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Abstract
Many tasks in the biosciences rely on reasoning
with large OWL terminologies (Tboxes), often com-
bined with even larger databases. In particular,
a common task is retrieval queries that utilize re-
lational expressions; for example, “find all genes
expressed in the brain or any part of the brain”.
Automated reasoning on these ontologies typically
relies on scalable reasoners targeting the EL subset
of OWL, such as ELK. While the introduction of
ELK has been transformative in the incorporation
of reasoning into bio-ontology quality control and
production pipelines, we have encountered limita-
tions when applying it to use cases involving high
throughput query answering or reasoning about
datasets describing instances (Aboxes).

Whelk is a fast OWL reasoner for combined
EL+RL reasoning. As such, it is particularly use-
ful for many biological ontology tasks, particularly
those characterized by large Tboxes using the EL
subset of OWL, combined with Aboxes targeting
the RL subset of OWL. Whelk is implemented in
Scala and utilizes immutable functional data struc-
tures, which provides advantages when performing
incremental or dynamic reasoning tasks. Whelk
supports querying complex class expressions at a
substantially greater rate than ELK, and can an-
swer queries or perform incremental reasoning tasks
in parallel, enabling novel applications of OWL rea-
soning.
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1 Introduction

OWL (Web Ontology Language) is heavily used in the biosciences as a framework for constructing
widely used ontologies, for example the Gene Ontology [17], Uberon [30], Human Phenotype
Ontology [16], SNOMED-CT [22], and the NCI Thesaurus [35]. These ontologies are characterized
by a number of features: (1) their large size relative to other ontologies; (2) the use of existential
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restrictions to encode graph-oriented information such as partonomies and developmental lineages
(we call this the Relation Graph); and (3) the fact that the majority of axioms are encoded using
the EL subset of OWL [42]. As such, they are amenable to automated reasoning using engines
that are tuned for this profile, the most notable of which is the ELK Reasoner, introduced in
2010 [24]. In fact the introduction of ELK has been instrumental in making reasoning scalable for
bio-ontologies [28]. ELK is the default reasoner in the ROBOT tool [23], and is deployed as a part
of the production pipelines for dozens of ontologies [27].

However, two limitations of ELK constrain its applications: (1) It has limited support for
instance graphs (Aboxes) in that, while it infers class membership, it does not materialize inferred
object property assertions. Nor does it implement SWRL [21], a language for extending OWL with
custom reasoning rules. Additionally, the expressivity of the OWL EL profile excludes key types
of object property axioms, such as inverse and functional properties. Nonetheless, most available
OWL reasoners with support for rich Abox reasoning do not scale to the size and complexity of
terminologies easily handled by ELK. (2) Classification and query answering are blocking operations
on a mutable state. That is, although ELK supports incremental reasoning, after new axioms are
added and classified, querying the previous state of the ontology requires removing those just added.
Likewise, because answering complex queries typically requires some incremental classification,
ELK processes a single query at a time. Reasoner queries are frequently used to explore biomedical
terminologies, e.g., find all classes that are a MuscleOrgan and (partOf some Head).

In order to support various use cases hindered by those limitations, we implemented the
Whelk reasoner, based on the ELK algorithm described by Kazakov et al [24]. In addition to
the OWL EL reasoning rules defined for ELK, Whelk supports the OWL RL profile [42] as well
as reasoning with SWRL rules. Whelk’s implementation is based on immutable functional data
structures [32], so that each time axioms are added, a new reasoner state is created; references
to the previous state remain unchanged. This allows Whelk to answer queries concurrently, and
also allows concurrent incremental classification of unrelated sets of axioms – for example, various
Abox ontologies which build upon the same ontology Tbox. The Tbox can be classified ahead
of time and reused. We evaluated Whelk on varied benchmarks taken from real-world ontology
reasoning scenarios, comparing Whelk to two releases of ELK, the state of the art open source
OWL EL reasoner.

