manner in which instances of the pattern may be created at scale. Frameworks
that offer this functionality, in addition to the OTTR framework, are GDOL [29], Dead simple
OWL design patterns (DOS-DPs) [39] and the Ontology Pre-Processor Language OPPL [20].

Generic DOL (GDOL) [29] is an extension of the Distributed Ontology, Modelling, and Specific-
ation Language (DOL) that supports a parametrization mechanism for ontologies. GDOL/DOL
is a metalanguage for combining theories from a wide range of logics under one formalism while
supporting pattern definition, instantiation, and nesting. Thus, it provides a broad formalism
for defining ontology templates along similar lines as OTTR. The syntax for OWL in GDOL is
the Manchester OWL Syntax, extended by parameters. DOL is supported by Ontohub [7] (an
online ontology and specification repository) and Hets [35] (parsing and inference back-end of
DOL). The difference between OTTR and GDOL is that the foundations of GDOL build on the
more abstract and powerful concept of generics, rather than the simpler concept of macros. Also,
GDOL is based on the comprehensive framework of DOL which supports expressions in different

42 http://ontologydesignpatterns.org
43 http://odps.sourceforge.net/odp/html/
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logics, while OTTR is developed specifically to be used for semantic web technologies, e.g., with a
type system developed for semantic web data. GDOL is more powerful than OTTR and is also
therefore arguably more complex in use for the tasks that OTTR is developed for.

Dead Simple OWL Design Patterns (DOS-DP) [39] provides a simple pattern mechanism where
patterns are expressed in template pattern files following YAML syntax and where property values
refer to named variables. Pattern instances are created by providing filler values that correspond
to the template pattern’s named variables. Technically, instantiation is simply performed by a
printf function that replaces the variable placeholder with the filler value. DOS-DP is designed
to be simple and easy to use and does therefore not support inheritance or composition of patterns.
The DOS-DP framework appears to be in active use; the Mondo Disease Ontology44 is a user of
DOS-DP.

The Ontology Pre-Processor Language (OPPL) [20] was originally developed as a language for
manipulating OWL ontologies. Hence, it supports functions for adding and removing patterns of
OWL axioms to/from an ontology. It relies heavily on its foundations in OWL DL and as such
can only be used in the context of OWL ontologies. OPPL patterns are parameterized expressions
which can be nested and can specify pattern instances and patterns directly in OWL ontologies.
The syntax of OPPL is however distinct from that of RDF and OWL and requires separate tools
for viewing and editing such patterns. A Protégé plugin for version 4.x exists, in addition to a
tool called Populous [22] which allows OPPL patterns to be instantiated via spreadsheets. By
allowing patterns to return a single element (e.g., a class) OPPL supports a rather restricted form
of pattern nesting as compared to OTTR. The application focus of OPPL is somewhat different
from that of OTTR: OPPL patterns are intended to be fully expanded once they are used in the
ontology. In contrast, we believe that OTTR template instances can appear as instances lifted or
lowered to the abstraction level suited for the given user. For instance, an ontology expert may
prefer to examine an ontology formatted as a set of OWL axiom OTTR templates, while domain
experts might prefer to see only the user-facing template instances. Additionally, OPPL patterns
are limited to OWL expressions in Manchester syntax [17], while OTTR supports abstractions
over any underlying language, although it is designed specifically for RDF. OPPL appears to no
longer be actively maintained; the last release of the project was in 201345 the last update of its
Git repository46 was in 2020.

There are many tools for generating RDF and OWL knowledge bases from different sources
using various mechanisms and mapping languages; here we mention a few that have served as
inspiration for the OTTR framework. SPARQL-generate [32] is a template-based language and
an extension of SPARQL with which one can generate RDF streams or text streams from RDF
datasets and document streams in arbitrary formats. Tawny OWL [33] introduces a Manchester-
like syntax for writing ontology axioms from within the programming language Clojure, and allows
abstractions and extensions to be written as normal Clojure code alongside the ontology. Thus,
the process of constructing an ontology is transformed into a form of programming, where existing
tools for program development, such as versioning and testing frameworks can be used. The
M2 mapping language [38] allows spreadsheet references to be used in ontology axiom patterns.
Finally, XLWrap [31] defines a mapping language to convert spreadsheets into RDF.

44 https://github.com/monarch-initiative/mondo
45 https://oppl2.sourceforge.net/
46 https://github.com/owlcs/OPPL2
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10 Future Work

In this section, we list interesting ideas for extensions and further developments of the OTTR
framework.

Support for call-by-name We wish to support named parameters or call-by-name in OTTR. This
feature would increase the readability of template instances and simplify template instantiation
slightly by allowing arguments to be given in arbitrary order and missing arguments to be
omitted. Instances of the o-p:NamedPizza template using named parameters could then look
like the following:

o-p:NamedPizza(
pizza = ex:Margherita,
country = ex:Italy,
toppings = (ex:Mozzarella, ex:Tomato)
) .

o-p:NamedPizza(
toppings = (ex:Potato, ex:Rosemary),
pizza = ex:PotatoPizza
).

Support for tuple or struct types In Example 44, we see that when one needs to create a tem-
plate that creates multiple instances describing objects with multiple attributes (such as
the nuclear family of persons with IRIs and names), we need to zip multiple lists, each
list with values for one attribute. It would be preferable to rather group the attributes of
each object together in one struct or tuple, e.g., (ex:bob, ’Bob Green’, none) with type
Tuple<owl:NamedIndividual, xsd:string, xsd:date>, combined with functionality for
extracting the tuple’s elements. The ex:NuclearFamily template could then simply accept
two lists of such tuples (instead of four lists, as defined above). Thus, extending OTTR with
tuple/struct terms and types would make expressing such complex templates more convenient.

