
Transactions on
Graph Data and Knowledge

Volume 2 | Issue 2 | December, 2024

Special Issue: Resources for Graph Data and Knowledge

Edited by

Aidan Hogan
Ian Horrocks
Andreas Hotho
Lalana Kagal
Uli Sattler

TGDK, Vol. 2, Issue 2 ISSN 2942-7517 https://www.dagstuhl.de/tgdk

https://www.dagstuhl.de/tgdk

ISSN 2942-7517

TGDK Special Issue Editors

Aidan Hogan
DCC, Universidad de Chile, IMFD, Chile
ahogan@dcc.uchile.cl

Ian Horrocks
University of Oxford, U.K.
ian.horrocks@cs.ox.ac.uk

Andreas Hotho
University of Würzburg, Germany
hotho@informatik.uni-wuerzburg.de

Lalana Kagal
Massachusetts Institute of Technology, Cambridge,
MA, USA
lkagal@csail.mit.edu

Uli Sattler
University of Manchester, U.K.
Uli.Sattler@manchester.ac.uk

ACM Classification 2012
Computing methodologies → Knowledge representa-
tion and reasoning; Information systems → Semantic
web description languages; Information systems →
Graph-based database models; Computing methodolo-
gies → Machine learning; Theory of computation →
Graph algorithms analysis; Mathematics of computing
→ Graph theory

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik
GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany.
Online available at
https://www.dagstuhl.de/dagpub/2942-7517.

Publication date
December, 2024

Digital Object Identifier
10.4230/TGDK.2.2.0

Bibliographic information published by the Deutsche
Nationalbibliothek
The Deutsche Nationalbibliothek lists this publica-
tion in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at
https://dnb.d-nb.de.

License
This work is licensed under a Creative Commons At-
tribution 4.0 International license (CC BY 4.0): https:
//creativecommons.org/licenses/by/4.0.

In brief, this license authorizes each
and everybody to share (to copy, dis-

tribute and transmit) the work under the following
conditions, without impairing or restricting the au-
thors’ moral rights:

Attribution: The work must be attributed to its
authors.

The copyright is retained by the corresponding authors.

Aims and Scope
Transactions on Graph Data and Knowledge (TGDK)
is an Open Access journal that publishes original re-
search articles and survey articles on graph-based ab-
stractions for data and knowledge, and the techniques
that such abstractions enable with respect to integra-
tion, querying, reasoning and learning. The scope of
the journal thus intersects with areas such as Graph
Algorithms, Graph Databases, Graph Representation
Learning, Knowledge Graphs, Knowledge Represent-
ation, Linked Data and the Semantic Web. Also in-
scope for the journal is research investigating graph-
based abstractions of data and knowledge in the con-
text of Data Integration, Data Science, Information
Extraction, Information Retrieval, Machine Learning,
Natural Language Processing, and the Web.

The journal is Open Access without fees for readers or
for authors (also known as Diamond Open Access).

Editors in Chief
Aidan Hogan
Andreas Hotho
Lalana Kagal
Uli Sattler

Editorial Office
Schloss Dagstuhl – Leibniz-Zentrum für Informatik
TGDK, Editorial Office
Oktavie-Allee, 66687 Wadern, Germany
tgdk@dagstuhl.de
https://www.dagstuhl.de/tgdk

https://www.dagstuhl.de/tgdk
https://orcid.org/0000-0001-9482-1982
mailto:ahogan@dcc.uchile.cl
https://orcid.org/0000-0002-2685-7462
mailto:ian.horrocks@cs.ox.ac.uk
https://orcid.org/0000-0002-0483-5772
mailto:hotho@informatik.uni-wuerzburg.de
https://orcid.org/0000-0001-8469-1993
mailto:lkagal@csail.mit.edu
https://orcid.org/0000-0003-4103-3389
mailto:Uli.Sattler@manchester.ac.uk
https://www.dagstuhl.de/dagpub/2942-7517
https://doi.org/10.4230/TGDK.2.2.0
https://dnb.d-nb.de
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/tgdk

Contents

List of Authors
. 0:vii–0:viii

Preface

Resources for Graph Data and Knowledge
Aidan Hogan, Ian Horrocks, Andreas Hotho, Lalana Kagal, and Uli Sattler 1:1–1:2

Resources for Graph Data and Knowledge

NEOntometrics – A Public Endpoint for Calculating Ontology Metrics
Achim Reiz and Kurt Sandkuhl . 2:1–2:22

The dblp Knowledge Graph and SPARQL Endpoint
Marcel R. Ackermann, Hannah Bast, Benedikt Maria Beckermann,
Johannes Kalmbach, Patrick Neises, and Stefan Ollinger . 3:1–3:23

FAIR Jupyter: A Knowledge Graph Approach to Semantic Sharing and Granular
Exploration of a Computational Notebook Reproducibility Dataset

Sheeba Samuel and Daniel Mietchen . 4:1–4:24

The Reasonable Ontology Templates Framework
Martin Georg Skjæveland and Leif Harald Karlsen . 5:1–5:54

TØIRoads: A Road Data Model Generation Tool
Grunde Haraldsson Wesenberg and Ana Ozaki . 6:1–6:12

Whelk: An OWL EL+RL Reasoner Enabling New Use Cases
James P. Balhoff and Christopher J. Mungall . 7:1–7:17

MELArt: A Multimodal Entity Linking Dataset for Art
Alejandro Sierra-Múnera, Linh Le, Gianluca Demartini, and Ralf Krestel 8:1–8:22

Horned-OWL: Flying Further and Faster with Ontologies
Phillip Lord, Björn Gehrke, Martin Larralde, Janna Hastings, Filippo De Bortoli,
James A. Overton, James P. Balhoff, and Jennifer Warrender . 9:1–9:14

Transactions on Graph Data and Knowledge, Vol. 2, Issue 2, Article No. 0, pp. 0:i–0:viii
Special Issue: Resources for Graph Data and Knowledge.
Editors: Aidan Hogan, Ian Horrocks, Andreas Hotho, Lalana Kagal, and Uli Sattler

Transactions on Graph Data and Knowledge
T G D K Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/tgdk
https://www.dagstuhl.de/tgdk
https://www.dagstuhl.de

List of Authors

Marcel R. Ackermann (3)
Schloss Dagstuhl – Leibniz Center for Informatics,
dblp computer science bibliography, Trier,
Germany

James P. Balhoff (7, 9)
Renaissance Computing Institute, University of
North Carolina, Chapel Hill, NC, USA

Hannah Bast (3)
University of Freiburg, Department of Computer
Science, Freiburg, Germany

Benedikt Maria Beckermann (3)
Schloss Dagstuhl – Leibniz Center for Informatics,
dblp computer science bibliography, Trier,
Germany

Filippo De Bortoli (9)
TU Dresden, Germany;
Center for Scalable Data Analytics and Artificial
Intelligence (ScaDS.AI), Dresden/Leipzig, Germany

Gianluca Demartini (8)
The University of Queensland, Brisbane, Australia

Björn Gehrke (9)
Institute for Implementation Science in Health
Care, Faculty of Medicine, University of Zurich,
Switzerland

Janna Hastings (9)
Institute for Implementation Science in Health
Care, Faculty of Medicine, University of Zurich,
Switzerland;
School of Medicine, University of St. Gallen,
Switzerland; Swiss Institute of Bioinformatics,
Switzerland

Aidan Hogan (1)
DCC, Universidad de Chile, IMFD, Chile

Ian Horrocks (1)
University of Oxford, U.K

Andreas Hotho (1)
Department of Informatics,
University of Würzburg, Germany

Lalana Kagal (1)
Massachusetts Institute of Technology,
Cambridge, MA, USA

Johannes Kalmbach (3)
University of Freiburg, Department of Computer
Science, Freiburg, Germany

Leif Harald Karlsen (5)
Department of Informatics,
University of Oslo, Norway

Ralf Krestel (8)
ZBW – Leibniz Information Centre for Economics,
Kiel, Germany; Kiel University, Kiel, Germany

Martin Larralde (9)
Leiden University Medical Center,
The Netherlands;
Structural and Computational Biology Unit,
EMBL, Heidelberg, Germany

Linh Le (8)
The University of Queensland, Brisbane, Australia

Phillip Lord (9)
School of Computing, Newcastle University,
United Kingdom

Daniel Mietchen (4)
FIZ Karlsruhe – Leibniz Institute for Information
Infrastructure, Germany;
Institute for Globally Distributed Open Research
and Education (IGDORE)

Christopher J. Mungall (7)
Lawrence Berkeley National Laboratory,
Berkeley, CA, USA

Patrick Neises (3)
Schloss Dagstuhl – Leibniz Center for Informatics,
dblp computer science bibliography, Trier,
Germany

Stefan Ollinger (3)
Schloss Dagstuhl – Leibniz Center for Informatics,
dblp computer science bibliography, Trier,
Germany

James A. Overton (9)
Knocean Inc., Toronto, Canada

Ana Ozaki (6)
Department of Informatics,
University of Oslo, Norway;
Department of Informatics,
University of Bergen, Norway

Achim Reiz (2)
Rostock University, Germany

Sheeba Samuel (4)
Distributed and Self-organizing Systems, Chemnitz
University of Technology, Chemnitz, Germany

Transactions on Graph Data and Knowledge, Vol. 2, Issue 2, Article No. 0, pp. 0:i–0:viii
Special Issue: Resources for Graph Data and Knowledge.
Editors: Aidan Hogan, Ian Horrocks, Andreas Hotho, Lalana Kagal, and Uli Sattler

Transactions on Graph Data and Knowledge
T G D K Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-7644-2495
https://doi.org/10.4230/TGDK.2.2.3
https://orcid.org/0000-0002-8688-6599
https://doi.org/10.4230/TGDK.2.2.7
https://doi.org/10.4230/TGDK.2.2.9
https://orcid.org/0000-0003-1213-6776
https://doi.org/10.4230/TGDK.2.2.3
https://orcid.org/0009-0008-3920-6109
https://doi.org/10.4230/TGDK.2.2.3
https://orcid.org/0000-0002-8623-6465
https://doi.org/10.4230/TGDK.2.2.9
https://orcid.org/0000-0002-7311-3693
https://doi.org/10.4230/TGDK.2.2.8
https://orcid.org/0009-0007-7488-0257
https://doi.org/10.4230/TGDK.2.2.9
https://orcid.org/0000-0002-3469-4923
https://doi.org/10.4230/TGDK.2.2.9
https://orcid.org/0000-0001-9482-1982
https://doi.org/10.4230/TGDK.2.2.1
https://orcid.org/0000-0002-2685-7462
https://doi.org/10.4230/TGDK.2.2.1
https://orcid.org/0000-0002-0483-5772
https://doi.org/10.4230/TGDK.2.2.1
https://orcid.org/0000-0001-8469-1993
https://doi.org/10.4230/TGDK.2.2.1
https://orcid.org/0000-0002-5582-1610
https://doi.org/10.4230/TGDK.2.2.3
https://orcid.org/0000-0001-5131-5246
https://doi.org/10.4230/TGDK.2.2.5
https://orcid.org/0000-0002-5036-8589
https://doi.org/10.4230/TGDK.2.2.8
https://orcid.org/0000-0002-3947-4444
https://doi.org/10.4230/TGDK.2.2.9
https://orcid.org/0000-0002-1241-1881
https://doi.org/10.4230/TGDK.2.2.8
https://orcid.org/0000-0002-4699-6769
https://doi.org/10.4230/TGDK.2.2.9
https://orcid.org/0000-0001-9488-1870
https://doi.org/10.4230/TGDK.2.2.4
https://orcid.org/0000-0002-6601-2165
https://doi.org/10.4230/TGDK.2.2.7
https://orcid.org/0000-0002-3419-2544
https://doi.org/10.4230/TGDK.2.2.3
https://orcid.org/0000-0001-6548-5190
https://doi.org/10.4230/TGDK.2.2.3
https://orcid.org/0000-0001-5139-5557
https://doi.org/10.4230/TGDK.2.2.9
https://orcid.org/0000-0002-3889-6207
https://doi.org/10.4230/TGDK.2.2.6
https://orcid.org/0000-0003-1446-9670
https://doi.org/10.4230/TGDK.2.2.2
https://orcid.org/0000-0002-7981-8504
https://doi.org/10.4230/TGDK.2.2.4
https://www.dagstuhl.de/tgdk
https://www.dagstuhl.de/tgdk
https://www.dagstuhl.de

0:viii Authors

Kurt Sandkuhl (2)
Rostock University, Germany

Uli Sattler (1)
University of Manchester, U.K

Alejandro Sierra-Múnera (8)
Hasso Plattner Institute,
University of Potsdam, Potsdam, Germany

Martin Georg Skjæveland (5)
Department of Informatics,
University of Oslo, Norway

Jennifer Warrender (9)
School of Computing, Newcastle University,
United Kingdom

Grunde Haraldsson Wesenberg (6)
Department of Informatics,
University of Bergen, Norway;
Institute of Transport Economics,
Oslo, Norway

https://orcid.org/0000-0002-7431-8412
https://doi.org/10.4230/TGDK.2.2.2
https://orcid.org/0000-0003-4103-3389
https://doi.org/10.4230/TGDK.2.2.1
https://orcid.org/0000-0003-3637-4904
https://doi.org/10.4230/TGDK.2.2.8
https://orcid.org/0000-0002-9736-8316
https://doi.org/10.4230/TGDK.2.2.5
https://orcid.org/0000-0003-1033-2431
https://doi.org/10.4230/TGDK.2.2.9
https://orcid.org/0009-0009-3867-4207
https://doi.org/10.4230/TGDK.2.2.6

Resources for Graph Data and Knowledge
Aidan Hogan # Ñ

DCC, Universidad de Chile, IMFD, Chile

Ian Horrocks # Ñ

University of Oxford, U.K.

Andreas Hotho # Ñ

Department of Informatics, University of Würzburg, Germany

Lalana Kagal # Ñ

Massachusetts Institute of Technology, Cambridge, MA, USA

Uli Sattler # Ñ

University of Manchester, U.K.

Abstract
In this Special Issue of Transactions on Graph Data
and Knowledge – entitled “Resources for Graph
Data and Knowledge” – we present eight articles
that describe key resources in the area. These re-
sources cover a wide range of topics within the scope

of the journal, including graph querying, graph
learning, information extraction, and ontologies, ad-
dressing applications of knowledge graphs involving
art, bibliographical metadata, research reproducib-
ility, and transport networks.

2012 ACM Subject Classification Computing methodologies → Knowledge representation and reasoning;
Information systems → Semantic web description languages; Information systems → Graph-based
database models; Computing methodologies → Machine learning; Theory of computation → Graph
algorithms analysis; Mathematics of computing → Graph theory
Keywords and phrases Graphs, Data, Knowledge
Digital Object Identifier 10.4230/TGDK.2.2.1
Category Preface
Acknowledgements We warmly thank Dagstuhl Publishing for their continued collaboration, the
Semantic Web Science Association (SWSA) for their support, our colleagues on the SWSA Task Force
who helped to plan this new journal, as well as our Advisory and Editorial Boards for their contributions
towards getting the journal up and running and ensuring its continued operation and development.
Published 2024-12-18
Editors Aidan Hogan, Ian Horrocks, Andreas Hotho, Lalana Kagal, and Uli Sattler
Special Issue Resources for Graph Data and Knowledge

1 Resources Articles

Resources play an essential role in many areas of computer science research, including in the area
of Graph Data & Knowledge. Such resources may involve benchmarks, datasets, engines, frame-
works, interfaces, knowledge graphs, languages, ontologies, pre-trained models, software libraries,
standards, tools, user logs, web applications and services, etc. High-quality resources along these
lines offer significant value to the community, facilitating rapid prototyping of novel applications
and tools; experimentation over real-world datasets, ontologies, queries, etc.; transitioning novel
research findings into practice; etc. Despite the advances that such resources can enable within
a particular research community, and the amount of effort required in designing, building, and
maintaining them, they can often be undervalued in an academic setting.

© Aidan Hogan, Ian Horrocks, Andreas Hotho, Lalana Kagal, and Uli Sattler;
licensed under Creative Commons License CC-BY 4.0

Transactions on Graph Data and Knowledge, Vol. 2, Issue 2, Article No. 1, pp. 1:1–1:2
Transactions on Graph Data and Knowledge

T G D K Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ahogan@dcc.uchile.cl
http://aidanhogan.com/
https://orcid.org/0000-0001-9482-1982
mailto:ian.horrocks@cs.ox.ac.uk
https://www.cs.ox.ac.uk/people/ian.horrocks/
https://orcid.org/0000-0002-2685-7462
mailto:hotho@informatik.uni-wuerzburg.de
https://www.informatik.uni-wuerzburg.de/datascience/staff/hotho/
https://orcid.org/0000-0002-0483-5772
mailto:lkagal@csail.mit.edu
https://www.csail.mit.edu/person/lalana-kagal
https://orcid.org/0000-0001-8469-1993
mailto:Uli.Sattler@manchester.ac.uk
https://www.cs.man.ac.uk/~sattler/
https://orcid.org/0000-0003-4103-3389
https://doi.org/10.4230/TGDK.2.2.1
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/tgdk
https://www.dagstuhl.de/tgdk
https://www.dagstuhl.de

1:2 Resources for Graph Data and Knowledge

In this context, Transactions on Graph Data & Knowledge (TGDK) has introduced a new
submission type for Resource Articles that describe two types of resources relevant to research on
Graph Data & Knowledge:

Mature resources that have already enjoyed significant adoption by third parties, or that
complement resources with significant adoption. Such adoption may be in, for example, the
context of research, industry or a specific user community.
Emerging resources that may have only recently been made available, but that provide novel
scientific results. An example of such a resource could be, for example, a bespoke benchmark
that provides novel insights into the performance of state-of-the-art tools on a specific task.

Resource Articles include discussion of the motivation for the resource and its novelty, a
technical description of the resource, relevance to the journal, key statistics or other metadata
underlying the resource and its adoption, how the resource is made available, how the sustainability
of the resource is assured, an assessment of the limitations of the resource, and future directions
for the resource. Mature resources must further discuss the impact of the resource, while emerging
resources must present a scientific contribution enabled by the resource. Such submissions are
then peer-reviewed with respect to six criteria: novelty, relevance, clarity, technical soundness,
impact, and resource quality. In the case of novelty, the emphasis is put on the novelty of the
resource itself in the context of related resources rather than expecting novelty in a research sense.

This new submission type was inaugurated via the current Special Issue, entitled “Resources
for Graph Data & Knowledge” (described below). Based on the success of this Special Issue, the
Editors-in-Chief now solicit Resource Articles as part of the regular call for submissions.

2 Resources for Graph Data & Knowledge

As the Editors-in-Chief, we are pleased to present the TGDK Special Issue titled “Resources
for Graph Data & Knowledge”, which is the second issue of the second volume of the journal,
and the third issue overall since the inauguration of the journal. This Special Issue presents
a collection of eight Resource Articles. The resources covered by the Special Issue reflect the
broad applicability of graphs for representing data and knowledge. The resources themselves cover
various sub-topics relevant for TGDK that include graph querying, graph learning, information
extraction and knowledge representation, covering also applications relating to art, bibliographical
metadata, research reproducibility, and transport networks.

Though the call for this Special Issue is now over, based on its success, we have opted to
include Resource Articles in the regular call for the journal. Hence we invite the reader who
may be an author, creator and/or maintainer of high-quality resources in the area to consider
submitting a description of their artefact(s) to the journal!

NEOntometrics – A Public Endpoint for Calculating
Ontology Metrics
Achim Reiz #

Rostock University, Germany

Kurt Sandkuhl #

Rostock University, Germany

Abstract
Ontologies are the cornerstone of the semantic web
and knowledge graphs. They are available from vari-
ous sources, come in many shapes and sizes, and
differ widely in attributes like expressivity, degree
of interconnection, or the number of individuals.
As sharing knowledge and meaning across human
and computational actors emphasizes the reuse of
existing ontologies, how can we select the ontology
that best fits the individual use case? How do we
compare two ontologies or assess their different ver-
sions? Automatically calculated ontology metrics
offer a starting point for an objective assessment.
In the past years, a multitude of metrics have been
proposed. However, metric implementations and
validations for real-world data are scarce. For most

of these proposed metrics, no software for their cal-
culation is available (anymore). This work aims
at solving this implementation gap. We present
the emerging resource NEOntometrics, an open-
source, flexible metric endpoint that offers (1.) an
explorative help page that assists in understanding
and selecting ontology metrics, (2.) a public metric
calculation service that allows assessing ontologies
from online resources, including GIT-based reposit-
ories for calculating evolutional data, with (3.) a
scalable and adaptable architecture. In this paper,
we first evaluate the state of the art, then show the
software and its underlying architecture, followed
by an evaluation. NEOntometrics is today the most
extensive software for calculating ontology metrics.

2012 ACM Subject Classification Computing methodologies → Ontology engineering; Information
systems → Web Ontology Language (OWL); General and reference → Metrics; General and reference
→ Evaluation
Keywords and phrases Ontology Metrics, Ontology Quality, Knowledge Graph Semantic Web, OWL,
RDF
Digital Object Identifier 10.4230/TGDK.2.2.2
Category Resource Paper
Related Version Previous Version: https://ceur-ws.org/Vol-3235/paper16.pdf [25]
Supplementary Material The source code for NEOntometrics is published on Github under the MIT
license, where version 1.1.0 was used for the performance results presented in Section 5.3. The evaluations
are available on Zenodo under a CC-BY license.
InteractiveResource (Project Website): http://neontometrics.com [23]
Software (Source Code): https://github.com/achiminator/neontometrics [21]

archived at swh:1:dir:a0a2d612a4de911f171dadcefb66dcc1c5b42bd9
Dataset (Evaluation and Supporting Materials): https://zenodo.org/records/14047141 [30]
Received 2023-12-01 Accepted 2024-10-31 Published 2024-12-18
Editors Aidan Hogan, Ian Horrocks, Andreas Hotho, Lalana Kagal, and Uli Sattler
Special Issue Resources for Graph Data and Knowledge

© Achim Reiz and Kurt Sandkuhl;
licensed under Creative Commons License CC-BY 4.0

Transactions on Graph Data and Knowledge, Vol. 2, Issue 2, Article No. 2, pp. 2:1–2:22
Transactions on Graph Data and Knowledge

T G D K Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:achim.reiz@uni-rostock.de
https://orcid.org/0000-0003-1446-9670
mailto:kurt.sandkuhl@uni-rostock.de
https://orcid.org/0000-0002-7431-8412
https://doi.org/10.4230/TGDK.2.2.2
https://ceur-ws.org/Vol-3235/paper16.pdf
http://neontometrics.com
https://github.com/achiminator/neontometrics
https://archive.softwareheritage.org/swh:1:dir:a0a2d612a4de911f171dadcefb66dcc1c5b42bd9;origin=https://github.com/achiminator/neontometrics;visit=swh:1:snp:bef1a3e62d2cda8af8a28c03e945a5d7ea2d6826;anchor=swh:1:rev:fa616530952d419943a480719c407761ae1cc734
https://zenodo.org/records/14047141
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/tgdk
https://www.dagstuhl.de/tgdk
https://www.dagstuhl.de

2:2 NEOntometrics – Calculating Ontology Metrics

1 Introduction

Ontologies facilitate the shared understanding of a domain between people and systems [15]. They
allow the structuring and contextualizing of data for detecting implicit knowledge, accessing this
knowledge using complex queries, and integrating and interlinking data from various sources while
facilitating a common understanding.

Over time, the semantic web community developed numerous ontologies. To give a perspective,
the vocabulary repository “Linked Open Vocabulary (LOV)” [33] contains 860 ontologies. The
portal “ontologydesignpatterns.org” collects small, reusable ontology patterns and provides 240
artifacts. Bioportal [34], a large repository for biomedical ontologies, contains 1,140 ontologies.
Moreover, many more ontologies are available on different sources like GitHub or private company
repositories1.

While the number of developed ontologies is extensive, just a few means are available to assess
these artifacts quantitatively. For the development team that likes to integrate an ontology into
their system, it is cumbersome to numerically compare the main attributes of two or more available
ontologies that serve the same purpose. For the knowledge engineer, the missing assessment
capabilities hinder tracking how ontology structure evolves throughout the ontology lifetime.

As shown in the next section, the lack of means for numerical assessments does not originate
from a lack of proposed metrics - over time, various metric frameworks have been developed.
What is missing are practical implementations of these metrics. Without a means to put these
metrics into use, further empirical research cannot proceed, and the potential of ontology metrics
remains theoretical.

This work aims to close this gap by presenting a flexible, extensible metric calculation endpoint
for RDFS and OWL-based ontologies. The software enables metrics to be calculated and retrieved
using a graphical user interface (GUI) or an application programming interface (API). It further
aids users in learning about different metrics, their calculations, and possible interpretations
through an interactive explorer for ontology metrics. If several versions of an ontology are available
in a GIT-based repository, the development of the metric values over time can be tracked.

NEOntometrics is the successor of the Ontometrics software [11] and its API endpoint [26].
The new software allows for evolutional analysis, comes with visualization capabilities, calculates
more metrics with improved calculation performance, and is better extensible. Parts of the
NEOntometrics application have been previously published. We presented a poster of an earlier
version of NEOntometrics at the Semantics Conference 2022 [25]. The metric ontology was
presented at the KEOD conference 2022 [26], and the visualization capabilities at the Voilá
Workshop 2023 [29]. This contribution combines the various works and extends them with (A.) a
more thorough review of the state of the art, (B.) a more detailed description of the software’s
capabilities and structure, and (C.) an evaluation of the practical relevance and the performance
gains of the calculation engine.

The paper is structured as follows: Section two summarizes the current state-of-the-art
regarding ontology metrics and calculation software. Section three presents NEOntometrics
with its architecture and usage of the API and GUI. In section four, we illustrate the use of
NEOntometrics by presenting a case study and means to adapt the software, followed by the
evaluation of the framework and a conclusion.

1 Accessed July 2024

A. Reiz and K. Sandkuhl 2:3

2 Related Work

Significant for our research are metric calculation proposals and ontology metric frameworks,
covered in the first part of this section, and possible calculation implementations, covered in the
second part.

There are many different evaluation methods available. Please note that we only consider
criteria-based frameworks that allow for an automatic evaluation based on the structural attributes
of the ontology. Metrics that need human intervention or additional input parameters are not
considered relevant. That excludes evaluation methods based on a gold standard (additional
input parameter is a “perfect” ontology), task-based (additional input parameter is the task
fulfillment level that an ontology can provide in a given context), or corpus-based (additional input
parameters are domain-related documents like a text corpus). Raad and Cruz further describe the
underlying categorization [20].

2.1 Related Quality Frameworks
Lozano-Tello and Gómez-Pérez published the Ontometric framework in 2004. It proposes evaluation
attributes in five criteria: (Development) tool, (ontology) language, context, methodology, and
cost. Arguably, some metrics have become obsolete due to standardization in the past years.
In 2004, the web ontology language (OWL) was just released, and other representations like
OIL, DAML+OIL, and SHOE were still actively used. Here, Ontometric is targeted to make the
influences of the languages explicit and comparable [13]. Today though, regarding the category
languages, RDFS-based ontologies can be considered state-of-the-art and are mostly compatible
with each other. Further, the standardization decoupled the tools from the ontology. Thus, the
tool capabilities do not influence the semantic artifact. Other proposed elements, however, can be
supported by an automatic calculation, like the metric maximum depth in the category content.
While the relevance today might be somewhat limited, Ontometric considerably influenced the
newer frameworks.

Gangemi et al. proposed an ontology evaluation framework based on a semiotic meta-ontology
O2 that provides a formal definition for ontologies and their usage. Further, the authors define an
ontology evaluation design pattern (oQual). Based on their O2 definition, measurements assessing
structural, task, corpus, and usability-based attributes are proposed [8]. A technical report by
the same authors further suggested 32 metrics in seven categories assessing mostly graph-related
structures like depth, width, modularity, the distribution of siblings, or tangledness [9].

In 2005, Burton-Jones et al. presented the semiotic metric suite. It comprises four main
categories (syntactic, semantic, pragmatic, and social quality) and ten quality metrics. While
some of these metrics are based solely on the structure of the ontology itself, others need further
additional external information. Nine of these measurements, in theory, can be calculated
automatically [2]. Practically, some of the required data for some measures will probably not be
available. Examples are the access count of the ontology or the links from other ontologies to the
currently assessed one.

OQuaRE was first proposed in 2011 by Duque-Ramos et al. It has since been used in
several publications, always involving the core team of the proposing authors. OQuaRE offers
19 calculatable metrics and associates these metrics with quality dimensions like readability or
accountability. Further, the framework ties metric results to quality ratings, thus providing an
interpretation of the measurements. This holistic approach to quality is a unique characteristic
among the frameworks [6]. However, during implementation, we experienced several heterogeneities
in the metric definitions of the framework, with metrics having the same name, created by the
same authors, being defined differently in their publications. To facilitate further research on

TGDK

2:4 NEOntometrics – Calculating Ontology Metrics

Table 1 Metric frameworks with their first publishing date and citations (Semantic Scholar, July 2024).

Framework [13] [8] [2] [6] [32] [35] [14]
Published 2004 2006 2005 2011 2007 2005 2010
Citations 424 356 370 115 356 180 52

the framework and to integrate the framework into NEOntometrics, we reworked the OQuaRE
measurements. However, empirical research with the newly implemented metrics showed that
their proposed linkages from measures to ontology quality scores do not sufficiently work [27]. Our
study was the first made by authors not part of the team that proposed the framework; however,
the NEOntometrics applications shall allow more thorough analysis in the future.

Tartir et al. published 19 metrics in the OntoQA framework in 2005 and 2007. While the
framework does not provide a grading system for metrics like OQuaRE, it aids the interpretation
by describing how modeling decisions influence the metric results. Further, the authors propose
measurements applicable not to the ontology as a whole but to the elements in an ontology.
OntoQA also defines class- and relation-specific measurements. The relationship importance, for
example, is calculated once for each relationship [32, 31].

There are further metric frameworks that consider the cohesion of an ontology. Yao et al.
propose a set of measures based on an inheritance tree [35]. In a consecutive paper, the authors
further provide an empirical analysis and interpretation context [17]. Ma et al. examined the
ontology partitions with special consideration of the open world assumption [14].

Over the years, a lot of frameworks have been proposed. As Table 1 shows, these papers have
gathered many citations over the years. Some of these frameworks are merely theoretical in their
proposals; others came with prototypical implementations. Further, tools that do not correspond
to one of the proposed frameworks have been developed.

2.2 Related Metric Calculation Software
The following section shows historical and current software for ontology metric calculation.

OntoKBEval by Lu and Haarslev [19] analyzes the structure of ontologies by providing graph-
related measures like the number of levels or the number of concepts per level. The tool offers
means to grasp clusters in the ontology and developed its own visualization “Xmas”-tree.

Tartir et al. developed a standalone java application for the OntoQA framework [32], imple-
menting measures of the OntoQA framework, including metrics for the individual classes.

OntoCat, proposed by Cross and Pal [3], is a plugin for the Protégé editor and provides size-
and structure-related metrics. They allow the assessment of the ontology as a whole but also
provide metrics concerned with specific subsets of the given ontology.

S-OntoEval by Dividino et al. [4] serves as a calculation tool for, among others, the framework
of Gangemi et al. Its primary focus is on structural evaluation. However, the tool also calculates
usability based on annotations and task performance based on ontology querying.

The Protégé editor [16] offers basic metrics on its landing page that counts the usage of
OWL-specific language constructs like the number of object property domain declarations or the
number of classes.

The developers of the OQuaRE framework introduced a web tool to calculate their proposed
metrics. It integrates a statistical correlation analysis of the metrics and a web service. The tool
suffers from the same issues as the framework [27], and the implemented metrics are heterogeneous
and do not adhere to a clear definition.

Amith et al. developed the Semiotic-based Evaluation Management System (SEMS), later
renamed OntoKeeper [1], which implements the semiotic suite by Burton-Jones et al.

A. Reiz and K. Sandkuhl 2:5

Table 2 The availability of the developed metric software (type: S: Standalone, P+: Protégé plugin,
API: REST-API, WT: Web Tool).

Tool Date Type Available Open Source Ref
Onto-KBEval 2006 S No No [19]

OntoQA 2005 S Yes (No)2 [32]
OntoCat 2006 P+ No No [3]

S-Onto-Eval 2008 S No No [4]
Protégé 2015 S Yes Yes [16]

OQuaRE 2018 WT, API Yes3 No [27]
Onto-Keeper 2017 WT No No [1]

OOPS 2012 WT, API Yes4 No [18]
OntoMetrics 2015 WT, API Yes5 No [22, 11]

The “OntOlogy Pitfall Scanner” (OOPS) by Poveda-Villalón et al. [18] approaches automatic
ontology evaluation differently: They detect common modeling pitfalls like the use of is relationship
instead of rdfs:subClassOf or wrongful equivalent relations.

OntoMetrics, first developed by Lantow [11], is a web service for calculating several ontology
metrics. It covers most of the OntoQA and oQual ontology metrics and integrates the OWL-based
axiom counts that are also part of Protégé. It was later extended with a web service by Reiz et
al. [22].

2.3 The Need for Another Calculation Tool

As the previous section has shown, many frameworks and tools have been developed over the past
years. That raises the question of whether a new calculation tool is necessary. We argue that our
application fills essential gaps:

Missing Practicality. As Table 2 shows, most of the developed tools are no longer available. Even
if they are available, their usability is often low. Many of the tools were used for the authors’
evaluation efforts and do not come with a state-of-the-art user interface. Further, most of the
software is not maintained. This problem is amplified by the fact that most of the software is:

Closed Source. None of the evaluated tools is fully open source (cf. Table 2). Not only hinders
this reproducibility. It also prevents the community from maintaining the software and building
on this previous research. If there is a need for another kind of evaluation, one has to start
from scratch. We, thus, argue that the closed source leads to:

Isolation. The implementation efforts have stayed mainly isolated from one another. Hardly any
tool has reached a broad acceptance within the community, and the ontology evaluation efforts
of researchers using different tools are often not comparable. While there is a consensus that
ontology evaluation is meaningful, there is no common understanding of how to do it.

2 https://github.com/Samir-Tartir/OntoQA.Thebinary.jarfilesareavailableunderCClicense.
Thesourcecodeitselfisnotpublic.

3 http://sele.inf.um.es/ontology-metrics
4 http://oops.linkeddata.es
5 https://ontometrics.informatik.uni-rostock.de,opi.informatik.uni-rostock.de

TGDK

https://github.com/Samir-Tartir/OntoQA. The binary .jar files are available under CC license. The source code itself is not public.
https://github.com/Samir-Tartir/OntoQA. The binary .jar files are available under CC license. The source code itself is not public.
http://sele.inf.um.es/ontology-metrics
http://oops.linkeddata.es
https://ontometrics.informatik.uni-rostock.de, opi.informatik.uni-rostock.de

2:6 NEOntometrics – Calculating Ontology Metrics

Table 3 A comparison of the existing OntoMetrics, its API and the new NEOntometrics software.

NEOntometrics OntoMetrics/OPI
GUI Flutter / Material Design OntoMetrics: Static Web Page
API GraphQL OPI: REST

Technology Microservices Java Webpage
Evolutional Analysis Public Git Repositories No

Async Yes No
Metrics 159 727

Extensibility Good Poor
Open Source Yes No
Performance Fast (cf. Section 5.3) Moderate

3 NEOntometrics

NEOntometrics is the successor of the Ontometrics tool [22, 11] (thus NEOntometrics). The old
Ontometrics is one of the few ontology evaluation tools still available, but it does not scale well,
provides fewer functionalities, sometimes redundant calculations, and is complicated to adapt [26].

The new tool, NEOntometrics, is a complete overhaul of the old software. It consumes public
GIT-based repositories, iterates through all of the commits (a commit is a published change in
a repository), and calculates the metrics of the available ontology files. The software seeks to
solve many of the previously named challenges. It comes with a state-of-the-art user experience,
a GraphQL endpoint, calculates various metrics, is quickly extensible through an ontology for
creating and describing metrics, and is open source under the MIT License6. Table 3 further
shows the application differences.

The following section details the software itself: It presents the different components of the
service, how they interact, and the underlying development decisions. We also present how our
ontology-based metric calculations are extensible for future usage. Afterward, we give an overview
of how to put the software to use.

3.1 The Architecture of the Metric Calculation
One design goal was to create a flexible application for integrating new metrics. A researcher shall
be able to adapt the application to their needs and quickly implement new required metrics.

To achieve this adaptability, we did not encode all of the metrics of the various frameworks
directly in the software but decomposed them into their building blocks. For example, the metric
Axiom/Class Ratio is not calculated during the ontology analysis. Instead, their building blocks
Axioms and Classes are analyzed and saved in the database. The compositional values are then
calculated at the time of querying.

The information on the ontology metrics is stored in an OWL-based metric ontology13. On
startup of the application, multiple SPARQL-queries extract the codified knowledge and set up
the backend and frontend. Thus, changing and adapting the ontology is sufficient to adapt the
measures. The work [26] further details the underlying metric ontology.

Figure 1 presents an example of the metric elements in the ontology. Elemental Metrics
contain the atomic measures that are used to build the compositions. For Axiom Class Ratio, the
Elemental Metrics are Axioms (the number of axioms) and Classes (the number of classes). The

6 https://github.com/achiminator/NEOntometrics
7 As some frameworks propose similar measurements, not all of the metrics are unique.

https://github.com/achiminator/NEOntometrics

A. Reiz and K. Sandkuhl 2:7

Table 4 The Metric Frameworks that are implemented in NEOntometrics.

Name in NEOntometrics Proposed By Ref
Cohesion Metrics Yao et. al [35]

Complexity Metrics Zhang, Ye, Yang [37]
Good Ontology Fernandez et. al [7]

OQuaRE Duque-Ramot et. al [6, 27]
OQual Gangemi et al. [9, 8]

OntoQA Tartir, Apinar [32, 31]
Complexity Cohesion Orme, Yao, Etzkorn [17]

Figure 1 The metric ontology (image adapted from [26]).

ontology further specifies mathematical relationships between the metrics. In the given example,
Axiom Class Ratio is the subClassOf (divisor only Classes) and (numerator only Axioms). The
Elemental Metrics are connected to metric instances named identically to the implementation
names in the calculation service and the elements in the database. In the example of the Axioms,
this element has a relationship implementedBy value axioms.

All elements have rich annotations, providing human-centered meaning to the metrics. Some
elements have links to further online resources or scientific publications. The annotations are the
foundation for the Metric Explorer, where users find guidance on the available metrics.

New metrics that build upon the available Elemental Metrics can be created by modeling
them in the ontology. Upon start, the application will make these custom metrics automatically
available in the front- and backend. Table 4 shows the frameworks that are already implemented in
NEOntometrics and part of the Metric Explorer and the Calculation Unit at the time of publication.
The case study in Section 4.2 details how to create new frameworks, e.g., for individual metric
frameworks in an organization.

TGDK

2:8 NEOntometrics – Calculating Ontology Metrics

3.2 The Architecture Of The Application
The application is based on a dockerized microservice architecture and consists of five components:
the calculation-unit OPI (Ontology Programming Interface), the API, the worker application, a
database for storing the calculated metrics, and a Redis interface for queueing jobs. The API and
worker share a common codebase. Figure 3 depicts the interaction of the involved services.

The frontend contains the GUI. It is written using the multi-platform UI language flutter
with its underlying client language dart8. Upon loading, the frontend first queries the API for
available ontology metrics based on the metric ontology. This data fills the help section Metric
Explorer, which allows users to inform themselves about the various available metrics and the
options for the calculation page. Afterward, the user can retrieve the requested ontology metrics
or put them into the queue if they do not yet exist.

The API is the django-based9 endpoint for accessing already calculated metric data or
requesting the analysis of new repositories. During the startup of the software, the application
queries the metric ontology. It builds the frontend data and dynamically creates calculation code
to provide the measurements of the frameworks that build upon the Elemental Metrics. After
startup, a client can exploit GraphQL to check whether the data he requests exists already in the
database. If so, he is able to retrieve all the selected metrics for a given repository. If not, it is
possible to put the calculation of a given repository in the queue and track its progress.

The worker is responsible for the calculation of the metrics itself. It checks whether jobs are
available in the scheduler Redis database. If that is the case, it starts the analysis by first cloning
or pulling the GIT-repository, then iterating through every new file and commit, analyzing the
ontologies using the OPI metrics endpoint. Afterward, the calculation results are stored in the
database. The scheduling mechanism is based on django-rq10. Even though the worker shares a
code base with the API, it runs as a separate application. The number of parallel calculations can
be scaled by increasing the number of workers.

The calculation service OPI is responsible for calculating metrics out of ontology documents.
While it is based on the calculation service published in [22], most underlying code has been
replaced. The old application struggled with ontology files larger than 10 MB due to inefficient
memory allocation and had no separation of the calculation of the elemental metrics and the
composed metrics of the metric frameworks. The old application was designed as standalone
software, while the new calculation engine is hidden from the user and only accessed by the API.

The backend utilizes two languages: The API is written in python, and the calculation service
OPI builds on Java. While the two languages add complexity to the application design, they
allow the use of established frameworks for their given tasks.

The calculation and retrieval process as a whole is depicted in Figure 2. At first, the frontend
requests whether an ontology is already known in the system. If not, it either returns the queue
information to the end-user or starts another request for the ontology metrics. At the same time,
the worker applications and OPI handle the queued tasks.

The microservice architecture allows utilizing the strengths of the various languages. The Java
calculation unit builds on the OWL-API for an efficient graph traversal. The Python/django
application is easily extensible through the availability of multiple plugins, e.g., for the GraphQL
endpoint and the asynchronous metric calculation. The flutter-based frontend comes with built-in
material design support. Further, the microservices allow for potential horizontal scaling of the
calculation.

8 https://flutter.dev/, https://dart.dev/
9 https://www.djangoproject.com/, https://www.django-rest-framework.org/
10 https://python-rq.org/patterns/django/

https://flutter.dev/
https://dart.dev/
https://www.djangoproject.com/
https://www.django-rest-framework.org/
https://python-rq.org/patterns/django/

A. Reiz and K. Sandkuhl 2:9

Figure 2 The process of analyzing and retrieving ontologies with NEOntometrics (without application
startup).

Figure 3 The NEOntometrics microservice architecture.

TGDK

2:10 NEOntometrics – Calculating Ontology Metrics

3.3 The Metric Explorer
The page Metric Explorer is a dynamic help page of available metrics in NEOntometrics. The
two main categories are Elemental Metrics and Quality Frameworks. The former contains the
underlying atomic measurements of the ontologies. The authors of NEOntometrics create all the
information shown in this category. Quality Frameworks, on the other hand, present the ontology
metrics developed by other researchers, like the OntoQA Metrics [32] by Tartir et al., shown in
Section 2.1. Here, all information originates from the authors of the given frameworks.

The Metric Explorer provides information on five categories (though not all are filled for all
the metrics). Metric Definition contains the formal definition of the metrics and how they are
calculated, while Metric Description supplements a more human-readable explanation and, at
times, an example. The Metric Interpretation guides practical usage. Calculation explains their
decomposition into the Elemental Metrics using the metric names that are returned by the API,
and seeAlso links to further resources like the corresponding papers or additional reads.

The interactive help page is closely bound to the metric ontology. Every change will be reflected
in the Metric Explorer after a restart, and the ontology provides annotation properties for the
metric definitions, descriptions, and interpretations. The nesting of the measurements is defined by
the subclass relations in the ontology, and the calculation field is defined by the object properties
representing the mathematical relationships (cf. Figure 1).

3.4 A Frontend for Humans and an Interface for Machines
For direct consumption by a user, the tab Calculation Engine (as shown in Figure 5) is the
main entry point for the metric calculation. The end-user first selects the required metrics. The
“Already Calculated” button shows the calculated repositories already stored in the database.
While these repositories can be a starting point for further exploration, the user can also place a
URL in the textbox that points to a new public GIT repository or the location of an ontology file.

A click on the arrow starts the metric request. Once the data is analyzed, clicking the arrow
leads to the metric results presented as a paginated table, representing the metric values for the
different ontology versions. A drop-down menu in the header allows selecting the various ontology
files, and the download button exports the metrics into a .csv. A click on the button “show the
analytic” opens internal visualizations for displaying the ontology evolution, comparing the various
ontologies in a repository, and assessing the recent changes.

One goal of NEOntometrics is to allow the integration of ontology metrics into semantic web
applications, which requires exposing the service using a standardized interface. Relevant open
standards are REST and GraphQL for the web and SPARQL for querying the semantic web.
NEOntometrics builds on GraphQL.

GraphQL (together with REST) has become a new de facto standard for sharing information
on the web, and there is broad support in various programming languages and frameworks. This
support includes the django web framework used in this project, where the graphene plugin11

allows utilizing the internal Object Relational Mapping. It allowed us to build the interface with
comparatively little implementation effort, as the requests are translated to database queries
automatically. While these integrations are also available for REST, GraphQL allows for the
traversing of relationships and the precise selection of attributes for querying. Avoiding over-
fetching is highly relevant for this use case, as one ontology version has over 100 ontology metrics,
and the user likely selects just a few.

11 https://graphene-python.org/

https://graphene-python.org/

A. Reiz and K. Sandkuhl 2:11

Figure 4 The Metric Explorer page in NEOntometrics.

Figure 5 The NEOntometrics Frontend.

TGDK

2:12 NEOntometrics – Calculating Ontology Metrics

The GraphQL endpoint further provides documentation on the various available requests and
possible return values, thus enabling the guided development of new queries. The interface is
accessible through a browser on a GraphiQL interface or any other GraphQL client.

SPARQL, as a graph-based query language, has similar attributes to GraphQL regarding
relationship traversal and attribute selection. Additionally, proving a SPARQL endpoint would
further allow the integration of the metric calculations into existing knowledge bases. Unfortunately,
there is (currently) no support in the form of plugins for integrating such an endpoint into the
used django framework. This lack makes the creation of such an endpoint dissimilar costlier.

4 Bringing NEOntometrics Into Use

The following presents application scenarios for the NEOntometrics application. The first case
study shows the potential of analyzing ontology evolution. The second part presents possible
integration and adaptation scenarios for NEOntometrics.

4.1 Analyzing Ontology Evolution with NEOntometrics
Analyzing ontology metrics over time can tell a lot about underlying design decisions. The size of
the changes indicates if an ontology evolves gradually or has disruptive changes, thus measuring
stability and identifying the disruptive changes. They also allow us to assess how attributes like
the logical complexity (e.g., measures through the number of axioms that incorporate meaning),
the coverage (e.g., measured through the number of classes or individuals), or the shape of the
graph (e.g., measured through depth or breadth) change over time.

This case study analyzes the Evidence and Conclusion Ontology (ECO). ECO captures the
biological coherences like “gene product X has function Y as supported by evidence Z” [10].
The NEOntometrics authors have no affiliation with the authors of the ontology nor with the
biomedical field of research. Further, the goal of the section is not to evaluate quality but to
observe the development of the ontology over time to give an impression of possible assessments.
Previous work discussed the connection between metrics and development decisions from an
ontology engineering perspective [24, 36].

The ECO repository has 856 commits in 17 ontology files. For this analysis, we were interested
in the main ontologies in this repository. Thus, we only assessed the ontologies in the root
structure, resulting in three ontology files. eco.owl with 89 versions, eco-basic.owl with 44, and
eco-base.owl with 45 versions. We first examined the axiom count of the ontologies and then used
Tartir et al.’s OntoQA framework [32, 31] for further analysis. The corresponding source files in
Jupyter Notebooks are available online12.

The first analysis is concerned with the development of the ontology size. Figure 6 presents
the three ontology files in their different versions and plots the development of axioms with time.
While the solid line represents all axioms overall, the dashed line only accounts for such that
incorporate a logical meaning in RDFS or OWL syntax. The difference between the dashed and
the solid lines are, thus, annotations or custom-defined properties.

An insight of the chart in Figure 6 is the variances of the logical axioms and the axioms in
general. While the size of the ontology overall fluctuates intensely, the number of parts of the
ontology that incorporate logical meaning stays relatively stable. One significant spike occurred
between 2018 and 2019, which we will scrutinize further. Analysis reveals that a more extensive
restructuring of the ontology drives this increase in logical axioms. The classes in eco doubled

12 doi.org/10.5281/zenodo.14047141

doi.org/10.5281/zenodo.14047141

A. Reiz and K. Sandkuhl 2:13

Figure 6 The change of axioms over time in the ECO-ontologies.

from around 900 to a little over 2,000, then increased to over 3,000. The number of defined object
properties jumps from three to above 50, and the relation on classes through object properties
increases from 350 to almost 2,500, then drops to around 1,600. This change event also marked
the introduction of eco-base and eco-basic.

Figure 7 shows the relationship richness and schema deepness defined in the OntoQA framework.
The former is defined as the number of non-inheritance relationships divided by the sum of non-
inheritance relationships and inheritance relationships, and the latter is the number of subclasses
per class [32].

Figure 7 (left) shows that, after an initial increase due to the rise in object properties, the
relationship richness of eco drops with the increase in classes and subClassOf statements. Also,
object properties were introduced. Later, a decline in object properties, combined with the further
increase in classes and subClassOf statements, partially reverses the growth.

The right diagram in Figure 7 provides more insights into the role of sub-class relationships.
At first, a lot more subClassOf relationships than classes were introduced. However, the number
of subClassOf relations later stagnated, even getting smaller. In contrast, the number of classes
increased steadily. This suggests that the rebound in the relationship richness is driven more by
the decline in object properties than the increase in subClassOf relationships. While the number
of logical axioms is more or less stable, the underlying logical attributes of the ontology that
constitute how the ontology is structured are still subjected to changes.

There are many more aspects that one could analyze for the given repository, and this section is
merely a short demonstration of the value of environmental metrics. As the last diagram indicates,
many more fluctuations are worth looking at. The variations affect the relationships between
non-hierarchical and hierarchical relationships, classes, and graph-related structures like the width
or depth, individuals, or data properties.

4.2 Adapting NEOntometrics by Adapting the Metric Ontology
A recent empirical analysis of 69 ontology evolution processes (based on NEOntometrics) has
shown that the developments are highly heterogeneous and that assumptions on stereotypical
development processes do not apply: There is no common rule or joint history that ontologies
share [28]. If the ontologies are highly diverse, so is the required evaluation. This diversity of
ontologies and their metrics emphasizes the careful selection of the latter. One person might

TGDK

2:14 NEOntometrics – Calculating Ontology Metrics

Figure 7 The development of OntoQA’s Relationship Richness and Schema Deepness.

build a taxonomy with rich human-readable annotations and other targets to infer knowledge
by modeling complex class relationships. A successfully applied metric by the first person might
not work for the second. While the Metric Explorer supports the selection process, a person
might develop their measure to intertwine two metrics in a way that has not been done before.
Organizations may want to select and reorder the metrics or limit the display to only relevant ones.
The following subsection explains how to adapt the application by altering the metric ontology.
While every ontology editor can be utilized for editing, this section builds on the open-source
software Protégé [16]. The metric ontology is stored in the GitHub repository13

4.2.1 Restructuring the Ontology Metrics
The two classes Elemental_Metrics and Quality_Frameworks are at the core of the metric calcu-
lation. The former represents the measurable ontology attributes and their implementation in
NEOntometrics, and should only be changed if there is a need to define additional measurable
ontology attributes. The Elemental_Metrics subclasses are essential for the startup of the applica-
tion, and their alteration or deletion can lead to undesired behaviors. Thus, the individualization
effort should occur in the subclasses of the Quality_Frameworks.

Reusing the existing metrics is possible by creating new, individual subclass structures for
dedicated purposes. After restart, the software reads the new structure and injects it into the
code. As an effect, the frontend displays the new categories, and the new subgroups can be quickly
selected, reducing the complexity for the metric consumer. The example of Figure 8 illustrates
custom-ordered metric categories in Protégé.

4.2.2 Creating New Ontology Metrics
The currently implemented quality frameworks based on the literature (cf. Table 4) already
provide various metrics covering many use cases. However, reusing the existing metrics might not
be sufficient depending on the individual challenges. In these cases, creating custom metric classes
can provide a possible solution.

13 https://raw.githubusercontent.com/achiminator/NEOntometrics/master/Git-Extension/rest/
metricOntology/OntologyMetrics.owl

https://raw.githubusercontent.com/achiminator/NEOntometrics/master/Git-Extension/rest/metricOntology/OntologyMetrics.owl
https://raw.githubusercontent.com/achiminator/NEOntometrics/master/Git-Extension/rest/metricOntology/OntologyMetrics.owl

A. Reiz and K. Sandkuhl 2:15

Figure 8 Screenshots Protégé: Left: Example of custom quality frameworks, Right: The formalized
mathematical relationships for connecting the subclasses of Quality_Frameworks to Elemental_Metrics.

The ontology provides formalized properties for the extension of the ontology. The annotation
properties MetricDefinition, MetricDescription, and MetricInterpretation fill the respective fields
in the Metric Explorer (cf. Figure 4) to help the metric consumer to select suitable measures.

The object properties facilitate the connection of the reused or self-created Quality_Frameworks
to the Elemental_Metrics and are the backbone for setting up the calculation unit. The subclasses
of calculatedBy contain relations to describe the mathematical calculation operations of the
application (cf. Figure 8).

The relation directlyUsesMetric states that a metric from a quality framework directly accesses
an Elemental_Metric, e.g., the OQual_Absolute_Depth metric is a subclass of directlyUsesMetric
only Total_Depth. Commutative operations like sum or multiplication are combined using the AND
operator, e.g., sum only (Subclasses_Of_Thing and Super_Classes). Division and subtraction
have further subclass for linking the elements. The mathematical relationships can be nested to
create more complex queries.

As an example, the class with the name Average_Paths_Per_Concept, having a relationship
SubClassOf (divisor only Classes) and (numerator only (sum only (Subclasses_Of_Thing and
Super_Classes))) is first connected to the names of the given implemented database fields,
represented by the connected individuals. Afterward, it is injected into NEOntometrics as:
rootClasses+superClasses

classes

5 Evaluation

While Section 4 focused on demonstrating the applicability of NEOnto, this section describes
how the systematic evaluation of NEOnto against the objectives motivating our research was
performed. As indicated in the introductory part of this paper, the development of NEOnto aimed
at (a) supporting understanding and selecting ontology metrics, (b) a public metric calculation
service that allows assessing ontologies from online resources, including calculation of evolutional
data, and (c) with a scalable and adaptable architecture. Section 5.1 introduces the evaluation
strategy applied, Section 5.2 summarizes the different evaluation episodes and their results, and
Section 5.3 presents an additional evaluation episode focusing on performance improvement.

5.1 Evaluation Strategy
The aims motivating the development of NEOntometrics express the importance of creating an
approach that is mature enough to be applied in the ontology engineering community without
substantial development efforts. Our assumption is that the more an approach has been evaluated

TGDK

2:16 NEOntometrics – Calculating Ontology Metrics

Table 5 Validation steps according to Lincoln and Guba.

Theory Practice
Internal,
Develop-
ment Team

Validation against state of research, internal
consistency checks

Prototype implementation for check-
ing feasibility, test in lab environment

External, in
validation
context

Peer-review of publications describing approach
and concepts, comparison to known best prac-
tices of the domain.

Case studies with application part-
ners using the artifacts for evalu-
ation purposes, Application of the
developed artifacts in cooperation /
under instruction from developers

External, in
application
context

Development of extensions or enhancements of
the concepts and approaches by external actors
Application of the artifacts for creation of new
theoretical knowledge,
Comparison with related approaches

Use of the artifacts developed (e.g.
algorithms, methods, software com-
ponents) for solutions

in theory and practice, the more mature and useful it is. Among the many scientific approaches
for evaluating research results, we base our evaluation strategy on the work of Lincoln and Guba
[12, p. 289 ff.] on “naturalistic inquiry”.

Lincoln and Guba distinguish between theoretical and practical validation. Theoretical
validation means assessing an approach within the theories of the domain to which the approach
is part or supposed to contribute. In the context of ontology metrics, this means assessing the
soundness, feasibility, and consistency within the body of knowledge, such as ontology engineering
and knowledge engineering. Practical validation encompasses all kinds of application of the
approach for evaluation purposes, which requires defined procedures and documenting results.
This could be simple lab examples illustrating the approach, controlled experiments in a lab
setting, applications in industrial cases, etc.

Furthermore, Lincoln and Guba also consider the context of validation and distinguish between
validation by the approach’s developers in their internal environment, validation by the developers
outside the internal environment, and validation by actors other than the developers. Combining
these two perspectives leads to a two-by-three matrix, as depicted in Table 5. The cells of this
table show typical ways of validation for the different combinations of the two perspectives.

Usually, validation starts on the “internal, development team” level with validation in theory
followed by validation in practice, and proceeds “downward” in the matrix with alternating theory
and practice validation to “external, in application context”. Thus, the highest validation status
would be reached if all cells in the matrix were covered.