2 OWL ontologies

OWL is an ontology language for the Semantic Web [40]. An ontology is a formal representation
of concepts within a domain and the logical relationships between those concepts, supporting
knowledge representation with explicit semantics. The semantics of OWL are based in Description
Logics [2]. The format we use for OWL examples in this paper follows the user-friendly Manchester
syntax [41]. An OWL ontology models a domain using classes, properties, and individuals, and
consists of axioms making statements about these entities. Individuals are specific objects within the
model (e.g., Bob, Alice, NewY orkCity), while classes are used to define categories of individuals
(e.g., Person, City). Individuals are said to be instances of classes. Properties denote relationships
between individuals in the model (e.g., Bob livesIn NewY orkCity). In addition to simple named
classes, complex class expressions can be constructed that define categories based on combinations
of other class expressions and properties. For example, the concept “all entities that live in some
City” can be constructed using an expression known as an existential restriction, which describes a
relationship which all members of the class must have (in Manchester syntax, livesIn some City).
By constructing the intersection of that expression with the class Person, we can create an
expression representing the class of city dwellers: Person and (livesIn some City). Named classes,
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e.g., CityDweller, can be linked to expressions defining them using an equivalent class axiom:
CityDweller EquivalentTo (Person and (livesIn some City)). Classes can also be related
hierarchically to one another via a subclass axiom (e.g., City SubClassOf GeographicalRegion),
and declared to have no instances in common (e.g., GeographicalRegion DisjointWith Person).
Likewise, OWL supports hierarchical relationships among properties, as well as property features
such as transitivity and property chains, which allow us to infer new relationships between
individuals that are linked by a sequence of intervening relationships. A familiar property chain
example would be inference of hasUncle from a path: hasParent ◦ hasBrother → hasUncle.

An OWL reasoner can be used to perform a number of tasks with regard to an OWL ontology,
by computing the implied consequences of the asserted axioms. One of the most common tasks is
Tbox (terminology) classification, that is, computing the hierarchical relationships (subsumptions)
among all classes in the ontology. Checking if any classes are inferred to be equivalent to
owl:Nothing (the empty class) is a common quality control task for OWL-based terminologies.
Another common task is Abox (assertions) materialization: computing all inferred relationships
between individuals, as well as the inferred types of the individuals (their class membership).
Consistency checking evaluates whether the ontology contains a logical impossibility, based on
the provided axioms. Different OWL applications may focus only on a subset of reasoning tasks.
Development of large bio-ontologies is often solely focused on classification. Developers of an
anatomical terminology may make heavy use of class expressions and inferred subsumptions to
ensure consistent modeling and automatic calculation of a complex hierarchy, but never create
instances of the terms. On the other hand, other ontology use cases may be more focused
on instance graphs, computing inferred relationships between individuals, possibly using a less
complex schema-like terminology. An OWL reasoner may also be used to answer queries over the
inferred knowledge, returning all subclasses known for a given class, or all individuals which are
instances of a given class. Queries using complex class expressions are commonly referred to as
DL (description logic) queries.

Even though the complete OWL DL language is decidable, in practice for many tasks DL
reasoning over ontologies of non-trivial size is time and compute-intensive, and often infeasible.
For this reason OWL provides a number of profiles (language subsets), each of which limits the
language in specific ways in order to allow more efficient reasoning. The profiles are designed
to provide adequate expressivity for particular use cases. For example, the OWL EL profile
provides logical features commonly used in the development of large complex terminologies, such
as bio-ontologies, where the focus is ontology classification based on existential restrictions and
intersections, and quality control using disjoint classes axioms. The OWL RL profile is more
targeted to inference of relationships among large numbers of individuals, providing additional
property features such as inverse properties and functional properties, while at the same time
having fewer features for inferring class hierarchies as compared to EL.

3 Features and implementation

Whelk is implemented in Scala, a programming language for the Java Virtual Machine (JVM), which
is fully interoperable with Java and has strong support for functional programming, plus language
constructs that encourage immutable data structures [44]. Whelk provides an implementation of
the OWLReasoner interface defined by the Java OWL API [20], making it readily usable within
popular software for working with OWL such as Protégé [31] and ROBOT [23]. Whelk can also
be used within pure Scala programs without reliance on the OWL API. Via Scala.js [45], it can
be used as part of browser-based JavaScript applications, and can also be compiled to native code
using Scala Native [43].

