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— Abstract

We describe road data models which can repres-
ent high level features of a road network such as
population, points of interest, and road length/-
cost and capacity, while abstracting from time and
geographic location. Such abstraction allows for
a simplified traffic usage and congestion analysis
that focus on the high level features. We provide
theoretical results regarding mass conservation and
sufficient conditions for avoiding congestion within
the model. We describe a road data model gener-

ation tool, which we call “T@I Roads”. We also
describe several parameters that can be specified
by a T@OI Roads user to create graph data that can
serve as input for training graph neural networks
(or another learning approach that receives graph
data as input) for predicting congestion within the
model. The road data model generation tool allows,
for instance, the study of the effects of population
growth and how changes in road capacity can mit-
igate traffic congestion.
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1 Introduction

Modelling and predicting traffic is fundamental for the administration of a city and its surroundings

as it directly impacts the economy and everyday lives of the population [11, 2, 9, 1]. While works

on traffic prediction tend to focus on short-term prediction (e.g., 12 steps of 5 minutes in the

future) [14, 18, 5], a high-level view of the main properties of a road network is crucial for long-term

city planning. For instance, one may want to plan for the increase of road capacity by enlarging

road segments or to plan for the development of new links in the road network if a systematic

congestion scenario is foreseen due to an increase of the population or significant changes in traffic

flow resulting from the construction of new points of interest in the city.
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The solutions to the high-level setting are classically explored in the context of agent-based
traffic simulators [16]. However, agent-based traffic simulators, such as MATSIM [10], are co-
evolutionary tools which inherently cannot be parallelized. The complete configuration of features
and parameters used in the real world traffic simulators include the specification of a number of
agent-based traffic routines. This complexity makes their format hard to use in machine learning
approaches, which are parallelizable. Machine learning approaches, in particular those based on
graph neural networks, are useful for predicting what would happen in these scenarios [12, 20, 6],
however, they need datasets with the relevant features.

In this work we present a road data model generation tool, which we call “T@IRoads”, that
can create datasets synthetically, based on user defined parameters. We describe road data models
which can represent high level features of a road network such as population, points of interest,
and road length/cost and capacity. Such abstraction allows for a simplified traffic usage and
congestion analysis that focus on the high level features. We provide theoretical results regarding
mass conservation and sufficient conditions for avoiding congestion within the model.

A main benefit of generating road data synthetically is that the data is independent of any
particular city structure. Datasets of varying sizes can be created, simulating the fact that road
networks also vary in size. Moreover our road data generator has the interesting feature that the
user can give a particular structure (which could realistically represent the information from a real
world road network) and use our road data model generation tool to create variants (“mutations”)
of this network, e.g., with increasing population, which could indicate possible future congestion
issues if the population grows without an increase of capacity in the road network.

In Section 3, we describe our road data models and establish some theoretical properties related
to these data models. In Section 4, we describe several parameters that can be specified by a
TOIRoads user to create graph data that can serve as input for training graph neural networks
(or another learning approach that receives graph data as input) for predicting congestion within
the model. In Section 5 we present some statistics associated with the datasets generated by
TOIRoads. Finally, we conclude in Section 6.

2 Related Work

Traffic prediction is a broad research field that has been heavily studied in the literature [3, 11, 13].
Most works focus on short term or even real time traffic prediction, with the goal of supporting
drivers to find an optimal path. Indeed, as many cars and drivers today are sending their
information to the internet, some researchers have been very successful in predicting traffic based
on real time driver resolution data [7].

Jiang and Luo (2022) describe some datasets used for traffic prediction with graph neural
networks as well as what variants of graph neural networks are used for the prediction tasks [11].
They categorize studies by scale and domain, and include passenger flow for bus and metro systems,
as well as various studies focusing on road traffic flow, speed, congestion and other variables.
What is common among the road traffic datasets is the usage of counting stations in city road
systems. Counting stations can have different time resolution as well as various measurements in
addition to simple counting of vehicles. Olug et al. (2024) [17] show for a dataset like this that
adding features, such as population density and districts, to the counting station data points can
greatly improve predictions. These datasets related to various modes of transportation are based
on available data and as such are quite relevant to traffic prediction research.

Bui et al writes about using spatial temporal graph neural networks for traffic forecasting [3],
and points to how to construct the adjacency matrix of a graph based on traffic counting station
nodes is an open problem, in terms of effectively capturing information streams. For instance, in
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the urban vehicle detection system dataset [4] that they use, there is no single way to make the
adjacency matrix, as there are many road links between each counting station. The T@IRoads
dataset generator can take as input a graph structure based on real world data and make datasets
with variants of the original data, and so, it might be used as a tool for studying this graph
construction problem.