As described above, Lincoln and Guba focus on validating research results, i.e., to check whether
or not a certain result from research is appropriate for its purpose. In our case, the purpose of
NEOntometrics is defined by the objectives (see introduction to this section 5). Validation and
evaluation, even though different from each other, are very much linked. Evaluation is the process
of assessing (and often computing) key characteristics of the research results, which can be used
for validation purposes. As many of the NEOntometrics objectives require measurements instead
of only checking characteristics, we use the term evaluation episodes in the next section.

5.2 Evaluation Episodes
Table 6 shows the performed validation episodes following Lincoln and Guba’s naturalistic inquiry
framework. This section aims to summarize the intention and results of the different episodes.
To emphasize the importance of the usefulness and applicability of the tool for the ontology

A. Reiz and K. Sandkuhl 2:17

engineering community, we put a focus on external validation. Many external validation episodes
were published in peer-reviewed publications, and peer-reviewing was also used as an instrument
for external validation. In total, six publications contribute to the evaluation steps.

Internal, Development Team. Internally, we first validated that the results of the newly designed
measures are consistent with the ones from the old application. This shall ensure continuity for
analyses regardless of the used calculation backend. Further, the shortcomings of the predecessor
OntoMetrics motivated the creation of the NEOntometrics tool. The technical shortcomings of
the predecessor are described in section 3 and originated from a practical application with an
industry partner, resulting in the feature list of Table 3. Regarding the practical evaluation, we
tested the performance of the reworked measures. The results are shown in 5.3.

External, in Validation Context. Two papers are part of the external validation context: The
homogenization of ontology metrics in the metric ontology [26] and an early validation of the
usefulness of analyzing evolutional ontology metrics [24].

The metric ontology (cf. Figure 1) was presented at the Conference on Knowledge Engineering
and Ontology Design [26]. While many frameworks have been published over the years (cf. Section
2.1), no common language exists for naming measured elements. That led to similar metrics
included in different frameworks, which is only apparent after close examination. The metric
ontology homogenizes the various notions into one machine-readable notation that serves as the
backbone of the NEOntometrics application and is served through the Metric Explorer.

A practical validation of the usefulness of analyzing evolutional ontology metrics was performed
before the development of the NEOntometrics tooling and presented at the Business Informatics
Research Conference [24]. This paper showed the potential of analyzing changes in ontology
metrics over time by giving an abstract yet objective account of how development decisions
influenced the ontology structure. Also, several obsolete axioms and areas that had not been
developed further were identified.

External, in Application Context. For the theoretical validation context, NEOntometrics was
extended with a visualization capability [29]. In a practical setting, the tool examined various
ontology versions to identify stereotypical development behavior [28], investigated and invalidated
the broad quality claims made by the OQuaRE framework [27], and analyzed semantic media
wikis [5].

One theoretical validation in the application context was performed as part of the Voilá
Workshop for ontology visualization [29]. Here, we described how newly added visualization
features can be used to compare various ontologies in a repository, analyze the evolution of one
ontology throughout its lifetime, and a feature to compare the changes between the two most
recent versions.

For the practical validation, we looked out for active use of the tool in research papers. First,
the tool scrutinized stereotypical development behavior in dormant ontologies, published as part
of the invited extended conference papers on Knowledge Engineering and Ontology Development
(KEOD) 2022 [28]. Using public git repositories, 7,053 ontology versions of 69 ontologies showed
the heterogeneous development of ontologies throughout their lifetime. We could invalidate many
commonly held assumptions with the numerical assessments, like “ontologies tend to get larger
over their lifetime” or “ontologies get more complex with increasing maturity”.

The next analysis concerned the quality statements of the often-cited OQuaRE framework; this
analysis was published as an extended version of the contribution of the International Conference
on Information Systems (ICEIS) 2022 [27]. OQuaRE not only recommends ontology measures but

TGDK

2:18 NEOntometrics – Calculating Ontology Metrics

Table 6 Evaluation Steps according to Lincoln and Guba’s Naturalistic Inquiry Framework.

Theory Practice
Internal, De-
velopment
Team

Internal Checks for consistent Measurement of
the old and new metric calculation engine.
Feature requirements out of the predecessors’
shortcomings. (cf. Section 3.1)

Test of calculation performance (cf.
Section 5.3).

External, in
validation
context

Metric Ontology containing the implemented
ontology metrics [26].

Case-Study on the value of evolu-
tional metric analysis [24].

External, in
application
context

Extending the software with metric Visualiza-
tion Capabilities [29].

Analysis on stereotypical ontology
evolutional processes [28].
An empiric examination of the
OQuaRE quality claims [27].
Evaluating Semantic Media Wikis [5].

also desirable value ranges for the given measurements. However, while integrating the ontology
metrics in the NEOntometrics metric ontology, we identified several inconsistencies in their metric
proposal, leading to a homogenization effort of the various measures. Further examination based
on the data collected with NEOntometrics on the validity of the made quality statements through
the analysis of 4,094 ontologies found that the framework’s quality statements likely do not reflect
the actual performance of the modeled artifacts.

Finally, the calculation software was used by Dobriy et al. [5] in an analysis of semantic media
wikis, presented at the Extended Semantic Web Conference (ESWC) 2024. The authors analyzed
a corpus of 1,029 datasets containing wikis for various use cases. The authors found significant
deviations between the structures of the semantic media wikis and the linked open data cloud,
especially regarding the use of RDFS and OWL semantics.

5.3 Evaluation of Computational Performance
Besides the additional functionality powered by the microservice architecture of NEOntometrics,
the calculation engine has also been reworked to improve performance and resource consumption.
The following evaluation compares the old OntoMetrics [25] with the performance of the reworked
metric calculation (cf. Figure 3). The old Ontometrics engine calculates 72 measurements, 16
of these measurements are ratio-based metrics. The new calculation engine only measures the
underlying atomic measures, 83 in total.

For the test, we run both calculation services in dockerized environments on the same machine
(Lenovo z13 G2, 64GB Ram, AMD Ryzon Pro 7840U). We run a calculation of three different
ontologies: The puppet-Disco inferred ontology14, the larger human disease (DOID) ontology
with 24MB15, and the ECO ontology of Section 4.1 with 7.2MB16. Ten times, we send the puppet
ontology, then human disease, and finally, the ECO ontology to the new calculation service and
then the old one. We measured the response time and queried the docker stats to analyze memory
footage. The jupyter notebook used for analysis is available online12. The first analysis presented
in Figure 9 displays the average calculation times for each of the ontologies. The small Puppet
Ontology is sped up 35 times in its analysis, while the human disease ontology calculates 6.5 times
faster, and ECO 29 times faster.

14 https://raw.githubusercontent.com/kbarber/puppet-ontologies/master/puppet-disco/inferred.owl
15 https://raw.githubusercontent.com/DiseaseOntology/HumanDiseaseOntology/main/src/ontology/

doid.owl
16 https://raw.githubusercontent.com/evidenceontology/evidenceontology/master/eco.owl

https://raw.githubusercontent.com/kbarber/puppet-ontologies/master/puppet-disco/inferred.owl
https://raw.githubusercontent.com/DiseaseOntology/HumanDiseaseOntology/main/src/ontology/doid.owl
https://raw.githubusercontent.com/DiseaseOntology/HumanDiseaseOntology/main/src/ontology/doid.owl
https://raw.githubusercontent.com/evidenceontology/evidenceontology/master/eco.owl

A. Reiz and K. Sandkuhl 2:19

Figure 9 The average calculation time of the old and new calculation service.

Figure 10 The memory consumption of the old and new microservices throughout the runs.

The second analysis in Figure 10 measures the engine’s memory consumption by extracting
the docker statistics after each run. Here, the rework of the calculation engine cut the required
memory of the analysis to a fifth.

6 Conclusion

Ontologies are in use in various applications, facilitating meaning between human and computa-
tional actors and enabling these actors to harness the full potential of structured knowledge. The
rising number of developed ontologies emphasizes the need for practical evaluations.

The research community has identified this need for quite some time. Many ontology metric
frameworks have been proposed that assess a variety of ontology attributes. However, implement-
ations of these frameworks have been scarce. The missing software hinders the research progress:
While the definition of measurements is important, it is then crucial to put these metrics into use
to perform further evaluations.

The application proposed in this paper aims at closing this gap. We presented NEOntometrics,
an open-source software to calculate ontology metrics. The application integrates several metric
frameworks and is easily extensible. It is possible to analyze the development of metrics over time

TGDK

2:20 NEOntometrics – Calculating Ontology Metrics

by analyzing GIT-based ontology repositories. Further, the user can inform themselves of available
calculations and possible implications using an interactive Metric Explorer. The ontology metrics
can be calculated and retrieved either using a graphical user interface or a GraphQL-API. While
the former is targeted at knowledge engineers, the latter shall allow developers of semantic-based
applications to integrate metrics into their software.

In a case study, we briefly presented possible applications. The evaluation further shows that
the software works with large ontologies on an average machine and demonstrates how it has
already enabled research on ontology evolution and existing metric frameworks.

The software still has limitations, which motivates further work. One active task is adding
more potential metric sources, like private repositories or enabling the manual upload of new
graph versions. Further, we aim to add metrics on the specific elements within an ontology, like
class-specific and relation-specific measurements. The OntoQA framework by Tartir et al. [32, 31]
has some element-specific measures that are a potential starting point. Finally, since most of
the frameworks were proposed over 10 years ago, the semantic web community moved forward
quite considerably in terms of new vocabularies: The Shape Constraint Language (SHACL) was
proposed and is increasingly adopted, and there is a growing need to create evaluations to the
constraint specifics of the language.

Our perception is that quantitative ontology research offers much potential for future research,
which benefits from continuous interaction in the community. In this context, we are interested in
the aspects the community would like to see implemented in our tool and ask for participation17.

Further research will be concerned with analyzing the metric data itself. There are many more
aspects worth looking at regarding empirical ontology development studies, like comparing typical
development processes in different fields (e.g., industrial vs. biomedical ontologies), the usefulness
of the proposed frameworks, and the modeling preferences of different persons, to name a few. In
the long term, we hope that NEOntometrics impacts the use and research of ontology metrics and
that it can help us empirically understand ontology modeling better.

References
1 Muhammad Amith, Frank Manion, Chen Liang,

Marcelline Harris, Dennis Wang, Yongqun He,
and Cui Tao. OntoKeeper: Semiotic-driven On-
tology Evaluation Tool For Biomedical Ontolo-
gists. Journal of biomedical semantics, 8(1), 2017.
doi:10.1109/BIBM.2018.8621458.

2 Andrew Burton-Jones, Veda C. Storey, Vijayan
Sugumaran, and Punit Ahluwalia. A semiotic
metrics suite for assessing the quality of ontolo-
gies. Data & Knowledge Engineering, 55(1):84–102,
2005. doi:10.1016/j.datak.2004.11.010.

3 Valerie Cross and Anindita Pal. Ontocat: An onto-
logy consumer analysis tool and its use on product
services categorization standards. In Proceedings
of the First International Workshop on Applica-
tions and Business Aspects of the Semantic Web,
2006.

4 Renata Dividino, Massimo Romanelli, and Daniel
Sonntag. Semiotic-based ontology evaluation tool
S-OntoEval. In Proceedings of the International
Conference on Language Resources and Evalu-
ation, 2008.

5 Daniil Dobriy, Martin Beno, and Axel Polleres.
Smw Cloud: A Corpus of Domain-Specific Know-
ledge Graphs from Semantic MediaWikis. In The
Semantic Web - 21st International Conference,
ESWC 2024, Hersonissos, Crete, Greece, May
26–30, 2024, Proceedings, Part II, pages 145–161,
2024. doi:10.1007/978-3-031-60635-9_9.

6 Astrid Duque-Ramos, J. T. Fernández-Breis,
R. Stevens, and Nathalie Aussenac-Gilles.
OQuaRE: A SQuaRE-based Approach for Evaluat-
ing the Quality of Ontologies. Journal of Research
and Practice in Information Technology, 43(2):159–
176, 2011. URL: http://ws.acs.org.au/jrpit/
JRPITVolumes/JRPIT43/JRPIT43.2.159.pdf.

7 Miriam Fernández, Chwhynny Overbeeke, Marta
Sabou, and Enrico Motta. What Makes a Good
Ontology? a Case-Study in Fine-Grained Know-
ledge Reuse. In The semantic web - Fourth
Asian Conference, ASWC 2009, Shanghai, China,
December 6-9, 2008. Proceedings, volume 5926
of Lecture notes in computer science, pages

17 Contributors or users are asked to create an issue in the GitHub repository to start a discussion on a new
feature or potential bug: https://github.com/achiminator/NEOntometrics/issues

https://doi.org/10.1109/BIBM.2018.8621458
https://doi.org/10.1016/j.datak.2004.11.010
https://doi.org/10.1007/978-3-031-60635-9_9
http://ws.acs.org.au/jrpit/JRPITVolumes/JRPIT43/JRPIT43.2.159.pdf
http://ws.acs.org.au/jrpit/JRPITVolumes/JRPIT43/JRPIT43.2.159.pdf
https://github.com/achiminator/NEOntometrics/issues

A. Reiz and K. Sandkuhl 2:21

61–75, Berlin, 2009. Springer. doi:10.1007/
978-3-642-10871-6_5.

8 Aldo Gangemi, Carola Catenacci, Massimiliano
Ciaramita, and Jos Lehmann. Modelling Ontology
Evaluation and Validation. In The semantic web:
research and applications, volume 4011 of Lecture
notes in computer science, pages 140–154, Berlin,
2006. Springer. doi:10.1007/11762256_13.

9 Aldo Gangemi, Carola Catenacci, Massimiliano
Ciaramita, Jos Lehmann, Rosa Gil, Francesco Bol-
ici, and Strignano Onofrio. Ontology evaluation
and validation: An integrated formal model for
the quality diagnostic task, 2005.

10 Michelle Giglio, Rebecca Tauber, Suvarna
Nadendla, James Munro, Dustin Olley, Shoshan-
nah Ball, Elvira Mitraka, Lynn M. Schriml, Pas-
cale Gaudet, Elizabeth T. Hobbs, Ivan Erill, De-
borah A. Siegele, James C. Hu, Chris Mungall,
and Marcus C. Chibucos. ECO, the Evidence
& Conclusion Ontology: community standard for
evidence information. Nucleic Acids Research,
47(D1):D1186–D1194, 2019. doi:10.1093/nar/
gky1036.

11 Birger Lantow. OntoMetrics: Putting Metrics into
Use for Ontology Evaluation. In Proceedings of the
8th IC3K 2016 International Joint Conference on
Knowledge Discovery, Knowledge Engineering and
Knowledge Management (KEOD), pages 186–191,
2016. doi:10.5220/0006084601860191.

12 Yvonna Lincoln and Egon Guba. Naturalistic In-
quiry. SAGE Publications, Inc, 1985.

13 Adolfo Lozano-Tello and Asunción Gómez-Pérez.
ONTOMETRIC: A Method to Choose the Appro-
priate Ontology. Journal of Database Management,
15(2):1–18, 2004. doi:10.4018/jdm.2004040101.

14 Yinglong Ma, Beihong Jin, and Yulin Feng. Se-
mantic oriented ontology cohesion metrics for
ontology-based systems. Journal of Systems and
Software, 83(1):143–152, 2010. doi:10.1016/j.
jss.2009.07.047.

15 C.J.H. Mann. Ontologies: A Silver Bullet for
Knowledge Management and Electronic Commerce.
Kybernetes, 33(7), 2004. doi:10.1108/k.2004.
06733gae.001.

16 Mark A. Musen. The Protégé Project: A Look
Back and a Look Forward. AI matters, 1(4):4–12,
2015. doi:10.1145/2757001.2757003.

17 Anthony Mark Orme, Haining Yao, and Letha H.
Etzkorn. Indicating Ontology Data Quality, Stabil-
ity, and Completeness Throughout Ontology Evol-
ution. Journal of Software Maintenance and Evol-
ution, 19(1):49–75, 2007. doi:10.1002/smr.341.

18 María Poveda-Villalón, Asunción Gómez-Pérez,
and Mari Carmen Suárez-Figueroa. OOPS! (OntO-
logy Pitfall Scanner!). Semantic Web and Inform-
ation Systems, 10(2):7–34, 2014. doi:10.4018/
ijswis.2014040102.

19 Qing Lu and Volker Haarslev. OntoKBEval: A
Support Tool for DL-based Evaluation of OWL
Ontologies. In OWLED - OWL: Experiences and
Directions, 2006.

20 Joe Raad and Christophe Cruz. A Survey on On-
tology Evaluation Methods. In Proceedings of the
7th International Joint Conference on Knowledge
Discovery, Knowledge Engineering and Knowledge

Management, pages 179–186, Setúbal, 2015. SciTe-
Press. doi:10.5220/0005591001790186.

21 Achim Reiz. neontometrics. Software, swhId:
swh:1:dir:a0a2d612a4de911f171dadcefb66dcc1c
5b42bd9 (visited on 2024-12-09). URL: https:
//github.com/achiminator/neontometrics, doi:
10.4230/artifacts.22597.

22 Achim Reiz, Henrik Dibowski, Kurt Sandkuhl,
and Birger Lantow. Ontology Metrics as a Ser-
vice (OMaaS). In Proceedings of the 12th Inter-
national Joint Conference on Knowledge Discov-
ery, Knowledge Engineering and Knowledge Man-
agement, pages 250–257, 02.11.2020 - 04.11.2020.
doi:10.5220/0010144002500257.

23 Achim Reiz and Kurt Sandkuhl. neontometrics
online calculation. InteractiveResource (visited
on 2024-12-09). URL: http://neontometrics.com,
doi:10.4230/artifacts.22599.

24 Achim Reiz and Kurt Sandkuhl. Design Decisions
and Their Implications: An Ontology Quality Per-
spective. In Perspectives in Business Informatics
Research, volume 398 of Lecture Notes in Business
Information Processing (LNBIP), pages 111–127,
Vienna, 2020. doi:10.1007/978-3-030-61140-8_
8.

25 Achim Reiz and Kurt Sandkuhl. NEOntomet-
rics: A Flexible and Scalable Software for Calcu-
lating Ontology Metrics. In Proceedings of Poster
and Demo Track and Workshop Track of the 18th
International Conference on Semantic Systems
co-located with 18th International Conference on
Semantic Systems (SEMANTiCS 2022), Vienna,
2022. CEUR-WS.

26 Achim Reiz and Kurt Sandkuhl. An Ontology
for Ontology Metrics: Creating a Shared Under-
standing of Measurable Attributes for Humans
and Machines. In Proceedings of the 14th In-
ternational Joint Conference on Knowledge Dis-
covery, Knowledge Engineering and Knowledge
Management, pages 193–199. SCITEPRESS - Sci-
ence and Technology Publications, 2022. doi:
10.5220/0011551500003335.

27 Achim Reiz and Kurt Sandkuhl. A Critical View
on the OQuaRE Ontology Quality Framework. In
Enterprise Information Systems, volume 487 of
Lecture Notes in Business Information Processing,
pages 273–291. Springer Nature Switzerland,
Cham, 2023. doi:10.1007/978-3-031-39386-0_
13.

28 Achim Reiz and Kurt Sandkuhl. Evolution of Com-
putational Ontologies: Assessing Development Pro-
cesses Using Metrics. In Knowledge Discovery,
Knowledge Engineering and Knowledge Manage-
ment - 14th International Joint Conference, IC3K
2022, Valletta, Malta, October 24–26, 2022, Re-
vised Selected Papers, volume 1842 of Communica-
tions in Computer and Information Science, pages
217–238. Springer Nature Switzerland, Cham,
2023. doi:10.1007/978-3-031-43471-6_10.

29 Achim Reiz and Kurt Sandkuhl. Visualizing Onto-
logy Metrics In The NEOntometrics Application.
In Proceedings of the 8th International Workshop
on the Visualization and Interaction for Onto-
logies, Linked Data and Knowledge Graphs co-
located with the 22nd International Semantic Web
Conference (ISWC 2023), 2023.

TGDK

https://doi.org/10.1007/978-3-642-10871-6_5
https://doi.org/10.1007/978-3-642-10871-6_5
https://doi.org/10.1007/11762256_13
https://doi.org/10.1093/nar/gky1036
https://doi.org/10.1093/nar/gky1036
https://doi.org/10.5220/0006084601860191
https://doi.org/10.4018/jdm.2004040101
https://doi.org/10.1016/j.jss.2009.07.047
https://doi.org/10.1016/j.jss.2009.07.047
https://doi.org/10.1108/k.2004.06733gae.001
https://doi.org/10.1108/k.2004.06733gae.001
https://doi.org/10.1145/2757001.2757003
https://doi.org/10.1002/smr.341
https://doi.org/10.4018/ijswis.2014040102
https://doi.org/10.4018/ijswis.2014040102
https://doi.org/10.5220/0005591001790186
https://archive.softwareheritage.org/swh:1:dir:a0a2d612a4de911f171dadcefb66dcc1c5b42bd9;origin=https://github.com/achiminator/neontometrics;visit=swh:1:snp:bef1a3e62d2cda8af8a28c03e945a5d7ea2d6826;anchor=swh:1:rev:fa616530952d419943a480719c407761ae1cc734
https://archive.softwareheritage.org/swh:1:dir:a0a2d612a4de911f171dadcefb66dcc1c5b42bd9;origin=https://github.com/achiminator/neontometrics;visit=swh:1:snp:bef1a3e62d2cda8af8a28c03e945a5d7ea2d6826;anchor=swh:1:rev:fa616530952d419943a480719c407761ae1cc734
https://github.com/achiminator/neontometrics
https://github.com/achiminator/neontometrics
https://doi.org/10.4230/artifacts.22597
https://doi.org/10.4230/artifacts.22597
https://doi.org/10.5220/0010144002500257
http://neontometrics.com
https://doi.org/10.4230/artifacts.22599
https://doi.org/10.1007/978-3-030-61140-8_8
https://doi.org/10.1007/978-3-030-61140-8_8
https://doi.org/10.5220/0011551500003335
https://doi.org/10.5220/0011551500003335
https://doi.org/10.1007/978-3-031-39386-0_13
https://doi.org/10.1007/978-3-031-39386-0_13
https://doi.org/10.1007/978-3-031-43471-6_10

2:22 NEOntometrics – Calculating Ontology Metrics

30 Achim Reiz and Kurt Sandkuhl. neontometrics
TGDK dataset, November 2024. doi:10.5281/
zenodo.14047141.

31 Samir Tartir and I. Budak Arpinar. Ontology Eval-
uation and Ranking using OntoQA. In Interna-
tional Conference on Semantic Computing, 2007,
pages 185–192, Los Alamitos, Calif., 2007. IEEE
Computer Society. doi:10.1109/ICSC.2007.19.

32 Samir Tartir, I. Budak Arpinar, Michael Moore,
Amit P. Sheth, and Boanerges Aleman-Meza. On-
toqa: Metric-Based Ontology Quality Analysis. In
IEEE Workshop on Knowledge Acquisition from
Distributed, Autonomous, Semantically Heterogen-
eous Data and Knowledge Sources, 2005.

33 Pierre-Yves Vandenbussche, Ghislain A. Atemez-
ing, María Poveda-Villalón, and Bernard Vatant.
Linked Open Vocabularies (LOV): A gateway to re-
usable semantic vocabularies on the web. Semantic
web, 8(3):437–452, 2016. doi:10.3233/SW-160213.

34 Patricia L. Whetzel, Natasha Noy, Nigam Haresh
Shah, Paul R. Alexander, Csongor Nyulas, Tania

Tudorache, and Mark A. Musen. BioPortal: en-
hanced functionality via new web services from
the National Center for Biomedical Ontology to
access and use ontologies in software applica-
tions. Nucleic Acids Research, 39, 2011. doi:
10.1093/nar/gkr469.

35 Haining Yao, Anthony Mark Orme, and Letha Et-
zkorn. Cohesion Metrics for Ontology Design and
Application. Journal of Computer Science, 1(1),
2005. doi:10.3844/jcssp.2005.107.113.

36 Jonathan Yu, James A. Thom, and Audrey Tam.
Requirements-oriented methodology for evaluating
ontologies. Information Systems, 34(8):766–791,
2009. doi:10.1016/j.is.2009.04.002.

37 Dalu Zhang, Chuan Ye, and Zhe Yang. An Evalu-
ation Method for Ontology Complexity Analysis in
Ontology Evolution. In Managing knowledge in a
world of networks - 15th International Conference,
EKAW 2006, Podebrady, Czech Republic, Octo-
ber 6-10, 2006, Proceedings, volume 4248, 2006.
doi:10.1007/11891451_20.

https://doi.org/10.5281/zenodo.14047141
https://doi.org/10.5281/zenodo.14047141
https://doi.org/10.1109/ICSC.2007.19
https://doi.org/10.3233/SW-160213
https://doi.org/10.1093/nar/gkr469
https://doi.org/10.1093/nar/gkr469
https://doi.org/10.3844/jcssp.2005.107.113
https://doi.org/10.1016/j.is.2009.04.002
https://doi.org/10.1007/11891451_20

The dblp Knowledge Graph and SPARQL Endpoint
Marcel R. Ackermann #

Schloss Dagstuhl – Leibniz Center for Informatics, dblp computer science bibliography, Trier, Germany

Hannah Bast #

University of Freiburg, Department of Computer Science, Freiburg, Germany

Benedikt Maria Beckermann #

Schloss Dagstuhl – Leibniz Center for Informatics, dblp computer science bibliography, Trier, Germany

Johannes Kalmbach #

University of Freiburg, Department of Computer Science, Freiburg, Germany

Patrick Neises #

Schloss Dagstuhl – Leibniz Center for Informatics, dblp computer science bibliography, Trier, Germany

Stefan Ollinger #

Schloss Dagstuhl – Leibniz Center for Informatics, dblp computer science bibliography, Trier, Germany

Abstract
For more than 30 years, the dblp computer science
bibliography has provided quality-checked and cu-
rated bibliographic metadata on major computer
science journals, proceedings, and monographs. Its
semantic content has been published as RDF or
similar graph data by third parties in the past,
but most of these resources have now disappeared
from the web or are no longer actively synchro-
nized with the latest dblp data. In this article,
we introduce the dblp Knowledge Graph (dblp KG),
the first semantic representation of the dblp data
that is designed and maintained by the dblp team.

The dataset is augmented by citation data from
the OpenCitations corpus. Open and FAIR access
to the data is provided via daily updated RDF
dumps, persistently archived monthly releases, a
new public SPARQL endpoint with a powerful user
interface, and a linked open data API. We also
make it easy to self-host a replica of our SPARQL
endpoint. We provide an introduction on how to
work with the dblp KG and the added citation data
using our SPARQL endpoint, with several example
queries. Finally, we present the results of a small
performance evaluation.

2012 ACM Subject Classification Information systems → Digital libraries and archives; Information
systems → Graph-based database models; Computing methodologies → Knowledge representation and
reasoning

Keywords and phrases dblp, Scholarly Knowledge Graph, Resource, RDF, SPARQL

Digital Object Identifier 10.4230/TGDK.2.2.3

Category Resource Paper

Supplementary Material All described data is available under the CC0 1.0 Universal license.a

Dataset (dblp KG, monthly snapshot): https://doi.org/10.4230/dblp.rdf.ntriples [15]
Dataset (dblp SPARQL query service, daily updated source triples): https://sparql.dblp.org/download/
Service (dblp SPARQL query service, user interface): https://sparql.dblp.org/
Service (dblp SPARQL query service, endpoint): https://sparql.dblp.org/sparql
Software (QLever SPARQL engine, source code): https://github.com/ad-freiburg/qlever

archived at swh:1:dir:594019ed1ffe83fef266ac215ba69dff30185d72
Text (dblp KG, ontology reference documentation): https://dblp.org/rdf/docu/

Funding Benedikt Maria Beckermann: DFG-LIS project Unknown Data (GEPRIS 460676019)
Stefan Ollinger : consortium NFDI4DataScience (GEPRIS 460234259); consortium NFDIxCS (GEPRIS
501930651)

© Marcel R. Ackermann, Hannah Bast, Benedikt Maria Beckermann, Johannes Kalmbach, Patrick Neises, and
Stefan Ollinger;
licensed under Creative Commons License CC-BY 4.0

Transactions on Graph Data and Knowledge, Vol. 2, Issue 2, Article No. 3, pp. 3:1–3:23
Transactions on Graph Data and Knowledge

T G D K Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:marcel.r.ackermann@dagstuhl.de
https://orcid.org/0000-0001-7644-2495
mailto:bast@cs.uni-freiburg.de
https://orcid.org/0000-0003-1213-6776
mailto:benedikt.beckermann@dagstuhl.de
https://orcid.org/0009-0008-3920-6109
mailto:kalmbach@cs.uni-freiburg.de
https://orcid.org/0000-0002-5582-1610
mailto:patrick.neises@dagstuhl.de
https://orcid.org/0000-0002-3419-2544
mailto:stefan.ollinger@dagstuhl.de
https://orcid.org/0000-0001-6548-5190
https://doi.org/10.4230/TGDK.2.2.3
https://doi.org/10.4230/dblp.rdf.ntriples
https://sparql.dblp.org/download/
https://sparql.dblp.org/
https://sparql.dblp.org/sparql
https://github.com/ad-freiburg/qlever
https://archive.softwareheritage.org/swh:1:dir:594019ed1ffe83fef266ac215ba69dff30185d72;origin=https://github.com/ad-freiburg/qlever;visit=swh:1:snp:28b60fc8e29f0d5b00ca740be2614f731a9b3738;anchor=swh:1:rev:01d83064a97fa51925f7be3cc89a02acf2a20c02
https://dblp.org/rdf/docu/
https://gepris.dfg.de/gepris/projekt/460676019
https://gepris.dfg.de/gepris/projekt/460234259
https://gepris.dfg.de/gepris/projekt/501930651
https://gepris.dfg.de/gepris/projekt/501930651
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/tgdk
https://www.dagstuhl.de/tgdk
https://www.dagstuhl.de

3:2 The dblp Knowledge Graph and SPARQL Endpoint

Acknowledgements The dblp team would like to thank Silvio Peroni, Ralf Schenkel, and Tobias Zeimetz
for the many fruitful discussions and practical help with the specification of the dblp RDF schema.
We would also like to thank the many members of the dblp community who sent us their comments,
thoughts, criticisms, and suggestions from working with the early versions of the dblp RDF data. Many
thanks to Michael Wagner and Michael Didas from the Dagstuhl Publishing team for their support in
creating a sustainable workflow for publishing and preserving persistent dblp RDF snapshot releases.

Received 2024-06-28 Accepted 2024-11-02 Published 2024-12-18

Editors Aidan Hogan, Ian Horrocks, Andreas Hotho, Lalana Kagal, and Uli Sattler

Special Issue Resources for Graph Data and Knowledge

a https://creativecommons.org/publicdomain/zero/1.0/

1 Introduction

The ever-increasing volume of academic research requires advanced methods for managing and
accessing the wealth of information about scholarly publications. To harness the full potential
of modern research information systems, it is essential to represent knowledge in a structured,
interlinked, and semantically rich manner. Knowledge graphs [23] allow such a representation by
providing structured and interlinked data and improving the ability to understand the intercon-
nected nature of scholarly knowledge.

The dblp computer science bibliography is a comprehensive online reference for bibliographic
information on important computer science publications. It was launched in 1993 by Michael Ley
at the University of Trier and has developed from a small experimental website about databases
and logic programming (hence, “dblp”) into a popular open data service for the entire computer
science community [26]. As of June 2024, dblp indexes over 7.2 million publications written by
more than 3.5 million authors. The database indexes more than 57,000 journal volumes, more
than 58,000 conference and workshop proceedings, and more than 150,000 monographs.

Although the term “open data” had not yet been coined in 1993, dblp was open from the
very beginning. Individual data entries have always been freely accessible, and complete dump
downloads of the entire dblp data in its own custom XML format have been available since at least
2002 [27, 28]. Since 2015, dblp XML snapshots are archived as persistent monthly releases [16].

1.1 Related work
The idea of providing access to dblp data as linked open data is not new. In the very first iteration
of the linked open data cloud from 2007 (see Figure 1), dblp was already linked as one of the
few early data sources [3, 11]. However, these were always independent contributions from the
international computer science community and not an original contribution of the dblp team.
These earlier contributions were based on snapshots (current at the time) of the public XML
dump export and were generally not updated after creation. Given the continuous additions and
maintenance by the dblp team, which make dblp a “living” dataset, these conversions were quickly
out of sync with the live data. Many of the external live services, in particular SPARQL endpoints,
have vanished from the web in the meantime.

The probably earliest RDF conversion of the dblp dataset has been exercised as a benchmark
example for the declarative mapping language D2RQ in 2004 [10]. The data was later released
together with an accompanying SPARQL endpoint using the D2R Server tool [9].1 This conversion
provided entities for up to 800,000 articles and 400,000 authors and hasn’t been updated since 2007.

1 https://web.archive.org/web/*/http://www4.wiwiss.fu-berlin.de/dblp/ (archived)

https://creativecommons.org/publicdomain/zero/1.0/
https://web.archive.org/web/*/http://www4.wiwiss.fu-berlin.de/dblp/

M. R. Ackermann, H. Bast, B. M. Beckermann, J. Kalmbach, P. Neises, and S. Ollinger 3:3

FOAF
Revuy

RDF Book
 Mashup

DBpedia

DBLP
Project
Guten-
 berg

 US
Census
 Data

Jamendo

DBtune
 Geo-
names

World
 Fact-
 book

Music-
brainz

Figure 1 The first snapshot of the LOD cloud, from May 2007, according to https://lod-cloud.net/.

At about the same time, further conversions and SPARQL endpoints were the D2R Server in
the context of the Faceted DBLP2 search engine [17] and the RKBExplorer3 [21, 20]. These RDF
datasets have been actively used for a long time and are a subject or component of numerous
computer science publications. E.g., a simple Internet search using Google Scholar with query
"fu-berlin.de/dblp" OR "dblp.l3s.de/d2r" OR "dblp.RKBExplorer.com" finds at least 380
results,4 with citing papers still being published today in 2024.

Other graph datasets used dblp data as a starting point to build improved and extended
semantic information. For example, the SwetoDblp ontology and dataset5 augmented dblp XML
data with relationships to other entities such as publishers and affiliations [2, 1]. The GraphDBLP
tool6 models the dblp data from 2016 as a graph database and, in doing so, allows for performing
graph-based queries and social network analyses [31, 30]. The COLINDA dataset7 provided
a linked data collection of 15,000 conference events, augmenting dblp proceedings data with
location, start and end times, geodata and further links [39, 38]. More recently, the EVENTSKG
knowledge graph8 provided a semantic description of publications, submissions, start date, end
date, location, and homepage for events of top-prestigious conference series in different computer
science communities [18]. Semantically structured metadata on scientific events was later also
made accessible via the ConfIDent platform9 [22, 19].

Independently of dblp and beyond the discipline of computer science, several international
efforts have been launched in recent years to provide open scientific knowledge graphs. Wikidata10

is the collaborative, omnithematic, and multilingual knowledge graph hosted by the Wikimedia

2 https://web.archive.org/web/*/http://dblp.l3s.de/d2r/ (archived)
3 https://web.archive.org/web/*/dblp.RKBExplorer.com (archived)
4 Accessed on 2024-06-12.
5 https://web.archive.org/web/*/http://knoesis.wright.edu/library/ontologies/

swetodblp (archived)
6 https://github.com/fabiomercorio/GraphDBLP
7 https://web.archive.org/web/*/http://www.colinda.org/ (archived)
8 http://w3id.org/EVENTSKG-Dataset/ekg
9 https://www.confident-conference.org/
10 https://www.wikidata.org

TGDK

https://lod-cloud.net/
https://web.archive.org/web/*/http://dblp.l3s.de/d2r/
https://web.archive.org/web/*/dblp.RKBExplorer.com
https://web.archive.org/web/*/http://knoesis.wright.edu/library/ontologies/swetodblp
https://web.archive.org/web/*/http://knoesis.wright.edu/library/ontologies/swetodblp
https://github.com/fabiomercorio/GraphDBLP
https://web.archive.org/web/*/http://www.colinda.org/
http://w3id.org/EVENTSKG-Dataset/ekg
https://www.confident-conference.org/
https://www.wikidata.org

3:4 The dblp Knowledge Graph and SPARQL Endpoint

Foundation [40]. Within Wikidata, the WikiCite project11 aims to create an open, collaborative
repository of bibliographic data. OpenCitations12 maintains and publishes open citation data
as linked open data, thereby providing the first truly open alternative to proprietary citation
indexes [35]. Initially an outcome of the EU Horizon 2020, the OpenAIRE Graph13 was one of
the first comprehensive research knowledge graphs [29]. Since then, OpenAIRE has consolidated
its organizational structure and the OpenAIRE Graph is now the authoritative source for the
European Open Science Cloud (EOSC).14 OpenAlex15 is a recent open infrastructure service,
built on the data of the now abandoned Microsoft Academic Graph16. OpenAlex is a massive,
cross-disciplinary research knowledge graph of publications, authors, venues, institutions, and
concepts [36]. Furthermore, the Open Research Knowledge Graph (ORKG) aims to make scientific
knowledge fully human- and machine-actionable by describing research contributions in a structured
manner, e.g., by connecting research papers, datasets, and used methods [25]. The ORKG aims
to build a community of contributors in order to collect, curate, and organize descriptions of
scientific contributions in a crowd-sourcing manner.

1.2 Our contribution
In this article, we introduce the dblp Knowledge Graph (dblp KG). The dblp KG aims to make all
semantic relationships modeled in the dblp computer science bibliography explicit. In contrast to
previous approaches, the dblp KG is not merely based on a one-time snapshot of dblp data, but is
actively synchronized with the current data. In particular, the dblp KG thus benefits from the
continuing curation work of the dblp team.

The dblp KG aims to complement other open knowledge graphs by bringing in dblp’s unique
strengths in author disambiguation, semantic enrichment of bibliographies, and its role as a
directory of computer science journals and conferences. We demonstrate this by augmenting our
dataset with identifiers and citation data from the OpenCitations corpus.

Open and FAIR access to the data is provided via daily updated RDF dumps, persistently
archived monthly releases, a new public SPARQL endpoint with a powerful user interface, and a
linked open data API. We also make it easy to self-host a replica of our SPARQL endpoint.

The rest of this article is organized as follows. In Section 2, we introduce the ontology of the
dblp KG and present statistics about the graph. Section 3 describes the different ways to access
the dblp KG and the citation data. Section 4 provides an introduction on how to work with the
dblp KG and the added citation data using our SPARQL endpoint, with several example queries,
and complemented by a small performance evaluation. Section 5 concludes the article with a short
discussion and an outlook.

2 dblp as a Knowledge Graph

Since its earliest stages, the semantic organization of bibliographic metadata has been a primary
concern of the dblp team’s editorial work. This includes linking publications with their true
authors, research papers with their proceedings, and conference events with the history of their
conference series. The dblp team puts a lot of (often manual) effort into providing such information

11 https://www.wikidata.org/wiki/Wikidata:WikiCite
12 https://opencitations.net
13 https://graph.openaire.eu
14 https://eosc-portal.eu/
15 https://openalex.org/
16 https://www.microsoft.com/en-us/research/project/microsoft-academic-graph/

https://www.wikidata.org/wiki/Wikidata:WikiCite
https://opencitations.net
https://graph.openaire.eu
https://eosc-portal.eu/
https://openalex.org/
https://www.microsoft.com/en-us/research/project/microsoft-academic-graph/

M. R. Ackermann, H. Bast, B. M. Beckermann, J. Kalmbach, P. Neises, and S. Ollinger 3:5

as accurately, completely, and up-to-date as possible. Editors manually annotate individual entries
with further metadata, like alternative names, external identifiers, or links to relevant web resources.
However, most semantic relations have only been provided implicitly on the (once manually crafted)
dblp HTML webpages, and so far have not been made explicit in a machine-friendly way.

The dblp Knowledge Graph (dblp KG) aims to make these semantic relations explicit and
machine-actionable. This includes structured information already available via APIs, like the
authorship of publications [28], as well as information that has not been published explicitly
before. In the current, second major iteration of the knowledge graph, this additional information
includes the concrete linkage of published works with the publication venue they appeared in
(conferences, journals, etc.), metadata about these venues, and information about known relations
between venues. Future iterations of the graph will expand the model even further. This will
include such information as metadata about conference events within a conference series, and
author affiliations. A simplified excerpt of the current graph is shown in Figure 2.

 creatorName

affiliation
Creator

00/1

createdBy

publishedInStream

title

yearOfPublication

hasSignature

hasIdentifier

Publication
journals/pvldb/

Ley09

streamTitle

wikidata

Stream
journals/

pvldb

Michael Ley

Schloss Dagstuhl LZI,
dblp computer science

bibliography, Trier,
Germany

DBLP - Some
Lessons
Learned.

2009

Proceedings of
the VLDB

Endowment

Q27722874

signatureCreator

 signatureOrcid

signatureOrdinal

Signature

0000-0001-
7580-4351

1

 usesIdentifierScheme

 hasLiteralValue

Identifier

doi10.14778/
1687553.1687577

Figure 2 Simplified excerpt from the dblp knowledge graph. The excerpt is centered on the paper
“DBLP – Some Lessons Learned” from Michael Ley [28].

2.1 The dblp ontology
As there already is a whole range of ontologies that model bibliographic information about
scientific works (e.g., see [14, 32, 24]), the dblp ontology is explicitly not intended to replace
them. Instead, it is designed to model the way dblp handles and provides bibliographic metadata,
including all possible quirks and oddities that may arise from dblp’s unique approach. For example,
dblp’s author disambiguation uses certain “pseudo-author entities” (described in more detail in
Section 2.1.1.3 below) to model cases where the true authorship of a work is currently unknown or
ambiguous. Also, dblp’s records are incompatible with the more fine-grained FRBR model [34] that
is standard in the library community.17 Therefore, it was not viable to reuse existing ontologies,
as is usually recommended. However, links to related types and predicates from existing ontologies
are provided in the dblp RDF schema whenever possible.

17 In particular, the dblp data model generally does not distinguish between the FRBR layers Work and
Expression and does not address the layers Manifestation or Item at all.

TGDK

3:6 The dblp Knowledge Graph and SPARQL Endpoint

In the remainder of this section, entity refers to any resource accessible via an IRI, a literal,
or an anonymous node. It is synonymous with the term resource as defined in [12]. Entities
in the dblp ontology are assigned certain core and reification types that stem from the dblp
internal data model, and relations between entities are modeled using predicates. The types
of the dblp ontology and their connections are described below, and a simplified view of the
ontology is presented in Figure 3. The full dblp ontology reference documentation can be found at
https://dblp.org/rdf/docu/.

Table 1 IRI prefixes for the core entities of the dblp KG.

Type IRI Prefix

Publication https://dblp.org/rec/
Creator https://dblp.org/pid/
Stream https://dblp.org/streams/

hasVersion
isVersion

hasSignature

 createdBy

Publication
- title
- yearOfPublication
- pagination
- doi
- omid
- ...

subClassOf

Creator
- creatorName
- affiliation
- homepage
- ...

 publishedInStream

subClassOf

Stream
- streamTitle
- indexPage
- iso4
- ...

subClassOf

 hasIdentifier

Entity
- wikipedia
- wikidata
- ...

Identifier
- usesIdentifierScheme
- hasLiteralValue

Signature
- signatureOrcid
- signatureOrdinal
- ...

signatureCreator

VersionRelation
- versionLabel
- versionOrdinal
- versionUri

Legend

Type Predicates Entity Predicates

Core Entities Reification Entities

Figure 3 Excerpt from the dblp ontology showing the relationships between core and reification types.
Each of the entity boxes shows the type at the top, followed by a list of predicates of entities of that type.
The figure shows only a small selection of all predicates and omits most of the finer-grained subtypes.

2.1.1 Core entities

The current iteration of the dblp ontology contains named entities for publications, their creators,
and the publication venues (which we call streams) they appeared in. These core entities have
persistent IRIs and are accessible via open data APIs and as HTML web pages within the dblp
website. For an overview of the IRI prefixes of the different types, see Table 1.

https://dblp.org/rdf/docu/

M. R. Ackermann, H. Bast, B. M. Beckermann, J. Kalmbach, P. Neises, and S. Ollinger 3:7

2.1.1.1 Entities

The dblp ontology defines an abstract supertype dblp:Entity as a parent to all core entity types.
In the dblp ontology, this type represents any core entity that can be associated with an identifier.
The main purpose of this abstract supertype is to provide a common rdfs:range subject for
predicates in the dblp RDF schema.

2.1.1.2 Publications

Entities of type dblp:Publication represent any academic work indexed in dblp. This includes
traditionally published articles, authored or edited volumes, and (more recently) also published
data artifacts.

Like on the dblp websites, publications are linked to their authors or editors (modeled as
dblp:Creator entities, see Section 2.1.1.3). This is done redundantly in two ways. First, there is a
direct link towards authors and editors using the predicate dblp:createdBy. Additionally, special
reification entities called signatures (of type dblp:Signature, see Section 2.1.2) are provided using
the predicate dblp:hasSignature. This redundancy enables convenient and elegant queries via the
first option when nothing other than the link from a publication to its creators is needed, and can
provide more in-depth metadata about the authorship via the signature entities if required.

Publications are also linked to their publication venue (of type dblp:Stream, see Section 2.1.1.4),
such as the conference or journal in which they are published. The link is modeled via the predicate
dblp:publishedInStream. There are no dedicated reification entities for these links in the current
iteration of the dblp ontology. Related metadata, such as issue or volume numbers, is given
as literal values via predicates on the publications. In the future, reification entities might be
introduced here.

To provide external identifiers, publications are linked to identifier entities
(datacite:Identifier, see Section 2.1.2) using the datacite:hasIdentifier predicate. Re-
dundantly and for convenience, links to the IRIs of the most important external identifiers are
provided via direct predicates, namely DOIs (dblp:doi), ISBN (dblp:isbn), Wikidata entity
(dblp:wikidata), and OpenCitations Meta IDs (dblp:omid).

Publication entities also carry further metadata fields, such as their titles, the year of publication,
or pagination information.

All publications in dblp are classified by a rudimentary system of publication types. Similar to
many modeling decisions made at dblp in the early days, these types were originally derived from
classic BibTeX, but have evolved. Publication types are modeled as subtypes of dblp:Publication,
like dblp:Inproceedings for conference publications, dblp:Book for monographs, or dblp:Data for
research data and artifacts. A list of all types can be found in Table 2. We are aware that due to
the evolving publication landscape, a BibTeX-inherited classification might no longer be a best fit
for modern publication practices, and many of the decisions behind the dblp type classification
system are disputable.

2.1.1.3 Creators

The type dblp:Creator represents any individual or group listed as the author or editor of a
publication. Analogous to the case of dblp:Publication entities, creators are linked to their
publications redundantly in two ways: First, they are linked directly via predicates (such as
dblp:creatorOf) and indirectly via dblp:Signature reification entities.

Creator entities also carry metadata such as their names, alternative names, current and
former affiliations, and homepages. Manually curated identifiers are provided via identifier enti-
ties (datacite:Identifier) linked using the datacite:hasIdentifier predicate. For convenience,
ORCID IRIs (dblp:orcid) and Wikidata IRIs (dblp:wikidata) are provided via direct predicates.

TGDK

3:8 The dblp Knowledge Graph and SPARQL Endpoint

Table 2 List of all publication types within the dblp ontology.

Publication Type Description

Inproceedings Conference and workshop publications
Article Journal articles
Book Monographs and PhD theses
Editorship Edited volumes, prefaces, and editorials
Incollection Chapters within a monograph
Reference Reference material and encyclopedia entries
Data Research data and artifacts
Informal Preprints, non-peer-reviewed and other publications
Withdrawn Withdrawn publications

The standard creator subtype (c.f. Table 3) used for individual authors or editors is dblp:Person.
In some cases, where a listed author of a publication is not a single person but represents a known
group or consortium, the type dblp:Group is used.

One major contribution of the dblp team is the continuous work to identify and disambiguate
the “true authors” behind the plain character strings given in bibliographic metadata. This work
often leaves a fair number of disambiguation cases unresolved as the information at hand does not
allow for a reliable decision. These situations are handled by introducing certain pseudo-persons
that represent more than one individual and are fully known to be ambiguous. Publications
assigned to such a pseudo-person are known to have their true author not yet determined, and the
collected bibliography of such a pseudo-person is known to not represent the coherent scholarly
work of an actual person.

For example, assume we have several publications written by people called “Jane Doe”. Further,
assume that we know for some of those publications that they are written by two different
individuals, called “Jane Doe 0001” and “Jane Doe 0002” (following dblp’s scheme to distinguish
different individuals with the same name). These two individuals will be modeled using the subtype
dblp:Person. However, for the remaining “Jane Doe” publications, the true authorship is currently
unknown. In that case, the remaining publications will be linked to neither “Jane Doe 0001” nor
“Jane Doe 0002”, but to a different pseudo-person “Jane Doe” of type dblp:AmbiguousCreator.

For all purposes, dblp:AmbiguousCreator entities are used and referenced just like normal,
unambiguous creator entities in dblp, and they are linked to publications, signatures, etc. in
the usual way. However, when retrieved in complex queries, their ambiguous nature should
be understood and results should be handled accordingly. E.g., if an dblp:AmbiguousCreator
is retrieved as a common coauthor, there is no guarantee that this is really the same person
linking both authors. dblp:AmbiguousCreator entities do provide several unique predicates, like
dblp:possibleActualCreator and dblp:proxyAmbiguousCreator that link between ambiguous and
actual creators that may be related.

Please be aware that due to the continuous curation work done by the dblp editorial team,
long-standing disambiguation cases can be (and are regularly) resolved at any time. Hence,
dblp:proxyAmbiguousCreator entities and their links to publications and signatures are among the
most volatile content of the dblp Knowledge Graph.

2.1.1.4 Streams

In dblp, we use the term stream to refer to any journal, conference series, book series, or
repository that acts as a regular source for publications. Such streams are modeled using the
type dblp:Stream. Publications are linked to the streams they appeared in using the predi-

M. R. Ackermann, H. Bast, B. M. Beckermann, J. Kalmbach, P. Neises, and S. Ollinger 3:9

Table 3 List of all creator types within the dblp ontology.

Creator Type Description

Person An individual person
Group A group or organisation
AmbiguousCreator An unknown number of unidentified individuals of the same name

cate dblp:publishedInStream. A single publication might be linked to multiple streams in that
way. For example, an HCI conference paper might appear both in the stream of its confer-
ence event series <https://dblp.org/streams/conf/hci> as well as, say, the LNCS book series
<https://dblp.org/streams/series/lncs> that publishes the conference proceedings.

dblp:Stream entities may be linked to other dblp:Stream entities using dblp:relatedStream
or one of its subpredicates. These include hierarchical relations (dblp:subStream and
dblp:superStream) in cases of streams that take place or are published as part of another stream,
and temporal relations (dblp:predecessorStream and dblp:successorStream) in cases where streams
merge with or are replaced by another stream.

Stream entities have further metadata like their (past, current, or alternative) titles, homepage
URLs, a URL of their dblp index page, or their ISO4 journal title abbreviation. Identifiers are again
provided via identifier entities (datacite:Identifier) linked using the datacite:hasIdentifier
predicate. For convenience, ISSN IRIs (dblp:issn) and Wikidata IRIs (dblp:wikidata) are provided
via direct predicates.

The dblp ontology uses the following subtypes of dblp:Stream (see Table 4): dblp:Journal for
periodically published journals, dblp:Conference for conference or workshop series, and dblp:Series
for series of published volumes like monographs and proceedings. Only very recently, we expanded
the dblp data model also to include a fourth, new subtype dblp:Repository for sources of research
data and artifacts, such as Zenodo.18

Table 4 List of all stream types within the dblp ontology.

Stream Type Description

Journal Periodically published journals
Conference Conference or workshop series
Series Series of monographs or proceedings volumes
Repository Sources of research data and artifacts

2.1.2 Reification entities
Reification entities, also known as linking entities, link core entities to other core or external
entities and provide further metadata about that link. Reification entities are represented by
blank nodes in the dblp Knowledge Graph.

Identifiers. Identifier entities (of type datacite:Identifier) are used to annotate identifiable
entities in the dblp KG with external identifiers, such as DOI or ORCID. These external identifiers
allow users to connect the dblp KG entities with information from other knowledge graphs. The
type datacite:Identifier is reused from and defined in the DataCite Ontology [37].

18 https://zenodo.org/

TGDK

https://zenodo.org/

3:10 The dblp Knowledge Graph and SPARQL Endpoint

A dblp KG core entity is linked to identifier entities using the predicate datacite:hasIdentifier.
Identifier entities are linked to their identifier schema (such as datacite:doi) via the predicate
datacite:usesIdentifierScheme. They are linked to their literal value stating the actual ID string
via the predicate (litre:hasLiteralValue). It is important to note that identifier entities do not
link directly to the IRIs of the external identifier to support a wider range of identifier schemas.

Signatures. In dblp, we use the term signature to refer to the reification entity (of type
dblp:Signature) that links a publication (of type dblp:Publication) to one of its authors (of
type dblp:Creator). The purpose of these entities is to provide more context to this otherwise
simple link. Signature entities may link to an ORCID IRI that has been stated in the publica-
tion’s metadata using the dblp:signatureOrcid predicate and provide the relative position of a
publication’s creator in the complete creator list using the dblp:signatureOrdinal predicate. We
aim to provide additional context via the signature entities in future iterations of the dblp KG,
such as affiliation information provided in the publication.

To distinguish between the roles of an editor and an author for a published work, the two
subtypes dblp:AuthorSignature and dblp:EditorSignature are used.

Version Relations. With the recent inclusion of the publication type dblp:Data, an optional
hierarchy between publications has been introduced to dblp to model cases where one publica-
tion is an instance of another publication. In dblp, we call the instanced publication a version,
while the instantiated publication is called a concept. These relations are represented by the
type dblp:VersionRelation. Publications are linked to version-relation entities via the predi-
cates dblp:versionConcept and dblp:versionInstance. For convenience, the redundant predicate
dblp:isVersionOf is provided to directly link between the dblp:Publication entities in cases when
nothing other than this link is needed.

The relation contains further metadata like a label for the instance (such as “Version 1.3”),
their relative order compared to other instances of the same concept, and an identifying IRI of
the concept.

2.2 Key statistics
This section presents several key statistics of the dblp Knowledge Graph to give an overview of its
content and dimension. Table 5 shows the number of entities per type, and Table 6 shows the
number of identifiers by schema. The SPARQL queries used to create the statistics can be found
online19, each with a direct link to our SPARQL endpoint that will then execute the corresponding
query. The statistics in this paper are based on the dump from September 11th, 2024.

The majority of publication entities are conference proceedings papers (47.43%) and journal
articles (39.22%). Informal publications (9.25%), such as preprint publications on arXiv, also
form a significant share of publications. The other publication types each form less than 3% of
the corpus.

Less than 0.01% of all creator entities are of type dblp:Group because we aim to present
individual authorship where possible. Individual authors of type dblp:Person form the vast
majority (99.58%) of creator entities. The manually identified dblp:AmbiguousCreator entities only
form a small fraction (0.41%).

In contrast to many other research fields, where journals are the predominant medium,
conferences play a crucial role in disseminating research in computer science. Many conferences
only take place once or twice, while journals tend to be much more long-lived. In addition,

19 https://github.com/dblp/kg/wiki/Paper-TGDK-2024#statistics-queries

https://github.com/dblp/kg/wiki/Paper-TGDK-2024#statistics-queries

M. R. Ackermann, H. Bast, B. M. Beckermann, J. Kalmbach, P. Neises, and S. Ollinger 3:11

Table 5 Number of entities in the dblp KG by type, as of September 11th, 2024.

(a) Count of the main dblp type entities.

Type Count %

Signature 24,559,211 41.09
Identifier 24,157,894 40.42
Publication 7,446,698 12.46
Creator 3,595,686 6.02
Stream 8,864 0.01
VersionRelation 899 < 0.01

(b) Count of the publication subtype entities.

Publication Type Count %

Inproceedings 3,532,088 47.43
Article 2,920,903 39.22
Informal 689,075 9.25
Book 154,185 2.07
Editorship 61,847 0.83
Incollection 43,220 0.58
Reference 27,366 0.37
Withdrawn 10,425 0.14
Data 7589 0.10

(c) Count of the creator subtype entities.

Creator Type Count %

Person 3,580,548 99.58
AmbiguousCreator 14,774 0.41
Group 364 0.01

(d) Count of the stream subtype entities.

Stream Type Count %

Conference 6,753 76.18
Journal 1,885 21.27
Series 220 2.48
Repository 6 0.07

conferences are often divided into workshop series which may also form their own entities. All
this explains why there are three times as many conference entities (76.18%) as journal entities
(21.27%) in the dblp KG. Currently, there are only 6 repository streams in the dblp KG because
the support for data publications, which are modeled to be published in repositories, has only
recently been added to dblp.

The almost 6 million DOIs are the most often occurring identifier in the dblp KG. In addition to
about 170,000 distinct ORCID IRIs manually linked to creators using dblp:orcid in the dblp KG,
we also link to more than one million distinct ORCID IRIs on signatures via dblp:signatureOrcid.
Other than ORCIDs linked to creator entities, ORCIDs linked to signatures are automatically
harvested from metadata and have not been manually verified by the dblp team.