TGDK
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Whelk supports all axiom types within the OWL EL and RL profiles [42], with the limitation
that reasoning about data property values (concrete values such as strings or numbers) is not
supported. Additionally, HasKey axioms are not supported. Whelk also extends OWL EL and RL
reasoning with SWRL rules (again with the exception of data property values). SWRL rules allow
matching arbitrary patterns of class assertions and object property assertions to generate new
inferred class and object property assertions about individuals.

3.1 Parallel extension of reasoning state
As described above, Whelk is built on immutable data structures which return a new instance
when modified, rather than allowing mutation. Implementations based on shared structure allow
reasonable performance and efficient use of memory [32]. A Whelk reasoner instance is initialized
with a starting set of axioms. All reasoning rules are applied, and a reasoning state object is
returned containing the classification derived up to that point. This reasoning state can be
extended with additional asserted axioms. Reasoning continues until classification is complete,
and a new reasoning state is returned. Any references to the earlier reasoning state are still valid,
and can be queried without reflecting conclusions derived from extension with the second set of
axioms. Thus any number of independent extensions to the reasoning state can be created. This
is much like programming with a singly linked list in a language like Lisp or Haskell; prepending a
new item to a list of size 2 results in a new list of size 3, but doesn’t affect references to the first
list, which still consists of 2 elements.

When answering a DL query, the reasoning state is extended with an equivalent class axiom
representing the query expression. Once additional reasoning is completed and the query is
answered, the new reasoning state can simply be discarded in order to roll back to the initial state.
This approach provides Whelk with very fast DL query performance. Since the reasoning state is
immutable, any number of queries can be processed simultaneously without interference. Currently,
while any kind of axiom can be provided in the starting set, only class (Tbox) and individual
(Abox) axioms are supported when extending reasoning states. Adding new property (Rbox)
axioms or SWRL rules after the initial classification is complete requires a complete reclassification
(a limitation shared with ELK). The approach described for processing DL queries works equally
well for other use cases, such as extending a reasoning state representing a large terminology with
various sets of Abox axioms describing individuals instantiating that terminology, or applying sets
of additional Tbox axioms representing alternative conceptions of a domain.

3.2 Supported reasoning tasks
Like ELK, Whelk supports standard OWL reasoning tasks such as classification, coherency and
consistency checking, and queries for subclasses, superclasses, or instances of arbitrary class
expressions. In addition, Whelk is also able to materialize all inferred relationships between
individuals (object property assertions), a feature not directly supported by ELK.

3.3 Reasoning implementation
3.3.1 OWL EL
Whelk’s EL reasoning is based on the inference rules detailed in figure 3 of Kazakov et al.[24].
Although the concrete implementation looks quite different from the source code of ELK due to
the choice of language and use of immutable data structures, Whelk’s implementation closely
follows Algorithm 2 of Kazakov et al., taking an expression from the queue and applying each
rule in turn, adding any generated expressions to the queue. Whelk’s Scala code is compact and



J. P. Balhoff and C. J. Mungall 7:5

attempts to transform the ELK rules to programming code as directly as possible. As one example,
ELK’s rule R−

⊓ handles the case that a concept that is a subclass of an intersection expression
should be inferred to be a subclass of each of the concepts in the intersection:

C ⊑ D1 ⊓ D2

C ⊑ D1 C ⊑ D2

The Scala version of this rule is a function that accepts a concept inclusion (subclass inference)
from the queue, along with the current reasoner state (which holds various indices providing fast
lookup into the ontology and computed inferences) and the queue collecting produced expressions
to which rules will be applied. If the superclass in the concept inclusion is an intersection (called
a Conjunction in the data model), then two new concept inclusions are added to the queue:

def ruleMinConj (
ci: ConceptInclusion ,
reasoner : ReasonerState ,
todo: Stack[ QueueExpression ]): ReasonerState =
ci match {

case ConceptInclusion (sub , Conjunction (left , right )) =>
todo.push( ConceptInclusion (sub , left ))
todo.push( ConceptInclusion (sub , right ))
reasoner

case _ => reasoner
}

ELK 0.6.0 improved its coverage of OWL EL by adding support for property range axioms.
The latest release of Whelk also supports the use of property ranges. ELK currently lacks complete
support for “self restrictions”, that is, class expressions stating that all instances of that class have
a specific property relation to themselves. These expressions are fully supported by Whelk, which
enables the use of a useful pattern known as rolification [25], in which a property acts as a sort
of marker for a class. As one example, the OBO Relation Ontology (RO) includes the following
axioms defining a rolification property for the class KinaseActivity and using it in a property
chain:

KinaseActivity SubClassOf (isKinaseActivity some Self)

capableOf ◦ isKinaseActivity ◦ hasDirectInput → phosphorylates

This in effect defines a property chain capableOf ◦ hasDirectInput that is only matched when
the intermediate node has the type KinaseActivity.