Here we consider traffic from the point of view of road administrators, also called road planners,
who have the goal of predicting the need e.g., of improving road capacity in certain road segments to
avoid congestion in the city. Our model is made to work as an aggregate of traffic data, representing
high level features of a road network, such as population, points of interest, and road length/cost
and capacity, while representing the graph structure in detail, at a road segment level. Our model
is not restricted to a particular graph structure and it can generate graph structures synthetically.
There are various works in the literature on generating graph data synthetically [8, 15], however,
here we use features and structural constraints that are meaningful for road traffic prediction. We
prove theoretical results related to traffic conservation and congestion for our road data models.

3 Modelling Road Traffic

In this section we describe our road data models. The model is an abstraction of the road traffic
conditions found in real world scenarios, useful to estimate road usage and congestion. The road
network is represented with a graph, where nodes are road segments and edges connect road
segments which would be connected in the road network. High population contributes to increase
the traffic of a road segment, while high cost contributes to decreasing the traffic. Road capacity
is a feature that combines with the measure of traffic to determine if a road segment is congested
or not. See Section 4.3 for a detailed example containing the notions presented here.

3.1 Formal Definition

We formally define a road traffic model based on the components related to road usage and
congestion described above. We call this model RoadGNN.

» Definition 1 (RoadGNN). A4 RoadGNN road data model is a labelled graph G = (V, E, L),
where V' is a finite set of nodes representing road segments, E is a (finite) set of edges representing
connections between road segments, and L is a labelling function mapping nodes to their respective
attributes. Each node v € V represents a road segment and v is associated via the labelling function
L with the following attributes:

road weight w, € R with w, > 0,

capacity ¢, € R with ¢, > 0,

population p, ¢+ € N from node v to each node t € V,
where w, is a weight value associated with node v, depending on its length/cost; ¢, quantifies the
road capacity associated with node v, and p, + represents the flow with origin in v and destination
in t. In symbols, L(v) = (Wy, Cy, Putyy-- s Pot,) Witht1,...,t, € V.

In the following we consider a fixed but arbitrary labelled graph G. We omit G from the
notation to simplify it since there is no risk of confusion. A path from s € V tot € V is a sequence
of nodes v1,...,vp € V with s = vy, t = vy, and (v;,v;41) € E for all 1 <i < k. We define a total
order on paths where path p; is shorter than ps, in symbols p; < po, if the sum of the weights
Wyys - - -, Wy, Of the nodes vy, ..., vx in py is smaller than that sum in ps.

» Remark 2. All labelled graphs we consider in this work are strongly connected, that is, they have
the property that for every pair of nodes (s,t) € V x V there is a path from s to t.

6:3
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For each pair of nodes (s,t), define S ; as the set of shortest paths between s and ¢. Also, we
denote by SY, the subset of paths in S, ; where v € V' occurs. Given a finite set .S, we write |.S| for
the number of elements in .S. By definition, sets of shortest paths in the graph are finite. Given a
node v € V, we write in_pop(v) as a shorthand for ) _, ps,, and out_pop(v) as a shorthand for
> ey Pu,t- Let in(v) and out(v) denote the sets of incoming and out going nodes from node v.

We now describe how we estimate the values associated with road usage and congestion. We
assume that agents aim at trips that minimize road usage, by sticking with shortest paths when
calculating a route.

» Definition 3 (Road Usage). The road usage of node v € V, denoted U, is defined as follows:

Zpst| :

(s,t)eV?2

In real traffic, a road is not congested when the traffic is below capacity, and congested when
the traffic is above capacity. We define our congestion coefficient as the quotient between road
usage and capacity, and call the node congested if this is 1 or more.

» Definition 4 (Congestion). Congestion is the ratio between road usage and capacity, in symbols,

U,
C, = —2.
Cy
We say that a node v is congested if C, > 1.

» Remark 5. By definition of U, we have that U, <in_pop(v) + out_pop(v).

We now establish theoretical bounds regarding traffic conservation and congestion.

» Theorem 6 (Conservation). For allv € V,
L. Uy < > cin(e) (Uu — in_pop(u)) + out_pop(v)
2. Uy < Zueout(v)(U —out_pop(u)) +in_pop(v).