3 How to access the dblp Knowledge Graph and the citation data

We provide a variety of ways to access the dblp Knowledge Graph and the associated citation
data: via RDF dumps, via a public SPARQL endpoint with an associated user interface, via
SPARQL queries embedded into the dblp website, via a linked open data API, and by providing
an easy way to set up one’s own SPARQL endpoint. Each of these is briefly described in one of
the following subsections. All data is released openly under the CC0 1.0 Universal license.20

20 https://creativecommons.org/publicdomain/zero/1.0/

TGDK

https://creativecommons.org/publicdomain/zero/1.0/

3:12 The dblp Knowledge Graph and SPARQL Endpoint

Table 6 Count of external identifier entities in the dblp KG by type, as of September 11th, 2024.

Identifier Type Count %

doi 6,205,594 47.35
omid 5,312,165 40.53
wikidata 685,613 5.23
arxiv 409,965 3.14
orcid 167,117 1.28
isbn 90,777 0.69
handle 44,665 0.34
dnb 41,713 0.32
google scholar 30712 0.23
urn 24386 0.19
ieee 14876 0.11
gnd 13387 0.10
zbmath 12215 0.09
acm 11486 0.09
loc 10266 0.08

Identifier Type Count %

math genealogy 9938 0.08
linkedin 5764 0.04
twitter 4162 0.03
issn 3567 0.03
research gate 2356 0.02
github 2157 0.02
isni 1412 0.01
viaf 1071 < 0.01
oclc 448 < 0.01
lattes 442 < 0.01
repec 244 < 0.01
gepris 128 < 0.01
openalex 10 < 0.01
gitlab 10 < 0.01

3.1 RDF dumps of the dblp Knowledge Graph
We provide daily updated RDF exports of the dblp KG in RDF/XML, N-Triples, and Turtle
formats.21 These are useful for tools and services that need the latest version of the data. Further,
we publish persistent monthly releases of the dblp KG in N-Triples format [15] and recommend
using these persistent releases for reproducible experiments and similar purposes. We also provide
serializations of the RDF schema of the dblp KG ontology described in Section 2.1. This schema
is rarely changed, and all previous versions of the schema are persistently available.

3.2 RDF dumps of the dblp KG with citation data
We also provide daily updated dblp RDF exports augmented with citation data22, obtained from
the OpenCitations project, which provides open-access citation data for publications across all
areas of science [13]. OpenCitations assigns each publication an identifier (called OMID), which
is also provided in the dblp KG; see Section 2.1.1. We filter the whole OpenCitations corpus
to the subset of citations that are concerned with publications listed in dblp and provide the
combined graph. The connection between dblp and OpenCitation entities is done via the predicate
dblp:omid (see Section 2.1.1.2). Please be aware that while the OpenCitations data is updated
only infrequently, the dblp KG is updated daily. Thus, the combined dataset is also updated daily.

3.3 Public SPARQL endpoint with associated user interface
We provide a public SPARQL endpoint for the combined data described in Section 3.2 under
https://sparql.dblp.org/sparql, powered by the QLever SPARQL engine [6] [8].23 The
SPARQL endpoint is updated daily, in sync with the daily releases of these datasets. The endpoint

21 https://dblp.org/rdf/
22 https://sparql.dblp.org/download/
23 https://github.com/ad-freiburg/qlever

https://sparql.dblp.org/sparql
https://dblp.org/rdf/
https://sparql.dblp.org/download/
https://github.com/ad-freiburg/qlever

M. R. Ackermann, H. Bast, B. M. Beckermann, J. Kalmbach, P. Neises, and S. Ollinger 3:13

(a) Example of person queries. (b) Example of venue queries.

Figure 4 Example SPARQL queries embedded into the dblp website.

conforms with the SPARQL 1.1 Protocol24, currently still with minor deviations. These are
documented in the dblp KG Wiki25 and will be fixed in the near future. The SPARQL endpoint
makes it very easy to build services or tools on top of the dblp KG. Section 4.6 briefly analyzes its
performance.

The endpoint also comes with a user interface, available under https://sparql.dblp.org,
for the interactive formulation and execution of SPARQL queries. The user interface provides
various features to help people that are unfamiliar with the intricacies of the dataset or of the
SPARQL query language, most notably context-sensitive suggestions (autocompletion) after each
keystroke. This is explained in more detail in Section 4.2, for the example query from Section 4.1.
The user interface also features a button, which opens a searchable list of example queries.

3.4 Setting up your own SPARQL endpoint
The SPARQL endpoint described in the previous section is publicly and freely available. To enable
a continuous service, there is a fixed timeout for each query, and at some point, we might also
introduce rate limits or quotas. For users with high query volumes or other special requirements,
we provide instructions for setting up their own SPARQL endpoint and user interface,26 with the
exact same functionality as described in Section 3.3, using the exact same dataset. This setup
requires only a few commands and works with standard hardware; see Section 4.6.

3.5 SPARQL queries embedded into the dblp website
Beyond the examples of the query interface, we also provide links with preformulated SPARQL
queries embedded into various pages across the dblp website, as shown in Figure 4. In particular.
each author page now features a box with links to related SPARQL queries, such as a query to
calculate the most highly cited co-authors of the author described on the page. Similarly, each

24 https://www.w3.org/TR/sparql11-protocol/
25 https://github.com/dblp/kg/wiki/Known-Issues
26 https://github.com/dblp/kg/wiki/SPARQL-server-setup

TGDK

https://sparql.dblp.org
https://www.w3.org/TR/sparql11-protocol/
https://github.com/dblp/kg/wiki/Known-Issues
https://github.com/dblp/kg/wiki/SPARQL-server-setup

3:14 The dblp Knowledge Graph and SPARQL Endpoint

Table 7 Recognized file extensions and MIME types.

Format API file extension MIME type for content negotiation

RDF/XML .rdf application/rdf+xml
N-Triples .nt application/n-triples
Turtle .ttl text/turtle
HTML .html text/html
dblp XML .xml application/xml

conference or journal page features a box with links to related SPARQL queries, such as a query to
calculate frequent authors for this conference, or conferences with a large overlap regarding authors.
These embedded queries are useful in three respects: (1) they provide interesting information that
complements the information provided on the respective page, (2) they draw attention to the
SPARQL endpoint for users that might otherwise miss this opportunity, and (3) it is an easy and
motivating way to learn by example what is in the dblp KG and how to query it.

3.6 Linked Open Data API
Finally, we provide an API for individual pieces of RDF data for creators, publications, and
streams. This data is guaranteed to always be up-to-date with the current state of the dblp
database. The URLs of this API all follow the same structure: a dblp resource IRI, followed by a
file extension corresponding to the requested file format as given in Table 7. For example, for the
creator resource IRI https://dblp.org/pid/71/4882 there is
https://dblp.org/pid/71/4882.rdf for retrieving RDF/XML,
https://dblp.org/pid/71/4882.nt for retrieving N-Triples,
https://dblp.org/pid/71/4882.ttl for retrieving Turtle,
https://dblp.org/pid/71/4882.html for the dblp HTML website.
Similarly, for publications, there is
https://dblp.org/rec/conf/semweb/AuerBKLCI07.rdf for retrieving RDF/XML,
https://dblp.org/rec/conf/semweb/AuerBKLCI07.nt for retrieving N-Triples,
https://dblp.org/rec/conf/semweb/AuerBKLCI07.ttl for retrieving Turtle
https://dblp.org/rec/conf/semweb/AuerBKLCI07.html for the dblp HTML website,
and for stream entities, there is
https://dblp.org/streams/conf/semweb.rdf for retrieving RDF/XML,
https://dblp.org/streams/conf/semweb.nt for retrieving N-Triples,
https://dblp.org/streams/conf/semweb.ttl for retrieving Turtle,
https://dblp.org/streams/conf/semweb.html for the dblp HTML website.

4 SPARQL queries and performance

This section provides an introduction on how to work with the dblp KG and the added citation
data using the SPARQL endpoint we provide. We provide four example queries: a basic one
(Section 4.1), a more advanced one (Section 4.3), a federated query that queries two endpoints
(Section 4.4), and a query that uses both the dblp KG and the added citation data (Section 4.5).
We use the basic example query to explain how the autocompletion works (Section 4.2). The

https://dblp.org/pid/71/4882
https://dblp.org/pid/71/4882.rdf
https://dblp.org/pid/71/4882.nt
https://dblp.org/pid/71/4882.ttl
https://dblp.org/pid/71/4882.html
https://dblp.org/rec/conf/semweb/AuerBKLCI07.rdf
https://dblp.org/rec/conf/semweb/AuerBKLCI07.nt
https://dblp.org/rec/conf/semweb/AuerBKLCI07.ttl
https://dblp.org/rec/conf/semweb/AuerBKLCI07.html
https://dblp.org/streams/conf/semweb.rdf
https://dblp.org/streams/conf/semweb.nt
https://dblp.org/streams/conf/semweb.ttl
https://dblp.org/streams/conf/semweb.html

M. R. Ackermann, H. Bast, B. M. Beckermann, J. Kalmbach, P. Neises, and S. Ollinger 3:15

section closes with a brief performance evaluation of a selection of SPARQL queries (Section 4.6).
All queries discussed in this section can also be found on the web27, each with a direct link to our
SPARQL endpoint that will then execute the corresponding query.

4.1 A basic SPARQL query

SPARQL is the standard query language for querying RDF data. The language can be seen as a
variant of SQL (the standard query language for relational databases), adapted to the RDF data
model. Namely, just like RDF data is a set of triples, the core of a typical SPARQL query is a set
of triples, with variables in some places. Following is an example query that asks for the titles of
all papers in dblp published until 1940, their authors, and the year of publication:

PREFIX dblp: <https://dblp.org/rdf/schema#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
SELECT ?title ?author ?year WHERE {

?paper dblp:title ?title .
?paper dblp:authoredBy ?author_id .
?author_id rdfs:label ?author .
?paper dblp:yearOfPublication ?year .
FILTER (?year <= "1940"^^xsd:gYear)

}
ORDER BY DESC(?year) ASC(?title)

Run this query

Conceptually, the result of a SPARQL query is a table. For the query above, that table has
three columns (labeled ?title, ?author, and ?year), and one row for each possible assignment to
these three variables such that all the corresponding triples in the query body exist and all the
additional constraints (in this case, the FILTER condition) are fulfilled. For example, the first five
result rows for the query above are as follows:

?title ?author ?year

A Correction to Lewis and Langford’s Symbolic Logic. J. C. C. McKinsey 1940
A Formulation of the Simple Theory of Types Alonzo Church 1940
Einkleidung der Mathematik in Schröderschen Relativkalkül Leopold Lowenheim 1940
Elimination of Extra-Logical Postulates. Willard Van Orman Quine 1940
Elimination of Extra-Logical Postulates. Nelson Goodman 1940

Note that if a paper has k authors, there are k rows for that paper in the result (as in rows four
and five above). If a paper had k1 authors and k2 titles, there would be k1 · k2 result rows for that
paper, one for each combination. Such Cartesian products are unexpected for many SPARQL
beginners and can lead to very large results, in particular, when making mistakes in the query
formulation.

27 https://github.com/dblp/kg/wiki/Paper-TGDK-2024#example-queries

TGDK

https://github.com/dblp/kg/wiki/Paper-TGDK-2024#a-basic-sparql-query
https://github.com/dblp/kg/wiki/Paper-TGDK-2024#example-queries

3:16 The dblp Knowledge Graph and SPARQL Endpoint

4.2 SPARQL autocompletion

Writing a correct SPARQL query requires knowledge about the SPARQL query language in general
as well as about the structure of the concrete knowledge graph. For the example query above, the
following skills are required:

1. Getting the general syntax right: how to write a SELECT statement, how to write a FILTER
expression, how to write an ORDER BY clause.

2. Knowing the names of the RDF types and entities needed for the query, here: dblp:title,
dblp:authoredBy, and dblp:yearOfPublication.

3. Knowing the right PREFIX definitions and where to put them (the first few lines in the query
above).

The user interface helps with all of these by offering incremental context-sensitive autocompletion
after each keystroke. We recommend to go to https://sparql.dblp.org and try the following
instructions live.

By simply typing “S”, the UI suggests the whole template for a SELECT clause (needed for
most queries). After having typed the first variable ?paper in the body of the SPARQL query, the
UI will suggest predicate names, which are searchable by typing a prefix such as “ti” (for title).
When selecting a predicate, the corresponding PREFIX statement will be automatically added
at the top of the query. After entering the variable ?paper a second time, the UI will suggest
only those predicates that would lead to a non-empty result together with the already typed
?paper dblp:title ?title. This narrows down the selection considerably. Continuing this way,
the user can type a query from left to right, top to bottom relatively easily with minimal input
and minimal knowledge of the syntax and the details of the knowledge graph. The details of this
mechanism, along with example queries for other RDF datasets, are described in [7].

4.3 A more advanced SPARQL query

The following query returns all papers published at STOC 2018, and for each paper the number
of all its authors, the number of its ORCID-certified authors, and the ratio between the two. The
results are ordered by that ratio, largest first. The query makes use of the signatures in the dblp
KG (see Section 2) as well as of several more advanced SPARQL features.

PREFIX dblp: <https://dblp.org/rdf/schema#>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
SELECT ?paper (COUNT(?signature) AS ?num_authors) (COUNT(?orcid) AS ?num_orcid)

(ROUND(100 * ?num_orcid / ?num_authors) AS ?perc) WHERE {
?paper dblp:publishedInStream <https://dblp.org/streams/conf/stoc> .
?paper dblp:yearOfEvent "2018"^^xsd:gYear .
?paper dblp:hasSignature ?signature .
OPTIONAL { ?signature dblp:signatureOrcid ?orcid }

}
GROUP BY ?paper
ORDER BY DESC(?perc)

Run this query

https://sparql.dblp.org
https://github.com/dblp/kg/wiki/Paper-TGDK-2024#a-more-advanced-sparql-query

M. R. Ackermann, H. Bast, B. M. Beckermann, J. Kalmbach, P. Neises, and S. Ollinger 3:17

Here are the top-5 results:

?paper ?num_authors ?num_orcid ?perc

https://dblp.org/rec/conf/stoc/Cheraghchi18 1 1 100
https://dblp.org/rec/conf/stoc/Filos-RatsikasG18 2 2 100
https://dblp.org/rec/conf/stoc/BergBKMZ18 5 4 80
https://dblp.org/rec/conf/stoc/ChattopadhyayKL18 4 3 75
https://dblp.org/rec/conf/stoc/ByrkaSS18 3 2 67

Let us break down the main components of this query:
Each paper has one signature per author, that is, the pattern ?paper dblp:hasSignature
?signature will have one match for each author of each paper.
A signature might or might not have an ORCID associated with it. The OPTIONAL ensures that
no signature will be left out, but if there is no ORCID, the value for ?orcid is undefined.
The GROUP BY groups the information by paper, that is, there will be one row per paper in the
result. As a consequence, any other variable used in the SELECT clause has to be aggregated
so that we get one value for each paper: COUNT(?signature) counts the number of authors,
COUNT(?orcid) counts the number of ORCIDs that are not undefined, and ?perc is computed
as the ratio between the two, expressed as a percentage and rounded to the nearest integer.
The ORDER BY ensures that the results are ordered by the percentage, highest percentage first.
Note that by default, the result of a SPARQL query is unordered (and an endpoint can produce
them in an arbirtrary order).

4.4 Federated queries
Federated queries request data from more than one SPARQL endpoint. By design, RDF and
SPARQL are particularly well suited for such queries because there is no dataset-specific schema
(conceptually, every RDF dataset is just a set of triples) and because all identifiers are globally
unique (just like IRIs). Connections between datasets are established by reusing identifiers from
the other dataset or by having extra triples that relate the identifiers to each other.

For example, the following query returns all SIGIR authors that exist in Wikidata with a link
to dblp (via Wikidata’s wdt:P2456 predicate), and the location of their birthplace (which can then
be shown on a map).

PREFIX wdt: <http://www.wikidata.org/prop/direct/>
PREFIX dblp: <https://dblp.org/rdf/schema#>
SELECT ?author_dblp ?author_name ?num_papers ?location WHERE {

{ SELECT ?author_dblp (COUNT(?paper) AS ?num_papers) WHERE {
?paper dblp:authoredBy ?author_dblp .
?paper dblp:publishedInStream <https://dblp.org/streams/conf/sigir> .

} GROUP BY ?author_dblp }
?author_dblp dblp:primaryCreatorName ?author_name .
?author_dblp dblp:wikidata ?person_wd .
SERVICE <https://query.wikidata.org/sparql> {

?person_wd wdt:P2456 [] .
?person_wd wdt:P19 ?place_of_birth .
?place_of_birth wdt:P625 ?location .

}
}
ORDER BY DESC(?num_papers)

Run this query

TGDK

https://github.com/dblp/kg/wiki/Paper-TGDK-2024#a-federated-query

3:18 The dblp Knowledge Graph and SPARQL Endpoint

Let us break down the three main components of this query:
The first four lines of the query body are a so-called subquery, which is a full SPARQL query
enclosed in { ... }. The result of that subquery is a table with one row per dblp author and
two columns: the author ID from dblp and the number of papers from that author in dblp.
The next two lines augment that table by two more columns: the name of the author and the
Wikidata IRI of that author. Note that both of these predicates are functional, that is, for
each distinct subject there is at most one object.
The remaining four lines of the query body are a SPARQL query to another SPARQL endpoint,
with the URL https://query.wikidata.org/sparql. The result is a table with one row per
entity in Wikidata that has a birthplace (these are mostly people) and three columns: the
IRI of that person, their birthplace, and the coordinates of that birthplace.28 If the IRIs for
?person_wd from Wikidata are compatible with the IRIs for ?person_wd from dblp (which they
are), the join of the two tables then gives the desired result.
The reason for the commented out first line of the SERVICE query is as follows. Without that
line (or when it’s commented out), the SERVICE query produces a large result, namely a table
of all people in Wikidata together with their birthplace and the respective coordinates (3.5
million rows at the time of this writing). Transferring this result to the dblp SPARQL endpoint
would be very expensive, and there are two ways to avoid that. One way makes use of the
fact that the part of the query before the SERVICE gives only relatively few results, namely
one row per author who has published at SIGIR (around one thousand at the time of this
writing). The corresponding matches for person_wd can be sent to the Wikidata SPARQL
endpoint using a VALUES clause to restrict the result of the SERVICE query.29 QLever indeed
automatically performs this optimization for small sub-results, so also for the given query
(The exact threshold is configurable). The other way is to comment in the commented out
line, which would restrict the result of the SERVICE query to only those persons with a dblp
ID (around 71K at the time of this writing). For this particular query, the second way has
the disadvantage that the query excludes dblp authors who do have an entry in Wikidata,
but where the wdt:P2456 predicate, which links authors to their dblp identifier, is missing (18
authors at the time of this writing). The second way would however be necessary if we wanted
to perform the query for all 3.6 million dblp authors (not limited to SIGIR).

4.5 Querying both the dblp KG and the citation data

It is very natural to query the combined data from the dblp KG (Section 3.1) and the added
citation data (Section 3.2). We could have set up a separate endpoint for each of these datasets
and then use federated queries as shown in the previous section. However, there is always an
overhead associated with federated queries because potentially large amounts of data have to be
transferred between endpoints in one of the standard serialization formats. We therefore decided
to provide both datasets in a single endpoint, as explained in Section 3.3.

Here is a typical example query to our endpoint that makes use of both datasets. It results in
a list of all publications of Donald E. Knuth with at least one citation, ordered by the number of
citations (most cited paper first).

28 We here assume that both of these predicates are functional, which may not always be true. This could be
addressed by a slightly more complex query, or by accepting that there will be multiple rows for the same
person.

29 This optimization is even discussed and suggested in the official SPARQL standard, see https://www.w3.org/
TR/sparql11-federated-query/#values.

https://query.wikidata.org/sparql
https://www.w3.org/TR/sparql11-federated-query/#values
https://www.w3.org/TR/sparql11-federated-query/#values

M. R. Ackermann, H. Bast, B. M. Beckermann, J. Kalmbach, P. Neises, and S. Ollinger 3:19

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX cito: <http://purl.org/spar/cito/>
PREFIX dblp: <https://dblp.org/rdf/schema#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
SELECT ?publ (COUNT(?cite) as ?count_cite) (SAMPLE(?label) as ?sample_label)
WHERE {

?publ rdf:type dblp:Publication .
?publ dblp:authoredBy ?author .
?publ rdfs:label ?label .
?author dblp:creatorName "Donald E. Knuth" .
?publ dblp:omid ?omid .
?cite cito:hasCitedEntity ?omid .

}
GROUP BY ?publ
ORDER BY DESC(?count_cite)

Run this query

This query is easy to understand given the concepts already explained in the previous sections.
The second to last pattern of the query connects each publication to its OMID (the identifier
used by OpenCitations, see Section 2.1.1). The last pattern produces one match for ?cite for
every citation. Grouping by ?publ and using COUNT(?cite) for aggregation gives us the number of
citations per publication.

Note that the result will only include publications that have an OMID and at least one citation.
For the query above, this is true for only 100 of Donald Knuth’s 184 publications in dblp. To
include all publications, the last two patterns could be included in an OPTIONAL { ... }, see
Section 4.3.

4.6 Performance
Our SPARQL endpoint and its user interface described in Section 3.3, as well as the embedded
queries described in Section 3.5, are all powered by the QLever SPARQL engine. QLever is free
and open-source software (FOSS), provided under a permissive license. QLever’s primary design
goal is to be efficient even on very large knowledge graphs (with up to hundreds of billions of
triples), on a single machine using (relatively cheap) standard hardware. Compared to other
knowledge graphs, the dblp KG is medium-sized (around 400 million triples), even if combined
with the OpenCitations data (giving a total of around 1.2 billion triples). But even on a graph of
this size, queries can be expensive and an efficient engine is key for a good user experience.

Indexing time. Like all SPARQL engines except the most basic ones, QLever precomputes
special index data structures based on the input data, in order to enable fast queries. This
pre-computation is called indexing. On a PC with an AMD Ryzen 9 7950X processor with 16
cores, 128 GB of RAM, and a 2 TB NVMe SSD, indexing the dblp KG takes around 4 minutes,
while indexing the combined data takes around 12 minutes. Indexing times for QLever are roughly
proportional to the number of triples in the input data.

Query times. Table 8 shows the query times (including the time to download the complete result)
for a selection of six queries, against a SPARQL endpoint running on the same machine as above.
The queries were chosen manually to cover a spectrum of queries that users typically ask and

TGDK

https://github.com/dblp/kg/wiki/Paper-TGDK-2024#querying-the-dblp-kg-for-citation-data

3:20 The dblp Knowledge Graph and SPARQL Endpoint

Table 8 Query times in seconds and result sizes (number of rows × number of columns) for a selection
of six queries on the dblp KG. Clicking on the query name takes you to the full query. The time for
downloading the full result is included, hence the larger time for the fifth query.

Query Result size QLever Comment

All papers published in SIGIR 6,264 x 3 0.02 s Two simple joins, nothing special

Number of papers by venue 19,954 x 2 0.02 s Scan of a single predicate with
GROUP BY and ORDER BY

Author names matching REGEX 513 x 3 0.05 s Joins, GROUP BY, ORDER
BY, FILTER REGEX

All papers in DBLP until 1940 70 x 4 0.11 s Three joins, a FILTER, and an
ORDER BY

All papers with their title 7,167,122 x 2 4.2 s Simple, but must materialize
large result (problematic for
many SPARQL engines)

All predicates ordered by size 68 x 3 0.01 s Conceptually requires a scan
over all triples, but huge opti-
mization potential

different complexities regarding the query processing. This is not a complete evaluation and just
meant to give an impression. For a more extensive performance evaluation and for a comparison
against other SPARQL engines, see the QLever Wiki and the publications listed there.30

We remark that all queries except the first are non-trivial and pose significant performance
challenges to other SPARQL engines. The second query requires a scan over all 7.1M publication-
venue pairs in the data. The third query requires the materialization of over 10K strings and a
REGEX evaluation on each. The fourth query filters out 63 publications from over 7.2M. The
fifth query requires the materialization and downloading of 7.2M paper IDs and titles. The sixth
query conceptually requires a scan of the complete dataset.

5 Discussion and outlook

In this article, we introduced the dblp Knowledge Graph (dblp KG), an up-to-date semantic
representation of the knowledge contained in the dblp computer science bibliography. We also
introduced our new public SPARQL endpoint as a powerful new tool to explore dblp’s bibliographic
data and to create new insights. One particular advantage of the dblp KG is that it can be easily
combined with other scholarly graphs using common identifiers. We have demonstrated this by
combining the dblp and OpenCitations data in our query service. Just as easily, dblp could be
joined with with, e.g., biographical data from Wikidata or the subject area classification from the
ORKG.

The dblp KG is already in active use by the community. The linked open data live API
(Section 3.6) alone receives more than one million requests from more than 25,000 IPs each month.
The dblp KG RDF dump is downloaded about one thousand times each month. In recent research,

30 Go to https://github.com/ad-freiburg/qlever/wiki/ and search for “performance”.

https://github.com/dblp/kg/wiki/Paper-TGDK-2024#all-papers-published-in-sigir
https://github.com/dblp/kg/wiki/Paper-TGDK-2024#number-of-papers-by-venue
https://github.com/dblp/kg/wiki/Paper-TGDK-2024#author-names-matching-regex
https://github.com/dblp/kg/wiki/Paper-TGDK-2024#all-papers-in-dblp-until-1940
https://github.com/dblp/kg/wiki/Paper-TGDK-2024#all-papers-with-their-title
https://github.com/dblp/kg/wiki/Paper-TGDK-2024#all-predicates-ordered-by-size
https://github.com/ad-freiburg/qlever/wiki/

M. R. Ackermann, H. Bast, B. M. Beckermann, J. Kalmbach, P. Neises, and S. Ollinger 3:21

[5] uses the dblp KG to create a dataset for training and testing of question answering over
Knowledge Graph (KGQA) systems. In [41], a natural language interface is built for the dblp KG,
while [33] evaluates their universal question-answering platform using the dblp KG. In [4], an entity
linking method has been proposed which links entities mentioned in text to their corresponding
unique identifiers in the dblp KG.

Building upon the current iteration of the dblp KG and expanding its capabilities is an ongoing
endeavor of the dblp team. A particular priority is the further utilization of only weakly structured
semantic information listed on the dblp website, such as event dates or publisher information,
as well as making it machine-actionable. The immediate next steps ahead are already clear: In
the current DFG-LIS project SmartER affiliations,31 the dblp team is intensifying its coverage
of author affiliation information. Future iterations of the dblp KG will expand its model to add
institution entities as first-class citizens to the graph and link affiliation information for authors
and signatures. Also, the event history of conference and workshop series, together with metadata
about the time and date of events, is contained aplenty in the dblp webpages and will be added to
the dblp KG.

Having said that, there are several limitations that are probably out of the scope of what the
dblp team can deliver. For example, the breakdown of person names into first, last, or middle
name parts, gender information, or the annotation of the language a published work is written
in, is out of reach since dblp has no comprehensive, reliable open data source for this kind of
information. For the same reason, we cannot provide finer-grained type classifications, e.g., there
will be no distinguishing between conference and workshop series, no distinguishing of full-paper
from poster contributions, and no distinguishing of editorial articles from book review articles.
Furthermore, email addresses or contact information (even if stated on published articles) will not
be added to the dblp KG because of their privacy-sensitive nature. Finally, we have deliberately
removed all links to authors and editors from dblp:Withdrawn publications to allow authors to
exercise their right to be forgotten.

References
1 Boanerges Aleman-Meza. Swetodblp. https:

//lod-cloud.net/dataset/sweto-dblp, 2007. Ac-
cessed on 2024-04-22.

2 Boanerges Aleman-Meza, Farshad Hakimpour, Is-
mailcem Budak Arpinar, and Amit P. Sheth.
Swetodblp ontology of computer science publi-
cations. J. Web Semant., 5(3):151–155, 2007.
doi:10.1016/J.WEBSEM.2007.03.001.

3 Sören Auer, Christian Bizer, Georgi Kobilarov,
Jens Lehmann, Richard Cyganiak, and Zachary G.
Ives. Dbpedia: A nucleus for a web of open
data. In The Semantic Web, ISWC 2007 +
ASWC 2007, Busan, Korea, November 11-15,
2007, volume 4825 of Lecture Notes in Com-
puter Science, pages 722–735. Springer, 2007.
doi:10.1007/978-3-540-76298-0_52.

4 Debayan Banerjee, Arefa, Ricardo Usbeck, and
Chris Biemann. Dblplink: An entity linker for the
DBLP scholarly knowledge graph. In ISWC 2023
Posters and Demos: 22nd International Semantic
Web Conference, Athens, Greece, November 6-10,
2023, volume 3632 of CEUR Workshop Proceedings.

CEUR-WS.org, 2023. URL: https://ceur-ws.
org/Vol-3632/ISWC2023_paper_428.pdf.

5 Debayan Banerjee, Sushil Awale, Ricardo Usbeck,
and Chris Biemann. DBLP-QuAD: A question
answering dataset over the DBLP scholarly knowl-
edge graph. In BIR 2023: 13th International
Workshop on Bibliometric-enhanced Information
Retrieval ECIR 2023, Dublin, Ireland, April 2,
2023, volume 3617 of CEUR Workshop Proceed-
ings, pages 37–51. CEUR-WS.org, 2023. URL:
https://ceur-ws.org/Vol-3617/paper-05.pdf.

6 Hannah Bast and Björn Buchhold. QLever: A
query engine for efficient SPARQL+Text search.
In Proceedings of the 2017 ACM on Confer-
ence on Information and Knowledge Management,
CIKM 2017, Singapore, November 06 - 10, 2017,
pages 647–656. ACM, 2017. doi:10.1145/3132847.
3132921.

7 Hannah Bast, Johannes Kalmbach, Theresa
Klumpp, Florian Kramer, and Niklas Schnelle.
Efficient and effective SPARQL autocompletion
on very large knowledge graphs. In Proceed-
ings of CIKM 2022, Atlanta, GA, USA, Octo-

31 https://gepris.dfg.de/gepris/projekt/515537520

TGDK

https://lod-cloud.net/dataset/sweto-dblp
https://lod-cloud.net/dataset/sweto-dblp
https://doi.org/10.1016/J.WEBSEM.2007.03.001
https://doi.org/10.1007/978-3-540-76298-0_52
https://ceur-ws.org/Vol-3632/ISWC2023_paper_428.pdf
https://ceur-ws.org/Vol-3632/ISWC2023_paper_428.pdf
https://ceur-ws.org/Vol-3617/paper-05.pdf
https://doi.org/10.1145/3132847.3132921
https://doi.org/10.1145/3132847.3132921
https://gepris.dfg.de/gepris/projekt/515537520

3:22 The dblp Knowledge Graph and SPARQL Endpoint

ber 17-21, 2022, pages 2893–2902. ACM, 2022.
doi:10.1145/3511808.3557093.

8 Hannah Bast, Johannes Kalmbach, Claudius Ko-
rzen, and Theresa Klumpp. Knowledge graphs.
In Omar Alonso and Ricardo Baeza-Yates, edi-
tors, Information Retrieval: Advanced Topics and
Techniques, volume 60 of ACM Books. Association
for Computing Machinery, New York, NY, USA, 1
edition, 2025. doi:10.1145/3674127.

9 Christian Bizer. DBLP bibliography database
in RDF (fu berlin). https://lod-cloud.net/
dataset/fu-berlin-dblp, 2007. Accessed on 2024-
04-22.

10 Christian Bizer and Andy Seaborne. D2RQ
- treating non-RDF databases as virtual RDF
graphs. In Proceedings of ISWC 2004) Posters,
Hiroshima, Japan, November 7-11, 2004. Springer,
2004. URL: http://iswc2004.semanticweb.org/
posters/PID-SMCVRKBT-1089637165.pdf.

11 LOD W3C SWEO Community. Sweoig/task-
forces/communityprojects/linkingopendata.
https://www.w3.org/wiki/SweoIG/TaskForces/
CommunityProjects/LinkingOpenData/, April
2007. Accessed on 2024-04-22.

12 Richard Cyganiak, David Wood, and Markus
Lanthaler. Rdf 1.1 concepts and abstract
syntax. https://www.w3.org/TR/2014/
REC-rdf11-concepts-20140225/, februrary
2014. Accessed on 2024-05-23.

13 Marilena Daquino, Silvio Peroni, David M. Shot-
ton, Giovanni Colavizza, Behnam Ghavimi, Anne
Lauscher, Philipp Mayr, Matteo Romanello, and
Philipp Zumstein. The opencitations data model.
In The Semantic Web - ISWC 2020, Athens,
Greece, November 2-6, 2020, Proceedings, Part
II, volume 12507 of Lecture Notes in Computer
Science, pages 447–463. Springer, 2020. doi:
10.1007/978-3-030-62466-8_28.

14 Bruce D’Arcus and Frederick Giasson. The biblio-
graphic ontology. https://www.dublincore.org/
specifications/bibo/, May 2016. Accessed on
2024-05-13.

15 dblp Team. dblp computer science bibliogra-
phy – Monthly Snapshot RDF/N-Triple Release.
doi:10.4230/dblp.rdf.ntriples.

16 dblp Team. dblp computer science bibliogra-
phy – Monthly Snapshot XML Release. doi:
10.4230/dblp.xml.

17 Jörg Diederich. DBLP in RDF (l3s). https:
//lod-cloud.net/dataset/l3s-dblp, 2007. Ac-
cessed on 2024-04-22.

18 Said Fathalla, Christoph Lange, and Sören Auer.
EVENTSKG: A 5-star dataset of top-ranked events
in eight computer science communities. In The
Semantic Web - 16th International Conference,
ESWC 2019, Portorož, Slovenia, June 2-6, 2019,
Proceedings, volume 11503 of Lecture Notes in
Computer Science, pages 427–442. Springer, 2019.
doi:10.1007/978-3-030-21348-0_28.

19 Julian Franken, Aliaksandr Birukou, Kai Eck-
ert, Wolfgang Fahl, Christian Hauschke, and
Christoph Lange. Persistent identification for
conferences. Data Sci. J., 21:11, 2022. doi:
10.5334/DSJ-2022-011.

20 Hugh Glaser. DBLP computer science bibliography
(rkbexplorer). https://lod-cloud.net/dataset/
l3s-dblp, 2007. Accessed on 2024-04-22.

21 Hugh Glaser and Ian Millard. RKB explorer:
Application and infrastructure. In Proceedings
of the Semantic Web Challenge 2007 co-located
with ISWC 2007 + ASWC 2007, Busan, Korea,
November 13th, 2007, volume 295 of CEUR Work-
shop Proceedings. CEUR-WS.org, 2007. URL:
https://ceur-ws.org/Vol-295/paper13.pdf.

22 Stephanie Hagemann-Wilholt, Margret Plank, and
Christian Hauschke. ConfIDent – an open plat-
form for FAIR conference metadata. In 21st In-
ternational Conference on Grey Literature “Open
Science Encompasses New Forms of Grey Litera-
ture”, Hannover, Germany, October 22-23, 2019,
volume 21 of GL Conference Series, pages 47–51,
2019. doi:10.15488/9424.

23 Aidan Hogan, Eva Blomqvist, Michael Cochez,
Claudia d’Amato, Gerard de Melo, Claudio
Gutierrez, Sabrina Kirrane, José Emilio Labra
Gayo, Roberto Navigli, Sebastian Neumaier, Axel-
Cyrille Ngonga Ngomo, Axel Polleres, Sabbir M.
Rashid, Anisa Rula, Lukas Schmelzeisen, Juan
Sequeda, Steffen Staab, and Antoine Zimmer-
mann. Knowledge Graphs. Synthesis Lectures
on Data, Semantics, and Knowledge. Morgan
& Claypool Publishers, 2021. doi:10.2200/
S01125ED1V01Y202109DSK022.

24 Google Inc., Yahoo Inc., Microsoft Corporation,
and Yandex. Schema.org v26.0. https://schema.
org/version/26.0, February 2024. Accessed on
2024-05-13.

25 Mohamad Yaser Jaradeh, Allard Oelen, Kheir Ed-
dine Farfar, Manuel Prinz, Jennifer D’Souza, Gá-
bor Kismihók, Markus Stocker, and Sören Auer.
Open research knowledge graph: Next generation
infrastructure for semantic scholarly knowledge. In
Proceedings of the 10th International Conference
on Knowledge Capture, K-CAP 2019, Marina Del
Rey, CA, USA, November 19-21, 2019, pages 243–
246. ACM, 2019. doi:10.1145/3360901.3364435.

26 Michael Ley. Die trierer informatik-bibliographie
DBLP. In Informatik ’97, Informatik als Inno-
vationsmotor, 27. Jahrestagung der Gesellschaft
für Informatik, Aachen, 24.-26. September 1997,
Informatik Aktuell, pages 257–266. Springer, 1997.
doi:10.1007/978-3-642-60831-5_34.

27 Michael Ley. The DBLP computer science bibli-
ography: Evolution, research issues, perspectives.
In String Processing and Information Retrieval,
9th International Symposium, SPIRE 2002, Lis-
bon, Portugal, September 11-13, 2002, Proceedings,
volume 2476 of Lecture Notes in Computer Sci-
ence, pages 1–10. Springer, 2002. doi:10.1007/
3-540-45735-6_1.

28 Michael Ley. DBLP – Some lessons learned.
Proc. VLDB Endow., 2(2):1493–1500, 2009. doi:
10.14778/1687553.1687577.

29 Paolo Manghi, Alessia Bardi, Claudio Atzori,
Miriam Baglioni, Natalia Manola, Jochen Schirrwa-
gen, and Pedro Principe. The openaire research
graph data model, April 2019. doi:10.5281/
zenodo.2643198.

30 Fabio Mercorio, Mario Mezzanzanica, Vincenzo
Moscato, Antonio Picariello, and Giancarlo Sperlì.

https://doi.org/10.1145/3511808.3557093
https://doi.org/10.1145/3674127
https://lod-cloud.net/dataset/fu-berlin-dblp
https://lod-cloud.net/dataset/fu-berlin-dblp
http://iswc2004.semanticweb.org/posters/PID-SMCVRKBT-1089637165.pdf
http://iswc2004.semanticweb.org/posters/PID-SMCVRKBT-1089637165.pdf
https://www.w3.org/wiki/SweoIG/TaskForces/CommunityProjects/LinkingOpenData/
https://www.w3.org/wiki/SweoIG/TaskForces/CommunityProjects/LinkingOpenData/
https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
https://doi.org/10.1007/978-3-030-62466-8_28
https://doi.org/10.1007/978-3-030-62466-8_28
https://www.dublincore.org/specifications/bibo/
https://www.dublincore.org/specifications/bibo/
https://doi.org/10.4230/dblp.rdf.ntriples
https://doi.org/10.4230/dblp.xml
https://doi.org/10.4230/dblp.xml
https://lod-cloud.net/dataset/l3s-dblp
https://lod-cloud.net/dataset/l3s-dblp
https://doi.org/10.1007/978-3-030-21348-0_28
https://doi.org/10.5334/DSJ-2022-011
https://doi.org/10.5334/DSJ-2022-011
https://lod-cloud.net/dataset/l3s-dblp
https://lod-cloud.net/dataset/l3s-dblp
https://ceur-ws.org/Vol-295/paper13.pdf
https://doi.org/10.15488/9424
https://doi.org/10.2200/S01125ED1V01Y202109DSK022
https://doi.org/10.2200/S01125ED1V01Y202109DSK022
https://schema.org/version/26.0
https://schema.org/version/26.0
https://doi.org/10.1145/3360901.3364435
https://doi.org/10.1007/978-3-642-60831-5_34
https://doi.org/10.1007/3-540-45735-6_1
https://doi.org/10.1007/3-540-45735-6_1
https://doi.org/10.14778/1687553.1687577
https://doi.org/10.14778/1687553.1687577
https://doi.org/10.5281/zenodo.2643198
https://doi.org/10.5281/zenodo.2643198

M. R. Ackermann, H. Bast, B. M. Beckermann, J. Kalmbach, P. Neises, and S. Ollinger 3:23

A tool for researchers: Querying big scholarly data
through graph databases. In Machine Learning
and Knowledge Discovery in Databases, ECML
PKDD 2019, Würzburg, Germany, September
16-20, 2019, volume 11908 of Lecture Notes in
Computer Science, pages 760–763. Springer, 2019.
doi:10.1007/978-3-030-46133-1_46.

31 Mario Mezzanzanica, Fabio Mercorio, Mirko Ce-
sarini, Vincenzo Moscato, and Antonio Picariello.
Graphdblp: a system for analysing networks of
computer scientists through graph databases -
graphdblp. Multim. Tools Appl., 77(14):18657–
18688, 2018. doi:10.1007/S11042-017-5503-2.

32 United States Library of Congress. Bibframe
2 ontology. http://id.loc.gov/ontologies/
bibframe-2-3-0/, 2016. Accessed on 2024-05-13.

33 Reham Omar, Ishika Dhall, Panos Kalnis, and
Essam Mansour. A universal question-answering
platform for knowledge graphs. Proc. ACM
Manag. Data, 1(1):57:1–57:25, 2023. doi:10.1145/
3588911.

34 Silvio Peroni and David Shotton. Frbr-
aligned bibliographic ontology (fabio). http:
//www.sparontologies.net/ontologies/fabio,
2012. Accessed on 2024-05-13.

35 Silvio Peroni and David M. Shotton. Openci-
tations, an infrastructure organization for open
scholarship. Quant. Sci. Stud., 1(1):428–444, 2020.
doi:10.1162/QSS_A_00023.

36 Jason Priem, Heather A. Piwowar, and Richard
Orr. Openalex: A fully-open index of scholarly
works, authors, venues, institutions, and concepts.
In Proceedings of the 26th International Confer-
ence on Science and Technology Indicators (STI
2022), Granada, Spain, Sptember 7-9, 2022, 2022.
doi:10.5281/zenodo.6936227.

37 David Shotton and Silvio Peroni. Dat-
acite ontology. http://www.sparontologies.net/
ontologies/datacite, September 2022. Accessed
on 2024-05-13.

38 Selver Softic. Colinda - conference linked data.
https://lod-cloud.net/dataset/colinda, 2015.
Accessed on 2024-04-22.

39 Selver Softic, Laurens De Vocht, Erik Mannens,
Martin Ebner, and Rik Van de Walle. COL-
INDA: modeling, representing and using scien-
tific events in the web of data. In Proceedings
of DeRiVE 2015, Protoroz, Slovenia, May 31,
2015, volume 1363 of CEUR Workshop Proceed-
ings, pages 12–23. CEUR-WS.org, 2015. URL:
https://ceur-ws.org/Vol-1363/paper_2.pdf.

40 Denny Vrandecic. The rise of wikidata. IEEE
Intell. Syst., 28(4):90–95, 2013. doi:10.1109/MIS.
2013.119.

41 Ruijie Wang, Zhiruo Zhang, Luca Rossetto, Flo-
rian Ruosch, and Abraham Bernstein. Nlqxform-
ui: A natural language interface for querying
DBLP interactively. CoRR, abs/2403.08475, 2024.
doi:10.48550/arXiv.2403.08475.

TGDK

https://doi.org/10.1007/978-3-030-46133-1_46
https://doi.org/10.1007/S11042-017-5503-2
http://id.loc.gov/ontologies/bibframe-2-3-0/
http://id.loc.gov/ontologies/bibframe-2-3-0/
https://doi.org/10.1145/3588911
https://doi.org/10.1145/3588911
http://www.sparontologies.net/ontologies/fabio
http://www.sparontologies.net/ontologies/fabio
https://doi.org/10.1162/QSS_A_00023
https://doi.org/10.5281/zenodo.6936227
http://www.sparontologies.net/ontologies/datacite
http://www.sparontologies.net/ontologies/datacite
https://lod-cloud.net/dataset/colinda
https://ceur-ws.org/Vol-1363/paper_2.pdf
https://doi.org/10.1109/MIS.2013.119
https://doi.org/10.1109/MIS.2013.119
https://doi.org/10.48550/arXiv.2403.08475

FAIR Jupyter: A Knowledge Graph Approach to
Semantic Sharing and Granular Exploration of a
Computational Notebook Reproducibility Dataset
Sheeba Samuel1 #

Distributed and Self-organizing Systems, Chemnitz University of Technology, Chemnitz, Germany

Daniel Mietchen1 #

FIZ Karlsruhe – Leibniz Institute for Information Infrastructure, Germany
Institute for Globally Distributed Open Research and Education (IGDORE)

Abstract
The way in which data are shared can affect their
utility and reusability. Here, we demonstrate how
data that we had previously shared in bulk can be
mobilized further through a knowledge graph that
allows for much more granular exploration and inter-
rogation. The original dataset is about the compu-
tational reproducibility of GitHub-hosted Jupyter
notebooks associated with biomedical publications.
It contains rich metadata about the publications,
associated GitHub repositories and Jupyter note-
books, and the notebooks’ reproducibility. We took
this dataset, converted it into semantic triples and
loaded these into a triple store to create a knowledge
graph – FAIR Jupyter – that we made accessible
via a web service. This enables granular data ex-
ploration and analysis through queries that can be

tailored to specific use cases. Such queries may
provide details about any of the variables from the
original dataset, highlight relationships between
them or combine some of the graph’s content with
materials from corresponding external resources.
We provide a collection of example queries address-
ing a range of use cases in research and education.
We also outline how sets of such queries can be used
to profile specific content types, either individually
or by class. We conclude by discussing how such
a semantically enhanced sharing of complex data-
sets can both enhance their FAIRness – i.e., their
findability, accessibility, interoperability, and re-
usability – and help identify and communicate best
practices, particularly with regards to data quality,
standardization, automation and reproducibility.

2012 ACM Subject Classification Information systems → Entity relationship models; Information
systems → Information extraction

Keywords and phrases Knowledge Graph, Computational reproducibility, Jupyter notebooks, FAIR
data, PubMed Central, GitHub, Python, SPARQL

Digital Object Identifier 10.4230/TGDK.2.2.4

Category Resource Paper

Related Version Full Version: https://doi.org/10.48550/arXiv.2404.12935

Supplementary Material see also Supplementary Material Statement in Section 7
Software (Source Code): https://doi.org/10.5281/zenodo.14197755 [69]
Service (Website): https://w3id.org/fairjupyter [68]

Funding Sheeba Samuel: German Research Foundation (DFG), TRR-386, project number 514664767
Daniel Mietchen: MaRDI: DFG 460135501, BASE4NFDI/KGI4NFDI: DFG 521453681

Acknowledgements We thank the providers of infrastructure, data, and code that we used in this
study. These include the PubMed Central repository at the U.S. National Center for Biotechnology
Information and the Ara Cluster at the University of Jena as well as the Jupyter, Python and Conda
communities and their respective dependencies. The authors gratefully acknowledge the computing

1 Corresponding author. Both authors contributed equally to this work.

© Sheeba Samuel and Daniel Mietchen;
licensed under Creative Commons License CC-BY 4.0

Transactions on Graph Data and Knowledge, Vol. 2, Issue 2, Article No. 4, pp. 4:1–4:24
Transactions on Graph Data and Knowledge

T G D K Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sheeba.samuel@informatik.tu-chemnitz.de
https://orcid.org/0000-0002-7981-8504
mailto:daniel.mietchen@fiz-karlsruhe.de
https://orcid.org/0000-0001-9488-1870
https://doi.org/10.4230/TGDK.2.2.4
https://doi.org/10.48550/arXiv.2404.12935
https://doi.org/10.5281/zenodo.14197755
https://w3id.org/fairjupyter
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/tgdk
https://www.dagstuhl.de/tgdk
https://www.dagstuhl.de

4:2 FAIR Jupyter

time made available to them on the high-performance computer at the NHR Center of TU Dresden.
This center is jointly supported by the Federal Ministry of Education and Research and the state
governments participating in the NHR (www.nhr-verein.de/unsere-partner). Special thanks go to
JupyterCon, which provided the nucleus for our collaboration. We also thank Ramy-Badr Ahmed and
Moritz Schubotz for help with registering the GitHub repositories from our corpus in the Software
Heritage archive.

Received 2024-07-01 Accepted 2024-11-04 Published 2024-12-18

Editors Aidan Hogan, Ian Horrocks, Andreas Hotho, Lalana Kagal, and Uli Sattler

Special Issue Resources for Graph Data and Knowledge

1 Introduction

In an age where research findings shape policy decisions and impact our understanding of the
world, ensuring the reproducibility of scientific work is paramount. Jupyter notebooks [43] have
revolutionized the way researchers share code, results, and documentation, all within an interactive
environment, promising to make science more transparent and reproducible [30]. In research
contexts, Jupyter notebooks often coexist with other software and various resources such as data,
instruments, and mathematical models, all of which may affect scientific reproducibility. The
evolving Jupyter ecosystem and the growing popularity of code sharing platforms like GitLab,
Gitee, or Codeberg in parallel with GitHub require systematic approaches in future assessments
of Jupyter reproducibility.

The FAIR principles – Findable, Accessible, Interoperable, and Reusable – play a crucial
role in promoting effective data sharing practices across scientific disciplines, thereby enhancing
reproducibility [80]. Data sharing has many facets, including the nature of the data, the purpose
of the sharing, reuse considerations as well as various practicalities like the choice of file formats,
metadata standards, licensing and location for the data to be shared. Here, we look into some
of the practical and reuse aspects by mobilizing a previously shared reproducibility dataset in a
more user-friendly fashion. That previous dataset arose from a study [71] of the computational
reproducibility of Jupyter notebooks associated with biomedical publications. It is already publicly
available [70] as a 1.5GB SQLite database contained within a ZIP archive of 415.6 MB (compressed)
but in order to be explored, it needs to be unzipped, loaded into a SQLite server and queried via
SQL. While these steps are routine for many, they nonetheless present a technical hurdle that
stands in the way of broader use of the data, both in research and educational contexts.

For instance, imagine an instructor of a programming course for wet lab researchers who wants
to present to her students some real-world Jupyter notebooks from their respective research field
that use a specific Python module and are either fully reproducible or exhibit a given type of error.
Wouldn’t it be nice – and quicker than via the route outlined above – if she could get her students
to run such queries directly in their browser, with no need to install anything on their system?
Enabling students and instructors to do this is what we are aiming at. Likewise, reproducibility
researchers can explore what aspects of notebooks, repositories, journals or papers correlate
with reproducibility-related variables, editors can become aware of common issues in notebooks
associated with their publications venue, while maintainers of software packages, ontologies or
Jupyter-based services can explore the use of their resources in a reproducibility context.

One way to build a webservice addressing such use cases would be to use a web framework
like Flask or Django in combination with a library like sqlite3 [10] to interact with the database.
However, this approach complicates semantic integration with other resources, and so we chose
instead to leverage semantic web standards [53] and build a demonstrator for converting a dataset

www.nhr-verein.de/unsere-partner

S. Samuel and D. Mietchen 4:3

into a knowledge graph (KG). For people interested in granular exploration of datasets by way of
knowledge graphs, it provides both a blueprint on how to get started and a working prototype to
check against.

In this paper, we thus introduce FAIR Jupyter, a KG created from Jupyter notebooks
hosted on GitHub and linked to biomedical publications sourced from PubMedCentral [59]. This
resource is aimed at the intersection between KGs, reproducibility and Jupyter/Python: readers
can engage with these individual areas according to their expertise, optionally in a way that is
assisted by knowledge in the other areas. Here, we outline our two primary contributions: (i)
The FAIR Jupyter Ontology developed using the NeOn methodology [76] reuses and extends
the state-of-the-art ontologies to describe metadata related to the reproducibility of Jupyter
notebooks, GitHub repositories, publications, and journals. (ii) The FAIR Jupyter Knowledge
Graph, a KG containing 190 million triples about GitHub-hosted Jupyter notebooks extracted
from PubMedCentral, and their reproducibility. In addition to metadata on repositories, journals,
publications, and authors, the KG also includes fine-grained information on atomic elements of
notebooks including cells, input, output, data and code dependencies, modules, libraries, styling,
executions, execution order, cell features, and errors.

This emerging resource available as a KG identifies various issues, including imprecise statements
of requirements such as data and code dependencies, the use of custom software libraries, inadequate
documentation, the use of hard-coded paths, non-descriptive filenames, non-open data as well as
the nature of default settings or policies used by deployment frameworks and infrastructures. We
provide real-world examples highlighting specific problems, serving as a foundation for addressing
such problems in order to improve computational reproducibility. Besides using the KG to showcase
Jupyter-related information, we use Jupyter notebooks to showcase information about the KG.
Additionally, we present SPARQL queries designed to achieve several objectives: (1) making it
straightforward to reproduce results from [71] (this was already possible with the original data,
but required more technical expertise and user-side infrastructure); (2) making it easier to filter
the dataset for subgraphs of interest, e.g. things not covered in detail in [71], such as notebooks
associated with a particular journal or written in languages other than Python; (3) combining
information from this KG with information from external sources through federated queries.

The platform does not only target authors of research software like Jupyter notebooks but also
addresses what other stakeholders in the research ecosystems can do to enhance computational
aspects of reproducibility, such as providers of research infrastructures on which such computations
are run, as well as reviewers, editors, and publishers of manuscripts reporting on computational
aspects of research. It can be used by educators to provide practical tips to avoid common pitfalls
and improve the reproducibility of computational analyses, particularly when conducted and
shared through notebook environments like Jupyter.

Our work represents a significant milestone as the first systematic and large-scale effort to
crawl, integrate, and semantically publish repositories of research-related Jupyter notebooks as a
KG and to enrich that KG with reproducibility information pertaining to these notebooks. The
current setup paves the way from the original one-off snapshots of Jupyter reproducibility to
a future service that can provide a routinely updated dashboard-like overview of the Jupyter
reproducibility landscape in biomedical research, while at the same time stimulating exploration
and education around the role of knowledge graphs in this space.

2 Motivation and Use Cases

The need for reproducibility in computational research has become increasingly critical, particularly
in fields that rely heavily on data science and computational methods. Jupyter notebooks are widely
used to document and share these computational workflows, but ensuring their reproducibility poses

TGDK

4:4 FAIR Jupyter

significant challenges [55]. By creating a structured resource that integrates Jupyter notebooks
with their associated publications and repositories, we aim to provide a comprehensive platform for
assessing and enhancing computational reproducibility and contributes to scientific reproducibility.

One of the key motivations for converting the existing dataset into a KG is to enable more
granular and flexible querying of reproducibility information. KGs offer a dynamic and intercon-
nected way to represent data, enabling users to explore and analyze relationships between different
entities, in this context, journals, articles, authors, repositories, and specific notebook cells, as
highlighted in Table 5. For example, users can easily query for specific error types across notebooks
from different journals or research fields. With federated queries, a KG allows users to combine
data from multiple sources, such as Wikidata, to enrich the analysis with additional contextual
information about papers, authors, affiliations, and software packages. With KGs, researchers
find relevant data and reproducibility information more efficiently, enhancing the discoverability
of datasets by exposing relationships and metadata that might be buried in traditional databases.
The motivation for developing this resource is also based on discussions from our community
engagements [6] for reuse in a more user-friendly way.

Through a KG, researchers can query aggregated data across journals, articles, and repositories
to analyze trends and patterns in computational reproducibility. They can investigate GitHub
repositories to understand the structure and dependencies of computational workflows. Detailed
queries at the notebook level allow for the examination of individual Jupyter notebooks, assessing
their reproducibility and computational methods. Queries at the author level help study patterns
of computational practices and reproducibility across different contributors. Granular queries at
the level of individual cells or markdowns within notebooks provide insights into the execution
and documentation of computational steps. Researchers can target specific requirements and
dependencies stated within notebooks, highlighting areas critical for reproducibility. Subject-level
queries enable the exploration of computational reproducibility trends within specific research
fields or disciplines. Information from different entity types can also be combined in various
fashions, e.g. to highlight exceptions that are common for notebooks associated with publications
in a given field or journal. Additionally, queries can focus on the stylistic aspects of notebooks,
examining conventions and best practices for documentation and presentation. Table 5 provides
motivating examples of queries that users can explore. These use cases demonstrate the versatility
of the resource in supporting varied research needs and enhancing computational reproducibility
across different dimensions of scholarly communication and practice.

3 Related Works

This section explores the current state-of-the-art approaches in computational reproducibility,
along with the ontologies and KGs that have been developed to support these efforts.

Computational Reproducibility

Multiple studies have explored the reproducibility of computational research. For example, Gruning
et al. [33] examined the specifics of computational reproducibility in the life sciences. Nust et
al. [52] investigated the use of Docker, a containerization tool, in reproducibility contexts. Trisovic
et al. [77] focused on the reproducibility of R scripts archived in an institutional repository.

Several studies have been conducted in recent years to explore the reproducibility of Jupyter
notebooks [60, 55, 74, 79, 81]. Rule et al. [61] examined one million notebooks available on GitHub,
exploring repositories, languages, packages, notebook length, and execution order, with a focus on
the structure and formatting of computational notebooks. This study resulted in the proposal
of ten best practices for writing and sharing computational analyses in Jupyter notebooks [60].