3.3.2 OWL RL
As stated above, Whelk extends the ELK design with support for the OWL RL profile. Handling
of OWL RL axiom types that are not included within the OWL EL profile is accomplished via
three approaches. First, certain OWL RL axioms, while not explicitly included in OWL EL, can
be transformed to equivalent EL constructs. For example, OWL EL does not include union class
expressions (e.g., Animal or P lant). These expressions are allowable within OWL RL, but only
when used on the subclass side of subclass axioms. By asserting a subclass for such expressions
for each of the union operands when loading the ontology, we can obtain the inferences supported
by OWL RL using the ELK reasoning rules. Thus, if an expression such as C or D appears in the
ontology, we need only to inject these axioms:

C SubClassOf (C or D)

TGDK
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D SubClassOf (C or D)

For OWL RL complement expressions, e.g., not C, we inject:

(C and (not C)) SubClassOf owl:Nothing

And for OWL RL cardinality restrictions of cardinality 0, e.g., p max 0 C, we inject:

(p max 0 C) and (p some C) SubClassOf owl:Nothing

The first two transformations are also supported by ELK [14].
Secondly, support for the remaining OWL RL class expression constructs is provided by

additional rules implemented similarly to the standard ELK rules. These include “all values from”
restrictions and cardinality restrictions of cardinality 1. For example, the rule for “all values from”
can be written in the style used in Kazakov et al., where i and j are individuals:

i ⊑ ∀R.C i R−→ j

j ⊑ C

In this rule, i R−→ j is a link, a type of conclusion representing existential restrictions used in the
ELK reasoning rules; a link between two individuals is equivalent to an object property assertion.
As part of Abox materialization, Whelk generates all inferred links between individuals, so that
there is no need for this rule to consider the property hierarchy. This rule is implemented by two
Scala functions similar to the above example: one to handle newly generated concept inclusions,
and one to handle newly generated links.

Lastly, other OWL RL axiom types are transformed to equivalent SWRL rules, and handled
by Whelk’s SWRL rule engine. For example, the inverse properties axiom p inverseOf r is
transformed to these SWRL rules, where leading question marks indicate variables:

p(?x, ?y) → r(?y, ?x)

r(?x, ?y) → p(?y, ?x)

3.3.3 SWRL rule engine
The Whelk SWRL rule engine is implemented as an extension of the EL reasoner. It supports
inference based on user-defined rules which can match patterns of individual types and relationships
(as above, reasoning with datatype property values is not currently supported). An example of such
a rule included in the OBO Relation Ontology is one that infers “phosphorylates” relationships
between gene product instances:

directlyRegulates(?a1, ?a2) ∧ KinaseActivity(?a1) ∧ enabledBy(?a1, ?g1)
∧ enabledBy(?a2, ?g2) → phosphorylates(?g1, ?g2)

SWRL rules perform instance-level reasoning; that is, they match and produce class assertions
and property assertions for individuals. As stated above, Whelk generates SWRL rules for certain
OWL RL axioms; these ensure that all inferred relations between individuals are materialized.
Like the EL reasoner, the SWRL rule engine works on a queue of produced expressions. When an
expression is taken from the EL reasoner queue, if it is a concept inclusion involving an individual,
or a link where the subject and object are individuals, it is also added to the SWRL engine queue.
The SWRL rule engine is an implementation of the widely used Rete pattern-matching algorithm
first developed by Forgy [15] and described in detail by Doorenbos [13]. Its design is an adaptation
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of our earlier work on an RDF rule engine [4]. When the rule engine is constructed, it builds a
tree of join nodes, where each node represents a pattern occurring in the body of a rule, linked
in such a way that a path from the root to a leaf represents a complete rule body. As concept
inclusions and links are taken from the queue, they are sent to any join nodes which use the same
class or property predicate. Join nodes in turn check their predecessor join nodes (if any) for
compatible partial solutions, and if found, activate successor join nodes. The final node in a tree
branch is a production node representing a rule head, which may generate a new concept inclusion
or link (representing class assertions and object property assertions), which is added to the EL
reasoner queue.