Proof. We start proving Point 1. Let v be a node in V. By definition of U,, we can write U, as
follows:

> ) |55, |+
s,t ° |Ss,t|

(s;)e(VA{v})xV

|Svf

Z pv,t |Sv,t|

(v,t)e{v}xV

By definition, Sy ; is the set of shortest paths from s to v that passes through v, which coincides
with the set of shortest paths from s to v, denoted S, +. In other words, S, =S, ;. So U, is

’Uﬂ

Sy
> per 5 t| + out_pop(v).
(s)E(V\{v})xV e

It remains to show that

S b |S“'< S (U —inpop(u)).

(s;t)e(V\{v})xV | S’t u€in(v)

Given a node v and pair of nodes (s,t), if a path p is in S, and s # v then p is in SY, for some
u € in(v). Then,
|55l

R R

(s,t)e(V\{v})xV | sit uem(v) (s,t)EV?2

|Ss t|
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In other words,

55,4l
Z Ds,t |Ssz| S Z Uu

(s,t)e(V\{v})xV ’ u€in(v)

Moreover, we have that u # ¢ since by assumption there is a path in SY, (in other words, v belongs
to a shortest path between s and ¢, which would not be the case if v = ¢ since u € in(v)). So we
can subtract the population associated with those paths:

S’U
Z ps,t : | S,t| § Z (Uu - Zps,u)~

(s.,)E(V\{v})xV |Sis.tl u€in(v) sEV

This means that

|55l .
> Pstig 7t| < Y (Uu—in_pop(u))
(s:)e(V\{v})xV st uein()
as required. The proof of Point 2 is analogous. |

We now provide sufficient (but not necessary) conditions for preventing node congestion.

» Theorem 7 (Outgoing Congestion). For allv € V, if

L. v 2 X cout(v) Cu T in_pop(v), and
2. Yu € out(v), C,, < 1,
then v is not congested.

Proof. We can rewrite Assumption 1 as

ey > Ay + Y U,+in_pop(v) (1)
u€out(v)
where
A, = Z (cu — Uy).
u€out(v)

By Point 2 of Theorem 6,
Uy, < > (Uy—out_pop(u)) +in_pop(v).

u€out(v)

Adding A, + > ) out__pop(u) on both sides,

u€out(v
Up+ Ay + Z out_pop(u) < A, + Z U, +in_pop(v).
u€out(v) u€out(v)
By Eq. 1,
U, + A, + Z out_pop(u) < ¢,.
u€out(v)

By Assumption 2, Yu € out(v), ¢, > U,. Thus, A, > 0. Since Zueout(v) out_pop(u) > 0, we have
that ¢, > U,. In other words, v is not congested. |

We also have an analogous theorem for the incoming congestion, which can be proved in a
similar way as for outgoing congestion.

» Theorem 8 (Incoming Congestion). For allv € V, if
L ¢y = > cin(w) Cu +out_pop(v), and

2. Yu €in(v), C, < 1,

then v is not congested.

TGDK
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3.2 A Practical Special Case

In the model just described each node v has a feature p, ; associated with each other node ¢ in
the graph, which quantifies the population going from v to t. This means that the number of
features in a node grows depending on the size of the graph (in particular, in the number of nodes),
which is not ideal in practice. So here we consider a simplified model, called S-RoadGNN, which
associates a fixed number of features (4 features, namely, road weight, capacity, population, and
points of interest) to each node. The idea is that people live along roads (population), and they
travel to points of interest (POI) that are along the roads. The traffic associated with each node is
given by the amount of transport demand density and it depends on its close and far neighbours.
Although this simplification takes away some of the expressivity of our road data models (see
Remark 12), it is flexible enough to create a range of road data models which are useful to study
the effects of population growth and how changes in road capacity can mitigate traffic congestion.

» Definition 9 (S-RoadGNN). A S-RoadGNN road data model is a labelled graph G = (V, E, L),
where V' is a finite set of nodes representing road segments, E is a (finite) set of edges representing
connections between road segments, and L is a labelling function mapping nodes to their respective
attributes. FEach node v € V has the following attributes:

road weight w, € R with w, > 0,

capacity ¢, € R with ¢, > 0,

population p, € N,

points of interest i, € N,
where w, is a weight value associated with node v, representing a road segment, depending on
its cost/length; ¢, quantifies the road capacity associated with node v; and finally, p, and i, are
associated with v depending on the population and on the points of interest in the vicinity of the
road segment represented by v. In symbols, L(v) = (wy, Cy, Py, iv)-

» Definition 10 (Road Usage). The road usage of node v € V', denoted U,, is defined as follows:
|55

Z ps'it' |Ss:t

(s,t)eV2

» Definition 11 (Congestion). Congestion is as in Definition 4: the ratio between road usage and
capacity. A node v is congested if C, > 1.