S. Samuel and D. Mietchen 4:5

Another study [56] focused on the reproducibility of 1.4 million notebooks collected from GitHub,
providing an extensive analysis of the factors impacting reproducibility in Jupyter notebooks.
With respect to the use of Jupyter notebooks in research contexts, Chattopadhyay et al. [19]
reported on a survey conducted among 156 data scientists, highlighting the challenges they face
when working with notebooks, while Schröder et al. [74] manually examined the reproducibility of
Jupyter notebooks linked to five publications from PubMed Central .

The datasets generated from these studies, although not directly linked to any specific publica-
tions, face significant challenges. These datasets are often not easily queryable or reusable in a
user-friendly manner. Additionally, they cannot be seamlessly linked or integrated using federated
queries with other valuable sources such as Wikidata or DBpedia. This lack of interoperability
and accessibility hinders the potential for broader analysis and insights, limiting their usability
and impact within the research community.

Ontologies

Semantic web technologies and ontologies play a crucial role in enhancing computational re-
producibility. Ontologies, in particular, offer a standardized vocabulary and relationships that
facilitate the consistent annotation of computational research, making it easier to understand and
reproduce experiments [28, 29, 45, 67]. For instance, the use of ontologies such as PROV-O [45] and
P-Plan [28] allows researchers to describe the provenance of data and the specifics of computational
processes, ensuring that every step of analysis can be traced. Here, we focus on the ontologies that
represent computational workflows. The existence of numerous well-established ontologies points
to the maturity of the scientific workflow domain [28, 45]. A significant number of ontologies
have also been developed in the computer science and artificial intelligence domain to describe
computational processes [25, 63]. The REPRODUCE-ME ontology [64, 65] is the pioneering effort
to describe the provenance of Jupyter notebooks by extending the PROV-O [45] and P-Plan [28]
ontologies. As this work touches upon different areas like publication [54], journals, repositories [3],
and notebooks [67], it is important that well-established ontologies are reused to describe the
domain of scholarly publications [21] and computational reproducibility.

Knowledge Graphs

While we are not aware of KGs about Jupyter notebooks or GitHub repositories, there have been
a number of related efforts. These include the creation of KGs about FAIR computational work-
flows [29], PubMed [83], scientific software [40] and artificial intelligence tasks and benchmarks [15],
along with tools for creating schemas and KGs from data [37]. Of particular relevance here is the
Open Research Knowledge Graph (ORKG) [14] which provides a framework to represent, curate,
and discover scholarly knowledge in a structured manner. It has also shown potential in assisting
with reproducibility [39, 38]. To address scientific reproducibility in biomedicine, Liu et al. [48]
developed ProvCaRe, a semantic provenance resource that was aggregating information extracted
using NLP from the full text of 1.6 million biomedical articles. The repository (now defunct)
required users to log in and contained 166 million provenance triples focusing on Study Method,
Study Data, and Study Tool (including software, though computational reproducibility was not
assessed). Another study [62] presents a semantic provenance graph from 75 sleep medicine
articles, mapping provenance information to PROV-O [45] for querying reproducibility-related
information, albeit not in a Jupyter context. The Microsoft Academic Knowledge Graph [26]
was a large-scale RDF dataset with information on scholarly publications, authors, institutions,
journals, and subject areas. It has been used to analyze repositories and their associated papers
based on metrics like stars, forks, and the number of contributors [27]. Information about GitHub

TGDK

4:6 FAIR Jupyter

repositories and GitHub contributors has been combined with information from the Wikidata
KG to highlight gender-specific contribution patterns in open-source software projects [46]. An
initial attempt has also been made to create a KG of Git repositories using a prototype tool
called GitGraph. This tool extracts metadata from repositories, including commits and files,
and constructs a KG. Graph4Code [12] is another relevant effort that is designed to generate
KGs from code, supporting applications like program search, code understanding, bug detection,
and automation. It complements our efforts, as its focus is on representing the structure of
Python scripts and the flow of data through a script’s components, rather than computational
reproducibility.

These efforts collectively contribute to a better understanding and improvement of reproducib-
ility in computational research, highlighting the importance of structured metadata, provenance,
and advanced tools for maintaining the integrity and reliability of scientific workflows. To our
knowledge, no prior work has undertaken a systematic effort to describe and semantically publish
large-scale reproducibility analyses of Jupyter notebooks from research publications as a KG.

4 Methods

Search in PMC
'(ipynb OR jupyter OR
ipython) AND github'

Collect publication
metadata using NCBI

Entrez via Biopython in
XML format

Extract publication
metadata Extract GitHub links

Store metadata in
SQLite Database

Check code availability
on GitHub

Clone repository if
available

Collect execution
environment information

of the repository

Prepare conda
environment

Install dependencies
inside conda

environment based on
the requirements

Collect Jupyter
notebooks of the

repositories

Run and reproduce
notebooks

Compute diff of
notebooks using nbdime

library

Store the reproducibility
results of notebooks

Check Python code
styling using flakenb

library

Analyze the
reproducibility results of

notebooks

Export CSV files from
database

Write YARRML and RML
mappings

Construct the
Knowledge Graph using

morph-kgc library
Run SPARQL queries

Figure 1 Workflow overview. The blue workflow was used to construct the original dataset [70] and is
described in [71], while the subsequent KG construction workflow in green represents the current study.

Our workflow has two main components, as shown in Figure 1. The first is the generation of
the Jupyter notebook reproducibility dataset. The second is the conversion of this dataset into
the FAIR Jupyter KG, which forms the focus of the present study.

S. Samuel and D. Mietchen 4:7

4.1 Computational Reproducibility Dataset Generation

This section represents a summary of the methodology used in [71]. Briefly, we queried PubMed
Central (PMC, cf. [59]) for publications mentioning GitHub alongside keywords such as “Jupyter”,
“ipynb” (the file extension for Jupyter notebooks), or “IPython” (a predecessor to Jupyter).2

Utilizing the primary PMC IDs obtained this way, we then retrieved publication records in XML
format using the efetch function and collected publication metadata from PMC using NCBI Entrez
utilities via Biopython [22].

Next, we processed the XML data retrieved from PMC by storing it in an SQLite database.
Our database encompassed details regarding journals and articles, populating it with metadata
including ISSN (International Standard Serial Number), journal and article titles, PubMed IDs,
PMC IDs, DOIs, subjects, submission, acceptance, and publication dates, licensing information,
copyright statements, keywords, and GitHub repository references mentioned in the publication.
Additionally, we extracted associated Medical Subject Headings (MeSH terms) [8] for each article.
These terms, assigned during indexing in the PubMed database, are hierarchical. We obtained the
top-level MeSH term by querying the MeSH RDF API through SPARQL queries to the SPARQL
endpoint [9]. This aggregation resulted in 108 top-level MeSH terms in our dataset, serving as
proxies for the subject areas of the articles.

We extracted the GitHub repositories mentioned in each article, including the abstract, body,
data availability statement, and supplementary sections.3 After this preprocessing, we associated
each article with the GitHub repositories extracted from it as well as with the journal in which
the article had been published, and we gathered author information in a separate database table,
including first and last names, ORCID, and email addresses.

We verified the availability of GitHub repositories mentioned in the articles and, if existing,
cloned them, based on the main branch, and gathered repository details including creation, update,
and push dates, releases, issues, license details, etc. using the GitHub REST API [5]. Additionally,
we extracted details for each notebook provided in the repository, such as name, nbformat, kernel,
language, cell types, and maximum execution count, and extracted source code and output from
each cell using Python Abstract Syntax Tree (AST) for further analysis.

After the notebook collection, we gathered execution environment details by examining
dependency declarations in repository files like requirements.txt, setup.py, and pipfile. After
collecting the necessary Python notebook execution information, we prepared a conda environment
based on the declared Python version, installing dependencies listed in files such as requirements.txt,
setup.py, and pipfile. For repositories lacking specified dependencies, the pipeline executed
notebooks by installing all Anaconda dependencies, leveraging Anaconda’s comprehensive data
science package suite. We also conducted Python code styling checks using the flakenb [4] library,
which enforces code style guidelines outlined in PEP 8, to collect all detected errors, obtaining
information on the error code and description.

We executed our pipeline on 27th March 2023, and it ran until 9 May 2023, for a total of 43 days.
The code has been adapted from [55, 66]. We utilize this method to reproduce Jupyter notebooks
from GitHub repositories, as outlined in [55]. Additionally, we leverage ReproduceMeGit [66],
which uses the nbdime library [57] to compare execution results with the original results. This
forms the foundation of our code for the reproducibility study.

2 We used the search query “(ipynb OR jupyter OR ipython) AND github”.
3 Since the GitHub repositories had been stated in a number of different formats, we harmonized them to

“https://github.com/username/repositoryname”.

TGDK

https://www.ncbi.nlm.nih.gov/pmc/?term=(ipynb+OR+jupyter+OR+ipython)+AND+github

4:8 FAIR Jupyter

4.2 FAIR Jupyter Ontology and KG Construction
Competency Questions (CQs)

The requirements for ontology construction are driven by the requirements used for generating the
initial dataset and the CQs are based on the research questions that arose from the initial pipeline.
We used the NeOn methodology [76] for constructing the FAIR Jupyter ontology. We present
the Ontology Requirement Specification Document (ORSD) which outlines the purpose, scope,
implementation language, intended end-users and uses of the ontology, and the set of requirements
the ontology should fulfill, presented in the form of competency questions. These competency
questions are organized into eight categories, addressing the domain knowledge that needs to be
represented, as detailed in Table 5 and 6.

Data modeling

In this section, we provide a brief description of the ontology model used in the construction of
the FAIR Jupyter KG. Overall, it contains 22 classes, as outlined in Figure 2. They are centred
around notebooks, notebook cells, repositories and articles, each of which are linked to several
other classes. We reused the following ontologies for describing these entities: PROV-O [45],
REPRODUCE-ME [64], P-Plan [28], PAV [21], DOAP [3] and FaBiO [54].

Building on PROV and P-Plan, the REPRODUCE-ME ontology captures provenance informa-
tion for individual Jupyter Notebook cells [64], in addition to the end-to-end scientific experiment
with real-life entities like instruments and specimens, as well as human activities such as lab
protocols and screening [67]. Hence, we used and extended this model to construct the FAIR
Jupyter KG.

We reused fabio:Article to link the publications in our dataset and fabio:Journal to
represent the journal where the article was published. FaBiO is an ontology that helps represent
information about publishable works (articles, books, etc.) and the bibliographic references that
connect them [54]. A GitHub repository is represented using the class doap:GitRepository
from the DOAP ontology [3], which is used to describe open source software projects. We
reused the class repr:Notebook to represent the Jupyter Notebooks, which is a subclass of
p-plan:Plan extending the class prov:Plan. The PROV-O [45] is a W3C recommendation
providing foundation to implement provenance applications. We use two object properties of
the PROV-O ontology: prov:specializationOf and prov:generalizationOf to show that the
article is a specialization of a MESH term and the corresponding MESH term a generalisation
of the top level MESH term in its hierarchy. To denote where a resource is retrieved from
(e.g., repr:Notebook is pav:retrievedFrom doap:GitRepository), we have used the object
property pav:retrievedFrom. PAV which builds on the PROV-O ontology, is a lightweight
ontology for tracking Provenance, Authoring and Versioning and describes information about
authorship, curation, and versioning of online resources [21]. Each individual cell of a computa-
tional notebook repr:Cell is described as a step of a repr:Notebook using the object property
p-plan:isStepOfPlan. To describe the different features of notebooks and their cells, we reused
the object property p-plan:isVariableOfPlan.

Mappings and KG construction

We used the CSV files exported from the database [70] as input for the YARRRML mapping [36].
YARRRML is a human-readable text-based format for expressing declarative rules to generate
Linked Data from different data sources. Listing 1 shows an example of a YARRRML mapping used
for expressing the rules for “repositories” and “notebooks”. To facilitate adaptation to a variety of

S. Samuel and D. Mietchen 4:9

Figure 2 Partial outline of the data model used in FAIR Jupyter. Classes of entities (represented
by ellipses) and the class properties (represented by orange rectangles) were inferred from the original
dataset, and – along with relationships between them (arrows) – expressed in terms of relevant ontologies.
Note that requirement files and repository files are both represented as repr:File. While some properties
have not been depicted here for clarity and some classes have not been included in our endpoint for
performance reasons, all the underlying files – CSV exports of the original data, the RML and YARRML
mapping files used for KG construction, and the resulting RDF triples – are available via [72].

.

use cases, we created mappings for each entity types in separate files. The mappings are created
for the classes of the ontology (see Figure 2). We chose the same name for the user-chosen keys as
the name provided in the database tables. The key source has the value of the corresponding CSV
file of the entity type. We used the namespace https://w3id.org/reproduceme/ for generating
the IRI. We reused the properties from the existing ontologies wherever possible to generate the
combination of predicates and objects. For others, we added them to the REPRODUCE-ME
ontology. The YARRRML mappings were written using the YARRRML editor, Matey [7]. These
mappings were then converted to RML mappings [24]. The generated RML mappings were further
used as input to the Morph-KGC library [13]. Morph-KGC is a tool designed to build RDF
knowledge graphs from different data sources using the R2RML and RML mapping languages.
For large datasets, Morph-KGC’s use of mapping partitions significantly speeds up processing
and reduces memory usage. For some classes (CellName, CodeAnalysis, RepositoryFile, and
MarkdownFeature), their size triggered import errors, and so we excluded them from this prototype
but we plan to include them in the future as we continue to develop the platform. All the triples
generated were stored in N-triples format and are downloadable in bulk from [72].

TGDK

https://w3id.org/reproduceme/

4:10 FAIR Jupyter

Listing 1 Part of a YARRRML mapping for repositories and notebooks.
mappings :
repositories :

sources :
- [data/ repositories .csv~csv]

s: https :// w3id.org/ reproduceme / repository_$ (id)
po:

- [a, doap: GitRepository]
- [rdfs:label ,$(repository)]
- p: pav: retrievedFrom

o:
- mapping : article

condition :
function : equal
parameters :

- [str1 , $(article_id), s]
- [str2 , $(id), o]

notebooks :
sources :

- [data/ notebooks .csv~csv]
s: https :// w3id.org/ reproduceme / notebook_$ (id)
po:

- [a, repr: Notebook]
- [rdfs:label , $(name)]
- [repr:kernel , $(kernel)]
- [repr:language , $(language)]
- p: pav: retrievedFrom

o:
- mapping : repositories

condition :
function : equal
parameters :

- [str1 , $(repository_id), s]
- [str2 , $(id), o]

Triple store

We use Apache Jena Fuseki [18] as a triple store to query our KG. The FAIR Jupyter KG is
available at https://reproduceme.uni-jena.de/#/dataset/fairjupyter/query.

Web interface for FAIR Jupyter: visual exploration and querying

We provide a web service at https://reproduceme.uni-jena.de/fj that facilitates the visual
exploration and interactivity of the FAIR Jupyter ontology and knowledge graph. Through this
platform, users can directly explore the KG via a browser interface written using vis.js [11] that
displays all KG entities. By selecting an entity, users can view detailed attributes, access links to
relevant ontologies, and examine all associated properties. The service also enables users to run
their own SPARQL queries, providing a flexible environment for custom exploration. In addition,
the website features a dedicated section showcasing all queries used in this paper, including those
that reproduce the original results from [71], as well as additional queries – including federated
ones – highlighting aspects of the data that were not discussed there. To assist users from various
backgrounds, a comprehensive documentation page is provided, consolidating all resources and
guidance in one place for ease of use.

https://reproduceme.uni-jena.de/#/dataset/fairjupyter/query
https://reproduceme.uni-jena.de/fj

S. Samuel and D. Mietchen 4:11

5 Results

Table 1 shows some general statistics about the FAIR Jupyter KG, which consists of about
190 million triples taking up a total of about 20.6 GB in space. Taking inspiration from the Scholia
frontend to Wikidata [51], we anticipate using the KG for creating profiles based on specific entity
types. To this end, we created the FAIR Jupyter KG from multiple smaller graphs based on
separate mappings for each entity type. We present the time it took to construct the KG, the
number of mapping rules retrieved, the total triples generated for each entity and the total file
size of the RDF file generated.

Table 1 General statistics of the FAIR Jupyter KG. The graphs for four entity types (CellName,
CodeAnalysis, RepositoryFile, and MarkdownFeature) were omitted from the prototype implementation
for performance reasons but included here, as we plan to include them in future versions of the KG.

Entity Time (in sec) No. of mappings Triples generated File Size
Article 5.2 17 60589 7.8 MB
Author 5.1 6 121247 14.1 MB
Cell 39.8 10 5940797 645.9 MB
CellFeature 15.4 11 1340610 168.4 MB
CellModule 8.4 2 917367 120.2 MB
CellName 176.2 12 38609232 4.2 GB
CellExecution 8.4 15 125383 48.9 MB
CodeAnalysis 462.4 162 77295103 7.9 GB
Journal 4.7 7 4497 0.49 MB
MarkdownFeature 203.5 125 36693762 3,8 GB
MESH 43.2 3 9078 1.2 MB
Notebook 10.5 24 627127 65.2 MB
NotebookAST 32.0 159 3281939 327.7 MB
NotebookCodeStyle 14.5 4 216105 26.4 MB
NotebookFeature 8.5 29 374071 42.3 MB
NotebookMarkdown 37.5 125 3389551 353.2 MB
NotebookModule 9.4 31 498504 63.3 MB
NotebookName 47.4 115 619562 137.2 MB
Repository 7.1 38 183592 20.1 MB
RepositoryFile 100.6 5 19223736 2.6 GB
RepositoryRelease 6.4 9 252500 33.3 MB
RequirementFile 5.5 6 27865 14.3 MB
Total 1251.7 915 189812217 20.6 GB

With the architecture laid out in Figure 2 and Table 1, it becomes possible to interrogate the
dataset about any of the entities, classes or their relationships in a granular fashion. An example
query is provided in Figure 2, which asks for notebooks where the reproducibility run produced
results identical to those reported in the original publication. It then sorts this set of notebooks
by the number of cells and the execution duration of the notebook (both of these parameters can
serve as a proxy for the complexity of the notebook itself or the computations triggered by it),
and then it limits the results to 10.

In the following, we illustrate the diversity of possible queries by presenting three sets of
further example queries. First, Table 2 shows queries corresponding to some figures and tables
from the publication describing the original dataset [71]. Second, Table 3 shows a brief selection
of other queries that can be queried over the FAIR Jupyter graph. Third, federated queries
can be run that combine information from our KG with other KGs, and some examples of such
federated queries are given in Table 4. A more comprehensive list of queries is available at

TGDK

4:12 FAIR Jupyter

Li
st

in
g

2
Ex

am
pl

e
qu

er
y

(f
or

liv
e

ve
rs

io
n,

se
e

Ta
bl

e
3)

:
Te

n
su

cc
es

sf
ul

ly
re

pr
od

uc
ed

Ju
py

te
r

no
te

bo
ok

s
as

so
ci

at
ed

w
ith

ar
tic

le
s

in
de

xe
d

in
Pu

bM
ed

C
en

tr
al

.

#
T

e
n

s
u

c
c

e
s

s
f

u
l

l
y

r
e

p
r

o
d

u
c

e
d

J
u

p
y

t
e

r
n

o
t

e
b

o
o

k
s

a
s

s
o

c
i

a
t

e
d

w
i

t
h

a
r

t
i

c
l

e
s

i
n

d
e

x
e

d
in

P
u

b
M

e
d

C
e

n
t

r
a

l
P

R
E

F
I

X
r

d
f

s
:

<
h

t
t

p
:

/
/

w
w

w
.

w3
.

o
r

g
/

2
0

0
0

/
0

1
/

rd
f

-
s

c
h

e
m

a
#

>
P

R
E

F
I

X
x

s
d

:
<

h
t

t
p

:
/

/
w

w
w

.
w3

.
o

r
g

/
2

0
0

1
/

X
M

L
S

c
h

e
m

a
#

>
P

R
E

F
I

X
r

e
p

r
:

<
h

t
t

p
s

:
/

/
w

3
i

d
.

o
r

g
/

r
e

p
r

o
d

u
c

e
m

e
/

>
P

R
E

F
I

X
p

-
p

l
a

n
:

<
h

t
t

p
:

/
/

p
u

r
l

.
o

r
g

/
n

e
t

/
p

-
pl

an
>

P
R

E
F

I
X

p
a

v
:

<
h

t
t

p
:

/
/

p
u

r
l

.
o

r
g

/
p

a
v

/
>

S
E

L
E

C
T

D
I

S
T

I
N

C
T

?
n

o
t

e
b

o
o

k
_

u
r

l
?

t
o

t
a

l
_

c
e

l
l

s
?

d
u

r
a

t
i

o
n

W
H

E
R

E
{

?
e

x
e

c
u

t
i

o
n

a
r

e
p

r
:

C
e

l
l

E
x

e
c

u
t

i
o

n
;

p
-

p
l

a
n

:
i

s
S

t
e

p
O

f
P

l
a

n
?

n
o

t
e

b
o

o
k

;
#

n
o

t
e

b
o

o
k

t
h

a
t

w
a

s
e

x
e

c
u

t
e

d
r

e
p

r
:

d
u

r
a

t
i

o
n

?
d

u
r

a
t

i
o

n
.

#
e

x
e

c
u

t
i

o
n

d
u

r
a

t
i

o
n

in
s

e
c

o
n

d
s

?
e

x
e

c
u

t
i

o
n

r
e

p
r

:
p

r
o

c
e

s
s

e
d

?
p

r
o

c
e

s
s

e
d

_
s

a
m

e
_

r
e

s
u

l
t

.
F

I
L

T
E

R
((

x
s

d
:

i
n

t
e

g
e

r
(?

p
r

o
c

e
s

s
e

d
_

s
a

m
e

_
r

e
s

u
l

t
)

=
5

1
)

)
#

i
d

e
n

t
i

c
a

l
r

e
s

u
l

t
s

?
n

o
t

e
b

o
o

k
p

a
v

:
r

e
t

r
i

e
v

e
d

F
r

o
m

?
r

e
p

o
s

i
t

o
r

y
;

#
r

e
p

o
w

i
t

h
t

h
i

s
n

o
t

e
b

o
o

k
r

d
f

s
:

l
a

b
e

l
?

n
o

t
e

b
o

o
k

_
l

a
b

e
l

;
#

n
o

t
e

b
o

o
k

f
i

l
e

n
a

m
e

r
e

p
r

:
t

o
t

a
l

_
c

e
l

l
s

?
t

o
t

a
l

_
c

e
l

l
s

.
#

n
u

m
b

e
r

of
c

e
l

l
s

in
n

o
t

e
b

o
o

k
?

r
e

p
o

s
i

t
o

r
y

r
e

p
r

:
u

r
l

?
r

e
p

o
_

u
r

l
_

b
a

s
e

.
#

f
i

n
d

r
e

p
o

on
G

i
t

H
u

b
#

c
r

e
a

t
e

c
l

i
c

k
a

b
l

e
l

i
n

k
to

n
o

t
e

b
o

o
k

on
G

i
t

H
u

b
B

I
N

D
(

U
R

I
(

C
O

N
C

A
T

(
?

r
e

p
o

_
u

r
l

_
b

a
s

e
,

"
/

b
l

o
b

/
m

a
i

n
/

"
,

E
N

C
O

D
E

_
F

O
R

_
U

R
I

(?
n

o
t

e
b

o
o

k
_

l
a

b
e

l
)

)
)

AS
?

n
o

t
e

b
o

o
k

_
u

r
l

)
} #

s
o

r
t

by
n

u
m

b
e

r
of

c
e

l
l

s
,

t
h

e
n

d
u

r
a

t
i

o
n

,
b

o
t

h
in

d
e

s
c

e
n

d
i

n
g

o
r

d
e

r
O

R
D

E
R

BY
D

E
S

C
(

x
s

d
:

f
l

o
a

t
(?

t
o

t
a

l
_

c
e

l
l

s
)

)
D

E
S

C
(

x
s

d
:

f
l

o
a

t
(?

d
u

r
a

t
i

o
n

)
)

L
I

M
I

T
10

#
l

i
m

i
t

t
h

e
o

u
t

p
u

t
to

10
r

e
s

u
l

t
s

S. Samuel and D. Mietchen 4:13

Table 2 SPARQL queries to the KG that reproduce materials from the original manuscript describing
the dataset [71].

Figure no.
in [71]

SPARQL query

Fig. 3 Research articles by research field
Fig. 4 Research field (MeSH terms) by the number of GitHub repositories that contain

at least one Jupyter notebook.
Fig. 5 Journals with the highest number of articles that had a valid GitHub repository

and at least one Jupyter notebook.
Fig. 6 Journals by the number of GitHub repositories and by the number of GitHub

repositories with at least one Jupyter notebook.
Fig. 7 Journals by number of GitHub repositories with Jupyter notebooks.
Fig. 9 Programming languages of the notebooks.
Fig. 10 Relative proportion of the most frequent programming languages used in the

notebooks per year.
Fig. 11 Python notebooks by minor Python version by year of last commit to the

GitHub repository containing the notebook.
Fig. 12 Python notebooks by major Python version by year of first commit to the

notebook’s GitHub repository.
Fig. 19 Exceptions occurring in Jupyter notebooks in our corpus.
Fig. 22 Jupyter notebook exceptions by research field, taking as a proxy the highest-

level MeSH terms of the article associated with the notebook.
Table 2 Notebooks with successful executions with same and different results
Table 4 Common Python code warnings/ style errors in our notebook corpus.

https://w3id.org/fairjupyter. Multiple queries with results involving the same entity types
can be combined into a profile for that entity type, as described in [51], and we plan on working
in this direction. In addition, we combined example queries into a Jupyter notebook, through
which users can explore the queries and results, all available at [73], along with a notebook that
demonstrates some simple benchmarking measurements for our KG, which are shown in Figure 3.

6 Discussion

In this work, we have demonstrated how the accessibility of an already openly and FAIRly shared
dataset can be further improved by leveraging semantic web approaches for representing the data
in a KG that can be readily explored from a web browser. That dataset had been created using a
workflow for reproducing Jupyter notebooks from biomedical publications, and in the present work,
we have enhanced it by representing the dataset’s components – publications, GitHub repositories,
Jupyter notebooks and reproducibility aspects thereof – using web ontologies.

Besides the central point of of using KGs to increase the FAIRness of a dataset, the present
manuscript has a number of other features that are rare or novel in the context of KGs – especially
in combination – yet likely of interest to the KG community: (a) using a KG to reproduce a
paper’s figures and tables, (b) using a Jupyter notebook to document KG queries and results, (c)
systematic archiving of in-scope software on Software Heritage, (d) paying attention to a plurality
of both programming and natural languages (Julia next to Python, Malayalam in addition to
English), (e) environmental footprint assessment, (f) ethics statement. While the latter two also
apply to our initial manuscript, a-d do not.

TGDK

https://reproduceme.uni-jena.de/#/dataset/fairjupyter/query?query=SELECT%20%3Fresearch_field%20%28COUNT%28DISTINCT%20%3Farticle%29%20AS%20%3Fnumber_of_articles%29%0AWHERE%20%7B%20%20%0A%20%20%3Frepository%20%3Chttp%3A%2F%2Fpurl.org%2Fpav%2FretrievedFrom%3E%20%3Farticle%20.%0A%20%20%3Farticle%20%3Chttp%3A%2F%2Fwww.w3.org%2Fns%2Fprov-o%23specializationOf%3E%20%3Fmesh%20.%0A%20%20%3Fmesh%20%3Chttp%3A%2F%2Fwww.w3.org%2Fns%2Fprov-o%23generalizationOf%3E%20%3Ftop_mesh%20.%0A%20%20%3Ftop_mesh%20%3Chttp%3A%2F%2Fwww.w3.org%2F2000%2F01%2Frdf-schema%23label%3E%20%3Fresearch_field%0A%20%20%0A%7D%0AGROUP%20BY%20%3Fresearch_field%0AORDER%20BY%20DESC%28%3Fnumber_of_articles%29%0ALIMIT%2010%0A
https://reproduceme.uni-jena.de/#/dataset/fairjupyter/query?query=PREFIX%20rdfs%3A%20%3Chttp%3A%2F%2Fwww.w3.org%2F2000%2F01%2Frdf-schema%23%3E%0APREFIX%20xsd%3A%20%3Chttp%3A%2F%2Fwww.w3.org%2F2001%2FXMLSchema%23%3E%0APREFIX%20repr%3A%20%3Chttps%3A%2F%2Fw3id.org%2Freproduceme%2F%3E%0A%0ASELECT%20%3Fresearch_field%20%28COUNT%28DISTINCT%20%3Frepository%29%20as%20%3Frepository_count%29%20%28COUNT%28DISTINCT%20%3Frepository_nb%29%20as%20%3Frepositories_with_notebooks_count%29%0AWHERE%20%7B%0A%20%20%7B%0A%20%20%3Frepository%20%3Chttp%3A%2F%2Fpurl.org%2Fpav%2FretrievedFrom%3E%20%3Farticle%20.%0A%20%20%7D%0A%20%20UNION%0A%20%20%7B%0A%20%20%3Frepository_nb%20%3Chttp%3A%2F%2Fpurl.org%2Fpav%2FretrievedFrom%3E%20%20%3Farticle%20%3B%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20repr%3Anotebooks_count%20%3Fnotebooks_count%20.%0A%20%20%09FILTER%28xsd%3Ainteger%28%3Fnotebooks_count%29%20%3E%200%29%0A%20%20%7D%0A%20%20%3Farticle%20%3Chttp%3A%2F%2Fwww.w3.org%2Fns%2Fprov-o%23specializationOf%3E%20%3Fmesh%20.%0A%20%20%3Fmesh%20%3Chttp%3A%2F%2Fwww.w3.org%2Fns%2Fprov-o%23generalizationOf%3E%20%3Ftop_mesh%20.%0A%20%20%3Ftop_mesh%20rdfs%3Alabel%20%3Fresearch_field%0A%7D%0AGROUP%20BY%20%3Fresearch_field%0AORDER%20BY%20DESC%28%3Frepository_count%29%0ALIMIT%2010
https://reproduceme.uni-jena.de/#/dataset/fairjupyter/query?query=PREFIX%20rdfs%3A%20%3Chttp%3A%2F%2Fwww.w3.org%2F2000%2F01%2Frdf-schema%23%3E%0APREFIX%20xsd%3A%20%3Chttp%3A%2F%2Fwww.w3.org%2F2001%2FXMLSchema%23%3E%0APREFIX%20repr%3A%20%3Chttps%3A%2F%2Fw3id.org%2Freproduceme%2F%3E%0A%0ASELECT%20%3Fresearch_field%20%28COUNT%28DISTINCT%20%3Frepository%29%20as%20%3Frepository_count%29%20%28COUNT%28DISTINCT%20%3Frepository_nb%29%20as%20%3Frepositories_with_notebooks_count%29%0AWHERE%20%7B%0A%20%20%7B%0A%20%20%3Frepository%20%3Chttp%3A%2F%2Fpurl.org%2Fpav%2FretrievedFrom%3E%20%3Farticle%20.%0A%20%20%7D%0A%20%20UNION%0A%20%20%7B%0A%20%20%3Frepository_nb%20%3Chttp%3A%2F%2Fpurl.org%2Fpav%2FretrievedFrom%3E%20%20%3Farticle%20%3B%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20repr%3Anotebooks_count%20%3Fnotebooks_count%20.%0A%20%20%09FILTER%28xsd%3Ainteger%28%3Fnotebooks_count%29%20%3E%200%29%0A%20%20%7D%0A%20%20%3Farticle%20%3Chttp%3A%2F%2Fwww.w3.org%2Fns%2Fprov-o%23specializationOf%3E%20%3Fmesh%20.%0A%20%20%3Fmesh%20%3Chttp%3A%2F%2Fwww.w3.org%2Fns%2Fprov-o%23generalizationOf%3E%20%3Ftop_mesh%20.%0A%20%20%3Ftop_mesh%20rdfs%3Alabel%20%3Fresearch_field%0A%7D%0AGROUP%20BY%20%3Fresearch_field%0AORDER%20BY%20DESC%28%3Frepository_count%29%0ALIMIT%2010
https://reproduceme.uni-jena.de/#/dataset/fairjupyter/query?query=SELECT%20%3Fjournal_name%20%28COUNT%28%3Farticle%29%20as%20%3Farticle_count%29%0AWHERE%20%7B%0A%20%20%3Farticle%20%3Chttps%3A%2F%2Fw3id.org%2Freproduceme%2FpublishedIn%3E%20%3Fjournal%20.%0A%20%20%3Fjournal%20%3Chttp%3A%2F%2Fwww.w3.org%2F2000%2F01%2Frdf-schema%23label%3E%20%3Fjournal_name%20.%0A%7D%0AGROUP%20BY%20%3Fjournal_name%0AORDER%20BY%20DESC%28%3Farticle_count%29%0ALIMIT%2010
https://reproduceme.uni-jena.de/#/dataset/fairjupyter/query?query=SELECT%20%3Fjournal_name%20%28COUNT%28%3Farticle%29%20as%20%3Farticle_count%29%0AWHERE%20%7B%0A%20%20%3Farticle%20%3Chttps%3A%2F%2Fw3id.org%2Freproduceme%2FpublishedIn%3E%20%3Fjournal%20.%0A%20%20%3Fjournal%20%3Chttp%3A%2F%2Fwww.w3.org%2F2000%2F01%2Frdf-schema%23label%3E%20%3Fjournal_name%20.%0A%7D%0AGROUP%20BY%20%3Fjournal_name%0AORDER%20BY%20DESC%28%3Farticle_count%29%0ALIMIT%2010
https://reproduceme.uni-jena.de/#/dataset/fairjupyter/query?query=SELECT%20%3Fjournal_name%20%28COUNT%28%3Frepository%29%20as%20%3Frepository_count%29%20%28COUNT%28%3Frepository_nb%29%20as%20%3Frepositories_with_notebooks_count%29%20WHERE%0A%20%20%7B%0A%20%20%3Farticle%20%3Chttps%3A%2F%2Fw3id.org%2Freproduceme%2FpublishedIn%3E%20%3Fjournal%20.%0A%20%20%3Fjournal%20%3Chttp%3A%2F%2Fwww.w3.org%2F2000%2F01%2Frdf-schema%23label%3E%20%3Fjournal_name%20.%0A%20%20%7B%0A%20%20%3Frepository%20%3Chttp%3A%2F%2Fpurl.org%2Fpav%2FretrievedFrom%3E%20%3Farticle%20.%0A%20%20%7D%0A%20%20UNION%0A%20%20%7B%0A%20%20%3Frepository_nb%20%3Chttp%3A%2F%2Fpurl.org%2Fpav%2FretrievedFrom%3E%20%3Farticle%20%3B%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%3Chttps%3A%2F%2Fw3id.org%2Freproduceme%2Fnotebooks_count%3E%20%3Fnotebooks_count%20.%0A%20%20FILTER%28%3Chttp%3A%2F%2Fwww.w3.org%2F2001%2FXMLSchema%23integer%3E%28%3Fnotebooks_count%29%20%3E%200%29%0A%20%20%7D%0A%20%20%7D%0A%20%20GROUP%20BY%20%3Fjournal_name%0A%0AORDER%20BY%20DESC%28%3Frepository_count%29%0ALIMIT%2010
https://reproduceme.uni-jena.de/#/dataset/fairjupyter/query?query=SELECT%20%3Fjournal_name%20%28COUNT%28%3Frepository%29%20as%20%3Frepository_count%29%20%28COUNT%28%3Frepository_nb%29%20as%20%3Frepositories_with_notebooks_count%29%20WHERE%0A%20%20%7B%0A%20%20%3Farticle%20%3Chttps%3A%2F%2Fw3id.org%2Freproduceme%2FpublishedIn%3E%20%3Fjournal%20.%0A%20%20%3Fjournal%20%3Chttp%3A%2F%2Fwww.w3.org%2F2000%2F01%2Frdf-schema%23label%3E%20%3Fjournal_name%20.%0A%20%20%7B%0A%20%20%3Frepository%20%3Chttp%3A%2F%2Fpurl.org%2Fpav%2FretrievedFrom%3E%20%3Farticle%20.%0A%20%20%7D%0A%20%20UNION%0A%20%20%7B%0A%20%20%3Frepository_nb%20%3Chttp%3A%2F%2Fpurl.org%2Fpav%2FretrievedFrom%3E%20%3Farticle%20%3B%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%3Chttps%3A%2F%2Fw3id.org%2Freproduceme%2Fnotebooks_count%3E%20%3Fnotebooks_count%20.%0A%20%20FILTER%28%3Chttp%3A%2F%2Fwww.w3.org%2F2001%2FXMLSchema%23integer%3E%28%3Fnotebooks_count%29%20%3E%200%29%0A%20%20%7D%0A%20%20%7D%0A%20%20GROUP%20BY%20%3Fjournal_name%0A%0AORDER%20BY%20DESC%28%3Frepository_count%29%0ALIMIT%2010
https://reproduceme.uni-jena.de/#/dataset/fairjupyter/query?query=SELECT%20%3Fjournal_name%20%28COUNT%28%3Frepository_nb%29%20AS%20%3Frepositories_with_notebooks_count%29%0A%20%20%20%20%20%20%20%20%3Fmax_notebooks_count%0AWHERE%20%7B%0A%20%20%7B%0A%20%20%20%20SELECT%20%3Fjournal%20%28MAX%28%3Fnotebooks_count%29%20AS%20%3Fmax_notebooks_count%29%0A%20%20%20%20WHERE%20%7B%0A%20%20%20%20%20%20%3Farticle%20%3Chttps%3A%2F%2Fw3id.org%2Freproduceme%2FpublishedIn%3E%20%3Fjournal%20.%0A%20%20%20%20%20%20%3Fjournal%20%3Chttp%3A%2F%2Fwww.w3.org%2F2000%2F01%2Frdf-schema%23label%3E%20%3Fjournal_name%20.%20%20%0A%20%20%20%20%20%20%3Frepository_nb%20%3Chttp%3A%2F%2Fpurl.org%2Fpav%2FretrievedFrom%3E%20%3Farticle%20%3B%0A%20%3Chttps%3A%2F%2Fw3id.org%2Freproduceme%2Fnotebooks_count%3E%20%3Fnotebooks_count%20.%0A%20%20%20%20%20%20FILTER%28%3Chttp%3A%2F%2Fwww.w3.org%2F2001%2FXMLSchema%23integer%3E%28%3Fnotebooks_count%29%20%3E%200%29%20%20%0A%20%20%20%20%7D%0A%20%20%20%20GROUP%20BY%20%3Fjournal%0A%20%20%7D%0A%20%20%3Farticle%20%3Chttps%3A%2F%2Fw3id.org%2Freproduceme%2FpublishedIn%3E%20%3Fjournal%20.%0A%20%20%3Fjournal%20%3Chttp%3A%2F%2Fwww.w3.org%2F2000%2F01%2Frdf-schema%23label%3E%20%3Fjournal_name%20.%20%20%0A%20%20%3Frepository_nb%20%3Chttp%3A%2F%2Fpurl.org%2Fpav%2FretrievedFrom%3E%20%3Farticle%20%3B%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%3Chttps%3A%2F%2Fw3id.org%2Freproduceme%2Fnotebooks_count%3E%20%3Fnotebooks_count%20.%0A%20%20FILTER%28%3Chttp%3A%2F%2Fwww.w3.org%2F2001%2FXMLSchema%23integer%3E%28%3Fnotebooks_count%29%20%3E%200%29%20%20%0A%7D%0AGROUP%20BY%20%3Fjournal_name%20%20%3Fmax_notebooks_count%0AORDER%20BY%20DESC%28%3Frepositories_with_notebooks_count%29%0ALIMIT%2010%0A
https://reproduceme.uni-jena.de/#/dataset/fairjupyter/query?query=SELECT%20%3Flanguage%20%28COUNT%28%3Fnotebook%29%20as%20%3Fnotebook_count%29%0AWHERE%20%7B%0A%20%20%3Fnotebook%20a%20%3Chttps%3A%2F%2Fw3id.org%2Freproduceme%2FNotebook%3E%20%3B%0A%20%20%20%20%20%20%20%20%20%20%20%20%3Chttps%3A%2F%2Fw3id.org%2Freproduceme%2Flanguage%3E%20%3Flanguage%20.%0A%7D%0AGROUP%20BY%20%3Flanguage%0AORDER%20BY%20DESC%28%3Fnotebook_count%29%0ALIMIT%2010
https://reproduceme.uni-jena.de/#/dataset/fairjupyter/query?query=SELECT%20%3Fcreated_year%20%3Flanguage%20%28COUNT%28%3Fnotebook%29%20as%20%3Fnotebook_count%29%0AWHERE%20%7B%0A%20%20%3Fnotebook%20a%20%3Chttps%3A%2F%2Fw3id.org%2Freproduceme%2FNotebook%3E%20%3B%0A%20%20%20%20%20%20%20%20%20%20%20%20%3Chttp%3A%2F%2Fpurl.org%2Fpav%2FretrievedFrom%3E%20%20%3Frepository%20%3B%0A%20%20%20%20%20%20%20%20%20%20%20%20%3Chttps%3A%2F%2Fw3id.org%2Freproduceme%2Flanguage%3E%20%3Flanguage%20%3B%0A%20%20%20%20%20%20%20%20%20%20%20%20%3Chttps%3A%2F%2Fw3id.org%2Freproduceme%2Flanguage_version%3E%20%3Fversion%20.%0A%20%20%3Frepository%20%3Chttps%3A%2F%2Fw3id.org%2Freproduceme%2Fcreated_at%3E%20%3Fcreated_at%20.%0A%20%20BIND%28REPLACE%28str%28%3Fcreated_at%29%2C%20%22%28%5C%5Cd%2A%29-.%2A%22%2C%20%22%241%22%29%20AS%20%3Fcreated_year%29%20%20%0A%7D%0AGROUP%20BY%20%3Fcreated_year%20%3Flanguage%0AORDER%20BY%20%3Fcreated_year%20%3Flanguage%0A%0A
https://reproduceme.uni-jena.de/#/dataset/fairjupyter/query?query=SELECT%20%3Fcreated_year%20%3Flanguage%20%28COUNT%28%3Fnotebook%29%20as%20%3Fnotebook_count%29%0AWHERE%20%7B%0A%20%20%3Fnotebook%20a%20%3Chttps%3A%2F%2Fw3id.org%2Freproduceme%2FNotebook%3E%20%3B%0A%20%20%20%20%20%20%20%20%20%20%20%20%3Chttp%3A%2F%2Fpurl.org%2Fpav%2FretrievedFrom%3E%20%20%3Frepository%20%3B%0A%20%20%20%20%20%20%20%20%20%20%20%20%3Chttps%3A%2F%2Fw3id.org%2Freproduceme%2Flanguage%3E%20%3Flanguage%20%3B%0A%20%20%20%20%20%20%20%20%20%20%20%20%3Chttps%3A%2F%2Fw3id.org%2Freproduceme%2Flanguage_version%3E%20%3Fversion%20.%0A%20%20%3Frepository%20%3Chttps%3A%2F%2Fw3id.org%2Freproduceme%2Fcreated_at%3E%20%3Fcreated_at%20.%0A%20%20BIND%28REPLACE%28str%28%3Fcreated_at%29%2C%20%22%28%5C%5Cd%2A%29-.%2A%22%2C%20%22%241%22%29%20AS%20%3Fcreated_year%29%20%20%0A%7D%0AGROUP%20BY%20%3Fcreated_year%20%3Flanguage%0AORDER%20BY%20%3Fcreated_year%20%3Flanguage%0A%0A
https://reproduceme.uni-jena.de/#/dataset/fairjupyter/query?query=SELECT%20%3Fcreated_year%20%3Fminor_version%20%28COUNT%28%3Fnotebook%29%20as%20%3Fcount_minor_version%29%0AWHERE%20%7B%0A%20%20%3Fnotebook%20a%20%3Chttps%3A%2F%2Fw3id.org%2Freproduceme%2FNotebook%3E%20%3B%0A%20%20%20%20%20%20%20%20%20%20%20%20%3Chttp%3A%2F%2Fpurl.org%2Fpav%2FretrievedFrom%3E%20%20%3Frepository%20%3B%0A%20%20%20%20%20%20%20%20%20%20%20%20%3Chttps%3A%2F%2Fw3id.org%2Freproduceme%2Flanguage%3E%20%22python%22%20%3B%0A%20%20%20%20%20%20%20%20%20%20%20%20%3Chttps%3A%2F%2Fw3id.org%2Freproduceme%2Flanguage_version%3E%20%3Fversion%20.%0A%20%20%3Frepository%20%3Chttps%3A%2F%2Fw3id.org%2Freproduceme%2Fcreated_at%3E%20%3Fcreated_at%20.%0A%20%20BIND%28REPLACE%28str%28%3Fcreated_at%29%2C%20%22%28%5C%5Cd%2A%29-.%2A%22%2C%20%22%241%22%29%20AS%20%3Fcreated_year%29%20%20%0A%20%20BIND%28SUBSTR%28%3Fversion%2C%201%2C%203%29%20AS%20%3Fminor_version%29%0A%20%20FILTER%28%3Fversion%20%21%3D%20%223%22%20%26%26%20%3Fversion%20%21%3D%20%221%22%20%26%26%20%3Fversion%20%21%3D%20%22ES2015%22%29%0A%7D%0AGROUP%20BY%20%3Fcreated_year%20%3Fminor_version%0AORDER%20BY%20%3Fcreated_year%20%3Fminor_version%0A%0A
https://reproduceme.uni-jena.de/#/dataset/fairjupyter/query?query=SELECT%20%3Fcreated_year%20%3Fminor_version%20%28COUNT%28%3Fnotebook%29%20as%20%3Fcount_minor_version%29%0AWHERE%20%7B%0A%20%20%3Fnotebook%20a%20%3Chttps%3A%2F%2Fw3id.org%2Freproduceme%2FNotebook%3E%20%3B%0A%20%20%20%20%20%20%20%20%20%20%20%20%3Chttp%3A%2F%2Fpurl.org%2Fpav%2FretrievedFrom%3E%20%20%3Frepository%20%3B%0A%20%20%20%20%20%20%20%20%20%20%20%20%3Chttps%3A%2F%2Fw3id.org%2Freproduceme%2Flanguage%3E%20%22python%22%20%3B%0A%20%20%20%20%20%20%20%20%20%20%20%20%3Chttps%3A%2F%2Fw3id.org%2Freproduceme%2Flanguage_version%3E%20%3Fversion%20.%0A%20%20%3Frepository%20%3Chttps%3A%2F%2Fw3id.org%2Freproduceme%2Fcreated_at%3E%20%3Fcreated_at%20.%0A%20%20BIND%28REPLACE%28str%28%3Fcreated_at%29%2C%20%22%28%5C%5Cd%2A%29-.%2A%22%2C%20%22%241%22%29%20AS%20%3Fcreated_year%29%20%20%0A%20%20BIND%28SUBSTR%28%3Fversion%2C%201%2C%203%29%20AS%20%3Fminor_version%29%0A%20%20FILTER%28%3Fversion%20%21%3D%20%223%22%20%26%26%20%3Fversion%20%21%3D%20%221%22%20%26%26%20%3Fversion%20%21%3D%20%22ES2015%22%29%0A%7D%0AGROUP%20BY%20%3Fcreated_year%20%3Fminor_version%0AORDER%20BY%20%3Fcreated_year%20%3Fminor_version%0A%0A
https://reproduceme.uni-jena.de/#/dataset/fairjupyter/query?query=SELECT%20%3Fcreated_year%20%3Fmajor_version%20%28COUNT%28%3Fnotebook%29%20as%20%3Fcount_major_version%29%0AWHERE%20%7B%0A%20%20%3Fnotebook%20a%20%3Chttps%3A%2F%2Fw3id.org%2Freproduceme%2FNotebook%3E%20%3B%0A%20%20%20%20%20%20%20%20%20%20%20%20%3Chttp%3A%2F%2Fpurl.org%2Fpav%2FretrievedFrom%3E%20%20%3Frepository%20%3B%0A%20%20%20%20%20%20%20%20%20%20%20%20%3Chttps%3A%2F%2Fw3id.org%2Freproduceme%2Flanguage%3E%20%22python%22%20%3B%0A%20%20%20%20%20%20%20%20%20%20%20%20%3Chttps%3A%2F%2Fw3id.org%2Freproduceme%2Flanguage_version%3E%20%3Fversion%20.%0A%20%20%3Frepository%20%3Chttps%3A%2F%2Fw3id.org%2Freproduceme%2Fcreated_at%3E%20%3Fcreated_at%20.%0A%20%20BIND%28REPLACE%28str%28%3Fcreated_at%29%2C%20%22%28%5C%5Cd%2A%29-.%2A%22%2C%20%22%241%22%29%20AS%20%3Fcreated_year%29%20%20%0A%20%20BIND%28SUBSTR%28%3Fversion%2C%201%2C%201%29%20AS%20%3Fmajor_version%29%0A%20%20FILTER%28%3Fversion%20%21%3D%20%223%22%20%26%26%20%3Fversion%20%21%3D%20%221%22%20%26%26%20%3Fversion%20%21%3D%20%22ES2015%22%29%0A%7D%0AGROUP%20BY%20%3Fcreated_year%20%3Fmajor_version%0AORDER%20BY%20%3Fcreated_year%20%3Fmajor_version%0A%0A
https://reproduceme.uni-jena.de/#/dataset/fairjupyter/query?query=SELECT%20%3Fcreated_year%20%3Fmajor_version%20%28COUNT%28%3Fnotebook%29%20as%20%3Fcount_major_version%29%0AWHERE%20%7B%0A%20%20%3Fnotebook%20a%20%3Chttps%3A%2F%2Fw3id.org%2Freproduceme%2FNotebook%3E%20%3B%0A%20%20%20%20%20%20%20%20%20%20%20%20%3Chttp%3A%2F%2Fpurl.org%2Fpav%2FretrievedFrom%3E%20%20%3Frepository%20%3B%0A%20%20%20%20%20%20%20%20%20%20%20%20%3Chttps%3A%2F%2Fw3id.org%2Freproduceme%2Flanguage%3E%20%22python%22%20%3B%0A%20%20%20%20%20%20%20%20%20%20%20%20%3Chttps%3A%2F%2Fw3id.org%2Freproduceme%2Flanguage_version%3E%20%3Fversion%20.%0A%20%20%3Frepository%20%3Chttps%3A%2F%2Fw3id.org%2Freproduceme%2Fcreated_at%3E%20%3Fcreated_at%20.%0A%20%20BIND%28REPLACE%28str%28%3Fcreated_at%29%2C%20%22%28%5C%5Cd%2A%29-.%2A%22%2C%20%22%241%22%29%20AS%20%3Fcreated_year%29%20%20%0A%20%20BIND%28SUBSTR%28%3Fversion%2C%201%2C%201%29%20AS%20%3Fmajor_version%29%0A%20%20FILTER%28%3Fversion%20%21%3D%20%223%22%20%26%26%20%3Fversion%20%21%3D%20%221%22%20%26%26%20%3Fversion%20%21%3D%20%22ES2015%22%29%0A%7D%0AGROUP%20BY%20%3Fcreated_year%20%3Fmajor_version%0AORDER%20BY%20%3Fcreated_year%20%3Fmajor_version%0A%0A
https://reproduceme.uni-jena.de/#/dataset/fairjupyter/query?query=SELECT%20%3Fexception%20%28COUNT%28%3Fexception%29%20AS%20%3Fcount%29%0AWHERE%20%7B%0A%20%20%3Fexecution%20%20a%20%3Chttps%3A%2F%2Fw3id.org%2Freproduceme%2FCellExecution%3E%20%3B%0A%20%20%20%20%3Chttps%3A%2F%2Fw3id.org%2Freproduceme%2Fexception%3E%20%3Fexception%20.%0A%7D%0AGROUP%20BY%20%3Fexception%0AORDER%20BY%20DESC%28%3Fcount%29%0ALIMIT%2010%0A
https://reproduceme.uni-jena.de/#/dataset/fairjupyter/query?query=PREFIX%20xsd%3A%20%3Chttp%3A%2F%2Fwww.w3.org%2F2001%2FXMLSchema%23%3E%0ASELECT%20DISTINCT%20%3Fresearch_field%20%28COUNT%28%3Fexception%29%20AS%20%3Fexception_count%29%0AWHERE%20%7B%20%20%0A%20%20%3Fexecution%20%20a%20%3Chttps%3A%2F%2Fw3id.org%2Freproduceme%2FCellExecution%3E%20%3B%0A%20%20%20%20%3Chttps%3A%2F%2Fw3id.org%2Freproduceme%2Fexception%3E%20%3Fexception%20%3B%0A%20%20%20%20%3Chttp%3A%2F%2Fpurl.org%2Fpav%2FretrievedFrom%3E%20%3Frepository%20.%0A%20%20%3Frepository%20a%20%3Chttp%3A%2F%2Fusefulinc.com%2Fns%2Fdoap%23GitRepository%3E%20%3B%0A%20%20%09%09%09%3Chttp%3A%2F%2Fpurl.org%2Fpav%2FretrievedFrom%3E%20%3Farticle%20%3B%0A%20%20%09%09%09%3Chttps%3A%2F%2Fw3id.org%2Freproduceme%2Fnotebooks_count%3E%20%3Fnotebooks_count%20.%0A%20%20%3Farticle%20a%20%3Chttp%3A%2F%2Fpurl.org%2Fspar%2Ffabio%2FArticle%3E%20%3B%20%0A%20%20%09%09%20%3Chttp%3A%2F%2Fwww.w3.org%2Fns%2Fprov-o%23specializationOf%3E%20%3Fmesh%20.%0A%20%20%3Fmesh%20%3Chttp%3A%2F%2Fwww.w3.org%2Fns%2Fprov-o%23generalizationOf%3E%20%3Ftop_mesh%20.%0A%20%20%3Ftop_mesh%20%3Chttp%3A%2F%2Fwww.w3.org%2F2000%2F01%2Frdf-schema%23label%3E%20%3Fresearch_field%20.%20%20%20%20%0A%20%20FILTER%20%28xsd%3Ainteger%28%3Fnotebooks_count%29%3E0%29%0A%7D%0AGROUP%20BY%20%3Fresearch_field%0AORDER%20BY%20DESC%28%3Fexception_count%29%0ALIMIT%2010%0A
https://reproduceme.uni-jena.de/#/dataset/fairjupyter/query?query=PREFIX%20xsd%3A%20%3Chttp%3A%2F%2Fwww.w3.org%2F2001%2FXMLSchema%23%3E%0ASELECT%20DISTINCT%20%3Fresearch_field%20%28COUNT%28%3Fexception%29%20AS%20%3Fexception_count%29%0AWHERE%20%7B%20%20%0A%20%20%3Fexecution%20%20a%20%3Chttps%3A%2F%2Fw3id.org%2Freproduceme%2FCellExecution%3E%20%3B%0A%20%20%20%20%3Chttps%3A%2F%2Fw3id.org%2Freproduceme%2Fexception%3E%20%3Fexception%20%3B%0A%20%20%20%20%3Chttp%3A%2F%2Fpurl.org%2Fpav%2FretrievedFrom%3E%20%3Frepository%20.%0A%20%20%3Frepository%20a%20%3Chttp%3A%2F%2Fusefulinc.com%2Fns%2Fdoap%23GitRepository%3E%20%3B%0A%20%20%09%09%09%3Chttp%3A%2F%2Fpurl.org%2Fpav%2FretrievedFrom%3E%20%3Farticle%20%3B%0A%20%20%09%09%09%3Chttps%3A%2F%2Fw3id.org%2Freproduceme%2Fnotebooks_count%3E%20%3Fnotebooks_count%20.%0A%20%20%3Farticle%20a%20%3Chttp%3A%2F%2Fpurl.org%2Fspar%2Ffabio%2FArticle%3E%20%3B%20%0A%20%20%09%09%20%3Chttp%3A%2F%2Fwww.w3.org%2Fns%2Fprov-o%23specializationOf%3E%20%3Fmesh%20.%0A%20%20%3Fmesh%20%3Chttp%3A%2F%2Fwww.w3.org%2Fns%2Fprov-o%23generalizationOf%3E%20%3Ftop_mesh%20.%0A%20%20%3Ftop_mesh%20%3Chttp%3A%2F%2Fwww.w3.org%2F2000%2F01%2Frdf-schema%23label%3E%20%3Fresearch_field%20.%20%20%20%20%0A%20%20FILTER%20%28xsd%3Ainteger%28%3Fnotebooks_count%29%3E0%29%0A%7D%0AGROUP%20BY%20%3Fresearch_field%0AORDER%20BY%20DESC%28%3Fexception_count%29%0ALIMIT%2010%0A
https://reproduceme.uni-jena.de/#/dataset/fairjupyter/query?query=PREFIX%20xsd%3A%20%3Chttp%3A%2F%2Fwww.w3.org%2F2001%2FXMLSchema%23%3E%0ASELECT%20%28COUNT%28%3Fprocessed_different_result%29%20AS%20%3Fcount_different_result%29%20%28COUNT%28%3Fprocessed_same_result%29%20AS%20%3Fcount_same_result%29%20%28%3Fcount_same_result%20%2B%20%3Fcount_different_result%20AS%20%3Fcount_successful_executions%29%0AWHERE%20%7B%0A%20%20%3Fexecution%20a%20%3Chttps%3A%2F%2Fw3id.org%2Freproduceme%2FCellExecution%3E%20.%0A%20%20OPTIONAL%20%7B%20%3Fexecution%20%3Chttps%3A%2F%2Fw3id.org%2Freproduceme%2Fexception%3E%20%3Fexception%20.%20%7D%0A%20%20OPTIONAL%20%7B%0A%20%20%20%20%3Fexecution%20%3Chttps%3A%2F%2Fw3id.org%2Freproduceme%2Fprocessed%3E%20%3Fprocessed_different_result%20.%0A%20%20%20%20FILTER%20%28%28xsd%3Ainteger%28%3Fprocessed_different_result%29%20%3D%2035%29%20%26%26%20%21bound%28%3Fexception%29%29%0A%20%20%7D%0A%20%20OPTIONAL%20%7B%0A%20%20%20%20%3Fexecution%20%3Chttps%3A%2F%2Fw3id.org%2Freproduceme%2Fprocessed%3E%20%3Fprocessed_same_result%20.%0A%20%20%20%20FILTER%20%28%28xsd%3Ainteger%28%3Fprocessed_same_result%29%20%3D%2051%29%20%26%26%20%21bound%28%3Fexception%29%29%0A%20%20%7D%0A%20%20%0A%20%20%0A%7D
https://reproduceme.uni-jena.de/#/dataset/fairjupyter/query?query=SELECT%20%3Fnotebook%20%3Ferror%20%3Fdescription%0AWHERE%20%7B%0A%20%20%3Ferror%20a%20%3Chttps%3A%2F%2Fw3id.org%2Freproduceme%2FNotebookCodeStyleError%3E%20%3B%0A%20%20%20%20%20%20%20%20%3Chttps%3A%2F%2Fw3id.org%2Freproduceme%2Fdescription%3E%20%3Fdescription%20%3B%0A%20%20%20%20%20%20%20%20%3Chttp%3A%2F%2Fpurl.org%2Fpav%2FretrievedFrom%3E%20%3Fnotebook%20.%0A%7D
https://w3id.org/fairjupyter

4:14 FAIR Jupyter

Table 3 General queries over the FAIR Jupyter graph.