This integration does result in some redundant derivation of inferences. For example, while the
ELK reasoning algorithm handles transitive properties and property chains, it attempts to derive
only the links required for complete classification of named classes in the ontology [24]. In order
to compute a complete set of OWL RL inferences and to materialize all inferred object property
assertions, we additionally create SWRL rules for transitive properties and property chains for use
in the rule engine. While there may exist a more efficient approach, the integration nonetheless
provides the capability for computing Abox inferences while working with terminologies requiring
an OWL EL reasoner for scalability, a feature not available from most EL reasoners.

4 Evaluation

4.1 Testing

The Whelk codebase includes a suite of unit tests to verify that it derives identical subsumptions
to ELK for OWL EL axioms. Inferences for OWL RL are compared to the output of the OWL
reasoner HermiT [18] (which supports all OWL features but is not scalable for large ontologies)
using test cases targeting the reasoning rules outlined in the OWL RL profile spec [42]. The test
suite can be easily extended by adding new test ontologies to the repository.

4.2 Performance

We compared Whelk 1.2.1 to two versions of ELK: the long-established ELK 0.4.3, and the
very recently released ELK 0.6.0, which adds support for object property range axioms. In the
performance evaluations we make use of three ontologies (Table 1):

UNIV-BENCH-OWL2EL – a benchmark Tbox covering the OWL EL profile [34].
uberon-go-cl-ro – a merged set of ontologies from the OBO Foundry containing mutually
referential axioms: Uberon anatomy ontology, Gene Ontology (GO), Cell Ontology (CL),
Relation Ontology (RO) [30, 17, 12, 36]. Because the published versions of OBO ontologies
typically include the precomputed classification, our test ontology was derived from the source
version of each component ontology.
nci-thesaurus – the NCI Thesaurus reference terminology from the National Cancer Insti-
tute [35].

Each performance evaluation was implemented as a custom Scala script. All testing scripts and
input ontologies are available from the whelk-paper GitHub repository archived at https://doi.
org/10.5281/zenodo.13891879. All performance tests were executed on an Apple MacBook Pro
with an M2 Max chip with 12 cores, and 64 GB RAM. We set the maximum heap size for the
Java Virtual Machine to 16 GB.

TGDK
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Table 1 Characteristics of test ontologies.

Ontology Classes Object properties Logical axioms
UNIV-BENCH-OWL2EL 131 82 398

uberon-go-cl-ro 70,057 656 108,610
nci-thesaurus 188,034 97 258,241

4.2.1 Computed subsumptions
Because the three reasoners differ slightly in support for axiom types, we filtered out axioms
making use of ObjectUnionOf and ObjectHasSelf expressions as well as ObjectPropertyRange
axioms. We programmatically verified that all three reasoners derived the same class subsumptions
for each test ontology.

4.2.2 Ontology classification speed
We measured the time required for each reasoner to classify each of the input ontologies and answer
a query to check the coherency of the ontology (“list any classes equivalent to owl:Nothing”).
Within a single process for each reasoner and ontology combination, we computed the classification
of each ontology 12 times. We discarded the first two runs (to allow warmup of the JVM) and
computed the average of the remaining 10 runs. ELK’s classification algorithm is multi-threaded,
while Whelk’s is single-threaded only; we allowed ELK to use all available CPUs. The UNIV-
BENCH-OWL2EL ontology is so tiny that each reasoner takes only a fraction of a second, and so
we exclude it from further performance tests. For classification of nci-thesaurus, ELK 0.4.3 is ~10
times faster than Whelk, completing the task in 2.4 seconds vs. 24.2 seconds for Whelk (Figure
1). On the other hand, ELK 0.6.0 is significantly slower than its previous release, comparable
to Whelk with a time of 23.2 seconds. For uberon-go-cl-ro, ELK 0.4.3 outperforms Whelk by a
larger margin (~20 times faster), at 2.3 seconds vs. 46.8 seconds. ELK 0.6.0 is the slowest for
uberon-go-cl-ro, averaging 99.7 seconds. The decrease in performance between ELK 0.4.3 and
0.6.0 is unexpected, and we plan to investigate this issue with the developers.