» Remark 12. S-RoadGNN can be seen as a special case of RoadGNN where ps: = p, - 4. In
RoadGNN, we can have models where e.g., there is traffic from a node s to a node ¢, but no traffic
from another node u that has some population to ¢. This is not possible in S-RoadGNN because
in this model whenever a node u has some population and another node ¢ has some points of
interest, there is some traffic from u to ¢, namely p, - 7;.

We formalize this remark with the following theorem.

» Theorem 13. Let G be an S-RoadGNN road data model and let G' be the RoadGNN road data
model that is defined in the same way as G, except that ps s := ps - ¢ for all s,t € V. For all
veV,U,=U, where U, and U, correspond to the road usage of v in G and G', respectively.

It follows from Theorem 13 that the conservation and congestion bounds established for RoadGNN
also hold for S-RoadGNN. We are now ready to describe T@IRoads, which is a tool for generating
S-RoadGNN road data models.
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4 TQ@IRoads: Road Data Model Generation

Here we present our road data model generator, named T@IRoads, for simulating traffic conditions
in a simplified road network. The road data models generated by T@IRoads are instances of the
model described in Section 3.2. We first describe the parameters that the user can give and then
the procedure for generating road data models according to the parameters given by the user.

4.1 Parameters for Road Data Model Generation

The user can give as input the number of road data models to be created, together with the
minimum and maximum number of nodes allowed in each road data model. The user can also
influence the graph density, which is the ratio between the number of edges in the graph and the
total number of possible edges it could have. This is a number between 0 and 1 that quantifies
the amount of edges that should be added after a graph G with N nodes is constructed.

We now describe further parameters that the user can give as input to T@IRoads, related to
the features outlined in Definition 1.

Road weight (length): the user can give as input the minimum and maximum values for the

cost/length of a node representing a road segment.

Capacity: the user can give as input the minimum and maximum values for the capacity of a

road segment. In addition, the user can specify a parameter called capacity factor that is used

to multiply the capacity values, in this way, the user can create road data models that tend to

be more or less congested, depending on how the capacity factor is defined.

Population: the user can give as input the maximum value for the population associated with

a node representing a road segment, with the minimum value being 0. There is also a rate

parameter where the user can specify the proportion of nodes with non-zero value.

Points of interest: the user can give as input the maximum value for the points of interest

associated with a node representing a road segment, with the minimum value being 0. There is

also a rate parameter where the user can specify the proportion of nodes with non-zero value.
For the minimum and maximum values above, TIRoads chooses a value in the corresponding
interval, using the uniform distribution, and generates the road data models.

4.2 The Algorithm for Road Data Model Generation

In addition to the specification in Section 3.2, the graph data has some constraints, motivated by
how road networks are designed in practice. The tool is made to generate graphs of arbitrary size,
with a few control elements. There are no self-loops and the graph is strongly connected, which
makes sense considering the structure of a road network. We formally state these properties in
Propositions 14 and 15.

» Proposition 14. FEvery road data model returned by Algorithm 1 is strongly connected.

Sketch. The algorithm starts creating a graph G; with just one node, which by definition, forms
a strongly connected graph. Then, given G;, with ¢ > 1, the algorithm creates G; 1 by adding to
G; a new node n and two edges: one going from n to a random node in GG; and one coming from
a random node to n. In this way, if G; is strongly connected, the same will hold to G;1. <

If N is the number of nodes in a graph G then this procedure creates 2N — 2 edges since at each
iteration 2 edges are added and the initial graph has no edges. Although this procedure creates
a strongly connected graph, its density is only (2N — 2)/(N(N — 1)), since a fully connected
(directed) graph has N(IN — 1) edges. In practice, road networks can be much more dense. As
mentioned in Section 4.1, T@IRoads allows the user to adjust this by including a parameter called

6:7

TGDK



6:8

T@IRoads: A Road Data Model Generation Tool

density. In fact, the implementation can add a bit more variation to this, which is useful to
create multiple similar but different graphs in the dataset, using a variation flag. If true then the
density value given by the user is multiplied by a random number between 0.9 and 1.1. The choice
of the edges to be added follows a uniform distribution. We state this property in Proposition 15.

» Proposition 15. Every road data model returned by Algorithm 1 has density d, provided that
d> (2N —2)/(N(N — 1)) and the variation flag is set to false.