Description SPARQL
Ten successfully reproduced notebooks, as per Figure 2 Query URL
Notebooks by search term: “immun” AND (“stem” OR “differentiation”) Query URL
Article by keywords, e.g., “open source” Query URL
Most common errors in immunology Query URL
Most common errors in Nature journal Query URL
MeSH terms ranked by “ModuleNotFoundError” frequency Query URL
GitHub repositories by their stargazers count Query URL
GitHub repositories and their Software Heritage snapshot Query URL
Articles and repositories with notebooks in Julia Query URL

Table 4 Federated queries between FAIR Jupyter and external KGs. Wikidata [78] operates a
SPARQL endpoint at https://query.wikidata.org/, while MaRDI – the Mathematical Research Data
Initiative [23] – operates one at https://query.portal.mardi4nfdi.de/.

Description SPARQL
Match articles between FAIR Jupyter and Wikidata via DOI Query URL
Match articles between FAIR Jupyter and Wikidata via PMC ID Query URL
Match articles between FAIR Jupyter and Wikidata via MeSH in a different
language (here: Malayalam)

Query URL

Match articles between FAIR Jupyter and MaRDI via DOI and get co-used
software

Query URL

The dataset is of particular interest for trainings and education as well as for showcasing
real-world examples of actual research practices, from which both best practices and things to
avoid can be synthesized. In order to enhance the dataset’s usefulness in such contexts, we have
paid special attention to its Findability, Accessiblity, Interoperability and Reusability, as per the
FAIR Principles [80] for sharing research data. Since our data is about software, we also took into
account adaptations of the FAIR Principles to software [44].

The original dataset as a whole was already well aligned with the FAIR Principles, and we
added an additional layer of alignment by sharing individual elements of the original dataset in a
FAIR way, so as to make it easier for humans and machines to engage with them. At a very basic
level, the original dataset as a whole becomes more findable by virtue of the current manuscript
and the FAIR Jupyter website pointing to it, more accessible by being available in additional
formats (e.g. RDF), more interoperable by compatibility with additional standards (particularly
ontologies, as per Figure 2) and more reusable through combinations of the above as well as the
enhanced granularity. At a more profound level, the dataset’s individual facets and features –
be it the classes shown in Figure 2 or the entities listed in Table 1 or any of the relationships
between them – have become more FAIR, as they can now be searched, explored, aggregated,
filtered and reused in additional user friendly ways both individually or in various combinations,
both manually and programmatically. This KG approach facilitates additional routes for engaging
with the original data and makes it easy to ask and address questions that were not included in
the paper describing the original dataset, hence encouraging readers to build on our work. It also
provides an additional level of reproducibility in that it allows for reproducing specific aspects
of the original paper, as demonstrated with Table 2. Finally, the coupling of the KG with a

https://reproduceme.uni-jena.de/#/dataset/fairjupyter/query?query=%23%20Ten%20successfully%20reproduced%20Jupyter%20notebooks%20associated%20with%20articles%20indexed%20in%20PubMed%20Central%0A%0APREFIX%20rdfs%3A%20%3Chttp%3A%2F%2Fwww.w3.org%2F2000%2F01%2Frdf-schema%23%3E%0APREFIX%20xsd%3A%20%3Chttp%3A%2F%2Fwww.w3.org%2F2001%2FXMLSchema%23%3E%0APREFIX%20repr%3A%20%3Chttps%3A%2F%2Fw3id.org%2Freproduceme%2F%3E%0APREFIX%20p-plan%3A%20%3Chttp%3A%2F%2Fpurl.org%2Fnet%2Fp-plan%3E%0APREFIX%20pav%3A%20%3Chttp%3A%2F%2Fpurl.org%2Fpav%2F%3E%0A%0ASELECT%20DISTINCT%20%0A%3Fnotebook_url%20%3Ftotal_cells%20%3Fduration%0AWHERE%20%7B%0A%20%20%3Fexecution%20a%20repr%3ACellExecution%20%3B%0A%20%20%20%20p-plan%3AisStepOfPlan%20%3Fnotebook%20%3B%09%23%20notebook%20that%20was%20executed%0A%20%20%20%20repr%3Aduration%20%3Fduration%20.%09%09%23%20execution%20duration%20in%20seconds%0A%20%20%3Fexecution%20repr%3Aprocessed%20%3Fprocessed_same_result%20.%0A%20%20%20%20FILTER%20%28%28xsd%3Ainteger%28%3Fprocessed_same_result%29%20%3D%2051%29%29%09%23%20identical%20results%0A%20%20%3Fnotebook%20pav%3AretrievedFrom%20%3Frepository%20%3B%09%09%23%20repo%20with%20this%20notebook%0A%20%20%09%20rdfs%3Alabel%20%3Fnotebook_label%20%3B%09%23%20notebook%20filename%0A%20%20%20%20%20repr%3Atotal_cells%20%3Ftotal_cells%20.%09%09%23%20number%20of%20cells%20in%20notebook%0A%20%20%3Frepository%20repr%3Aurl%20%3Frepo_url_base%20.%09%23%20find%20repo%20on%20GitHub%0A%20%20%23%20create%20clickable%20link%20to%20notebook%20on%20GitHub%0A%20%20BIND%28%0A%20%20URI%28CONCAT%28%20%3Frepo_url_base%2C%20%22%2Fblob%2Fmaster%2F%22%2C%20ENCODE_FOR_URI%28%3Fnotebook_label%29%29%29%20%0A%20%20AS%20%3Fnotebook_url%29%20%0A%7D%0A%23%20sort%20by%20number%20of%20cells%2C%20then%20duration%2C%20both%20in%20descending%20order%0AORDER%20BY%20DESC%28xsd%3Afloat%28%3Ftotal_cells%29%29%20DESC%28xsd%3Afloat%28%3Fduration%29%29%20%20%20%0ALIMIT%2010%09%23%20limit%20the%20output%20to%2010%20results%0A
https://reproduceme.uni-jena.de/#/dataset/fairjupyter/query?query=SELECT%20DISTINCT%20%3Fnotebook_url%20%3Farticle_label%20%3Fkeywords%20WHERE%20%7B%20%0A%20%20%3Farticle%20%3Chttps%3A%2F%2Fw3id.org%2Freproduceme%2Fkeywords%3E%20%3Fkeywords%20.%0A%20%20%3Farticle%20%3Chttp%3A%2F%2Fwww.w3.org%2F2000%2F01%2Frdf-schema%23label%3E%20%3Farticle_label%20.%20%0A%20%20%3Farticle%20%3Chttps%3A%2F%2Fw3id.org%2Freproduceme%2FpublishedIn%3E%20%3Fjournal%20.%0A%20%20%3Fjournal%20%3Chttp%3A%2F%2Fwww.w3.org%2F2000%2F01%2Frdf-schema%23label%3E%20%3Fjournal_label%20.%20%0A%20%20FILTER%20%28REGEX%28LCASE%28CONCAT%28%3Fkeywords%2C%20%22%20%22%2C%20%3Farticle_label%2C%20%22%20%22%2C%20%3Fjournal_label%29%29%2C%20%22immun%22%29%29%0A%20%20FILTER%20%28REGEX%28LCASE%28CONCAT%28%3Fkeywords%2C%20%22%20%22%2C%20%3Farticle_label%2C%20%22%20%22%2C%20%3Fjournal_label%29%29%2C%20%22%5C%5Cb%28stem%7Cdifferentiation%29%22%29%29%0A%20%20%3Farticle%20%5E%3Chttp%3A%2F%2Fpurl.org%2Fpav%2FretrievedFrom%3E%20%3Frepository%20.%0A%20%20%3Fnotebook%20%3Chttp%3A%2F%2Fpurl.org%2Fpav%2FretrievedFrom%3E%20%3Frepository%20.%0A%20%20%3Fnotebook%20%3Chttp%3A%2F%2Fwww.w3.org%2F1999%2F02%2F22-rdf-syntax-ns%23type%3E%20%3Chttps%3A%2F%2Fw3id.org%2Freproduceme%2FNotebook%3E%20.%0A%20%20%3Fnotebook%20%3Chttp%3A%2F%2Fwww.w3.org%2F2000%2F01%2Frdf-schema%23label%3E%20%3Fnotebook_label%20.%20%23%20filename%0A%20%20%3Frepository%20%3Chttps%3A%2F%2Fw3id.org%2Freproduceme%2Furl%3E%20%3Frepo_url_base%20.%20%23%20find%20repo%20on%20GitHub%0A%20%20BIND%28URI%28CONCAT%28%20%3Frepo_url_base%2C%20%22%2Fblob%2Fmaster%2F%22%2C%20%3Fnotebook_label%29%29%20AS%20%3Fnotebook_url%29%20%23%20create%20clickable%20link%20to%20notebook%20on%20GitHub%0A%20%20FILTER%20%28%3Fnotebook_url%20%21%3D%20%22%22%29%0A%7D%0A
https://reproduceme.uni-jena.de/#/dataset/fairjupyter/query?query=SELECT%20DISTINCT%20%3Farticle%20%3Fkeywords%20WHERE%20%7B%20%0A%20%20%3Farticle%20%3Chttps%3A%2F%2Fw3id.org%2Freproduceme%2Fkeywords%3E%20%3Fkeywords%20.%0A%20%20FILTER%20%28REGEX%28LCASE%28%3Fkeywords%29%2C%20%22open%28.%29source%22%29%29%0A%7D%0A
https://reproduceme.uni-jena.de/#/dataset/fairjupyter/query?query=SELECT%20DISTINCT%20%3Fexception%20%28COUNT%28%3Fexception%29%20AS%20%3Fcount%29%20WHERE%20%7B%20%0A%20%20%20%20%3Fexecution%20%20a%20%3Chttps%3A%2F%2Fw3id.org%2Freproduceme%2FCellExecution%3E%20%3B%0A%20%20%20%20%3Chttps%3A%2F%2Fw3id.org%2Freproduceme%2Fexception%3E%20%3Fexception%20%3B%0A%20%20%20%20%3Chttp%3A%2F%2Fpurl.org%2Fpav%2FretrievedFrom%3E%20%3Frepository%20.%0A%20%20%20%20%3Frepository%20a%20%3Chttp%3A%2F%2Fusefulinc.com%2Fns%2Fdoap%23GitRepository%3E%20%3B%0A%20%20%09%09%09%3Chttp%3A%2F%2Fpurl.org%2Fpav%2FretrievedFrom%3E%20%3Farticle%20.%0A%20%20%3Farticle%20%20%3Chttps%3A%2F%2Fw3id.org%2Freproduceme%2Fkeywords%3E%20%3Fkeywords%20.%0A%20%20FILTER%20%28REGEX%28LCASE%28%3Fkeywords%29%2C%20%22immun%22%29%29%0A%7D%0AGROUP%20BY%20%3Fexception%0AORDER%20BY%20DESC%28%3Fcount%29%0A
https://reproduceme.uni-jena.de/#/dataset/fairjupyter/query?query=PREFIX%20rdfs%3A%20%3Chttp%3A%2F%2Fwww.w3.org%2F2000%2F01%2Frdf-schema%23%3E%0ASELECT%20%20%3Fexception%20%28COUNT%28%3Fexception%29%20AS%20%3Fcount%29%20WHERE%20%7B%20%0A%20%20%20%20%3Fexecution%20%20a%20%3Chttps%3A%2F%2Fw3id.org%2Freproduceme%2FCellExecution%3E%20%3B%0A%20%20%20%20%3Chttps%3A%2F%2Fw3id.org%2Freproduceme%2Fexception%3E%20%3Fexception%20%3B%0A%20%20%20%20%3Chttp%3A%2F%2Fpurl.org%2Fpav%2FretrievedFrom%3E%20%3Frepository%20.%0A%20%20%20%20%3Frepository%20a%20%3Chttp%3A%2F%2Fusefulinc.com%2Fns%2Fdoap%23GitRepository%3E%20%3B%0A%20%20%09%09%09%3Chttp%3A%2F%2Fpurl.org%2Fpav%2FretrievedFrom%3E%20%3Farticle%20.%0A%20%20%3Farticle%20%20%3Chttps%3A%2F%2Fw3id.org%2Freproduceme%2FpublishedIn%3E%20%3Fjournal%20.%0A%20%20%3Fjournal%20rdfs%3Alabel%20%3Fjournal_name%0A%20%20FILTER%20%28%3Fjournal_name%3D%22Nature%22%29%0A%7D%0AGROUP%20BY%20%3Fexception%0AORDER%20BY%20DESC%28%3Fcount%29%0A
https://reproduceme.uni-jena.de/#/dataset/fairjupyter/query?query=PREFIX%20xsd%3A%20%3Chttp%3A%2F%2Fwww.w3.org%2F2001%2FXMLSchema%23%3E%0ASELECT%20DISTINCT%20%3Fresearch_field%20%28COUNT%28%3Fexception%29%20AS%20%3Fexception_count%29%0AWHERE%20%7B%20%20%0A%20%20%3Fexecution%20%20a%20%3Chttps%3A%2F%2Fw3id.org%2Freproduceme%2FCellExecution%3E%20%3B%0A%20%20%20%20%3Chttps%3A%2F%2Fw3id.org%2Freproduceme%2Fexception%3E%20%3Fexception%20%3B%0A%20%20%20%20%3Chttp%3A%2F%2Fpurl.org%2Fpav%2FretrievedFrom%3E%20%3Frepository%20.%0A%20%20%3Frepository%20a%20%3Chttp%3A%2F%2Fusefulinc.com%2Fns%2Fdoap%23GitRepository%3E%20%3B%0A%20%20%09%09%09%3Chttp%3A%2F%2Fpurl.org%2Fpav%2FretrievedFrom%3E%20%3Farticle%20%3B%0A%20%20%09%09%09%3Chttps%3A%2F%2Fw3id.org%2Freproduceme%2Fnotebooks_count%3E%20%3Fnotebooks_count%20.%0A%20%20%3Farticle%20a%20%3Chttp%3A%2F%2Fpurl.org%2Fspar%2Ffabio%2FArticle%3E%20%3B%20%0A%20%20%09%09%20%3Chttp%3A%2F%2Fwww.w3.org%2Fns%2Fprov-o%23specializationOf%3E%20%3Fmesh%20.%0A%20%20%3Fmesh%20%3Chttp%3A%2F%2Fwww.w3.org%2Fns%2Fprov-o%23generalizationOf%3E%20%3Ftop_mesh%20.%0A%20%20%3Ftop_mesh%20%3Chttp%3A%2F%2Fwww.w3.org%2F2000%2F01%2Frdf-schema%23label%3E%20%3Fresearch_field%20.%20%20%20%20%0A%20%20FILTER%20%28%3Fexception%3D%27ModuleNotFoundError%27%29%0A%7D%0AGROUP%20BY%20%3Fresearch_field%0AORDER%20BY%20DESC%28%3Fexception_count%29
https://reproduceme.uni-jena.de/#/dataset/fairjupyter/query?query=PREFIX%20xsd%3A%20%3Chttp%3A%2F%2Fwww.w3.org%2F2001%2FXMLSchema%23%3E%0ASELECT%20DISTINCT%20%3Frepo%20%3Fstargazers_count%20WHERE%20%7B%0A%20%20%3Frepo%20%3Chttps%3A%2F%2Fw3id.org%2Freproduceme%2Fstargazers_count%3E%20%3Fcount.%20%0A%20%20BIND%28xsd%3Afloat%28%3Fcount%29%20AS%20%3Fstargazers_count%29%0A%20%20FILTER%20%28%28%3Fstargazers_count%29%20%3E%200%29%0A%7D%20%0AORDER%20BY%20DESC%28%3Fstargazers_count%29
https://reproduceme.uni-jena.de/#/dataset/fairjupyter/query?query=%23%20List%20of%20GitHub%20repositories%20covered%20by%20https%3A%2F%2Fdoi.org%2F10.1093%2Fgigascience%2Fgiad113%20%2C%20%0A%23%20with%20pointers%20to%20their%20Software%20Heritage%20snapshots%20as%20per%20https%3A%2F%2Fdoi.org%2F10.5281%2Fzenodo.12806151%0A%0ASELECT%20DISTINCT%20%0A%28URI%28%3Frepo_url_base%29%20AS%20%3FGitHub_URL%29%0A%28URI%20%28CONCAT%28%22https%3A%2F%2Farchive.softwareheritage.org%2Fbrowse%2Forigin%2Fdirectory%2F%3Forigin_url%3D%22%2C%20ENCODE_FOR_URI%28STR%28%3Frepo_url_base%29%29%29%29%20AS%20%3FSWH_URL%29%0AWHERE%20%7B%0A%20%20%3Frepository%20%3Chttps%3A%2F%2Fw3id.org%2Freproduceme%2Furl%3E%20%3Frepo_url_base%20.%0A%7D%0AORDER%20BY%20ASC%28%3Frepo_url_base%29
https://reproduceme.uni-jena.de/#/dataset/fairjupyter/query?query=SELECT%20DISTINCT%20%3Ftitle%0A%28URI%28CONCAT%28%22https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC%22%2C%20STR%28%3Fpmcid%29%29%29%20AS%20%3FPMC_URL%29%0A%28URI%28%3Frepo_url_base%29%20AS%20%3FGitHub_URL%29%0A%3FNotebook_URL%0AWHERE%20%7B%0A%20%20%3Fnotebook%20a%20%3Chttps%3A%2F%2Fw3id.org%2Freproduceme%2FNotebook%3E%20%3B%0A%20%20%20%20%20%20%20%20%20%20%20%20%3Chttps%3A%2F%2Fw3id.org%2Freproduceme%2Flanguage%3E%20%22julia%22%20.%0A%20%20%3Fnotebook%20%3Chttp%3A%2F%2Fpurl.org%2Fpav%2FretrievedFrom%3E%20%3Frepository%20.%0A%20%20%3Farticle%20%5E%3Chttp%3A%2F%2Fpurl.org%2Fpav%2FretrievedFrom%3E%20%3Frepository%20.%0A%20%20%3Farticle%20%3Chttps%3A%2F%2Fw3id.org%2Freproduceme%2Fpmc%3E%20%3Fpmcid%20.%0A%20%20%3Farticle%20%3Chttp%3A%2F%2Fwww.w3.org%2F2000%2F01%2Frdf-schema%23label%3E%20%3Ftitle%20.%0A%20%20%3Fnotebook%20%3Chttp%3A%2F%2Fwww.w3.org%2F2000%2F01%2Frdf-schema%23label%3E%20%3Fnotebook_label%20.%20%0A%20%20%3Frepository%20%3Chttps%3A%2F%2Fw3id.org%2Freproduceme%2Furl%3E%20%3Frepo_url_base%20.%20%0A%20%20BIND%28URI%28CONCAT%28%20%3Frepo_url_base%2C%20%22%2Fblob%2Fmaster%2F%22%2C%20%3Fnotebook_label%29%29%20AS%20%3FNotebook_URL%29%20%0A%7D%0AORDER%20BY%20DESC%28%3FNotebook_URL%29%0A
https://query.wikidata.org/
https://query.portal.mardi4nfdi.de/
https://reproduceme.uni-jena.de/#/dataset/fairjupyter/query?query=PREFIX%20rdfs%3A%20%3Chttp%3A%2F%2Fwww.w3.org%2F2000%2F01%2Frdf-schema%23%3E%0A%0APREFIX%20wikidata_wd%3A%20%3Chttp%3A%2F%2Fwww.wikidata.org%2Fentity%2F%3E%0APREFIX%20wikidata_wdt%3A%20%3Chttp%3A%2F%2Fwww.wikidata.org%2Fprop%2Fdirect%2F%3E%0A%0ASELECT%20DISTINCT%0A%0A%20%3Ffj_article%0A%20%3Fwikidata%0A%20%3Fwikidata_label%0A%20%3FDOI%0A%0AWHERE%20%7B%0A%20%20%3Ffj_article%20%3Chttps%3A%2F%2Fw3id.org%2Freproduceme%2Fdoi%3E%20%3Fdoi%20.%0A%20%20BIND%28UCASE%28%3Fdoi%29%20AS%20%3FDOI%29%0A%20%20service%20%3Chttps%3A%2F%2Fquery.wikidata.org%2Fsparql%3E%20%7B%0A%20%20%20%20%3Fwikidata%20wikidata_wdt%3AP356%20%3FDOI%20.%0A%20%20%20%20%3Fwikidata%20rdfs%3Alabel%20%3Fwikidata_label%20.%0A%20%20%20%20FILTER%20%28LANG%28%3Fwikidata_label%29%20%3D%20%22en%22%29%0A%20%20%7D%0A%7D%0ALIMIT%20100
https://reproduceme.uni-jena.de/#/dataset/fairjupyter/query?query=PREFIX%20rdfs%3A%20%3Chttp%3A%2F%2Fwww.w3.org%2F2000%2F01%2Frdf-schema%23%3E%0A%0APREFIX%20wikidata_wd%3A%20%3Chttp%3A%2F%2Fwww.wikidata.org%2Fentity%2F%3E%0APREFIX%20wikidata_wdt%3A%20%3Chttp%3A%2F%2Fwww.wikidata.org%2Fprop%2Fdirect%2F%3E%0A%0ASELECT%20DISTINCT%0A%0A%20%3Ffj_article%0A%20%3Fwikidata%0A%20%3Fwikidata_label%0A%20%3Fpmc%0A%0AWHERE%20%7B%0A%20%20%3Ffj_article%20%3Chttps%3A%2F%2Fw3id.org%2Freproduceme%2Fpmc%3E%20%3Fpmc%20.%0A%20%20service%20%3Chttps%3A%2F%2Fquery.wikidata.org%2Fsparql%3E%20%7B%0A%20%20%20%20%3Fwikidata%20wikidata_wdt%3AP932%20%3Fpmc%20.%0A%20%20%20%20%3Fwikidata%20rdfs%3Alabel%20%3Fwikidata_label%20.%0A%20%20%20%20FILTER%20(LANG(%3Fwikidata_label)%20%3D%20%22en%22)%0A%20%20%7D%0A%7D%0ALIMIT%20100
https://reproduceme.uni-jena.de/#/dataset/fairjupyter/query?query=PREFIX%20rdfs%3A%20%3Chttp%3A%2F%2Fwww.w3.org%2F2000%2F01%2Frdf-schema%23%3E%0A%0APREFIX%20wikidata_wd%3A%20%3Chttp%3A%2F%2Fwww.wikidata.org%2Fentity%2F%3E%0APREFIX%20wikidata_wdt%3A%20%3Chttp%3A%2F%2Fwww.wikidata.org%2Fprop%2Fdirect%2F%3E%0A%0ASELECT%20DISTINCT%0A%0A%20%3Ffj_article%0A%20%3Fwikidata%0A%20%3Fwikidata_label%0A%20%3FDOI%0A%0AWHERE%20%7B%0A%20%20%3Ffj_article%20%3Chttp%3A%2F%2Fwww.w3.org%2Fns%2Fprov-o%23specializationOf%3E%20%3Fmesh_url%20.%0A%20%20BIND%28REPLACE%28STR%28%3Fmesh_url%29%2C%20%22.%2AMESH%2FD%22%2C%20%22D%22%29%20AS%20%3FMESH%29%20%0A%20%20service%20%3Chttps%3A%2F%2Fquery.wikidata.org%2Fsparql%3E%20%7B%0A%20%20%20%20%3Fwikidata%20wikidata_wdt%3AP486%20%3FMESH%20.%0A%20%20%20%20%3Fwikidata%20rdfs%3Alabel%20%3Fwikidata_label%20.%0A%20%20%20%20FILTER%20%28LANG%28%3Fwikidata_label%29%20%3D%20%22ml%22%29%0A%20%20%7D%0A%7D%0ALIMIT%20100
https://reproduceme.uni-jena.de/#/dataset/fairjupyter/query?query=PREFIX%20rdfs%3A%20%3Chttp%3A%2F%2Fwww.w3.org%2F2000%2F01%2Frdf-schema%23%3E%0APREFIX%20wikibase%3A%20%3Chttp%3A%2F%2Fwikiba.se%2Fontology%23%3E%0APREFIX%20mardi_wd%3A%20%3Chttps%3A%2F%2Fportal.mardi4nfdi.de%2Fentity%2F%3E%0APREFIX%20mardi_wdt%3A%20%3Chttps%3A%2F%2Fportal.mardi4nfdi.de%2Fprop%2Fdirect%2F%3E%0A%0APREFIX%20bd%3A%20%3Chttp%3A%2F%2Fwww.bigdata.com%2Frdf%23%3E%0APREFIX%20wikibase%3A%20%3Chttp%3A%2F%2Fwikiba.se%2Fontology%23%3E%0A%0ASELECT%20DISTINCT%20%3Ftitle%20%3Fdoi%20%3Fmethod%20%3FmethodLabel%0A%0AWHERE%20%7B%0A%20%20%3Ffj_article%20%3Chttps%3A%2F%2Fw3id.org%2Freproduceme%2Fdoi%3E%20%3Fdoi%20.%0A%0A%20%20service%20%3Chttp%3A%2F%2Fquery.portal.mardi4nfdi.de%2Fproxy%2Fwdqs%2Fbigdata%2Fnamespace%2Fwdq%2Fsparql%3E%20%7B%0A%20%20%20%20%3Fmardi_paper%20mardi_wdt%3AP27%20%3Fdoi%20.%0A%20%20%20%20%3Fmardi_paper%20mardi_wdt%3AP159%20%3Ftitle%20.%0A%20%20%20%20%0A%20%20%20%20%3Fmardi_paper%20mardi_wdt%3AP1463%20%3Fmethod%20.%0A%20%20%20%20%3Fmethod%20rdfs%3Alabel%20%3FmethodLabel%20.%0A%20%20%7D%0A%0A%7D%0ALIMIT%201000%0A

S. Samuel and D. Mietchen 4:15

0 200 400 600 800 1000
LIMIT

0

50

100

150

200

250

300

350

E
xe

cu
tio

n
Ti

m
e

(s
)

SPARQL Query Execution Time by LIMIT

Query
1
2
3
4
5
6
7
8
9
10
Total

0 200 400 600 800 1000
LIMIT

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

M
em

or
y

U
sa

ge
 (M

B
)

SPARQL Query Memory Usage by LIMIT

Query
1
2
3
4
5
6
7
8
9
10
Total

Figure 3 Demonstration of performance measurements of the FAIR Jupyter SPARQL endpoint.
Execution time (top) and memory usage (bottom) for a set of 10 SPARQL queries that have been taken
from Tables 2, 3 and 4 and were run with different LIMIT values (10, 100, 1000). These measurements were
run with a Jupyter notebook that is available at [73], along with the respective query results. With such
a simple setup – and perhaps some additional measures like randomized order to reduce position-related
artifacts – queries could be identified that would be suitable for assessing performance of the system.

.

public-facing web frontend, a visual graph browser and user-friendly example queries essentially
turns the dataset from FAIR data into a FAIR service of potential utility in both research and
education settings.

Enhancing a dataset this way and setting up such a KG service represents an additional effort
in terms of data sharing. We cannot say at this point whether those efforts – which we have tried
to outline in this manuscript – merit the actual benefits in our case, yet our example queries
outline some of the potential benefits. We are factoring usage assessment und user feedback into
our plans guiding future development of the platform. We are welcoming others to experiment
with our workflows or to collaborate with us to adapt them to their use cases.

Assuming some level of usefulness of a service like FAIR Jupyter, keeping it useful requires
additional steps like continued maintenance as well as updates in a timely manner. When we
ran our Jupyter reproducibility pipeline that resulted in the original dataset, our search query in
PubMed Central (cf. 4.1) yielded 3467 articles in March 2023, as opposed to 1419 in February 2021,
5126 in April 2024 and 5941 in October 2024. This translates into an average of several such articles
being indexed in PubMed Central per day. We are working on establishing a pipeline that would
regularly feed new articles and their notebooks into our KG and on highlighting the successful
reproductions, e.g. by badges [42] displayed next to them or through nanopublications [17] sharing
reproducibility information about them.

TGDK

4:16 FAIR Jupyter

We are working towards extending the KG in other ways, too. For instance, we are exploring to
include – or to federate – information about institutions and citations pertaining to articles with
Jupyter notebooks, perhaps together with information about resources used alongside Jupyter
(e.g. as per Figure 29 in [71] or the MaRDI query in Table 4). We are also conscious that
our way of using MeSH terms – which are assigned by PubMed at an article level – does not
necessarily represent an optimal way to associate topics with notebooks, for which approaches like
a BERTopic [32] analysis of the notebooks themselves might be more suitable.

Furthermore, we could combine FAIR Jupyter with a ReproduceMeGit [66] service that
would take Jupyter notebooks as input, assess their reproducibility (potentially even before
the corresponding article is submitted to a publication venue) and – depending on the out-
come – invoke the KG to suggest similar notebooks (e.g. based on dependencies or topics)
with better reproducibility, better documentation or fewer styling issues as a mechanism to help
notebook authors familiarize themselves with best practices. Likewise, the FAIR Jupyter KG
would provide fertile ground for automated approaches at studying or enhancing computational
reproducibility [16, 75].

The reproducibility of any particular notebook is not set in stone, and research questions
could be formed around that (e.g. which dependencies contribute most to reproducibility decay,
and how that changes over time), which an updated KG could help address, perhaps seeded by
incorporating data from our initial run of the pipeline in 2021. This opens up questions around
how best to represent time series data in KGs, e.g. as per [20]. Other lines of research could look
at deep dependencies [50] of the Jupyter notebooks or their repositories and relate these to aspects
of reproducibility – as discussed here – or of security, e.g. as per [47]. As our pipeline is automated,
it lends itself to further integration with other automated workflows, for example in the context of
workflow systems (e.g. [29]) or machine-actionable data management plans (e.g. [49]).

In its current state, FAIR Jupyter can already support various uses in educational settings, be
that the identification of articles to choose for reprohack events [35], materials for lessons by The
Carpentries [58], for general reproducibility activities in libraries [31] or for self-guided study by
anyone wishing to learn about Jupyter, Python, software dependencies or computational reprodu-
cibility. These use cases could be expanded to include, for instance, correlates of reproducibility
with individual Python modules or their versions.

We welcome contributions from others – including from other disciplines (e.g. as per [82]) – to
the reproducibility pipeline, to the KG or to any of their suggested improvements or applications.

7 Supplementary Material Statement

The FAIR Jupyter service with links to the SPARQL endpoint, code and all the cor-
responding resources is available at https://w3id.org/fairjupyter under the GPL-3.0 li-
cense. We are committed to keeping it up for five years, i.e. until April 2029. The code
used for generating the original dataset is available at https://github.com/fusion-jena/
computational-reproducibility-pmc. The CSV files, the YARRRML and RML mappings
used for constructing the KG are available at https://github.com/fusion-jena/fairjupyter
and in Zenodo [69].

Environmental footprint

To estimate the environmental impact of our computation, we leveraged a tool from the Green Al-
gorithms project (http://www.green-algorithms.org/). This tool calculates the environmental
footprint based on hardware configuration, total runtime, and location. To generate the original
dataset, the pipeline consumed 373.78 kWh, resulting in a carbon footprint of approximately

https://w3id.org/fairjupyter
https://github.com/fusion-jena/computational-reproducibility-pmc
https://github.com/fusion-jena/computational-reproducibility-pmc
https://github.com/fusion-jena/fairjupyter
http://www.green-algorithms.org/

S. Samuel and D. Mietchen 4:17

126.58 kg CO2e, equivalent to 11.51 tree years when using default values for Germany. The
pipeline for constructing the KG took 20.8 minutes, resulting in a carbon footprint of 7.33 g CO2e.
The carbon footprint of the query execution from Table 2 is around 151.48mg CO2e.

Ethical considerations

The original dataset contained the email addresses of the corresponding authors, which are available
from PubMed Central as part of the respective article’s full text. We have not included these
author email addresses within the publicly available KG, since the increased accessibility of the
data in the graph also increases the potential for misuse. However, we retain these emails internally
to facilitate communication with authors regarding their repositories and the reproducibility of
their work.

8 Impact of the Resource

This emerging resource which enhances reproducibility and facilitates information retrieval through
KGs, has the potential for impact not just in the Semantic Web community but also other
domain-specific communities that extensively work with Jupyter notebooks. Its methodologies are
transferable to other domains, making it pertinent to the broader KG community. A bottleneck
of our workflow is the availability of full-text access to research articles and the permission to
mine them. These conditions are met for biomedicine through the PubMed Central platform
that we used, and it provided us with JATS XML, which is straightforward to mine. In principle,
our workflow could be adapted to use any other such full-text component instead or in addition.
This seems technically doable for Biodiversity PMC [2], an initiative at the Swiss Institute of
Bioinformatics that builds on the efforts of PubMed Central and enriches it with additional articles
and other information from the biodiversity domain. Another full-text repository amenable to
mining is of course arXiv [1], where much of the KG literature can be found already. In both cases,
the number of additional Jupyter notebooks that the modified workflow would yield is small relative
to the route we chose, but we will keep an eye on the respective developments. FAIR Jupyter can
be leveraged for executing federated queries with other resources like Wikidata, as demonstrated
in Table 4. This could be expanded further: for instance, one could retrieve additional information
such as demographics for papers, authors, affiliations, and details about software packages – see
[46] for some gender-based examples. Given the widespread use of Jupyter notebooks across
various disciplines in data science, including KG applications, this resource targets a central artifact
critical to computational research. It could serve as a guideline for developing recommendations
and best practices for creating, maintaining, and executing computational notebooks [56, 41] or
setting up services around that, e.g. as per [34]. The resource also offers opportunities to uncover
new insights from the dataset that we have not yet explored. These could include, for instance,
institutional rankings, or research background of the people involved in successful replications vs.
replication problems.

We aim to distill insights from this study into recommendations and infrastructure that
enhance the reproducibility of Jupyter notebooks and facilitate the validation of fundamental
reproducibility standards. Addressing this challenge requires continued engagement from users
and providers of computational resources. We are investigating ways to integrate our materials,
workflows, and findings with educational initiatives such as The Carpentries. We are currently
incorporating these materials into our own teaching, e.g. we are using and testing it while teaching
a “Management of Scientific Data” course at the University of Jena. We are in touch with
organizers of ReproHack events, who are interested in using our graph and pipeline to help event
attendees find suitable examples to work on. The participants can collaborate to fix notebooks and

TGDK

4:18 FAIR Jupyter

submit pull requests to repositories, fostering a community effort to improve reproducibility not
only of Jupyter notebooks but also of associated repositories, datasets, and results. In the context
of the National Research Data Initiative (NFDI) in Germany, two new projects (Jupyter4NFDI
and KGI4NFDI) have recently been approved that will provide Jupyter and KG services to dozens
of projects involving hundreds of institutions across Germany. We are involved with both and
working on including FAIRJupyter into the education and training materials being prepared and
disseminated in this context. Both through [71] and through our own editorial activities, we are in
touch with a number of journals about their respective reproducibility efforts, where our pipeline
and/or the graph are considered to become either part of those efforts or a reference or to be
named as a collection of best practice examples or things to avoid. One of us is involved with
reproducibility-focused research projects like TIER2 and also serves on the Steering Committee of
the German Reproducibility Network. Last but not least, we have been invited to contribute a
piece to the Jupyter community blog. Through all these channels, we are receiving feedback and
suggestions for developing the resource further and adapting it to specific use cases. As for running
our PMC pipeline continuously, we are currently writing this up as a preregistration study aimed
at testing the reproducibility of [71] with data from the full year of 2024. We would pipe those
2024 data into a graph in early 2025 and then make the pipeline available to FAIRJupyter users.

9 Conclusion

In this paper, we present the FAIR Jupyter ontology and knowledge graph designed for the
semantic sharing and granular exploration of a computational notebook reproducibility dataset.
The proposed FAIR Jupyter dataset and knowledge graph are derived from GitHub-hosted Jupyter
notebooks linked to biomedical publications. Using state-of-the-art processes and tools, this
resource is made available on the web, adhering to best practices. The resulting KG, accessible
via a SPARQL endpoint and a web service, exemplifies how to create such resources using
advanced methodologies and tools. Although it primarily focuses on the biomedical domain, the
methodologies are broadly applicable, making the resource valuable to the wider KG research
community and for KG-related education. The central focus on Jupyter notebooks, a common
tool in data science, underscores the resource’s relevance across various disciplines. Our paper
emphasizes technical documentation to enhance usability for both educational purposes and
research. We hope that focus on the intersection between KGs, reproducibility and research
software engineering will provide fertile ground for engagement from the respective communities
and stimulate interactions between them. An example of further research benefiting from our graph
would be reproducibility studies focused on deep dependencies of Jupyter notebooks (zooming
in on landscape analyses of deep dependencies like [50]). We also plan to establish a pipeline
to regularly add new articles and their notebooks into our KG, while highlighting successful
reproductions.

References
1 arXiv. URL: https://arxiv.org/.
2 Biodiversity PMC. URL:

https://biodiversitypmc.sibils.org/.
3 DOAP: Description of a project. URL: http:

//usefulinc.com/ns/doap#.
4 flake8nb. URL: https://github.com/s-weigand/

flake8-nb.
5 GitHub REST API. URL: https://docs.github.

com/en/rest/guides/getting-started-with-the-
rest-api.

6 JupyterCon’23. URL: https://cfp.jupytercon.
com/2023/talk/FSMWLQ/.

7 Matey. URL: https://rml.io/yarrrml/matey/.
8 MeSH (Medical Subject Headings). URL: https:

//www.ncbi.nlm.nih.gov/mesh.
9 MeSH SPARQL Endpoint. URL: https://id.nlm.

nih.gov/mesh/sparql.
10 SQLite. URL: https://www.sqlite.org.
11 vis.js. URL: https://visjs.org/.
12 Ibrahim Abdelaziz, Julian Dolby, Jamie P. Mc-

Cusker, and Kavitha Srinivas. A toolkit for gener-

https://arxiv.org/
https://biodiversitypmc.sibils.org/
http://usefulinc.com/ns/doap#
http://usefulinc.com/ns/doap#
https://github.com/s-weigand/flake8-nb
https://github.com/s-weigand/flake8-nb
https://docs.github.com/en/rest/guides/getting-started-with-the-rest-api
https://docs.github.com/en/rest/guides/getting-started-with-the-rest-api
https://docs.github.com/en/rest/guides/getting-started-with-the-rest-api
https://cfp.jupytercon.com/2023/talk/FSMWLQ/
https://cfp.jupytercon.com/2023/talk/FSMWLQ/
https://rml.io/yarrrml/matey/
https://www.ncbi.nlm.nih.gov/mesh
https://www.ncbi.nlm.nih.gov/mesh
https://id.nlm.nih.gov/mesh/sparql
https://id.nlm.nih.gov/mesh/sparql
https://www.sqlite.org
https://visjs.org/

S. Samuel and D. Mietchen 4:19

ating code knowledge graphs. In Anna Lisa Gentile
and Rafael Gonçalves, editors, K-CAP ’21: Know-
ledge Capture Conference, Virtual Event, USA,
December 2-3, 2021, pages 137–144. ACM, 2021.
doi:10.1145/3460210.3493578.

13 Julián Arenas-Guerrero, David Chaves-Fraga,
Jhon Toledo, María S. Pérez, and Oscar Corcho.
Morph-KGC: Scalable knowledge graph material-
ization with mapping partitions. Semantic Web,
15(1):1–20, 2024. doi:10.3233/SW-223135.

14 Sören Auer, Viktor Kovtun, Manuel Prinz, Anna
Kasprzik, Markus Stocker, and Maria Esther Vidal.
Towards a knowledge graph for science. In Pro-
ceedings of the 8th international conference on
web intelligence, mining and semantics, pages 1–6,
2018. doi:10.1145/3227609.3227689.

15 Kathrin Blagec, Adriano Barbosa-Silva, Simon Ott,
and Matthias Samwald. A curated, ontology-based,
large-scale knowledge graph of artificial intelligence
tasks and benchmarks. Scientific Data, 9(1):322,
2022.

16 Ben Bogin, Kejuan Yang, Shashank Gupta, Kyle
Richardson, Erin Bransom, Peter Clark, Ashish
Sabharwal, and Tushar Khot. Super: Evaluat-
ing agents on setting up and executing tasks from
research repositories, 2024. doi:10.48550/arXiv.
2409.07440.

17 Cristina-Iulia Bucur, Tobias Kuhn, Davide Ceolin,
and Jacco van Ossenbruggen. Nanopublication-
based semantic publishing and reviewing: a field
study with formalization papers. PeerJ Computer
Science, 9:e1159, 2023. doi:10.7717/peerj-cs.
1159.

18 Jeremy J Carroll, Ian Dickinson, Chris Dollin,
Dave Reynolds, Andy Seaborne, and Kevin Wilkin-
son. Jena: implementing the semantic web re-
commendations. In Proceedings of the 13th in-
ternational World Wide Web conference on Al-
ternate track papers & posters, pages 74–83, 2004.
doi:10.1145/1013367.1013381.

19 Souti Chattopadhyay, Ishita Prasad, Austin Z
Henley, Anita Sarma, and Titus Barik. What’s
wrong with computational notebooks? pain points,
needs, and design opportunities. In Proceedings
of the 2020 CHI Conference on Human Factors
in Computing Systems, pages 1–12, 2020. doi:
10.1145/3313831.3376729.

20 Zheyuan Chen, Yuwei Wan, Ying Liu, and Agustin
Valera-Medina. A knowledge graph-supported in-
formation fusion approach for multi-faceted con-
ceptual modelling. Inf. Fusion, 101:101985, 2024.
doi:10.1016/j.inffus.2023.101985.

21 Paolo Ciccarese, Stian Soiland-Reyes, Khalid Bel-
hajjame, Alasdair J. G. Gray, Carole A. Goble, and
Tim Clark. PAV ontology: provenance, authoring
and versioning. J. Biomed. Semant., 4:1–22, 2013.
doi:10.1186/2041-1480-4-37.

22 Peter J. A. Cock, Tiago Antao, Jeffrey T. Chang,
Brad A. Chapman, Cymon J. Cox, Andrew Dalke,
Iddo Friedberg, Thomas Hamelryck, Frank Kauff,
Bartek Wilczynski, and Michiel J. L. de Hoon.
Biopython: freely available Python tools for com-
putational molecular biology and bioinformatics.
Bioinformatics, 25(11):1422–1423, 2009. doi:
10.1093/bioinformatics/btp163.

23 The MaRDI consortium. MaRDI: Mathemat-
ical Research Data Initiative Proposal, May 2022.
doi:10.5281/zenodo.6552436.

24 Anastasia Dimou, Miel Vander Sande, Pieter
Colpaert, Ruben Verborgh, Erik Mannens, and
Rik Van de Walle. Rml: A generic language for
integrated rdf mappings of heterogeneous data.
Ldow, 1184, 2014. URL: https://ceur-ws.org/
Vol-1184/ldow2014_paper_01.pdf.

25 Diego Esteves, Diego Moussallem, Ciro Baron
Neto, Tommaso Soru, Ricardo Usbeck, Markus
Ackermann, and Jens Lehmann. Mex vocabulary:
a lightweight interchange format for machine learn-
ing experiments. In Proceedings of the 11th Inter-
national Conference on Semantic Systems, pages
169–176, 2015. doi:10.1145/2814864.2814883.

26 Michael Färber. The microsoft academic know-
ledge graph: A linked data source with 8 bil-
lion triples of scholarly data. In The Semantic
Web – ISWC 2019, pages 113–129, Cham, 2019.
Springer International Publishing. doi:10.1007/
978-3-030-30796-7_8.

27 Michael Färber. Analyzing the github reposit-
ories of research papers. In Ruhua Huang, Dan
Wu, Gary Marchionini, Daqing He, Sally Jo Cun-
ningham, and Preben Hansen, editors, JCDL
’20: Proceedings of the ACM/IEEE Joint Confer-
ence on Digital Libraries in 2020, Virtual Event,
China, August 1-5, 2020, JCDL ’20, pages 491–
492, New York, NY, USA, 2020. ACM. doi:
10.1145/3383583.3398578.

28 Daniel Garijo and Yolanda Gil. Augmenting
PROV with plans in P-PLAN: scientific processes
as linked data. In Tomi Kauppinen, Line C.
Pouchard, and Carsten Keßler, editors, Proceed-
ings of the Second International Workshop on
Linked Science 2012 - Tackling Big Data, Bo-
ston, MA, USA, November 12, 2012, volume 951
of CEUR Workshop Proceedings. CEUR Work-
shop Proceedings, CEUR-WS.org, 2012. URL:
https://ceur-ws.org/Vol-951/paper6.pdf.

29 Carole Goble, Sarah Cohen-Boulakia, Stian
Soiland-Reyes, Daniel Garijo, Yolanda Gil, Mi-
chael R. Crusoe, Kristian Peters, and Daniel
Schober. FAIR Computational Workflows. Data
Intelligence, 2(1-2):108–121, 2020. doi:10.1162/
dint_a_00033.

30 Brian E. Granger and Fernando Perez. Jupyter:
Thinking and Storytelling With Code and Data.
Computing in Science and Engineering, 23(2):7–14,
2021. doi:10.1109/MCSE.2021.3059263.

31 Sabrina Granger. How research reprodu-
cibility challenges librarians’ skill sets. A
French librarian’s perspective. Journal for
Reproducibility in Neuroscience, 2, 2020.
https://jrn.trialanderror.org/pub/french-
librarians-perspective.

32 Maarten Grootendorst. Bertopic: Neural topic
modeling with a class-based TF-IDF procedure.
CoRR, abs/2203.05794, 2022. doi:10.48550/
arXiv.2203.05794.

33 Björn Grüning, John Chilton, Johannes Köster,
Ryan Dale, Nicola Soranzo, Marius van den Beek,
Jeremy Goecks, Rolf Backofen, Anton Nekrutenko,
and James Taylor. Practical Computational Re-

TGDK

https://doi.org/10.1145/3460210.3493578
https://doi.org/10.3233/SW-223135
https://doi.org/10.1145/3227609.3227689
https://doi.org/10.48550/arXiv.2409.07440
https://doi.org/10.48550/arXiv.2409.07440
https://doi.org/10.7717/peerj-cs.1159
https://doi.org/10.7717/peerj-cs.1159
https://doi.org/10.1145/1013367.1013381
https://doi.org/10.1145/3313831.3376729
https://doi.org/10.1145/3313831.3376729
https://doi.org/10.1016/j.inffus.2023.101985
https://doi.org/10.1186/2041-1480-4-37
https://doi.org/10.1093/bioinformatics/btp163
https://doi.org/10.1093/bioinformatics/btp163
https://doi.org/10.5281/zenodo.6552436
https://ceur-ws.org/Vol-1184/ldow2014_paper_01.pdf
https://ceur-ws.org/Vol-1184/ldow2014_paper_01.pdf
https://doi.org/10.1145/2814864.2814883
https://doi.org/10.1007/978-3-030-30796-7_8
https://doi.org/10.1007/978-3-030-30796-7_8
https://doi.org/10.1145/3383583.3398578
https://doi.org/10.1145/3383583.3398578
https://ceur-ws.org/Vol-951/paper6.pdf
https://doi.org/10.1162/dint_a_00033
https://doi.org/10.1162/dint_a_00033
https://doi.org/10.1109/MCSE.2021.3059263
https://doi.org/10.48550/arXiv.2203.05794
https://doi.org/10.48550/arXiv.2203.05794

4:20 FAIR Jupyter

producibility in the Life Sciences. Cell systems,
6(6):631–635, 2018.

34 Björn Hagemeier, Arnim Bleier, Bernd Flemisch,
Matthias Lieber, Klaus Reuter, and George Dog-
aru. Jupyter4nfdi, July 2024. doi:10.5281/
zenodo.12699382.

35 Kristina Hettne, Ricarda Proppert, Linda Nab,
L. Paloma Rojas-Saunero, and Daniela Gawehns.
Reprohacknl 2019: how libraries can promote re-
search reproducibility through community engage-
ment. IASSIST quarterly, 44(1-2):1–10, 2020.

36 Pieter Heyvaert, Ben De Meester, Anastasia
Dimou, and Ruben Verborgh. Declarative rules
for linked data generation at your fingertips! In
The Semantic Web: ESWC 2018 Satellite Events:
ESWC 2018 Satellite Events, Heraklion, Crete,
Greece, June 3-7, 2018, Revised Selected Pa-
pers 15, pages 213–217. Springer, 2018. doi:
10.1007/978-3-319-98192-5_40.

37 Nicolas Hubert, Pierre Monnin, Mathieu d’Aquin,
Armelle Brun, and Davy Monticolo. Pygraft: Con-
figurable generation of schemas and knowledge
graphs at your fingertips. CoRR, abs/2309.03685,
2023. doi:10.48550/arXiv.2309.03685.

38 Hassan Hussein, Kheir Eddine Farfar, Allard Oelen,
Oliver Karras, and Sören Auer. Increasing re-
producibility in science by interlinking semantic
artifact descriptions in a knowledge graph. In
International Conference on Asian Digital Librar-
ies, pages 220–229. Springer, 2023. doi:10.1007/
978-981-99-8088-8_19.

39 Mohamad Yaser Jaradeh, Allard Oelen, Kheir Ed-
dine Farfar, Manuel Prinz, Jennifer D’Souza,
Gábor Kismihók, Markus Stocker, and Sören Auer.
Open research knowledge graph: next generation
infrastructure for semantic scholarly knowledge.
In Proceedings of the 10th International Confer-
ence on Knowledge Capture, pages 243–246, 2019.
doi:10.1145/3360901.3364435.

40 Aidan Kelley and Daniel Garijo. A framework
for creating knowledge graphs of scientific software
metadata. Quantitative Science Studies, 2(4):1423–
1446, 2021. doi:10.1162/qss_a_00167.

41 Dominik Kerzel, Birgitta König-Ries, and Sheeba
Samuel. MLProvLab: Provenance management
for data science notebooks. In Datenbanksysteme
für Business, Technologie und Web (BTW 2023),
20. Fachtagung des GI-Fachbereichs „Datenbanken
und Informationssysteme" (DBIS), 06.-10, März
2023, Dresden, Germany, Proceedings, volume
P-331 of LNI, pages 965–980. Gesellschaft für In-
formatik e.V., 2023. doi:10.18420/BTW2023-66.

42 Mallory C Kidwell, Ljiljana Lazarevic, Erica
Baranski, Tom E. Hardwicke, Sarah Piechow-
ski, Lina-Sophia Falkenberg, Curtis Kennett, Ag-
nieszka Slowik, Carina Sonnleitner, Chelsey Hess-
Holden, Timothy M Errington, Susann Fiedler,
and Brian A Nosek. Badges to Acknowledge
Open Practices: A Simple, Low-Cost, Effective
Method for Increasing Transparency. PLOS Bio-
logy, 14(5):e1002456, 2016. arXiv:27171007.

43 Thomas Kluyver, Benjamin Ragan-Kelley,
Fernando Pérez, Brian E. Granger, Matthias
Bussonnier, Jonathan Frederic, Kyle Kelley,
Jessica B. Hamrick, Jason Grout, Sylvain Corlay,
Paul Ivanov, Damián Avila, Safia Abdalla, Carol

Willing, and Jupyter Development Team. Jupyter
notebooks - a publishing format for reproducible
computational workflows. In Fernando Loizides
and Birgit Schmidt, editors, Positioning and
Power in Academic Publishing: Players, Agents
and Agendas, 20th International Conference
on Electronic Publishing, Göttingen, Germany,
June 7-9, 2016, pages 87–90. IOS Press, 2016.
doi:10.3233/978-1-61499-649-1-87.

44 Anna-Lena Lamprecht, Leyla J. García, Mateusz
Kuzak, Carlos Martinez-Ortiz, Ricardo Arcila, Eva
Martin Del Pico, Victoria Dominguez Del Angel,
Stephanie van de Sandt, Jon C. Ison, Paula Andrea
Martínez, Peter McQuilton, Alfonso Valencia, Jen-
nifer L. Harrow, Fotis E. Psomopoulos, Josep Lluis
Gelpí, Neil P. Chue Hong, Carole A. Goble, and
Salvador Capella-Gutiérrez. Towards FAIR prin-
ciples for research software. Data Sci., 3(1):37–59,
2020. doi:10.3233/ds-190026.

45 Timothy Lebo, Satya Sahoo, Deborah McGuinness,
Khalid Belhajjame, James Cheney, David Corsar,
Daniel Garijo, Stian Soiland-Reyes, Stephan Zed-
nik, and Jun Zhao. Prov-o: The prov ontology.
W3C recommendation, 30, 2013.

46 Ekaterina Levitskaya, Gizem Korkmaz, Daniel
Mietchen, and Lane Rasberry. Analysis of linked
github and wikidata, December 2022. doi:10.
5281/zenodo.7443339.

47 Mario Lins, René Mayrhofer, Michael Roland,
Daniel Hofer, and Martin Schwaighofer. On the
critical path to implant backdoors and the effect-
iveness of potential mitigation techniques: Early
learnings from xz, 2024. doi:10.48550/arXiv.
2404.08987.

48 Chang Liu, Matthew Kim, Michael Rueschman,
and Satya S. Sahoo. ProvCaRe: A Large-Scale
Semantic Provenance Resource for Scientific Re-
producibility, pages 59–73. Springer Interna-
tional Publishing, Cham, 2021. doi:10.1007/
978-3-030-67681-0_5.

49 Tomasz Miksa, Stephanie Renee Simms, Daniel
Mietchen, and Sarah Jones. Ten principles for
machine-actionable data management plans. PLoS
Comput. Biol., 15(3):e1006750, 2019. doi:10.
1371/journal.pcbi.1006750.

50 Andrew Nesbitt, Boris Veytsman, Daniel Mietchen,
Eva Maxfield Brown, James Howison, João Fe-
lipe Pimentel, Laurent Hébert-Dufresne, and
Stephan Druskat. Biomedical open source soft-
ware: Crucial packages and hidden heroes. CoRR,
abs/2404.06672, 2024. doi:10.48550/arXiv.2404.
06672.

51 Finn Årup Nielsen, Daniel Mietchen, and Egon L.
Willighagen. Scholia, scientometrics and wikidata.
In Eva Blomqvist, Katja Hose, Heiko Paul-
heim, Agnieszka Lawrynowicz, Fabio Ciravegna,
and Olaf Hartig, editors, The Semantic Web:
ESWC 2017 Satellite Events - ESWC 2017
Satellite Events, Portorož, Slovenia, May 28 -
June 1, 2017, Revised Selected Papers, volume
10577 of Lecture Notes in Computer Science,
pages 237–259. Springer, 2017. doi:10.1007/
978-3-319-70407-4_36.