4.2.3 DL query speed
In order to measure how quickly each reasoner can answer successive DL queries, for each
ontology (uberon-go-cl-ro and nci-thesaurus) we extracted all complex class expressions used,
at all levels of nesting. This procedure provides us with class expressions likely to represent
relevant queries, rather than generating random combinations of classes and properties. After
classifying the ontology, we queried the reasoner for subclasses of each class expression, using the
‘getSubclasses’ method of the OWLReasoner interface. As assurance that each reasoner returned
the same subclasses, we collected the number of subclasses returned for each class expression and
reported the sum. The query script submitted queries to the reasoner at each of three levels of
parallelism: 1 (query all expressions sequentially), 4, or 8 workers. We measured the time required
to answer all queries for all combinations of ontology, reasoner, and parallelism, averaging three
runs following a warmup run.

For sequential queries, ELK 0.4.3 and 0.6.0 perform similarly, executing 46,685 queries against
nci-thesaurus at 51 and 47 queries per second, respectively (Figure 2). In comparison, Whelk
is able to execute 2306 queries per second. As expected, at higher levels of concurrent queries,
ELK’s performance remains the same. Whelk’s query answering speed scales with the number of
workers: 8159 queries per second using 4 workers; 13,679 queries per second using 8 workers.



J. P. Balhoff and C. J. Mungall 7:9

0.01
2.37 2.33

0.03

23.20

99.73

0.10

24.16

46.81

elk-0.4.3
elk-0.6.0
whelk

Av
er

ag
e 

cl
as

si
fic

at
io

n 
tim

e 
(s

ec
on

ds
)

0

10

20

30

40

50

60

70

80

90

100

110

Ontology / Reasoner
UNIV-BENCH-OWL2EL nci-thesaurus uberon-go-cl-ro
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Figure 1 Time required for each reasoner to classify and check coherency of three input ontologies
(lower is better). ELK 0.4.3 is 10-20 times faster than Whelk for the two large ontologies that we tested
(nci-thesaurus and uberon-go-cl-ro).

Results for executing 66,169 queries against uberon-go-cl-ro follow the same pattern, although
in this case ELK 0.6.0 outperforms 0.4.3 (94 queries per second vs. 24, for sequential queries).
Again Whelk is much faster at 1397 queries per second (sequentially) and 8735 queries per second
(8 workers).

4.2.4 Abox consistency checking speed
We next tested how quickly each reasoner could perform incremental reasoning when extending
an ontology with multiple independent sets of Abox axioms, after having previously classified the
Tbox. We used the uberon-go-cl-ro ontology as a Tbox for a collection of 4590 Gene Ontology
Causal Activity models (GO-CAMs) [37]. This ontology contains axioms defining most of the
biological concepts and relations used in the GO-CAMs. The GO-CAMs are small Abox ontologies
of class assertions and object property assertions, containing an average of 43 logical axioms, with
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Figure 2 Query answering rate at different levels of parallelism of DL query submission (higher is
better). ELK processes a single query at a time, while Whelk responds to parallel requests. Whelk’s
sequential DL query speed is ~15-50 times greater than ELK for these two ontologies, and up to 279 times
faster when handling 8 queries at a time.

the smallest containing 4 and the largest containing 2590. Similarly to the DL query test, we used
each reasoner to first classify the ontology, then added each Abox either sequentially or in parallel
using 4 or 8 workers. We measured the time to classify and then query the consistency of all 4590
Aboxes, averaging three runs following a warmup run. For the two ELK reasoners, for each Abox
we added its axioms to the base ontology using the OWL API and used the OWLReasoner “flush”
method to trigger classification. After querying the consistency of the result, we removed the
Abox axioms from the ontology. Because Whelk is designed particularly for this scenario, we used
its Scala API directly rather than going through OWL API, which does not allow adding axioms
in parallel.