Sketch. If the density parameter given by the user is lower than (2N —2)/(N(N — 1)) then there
is no change in density (since we want to ensure the graph is strongly connected). Otherwise, the
algorithm adds edges randomly so as to reach the desired density (which is the density value d
given as input by the user if the variation flag is false, otherwise, a value close to d). In detail, the
algorithm first selects the N2 — 3N + 2 possible edges that could be added (that is, not those
2N — 2 that were included in the creation of the strongly connected graph). Then, it randomly
chooses a desired number among these possible edges to reach density d. |

The description of the algorithm for generating road data models is given by Algorithm 1,
assuming for simplicity that the variation flag is set to false.

Algorithm 1 Road Data Model Generation.

1: input: number n of road data models, interval I for the number of nodes in each data model,
density d, and intervals for road weight, capacity, population, and points of interest (Sec 4.1).

2: output: n road data models satisfying Proposition 14 and Proposition 15

3: fori=1tondo

4:  Randomly choose a number of nodes m in I.

5:  Set road weight, capacity, population, and points of interest values to each node
6: Create a strongly connected graph G* with m nodes (as in Proposition 14)

7. if density > (2N —2)/(N? — N) then

8: Add random edges so as to reach the desired density d (Proposition 15)

9: end if
10:  Calculate road usage as in Definition 10

11:  Calculate congestion as in Definition 11
12: end for
13: return G!,...,G"

4.3 Example Run

For the convenience of the reader, we present an example run illustrating our definitions in
Section 3 and the strategy in Sections 4.1 and 4.2. We choose small numbers for conciseness.
Suppose the user wants to create a simple dataset with just one road data model where the graph
has 3 nodes. Assume T@OIRoads creates G1, G2, G5 as in Figure 1. Now suppose the user sets the
following parameters for the features:

road weight is a number between 1 and 5;

road capacity is a value between 1 and 3;

the capacity factor is 1;

the rates for points of interest and population are both 0.7; and

the maximum population and points of interest (per node representing a node segment) is 3.
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Figure 1 Graph Structure of G1, G2, Gs.

population: 2 points of interest: 3

weight: 4 capacity: 1

ny population: 0 points of interest: 2
population: 1 points of interest: 0 n3  weight: 3 capacity: 3

weight: 2 capacity: 2

Figure 2 Road Data Model.

Given the parameters above and the graph structure illustrated in Figure 1, suppose TOIRoads
creates the road data model illustrated in Figure 2. In the road data model of Figure 2, there are
two paths from n; to ne. The shortest one p; corresponds to the sequence ni,ns (sum of weights
6) and the longest path ps is the sequence ny,n3,ny (sum of weights 9), by the order relation
defined in Section 3.1. Considering V' = {n1,n2,n3}, the road usage of ng is

15¢3
ST pavie |Ss’t| =1-3+2-34+42-04+0-0+0-3=09.
s,t

Since the capacity of this node is only 1, in this road data model, we have congestion in node no.

4.4 Graph Mutator

The graph mutator is an additional component added to the implementation to facilitate the
creation of variants of a particular road data model given as input. The idea of this component is
to give the user the possibility to train a machine learning model with enough data to simulate
“what if” scenarios starting from a specific road data model, that could have realistic values from
a city related to population, points of interest, etc. The parameters that the user can set are:

the number of mutations of the original road data model that are to be generated,
the percentage of nodes that should change

the maximum values for the population, points of interest, and capacity.
The graph mutator component of T@IRoads chooses a value in the corresponding interval,
according to the uniform distribution and generates the variations of the features values of the
original graph (keeping the structure of the original graph).

6:9
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5 Datasets generated by T@IRoads

In this section we provide some experimental results using T@OIRoads for generating datasets.
The experiments were performed on an Intel(R) Xeon(R) Silver 4116 CPU @ 2.10GHz with
4 cores (x86_64 architecture) with 11 GB of memory. The code used for the experiments is
available at https://github.com/gruwesen/TOIR0ADS. Our hypotheses are that (i) the run
time is heavily affected by density and number of nodes, (ii) congestion is affected by the number
of nodes and the maximum number of population per node, and (iii) congestion is affected by
the ratio of nodes that have a population value. From the mathematical point of view, points of
interest and population are interchangeable variables in S-RoadGNN. So the same behaviour for
population would hold for points of interest, meaning that there would be no need to perform
experiments varying the points of interest instead of population. For this reason, runtime and
congestion assessments are only done varying population. We first present some results regarding
the time needed to create the datasets.