52 Daniel Nüst, Vanessa V. Sochat, Ben Marwick,
Stephen J. Eglen, Tim Head, Tony Hirst, and
Benjamin D Evans. Ten simple rules for writing

https://doi.org/10.5281/zenodo.12699382
https://doi.org/10.5281/zenodo.12699382
https://doi.org/10.1007/978-3-319-98192-5_40
https://doi.org/10.1007/978-3-319-98192-5_40
https://doi.org/10.48550/arXiv.2309.03685
https://doi.org/10.1007/978-981-99-8088-8_19
https://doi.org/10.1007/978-981-99-8088-8_19
https://doi.org/10.1145/3360901.3364435
https://doi.org/10.1162/qss_a_00167
https://doi.org/10.18420/BTW2023-66
https://arxiv.org/abs/27171007
https://doi.org/10.3233/978-1-61499-649-1-87
https://doi.org/10.3233/ds-190026
https://doi.org/10.5281/zenodo.7443339
https://doi.org/10.5281/zenodo.7443339
https://doi.org/10.48550/arXiv.2404.08987
https://doi.org/10.48550/arXiv.2404.08987
https://doi.org/10.1007/978-3-030-67681-0_5
https://doi.org/10.1007/978-3-030-67681-0_5
https://doi.org/10.1371/journal.pcbi.1006750
https://doi.org/10.1371/journal.pcbi.1006750
https://doi.org/10.48550/arXiv.2404.06672
https://doi.org/10.48550/arXiv.2404.06672
https://doi.org/10.1007/978-3-319-70407-4_36
https://doi.org/10.1007/978-3-319-70407-4_36

S. Samuel and D. Mietchen 4:21

Dockerfiles for reproducible data science. PLOS
Computational Biology, 16(11):e1008316, 2020.
doi:10.1371/journal.pcbi.1008316.

53 Jeff Z Pan. Resource description framework. In
Handbook on ontologies, pages 71–90. Springer,
2009. doi:10.1007/978-3-540-92673-3_3.

54 Silvio Peroni and David Shotton. Fabio and cito:
Ontologies for describing bibliographic resources
and citations. Journal of Web Semantics, 17:33–43,
2012. doi:10.1016/j.websem.2012.08.001.

55 João Felipe Pimentel, Leonardo Murta, Vanessa
Braganholo, and Juliana Freire. A large-scale study
about quality and reproducibility of jupyter note-
books. In Proceedings of the 16th International
Conference on Mining Software Repositories, MSR
’19, pages 507–517, Piscataway, NJ, USA, 2019.
IEEE Press. doi:10.1109/MSR.2019.00077.

56 João Felipe Pimentel, Leonardo Murta, Vanessa
Braganholo, and Juliana Freire. Understanding
and improving the quality and reproducibility of
jupyter notebooks. Empir. Softw. Eng., 26(4):65,
2021. doi:10.1007/s10664-021-09961-9.

57 Project Jupyter. nbdime: Jupyter notebook diff
and merge tools. https://github.com/jupyter/
nbdime, 2021. Accessed 22 November 2024.

58 Sarah Pugachev. What are “the carpentries” and
what are they doing in the library? portal: Lib-
raries and the Academy, 19(2):209–214, 2019.

59 Richard J. Roberts. Pubmed central: The gen-
bank of the published literature. Proceedings of
the National Academy of Sciences, 98(2):381–382,
2001.

60 A Rule, A Birmingham, C Zuniga, I Altintas,
SC Huang, R Knight, N Moshiri, MH Nguyen,
SB Rosenthal, F Pérez, et al. Ten simple rules
for writing and sharing computational analyses in
jupyter notebooks. Plos Computational Biology,
15(7):e1007007–e1007007, 2019. doi:10.1371/
journal.pcbi.1007007.

61 Adam Rule, Aurélien Tabard, and James D. Hol-
lan. Exploration and explanation in computa-
tional notebooks. In Regan L. Mandryk, Mark
Hancock, Mark Perry, and Anna L. Cox, editors,
Proceedings of the 2018 CHI Conference on Hu-
man Factors in Computing Systems, CHI 2018,
Montreal, QC, Canada, April 21-26, 2018, CHI
’18, page 32, New York, NY, USA, 2018. ACM.
doi:10.1145/3173574.3173606.

62 Satya S Sahoo, Joshua Valdez, Michael Rueschman,
and Matthew Kim. Semantic provenance graph
for reproducibility of biomedical research studies:
Generating and analyzing graph structures from
published literature. In MEDINFO 2019: Health
and Wellbeing e-Networks for All, pages 328–332.
IOS Press, 2019. doi:10.3233/SHTI190237.

63 Angelo A Salatino, Thiviyan Thanapalasingam,
Andrea Mannocci, Francesco Osborne, and En-
rico Motta. The computer science ontology: a
large-scale taxonomy of research areas. In The
Semantic Web–ISWC 2018: 17th International
Semantic Web Conference, Monterey, CA, USA,
October 8–12, 2018, Proceedings, Part II 17,
pages 187–205. Springer, 2018. doi:10.1007/
978-3-030-00668-6_12.

64 Sheeba Samuel and Birgitta König-Ries. Com-
bining P-Plan and the REPRODUCE-ME on-
tology to achieve semantic enrichment of sci-
entific experiments using interactive notebooks.
In The Semantic Web: ESWC 2018 Satellite
Events: Heraklion, Crete, Greece, June 3-7, 2018,
pages 126–130. Springer, 2018. doi:10.1007/
978-3-319-98192-5_24.

65 Sheeba Samuel and Birgitta König-Ries. Prov-
Book: Provenance-based semantic enrichment of
interactive notebooks for reproducibility. In Pro-
ceedings of the ISWC 2018 Posters & Demon-
strations, Industry and Blue Sky Ideas Tracks
co-located with 17th International Semantic Web
Conference (ISWC 2018), Monterey, USA, Octo-
ber 8th - to - 12th, 2018, volume 2180 of CEUR
Workshop Proceedings. CEUR-WS.org, 2018. URL:
https://ceur-ws.org/Vol-2180/paper-57.pdf.

66 Sheeba Samuel and Birgitta König-Ries. Repro-
duceMeGit: A visualization tool for analyzing re-
producibility of jupyter notebooks. In Provenance
and Annotation of Data and Processes, pages 201–
206, Cham, 2021. Springer International Publish-
ing. doi:10.1007/978-3-030-80960-7_12.

67 Sheeba Samuel and Birgitta König-Ries. End-
to-end provenance representation for the under-
standability and reproducibility of scientific ex-
periments using a semantic approach. Journal of
biomedical semantics, 13(1):1, 2022. doi:10.1186/
s13326-021-00253-1.

68 Sheeba Samuel and Daniel Mietchen. FAIR
Jupyter. Service, DFG 514664767, DFG
460135501, DFG 521453681 (visited on 2024-11-
29). URL: https://w3id.org/fairjupyter, doi:
10.4230/artifacts.22527.

69 Sheeba Samuel and Daniel Mietchen. FAIR Jupy-
ter Knowledge Graph: v1.0. Software, version
1.0., DFG 514664767, DFG 460135501, DFG
521453681 (visited on 2024-11-29). doi:10.5281/
zenodo.14197755.

70 Sheeba Samuel and Daniel Mietchen. Dataset of a
Study of Computational reproducibility of Jupyter
notebooks from biomedical publications. https:
//doi.org/10.5281/zenodo.8226725, 2023.

71 Sheeba Samuel and Daniel Mietchen. Computa-
tional reproducibility of Jupyter notebooks from
biomedical publications. GigaScience, 13:giad113,
2024.

72 Sheeba Samuel and Daniel Mietchen. FAIR Jupy-
ter Knowledge Graph, September 2024. doi:
10.5281/zenodo.13845701.

73 Sheeba Samuel and Daniel Mietchen. FAIR Jupy-
ter Knowledge Graph: SPARQL Queries and Per-
formance Evaluation and Benchmark, September
2024. doi:10.5281/zenodo.13847627.

74 Max Schröder, Frank Krüger, and Sascha Spors.
Reproducible research is more than publishing re-
search artefacts: A systematic analysis of jupy-
ter notebooks from research articles. CoRR,
abs/1905.00092, 2019. arXiv:1905.00092, doi:
10.48550/arXiv.1905.00092.

75 Zachary S. Siegel, Sayash Kapoor, Nitya Nag-
dir, Benedikt Stroebl, and Arvind Narayanan.
Core-bench: Fostering the credibility of published

TGDK

https://doi.org/10.1371/journal.pcbi.1008316
https://doi.org/10.1007/978-3-540-92673-3_3
https://doi.org/10.1016/j.websem.2012.08.001
https://doi.org/10.1109/MSR.2019.00077
https://doi.org/10.1007/s10664-021-09961-9
https://github.com/jupyter/nbdime
https://github.com/jupyter/nbdime
https://doi.org/10.1371/journal.pcbi.1007007
https://doi.org/10.1371/journal.pcbi.1007007
https://doi.org/10.1145/3173574.3173606
https://doi.org/10.3233/SHTI190237
https://doi.org/10.1007/978-3-030-00668-6_12
https://doi.org/10.1007/978-3-030-00668-6_12
https://doi.org/10.1007/978-3-319-98192-5_24
https://doi.org/10.1007/978-3-319-98192-5_24
https://ceur-ws.org/Vol-2180/paper-57.pdf
https://doi.org/10.1007/978-3-030-80960-7_12
https://doi.org/10.1186/s13326-021-00253-1
https://doi.org/10.1186/s13326-021-00253-1
https://w3id.org/fairjupyter
https://doi.org/10.4230/artifacts.22527
https://doi.org/10.4230/artifacts.22527
https://doi.org/10.5281/zenodo.14197755
https://doi.org/10.5281/zenodo.14197755
https://doi.org/10.5281/zenodo.8226725
https://doi.org/10.5281/zenodo.8226725
https://doi.org/10.5281/zenodo.13845701
https://doi.org/10.5281/zenodo.13845701
https://doi.org/10.5281/zenodo.13847627
https://arxiv.org/abs/1905.00092
https://doi.org/10.48550/arXiv.1905.00092
https://doi.org/10.48550/arXiv.1905.00092

4:22 FAIR Jupyter

research through a computational reproducibil-
ity agent benchmark, 2024. doi:10.48550/arXiv.
2409.11363.

76 Mari Carmen Suárez-Figueroa, Asunción Gómez-
Pérez, and Mariano Fernández-López. The
neon methodology for ontology engineering. In
Ontology engineering in a networked world,
pages 9–34. Springer, 2011. doi:10.1007/
978-3-642-24794-1_2.

77 Ana Trisovic, Matthew K Lau, Thomas Pasquier,
and Mercè Crosas. A large-scale study on re-
search code quality and execution. Scientific Data,
9(1):60, 2022.

78 Denny Vrandečić, Lydia Pintscher, and Markus
Krötzsch. Wikidata: The making of. In Ying Ding,
Jie Tang, Juan F. Sequeda, Lora Aroyo, Carlos
Castillo, and Geert-Jan Houben, editors, Com-
panion Proceedings of the ACM Web Conference
2023, WWW 2023, Austin, TX, USA, 30 April
2023 - 4 May 2023, pages 615–624. ACM, 2023.
doi:10.1145/3543873.3585579.

79 Jiawei Wang, Tzu-yang Kuo, Li Li, and Andreas
Zeller. Restoring reproducibility of jupyter note-
books. In 2020 IEEE/ACM 42nd International
Conference on Software Engineering: Companion
Proceedings (ICSE-Companion), pages 288–289,
2020. doi:10.1145/3377812.3390803.

80 Mark D Wilkinson, Michel Dumontier, IJs-
brand Jan Aalbersberg, Gabrielle Appleton, Myles
Axton, Arie Baak, Niklas Blomberg, Jan-Willem
Boiten, Luiz Bonino da Silva Santos, Philip E
Bourne, et al. The FAIR Guiding Principles for
scientific data management and stewardship. Sci-
entific data, 3(1):1–9, 2016.

81 Alistair Willis, Patricia Charlton, and Tony Hirst.
Developing students’ written communication skills
with jupyter notebooks. In Proceedings of the
51st ACM Technical Symposium on Computer
Science Education, pages 1089–1095, 2020. doi:
10.1145/3328778.3366927.

82 Morgan F. Wofford, Bernadette M. Boscoe,
Christine L. Borgman, Irene V. Pasquetto, and
Milena S. Golshan. Jupyter notebooks as dis-
covery mechanisms for open science: Citation
practices in the astronomy community. Comput-
ing in Science & Engineering, 22(1):5–15, 2020.
doi:10.1109/MCSE.2019.2932067.

83 Jian Xu, Sunkyu Kim, Min Song, Minbyul Jeong,
Donghyeon Kim, Jaewoo Kang, Justin F Rousseau,
Xin Li, Weijia Xu, Vetle I Torvik, et al. Build-
ing a pubmed knowledge graph. Scientific data,
7(1):205, 2020.

https://doi.org/10.48550/arXiv.2409.11363
https://doi.org/10.48550/arXiv.2409.11363
https://doi.org/10.1007/978-3-642-24794-1_2
https://doi.org/10.1007/978-3-642-24794-1_2
https://doi.org/10.1145/3543873.3585579
https://doi.org/10.1145/3377812.3390803
https://doi.org/10.1145/3328778.3366927
https://doi.org/10.1145/3328778.3366927
https://doi.org/10.1109/MCSE.2019.2932067

S. Samuel and D. Mietchen 4:23

Table 5 The FAIR Jupyter Ontology Requirements Specification Document.

The FAIR Jupyter Ontology Requirements Specification Document
1. Purpose

The purpose of this ontology is to provide a knowledge model for analyzing, categorizing, and understanding the
reproducibility, dependencies, errors, and metadata of Jupyter notebooks cited in academic research.

2. Scope
The ontology has to focus on the computational and non-computational processes of an experiment and the data
used and generated in an experiment. The level of granularity is directly related to the competency questions and
terms identified

3. Implementation Language
The ontology will be implemented in the Web Ontology Language (OWL).

4. Intended End-Users
User 1. Researchers and academics conducting reproducibility studies.
User 2. Data scientists and developers analyzing Jupyter notebooks.
User 3. Journals and publishers interested in ensuring the reproducibility of published research.
User 4. Educational institutions integrating Jupyter notebooks into curricula.
User 5. Software tools and platforms providing support for notebook analysis and management.

5. Intended Uses
Use 1. Facilitating reproducibility studies by providing a standardized framework for analyzing notebook execution
and outcomes.
Use 2. Identifying common errors, dependencies, and issues in Jupyter notebooks to improve their reliability.
Use 3. Enabling the integration of best practices and coding standards compliance checks in Jupyter notebooks.
Use 4. Providing a basis for educational and training materials on best practices for using Jupyter notebooks in
research.

6. Ontology Requirements
a. Non-Functional Requirements

NFR 1. The ontology must be published on the Web with an open license.
NFR 2. The ontology must reuse other ontologies if required.

b. Functional Requirements: Groups of Competency Questions
CQG1. Journals CQG2. Research Fields

CQ1. What is the timeline of journals (by year) that
publish their first and tenth article mentioning a GitHub
repository with a Jupyter/iPython notebook?
CQ2. Which journals have significantly higher or lower
reproducibility rates?

CQ3. What are the top-level MeSH terms as a proxy
for their research field ranked by the number of GitHub
repositories, and which of these repositories contain at
least one Jupyter notebook?
CQ4. How does the error rate in notebooks differ by
research field?

CQG3. Articles CQG4. Repositories

CQ5. Are notebooks associated with more recent articles
more or less likely to have certain errors?
CQ6. How does the error rate in notebooks differ between
the top and bottom 10th percentiles of articles?
CQ7. How many repositories are mentioned in the art-
icles?
CQ8. What is the timeline of articles (by year) that
mention a GitHub repository with a Jupyter/iPython
notebook?
CQ9. What is the timeline of subjects (by year) that
publish their first and tenth article mentioning a GitHub
repository with a Jupyter/iPython notebook?

CQ10. What percentage of repositories mentioned in art-
icles are still available at the indicated GitHub address?
CQ11. What percentage of repositories have official re-
leases?
CQ12. What is the number of collaborators, forks, and
stars for each repository?
CQ13. How many commits have been made to the re-
pository after the publication of the article?
CQ14. Which repositories contain declared dependencies
(e.g., requirements.txt, setup.py, or Pipfile)?
CQ15. What is the percentage of Jupyter code compared
to the overall code in the repository?
CQ16. How many repositories do not contain any note-
books?

CQG5. Notebooks CQG6. Programming Languages

CQ17. How many notebooks are PEP8 compliant?
CQ18. What are the most popular modules/libraries
used in the notebooks?
CQ19. What are the most popular APIs used in the
notebooks?
CQ20. How many notebooks are in repositories that
contain a requirements.txt, setup.py, or Pipfile?
CQ21. How many notebooks are shared in the actual
order of execution of their cells?
CQ22. How many cells are code cells?
CQ23. How many cells are Markdown cells?
CQ24. Which notebooks have the highest ratio of Mark-
down cells to code cells?

CQ25. Are there groupwise differences between R and
Python notebooks/repositories in terms of errors and
reproducibility?
CQ26. What “nbformat” versions are used in the
notebooks?
CQ27. How many notebooks use “nbformat” version 3
or lower?
CQ28. What are the top 15 programming languages
used in the notebooks?
CQ29. How many Python notebooks are valid or
invalid?
CQ30. How many notebooks have an undeclared
programming language?
CQ31. What versions of Python are used in the
notebooks?

TGDK

4:24 FAIR Jupyter

Table 6 The FAIR Jupyter Ontology Requirements Specification Document.

CQG7. Notebook Reproducibility CQG8. General
CQ32. What are the common data dependencies in the
notebooks?
CQ33. What types of file errors occur in the notebooks?
CQ34. How often do notebooks reference local files?
CQ35. What are the best practices for file naming in
the notebooks?
CQ36. How often are URLs used in the notebooks, and
what issues arise from their usage?
CQ37. How frequently are persistent identifiers used in
the notebooks?
CQ38. What types of HTTP errors are encountered in
the notebooks?
CQ39. What are the common causes of failed dependen-
cies in the notebooks?
CQ40. What are the common reasons for installation
failures in the notebooks?
CQ41. How often do notebooks fail due to missing files?
CQ42. How many notebooks finish execution success-
fully?
CQ43. How many notebooks produce different results
on re-execution?
CQ44. How many notebooks produce the same results
on re-execution?

CQ45. Is the usage of other best practices (e.g., some
level of CI in the repo, PEP8 compliance in the note-
books, usage of DOIs for article, data, and code, ORCID
for authors, or having a data/code availability statement)
predictive of reproducibility success?
CQ46. How does the presence of best practices correlate
with reproducibility success?
CQ47. What percentage of authors on a article have an
ORCID?
CQ48. What is the environmental footprint of reprodu-
cing a Jupyter notebook?
CQ49. What is the distribution by country of author
affiliations for the notebooks?

7. Pre-Glossary of Terms
a. Terms from Competency Questions + Frequency

Notebook 37
Article 10
Code 7
Fail 3
Journal 2

Repository 15
GitHub 5
Python 6
File 6
Module 1

Dependencies 3
Cell 6
Execution 5
Reproducibility 4
Author 3

Error 6
Programming language 2
Research field 2
Markdown 2
Release 1

b. Terms from Answers + Frequency
Notebook 37
Article 10
Code 7
Fail 3
Journal 2

Repository 15
GitHub 5
Python 6
File 6
Module 1

Dependencies 3
Cell 7
Execution 5
Reproducibility 4
Author 3

Error 6
Programming language 2
Research field 2
Markdown 2
Release 1

c. Objects
No objects were identified.

The Reasonable Ontology Templates Framework
Martin Georg Skjæveland #

Department of Informatics, University of Oslo, Norway

Leif Harald Karlsen #

Department of Informatics, University of Oslo, Norway

Abstract
Reasonable Ontology Templates (OTTR) is a tem-
plating language for representing and instantiating
patterns. It is based on simple and generic, but
powerful, mechanisms such as recursive macro ex-
pansion, term substitution and type systems, and is
designed particularly for building and maintaining
RDF knowledge graphs and OWL ontologies.

In this resource paper, we present the formal
specifications that define the OTTR framework.
This includes the fundamentals of the OTTR lan-
guage and the adaptions to make it fit with stand-
ard semantic web languages, and two serialization
formats developed for semantic web practitioners.

We also present the OTTR framework’s support for
documenting, publishing and managing template
libraries, and for tools for practical bulk instanti-
ation of templates from tabular data and query-
able data sources. The functionality of the OTTR
framework is available for use through Lutra, an
open-source reference implementation, and other in-
dependent implementations. We report on the use
and impact of OTTR by presenting selected indus-
trial use cases. Finally, we reflect on some design
considerations of the language and framework and
present ideas for future work.

2012 ACM Subject Classification Computing methodologies → Ontology engineering; Information
systems → Data management systems; Computing methodologies → Modeling methodologies
Keywords and phrases Ontology engineering, Ontology design patterns, Template mechanism, Macros
Digital Object Identifier 10.4230/TGDK.2.2.5
Category Resource Paper
Supplementary Material The homepage for the project is ottr.xyz. Versioned releases of Lutra and
OTTR specifications are published at Zenodo. The source code for Lutra is published on GitLab
under the GNU Lesser General Public License v2.1 license. Maven artefacts for Lutra are published at
Sonatype.
InteractiveResource (Website): https://ottr.xyz/
Software: https://gitlab.com/ottr
Software: https://zenodo.org/communities/ottr/
Software (Maven artefacts): https://central.sonatype.com/namespace/xyz.ottr.lutra

Funding We acknowledge financial support from The Research Council of Norway through SIRIUS,
Centre for Scalable Data Access (237898).
Martin Georg Skjæveland : The author acknowledges funding from the EU projects RE4DY (101058384)
and Tec4MaaSEs (101138517).
Acknowledgements We wish to thank all past members of the OTTR project: Chris Kindermann,
Daniel Lupp, Evgenij Thorstensen, Henrik Forssell, Laura Slaughter, Oliver Stahl; its associated master
students: Erik Snilsberg, Lars Ivar Bull Larssen, Magnus Wiik Eckhoff, Marlen Jarholt, Preben Zahl,
Shanshan Qu; part-time programmers: Fariha Hossain, Humza Ahmad, Vinicius Graciolli, Yiyao Chen;
and SHS for their contributions to the OTTR framework. We are also grateful to the users of the
OTTR framework for all their feedback and support.
Received 2024-07-01 Accepted 2024-11-07 Published 2024-12-18
Editors Aidan Hogan, Ian Horrocks, Andreas Hotho, Lalana Kagal, and Uli Sattler
Special Issue Resources for Graph Data and Knowledge

© Martin Georg Skjæveland and Leif Harald Karlsen;
licensed under Creative Commons License CC-BY 4.0

Transactions on Graph Data and Knowledge, Vol. 2, Issue 2, Article No. 5, pp. 5:1–5:54
Transactions on Graph Data and Knowledge

T G D K Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:martige@ifi.uio.no
https://orcid.org/0000-0002-9736-8316
mailto:leifhka@ifi.uio.no
https://orcid.org/0000-0001-5131-5246
https://doi.org/10.4230/TGDK.2.2.5
https://ottr.xyz/
https://ottr.xyz/
https://gitlab.com/ottr
https://zenodo.org/communities/ottr/
https://central.sonatype.com/namespace/xyz.ottr.lutra
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/tgdk
https://www.dagstuhl.de/tgdk
https://www.dagstuhl.de

5:2 The Reasonable Ontology Templates Framework

1 Introduction

Abstraction is a fundamental concept in computer science, particularly in software engineering
and information modelling. In these disciplines, abstraction entails identifying and describing
the relevant entities and structures for the problem at hand at a suitable level of detail. Done
correctly, abstraction helps to hide unnecessary detail and presents the essence of the content
that is described to the effect that the content is clearly conveyed and easily understood, and can
hence be more efficiently processed by operations acting on the representation.

Figure 1 displays a simplified comparison of different abstraction levels with two code snippets
that both write “Hello world!” to screen. The first snippet is written in x86 Linux assembly
language1 and the second is written in the high-level programming language Python. There is a
striking difference between the two snippets: the Python code is succinct, easy to read and write
and understand, while the assembly code is far more verbose as it must orchestrate a series of
low-level resources and steps, such as memory locations and sizes, file descriptors and interrupt
handlers, in order to solve the task at hand.2 For most users, the high level of abstraction provided
by the Python snippet is appropriate when all one wants is to write messages to screen – all other
details are hidden. This code is safe and robust for this use case; its succinctness makes it difficult
to use the code in the wrong way. The assembly code is arguably incomprehensible for most users
and appears inefficient to use and manage if the task is just to write messages to screen. However,
for some expert users or use cases the level of detail and control offered by assembly languages to
interact more directly with hardware is exactly what is needed.

Most modern programming languages, like Python, offer mechanisms for different kinds of
user-defined abstractions, such as functions, classes, interfaces, and modules, and it is common
to package and distribute a set of such abstractions in an application programming interface
(API). A well-designed API offers a suitable abstraction level using terminology that is familiar
and natural for its intended users and hides the details of underlying lower-level APIs or systems.
Understanding, managing and designing APIs is a central part of modern software engineering.

The Resource Description Framework (RDF) [27] and the Web Ontology Language (OWL) [40]
are the standard languages for representing knowledge graphs and ontologies. A challenge for the
wider adoption of semantic web languages, and ontology languages in particular, is its inherent
complexity, a steep learning curve and the lack of developer-, and end user-friendly ways to interact
with their artefacts. Thus, interfaces and simplifications for eliciting the content of ontologies
are identified as opportunities for future research [56]. In this regard, it is worth noting that
these languages offer very limited options for user-defined abstractions and provide no means to
represent modelling patterns or templates that can be instantiated in a precise and deterministic
manner, and that can hide details that appear unnecessary and complex to users.

As a case in point, consider the Protégé Pizza Ontology Tutorial3 which models the domain of
pizzas for the purpose of demonstrating and teaching features of OWL and Protégé [37]. This
OWL ontology contains 22 types of pizza that are modelled following the same pattern; the
description logic axioms that represent the Margherita pizza are listed in Figure 2 (the numbers
that follow in parentheses refer to axioms in the figure): every pizza is represented as a subclass of
NamedPizza (1), some pizzas have a country of origin (2), and toppings are expressed by stating
that they are both required (3, 4) and permissible (5) for the pizza. Figure 2 also contains two
different standard serialization formats for OWL: Manchester syntax [17] and RDF Turtle [41, 2].

1 The code snippet is taken from https://gist.github.com/pablocorbalann/f9d39a80e30b8d8230a9760048
d0e575.

2 The interested reader can find more information about the assembly code in the following article:
https://pablocorbalann.medium.com/.

3 http://protege.stanford.edu/ontologies/pizza/pizza.owl

https://gist.github.com/pablocorbalann/f9d39a80e30b8d8230a9760048d0e575
https://gist.github.com/pablocorbalann/f9d39a80e30b8d8230a9760048d0e575
https://pablocorbalann.medium.com/programming-a-hello-world-in-assembly-from-the-first-line-to-the-end-x86-9c48fb499238
http://protege.stanford.edu/ontologies/pizza/pizza.owl

M. G. Skjæveland and L. H. Karlsen 5:3

x86 Linux assembly language:

section .text ; declare the .text section
global _start ; has to be declared for the linker (ld)
_start: ; entry point for _start

mov edx, len ; "invoke" the len of the message
mov ecx, msg ; "invoke" the message itself

mov ebx, 1 ; set the file descriptor (fd) to stdout

mov eax, 4 ; system call for "write"
int 0x80 ; call the kernel

mov eax, 1 ; system call for "exit"
int 0x80 ; call the kernel

section .data ; here you declare the data
msg db "Hello world!" ; the actual message to use
len equ $ -msg ; get the size of the message

Python:

print("Hello world!")

Figure 1 “Hello world!” printed to screen in x86 Linux assembly language, and in Python.

The Manchester syntax lies close to the description logics representation, while the RDF Turtle
serialization is more verbose as all statements are on the form of triples, and must use blank nodes
and resources such as owl:Restriction in order to represent the same information.

The case demonstrates two points: The first point is that RDF and OWL, the standard
knowledge representation languages for the web, appear as expert languages that operate on a
too low level of abstraction for the task of representing ordinary compound modelling patterns,
such as pizzas, in a succinct and readable manner. The representations arguably expose too many
details in the form of logical constructs and language peculiarities in order to be easy to read and
understand for non-experts. The second point is that the lack of abstraction mechanisms for RDF
and OWL forces all statements to be on the form of RDF triples and OWL axioms and limited
to the constructs defined by these standards, such as some/owl:someValuesFrom. This makes
the representations repetitive and verbose. In the code samples this is shown with the repetition
of the existentially quantified axiom and the fact that, e.g., a “macro” symbol [58] that allows
to express the required and permissible pizza toppings in a single statement is not possible to
declare. For the full Pizza Ontology, repetition is also visible with the 22 pizzas using the same
pizza modelling patterns by replicating all the axiom schemata. As a result, the representation of
only the pizzas, according to the pattern in Figure 2, comprises in total 198 OWL axioms and
1106 RDF triples.

The overall effect is that the current standard representation formats for knowledge graphs and
ontology will often appear too far removed from most users’ understanding and conceptualization
of the domain, and is therefore difficult to understand and use. Also, the fact that there is no
explicit representation of a pattern and its instances makes it difficult to identify that any pattern is
followed, which again makes it difficult to ensure consistent modelling. Furthermore, it complicates
consistent and efficient updates of the pattern instances as they are spread across multiple sets
of OWL axioms or RDF triples. The lack of established representation for consistently reusable

TGDK

5:4 The Reasonable Ontology Templates Framework

Description Logic:

Margherita ⊑ NamedPizza (1)
Margherita ⊑ ∃ hasCountryOfOrigin.{Italy} (2)
Margherita ⊑ ∃ hasTopping.Mozzarella (3)
Margherita ⊑ ∃ hasTopping.Tomato (4)
Margherita ⊑ ∀ hasTopping.(Mozzarella ⊔ Tomato) (5)

Manchester OWL:

Class: Margherita
SubClassOf:

NamedPizza,
hasCountryOfOrigin some { Italy },
hasTopping some Mozzarella,
hasTopping some Tomato,
hasTopping only (Mozzarella or Tomato)

RDF Turtle:

ex:Margherita
rdfs:subClassOf p:NamedPizza ,

[a owl:Restriction ;
owl:onProperty p:hasCountryOfOrigin ;
owl:hasValue ex:Italy] ,

[a owl:Restriction ;
owl:onProperty p:hasTopping ;
owl:allValuesFrom [a owl:Class ;

owl:unionOf (ex:Mozzarella ex:Tomato)]] ,
[a owl:Restriction ;

owl:onProperty p:hasTopping ;
owl:someValuesFrom ex:Tomato] ,

[a owl:Restriction ;
owl:onProperty p:hasTopping ;
owl:someValuesFrom ex:Mozzarella] .

Figure 2 Margherita pizza represented as description logic axioms, in OWL Manchester syntax, and in
RDF Turtle.

modelling patterns is also evident in today’s documentation of vocabularies and ontologies and
ontology design patterns [11, 4]. Here, current practice is usually limited to at most textual
descriptions, illustrative and informal diagrams, and samples of OWL files that describe and
illustrate how to use the resource. These offer little tangible practical help in building knowledge
graphs and ontologies at scale. Following best practice descriptions requires considerable manual
effort and the result is prone to errors due to the tolerant nature of RDF and RDFS vocabularies
unless some constraint language like SHACL [28] is used.

The Reasonable Ontology Templates (OTTR) framework [50, 51, 52] is created to fill these
gaps. OTTR is a macro-like [58] templating mechanism with which modelling patterns can be
represented and instantiated by nested and parameterized templates. Using the OTTR framework,
the pizza pattern used in Figure 2 can be represented by an OTTR Template o-p:NamedPizza
(presented in detail in Section 2), and instances of the template can be used to express replicas of

M. G. Skjæveland and L. H. Karlsen 5:5

o-p:NamedPizza(ex:Margherita, ex:Italy, (ex:Mozzarella, ex:Tomato)) .

Figure 3 Margherita pizza represented as an OTTR template instance.

the pattern; the Margherita pizza in Figure 2 can be represented succinctly and precisely with
the OTTR template instance found in Figure 3 that specifies the arguments to parameterized
template. Templates can be documented and shared as template libraries targeted for different
users at different abstraction levels, and be efficiently instantiated using the OTTR framework’s
bulk instantiation tools.

Introducing the use of succinctly represented patterns and pattern instances to knowledge
graph engineering allows interaction with RDF and OWL knowledge bases at a higher level of
abstraction than that of RDF triples and OWL axioms. This brings with it many favourable
properties such as adherence to the do-not-repeat-yourself (DRY) principle, encapsulation of
complexity, separation of concerns, and better support for different user groups. Templates are
also useful for documenting typical modelling use cases, such as vocabulary uses and ontology
design patterns. Representing modelling patterns as identifiable templates, allows them to be
shared online in a precise and actionable manner, and leads arguably to more modelling uniformity
and increased efficiency and quality of knowledge base modelling tasks.

While OTTR at its core is a generic templating language, it is one of few practical pattern-based
frameworks that is specifically designed for the construction of knowledge graphs and ontologies to
be serialized in RDF, and with demonstrated use in the construction of large-scale ontologies and
knowledge graphs [50, 49, 6, 55]. As such, the OTTR framework is an advance of the state of the
art of ontology engineering [23, 56] and ontology design pattern [11, 4] tools and methodologies.

The OTTR framework has been presented in a series of papers [50, 51, 52, 34]. These papers
have presented and characterized the OTTR language at a conceptual level and demonstrated
different uses of the framework. The OTTR framework has since then gradually matured to a
stable state with multiple different independent implementations and applications by prominent
ontology development projects. The purpose of this resource paper is to give a complete and self-
contained presentation of the resources that now comprise the OTTR framework: specifications,
core template library, reference implementation, and project infrastructure. The paper gives
emphasis to the specifications of the formal syntax and semantics of the OTTR language and
its implementation for semantic web, which is given in Section 3 and Section 4, and the formal
specification of the mapping languages for instantiating templates, which is presented in Section 6.
These introduce an abstract and formal model and vocabulary for characterizing the OTTR
language that form the basis of the reference implementation. These specifications have not been
published before in this rigorous form and are necessary to fully understand the OTTR framework.
Section 5 gives an overview of the motivation and support for developing and maintaining template
libraries. We also give an updated overview of the OTTR framework’s impact, including publicly
available template libraries, implementations of the OTTR framework in Section 7, and a selection
of industrial and academic uses in Section 8. Section 9 presents related work and Section 10
presents lessons learned and ideas for future development of the OTTR framework collected
throughout the project from experience and interaction with its users. Section 11 concludes the
paper. First, Section 2 presents an overview of the OTTR framework to tie all the resources
together and gives examples to establish intuitions for the following more technical sections.

2 Overview

The OTTR framework is formally described by a series of specifications that define:

TGDK

5:6 The Reasonable Ontology Templates Framework

OTTR
instances

stOTTR, wOTTR

Databases

Tabular
datafiles

OTTR
implementation

Lutra

OTTR template
libraries

stOTTR, wOTTR

OTTR template
HTML doc.

RDF/OWL
output

direct input

bOTTR

tabOTTR

direct input/
fetch online

docTTR

expansion

Figure 4 High-level OTTR framework architecture.

an abstract language for characterizing templates and template instances and the process of
expanding template instances,

serialization formats for representing templates and instances (stOTTR and wOTTR),

a mapping language for consuming data from queryable databases as template instances
(bOTTR), and

a mapping language for annotating and consuming data from tabular datafiles as template
instances (tabOTTR).

Additionally, the framework consists of:

a template library of basic templates called the core template library that mostly contains
templates that represent basic modelling patterns over the vocabularies RDF, RDFS and
OWL,

a tool-supported best practice description of how to document and publish template libraries
(docTTR), and

a reference implementation that supports all the specifications of the framework (Lutra).
Figure 4 shows a high-level architecture diagram of the OTTR framework.

The primary uses of the OTTR framework are to represent and document useful modelling
patterns in a precise and actionable manner as (shared) OTTR template libraries, and to use
such libraries to expand OTTR template instances to RDF data. The consumed instances can
be described either directly using one of the OTTR serialization formats or by way of mappings
that extract or identify instances in tabular data sources such as database query results or tabular
datafiles. The OTTR template language has different features to guarantee the correctness of the
output, and verifying the input according to these correctness measures is a core feature of the
framework. These features also help to reveal the intended and correct instantiations of templates
and play an important role in the documentation of templates. The following sections present an
overview of the OTTR language, the concept behind template libraries and bulk instantiation
of templates.

M. G. Skjæveland and L. H. Karlsen 5:7

ottr:Triple base template:

1 ottr:Triple [
2 ottr:IRI ?subject, ! ottr:IRI ?predicate, rdfs:Resource ?object] ::
3 BASE .

o-owl-ax:SubClassOf template:

1 o-owl-ax:SubClassOf[
2 owl:Class ?subclass, owl:Class ?superclass] ::
3 {
4 ottr:Triple(?subclass, rdfs:subClassOf, ?superclass)
5 } .

o-p:NamedPizza template:

1 o-p:NamedPizza[
2 owl:Class ?pizza, ? owl:NamedIndividual ?country, NEList<owl:Class> ?toppings] ::
3 {
4 o-owl-ax:SubClassOf(?pizza, pz:NamedPizza),
5 o-owl-ax:SubObjectHasValue(?pizza, pz:hasCountryOfOrigin, ?country),
6 cross | o-owl-ax:SubObjectSomeValuesFrom(?pizza, pz:hasTopping, ++?toppings),
7 o-owl-ax:SubObjectAllValuesFrom(?pizza, pz:hasTopping, _:toppingUnion),
8 o-owl-re:ObjectUnionOf(_:toppingUnion, ?toppings)
9 } .

o-p:NamedPizza instances:

1 o-p:NamedPizza(ex:Margherita, ex:Italy, (ex:Mozzarella, ex:Tomato)) .
2

3 o-p:NamedPizza(ex:PlainHam, none, (ex:Mozzarella, ex:Tomato, ex:Ham)) .
4

5 o-p:NamedPizza(ex:Hawaiian, ex:Canada,
6 (ex:Mozzarella, ex:Tomato, ex:Pineapple, ex:Ham)) .

Figure 5 OTTR templates and instances representing different pizzas.

2.1 Language
The OTTR language and its features will be introduced in an incremental and example-driven
approach that builds on the example established in the introduction. The complete specification
of the OTTR language is found in Section 3.

2.1.1 Templates, base templates and instances
A template has a signature that assigns an IRI to the template and lists its parameters that specify
its permissive instances. An instance refers to a template’s IRI and lists arguments that must
match the parameters of the referenced template. The template body contains instances of other
templates and specifies hence how its instances can be expanded into instances of templates at a
lower level of abstraction; this hierarchy of templates is required to be non-cyclic. At the lowest
level of abstraction in the hierarchy of templates are base templates that specify how instances
should be interpreted into a different representation language, such as RDF. Base templates do
not have a body; the translation of base template instances to the underlying representation
language is handled by an OTTR implementation that must follow a textual specification of how
base templates must be interpreted.

TGDK

5:8 The Reasonable Ontology Templates Framework

o-owl-ax:SubClassOf and ottr:Triple instances:

1 o-owl-ax:SubClassOf(ex:A, ex:B) .
2

3 ottr:Triple(ex:A, rdfs:subclassOf, ex:B) .

Expansion result:
⟨ ex:A, rdfs:subClassOf, ex:B ⟩

Figure 6 o-owl-ax:SubClassOf and ottr:Triple instances, and their expansion result.

▶ Example 1. Figure 5 contains three templates, the base template ottr:Triple, and the (regular)
templates o-owl-ax:SubClassOf and o-p:NamedPizza; and instances of the o-p:NamedPizza
template. All examples in this section are serialized using the stOTTR format. The example
templates are formatted so that their signatures are contained in the two first lines of each of the
code listings. The remaining lines contain the template body. Instead of a body, the ottr:Triple
base template is marked with the token BASE.

Template instances are expanded by recursively replacing an instance with its referenced
template’s body’s instances where the parameters are appropriately substituted by the instance’s
arguments, akin to unfolding macros. This process terminates with a set of base template instances
that can be translated to the underlying representation language as per the specification. A
template can hence be understood to represent a mapping from its signature instance format
to a set of statements over an underlying language represented by base templates, via a nested
non-cyclic template structure.

▶ Example 2. The signature of the ottr:Triple template in Figure 5 specifies three parameters:
?subject, ?predicate and ?object. (The example also includes parameter types and modifiers
which will be explained shortly.) The body of the o-owl-ax:SubClassOf template contains
one instance of the ottr:Triple template where the parameters of the o-owl-ax:SubClassOf
template are used as parameters. Figure 6 demonstrates the expansion of instances; the example
instance of the o-owl-ax:SubClassOf instance in line 1 is expanded in one step to the ottr:Triple
instance in line 3, which represents the RDF triple as shown in the figure.

▶ Example 3. The o-p:NamedPizza template in Figure 5 is a faithful representation of the pizza
modelling pattern used in the Pizza Ontology. The body of the o-p:NamedPizza template contains
instances of the o-owl-ax:SubClassOf template and other templates that represent common
OWL axioms and constructs. The first template instance in Figure 5 expressing a Margherita
pizza expands in multiple steps to an RDF graph that is equivalent to the RDF graph found in
Figure 2 on page 4.

2.1.2 Parameter types and non-blank flags
Parameter types are used to check that templates are correctly instantiated and specified; the
arguments’ types must be compatible with the types of the parameters where the arguments
are used, and this must also hold when parameters are used as arguments in template bodies.
The OTTR language also contains parameter modifiers, where non-blank is one such parameter
modifier that forbids RDF blank nodes as arguments. OTTR implementations must emit errors
when instances and template violate these parameter type specifications.

▶ Example 4. The signature of the ottr:Triple template assigns types to its parameters; the
?subject and ?predicate parameters have the type ottr:IRI, and the ?object has the type
rdfs:Resource. These parameter types guarantee that no ottr:Triple instance can, for example,

M. G. Skjæveland and L. H. Karlsen 5:9

have a literal in subject position, which would be a violation of the RDF specification [27], since
the type assigned to literals is specified by the type system as incompatible with the parameter
type ottr:IRI. The following ottr:Triple instance contains two type errors: the literal values
"A" and "B" are arguments to parameters with the type ottr:IRI.

ottr:Triple("A", "B", "C") .

▶ Example 5. In the body of the o-owl-ax:SubClassOf template, the types of the parameters
?subclass (owl:Class) and ?superclass (also owl:Class) must be compatible with the types
of the first (ottr:IRI) and third parameter (rdfs:Resource) of the ottr:Triple template,
respectively – which they are. Furthermore, the parameter types of o-owl-ax:SubClassOf
template force for example the parameter type of o-p:NamedPizza’s ?pizza parameter to have a
type that is compatible with owl:Class, since ?pizza is passed on as an argument to a parameter
with this type.

▶ Example 6. The ottr:Triple signature specifies, using an exclamation mark !, the ?predicate
parameter to be non-blank. This ensures that no RDF triple constructed using this template
will end up with a blank node in predicate position, which would be a violation of the RDF
specification [27]. The following ottr:Triple instance violates the non-blank modifier.

ottr:Triple(ex:A, _:blank, "C") .

2.1.3 Optional parameters and none values
Parameters may be specified as being optional, whereas parameters that are not optional are
called mandatory. Whether a parameter is optional or not has consequences for the treatment of
none values, which in OTTR is represented by the reserved token none and is used to indicate a
missing value. In the expansion of instances, a none value given as an argument to a mandatory
parameter is simply ignored and will not contribute to the end result of the expansion – the
instance is simply removed. A none value given to an optional argument, on the other hand, will
be passed on to body template instances just like other arguments.

▶ Example 7. The second argument of the o-p:NamedPizza template is marked as optional,
using a question mark ?. This means that instances of the template do not need to specify a
country of origin. The ex:PlainHam example instance demonstrates this. Here, the none value
will be passed on as an argument to the third parameter of the o-owl-ax:SubObjectHasValue
template. This parameter is mandatory, hence there will be no OWL axiom in the expansion
result that expresses the country of origin of the ex:PlainHam pizza, however, the other axioms
will remain. If the ?country parameter of the o-p:NamedPizza had not been marked as optional,
then the ex:PlainHam instance would have been simply removed in the first expansion step.

2.1.4 Default values
Parameters may be given a default value. This default value is used whenever a none value is
given as an argument to the parameter.

▶ Example 8. Figure 7 demonstrates the use of a default valued parameter using an alternative
signature to the o-p:NamedPizza template that assigns ex:Italy as the default value to the
second argument. The ex:PlainHam example instance in Figure 5 would under this signature get
ex:Italy as its country of origin.

TGDK

5:10 The Reasonable Ontology Templates Framework

1 o-p:NamedPizza[
2 owl:Class ?pizza,
3 owl:NamedIndividual ?country = ex:Italy,
4 NEList<owl:Class> ?toppings
5] .

Figure 7 o-p:NamedPizza with default valued parameter.

2.1.5 Expansion modes and list values
Template instances can be marked with an expansion mode which is only applicable to instances
that have arguments that are lists. An expansion mode applied to an instance with one list
argument specifies that the selected instance will be instantiated multiple times, one per element
in the marked argument list. There are different expansion modes that behave differently when
multiple lists are marked in an instance.

▶ Example 9. The o-p:NamedPizza template makes use of expansion modes, indicated with the
token cross and by marking the list-typed parameter ?toppings with ++:

6 cross | o-owl-ax:SubObjectSomeValuesFrom(?pizza, pz:hasTopping, ++?toppings),

The effects of the expansion mode are that one instance of the o-owl-ax:SubObjectSomeValues-
From template will be created for each element in the ?toppings list, e.g.,

cross | o-owl-ax:SubObjectSomeValuesFrom(ex:Margherita, pz:hasTopping,
++(ex:Mozzarella, ex:Tomato)) .

will expand in one step to:

o-owl-ax:SubObjectSomeValuesFrom(ex:Margherita, pz:hasTopping, ex:Mozzarella) .
o-owl-ax:SubObjectSomeValuesFrom(ex:Margherita, pz:hasTopping, ex:Tomato) .

2.2 Template Libraries
A template library is a collection of templates developed and curated for a particular purpose,
such as representing patterns for a given vocabulary, domain, or project. The ability to share
and reuse templates for common modelling patterns is central to the OTTR framework and will
be further elaborated in Section 5. By following best practices and principles similar to linked
open data [19] and ontology publication, templates and template libraries are expected to be
published and interconnected in a distributed and decentralized manner, promoting their reuse
and community-driven curation. Our intention is that template libraries should be developed
alongside the development of vocabularies and ontologies which are intended for reuse, in order to
promote and simplify correct and consistent typical use of the vocabulary or ontology. Given that
a template’s signature is clearly documented and understood, there is no need to understand how
the template is implemented in order to correctly instantiate the template. Templates at different
abstraction levels, and templates and their instances, target different users and use cases, and can
hence be created and managed separately and by different users.

▶ Example 10. The o-p:NamedPizza template is published at its IRI, https://tpl.ottr.xyz/
p/pizza/0.2/NamedPizza, using content negotiation [44] to serve different presentations of the
template,4 including an HTML documentation page generated by the OTTR’s docTTR tool which

4 https://tpl.ottr.xyz/p/pizza/0.2/NamedPizza.html,

https://tpl.ottr.xyz/p/pizza/0.2/NamedPizza
https://tpl.ottr.xyz/p/pizza/0.2/NamedPizza
https://tpl.ottr.xyz/p/pizza/0.2/NamedPizza.html

M. G. Skjæveland and L. H. Karlsen 5:11

Figure 8 The generated docTTR documentation page for the o-p:NamedPizza template.

TGDK

5:12 The Reasonable Ontology Templates Framework

Figure 9 Layered dependencies between templates used by the o-p:NamedPizza template.

is shown in Figure 8. The o-p:NamedPizza template is an example template in the Core OTTR
template library [52], which is available at https://tpl.ottr.xyz. The Core OTTR template
library contains all the templates used in the examples.

Figure 9 shows the dependency graph with the o-p:NamedPizza on top and the base template
ottr:Triple at the bottom. Observe that the graph is divided into different layers: the “user-
facing” o-p:NamedPizza, “logical” OWL templates, including o-owl-ax:SubClassOf, “utility”
templates that represent OWL restrictions and different RDF list patterns, and the low-level
base template ottr:Triple. Each layer represents different a level of abstractions that hide the
complexity of lower levels.

2.3 Template Instantiation

Efficient instantiation of templates is also central to the OTTR framework. For this task, it is
natural to consider a template as a mapping from its signature input format to the pattern of
its expansion. The OTTR framework provides two specifications, bOTTR and tabOTTR, for
selecting and translating data from structured sources into template instances, which in turn
can be expanded into a knowledge graph or ontology according to the corresponding template
definitions. These are presented in Section 6. The bOTTR specification defines an RDF vocabulary
with which mappings from database query results to templates may be specified. The tabOTTR
specification describes a simple “markup” language for defining mappings to templates directly
in tabular datafiles, such as CSV, TSV or Excel files. These specifications permit the OTTR
framework to become a part of a complete data transformation pipeline, where external tools
may be used to cleanse and prepare data for template instantiation, and the OTTR framework’s
mapping specification may be used to collect and integrate data from multiple sources to build
knowledge graphs and ontologies at scale.

▶ Example 11. Figure 10 demonstrates the use of tabOTTR. It shows a spreadsheet that contains
arguments to 22 instances of the o-p:NamedPizza template in Figure 5, and that uses tabOTTR
processing instructions to describe how the data is to be understood as instances.

https://tpl.ottr.xyz/p/pizza/0.2/NamedPizza.stottr,
https://tpl.ottr.xyz/p/pizza/0.2/NamedPizza.ttl.

https://tpl.ottr.xyz
https://tpl.ottr.xyz/p/pizza/0.2/NamedPizza.stottr
https://tpl.ottr.xyz/p/pizza/0.2/NamedPizza.ttl

M. G. Skjæveland and L. H. Karlsen 5:13

Figure 10 Spreadsheet using tabOTTR to specify 22 instances of the o-p:NamedPizza template.

2.4 History
An early predecessor and inspiration to OTTR templates dates back to 2008 [26]. Here, a template
mechanism was developed for “lifting” compact data representations, typically tabular data, to
rich semantic format according to a complex upper level ontology. A prototype of the template
mechanism was implemented using OWL and SWRL rules [18].

The practical and theoretical aspects of OTTR templates were first introduced in 2017, where
OTTR templates were defined parameterized knowledge bases using a dedicated OWL ontology [48],
and as description logic macros [10].5

The formulation of the OTTR language later matured into a dedicated representation of
templates and template instances [50, 51]. The OTTR language has since then evolved into
a framework and reached the state of stable resource, far beyond a research prototype – with
multiple users from different communities and industries, multiple independent implementations
initiated, and several publicly available template libraries.

2.5 Resources
All publicly available resources managed by the OTTR team are available from the project
web page: https://ottr.xyz. The formal specifications and software are hosted in the Git
repository at: https://gitlab.com/ottr/. Stable releases are also published at Zenodo: https:
//zenodo.org/communities/ottr/.

3 Fundamentals

This section defines the formal templating mechanism that underlies the OTTR framework. The
presentation follows three tracks that are given in tandem: (1) definition blocks define the concep-
tual and formal aspects of the OTTR framework, such as template, template instances, validity of

5 The name “Reasonable Ontology Templates” comes partly from the fact that in the first version of OTTR,
templates were parameterized OWL ontologies that could be directly reasoned over. Also, “reasonable” has
a suitable double meaning of “being reasonable” and “being subject to reasoning”. The acronym OTTR is
inspired by OWL.

TGDK

https://ottr.xyz
https://gitlab.com/ottr/
https://zenodo.org/communities/ottr/
https://zenodo.org/communities/ottr/

5:14 The Reasonable Ontology Templates Framework

templates, and instance expansion; (2) implementation blocks describe how the conceptual model
is adapted to semantic web technologies, with the specific purpose of using the OTTR framework
to produce RDF graphs; and (3) syntax blocks specify the stOTTR serialization format for OTTR;
more details on OTTR serialization format are given in Section 4.

We start by defining terms and types, before we introduce template instances and template
objects. We then introduce template expansion, and end by defining libraries and datasets and
their properties, such as correctness.

3.1 Terms and Types
OTTR is a language for expressing statements, in particular for ontologies and knowledge graphs
represented using OWL and RDF. The basic building blocks for such statements are terms. As
different terms may play different roles within these statements, and denote, e.g., relationships,
entities, or data values, OTTR introduces a type system over the terms to ensure that terms are
used correctly. The type system assigns a type to each term and uses subtype and compatibility
relationships between types to check correct and consistent use of terms across ontologies and
knowledge graphs. Below we introduce these terms and type systems.

▶ Definition 12. We assume we have a (possibly countably infinite) set C of constants at least
containing the elements nil and none. Furthermore, we assume we have a countably infinite set V
of variables. Let the set of terms E be defined inductively as follows: All elements of C and V are
terms, and for any finite list of terms e1, e2, . . . , en ∈ E then ⟨e1, e2, . . . , en⟩ ∈ E. Elements of E
of the form nil and ⟨e1, e2, . . . , en⟩ are called list terms or simply lists. We let length(l) denote
the length of the list l and l(i) denote the ith term (1-indexed) of the list l if i ≤ length(l) and
none otherwise.

Note that list terms can be nested arbitrarily, so if e1, e2, e3 are terms, then, e.g., ⟨e1, ⟨e2, e3⟩, nil⟩
is also a term. The special constant none denotes a missing value, similar to how NULL or null
is used in SQL and many programming languages. This constant is not intended to be used in
the final statements that become part of constructed the knowledge graph, but only within the
OTTR framework’s definitions.

▶ Definition 13. The set of basic types B is a set that contains at least the elements ⊤ and ⊥,
and that is partially ordered by the subtype relation ≤ such that for any t ∈ B we have ⊥ ≤ t and
t ≤ ⊤. The inverse relation of subtype is called supertype.

▶ Definition 14. The set of types T is the smallest set such that
B ⊆ T
if t ∈ B, then LUB⟨t⟩ ∈ T
if t ∈ T , then List⟨t⟩ ∈ T
if t ∈ T , then NEList⟨t⟩ ∈ T

Furthermore, ≤ is extended to T as follows:
if t1 ≤ t2 for t1, t2 ∈ T , then NEList⟨t1⟩ ≤ NEList⟨t2⟩ and List⟨t1⟩ ≤ List⟨t2⟩
if t ∈ B, then NEList⟨t⟩ ≤ List⟨t⟩
if t ∈ B, then LUB⟨t⟩ ≤ t

All non-list terms have a unique type given by the typing relation written e : t for a term e

with type t, where none : ⊥. The typing relation is extended to list-terms as follows:
nil : List⟨⊥⟩
⟨e1, e2, . . . , en⟩ : NEList⟨LUB⟨⊤⟩⟩

M. G. Skjæveland and L. H. Karlsen 5:15

We call types of the form List⟨t⟩ and NEList⟨t⟩ (non-empty list) for list types. These types
have terms that are lists, i.e., ordered collections of terms. Note that we distinguish, at the type
level, between empty and non-empty lists. Types of the form LUB⟨t⟩ are called LUB-types where
LUB is short for least upper bound. The motivation for the latter type constructor builds on the
following definition.

▶ Definition 15. Let ▷ be the least relation between types such that whenever t1 ≤ t2 then:
t1 ▷ t2
LUB⟨t2⟩▷ t1

If t1 ▷ t2 we say that t1 is compatible with t2.

The intuition behind the compatibility relation between types is to permit the use of terms in
places that are compatible with their type. We use the notion of compatible types to check correct
use of terms and consistent use of terms. Correct use means that a term may only be used in
places where its type is compatible with the expected type. Consistent use, which is only relevant
for LUB-typed terms, means that a term is not used in multiple places that are incompatible.

LUB-types are required when the lexical form of terms is alone not sufficient to determine its
type, which is typically when there are more types than different lexical forms. In these cases,
one needs to examine the expected types of where the terms are used to establish if the term is
used consistently. For the semantic web languages RDF and OWL, this is relevant as the IRIs
and blank nodes of RDF may be used to designate different types of entities in OWL that are
necessary to keep apart to ensure their correct and consistent use. For instance in OWL, object
properties and datatype properties are disjoint types, yet, it is not possible to determine based on
the lexical representation alone if an IRI represents an object property or a datatype property. For
these terms, we only give an upper bound (LUB) of what types they can have. A term to which
we assign the type LUB⟨t⟩ may have a type that is a subtype of t, and may therefore be used any
place where any subtype t′ of t is expected. However, terms must also be used consistently, so the
same term cannot then be used in a place where a type not compatible with t′ is expected.

Note how we exploit LUB-types when we assign non-empty list terms the type List⟨LUB⟨⊤⟩⟩.
Since all list elements are type-checked, it is unnecessary to give a more specific type to the list
itself. Any type violation of a non-empty list is either due to the list itself is given to an argument
expecting a non-list, or that a term “inside” the list is of an incompatible type. The type assigned
to the list term itself need only account for the first of these two cases. However, to type-check
the terms inside lists we need to know how deeply nested a term is inside a list, and how deeply
nested a given type is inside a list type. This is captured in the following definitions.