Both ELK reasoners found 36 inconsistent Aboxes. Whelk detected 56 inconsistent Aboxes;
this difference is expected since Whelk supports OWL RL constructs that ELK does not. In the
sequential scenario, ELK 0.4.3’s greater classification speed allowed it to outperform the other
reasoners, checking 121 Aboxes per second compared to 84 for Whelk and 28 for ELK 0.6.0 (Figure
3). As in the DL query test, performing the tasks in parallel did not provide appreciable benefit
for the ELK reasoners, but allowed much higher throughput using Whelk, checking 286 Aboxes
per second with 4 workers, and 498 Aboxes per second with 8 workers.

5 Applications

5.1 Relation graph materialization
A substantial number of ontology use cases in the biosciences translate to what we call “re-
lation graph” questions, such as “what are the parts of the nucleus” or “where is this gene
localized”. These can be translated to OWL subclass queries involving existential restrictions, e.g.
?c SubClassOf R some D or C SubClassOf R some ?d. The latter is particularly challenging,
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is better). ELK processes a single incremental reasoning task at a time, while Whelk can extend its
reasoning state in parallel.

as the way to answer this with standard OWL query interfaces is to test subsumption for different
values of ?d, rather than executing a single query. A relation graph in the sense we describe is
illustrated in Figure 4, which shows a small subset of the Gene Ontology TBox depicting subclass
axioms and subclass existential axioms as edges.

We previously implemented a system for computing such entailed existential relation edges
using the OWL API and the ELK reasoner, but we found the performance did not scale to the
level we needed. Constructing and classifying named versions of all combinations of properties
and classes quickly generates a prohibitively large ontology. Performing successive DL queries can
be done with a manageable, constant memory size, at the cost of a possibly long runtime. Using
Whelk, we created a tool called “relation-graph”, which efficiently materializes every inferred
relationship C SubClassOf R some D for all properties and classes from an input ontology.
Relation-graph relies on Whelk’s much faster query answering performance, and also performs
queries in parallel. Further, it makes use of the class and property hierarchies to avoid unnecessary
queries. Entailed C SubClassOf R some D relationships are output as simple RDF triples C R D,
which lend themselves to straightforward SPARQL queries that are logically complete after the
relation-graph materialization.
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Relation-graph is a crucial component of the Ubergraph construction pipeline, which generates
an RDF knowledge graph combining many OBO library ontologies along with the full set of
materialized relation graph edges [3]. The Ubergraph relation closure has proved to be a valuable
resource for conveniently harnessing the logical semantics provided by its component ontologies [10,
19], and relation-graph itself is used to support a number of other applications [33, 38]. As part
of the relation-graph tool, Whelk has been of critical value in making the Ubergraph reasoning
precomputation feasible. Ubergraph is based on a large merged ontology, presently consisting
of more than 5 million logical axioms, with almost 4 million named classes and more than 1000
object properties. It takes Whelk approximately 40 minutes to classify the ontology, while ELK
0.4.3 can classify this ontology in 99 seconds. However, in the course of building Ubergraph,
the relation-graph tool first classifies the ontology and then uses Whelk to execute more than
90 million DL queries. In our tests, on this ontology ELK completes ~2.5 queries per second;
at that rate it would take more than 400 days to complete this task, while this phase of the
Ubergraph build completes in less than 8 hours using relation-graph with Whelk, making the
extended classification time a worthwhile trade-off.

5.2 Reasoning with Aboxes and biomedical terminologies in Protégé and
ROBOT

Whelk is the only reasoner available for the OWL API we are aware of which can efficiently
classify large biomedical ontologies such as Uberon, Gene Ontology (GO), and NCI Thesaurus
and also materialize inferred object property assertions. It therefore fills a valuable niche for
those who are using such ontologies to reason over instance models, for example within the Gene
Ontology GO-CAM project [37]. The GO Consortium uses GO-CAMs to describe the activity of
gene products within cellular processes, using OWL to provide a much more expressive modeling
capability than traditional flat gene-to-term associations. The modeling in GO-CAMs relies on the
rich property axiomatization in the OBO Relation Ontology, including inverse property axioms
and SWRL rules. The core reference terminology, combining GO, Uberon, CL, RO, and several
other ontologies, consists of nearly 1 million logical axioms. Being able to load this ontology into
Protégé and classify a GO-CAM is invaluable for exploring modeling consequences or debugging
unexpected inferences found in a particular model. Whelk can also be used to materialize Abox
inferences within the command-line OWL tool ROBOT. This can done for one of the GO-CAM
files described above with a command such as the following:

robot merge -i uberon-go-cl-ro.ofn -i gocam-5b91dbd100000506.ttl \
reason --reasoner whelk --axiom-generators "ClassAssertion PropertyAssertion" \
-o inferred.ttl