Table 1 Runtime in seconds for generating 10 graphs varying the number of nodes and density.

Nodes 50 50 100 100 200 200 300 300 500 500
Density | 0.04 0.5 0.04 0.5 0.04 0.5 0.04 0.5 0.04 0.5

Time \ 0.257 \ 0.697 \ 1.450 \ 7.244 \ 12.949 \ 98.942 \ 53.141 \ 487.046 | 351.428 | 3732.413

The results in Table 1 show how increasing the number of nodes and density affects the runtime.
For this experiment, the values of the remaining parameters were kept fix and set as follows: the
road weight (indicating cost/length) was a number between 1 and 10, the population and points
of interest rate was 0.4, the maximum for population and points of interest (per node representing
a road segment) was 3, finally, road capacity was a number between 10 and 20.

We now present results showing how increasing the population (and not road capacity) can
lead to more congested nodes in the road data model.

Table 2 Congestion increasing according to population increase at 0.4 population rate.

Nodes 50 50 50 100 100 100 200 200 200
Total nodes 1000 1000 1000 2000 2000 2000 4000 4000 4000
Max population 4 10 40 4 10 40 4 10 40

Congested nodes 807 898 934 1624 1681 1829 3051 3250 3428
Congestion % 80.7% | 89.8% | 93.4% | 82.1% | 84.1% | 91.5% | 76.3% | 81.3% | 85.7%

Table 2 describes how max population increases the number of congested nodes when considering
three sets of 20 graphs, each with 50, 100, and 200 nodes. The capacity is set to a random number
between [34/n, 3n], where n is the number of nodes, as this interval has been found to often yield
a medium amount of congestion in S-RoadGNN. As can be seen from the table, increasing the
max population increases congestion at every node number.

Table 3 describes how the population rate increases the congestion level in a similar manner to
Table 2. Again, we see an increase in the number of congested nodes as we increase the population
rate, similar to when we increase the maximum population. To reiterate, the max population is
the max value of a node that has population, while the population rate describes the part of nodes
that contain a population. Decreasing the population rate to 0.2 did more to lessen congestion
than decreasing the max population.

To illustrate how this dataset can be used in the context of traffic prediction, we have made an
experiment using a graph neural network (GNN) that predicts node congestion. In this experiment
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Table 3 Congestion increasing according to population rate increase at 40 max population.

Nodes 50 50 50 100 100 100 200 200 200
Total nodes 1000 1000 1000 2000 2000 2000 4000 4000 4000
Population rate 0.2 0.4 0.8 0.2 0.4 0.8 0.2 0.4 0.8

Congested nodes 608 778 957 1244 1575 1904 2240 2975 3749
Congestion % 60.8% | 77.8% | 95.7% | 62.2% | 78.75% | 95.2% | 56.0% | 74.4% | 93.73%

drawing congestion map

# Predicted c (True c)

@ Predicted c (True non-c)

® Predicted non-c (True ¢)

@ Predicted non-c (True non-c)
—— Epoch number 19

Figure 3 Example of Congestion Prediction with a Graph Neural Network.

we trained a GNN model on a dataset generated by S-RoadGNN to predict whether a node is
congested or not. We included in Figure 3 a graphical representation of the prediction results
of the GNN. Figure 3 shows the resulting predictions for a single example graph after twenty
epochs of training. This experiment was run using a Graph Attention Network (GAT) with three
layers. The training dataset contained 100 graphs of 20 nodes, while the validation set contained
40 graphs of 20 nodes. The specific graph that is drawn in Figure 3 was drawn randomly from the
validation set. In this figure, the model correctly predicted congestion in 13 of the 20 nodes.

6 Conclusion

We motivate and present road data models, some of their theoretical properties and a tool,
called TOIRoads, for generating datasets within these models. While one may be tempted to
assume that preventing congestion is always desirable, this may not be the case if congestion of
non-environmental friendly means of transportation, such as private cars, serve as incentive for the
use of public transportation. Nevertheless, being able to study the scenarios related to changes in
the population and traffic flow depending on points of interest and to predict congestion (whether
to prevent it or not) is important for long-term city planning. As future work, we plan to include
a few more parameters such as a sensible strategy for adding location information (currently only
represented in a relative way, based on paths and their weights) to our road data models. A
potential improvement would be to allow different densities per region of the graph, to simulate
more dense districts, as commonly happens to districts that are close to the center of a city.
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