▶ Definition 16. We define δE to be a binary function from pairs of terms to natural numbers as
follows:

δE(a, a) = 0 for any a ∈ E
if δE(a, b) = n, then δE(a, ⟨e1, . . . , b, . . . , en⟩) = n + 1, for any a, b, e1, . . . , en ∈ E

If δE(e1, e2) = n, we say that e1 occurs at depth n in e2.

▶ Definition 17. Let δT be a binary function from pairs of types to natural numbers as follows:
δT (t, t) = 0, for any t ∈ T
δT (t1, t2) = n then δT (t1, List⟨t2⟩) = n + 1 and δT (t1, NEList⟨t2⟩) = n + 1 for any pair
t1, t2 ∈ T

If δT (t1, t2) = n, we say that t1 occurs at depth n in t2.

As an example, in the type NEList⟨List⟨t⟩⟩, t occurs at depth 2.
The definition is used to relate depths of terms in lists to the type at corresponding depths in

nested list types. However, note that for LUB⟨t⟩, t must be a basic type and, e.g., not a list type.
It is therefore no n such that t occurs at depth n in LUB⟨t⟩, but, e.g., LUB⟨t⟩ occurs at depth 1
in NEList⟨LUB⟨P ⟩⟩.

TGDK

5:16 The Reasonable Ontology Templates Framework

We now introduce the implementation of terms and types to be used for creating knowledge
graphs and ontologies in RDF and OWL.

▶ Implementation 18. All vocabulary terms defined in the OTTR framework use the following
namespace, unless otherwise noted:

@prefix ottr: <http://ns.ottr.xyz/0.4/> .

▶ Implementation 19. Let E be the set of all valid RDF terms, i.e., IRIs, literals and blank
nodes [27]. Variables are designated by blank nodes, so let V be an infinite set of blank nodes. All
IRI terms have type LUB⟨ottr:IRI⟩, all non-list blank nodes have type LUB⟨rdfs:Resource⟩,
and all literals have a type equal to their specified datatype or xsd:string if no datatype is given.
The term rdf:nil denotes nil and has the type List⟨rdfs:Resource⟩. All other RDF lists denote
the corresponding list term and have the type NEList⟨LUB⟨rdfs:Resource⟩⟩.

▶ Syntax 20. Terms in stOTTR share the same syntax as terms in Turtle [2], both for IRIs, blank
nodes, literals and lists, except that lists are written surrounded with parenthesis with elements
separated by commas. stOTTR also adopts Turtle’s syntax for defining prefixes. Variable terms
are written using Turtle’s syntax for blank node labels, prefixed by a question mark. We may
write none for the term none, and () for the empty list nil. stOTTR is space-insensitive.

▶ Implementation 21. All basic types are listed in Table 1. All of these, except those prefixed
by ottr: are IRIs taken from the RDF, RDFS, OWL and XSD standards. ottr:Bot denotes ⊥,
whereas rdfs:Resource denotes ⊤. The types are presented with a description taken from the
respective standards, and possibly given a supertype that follows this description and which forms
the basis of determining compatibility between types. The type hierarchy is published at Zenodo:
https://zenodo.org/records/12607216.

▶ Syntax 22. Basic types are denoted by their IRI as defined above, using the syntax for IRIs
from Turtle. For complex types, we write LUB<t>, List<t> and NEList<t>, where t is a type.

▶ Example 23. The term "3"^^xsd:int has type xsd:int, and since xsd:int is a subtype of
xsd:long, and xsd:long is a subtype of xsd:integer, we have that xsd:int is compatible with
xsd:integer and can use "3"^^xsd:int where a value of type xsd:integer is expected.

The term ex:mary is an IRI, and therefore has type LUB<ottr:IRI>. Since owl:Named-
Individual is a subtype of ottr:IRI, we have that LUB<ottr:IRI> is compatible with
owl:NamedIndividual, and can therefore use the term ex:mary where a term of type
owl:NamedIndividual is expected.

The following illustrates an interesting feature of OTTR’s type system. Some types of the
OWL ontology language are defined to be disjoint, such as OWL object properties and datatype
properties, and should raise an error in the case that an IRI is assigned multiple such types. Other
cases of assigning multiple types to the same IRI can result in what is called punning, e.g., stating
that Eagle is both a owl:NamedIndividual and a owl:Class, which is permissible in OWL, but
may not always be desirable. The type hierarchy presented in Table 1 above does not permit
punning, as there is no subtype of, e.g., owl:NamedIndividual and owl:Class that is different
from ⊥. However, it is easy to extend the type hierarchy with types to allow for punning. Table 2
lists the necessary extensions of types to allow for punning according to the OWL standard. This
example is further developed in Example 53 on page 26.

https://zenodo.org/records/12607216

M. G. Skjæveland and L. H. Karlsen 5:17

Table 1 The basic types of the OTTR type system.

Type Supertype Description
rdfs:Resource All things described by RDF
ottr:Bot Empty type
ottr:IRI rdfs:Resource An IRI (Internationalized Resource Identi-

fier)
owl:Class ottr:IRI OWL Classes (understood as sets of individu-

als)
owl:NamedIndividual ottr:IRI Individuals in OWL 2
owl:ObjectProperty ottr:IRI Properties connecting pairs of individuals
owl:DatatypeProperty ottr:IRI Properties connecting individuals with liter-

als
owl:AnnotationProperty ottr:IRI Properties used to provide an annotation for

an ontology, axiom, or an IRI
rdfs:Datatype ottr:IRI Data values
rdfs:Literal rdfs:Resource Literal values such as strings and integers
ottr:string rdfs:Literal Character strings with or without language

tag
xsd:string ottr:string Character strings
xsd:normalizedString xsd:string Whitespace-normalized strings
xsd:token xsd:normalizedString Tokenized strings
xsd:language xsd:token Language tags per [BCP47]
rdf:langString ottr:string Character strings with language tag
xsd:Name xsd:token XML Names
xsd:NCName xsd:Name XML NCNames
xsd:NMTOKEN xsd:Name XML NMTOKENs
owl:real rdfs:Literal All real numbers
owl:rational owl:real All rational numbers
xsd:decimal owl:rational Arbitrary-precision decimal numbers
xsd:integer xsd:decimal Arbitrary-size integer numbers
xsd:long xsd:integer 64 bit signed integers
xsd:int xsd:long 32 bit signed integers
xsd:short xsd:int 16 bit signed integers
xsd:byte xsd:short 8 bit signed integers
xsd:nonNegativeInteger xsd:integer Integer numbers ≥ 0
xsd:positiveInteger xsd:nonNegativeInteger Integer numbers > 0
xsd:unsignedLong xsd:positiveInteger 64 bit unsigned integer
xsd:unsignedInt xsd:unsignedLong 32 bit unsigned integer
xsd:unsignedShort xsd:unsignedInt 16 bit unsigned integer
xsd:unsignedByte xsd:unsignedShort 8 bit unsigned integer
xsd:nonPositiveInteger xsd:integer Integer numbers ≤ 0
xsd:negativeInteger xsd:nonPositiveInteger Integer numbers < 0
xsd:double rdfs:Literal 64-bit floating point numbers incl. +-Inf,

+-0, NaN
xsd:float rdfs:Literal 32-bit floating point numbers incl. +-Inf,

+-0, NaN
xsd:date rdfs:Literal Dates (yyyy-mm-dd) with or without

timezone
xsd:dateTime rdfs:Literal Date and time with or without timezone
xsd:dateTimeStamp xsd:dateTime Date and time with timezone
xsd:time rdfs:Literal Times (hh:mm:ss.sss...) with or without

timezone
xsd:gYear rdfs:Literal Gregorian calendar year
xsd:gMonth rdfs:Literal Gregorian calendar month
xsd:gDay rdfs:Literal Gregorian calendar day of the month
xsd:gYearMonth rdfs:Literal Gregorian calendar year and month
xsd:gMonthDay rdfs:Literal Gregorian calendar month and day
xsd:duration rdfs:Literal Duration of time
xsd:yearMonthDuration xsd:duration Duration of time (months and years only)
xsd:dayTimeDuration xsd:duration Duration of time (days, hours, minutes,

seconds only)
xsd:hexBinary rdfs:Literal Hex-encoded binary data
xsd:base64Binary rdfs:Literal Base64-encoded binary data
xsd:boolean rdfs:Literal true, false
xsd:anyURI rdfs:Literal Absolute or relative URIs and IRIs
rdf:HTML rdfs:Literal HTML content
rdf:XMLLiteral rdfs:Literal XML content

TGDK

5:18 The Reasonable Ontology Templates Framework

Table 2 Examples of types that would allow punning.

Type Supertypes
:Punned-Class-NamedIndividual owl:Class, owl:NamedIndividual
:Punned-Class-ObjectProperty owl:Class, owl:ObjectProperty
:Punned-Class-DatatypeProperty owl:Class, owl:DatatypeProperty
:Punned-Class-AnnotationProperty owl:Class, owl:AnnotationProperty
:Punned-Datatype-NamedIndividual rdfs:Datatype, owl:NamedIndividual
:Punned-Datatype-ObjectProperty rdfs:Datatype, owl:ObjectProperty
:Punned-Datatype-DatatypeProperty rdfs:Datatype,

owl:DatatypeProperty
:Punned-Datatype-AnnotationProperty rdfs:Datatype,

owl:AnnotationProperty
:Punned-NamedIndividual-ObjectProperty owl:NamedIndividual,

owl:ObjectProperty
:Punned-NamedIndividual-DatatypeProperty owl:NamedIndividual,

owl:DatatypeProperty
:Punned-NamedIndividual-AnnotationProperty owl:NamedIndividual,

owl:AnnotationProperty
:Punned-Class-NamedIndividual-ObjectProperty owl:Class, owl:NamedIndividual,

owl:ObjectProperty
:Punned-Class-NamedIndividual-DatatypeProperty owl:Class, owl:NamedIndividual,

owl:DatatypeProperty
:Punned-Class-NamedIndividual-AnnotationProperty owl:Class, owl:NamedIndividual,

owl:AnnotationProperty
:Punned-Datatype-NamedIndividual-ObjectProperty rdfs:Datatype,

owl:NamedIndividual,
owl:ObjectProperty

:Punned-Datatype-NamedIndividual-DatatypeProperty rdfs:Datatype,
owl:NamedIndividual,
owl:DatatypeProperty

:Punned-Datatype-NamedIndividual-AnnotationProperty rdfs:Datatype,
owl:NamedIndividual,
owl:AnnotationProperty

3.2 Template Instances
Statements in OTTR are expressed by template instances. Before we can introduce these, we need
a couple of utility definitions specific to the use of lists in statements. OTTR has special support
for lists in the form of list expanders, which are functions that allow a single statement to expand
to multiple statements by replacing a list of terms with the elements of the list, in different ways.

▶ Definition 24. A list expander is a function from a list of list terms to a set of lists of terms.

▶ Implementation 25. We define the following list expanders:

id(⟨l1, . . . , ln⟩) = {⟨l1, . . . , ln⟩}
cross(⟨l1, . . . , ln⟩) = {⟨e1, . . . , en⟩ | ei ∈ li}

zipMin(⟨l1, . . . , ln⟩) = {⟨l1(i), . . . , ln(i)⟩ | 1 ≤ i ≤ min
k≤n

length(lk)}

zipMax(⟨l1, . . . , ln⟩) = {⟨l1(i), . . . , ln(i)⟩ | 1 ≤ i ≤ max
k≤n

length(lk)}

M. G. Skjæveland and L. H. Karlsen 5:19

That is, id is the identity function, cross is the cross product of its argument lists, zipMin is the
convolution restricted to the shortest list, and zipMax is the convolution where all lists are made
of equal length by padding none-terms at the end (remember that L(i) = none if i > length(L)).

▶ Example 26. This shows the behaviour of the list expanders on the same input.

cross(⟨1, 2, 3⟩, ⟨4, 5⟩) = {⟨1, 4⟩, ⟨2, 4⟩, ⟨3, 4⟩, ⟨1, 5⟩, ⟨2, 5⟩, ⟨3, 5⟩}
zipMin(⟨1, 2, 3⟩, ⟨4, 5⟩) = {⟨1, 4⟩, ⟨2, 5⟩}
zipMax(⟨1, 2, 3⟩, ⟨4, 5⟩) = {⟨1, 4⟩, ⟨2, 5⟩, ⟨3, none⟩}

▶ Definition 27. Let L be a set of list expanders that contains at least cross, zipMin and zipMax.

The list expanders defined above will be used in the definition of instance expansion, Section 3.4.
With this, we are ready to define the notion of template instance.

▶ Definition 28. A template instance (or just instance) is a 4-tuple (t, A, E, e) of
a constant term t, called the instance’s template name,
a list of terms A called the instance’s arguments,
a set of indices E, denoting which arguments to apply a list expander to,
and a list expander e.

The arity of an instance is the size of its argument list. A ground template instance is a template
instance where the value of every argument is a constant.

A template instance can be viewed as a call to a template. A template is a definition of a
pattern of statements, and a template instance denotes one instance of the template’s pattern.

▶ Syntax 29. Instances have the form t(a1, . . . , an) . where t is a template name in the form of
an IRI, and each ai is an argument term. List expanders are written before the template name
followed by a | (where the id-expander is always omitted), with the argument terms to expand
marked with ++. Examples:

Structure Syntax
(t, ⟨a1, . . . , an⟩, ∅, id) t(a_1, ..., a_n) .
(t, ⟨a1, a2, a3⟩, {1}, cross) cross | t(++a_1, a_2, a_3) .
(t, ⟨a1, a2, a3⟩, {1, 3}, zipMin) zipMin | t(++a_1, a_2, ++a_3) .

▶ Example 30. The following are examples of written instances:

ex:Person(ex:mary, "Mary Smith", "1980-02-03"^^xsd:date) .

ex:Person(ex:peter, "Peter Smith", "1984-10-01"^^xsd:date) .

ex:Person(ex:bob, "Bob Green", none) .

cross | ex:HasFamilyRelation(
++(ex:peter, ex:mary),
++(ex:carl, ex:nora),
ex:parentOf) .

zipMax | ex:HasFamilyRelation(
++(ex:eric, ex:hannah, ex:bob),
ex:peter,
++(ex:father, ex:mother)) .

TGDK

5:20 The Reasonable Ontology Templates Framework

The corresponding templates to these instances are defined in Example 44 and their corresponding
RDF statements can be seen in Example 48. The first three instances each describe a person,
where the first argument is the person’s IRI, the second argument is the person’s name, and the
final argument is the person’s birthdate. Note that for the final instance, there is no value (i.e.,
none) given for the birthdate, e.g., the birthdate is unknown. The fourth instance uses the cross
list-expander to create ex:HasFamilyRelation instances with the ex:parentOf property, for all
combinations of elements from the two lists, thus stating that ex:peter and ex:mary are the
parents of ex:carl and ex:nora. The final instance also instantiates ex:HasFamilyRelation ,
but uses a zipMax list expander to pair people with their relation to ex:peter, thus making
ex:eric the ex:father of ex:peter, whereas ex:hannah is his ex:mother. For ex:bob, there
is no given property, i.e., the value is none, and its up to the definition of the template, whether
this parameter is optional or not, how this is handled.

3.3 Templates
A template is a parameterized set of statements – which themselves are template instances. Thus,
templates are a recursive structure where a template is defined in terms of other templates.
Base templates are the exception, and are used to represent basic statements in a different data
representation language.

Before we can define our notion of templates, we need to establish some preliminary definitions.

▶ Definition 31. Let M be a set of tokens, called modifiers, that contains at least the token
optional, denoting an optional value.

The optional modifier is used to control how the none term behaves during expansion. This
is defined in Section 3.4. However, the intuition is that we specify a parameter as optional if
none is a meaningful argument, and omit optional when it is not. All statements with a none as
arguments to a non-optional are discarded. This allows templates to contain subpatterns that are
only used when specific values are present (i.e., not none).

▶ Implementation 32. We extend M with an additional modifier called nonBlank, that specifies
that the value is not a blank node. Its behaviour is defined in Implementation 55.

Recall that our implemented terms contain blank nodes, and that blank nodes are, according
to the RDF specification [27], not permitted as predicates in RDF triples. Blank nodes can also be
undesirable in certain other settings, for example, if concrete values are required to be meaningful
for their intended use. The nonBlank modifier is introduced to control where blank nodes are
permitted and not. That is, a blank node is not allowed as an argument to a parameter marked
with nonBlank.

▶ Definition 33. A parameter is a 4-tuple (v, t, d, M) consisting of:
a variable term v different from none, called the parameter variable
a type t

a (possibly none) constant term d, called the parameter’s default value
a (possibly empty) set of modifiers M .

In the above definition, we use none to denote that a parameter does not have a default value,
and say that a parameter does not have a default value if the parameter’s default value is none.

▶ Syntax 34. A parameter is written with modifiers first, where a question mark denotes optional
and an exclamation mark denotes nonBlank, and nothing is written for the empty set of modifiers.
Following this comes the parameter’s type. We can omit writing the type rdfs:Resource. Then

M. G. Skjæveland and L. H. Karlsen 5:21

follows the parameter’s variable. Finally, if the default value is not none, the value is written at
the end separated from the variable with an equals sign. Examples:

Structure Syntax
(v, t, none, ∅) t ?v
(v, t, none, {optional}) ? t ?v
(v, t, d, {optional, nonBlank}) !? t ?v=d

▶ Definition 35. A template signature (or just signature) is a triple (t, P, N) of
a constant term t, called the signature’s template name,
a list of parameters P such that all parameter variables in a signature’s list of parameters are
different,
and a set of annotations N , which is a set of ground template instances; we call these annotation
instances.

The arity of a signature is the size of its parameter list. The type of a variable is the type of its
parameter within the signature’s parameter list.

As we shall see, a signature is part of the definition of a template. However, a signature is
also meaningful on its own, as documentation of how to use a template, similar to function and
method signatures in programming languages.

A signature may contain a set of ground instances called annotations. These are meant to be
used for documenting the signature (similar to Javadoc in Java or Docstrings in Python), such as
who created the template, the version of the template, and a description of the template pattern.

▶ Syntax 36. A signature is written starting with the template name, followed by the list of
parameters enclosed in square braces. Annotations, if any, are listed after this, separated by
commas and prefixed with @@. Examples:

Structure Syntax
(t, P, ∅) t[P] .
(t, P, {(i1, a1), (i2, a2)}) t[P] @@i_1(a_1), @@i_2(a_2) .

A signature ends with a dot.

▶ Definition 37. A base template is a pair (S, base) of a template signature and the token base.

A base template denotes a parameterized basic statement that cannot be broken down into a
set of smaller (parameterized) statements. Base template instances can either be used directly in
an OTTR serialization, or, more commonly, be transformed into statements in a different language
and serialization format.

▶ Syntax 38. A base template is written similarly to a template, except that the pattern is
replaced with the BASE keyword, that is:

Structure Syntax
(S, base) S :: BASE .

▶ Implementation 39. Our implementation contains one base template that denotes an RDF
triple:

((ottr:Triple,

⟨(subject, ottr:IRI, ∅),
(predicate, ottr:IRI, {nonBlank}),
(object, rdfs:Resource, ∅)⟩, ∅),

base)

or, equivalently in stOTTR format:

TGDK

5:22 The Reasonable Ontology Templates Framework

ottr:Triple [
ottr:IRI ?subject,
! ottr:IRI ?predicate,
rdfs:Resource ?object

] :: BASE .

One can imagine implementations supporting other base templates: Base templates for RDF
quadruples, OWL expressions, rows in tabular files, or SQL INSERT statements.

We are now ready to define the central concept of a template.

▶ Definition 40. A template is pair (S, B) of a template signature S and a set of template
instances B called the template’s pattern; we call these pattern instances.

A template is the core construct in OTTR, and is the primary means of abstraction. Using
templates, we can create complex parameterized statements that are easy to reuse. A template
can either be defined in terms of base templates directly, or by instantiating other templates (or
a combination). Taking a bottom-up approach, this supports layers of abstractions, each layer
creating more complex statements that are closer to the terminology of that of a concrete domain
to be modelled. To use a template, all one needs to know is its signature. The signature states
the arguments a user must provide, and may also contain annotations that further describe the
intended use of the template.

▶ Syntax 41. A template is written with the signature first (as described above) except the final
dot, followed by ::, and then the pattern instances separated by comma an enclosed in curly
braces, and finally ends with a dot. Examples:

Structure Syntax
(S, ∅) S :: .
(S, {i1, i2}) S :: i_1, i_2 .

▶ Definition 42. Let S be the set of all signatures, B be the set of all base templates, and T be the
set of all templates. Let O = S ∪ B ∪ T, and let the elements of O be called template objects.

Furthermore, let σ be a function from sets of template objects to sets of signatures, such that
σ(O) is the set of all template signatures contained either directly in O, or within a template or
base template in O.

▶ Definition 43. We say that a template instance I is the instance of a template signature T if T

has the same template name as I. For an argument a in instance I of signature T , we say that its
corresponding parameter of T is the parameter with the same index in the parameter list as the
index of a in the argument list of I.

▶ Example 44. The templates used in Example 30 are defined as follows:

ex:Person[owl:NamedIndividual ?p, xsd:string ?name, ? xsd:date ?born]
@@ottr:Triple(ex:person, ex:madeBy, ex:leifhka),
@@ottr:Triple(ex:person, rdfs:label, "Person Template")

:: {
o-rdf:Type(?p, ex:Person),
ottr:Triple(?p, ex:hasName, ?name),
ottr:Triple(?p, ex:born, ?born)

} .

M. G. Skjæveland and L. H. Karlsen 5:23

ex:HasFamilyRelation [
owl:NamedIndividual ?p1,
owl:NamedIndividual ?p2,
! owl:ObjectProperty ?r=ex:isFamilyRelatedTo

] :: {
ottr:Triple(?p1, ?r, ?p2)

} .

Note that we have given the property parameter a default value, so if none is given as argument,
the default value ex:isFamilyRelatedTo is used. The ?born parameter is specified as optional,
hence a missing birthdate will still create a person with an IRI and name, but no birthdate.

One can now use these templates to register complete families, where input is given as lists
of IRIs and names for parents and children per family. We can capture both the creation of the
persons and their relations with a single template as follows:

ex:NuclearFamily[
List<owl:NamedIndividual> ?parents,
List<xsd:string> ?parentNames,
List<owl:NamedIndividual> ?children,
List<xsd:string> ?childrenNames

] :: {
zipMax | ex:Person(++?parents, ++?parentNames, none),
zipMax | ex:Person(++?children, ++?childrenNames, none),
cross | ex:HasFamilyRelation(++?parents, ++?children, ex:parentOf)

}

As we assume that input does not contain any dates of birth, the ex:NuclearFamily template
uses a none value as argument for the corresponding parameter in the ex:Person template.

3.4 Instance Expansion
We have now defined the core constructs in the OTTR framework, and will proceed to define the
process of instance expansion, which is to iteratively transform instances into ultimately instances
of base templates only.

We treat list expansion separately first, as this is technically the most complex part of the
expansion process. List expansion is specified using two functions, where the first selects the lists
to expand from the instance and expands them using the given list expander function, while the
second creates one instance per element in the result of this function application. The full list
expansion is the composition of these two functions.

▶ Definition 45. Let I = (t, A, E, e) be an instance of arity m with list expander indices E =
{i1, . . . , in} where ik < ik+1. Define the function ϵ1 from instances to set of argument lists as
follows:

ϵ1((t, A, {i1, . . . , in}, e)) = e(⟨A(i1), . . . , A(in)⟩)

Here we use A(ik) to denote the ik’th element of A. Furthermore, let

ϵ2(A, L, E, i) =
{

L(E′(i)), if i ∈ E

A(i), otherwise

where E′(i) is the position of i in E in ascending order. Finally, let

ϵ((t, A, E, e)) = {t(ϵ2(A, L, E, 1), . . . , ϵ2(A, L, E, m)) | L ∈ ϵ1(t, A, E, e)}

TGDK

5:24 The Reasonable Ontology Templates Framework

The function ϵ takes an instance and produces a set of instances by first selecting the argument
lists that are to be expanded and applies the list expander function (with ϵ1), and then creates new
instances based on the expanded lists by combining elements of the expansion with the original
non-expanded values of the argument instance (with ϵ2).

▶ Definition 46. The direct expansion δ(I) of a ground instance I = (t, A, E, e), where t

corresponds to the template object T , is defined as follows:
1. if E ̸= ∅, then the direct expansion of I is ϵ(I).
2. if there is an i such that ai = none and its corresponding parameter is not optional and has no

default value, then δ(I) = ∅.
3. if T is a base template or a signature (and not a template), then δ(I) = {I}.
4. otherwise, let T = (S, B) and build the induced substitution σ of T and I by considering each

argument ai of I and its corresponding parameter Pi with variable xi in T :
if ai has value none and pi has a default value d, then σ := σ ∪ {xi/d}
otherwise, σ := σ ∪ {xi/ai}

Then let δ(I) = Bσ, that is, σ applied to the pattern B of T .

In the above definition, the first case is performing the list expansion defined in the previous
definition. The second case handles none values, where none values given to non-optional
parameters (without default value) result in an empty expansion, i.e., the instance is discarded,
and none values given to parameters with a default value are replaced with that default value.
The third case states that the expansion of a base template (or a signature, i.e., the case where we
do not have the full definition of a template object) is just the base template itself (however, note
that step comes after the former two, so these steps apply first). The final case is the replacement
of an instance to a template with the pattern the template denotes, where parameter values are
substituted with argument values.

This denotes a single step in the expansion, the full expansion of an instance is simply the
fix-point of this process.

▶ Definition 47. The expansion of a set of ground instances I is the fix-point of the following
function:

η(I) =
⋃
{δ(I) | I ∈ I}

Example 48 gives an example of the expansion process of the previously exemplified instances
and templates.

▶ Example 48. The example demonstrates the expansion of selected instances from Example 30.
For the two first examples, we show the step-wise expansion process.

The following instance:

ex:Person(ex:mary, "Mary Smith", "1980-02-03"^^xsd:date) .

. . . expands in one step to:

o-rdf:Type(ex:mary, ex:Person),
ottr:Triple(ex:mary, ex:hasName, "Mary Smith"),
ottr:Triple(ex:mary, ex:born, "1980-02-03"^^xsd:date)

. . . which expands in one step to:

ottr:Triple(ex:mary, rdf:type, ex:Person),
ottr:Triple(ex:mary, ex:hasName, "Mary Smith"),
ottr:Triple(ex:mary, ex:born, "1980-02-03"^^xsd:date)

M. G. Skjæveland and L. H. Karlsen 5:25

. . . which is equivalent to the following RDF graph:

ex:mary rdf:type ex:Person ;
ex:hasName "Mary Smith" ;
ex:born "1980-02-03"^^xsd:date .

The following instance:

ex:Person(ex:bob, "Bob Green", none) .

. . . expands in one step to:

o-rdf:Type(ex:bob, ex:Person),
ottr:Triple(ex:bob, ex:hasName, "Bob Green"),
ottr:Triple(ex:bob, ex:born, none)

. . . which expands in one step to:

ottr:Triple(ex:bob, rdf:type, ex:Person),
ottr:Triple(ex:bob, ex:hasName, "Bob Green")

. . . which is equivalent to the following RDF graph:

ex:bob rdf:type ex:Person ;
ex:hasName "Bob Green" .

The following instance:

cross | ex:HasFamilyRelation(
++(ex:peter, ex:mary),
++(ex:carl, ex:nora),
ex:parentOf) .

. . . expands to the following RDF graph:

ex:peter ex:parentOf ex:carl, ex:nora .
ex:mary ex:parentOf ex:carl, ex:nora .

The following instance:

zipMax | ex:HasFamilyRelation(
++(ex:eric, ex:hannah, ex:bob),
ex:peter,
++(ex:fatherOf, ex:motherOf)) .

. . . expands to the following RDF graph:

ex:eric ex:fatherOf ex:peter .
ex:hannah ex:motherOf ex:peter .
ex:bob ex:isFamilyRelatedTo ex:peter .

Finally, we define the process of annotation expansion.

▶ Definition 49. The annotation expansion of a template signature is the result of replacing the
annotation instances of the template signature with their expansion.

TGDK

5:26 The Reasonable Ontology Templates Framework

3.5 Template Library and Dataset
In this section, we will define what it means for a set of template objects and instances to be
correct, e.g., with respect to the type system and template signature specifications. We start by
defining the notions of template library and dataset.

▶ Definition 50. A template library is a set of template objects. A template dataset is a pair
(L, I) of a template library L and a set of ground template instances I.

▶ Definition 51. For a term v occurring in an instance (t, ⟨a1, . . . , an⟩, E, e), we say that v has
inferred type p if v is a term in an argument ai at depth n and either:

i /∈ E, with a corresponding parameter with a type having the type p at depth n

i ∈ E, with a corresponding parameter with a type having p at depth n− 1

The inferred type of a term is the type the term is used as. A term may therefore have many
inferred types, one for each time the term occurs in any instance.

▶ Definition 52. A term v is consistently typed in a set of instances if there exists a type p

unequal to ⊥ such that
p is a subtype of all inferred types of v, and
the type of v is compatible with p.

In other words, a term is consistently typed if there is a type one can assign it that is a subtype
of all of its inferred types and that is compatible with the actual type of the term. Note that
this definition covers both the consistent use of terms and correct typing as discussed above. For
example, if a term v is used both as an xsd:int and as a xsd:string, this is a case of inconsistent
use of the term v, as there is no subtype for these inferred types (unequal to ⊥), which violates
the first point. If the term v has type xsd:int but is used as a xsd:string, then it is a case of
incorrect typing and a violation of the second point of the definition.

▶ Example 53. Assume the IRI ex:Eagle is used both as a owl:NamedIndividual and a
owl:Class. Under the type hierarchy given in Table 1 there exists no subtype of these types,
hence ex:Eagle is not consistently typed. Under the type hierarchy given in Table 2 there exists a
subtype of these types, :Punned-Class-NamedIndividual, hence ex:Eagle is consistently typed.

▶ Definition 54. An instance is modifier correct if all of its arguments satisfy the corresponding
parameter modifiers.

▶ Implementation 55. Any non-blank constant and any variable of a parameter marked with
nonBlank satisfies the nonBlank modifier.

Note that the definition above ensures that the nonBlank modifier is propagated upwards in the
dependency graph of templates so that any variable used as an argument to a nonBlank-parameter
must be marked as nonBlank.

▶ Definition 56. A set of instances is consistently typed (modifier correct) if every term occurring
in it is consistently typed (modifier correct). A template library is consistently typed (modifier
correct) if the set of all instances occurring in it is consistently typed (modifier correct).

This covers the correct use of terms.
We now define correctness of the interplay between template objects and between templates

and instances by way of several properties that combined form the notion of correctness.

▶ Definition 57. A template T directly depends on a template object S if T has a pattern that
contains an instance of S. A template library is acyclic if the directly depends relation is acyclic.

M. G. Skjæveland and L. H. Karlsen 5:27

Acyclicity ensures that instance expansion terminates and is finite. Note that this also disallows
recursively defined templates. However, we have no means of manipulating or producing new
terms apart from through list expansion. Under the current type system, we are unable to define
a template that can apply a list expander to an instance of itself, as this would not be consistently
typed. Thus, a recursive call within a template’s pattern can only reuse the same arguments it was
originally given or have constants as arguments, thus creating an infinite loop in the expansion.

▶ Definition 58. A set of instances I has referential integrity with respect to a template library L
if every instance has a name corresponding to a template signature in σ(L), and that the arity of
the instance equals the arity of the corresponding template signature.

A template library has referential integrity if no two non-signature template objects have the
same name and the set of all instances occurring in it has referential integrity with respect to it.

Referential integrity ensures that all instances refer to a unique template object, and that the
number of arguments equals the number of parameters in the corresponding signature.

▶ Definition 59. A template object is well-founded if it is a base template or if it is a template
that depends only on well-founded templates. A template library is well-founded if it contains only
well-founded templates.

Well-foundedness is a property that ensures that all templates are properly defined, that is,
there are no templates that depend on a template object that is a signature only. It characterizes
the fact that instances can be expanded all the way to instances of base templates only. Note
that well-foundedness is not the same as acyclicity. A template that depends on a template object
which is a signature is non-well-founded but acyclic, while a template that directly depends on a
base template and itself (recursively) is well-founded and cyclic.

▶ Definition 60. A semi-valid template library is a template library that is consistently typed,
modifier correct, acyclic, and has referential integrity.

▶ Definition 61. A valid template library is a semi-valid template library that is well-founded.
A valid template dataset is a template dataset where its template library is valid, and its set of
instances is consistently typed and has referential integrity with respect to the template library.

The difference between a semi-valid and a valid library is whether all template objects are
properly defined or not.

▶ Example 62. Below are examples of violations of correctness of instances and templates as
defined above, based on the templates from Example 44.

ex:Person(ex:bob, "Bob Green") .
ex:Person(_:bob, ex:bob_green, none) .
ex:Person(_:b, _:b, none) .
ex:HasFamilyRelation(ex:bob, ex:mary, _:someProp) .

The errors in the above instances are:
1. The instance has two arguments, but the signature requires three.
2. The IRI ex:bob_green is given as an argument to a parameter of the incompatible type

xsd:string.
3. The blank node _:b is used inconsistently; it is used as an argument to two parameters with

the types owl:NamedIndividual and a xsd:string that have no common subtype unequal
to ⊥.

4. The blank node _:someProp is used as an argument to a parameter with a nonBlank modifier.

TGDK

5:28 The Reasonable Ontology Templates Framework

ex:ErrTemplate1 [owl:ObjectProperty ?r] :: {
ex:HasFamilyRelation(ex:bob, ex:mary, ?r) } .

ex:ErrTemplate2 [ottr:IRI ?p] :: {
ex:Person(?p, "Mr. P", none) } .

ex:ErrTemplate3 [owl:NamedIndividual ?p, xsd:string ?n] :: {
ex:MakePerson(?p, ?n) } .

ex:ErrTemplate4 [ottr:IRI ?p] :: {
ex:ErrTemplate4(?p) } .

The errors in the above templates are:
In ex:ErrTemplate1, the parameter ?r has no nonBlank modifier and is used as argument to
a template parameter with a nonBlank modifier.
In ex:ErrTemplate2, the parameter ?p has the type ottr:IRI and is used as an argument to
a template parameter with the incompatible type owl:NamedIndividual.
ex:ErrTemplate3 depends on an undefined template ex:MakePerson.
ex:ErrTemplate4 has a cyclic definition.

4 Serialization Formats

The OTTR framework offers two serialization formats for representing templates and instances, a
special-purpose format called stOTTR, and an RDF-based format specified using the wOTTR
vocabulary.

4.1 stOTTR: Terse OTTR Syntax
The stOTTR serialization format is designed to be a terse and easy to read and write syntax for
representing OTTR templates and instances following the abstract model and syntax as defined
in Section 3. The stOTTR grammar takes the Turtle RDF grammar [2] as starting point and
expands this to support expressing templates and instances. Formally, stOTTR is specified in
Antlr6 Extended Backus-Naur form (EBNF) that extends relevant parts of the formal Turtle
grammar which is used for the representation of terms, i.e., IRIs, blank nodes and literals. The
stOTTR grammar specification is developed in GitLab,7 and published at ottr.xyz8 and Zenodo.9
Figure 5 on page 7 demonstrates the stOTTR format on the o-p:NamedPizza template.

4.2 wOTTR: RDF Vocabulary
wOTTR is an RDF vocabulary for expressing OTTR templates and instances in an RDF format.
The motivation for an RDF-based serialization format for OTTR is to support a development
and management environment for OTTR based only on semantic web standards, using, e.g.,
triple stores, SPARQL, OWL, and rule languages to manipulate and manage templates and
their instances. The vocabulary is designed to result in a compact and readable representation
of templates and instances in Turtle format exploiting in particular Turtle’s compact RDF list

6 https://www.antlr.org/
7 https://gitlab.com/ottr/spec/stOTTR
8 https://spec.ottr.xyz/stOTTR/0.1.4/
9 https://zenodo.org/records/12568905

https://www.antlr.org/
https://gitlab.com/ottr/spec/stOTTR
https://spec.ottr.xyz/stOTTR/0.1.4/
https://zenodo.org/records/12568905

M. G. Skjæveland and L. H. Karlsen 5:29

1 o-p:NamedPizza rdf:type ottr:Template ;
2 ottr:parameters
3 ([ottr:type owl:Class ; ottr:variable _:pizza]
4 [ottr:modifier ottr:optional ; ottr:type owl:NamedIndividual ;
5 ottr:variable _:country]
6 [ottr:type (ottr:NEList owl:Class) ; ottr:variable _:toppings]) ;
7 ottr:pattern
8 [ottr:of o-owl-ax:SubObjectHasValue ;
9 ottr:values (_:pizza pz:hasCountryOfOrigin _:country)] ,

10 [ottr:of o-owl-ax:SubObjectSomeValuesFrom ;
11 ottr:modifier ottr:cross ;
12 ottr:arguments
13 ([ottr:value _:pizza]
14 [ottr:value pz:hasTopping]
15 [ottr:modifier ottr:listExpand ; ottr:value _:toppings])] ,
16 [ottr:of o-owl-ax:SubClassOf ;
17 ottr:values (_:pizza pz:NamedPizza)] ,
18 [ottr:of o-owl-re:ObjectUnionOf ;
19 ottr:values (_:b0 _:toppings)] ,
20 [ottr:of o-owl-ax:SubObjectAllValuesFrom ;
21 ottr:values (_:pizza pz:hasTopping _:b0)] .

Figure 11 The o-p:NamedPizza template in wOTTR syntax.

representation for expressing parameter lists, argument lists and complex type specifications.
The entities defined in the wOTTR vocabulary lie close to the formal vocabulary established in
Section 3; the classes, properties and named individuals of the vocabulary are listed in Table 3,
Table 4, and Table 5, respectively. The wOTTR vocabulary is developed in GitLab,10 and
published at ottr.xyz11 and Zenodo.12

Although the mapping from the wOTTR vocabulary to the formally defined concepts of OTTR
should be immediate, there are some design choices and peculiarities that are due to the wish for
a compact and readable representation, and the constraints of the RDF and OWL standards. We
will illustrate these by using the o-p:NamedPizza template represented in the wOTTR vocabulary,
which is listed in Figure 11.
Variables As RDF does not include variables we have chosen to use blank nodes for representing

a template’s parameters. The variables of a template are specified as a list of parameters using
the predicate ottr:variable, see, e.g., line 3 in Figure 11. Care must then be taken to not
use the same blank nodes as constants.

Lists The wOTTR language makes frequent use of RDF lists as a means to represent an ordering
of resources. We do this since RDF lists have a succinct serialization in RDF Turtle and as it
is syntactically similar to ordinary function calls and predicates. In Figure 11, lists are used
for parameter lists (starting on line 3), instance argument lists (e.g., on line 13), instance
argument value lists (e.g., on line 9), and complex type specifications; line 6 specifies the type
NEList<owl:Class>.

Annotation properties All properties of the wOTTR vocabulary are annotation properties. This
is to indicate that the vocabulary is not intended to be used for reasoning over templates and
instances. The use of RDF lists, as explained above, also places the vocabulary outside the
OWL 2 DL fragment, as RDF lists are used in the serialization of OWL.

10 https://gitlab.com/ottr/spec/wOTTR
11 https://spec.ottr.xyz/wOTTR/0.4.5/
12 https://zenodo.org/records/12581215

TGDK

https://gitlab.com/ottr/spec/wOTTR
https://spec.ottr.xyz/wOTTR/0.4.5/
https://zenodo.org/records/12581215

5:30 The Reasonable Ontology Templates Framework

Table 3 wOTTR vocabulary classes and their definition. The ottr: prefix is omitted.

Class Definition
:Signature A signature specifies the permissible input for instances. It does this through

its list of parameters. The IRI of the signature is a unique name that its
instances must reference.

:Template A template is a signature that additionally specifies a pattern. The pattern,
which is a set of instances, determines the result of the direct expansion (1-step
expansion) of an instance of the template.

:BaseTemplate A base template is a signature with no pattern. The expansion of an instance
of a base template is the instance itself.

:Parameter A parameter specifies the variable terms or resources of a pattern and the
permissible values for the corresponding instance arguments.

:ParameterModifier A parameter modifier is a flag or marker that is set on a parameter to
alter the permissible corresponding argument values and/or the behaviour of
expanding instances.

:Instance An instance is an instantiation of a signature, template or base template.
The instance must refer to a signature and provide arguments that match the
corresponding parameters of the signature.

:ExpansionModifier An expansion modifier is a flag or marker that is used to alter the behaviour
of expanding the marked instance.

:Argument An argument specifies an input value for a given instance.
:ArgumentModifier An argument modifier is a flag or marker that is used to identify that the

argument plays a special role in modified expansions. See also ExpansionModi-
fier.

Two instance shapes Template instances are stated using the property ottr:of which specifies
the template. Instances may be specified using two different shapes, called compact and
canonical. The compact shape uses the property ottr:values and an RDF list to directly
give the argument values of the instance, very similar to how instances are written in stOTTR;
line 9 shows an example. The canonical shape uses the property ottr:arguments and an RDF
list of arguments, where each argument, usually represented by blank node, has a ottr:value
property that sets the argument value; line 15 shows an example. The canonical shape can be
used in all cases, but must be used when more data than just the argument value is required,
as line 15 exemplifies by marking the argument for list expansion.

5 Template Libraries

A template library is a collection of templates developed and curated for a particular purpose, such
as representing patterns for a given vocabulary, domain, or project. The ability to share and reuse
templates for common modelling patterns is a core feature of the OTTR framework. This section
gives an overview of the vision behind OTTR template libraries and the support and developments
made towards the vision. Large parts of this section are taken from previous publications [52, 34]
and are included here to give a complete presentation of the OTTR framework.

The vision of template libraries is similar to the role APIs and repositories of API source
code play in software engineering. Just as software projects rely on stable access to APIs and
documentation to work and be understood and used, ontology engineering projects using OTTR
must be able to rely on the availability and documentation of templates. For this reason, it is
critical that a published template does not change in any way that may affect the expansion of

M. G. Skjæveland and L. H. Karlsen 5:31

Table 4 wOTTR vocabulary properties, indicating their domain and range. The ottr: prefix is
omitted.

Property Domain Range Definition
:parameters :Signature List of :Parameter Associates a signature with one required list

of parameters.
:annotation :Signature :Instance Associates a signature with an optional set

of annotation instances.
:variable :Parameter rdfs:Resource Sets the required variable of a parameter.
:type :Parameter (List of) rdfs:Resource Sets an optional type of a parameter. A

missing type implicitly sets the type to the
most general type.

:default :Parameter rdfs:Resource Sets an optional default value of a parameter.
The default value is used in case an argument
value is unspecified or is ottr:none.

:pattern :Template :Instance Associates a template with an optional set
of pattern instances.

:name xsd:token A human readable name or label.
:of :Instance :Signature Associates an instance with its required sig-

nature.
:arguments :Instance List of :Argument Associates an instance with a list of argu-

ments.
:values :Instance List of rdfs:Resource Associates an instance with a list of argu-

ment values
:value :Argument rdfs:Resource Associates an argument with its argument

value.
:modifier

Table 5 wOTTR vocabulary individuals and their type. The ottr: prefix is omitted.

Named Individual Class Definition
:optional :ParameterModifier optional is a parameter modifier which makes the value

none a permissible instance argument value for this para-
meter.

:nonBlank :ParameterModifier nonBlank is a parameter modifier which makes blank
nodes illegal instance argument values for this parameter.

:cross :ExpansionModifier cross is an expansion modifier which sets the list expan-
sion operation to cross product.

:zipMax :ExpansionModifier zipMax is an expansion modifier which sets the list
expansion operation to zip, extending smaller list to the
length of the longest list by appending empty values.

:zipMin :ExpansionModifier zipMin is an expansion modifier which sets the list ex-
pansion operation to zip with the shortest list as length.

:listExpand :ArgumentModifier listExpand is an argument modifier that selects argu-
ments for list expansion.

:none rdfs:Resource none is an individual which is used to designate a missing
argument value.

:Triple :BaseTemplate Triple is a base template that represents an RDF triple.
:NullableTriple :BaseTemplate NullableTriple is a base template that represents an

RDF triple and permits none value arguments.

TGDK

5:32 The Reasonable Ontology Templates Framework

its instances, and that the expansion can be performed at any time. The meaning of a template
instance must stay constant; an instance should be considered as semantically equivalent to its
expansion. This places strong requirements on the availability and versioning of templates.

To support the quality of template libraries and the management of these, concepts and proced-
ures for library governance, together with methods for library maintenance and methodologies for
library construction have been developed. A documentation system together with a purpose-built
set of documentation templates is available for annotating templates to generate user-friendly
documentation pages for publishing template libraries. This is presented in more detail below.

5.1 Template Life-cycle Management

To aid the life-cycle management of templates in the library, a set of template statuses and an
interpretation of versioning categories for templates has been proposed [52].

5.1.1 Status

A template’s status indicates the maturity of the template and its level of support and endorsement.
Each template has exactly one of the following statuses, here ordered from low to high:

incomplete < draft < candidate < proposed recommendation < recommendation

A template should not depend on templates of lower status than the template’s own status. A
template may additionally have the status of deprecated. The statuses are described in more detail
below.

An incomplete template is of the lowest status, which is the default if no status is stated for a
template. The only requirement for an incomplete template is that it must be syntactically
correct according to its serialization format, but need not otherwise be a valid template. This
means is it permissible for an incomplete template to, for example, depend on templates that
do not (yet) exist or that contain type errors. An incomplete template is typically a placeholder
for future work and should not be published for public use.

A draft template must be a syntactically correct and well-founded template, i.e., the template is
completely defined and does not contain any formal errors. A draft template should not be
considered mature or stable. In terms of its life-cycle, it is published in order to be available
to others, both for use and for further development.

A candidate template is a draft template which additionally contains a complete set of metadata
and is endorsed by a named individual or organization that aims to promote the template to
recommendation status. The endorser is expected to actively participate in the support and
promotion of the template; failure to do so may result in the deprecation of the template. A
candidate template should be considered stable.

After a period in candidate status, a candidate template may be proposed as a recommendation
and given the status of proposed recommendation. This triggers a public vote to promote
the template to recommended status. Relevant comments and issues collected during the
voting phase must be addressed if the template can be given the status of recommended.

A recommended template is of the highest status. This means that the template is of high
quality and is well-integrated into the library.

A deprecated template is discouraged from use. An explanation for why a template is deprecated
should be given.

M. G. Skjæveland and L. H. Karlsen 5:33

5.1.2 Versioning
Each time a template is published, a new version number must be assigned to the template
using semantic versioning13 and the numbering scheme major.minor.patch, e.g., 0.2.3. In our
translation of these types of updates to OTTR templates the notions of the expansion of a template
and its signature are central. Any changes to the signature of a template which make existing
instances incompatible with the updated template are backwards incompatible changes. For
OTTR templates we use the following definitions:

Patch updates are backwards compatible changes that do not affect the expansion of a template.
These changes will neither affect existing instances of the updated template nor their expansion.

Minor updates are backwards compatible changes that may alter the expansion of the template.
An example is adding or removing body instances. This means that existing instances of the
template remain legal and valid for the new version of the template, but their expansion will
be different.

Major updates are backwards incompatible changes. An example is adding or removing a
parameter to/from the template signature, or restricting the type of a parameter. This means
that existing instances of the template will not be legal instances of the updated template.

In the case that the update greatly changes the perceived meaning of the template, the update
should be categorized as a greater change than according to the above descriptions.

Draft templates are exempted from the above rules. Following the semantic versioning
specification we require that draft templates have a version number with the major version 0,
which signals that anything may change at any time and the public API should not be considered
stable. When a template reaches the next status of candidate, the major version must be set to 1.

5.2 Metadata
Template metadata, like the status and version of a template, but also textual explanations,
examples and provenance information, is captured by annotation instances placed on templates.
The docttr package of the core template library contains templates created specifically for this
purpose. The following lists the templates in the package and the information they are designed
to capture:
Signature: label, description, scope and editorial notes, related resources
Provenance: time of creation and update, authors and contributors
Version: status, version number, references to previous and next versions
ChangeNote: change description, including author and timestamp of the change
Example: explanatory examples of the template
Deprecated: mark the template as deprecated, including an explanation of why
Parameter: parameter description, example, notes
The documentation of the template package is found at http://tpl.ottr.xyz/p/docttr/.

5.3 docTTR: Template Documentation System
The documentation system for OTTR templates is called docTTR. docTTR reads as input all the
templates that constitute a library and produces a set of interlinked HTML pages. All pages are
presented in an HTML frameset layout, inspired by Javadoc,14 a documentation system for Java.

13 https://semver.org/spec/v2.0.0.html
14 https://www.oracle.com/java/technologies/javase/javadoc-tool.html

TGDK

http://tpl.ottr.xyz/p/docttr/
https://semver.org/spec/v2.0.0.html
https://www.oracle.com/java/technologies/javase/javadoc-tool.html

5:34 The Reasonable Ontology Templates Framework

Each template documentation page contains the metadata captured by annotation instances, a
list describing its parameters, the template rendered in different serialization formats, a generated
sample instance of the template in all formats with its resulting expansion, both visualized and in
RDF Turtle format; an expansion of the sample instance, a dependency graph showing all the
templates that the template, and a list of the vocabulary elements that the template introduces.

5.4 Template Relations for Library Maintenance
Using the formal fundamentals of the OTTR language it is possible to define logical relationships
between templates that describe characteristics that concern the quality of template libraries. We
focus in particular on removing redundancy within a library, where we distinguish two different
types of redundancy: a lack of reuse of existing templates, as well as recurring patterns not
captured by templates within the library. To this end, we use the following template relations.

▶ Definition 63. Let T1 = ((t1, P1, A1), B1) and T2 = ((t2, P2, A2), B2) be two templates (that is,
template Ti has name ti, parameters Pi, annotations Ai and pattern Bi). We say that T1 overlaps
T2 if there exist sets of template instances I1 ⊆ B1 and I2 ⊆ B2 and substitutions ρ1 and ρ2 of
respectively P1 and P2 such that ρ1(I1) = I2 and ρ2(I2) = I1.

Furthermore, we say that T1 contains T2 if there exists a substitution ρ of the parameters of
T2 such that ρ(B2) ⊆ B1.

Using these relations, we can now formally define notions of redundancy in template libraries.

Lack of reuse is a redundancy where a template S has a contains relationship to another template
T , instead of a dependency relationship to T . That is, S duplicates the pattern represented by
T , rather than instantiating T . This can be removed by replacing the offending portion of the
pattern of S with a suitable instance of T .

Uncaptured pattern is a redundancy where a pattern of template instances is used by multiple
templates, but this pattern is not represented by a template. In order to find uncaptured
patterns one must analyse in what manner multiple templates depend on the same set of
templates. If multiple templates overlap as defined above, this is a good candidate for an
uncaptured pattern. However, an overlap does not necessarily need to occur for an uncaptured
pattern to be present.

We have implemented an algorithm for efficiently identifying uncaptured patterns in large
template libraries, and used it to successfully refactor a real-world template library [50].

5.5 Template Development Methodologies
The recursive structure of OTTR templates supports a top-down modelling approach to template
library development, where complex modelling patterns are iteratively broken down into less
complex patterns.

Lupp et al. [34] use this approach, and identify different informal layers to a template library:
Base templates are at the lowest level and specify patterns over an underlying data representation

language.
Utility templates are used to improve template formulation by grouping base template instances

to avoid unnecessary repetition. Utility templates represent patterns that are typically only
meaningful for users familiar with the language that the base templates abstract over, e.g.,
RDF.

Logical templates represent ontological axioms and convenient combinations of axioms, such as
subclass relationship and concept partitioning.

M. G. Skjæveland and L. H. Karlsen 5:35

Domain templates represent modelling patterns in a specific domain. They are independent of
specific input formats and represent common domain conceptualizations.

System/User-facing templates record patterns that represent end-user or system formats which
typically involve complex combinations of domain statements. A system template is hence
only required if the system representation differs from the domain conceptualization and if the
format is useful to represent as a template. This may be the case when the format is common,
e.g., if the system is a de facto standard in the domain.

Each layer provides an “interface” for the layers above it to use, hence hiding the complexity of
lower layers. The layering helps with the construction and maintenance of a template library in
that the various layers typically fit different competencies and may be managed by people with
different expertise – possibly with the assistance of ontology experts.

Blum et al. [5] give insights from an OTTR-specific ontology engineering methodology similar
to that of Lupp et al. [34]. They characterize their methodology as both bottom-up, in the sense
that existing data is taken as the starting point for developing templates, and top-down, as the
methodology exploits the recursive structure of OTTR templates to incrementally break down the
more complex data-facing templates to OWL and RDF templates. In their work, they found that
OTTR templates helped simplify the communication between subject-matter experts and ontology
experts in that it allows them to focus on what to model – the information content, represented
by template signatures – without the need to consider how to model it, which is later represented
by template bodies.

5.6 Public Template Libraries
There are a handful of publicly available OTTR template libraries:

Core OTTR Library [52] This library is developed and maintained by the OTTR team. It
contains about 200 templates that predominantly represent common patterns over the OWL,
RDFS and RDF vocabularies. It is intended to be a central resource for all OTTR users and
other template libraries. The library is available at https://tpl.ottr.xyz.

POSC Caesar Association The POSC Caesar Association (PCA) has published the Product
Life-cycle Management Reference Data Library (PLM-RDL) OTTR Library at https://rds.
posccaesar.org/ontology/plm/tpl/0.1/:

The PLM-RDL OTTR library is specifically intended to cover the process industry domain
and the templates will, in general, make direct reference to resources from the PLM-RDL.
If you wish to build ontologies that extend on the PLM-RDL, using these templates will
help ensure that your modelling patterns are fully consistent with those of the PCA ISO
15926-14 compliant ontologies.

DiProMag The DiProMag project has published an OTTR template library for modelling certain
characteristics of chemical elements at https://www.dipromag.de/dipromag_onto/. (See
also Section 8.4.)

Aspect OWL The ontology design patterns for representing context in ontologies using As-
pectOWL [45] are encoded by an OTTR template library available at https://odp.aspectowl.
xyz/.

6 Instantiation Tools

The tabular format specified by OTTR template signatures is well-suited for consuming and
converting tabular data to RDF by way of OTTR’s expansion mechanism. Assuming the format
of the input table matches the template signature, each row in the input table is naturally mapped

TGDK

https://tpl.ottr.xyz
https://rds.posccaesar.org/ontology/plm/tpl/0.1/
https://rds.posccaesar.org/ontology/plm/tpl/0.1/
https://www.dipromag.de/dipromag_onto/
https://odp.aspectowl.xyz/
https://odp.aspectowl.xyz/

5:36 The Reasonable Ontology Templates Framework

to a template instance. To this end, the OTTR framework specifies two methods for selecting
and converting tabular data to OTTR template instances: tabOTTR specifies a small markup
language for mapping tabular data files to OTTR template, and bOTTR is an RDF vocabulary
for specifying mappings from database query results to OTTR template instances.

6.1 tabOTTR: Tabular OTTR Template Instances
The intended use of tabOTTR is to annotate existing tabular datafiles, such as CSV files and
spreadsheets, with instructions that specify the data to select and how to transform it to the
correct datatypes for OTTR template instantiation.

In order to generalize over different tabular file formats we use the terms file, table, column,
row and cell. Tables, columns and rows within a file have a unique index which is a positive
integer number assumed to be numbered in a straight-forward ordered consecutive manner. A cell
has a 3-dimensional coordinate given by the indices: (table, column, row). For CSV files, we call
the entire contents of the file a table and assign this the index 1. For spreadsheets, such as in MS
Excel files, each sheet in a file represents a table.

The results of processing a file according to the tabOTTR specification is a set of template
instances. Processing instructions are inserted directly into tables with the token #OTTR. This
token must appear in the first column of the table, and the cell to the right of the token must
contain a processing instruction name with possible instruction arguments given in consecutive
cells immediately to the right of this cell. Each table can contain multiple processing instructions,
and when processing a file all tables in the file are processed. There are three such processing
instructions: end, prefix and template, which will be discussed below. An instruction dictates
the interpretation of subsequent rows, and the scope of the instruction is the following rows until
a row containing a new instruction or until the end of the table. Rows which are not in the
scope of an instruction are not processed. All processed cells are trimmed for leading and trailing
whitespace. All IRIs may be given using a QName, using prefixes set with the prefix instruction.

The instructions are defined as follows:
end instruction The end instruction takes no arguments. It is a no-operation instruction that

takes no arguments and whose purpose is simply to terminate the previous instruction. We
recommend to always use the end instruction to terminate an instruction, so that the scope of
an instruction is made explicit.

prefix instruction The prefix instruction declares namespace prefixes that may be used in other
instructions and that will be included in the processed output. The prefix instruction takes
no arguments. Each following row declares a namespace prefix, where the

1. column contains the prefix name, and the
2. column contains the namespace name.