Improved dependency management The organization of templates into collections is currently
done informally by placing closely related templates under the same namespace and in the
same file or folder. We wish to strengthen the management of template libraries by formally
characterizing the notion of template modules and allowing for explicit dependencies between
modules to be expressed. The aim is to support systems to handle such template modules
much like software project management systems like Maven47 do and improve the robustness
and stability of template instance expansion.

Customizable expansions A main requirement in the design of the OTTR framework is that an
instance should be considered as semantically equivalent to its expansion. An enhancement
to the framework would be to support different expansions of the same instance while still
supporting the above requirement. A motivation for this enhancement is for instance to
experiment with different representations of the same statement, or to support multiple
equivalent representations of the same statement. Examples of this could be to expand
instances that represent an ontology into different OWL profiles [36], or to expand a knowledge
graph not only into RDF, but also other knowledge graph formats [16]. A way to support
this is to introduce a more complex notion of a dataset that includes somehow instructions on
what template libraries and base templates to use for expansion, and hence possibly allow a
template signature to be associated with multiple different template bodies.

47 https://maven.apache.org/
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Test suite and benchmark The availability of multiple implementations of the OTTR framework
(Section 7) raises the question of what features of the OTTR framework they support and their
relative performance. We wish to establish a test suite to be able to measure the conformance
of the implementations against the specifications of the OTTR framework, and a benchmark
to measure their performance.

Term manipulation support The OTTR framework does not naively provide a facility for manip-
ulating terms, such as generating IRIs by concatenating strings, or mathematical calculations.
Some of this functionality is covered by the use of the query languages within bOTTR, but
this is arguably not optimal. FROG [21] is a declarative term manipulation language introdu-
cing pure functions that can be applied to terms within template definitions, and leverages
the OTTR type system and extends it by introducing type generics. Updating the OTTR
framework to support FROG remains future work.

OTTR as query language In this paper we have seen OTTR templates being used to transform
complex statements in the form of template instances into expressions over a different data
format such as RDF. An interesting approach is to also allow OTTR templates to be used “in
reverse” as queries and use them to extract and assemble lower-level statements to more state-
ments at a higher level of abstraction. Using a well-designed template library to both generate
and extract information would be a clear benefit in terms of usability and maintainability.
OTTR as a query language has been characterized under the name Reverse OTTR [53] and a
prototypical implementation exists, yet proper integration into the OTTR framework remains.

OTTR vs. Ontology-based data access (OBDA) bOTTR provides a mapping mechanism from
databases to ontologies via templates, similar to what is known as ontology-based data
access (OBDA) [42]. The similarities and differences between bOTTR and OBDA warrant
investigation, both from a materialization and a querying perspective. Furthermore, when
bOTTR is used to construct a large knowledge graph updates to the mapped sources may
change, thus requiring a corresponding update to the knowledge graph, preferably without
needing to reconstruct the entire graph. This is not currently supported by the OTTR
framework, but preliminary work has been done by Eckhoff and Zahl [8], and incorporating
this into OTTR would be desirable.

Template authoring support Developing a template library is currently manual work using text
editors. Improved tool support for the existing methodology and library maintenance tech-
niques, as well as a graphical language and graphical user interface or integrated development
environment (IDE) for template authoring, would arguably increase the efficiency and quality
of creating and managing template libraries and lower the bar for new users.

Static analysis of template libraries The OTTR framework supports static analysis of template
libraries in the form checking type correctness. Such analysis could be extended to also consider
the semantics of the vocabularies used, and for instance, identify templates or combinations of
templates that can result in inconsistent OWL ontologies or unsatisfiable concepts.

Template bootstrapping To advance the development of template libraries, pattern recognition
and discovery methods could be applied to identify patterns in existing knowledge bases and
databases and to capture these as well-designed template libraries.

User evaluation of OTTR Many of the benefits we claim about OTTR are justified through
accepted benefits of user-defined abstraction from software engineering and information model-
ling, yet no formal user evaluation exists. Such an evaluation could examine what parts of
OTTR are actually used – and by whom, what the learning curve of OTTR is, and identify
possible new enhancements to the framework.

Complexity analysis of OTTR Snilsberg et al. [54] have developed a mathematical formalization
of a subset of the OTTR language, and give a preliminary report on the characterization of
the theoretical size of instance expansions and decision problems associated with the language
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and its fragments. A rigorous analysis of the current expressivity of OTTR, versus desired
or optimal expressivity, and comparison with other formalism is a clear candidate for future
work, providing direction on what features one might include or omit.

What is a good template mechanism? The OTTR framework, GDOL, DOS-DP and OPPL
provide different and partially overlapping functionality. There is also a proposal for powerful
extensions to the OTTR language, called Generators and GBoxes [9], that are rules formulated
over the OTTR templates. Kindermann et al. [24] identify characteristics that are deemed
necessary for an ontology template mechanism which OTTR implements. Kindermann et al. [25]
also investigate the use of ontology design patterns in practice. However, more investigation
into the similarities and differences between the available pattern frameworks and experience
into what is practically useful is needed to identify the correct balance between expressivity,
complexity and usability, and to formulate metrics to characterize “good” template mechanisms
and libraries.

11 Conclusion

This paper has given a complete overview of the current state of the OTTR framework, detailing its
formal foundation, RDF and OWL adaptions, different serializations, template library management
and support, mapping languages, multiple (independent) implementations, and real-world use and
impact. We have also presented related and future work. We believe this paper illustrates the
maturity of OTTR as a framework, a framework that has moved beyond the phase of prototypes
and purely academic study, into a useful and practical framework that has a strong theoretical
foundation and is based on sound engineering principles that are suitable for real-world, large-scale,
maintainable ontology and knowledge graph construction.
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