Unexpected inferences can also be debugged within ROBOT, using the “explain” feature it
shares in common with Protégé.

5.3 Reasoner-driven web services
We have integrated Whelk as a reasoner option within Owlery [5], an application for exposing OWL
reasoner functionalities via a set of web services. Like Protégé and ROBOT, Owlery is built upon
the Java OWL API and thus integration of any reasoner supporting the OWLReasoner interface
is trivial. Owlery supports standard OWLReasoner queries such as subclasses, superclasses, and
equivalent classes of submitted class expressions, returning the results in a JSON-LD format. A
distinct advantage to using Whelk within such a web services application is that, while the initial
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ontology classification at startup may be slower, such a service can then run indefinitely, and
subsequent queries to the reasoner are non-blocking, allowing scaling to a much higher level of
concurrent traffic as demonstrated by the DL queries tests above (figure 2).

In addition to server-side web services, as noted above Whelk can be compiled to JavaScript
using Scala.js. As far as we are aware, Whelk is the only OWL reasoner available for use within
web browser client-side code. We provide a demonstration at https://balhoff.github.io/
whelk-web/.
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5.4 Testing hypothetical axioms
We previously implemented a system (k-BOOM [29]) for converting ontology term mappings
into precise logical relationships; k-BOOM generates hypothetical axioms representing possible
interpretations of a set of mappings, and attempts to find the set of interpretations which is both
logically coherent and has the highest joint probability. This system was used to construct the
initial version of the Mondo, a disease ontology which provides a unified logical view over several
different source terminologies [39]. The original version of k-BOOM, based on ELK, required more
than a day of runtime to analyze the term mapping inputs for Mondo. We have implemented
a new tool, boomer [8], which is based on Whelk and can perform the same task in a matter of
minutes.

6 Discussion

While ELK 0.4.3 provides much higher performance for ontology classification, Whelk’s design
allows it to target use cases for which ELK does not perform as well. As shown above, these
use cases primarily involve concurrent extension of existing reasoner states, although even for
sequential DL queries without parallelism, Whelk’s design proves to result in very high performance.
While our work directly reuses the rules for inference defined in the ELK publication, the success of
Whelk in supporting the particular scenarios described here brings to light the value in exploring
alternative reasoner implementations targeting different software ecosystems or performance use
cases. Unfortunately, a recent study shows that only 25 of 73 tested OWL reasoner implementations
are usable and actively maintained [1]. Many OWL reasoners have begun life as research prototypes
providing a single implementation, and very few have grown into community-developed open
source projects (although there are exceptions, for example Openllet [11]).

While Whelk is primarily maintained by a single developer, it is now used within a number
of different applications supporting life sciences research projects making use of ontology-based
knowledge graphs, which support its continued development. The Whelk codebase is fairly compact
(the core EL reasoning rules comprise less than 500 lines of Scala), and we have created preliminary
ports to other languages, including Rust [6], allowing it to be used with the recently developed
horned-owl package [26].

Whelk’s development and extensions to the ELK inference rules have been driven by a pragmatic
approach. For example, the EL and RL reasoning engines derive some duplicate inferences. While
we would welcome input on a more efficient integration, the current implementation returns sound
results and provides useful Abox inference features as an add-on to OWL EL.

In this paper we have explored the utility of the Whelk reasoner almost entirely in contrast to
its precursor, ELK. This is a testament to how universally important the ELK reasoner has been
to the bio-ontology ecosystem, allowing reasoner-driven quality control pipelines to become the
norm for many widely used ontologies. ELK still remains vitally important for those workflows,
as well as for most interactive terminology development within Protégé. But for the additional
types of use cases described here, Whelk provides distinct advantages.
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