All other columns are ignored. The scope of the defined prefixes is the whole input file.
Conflicting declarations of the same prefix name must raise an error.

template instruction The result of processing a template instruction is a set of template instances.
A template instruction takes one argument: a template IRI. Subsequent rows have special
meaning; assume the template instruction is on a row with index r, then:

Row r + 1 contains cells that specify the template argument index of the template instances.
Cell values must be a non-negative integer or the empty string.
Row r +2 contains cells that specify the type instruction of the template instance arguments.
Cell values must have a legal type instruction; they are listed in Table 6.
Row r + 3 is ignored. This row can be used for informative content such as column headers.
The following rows, rows > r + 3, in the scope of the template instruction specify each
one instance of the template whose IRI is specified by the template instruction. The cells
in these rows contain instance argument values. Each argument value is together with its

M. G. Skjæveland and L. H. Karlsen 5:37

Table 6 Permissible type instructions and their RDF resource interpretation.

Type instruction RDF value interpretation
iri IRI
blank blank node
text untyped literal
an IRI typed literal
auto determined by value, see below
X+, where X is one of the above type instructions RDF list with list items determined by X

corresponding type instruction (as specified in row r + 2) translated into an RDF resource
following Algorithm 1. Each row then represents an argument list to a template instance
ordered according to the positive integer indices of row r + 1.

▶ Example 64. This table contains a prefix instruction that declares two prefixes: ex and foaf.
The prefix instruction is terminated by an end instruction.

#OTTR prefix
ex http://example.net#
foaf http://xmlns.com/foaf/0.1/#
#OTTR end

The result of processing the above table is equivalent to the following RDF Turtle.

@prefix ex: <http://example.net#> .
@prefix foaf: <http://xmlns.com/foaf/0.1/#> .

Type instructions are required for describing how values in tabular data files, which may not
have any typing information, are to be translated into RDF resources. This makes it possible
to for instance create an IRI or an RDF literal from the string value http://example.com/Bob.
The values from columns that are auto typed are translated based on their string value and may
hence end up as RDF resources of different RDF types.

Example 65 gives a simple demonstration of the template instruction. Table 7 demonstrates
the translation of auto typed values. Figure 10 on page 13 shows a spreadsheet that specify 22
instances of the o-p:NamedPizza template listed in Figure 5.

▶ Example 65. The table below contains one template instruction, declaring instances of the
ottr:Triple template, as prescribed by the first row. The next row selects which columns to use
as arguments to the template (which takes 3 arguments). Columns with a value 0 will be ignored
and can be, e.g., used for comments or spreadsheet formula calculations of intermediate values.
The next row sets the type instruction for the columns which contain arguments, in this example,
all columns have the type instruction iri which means that argument values are interpreted as
IRIs. The next row is ignored and may be used for a descriptive label. The following rows specify
instances of the templates. The end instruction closes the scope of the template instruction.

#OTTR template ottr:Triple
2 1 3 0 0
iri iri iri
Predicate Subject Object
foaf:knows ex:Ann ex:Bob
foaf:knows ex:Bob ex:Carl
#OTTR end

TGDK

5:38 The Reasonable Ontology Templates Framework

Algorithm 1 Pseudo algorithm for translating tabular file argument values to RDF resources.

function translate(typeInstruction, value)
Output : RDF resource

if value = empty string then
return ottr:none

else if typeInstruction is of the form X+ then
items ← split value by | ;
foreach item in items do item ← translate(X, item);
return RDF list of items

else if typeInstruction = iri then
return IRI of value, accepting QNames and full IRIs

else if typeInstruction = blank then
if value = * then

return Fresh blank node
else

return Blank node with label value
end

else if typeInstruction is of the form of a QName or full IRI then
return Typed literal with lexical value value and datatype typeInstruction

else if typeInstruction = text then
return Untyped literal with lexical value value

else if typeInstruction = auto then
if value is of the form textˆˆtype then

return Typed literal with the lexical value text and type
else if value is of the form text@@lang then

return Language tagged literal with the lexical value text and language tag lang
else if value = true, TRUE, false or FALSE then

return Literal with boolean value of value and datatype xsd:boolean
else if value is of the form of a decimal number then

return Literal with lexical value value and datatype xsd:decimal
else if value is of the form of an integer number then

return Literal with lexical value value and datatype xsd:integer
else if value is of the form of an RDF Turtle labelled blank node then

return Blank node with label value
else if value is of the form of a QName or full IRI then

return IRI of value
else

return Untyped literal with lexical value value
end

else
return Untyped literal with lexical value value

end

M. G. Skjæveland and L. H. Karlsen 5:39

Table 7 Examples of the translation using auto type instruction.

value with auto instruction RDF resource RDF type
* [] fresh blank node
_:myBlank _:myBlank labelled blank node
myBlank "myBlank" untyped literal
ex:Ann ex:Ann IRI
http://other-example#Bob <http://other-example#Bob> IRI
Carl "Carl" untyped literal

ottr:none IRI, special none value
true "true"^^xsd:boolean xsd:boolean
True "True" untyped literal
1 "1"^^xsd:integer xsd:integer
-1.2 "-1.2"^^xsd:decimal xsd:decimal

The table specifies the following template instances:
ottr:Triple(ex:Ann, foaf:knows, ex:Bob) .
ottr:Triple(ex:Bob, foaf:knows, ex:Carl) .

6.2 bOTTR: Batch Instantiation of OTTR Templates
bOTTR is an RDF vocabulary for specifying mappings between queries over the sources to given
templates. bOTTR hence allows multiple data sources on different formats to be integrated via
OTTR templates into a single RDF/OWL representation. The bOTTR vocabulary is specified by
an OWL ontology that extends the wOTTR vocabulary (See Section 4.2), and provides terms for
specifying sources, queries over these sources, and how to map the query results into instances of
a specified OTTR template. The bOTTR specification is developed in GitLab,15 and published at
ottr.xyz16 and Zenodo.17

The classes ottr:InstanceMap, ottr:Source and its subclasses, and ottr:ArgumentMap,
which specify respectively the mappings, the source and the translation of source values to
template instance arguments, are described below.

6.2.1 InstanceMap
The central notional of bOTTR is ottr:InstanceMap. An ottr:InstanceMap specifies a mapping
between one ottr:query over a given ottr:Source and one ottr:Template. The result of
applying the mapping is that each record in the query result set becomes an ottr:Instance of
the specified ottr:Template. The ottr:argumentMaps specify how source values are translated
to instance arguments.

An ottr:InstanceMap must specify a ottr:template, a ottr:source, a ottr:query, which
must be a valid query over the specified ottr:Source, and optionally a list of ottr:argumentMaps.
If set, the size of the argument map list must match the size of the query result records. These
specify how query result values are translated to instance argument values. The result of processing
a set of ottr:InstanceMaps is the set of instances resulting from each of the ottr:InstanceMaps.

15 https://gitlab.com/ottr/spec/bOTTR
16 https://spec.ottr.xyz/bOTTR/0.1.2/
17 https://zenodo.org/records/12607264

TGDK

https://gitlab.com/ottr/spec/bOTTR
https://spec.ottr.xyz/bOTTR/0.1.2/
https://zenodo.org/records/12607264

5:40 The Reasonable Ontology Templates Framework

6.2.2 Sources

A ottr:Source defines a source of data and how it can be accessed. The location of the source
is specified with ottr:sourceURL, this can be either a URL or a file path. There are two main
types of ottr:Sources: ottr:StringSource and ottr:RDFSource. These source types again
have subclasses. All query result values from a ottr:StringSource are assumed to be strings,
and if no ottr:argumentMaps are set, then these source values are represented as untyped literals
when transforming them into instance arguments. A ottr:StringSource makes no assumption
on the type of its ottr:query, this must be specified by using a subclass of ottr:StringSource.
For an ottr:RDFSource, all values are assumed to be RDF resources. If no ottr:argumentMaps
are set then the values are left as they are when used as instance arguments. An ottr:RDFSource
accepts only SPARQL queries.

There are four types of sources:
ottr:RDFFileSource is an ottr:RDFSource which is specified by one or more RDF files using

the ottr:sourceURL property.
ottr:SPARQLEndpointSource is an ottr:RDFSource which is specified by a single SPARQL

endpoint address using the ottr:sourceURL property.
ottr:JDBCSource is a ottr:StringSource which is specified using a single JDBC connection

string using the ottr:sourceURL property. Additionally, a ottr:JDBCSource can specify a
ottr:jdbcDriver, ottr:username, and ottr:password for connecting to the database, and
set a ottr:fetchSize to indicate the number of query result rows retrieved on each fetch.

ottr:H2Source specifies a temporary H2 database source which is useful for loading and querying
a CSV file using functionality supported by the H2 SQL query language. The path given to
CSVREAD may use the special constant @@THIS_DIR@@ within the path to denote the directory
of the bOTTR input file.

An example of each source can be seen in Example 66.

▶ Example 66. Below are examples of all the four sources. For the ottr:H2Source, we give a
full instance map to illustrate the use of the CSVREAD function in the query.

[] a ottr:RDFFileSource ;
ottr:sourceURL <http://example.com/file1.ttl>, <http://example.com/file2.ttl> .

[] a ottr:SPARQLEndpointSource ;
ottr:sourceURL <http://example.com/sparql/> .

[] a ottr:JDBCSource ;
ottr:sourceURL "jdbc:mysql://localhost/mydb" ;
ottr:jdbcDriver "com.mysql.jdbc.Driver" ;
ottr:username "Ann" ;
ottr:password "password123" .

[] a ottr:InstanceMap ;
ottr:source [a ottr:H2Source] ;
ottr:query """

SELECT ’First Name’, ’Age’, ’City’, ’Homepage’
FROM CSVREAD(’@@THIS_DIR@@/data/address.csv’);

""" ;
ottr:template ex:Person .

M. G. Skjæveland and L. H. Karlsen 5:41

6.2.3 ArgumentMap
An ottr:ArgumentMap specifies how source values are mapped to OTTR template instance
arguments, i.e., RDF terms. In case no argument maps are specified, defaults apply from the
choice of ottr:Source defined above. When applying an argument map to a source value, we
sometimes refer to the string value of the source value. In case the source is a ottr:StringSource,
then the string value of a source value x is x. In case the source is an ottr:RDFSource, the string
value is of an RDF resource x is:

the lexical value of x, if x is a literal
the IRI of x, if x is a IRI,
the blank node label of x, if x is a blank node

An ottr:ArgumentMap is defined by the following properties, each specifies how values are
transformed to RDF terms. The properties are applied in the order they are presented below.
ottr:nullValue Specifies the argument value to be used in case the source value is unspecified

or NULL (as defined in the source’s format). This value may be any RDF resource.
ottr:labelledBlankPrefix Selects which values to translate to labelled blank nodes. The

default value is _:. If the string value of the source value starts with and is longer than the
ottr:labelledBlankPrefix, then the argument value becomes a labelled blank node where
the string value of the source value following the ottr:labelledBlankPrefix becomes the
label. Example: if the ottr:labelledBlankPrefix is "ABC" and the source value is "ABCDEF",
then a labelled blank node _:DEF is created.

ottr:languageTag Specifies the language tag of the argument value. If this value is set, then
the source value becomes a language tagged literal (and automatically gets ottr:type
rdf:langString) where the lexical value is the string value of the source value.

ottr:listStart, ottr:listEnd, ottr:listSep Specifies how to translate source values into lists
using the string value of the source value. The default values are respectively: (,) and ,. A
value may represent a nested list of arbitrary depth. ottr:listStart and ottr:listEnd must
be a one-character string that specifies respectively the start and end of a list. ottr:listSep
is a string that specifies how the list elements are separated. The list element values are
trimmed for white space. These properties may only be used if the ottr:type is a list type.
Example: if the source value is "((a , b), (c , d))", and the ottr:type is (rdf:List
rdf:List xsd:string), then the value becomes the RDF list (("a" "b")("c" "d")).

ottr:type Specifies the ottr:Type of the argument value (using the wOTTR encoding of our type
system). If the source is an ottr:RDFSource and the type of the source value is compatible
with the specified ottr:type, then the argument value is equal to the source value (the
argument map leaves the value unchanged). If the value is not compatible or the source
is a ottr:StringSource, then the string value of the source value is cast to the specified
ottr:type. This may result in an error if the cast is not possible. This property may not be
used if ottr:labelledBlankPrefix is used.

▶ Example 67. This example is an adaption of Example 66 to illustrate the functionality of
argument maps.

[] a ottr:InstanceMap ;
ottr:source [a ottr:H2Source] ;
ottr:query """

SELECT ’Homepage’, ’First Name’ || ’ ’ || ’Last Name’ AS fullName, ’Bdate’
FROM CSVREAD(’people.csv’);

""" ;
ottr:template ex:Person ;

TGDK

5:42 The Reasonable Ontology Templates Framework

ottr:argumentMaps (
[ottr:type ottr:IRI]
[] ## empty Argument map
[ottr:type xsd:date; ottr:nullValue ottr:none]

) .

Assuming that the contents of people.csv are

First Name Last Name Bdate City Homepage
Ann Annsen 1990-12-01 Amsterdam http://example.com/Ann
Bob Bobson 1987-03-23 Berlin http://example.com/Bob
Carl Carlson NULL Cairo http://example.com/Carl

then the instance map will produce the following instances:

ex:Person(<http://example.com/Ann>, "Ann Annsen", "1990-12-01"^^xsd:date) .
ex:Person(<http://example.com/Bob>, "Bob Bobson", "1987-03-23"^^xsd:date) .
ex:Person(<http://example.com/Carl>, "Carl Carlson", none) .

7 Implementations

There exist multiple implementations of the OTTR framework. One of these is a reference
implementation that is developed and maintained by the OTTR project and which supports all
the OTTR specifications. The other implementations are developed independently of the OTTR
project and are motivated in part by the need to make the OTTR framework available in other
platforms and programming languages than that of the reference implementation.

7.1 Lutra: The Reference Implementation of OTTR
Lutra is the reference implementation for the OTTR framework, written and actively maintained
by the developers of OTTR. It is an open-source project under an LGPL licence, available at
GitLab,18 at a mirror repository at GitHub,19 and with released sources also stored in Zenodo.20

Lutra is written in Java and is built with Maven; the Maven artefacts are available through
the Sonatype repository under the Java namespace ottr.lutra.21 The codebase is developed
following various established best practices: semantic versioning,22 code style profile, static code
analysis, unit testing, continuous integration and continuous deployment (CI/CD),23 and the
git-flow branching model.24

Lutra supports all the specifications presented in this paper:
Expanding instances and templates
Type checking templates and instances according to the type hierarchy of Table 1
Reading and writing templates and instances in the stOTTR and wOTTR serialization formats
Generating docTTR documentation for template libraries
Processing tabOTTR spreadsheets, supporting only Excel spreadsheet input
Processing bOTTR specifications, supporting all types of sources mentioned in Section 6.2

18 https://gitlab.com/ottr/lutra/lutra
19 https://github.com/rtto/lutra-mirror
20 https://zenodo.org/records/10954639
21 https://central.sonatype.com/search?q=ottr.lutra
22 https://semver.org/
23 https://about.gitlab.com/topics/ci-cd/
24 https://nvie.com/posts/a-successful-git-branching-model/

http://example.com/Ann
http://example.com/Bob
http://example.com/Carl
https://gitlab.com/ottr/lutra/lutra
https://github.com/rtto/lutra-mirror
https://zenodo.org/records/10954639
https://central.sonatype.com/search?q=ottr.lutra
https://semver.org/
https://about.gitlab.com/topics/ci-cd/
https://nvie.com/posts/a-successful-git-branching-model/

M. G. Skjæveland and L. H. Karlsen 5:43

Usage: lutra [-fhV] [--debugStackTrace] [--quiet] [--stdout] [-F=<fetchFormat>]
[--haltOn=<haltOn>] [-I=<inputFormat>] [-L=<libraryFormat>]
[-m=<mode>] [--messageLinePrefix=<linePrefix>] [-o=<out>]
[-O=<outputFormat>] [-p=<prefixes>] [-e=<extensions>[,
<extensions>...]]... [-E=<ignoreExtensions>[,
<ignoreExtensions>...]]... [-l=<library>]... [<inputs>...]

Figure 12 Lutra’s command line interface options and flags as reported by its –help option. (The help
output also gives an explanation of the options and flags which is not shown here.)

There are three available modes of using Lutra: (1) as a command line interface (CLI) serviced
by a Java executable JAR file, (2) as a Java API, or (3) as a web application. The available
options and flags of CLI are listed in Figure 12. Possible modes of operation (set with option -m)
are:
expand expands the input instances according to the specified template libraries and fetched

templates, and writes the expansion result to the specified output format.
format (re)formats the input instances to the specified output format.
expandLibrary expands the specified template libraries.
formatLibrary (re)formats the specified template libraries to the specified output format.
docttrLibrary generates documentation pages for the specified template libraries.
lint checks the input instances or templates for errors.
checkSyntax runs a syntax check of the input, typically for use as an external service for editors.

The API provided by the Java project is documented using Javadoc.25 The central class is
TemplateManager26 that is responsible for orchestrating the reading and writing of templates and
instances. It contains methods for reading a library of templates from a file or folder, checking
its correctness, reading instances from files, folders or mappings (both bOTTR and tabOTTR),
expanding the instances and checking that the instances are correct with respect to a template
library, translate instances or templates from one serialization to another, and more.

A web application variant of the CLI, called WebLutra, is available at https://weblutra.
ottr.xyz. The intention of WebLutra is to make the OTTR framework available for simple use
and experimentation without the need for installing and running software locally. WebLutra
also serves the interactive examples that are part of the online primer for OTTR available at
https://primer.ottr.xyz. It is implemented as a simple “wrapper” over the CLI interface
exposing certain operations through a simple web form. WebLutra is packaged as a Docker image
that is available from GitLab’s container registry.27

7.2 maplib: Support for Data Frame Mappings with OTTR
maplib [1] is a library written in Rust using Apache Arrow,28 Polars29 DataFrames and with
Python bindings, which allows data frames, a popular data structure used in data analytics tools,
to be mapped to RDF by way of OTTR templates.30 By exploiting libraries and formats built for

25 https://javadoc.io/doc/xyz.ottr.lutra
26 https://javadoc.io/doc/xyz.ottr.lutra/lutra-core/latest/xyz/ottr/lutra/TemplateManager.html
27 https://gitlab.com/ottr/lutra/lutra/container_registry/1986127
28 https://arrow.apache.org/
29 https://pola.rs/
30 https://pypi.org/project/maplib/

TGDK

https://weblutra.ottr.xyz
https://weblutra.ottr.xyz
https://primer.ottr.xyz
https://javadoc.io/doc/xyz.ottr.lutra
https://javadoc.io/doc/xyz.ottr.lutra/lutra-core/latest/xyz/ottr/lutra/TemplateManager.html
https://gitlab.com/ottr/lutra/lutra/container_registry/1986127
https://arrow.apache.org/
https://pola.rs/
https://pypi.org/project/maplib/

5:44 The Reasonable Ontology Templates Framework

data processing, maplib is able to perform OTTR instance expansion with high performance. It
also brings OTTR closer to use for data analytics and in platforms such as Jupyter.31 From the
documentation the library appears to only support templates in stOTTR syntax and it is not
clear if the library supports all language features of OTTR. maplib is open source32 and in active
development.

7.3 OTTR Extension: Semantic MediaWiki Extension

OTTR Extension33 is an extension for Semantic MediaWiki (SMW) [30] which enables some of
OTTR’s functionality within SMW [5]. The OTTR Extension allows templates and instances in
stOTTR format to be entered directly into SMW pages. Taking an OTTR template as input,
the OTTR Extension can generate an input web form in SMW that matches the signature of the
template and with which instances of the template can be created by filling in the form. These
instances expand to triples, as per its template definition, that are available in the page of the
created template instance. The latest release is dated March 2023.

7.4 pyOTTR: Python Packages

There are two packages that implement OTTR functionality for Python, one developed by GitHub
user Callidon34 and one developed by GitHub user michalporeba.35 Both packages are called
pyOTTR, although they appear as two separate projects.

Callidon’s pyOTTR package supports reading templates and instances in stOTTR format and
expanding instances to RDF. The package is limited to supporting only the stOTTR format and
does not support the complete functionality of the OTTR language, in particular, list expansion
modes are listed as in development. However, the project appears abandoned as the latest code
update was five years ago.

michalporeba’s pyOTTR package appears to support reading templates in stOTTR format,
and expanding instance data read from CSV files to RDF. Whether the package supports the full
OTTR language is not clear from the documentation. The package appears to be in a state of
early and active development.

7.5 emacs-ottr-toolkit

The emacs-ottr-toolkit36 is a collection of Emacs scripts to facilitate OTTR operations in GNU
Emacs org-mode.37 It uses existing Emacs extensions like Flycheck38 and the Lutra CLI executable
(Section 7.1) to offer shortcut commands and code snippet functionality that simplifies operations
such as writing templates, syntax checking, and template instantiation from tables and query
result sets.

31 https://jupyter.org/
32 https://github.com/DataTreehouse/maplib
33 https://www.mediawiki.org/wiki/Extension:OttrParser
34 https://github.com/Callidon/pyOTTR
35 https://github.com/michalporeba/pyOTTR
36 https://ottr.xyz/event/2021-06-18-user-forum/ottr-toolkit-20210618.html
37 https://orgmode.org/
38 https://www.flycheck.org

https://jupyter.org/
https://github.com/DataTreehouse/maplib
https://www.mediawiki.org/wiki/Extension:OttrParser
https://github.com/Callidon/pyOTTR
https://github.com/michalporeba/pyOTTR
https://ottr.xyz/event/2021-06-18-user-forum/ottr-toolkit-20210618.html
https://orgmode.org/
https://www.flycheck.org

M. G. Skjæveland and L. H. Karlsen 5:45

8 Uses

The OTTR project has nurtured a healthy collaborative environment with its users particularly
through the organization of several OTTR user forums39 where OTTR developers and users
have met to exchange experiences and future directions. These events were hosted by SIRIUS,
a Norwegian Centre for Research-driven Innovation to address the problems of scalable data
access in the oil & gas industry, and therefore attracted participants specifically from this and
supporting industries. The findings from these forums are that industrial users of OTTR share
similar requirements to the construction and management of knowledge graphs that fit well with
the features provided by OTTR. Summarized they need support for:

Large-scale knowledge graph development, since ontologies can reach sizes of 100,000’s of
classes.
Uniform modelling: this is necessary to ensure that access to and use of the constructed know-
ledge base can be performed in a uniform and predictive manner, and to reduce management
and maintenance costs.
Transformation of data sourced from different formats and schemas: the input data to create
the knowledge graph that typically comes from different domain standard representations that
represent similar types of data differently needs harmonization.
Subject-matter expert (SME) involvement: SMEs need to partake in the design of the inform-
ation in the knowledge graph and be able to verify its quality.
Collaborative development environments: Development is often performed in teams, with
additional stakeholders that need to interact with the results in different ways.
Automated mechanisms for quality assessment and verification are required due to the size
and complexity of the modelling and representation task.

The current tools on offer for large-scale ontology development are few. The participants of the
OTTR user forums report that editors like Protégé do not meet their requirements since this mode
modelling with a desktop/client application is unsuited for uniform and collaborative modelling at
the scale required. Also, the fact that these tools typically operate on low-level constructs, such
as OWL axioms, makes them difficult for SMEs to understand and use.

In the following, we report from selected prominent industrial and academic uses of the OTTR
framework to serve as examples of its utility.

8.1 Grundfos’ Industrial Ontology Engineering Platform
At Grundfos, Brynildsen et al. have built what they call the Industrial Ontology Engineering
Platform (IOEP), where OTTR is an integral part, “to support domain experts in using and
implementing ontologies while reducing the workload for ontology engineering specialists” [6]. The
tool provides web-based tabular input user interfaces that are aligned with signatures of OTTR
templates prepared by ontology experts. Subject-matter experts build ontologies by populating
the user interface, supported by helpful editor features such as auto-generated IRIs and metadata,
label lookups and searches. The tabular data is transformed using the OTTR templates to an
ontology with a build service that relies on Lutra (See Section 7.1). The deployment of the tool
is reported as successful in that improves ontology engineering scalability: the reuse of OTTR
templates across different ontology development projects reduces ontology design efforts and

39 https://www.ottr.xyz/event/2021-01-28-user-forum/,
https://www.ottr.xyz/event/2021-06-18-user-forum/,
https://www.ottr.xyz/event/2022-05-11-user-forum/

TGDK

https://www.ottr.xyz/event/2021-01-28-user-forum/
https://www.ottr.xyz/event/2021-06-18-user-forum/
https://www.ottr.xyz/event/2022-05-11-user-forum/

5:46 The Reasonable Ontology Templates Framework

hence the workload for ontology engineering practitioners. Also, OTTR templates have helped to
position SMEs as the primary owners and contributors of new ontological models by hiding the
complexity of upper-level ontology away from the SME [6].

8.2 Bosch’s Ontology-Enhanced Machine Learning System
A similar approach to that of Grundfos’ is followed at Bosch [55]. In their Ontology-Enhanced
Machine Learning (SemML) system, OTTR templates are part of the Ontology extender component
“that allows domain experts to describe domains in terms of an upper-level ontology by filling in
templates. Data scientists then also use templates to annotate domain terms with quality-related
information” [55]. Domain experts describe the domain by filling in simple forms that are generated
to match the signature of OTTR templates. The forms produce template instances that are
expanded to OWL axioms. “Templates guarantee uniformity of the updates and the consistency
of the updated ontology, as well as the relative simplicity of the ontology extension process.” [55]
The ontology extender component is evaluated in a user study giving positive results with respect
to correctness of use.

8.3 CapGemini and Norwegian Maritime Authority: Modelling Regulatory
Requirements as SHACL Shapes

CapGemini and Norwegian Maritime Authority use the OTTR framework as part of a tool-chain
where regulatory requirements are expressed as SHACL shapes [14]. Requirements are extracted
from text using natural language processing and named entity recognition techniques. The
resulting data is then transformed to RDF and SHACL using an OTTR template library for
SHACL shapes.

8.4 DiProMag: Ontology of Magnetocaloric Materials
The goal of the DiProMag project is the digitization of a process chain for the production,
characterization and prototypical application of magnetocaloric alloys.40 To support this work,
Blum et al. [5] have created OTTR Extension (see Section 7.3) and a template library to allow
domain experts to build an ontology of magnetocaloric materials by filling in generated forms.

8.5 Aibel: Identifying Redundancies in a Large Template Library
Aibel, a global engineering company, has developed the “Material Master Data ontology”, a
comprehensive representation of engineering requirements and specifications that contains in the
range of 100,000 classes across a hierarchy of OWL ontologies.41 Aibel applies automated reasoning
and querying to support the selection of designs, and matching designs with products [49]. The
ontology is predominately generated from numerous spreadsheets, prepared by ontology experts
and populated by domain experts. A custom-built pipeline translates the spreadsheets into
template instances, and then into ontologies following template specifications

To evaluate the feasibility of the OTTR approach to ontology engineering and maintenance,
the complete set of spreadsheet specifications was translated into a library of 1185 OTTR
templates, some of which contain more than 30 parameters. Analysis of the generated template

40 https://www.dipromag.de/
41 An obfuscated version of the ontology is published at https://github.com/Sirius-sfi/aibel-mmd-ontology

with the “intent of providing researchers and software developers with free access to a large-scale real industrial
ontology”.

https://www.dipromag.de/
https://github.com/Sirius-sfi/aibel-mmd-ontology

M. G. Skjæveland and L. H. Karlsen 5:47

library revealed many redundancies, largely attributable to the limited expressive power of the
spreadsheet template language. Using a semi-automated approach, we were able to identify
uncaptured patterns representing relevant domain conceptualizations, dramatically reducing the
number of redundancies [50]. This use case shows that the expressive power of OTTR templates
can bring substantial benefits, in particular for industrial domains where there is a high degree of
regularity in the patterns used. It also demonstrates the usefulness of maintenance techniques of
template libraries.

9 Related Work

In this section, we introduce work that is related to the OTTR framework when considering it as a
framework for pattern-based ontology engineering supported by a shared library of reusable patterns
and tools for practical pattern instantiation for large-scale knowledge graph construction and
maintenance. This makes for a very wide scope of related work, so our discussion will necessarily
be limited to a selection of illustrative works. Yet, there are to our knowledge few works that
fall into the same description as the OTTR framework, so our presentation will cover the most
relevant ones.

Pattern-based ontology engineering is closely connected to ontology design patterns (ODPs) [11,
15]. Similar to software design patterns, ODP is a modelling solution to solve a recurrent ontology
design problem that is recorded and shared to simplify ontology development and use. ODPs
serve the purpose of alleviating some of the difficulties involved with creating ontologies by
offering reusable, best-practice building blocks and structures for ontology construction, commonly
implemented and published as small OWL ontologies. Methods for combining and instantiating
ODPs are described [43, 13], and a methodology for building ontologies using patterns exists [3].
ODPs are documented and published in open repositories, such as the OntologyDesignPatterns.org
portal,42 MODL [47], and the Manchester Catalogue.43 There are tools, such as XDP [12] and
CoModIDE [46], which are built on top of WebProtégé [57], as convenient tools for modelling with
and instantiating ODPs. However, while ODPs are often presented as “practical building blocks”
[43], we argue that ODPs in their current form, i.e., as found at OntologyDesignPatterns.org,
featuring a graphical representation, a description and a “reusable OWL building block”, are not
practical enough, especially for the development of large ontologies. Using and adapting ODPs
to a particular modelling task will normally require considerable manual work and ODPs do not
describe a precise manner in which instances of the pattern may be created at scale. Frameworks
that offer this functionality, in addition to the OTTR framework, are GDOL [29], Dead simple
OWL design patterns (DOS-DPs) [39] and the Ontology Pre-Processor Language OPPL [20].

Generic DOL (GDOL) [29] is an extension of the Distributed Ontology, Modelling, and Specific-
ation Language (DOL) that supports a parametrization mechanism for ontologies. GDOL/DOL
is a metalanguage for combining theories from a wide range of logics under one formalism while
supporting pattern definition, instantiation, and nesting. Thus, it provides a broad formalism
for defining ontology templates along similar lines as OTTR. The syntax for OWL in GDOL is
the Manchester OWL Syntax, extended by parameters. DOL is supported by Ontohub [7] (an
online ontology and specification repository) and Hets [35] (parsing and inference back-end of
DOL). The difference between OTTR and GDOL is that the foundations of GDOL build on the
more abstract and powerful concept of generics, rather than the simpler concept of macros. Also,
GDOL is based on the comprehensive framework of DOL which supports expressions in different

42 http://ontologydesignpatterns.org
43 http://odps.sourceforge.net/odp/html/

TGDK

http://ontologydesignpatterns.org
http://odps.sourceforge.net/odp/html/

5:48 The Reasonable Ontology Templates Framework

logics, while OTTR is developed specifically to be used for semantic web technologies, e.g., with a
type system developed for semantic web data. GDOL is more powerful than OTTR and is also
therefore arguably more complex in use for the tasks that OTTR is developed for.

Dead Simple OWL Design Patterns (DOS-DP) [39] provides a simple pattern mechanism where
patterns are expressed in template pattern files following YAML syntax and where property values
refer to named variables. Pattern instances are created by providing filler values that correspond
to the template pattern’s named variables. Technically, instantiation is simply performed by a
printf function that replaces the variable placeholder with the filler value. DOS-DP is designed
to be simple and easy to use and does therefore not support inheritance or composition of patterns.
The DOS-DP framework appears to be in active use; the Mondo Disease Ontology44 is a user of
DOS-DP.

The Ontology Pre-Processor Language (OPPL) [20] was originally developed as a language for
manipulating OWL ontologies. Hence, it supports functions for adding and removing patterns of
OWL axioms to/from an ontology. It relies heavily on its foundations in OWL DL and as such
can only be used in the context of OWL ontologies. OPPL patterns are parameterized expressions
which can be nested and can specify pattern instances and patterns directly in OWL ontologies.
The syntax of OPPL is however distinct from that of RDF and OWL and requires separate tools
for viewing and editing such patterns. A Protégé plugin for version 4.x exists, in addition to a
tool called Populous [22] which allows OPPL patterns to be instantiated via spreadsheets. By
allowing patterns to return a single element (e.g., a class) OPPL supports a rather restricted form
of pattern nesting as compared to OTTR. The application focus of OPPL is somewhat different
from that of OTTR: OPPL patterns are intended to be fully expanded once they are used in the
ontology. In contrast, we believe that OTTR template instances can appear as instances lifted or
lowered to the abstraction level suited for the given user. For instance, an ontology expert may
prefer to examine an ontology formatted as a set of OWL axiom OTTR templates, while domain
experts might prefer to see only the user-facing template instances. Additionally, OPPL patterns
are limited to OWL expressions in Manchester syntax [17], while OTTR supports abstractions
over any underlying language, although it is designed specifically for RDF. OPPL appears to no
longer be actively maintained; the last release of the project was in 201345 the last update of its
Git repository46 was in 2020.

There are many tools for generating RDF and OWL knowledge bases from different sources
using various mechanisms and mapping languages; here we mention a few that have served as
inspiration for the OTTR framework. SPARQL-generate [32] is a template-based language and
an extension of SPARQL with which one can generate RDF streams or text streams from RDF
datasets and document streams in arbitrary formats. Tawny OWL [33] introduces a Manchester-
like syntax for writing ontology axioms from within the programming language Clojure, and allows
abstractions and extensions to be written as normal Clojure code alongside the ontology. Thus,
the process of constructing an ontology is transformed into a form of programming, where existing
tools for program development, such as versioning and testing frameworks can be used. The
M2 mapping language [38] allows spreadsheet references to be used in ontology axiom patterns.
Finally, XLWrap [31] defines a mapping language to convert spreadsheets into RDF.

44 https://github.com/monarch-initiative/mondo
45 https://oppl2.sourceforge.net/
46 https://github.com/owlcs/OPPL2

https://github.com/monarch-initiative/mondo
https://oppl2.sourceforge.net/
https://github.com/owlcs/OPPL2

M. G. Skjæveland and L. H. Karlsen 5:49

10 Future Work

In this section, we list interesting ideas for extensions and further developments of the OTTR
framework.

Support for call-by-name We wish to support named parameters or call-by-name in OTTR. This
feature would increase the readability of template instances and simplify template instantiation
slightly by allowing arguments to be given in arbitrary order and missing arguments to be
omitted. Instances of the o-p:NamedPizza template using named parameters could then look
like the following:

o-p:NamedPizza(
pizza = ex:Margherita,
country = ex:Italy,
toppings = (ex:Mozzarella, ex:Tomato)
) .

o-p:NamedPizza(
toppings = (ex:Potato, ex:Rosemary),
pizza = ex:PotatoPizza
).

Support for tuple or struct types In Example 44, we see that when one needs to create a tem-
plate that creates multiple instances describing objects with multiple attributes (such as
the nuclear family of persons with IRIs and names), we need to zip multiple lists, each
list with values for one attribute. It would be preferable to rather group the attributes of
each object together in one struct or tuple, e.g., (ex:bob, ’Bob Green’, none) with type
Tuple<owl:NamedIndividual, xsd:string, xsd:date>, combined with functionality for
extracting the tuple’s elements. The ex:NuclearFamily template could then simply accept
two lists of such tuples (instead of four lists, as defined above). Thus, extending OTTR with
tuple/struct terms and types would make expressing such complex templates more convenient.

Improved dependency management The organization of templates into collections is currently
done informally by placing closely related templates under the same namespace and in the
same file or folder. We wish to strengthen the management of template libraries by formally
characterizing the notion of template modules and allowing for explicit dependencies between
modules to be expressed. The aim is to support systems to handle such template modules
much like software project management systems like Maven47 do and improve the robustness
and stability of template instance expansion.

Customizable expansions A main requirement in the design of the OTTR framework is that an
instance should be considered as semantically equivalent to its expansion. An enhancement
to the framework would be to support different expansions of the same instance while still
supporting the above requirement. A motivation for this enhancement is for instance to
experiment with different representations of the same statement, or to support multiple
equivalent representations of the same statement. Examples of this could be to expand
instances that represent an ontology into different OWL profiles [36], or to expand a knowledge
graph not only into RDF, but also other knowledge graph formats [16]. A way to support
this is to introduce a more complex notion of a dataset that includes somehow instructions on
what template libraries and base templates to use for expansion, and hence possibly allow a
template signature to be associated with multiple different template bodies.

47 https://maven.apache.org/

TGDK

https://maven.apache.org/

5:50 The Reasonable Ontology Templates Framework

Test suite and benchmark The availability of multiple implementations of the OTTR framework
(Section 7) raises the question of what features of the OTTR framework they support and their
relative performance. We wish to establish a test suite to be able to measure the conformance
of the implementations against the specifications of the OTTR framework, and a benchmark
to measure their performance.

Term manipulation support The OTTR framework does not naively provide a facility for manip-
ulating terms, such as generating IRIs by concatenating strings, or mathematical calculations.
Some of this functionality is covered by the use of the query languages within bOTTR, but
this is arguably not optimal. FROG [21] is a declarative term manipulation language introdu-
cing pure functions that can be applied to terms within template definitions, and leverages
the OTTR type system and extends it by introducing type generics. Updating the OTTR
framework to support FROG remains future work.

OTTR as query language In this paper we have seen OTTR templates being used to transform
complex statements in the form of template instances into expressions over a different data
format such as RDF. An interesting approach is to also allow OTTR templates to be used “in
reverse” as queries and use them to extract and assemble lower-level statements to more state-
ments at a higher level of abstraction. Using a well-designed template library to both generate
and extract information would be a clear benefit in terms of usability and maintainability.
OTTR as a query language has been characterized under the name Reverse OTTR [53] and a
prototypical implementation exists, yet proper integration into the OTTR framework remains.

OTTR vs. Ontology-based data access (OBDA) bOTTR provides a mapping mechanism from
databases to ontologies via templates, similar to what is known as ontology-based data
access (OBDA) [42]. The similarities and differences between bOTTR and OBDA warrant
investigation, both from a materialization and a querying perspective. Furthermore, when
bOTTR is used to construct a large knowledge graph updates to the mapped sources may
change, thus requiring a corresponding update to the knowledge graph, preferably without
needing to reconstruct the entire graph. This is not currently supported by the OTTR
framework, but preliminary work has been done by Eckhoff and Zahl [8], and incorporating
this into OTTR would be desirable.

Template authoring support Developing a template library is currently manual work using text
editors. Improved tool support for the existing methodology and library maintenance tech-
niques, as well as a graphical language and graphical user interface or integrated development
environment (IDE) for template authoring, would arguably increase the efficiency and quality
of creating and managing template libraries and lower the bar for new users.

Static analysis of template libraries The OTTR framework supports static analysis of template
libraries in the form checking type correctness. Such analysis could be extended to also consider
the semantics of the vocabularies used, and for instance, identify templates or combinations of
templates that can result in inconsistent OWL ontologies or unsatisfiable concepts.

Template bootstrapping To advance the development of template libraries, pattern recognition
and discovery methods could be applied to identify patterns in existing knowledge bases and
databases and to capture these as well-designed template libraries.

User evaluation of OTTR Many of the benefits we claim about OTTR are justified through
accepted benefits of user-defined abstraction from software engineering and information model-
ling, yet no formal user evaluation exists. Such an evaluation could examine what parts of
OTTR are actually used – and by whom, what the learning curve of OTTR is, and identify
possible new enhancements to the framework.

Complexity analysis of OTTR Snilsberg et al. [54] have developed a mathematical formalization
of a subset of the OTTR language, and give a preliminary report on the characterization of
the theoretical size of instance expansions and decision problems associated with the language

M. G. Skjæveland and L. H. Karlsen 5:51

and its fragments. A rigorous analysis of the current expressivity of OTTR, versus desired
or optimal expressivity, and comparison with other formalism is a clear candidate for future
work, providing direction on what features one might include or omit.

What is a good template mechanism? The OTTR framework, GDOL, DOS-DP and OPPL
provide different and partially overlapping functionality. There is also a proposal for powerful
extensions to the OTTR language, called Generators and GBoxes [9], that are rules formulated
over the OTTR templates. Kindermann et al. [24] identify characteristics that are deemed
necessary for an ontology template mechanism which OTTR implements. Kindermann et al. [25]
also investigate the use of ontology design patterns in practice. However, more investigation
into the similarities and differences between the available pattern frameworks and experience
into what is practically useful is needed to identify the correct balance between expressivity,
complexity and usability, and to formulate metrics to characterize “good” template mechanisms
and libraries.

11 Conclusion

This paper has given a complete overview of the current state of the OTTR framework, detailing its
formal foundation, RDF and OWL adaptions, different serializations, template library management
and support, mapping languages, multiple (independent) implementations, and real-world use and
impact. We have also presented related and future work. We believe this paper illustrates the
maturity of OTTR as a framework, a framework that has moved beyond the phase of prototypes
and purely academic study, into a useful and practical framework that has a strong theoretical
foundation and is based on sound engineering principles that are suitable for real-world, large-scale,
maintainable ontology and knowledge graph construction.

References
1 Magnus Bakken. maplib: Interactive, literal

RDF model mapping for industry. IEEE Access,
11:39990–40005, 2023. doi:10.1109/ACCESS.2023.
3269093.

2 David Beckett, Tim Berners-Lee, Eric
Prud’hommeaux, and Gavin Carothers.
RDF 1.1 turtle: Terse RDF triple lan-
guage. Technical report, W3C, 2014. URL:
https://www.w3.org/TR/turtle/.

3 Eva Blomqvist, Karl Hammar, and Valentina Pre-
sutti. Engineering ontologies with patterns - the ex-
treme design methodology. In Pascal Hitzler, Aldo
Gangemi, Krzysztof Janowicz, Adila Krisnadhi,
and Valentina Presutti, editors, Ontology Engin-
eering with Ontology Design Patterns - Founda-
tions and Applications, volume 25 of Studies on
the Semantic Web, pages 23–50. IOS Press, 2016.
doi:10.3233/978-1-61499-676-7-23.

4 Eva Blomqvist, Pascal Hitzler, Krzysztof Janow-
icz, Adila Krisnadhi, Tom Narock, and Monika
Solanki. Considerations regarding ontology design
patterns. Semantic Web, 7(1):1–7, 2016. doi:
10.3233/SW-150202.

5 Moritz Blum, Basil Ell, and Philipp Cimiano. In-
sights from an OTTR-centric ontology engineering
methodology. In Raghava Mutharaju, Agnieszka
Ławrynowicz, Pramit Bhattacharyya, Eva Blom-
qvist, Luigi Asprino, and Gunjan Singh, editors,
Proceedings of the 14th Workshop on Ontology
Design and Patterns (WOP 2023), volume 3636.

CEUR-WS.org, 2023. URL: https://ceur-ws.
org/Vol-3636/paper8.pdf.

6 Mikkel Haggren Brynildsen, Claus Jakobsen,
Nicolaj Abildgaard, and Caitlin Woods. Building
an Industrial Ontology Engineering Platform.
In Posters, Demos, and Industry Tracks at
ISWC 2023. CEUR-WS.org, 2023. URL:
https://ceur-ws.org/Vol-3632/ISWC2023_
paper_502.pdf.

7 Mihai Codescu, Eugen Kuksa, Oliver Kutz, Till
Mossakowski, and Fabian Neuhaus. Ontohub: A
semantic repository engine for heterogeneous on-
tologies. Appl. Ontology, 12(3-4):275–298, 2017.
doi:10.3233/AO-170190.

8 Magnus Wiik Eckhoff and Preben Zahl. Efficient
update of OTTR-constructed triplestores. Mas-
ter’s thesis, University of Oslo, 2023.

9 Henrik Forssell, Christian Kindermann, Daniel P.
Lupp, Uli Sattler, and Evgenij Thorstensen.
Generating ontologies from templates: A rule-
based approach for capturing regularity. CoRR,
abs/1809.10436, 2018. arXiv:1809.10436, doi:
10.48550/arXiv.1809.10436.

10 Henrik Forssell, Daniel P. Lupp, Martin G. Skjæve-
land, and Evgenij Thorstensen. Reasonable mac-
ros for ontology construction and maintenance.
In Alessandro Artale, Birte Glimm, and Roman
Kontchakov, editors, Proceedings of the 30th Inter-
national Workshop on Description Logics, Mont-
pellier, France, July 18-21, 2017, volume 1879

TGDK

https://doi.org/10.1109/ACCESS.2023.3269093
https://doi.org/10.1109/ACCESS.2023.3269093
https://www.w3.org/TR/turtle/
https://doi.org/10.3233/978-1-61499-676-7-23
https://doi.org/10.3233/SW-150202
https://doi.org/10.3233/SW-150202
https://ceur-ws.org/Vol-3636/paper8.pdf
https://ceur-ws.org/Vol-3636/paper8.pdf
https://ceur-ws.org/Vol-3632/ISWC2023_paper_502.pdf
https://ceur-ws.org/Vol-3632/ISWC2023_paper_502.pdf
https://doi.org/10.3233/AO-170190
https://arxiv.org/abs/1809.10436
https://doi.org/10.48550/arXiv.1809.10436
https://doi.org/10.48550/arXiv.1809.10436

5:52 The Reasonable Ontology Templates Framework

of CEUR Workshop Proceedings, 2017. URL:
https://ceur-ws.org/Vol-1879/paper34.pdf.

11 Aldo Gangemi and Valentina Presutti. Ontology
Design Patterns, pages 221–243. Springer, 2009.
doi:10.1007/978-3-540-92673-3_10.

12 Karl Hammar. Ontology design patterns in web-
protege. In Serena Villata, Jeff Z. Pan, and Mauro
Dragoni, editors, Proceedings of the ISWC 2015
Posters & Demonstrations Track, 2015, volume
1486 of CEUR Workshop Proceedings, 2015. URL:
https://ceur-ws.org/Vol-1486/paper_50.pdf.

13 Karl Hammar and Valentina Presutti. Template-
Based Content ODP Instantiation, volume 32 of
Studies on the Semantic Web, pages 1–13. IOS
Press, 2016. doi:10.3233/978-1-61499-826-6-1.

14 Veronika Heimsbakk and Kristian Torkelsen. Using
the shapes constraint language for modelling reg-
ulatory requirements, 2023. doi:10.48550/arXiv.
2309.02723.

15 Pascal Hitzler, Aldo Gangemi, Krzysztof Janowicz,
Adila Krisnadhi, and Valentina Presutti, editors.
Ontology Engineering with Ontology Design Pat-
terns - Foundations and Applications, volume 25
of Studies on the Semantic Web. IOS Press, 2016.

16 Aidan Hogan, Eva Blomqvist, Michael Cochez,
Claudia d’Amato, Gerard de Melo, Claudio
Gutierrez, Sabrina Kirrane, José Emilio Labra
Gayo, Roberto Navigli, Sebastian Neumaier, Axel-
Cyrille Ngonga Ngomo, Axel Polleres, Sabbir M.
Rashid, Anisa Rula, Lukas Schmelzeisen, Juan F.
Sequeda, Steffen Staab, and Antoine Zimmer-
mann. Knowledge graphs. ACM Comput. Surv.,
54(4):71:1–71:37, 2022. doi:10.1145/3447772.

17 Matthew Horridge and Peter F. Patel-
Schneider. OWL 2 Web Ontology Lan-
guage Manchester Syntax. W3c working
group note, W3C, 2012. URL: https:
//www.w3.org/TR/owl2-manchester-syntax/.

18 Ian Horrocks, Peter F. Patel-Schneider, Harold
Boley, Said Tabet, Benjamin Grosof, and Mike
Dean. SWRL: A semantic web rule language
combining OWL and RuleML. W3c member sub-
mission, W3C, 2004. URL: http://www.w3.org/
Submission/SWRL/.

19 Bernadette Hyland, Ghislain Atemezing, and Boris
Villazón-Terrazas. Best practices for publishing
linked data. W3c working group note, W3C, 2014.
URL: https://www.w3.org/TR/ld-bp/.

20 Luigi Iannone, Alan L. Rector, and Robert
Stevens. Embedding Knowledge Patterns into
OWL. In ESWC, pages 218–232, 2009. doi:
10.1007/978-3-642-02121-3_19.

21 Marlen Jarholt. Frog: Functions for ontologies—an
extension for the OTTR-framework. Master’s
thesis, University of Oslo, 2022.

22 Simon Jupp et al. Populous: a tool for build-
ing OWL ontologies from templates. BMC
Bioinformatics, 13(S-1):S5, 2012. doi:10.1186/
1471-2105-13-S1-S5.

23 C. M. Keet. An Introduction to Ontology Engin-
eering. College Publications, 2018.

24 Christian Kindermann, Daniel P. Lupp, Martin G.
Skjæveland, and Leif Harald Karlsen. Formal
relations over ontology patterns in templating

frameworks. In Eva Blomqvist, Torsten Hah-
mann, Karl Hammar, Pascal Hitzler, Rinke Hoek-
stra, Raghava Mutharaju, María Poveda-Villalón,
Cogan Shimizu, Martin G. Skjæveland, Monika
Solanki, Vojtech Svátek, and Lu Zhou, editors,
Advances in Pattern-Based Ontology Engineer-
ing, extended versions of the papers published
at the Workshop on Ontology Design and Pat-
terns (WOP), volume 51 of Studies on the Se-
mantic Web, pages 120–133. IOS Press, 2021.
doi:10.3233/SSW210010.

25 Christian Kindermann, Bijan Parsia, and Uli Sat-
tler. Detecting influences of ontology design pat-
terns in biomedical ontologies. In Chiara Ghidini,
Olaf Hartig, Maria Maleshkova, Vojtech Svátek,
Isabel F. Cruz, Aidan Hogan, Jie Song, Maxime
Lefrançois, and Fabien Gandon, editors, The Se-
mantic Web - ISWC 2019 - 18th International
Semantic Web Conference, Auckland, New Zea-
land, October 26-30, 2019, Proceedings, Part I,
volume 11778 of Lecture Notes in Computer Sci-
ence, pages 311–328. Springer, 2019. doi:10.1007/
978-3-030-30793-6_18.

26 Johan W. Klüwer, Martin G. Skjæveland, and
Magne Valen-Sendstad. ISO 15926 templates and
the Semantic Web. Technical report, W3C, 2008.
W3C Workshop on Semantic Web in Oil & Gas
Industry.

27 Graham Klyne, Jeremy J. Carroll, and Brian
McBride. RDF 1.1 Concepts and Abstract Syn-
tax. W3c recommendation, W3C, 2014. URL:
https://www.w3.org/TR/rdf11-concepts/.

28 Holger Knublauch and Dimitris Kontokostas.
Shapes Constraint Language (SHACL). W3c re-
commendation, W3C, 2017. URL: https://www.
w3.org/TR/shacl/.

29 Bernd Krieg-Brückner and Till Mossakowski. Gen-
eric ontologies and generic ontology design pat-
terns. In Eva Blomqvist, Óscar Corcho, Matthew
Horridge, David Carral, and Rinke Hoekstra, ed-
itors, Proceedings of the 8th Workshop on Onto-
logy Design and Patterns (WOP), 2017, volume
2043 of CEUR Workshop Proceedings, 2017. URL:
https://ceur-ws.org/Vol-2043/paper-02.pdf.

30 Markus Krötzsch, Denny Vrandecic, and Max
Völkel. Semantic mediawiki. In Isabel F. Cruz,
Stefan Decker, Dean Allemang, Chris Preist,
Daniel Schwabe, Peter Mika, Michael Uschold, and
Lora Aroyo, editors, The Semantic Web - ISWC
2006, 5th International Semantic Web Conference,
ISWC 2006, Athens, GA, USA, November 5-9,
2006, Proceedings, volume 4273 of Lecture Notes
in Computer Science, pages 935–942. Springer,
Springer, 2006. doi:10.1007/11926078_68.

31 Andreas Langegger and Wolfram Wöß. Xl-
wrap - querying and integrating arbitrary spread-
sheets with SPARQL. In Abraham Bernstein,
David R. Karger, Tom Heath, Lee Feigenbaum,
Diana Maynard, Enrico Motta, and Krishnaprasad
Thirunarayan, editors, The Semantic Web - ISWC
2009, 8th International Semantic Web Conference,
ISWC 2009, Chantilly, VA, USA, October 25-29,
2009. Proceedings, volume 5823 of Lecture Notes in
Computer Science, pages 359–374. Springer, 2009.
doi:10.1007/978-3-642-04930-9_23.

https://ceur-ws.org/Vol-1879/paper34.pdf
https://doi.org/10.1007/978-3-540-92673-3_10
https://ceur-ws.org/Vol-1486/paper_50.pdf
https://doi.org/10.3233/978-1-61499-826-6-1
https://doi.org/10.48550/arXiv.2309.02723
https://doi.org/10.48550/arXiv.2309.02723
https://doi.org/10.1145/3447772
https://www.w3.org/TR/owl2-manchester-syntax/
https://www.w3.org/TR/owl2-manchester-syntax/
http://www.w3.org/Submission/SWRL/
http://www.w3.org/Submission/SWRL/
https://www.w3.org/TR/ld-bp/
https://doi.org/10.1007/978-3-642-02121-3_19
https://doi.org/10.1007/978-3-642-02121-3_19
https://doi.org/10.1186/1471-2105-13-S1-S5
https://doi.org/10.1186/1471-2105-13-S1-S5
https://doi.org/10.3233/SSW210010
https://doi.org/10.1007/978-3-030-30793-6_18
https://doi.org/10.1007/978-3-030-30793-6_18
https://www.w3.org/TR/rdf11-concepts/
https://www.w3.org/TR/shacl/
https://www.w3.org/TR/shacl/
https://ceur-ws.org/Vol-2043/paper-02.pdf
https://doi.org/10.1007/11926078_68
https://doi.org/10.1007/978-3-642-04930-9_23

M. G. Skjæveland and L. H. Karlsen 5:53

32 Maxime Lefrançois, Antoine Zimmermann, and
Noorani Bakerally. A SPARQL extension for gen-
erating RDF from heterogeneous formats. In Eva
Blomqvist, Diana Maynard, Aldo Gangemi, Rinke
Hoekstra, Pascal Hitzler, and Olaf Hartig, edit-
ors, The Semantic Web - 14th International Con-
ference, ESWC 2017, Portorož, Slovenia, May
28 - June 1, 2017, Proceedings, Part I, volume
10249 of Lecture Notes in Computer Science,
pages 35–50, Portoroz, Slovenia, May 2017. doi:
10.1007/978-3-319-58068-5_3.

33 Phillip Lord. The semantic web takes wing: Pro-
gramming ontologies with tawny-owl. In Mari-
ano Rodriguez-Muro, Simon Jupp, and Kavitha
Srinivas, editors, Proceedings of the 10th Interna-
tional Workshop on OWL: Experiences and Direc-
tions (OWLED), 2013, volume 1080 of CEUR
Workshop Proceedings, 2013. URL: https://
ceur-ws.org/Vol-1080/owled2013_16.pdf.

34 Daniel P. Lupp, Melinda Hodkiewicz, and Mar-
tin G. Skjæveland. Template libraries for industrial
asset maintenance: A methodology for scalable
and maintainable ontologies. In Thorsten Liebig,
Achille Fokoue, and Zhe Wu, editors, Proceedings
of the 12th International Workshop on Scalable
Semantic Web Knowledge Base Systems co-located
with 19th International Semantic Web Conference
(ISWC 2020), Athens, Greece, November 2, 2020,
volume 2757 of CEUR Workshop Proceedings,
pages 49–64. CEUR-WS.org, 2020. URL: https:
//ceur-ws.org/Vol-2757/SSWS2020_paper4.pdf.

35 Till Mossakowski, Christian Maeder, and Klaus
Lüttich. The heterogeneous tool set, hets. In
Orna Grumberg and Michael Huth, editors, Tools
and Algorithms for the Construction and Ana-
lysis of Systems, 13th International Conference,
TACAS 2007, Held as Part of the Joint European
Conferences on Theory and Practice of Software,
ETAPS 2007 Braga, Portugal, March 24 - April 1,
2007, Proceedings, volume 4424 of Lecture Notes in
Computer Science, pages 519–522. Springer, 2007.
doi:10.1007/978-3-540-71209-1_40.

36 Boris Motik, Bernardo Cuenca Grau, Ian Horrocks,
Zhe Wu, Achille Fokoue, and Carsten Lutz. OWL
2 Web Ontology Language Profiles (Second Edi-
tion). W3c recommendation, W3C, 2012. URL:
http://www.w3.org/TR/owl-profiles.

37 Mark A. Musen. The protégé project: a look back
and a look forward. AI Matters, 1(4):4–12, 2015.
doi:10.1145/2757001.2757003.

38 Martin J. O’Connor, Christian Halaschek-Wiener,
and Mark A. Musen. M2: A language for mapping
spreadsheets to OWL. In Evren Sirin and Kendall
Clark, editors, Proceedings of the 7th International
Workshop on OWL: Experiences and Directions
(OWLED), 2010, volume 614 of CEUR Workshop
Proceedings, 2010. URL: https://ceur-ws.org/
Vol-614/owled2010_submission_17.pdf.

39 David Osumi-Sutherland, Mélanie Courtot,
James P. Balhoff, and Christopher J. Mun-
gall. Dead simple OWL design patterns.
J. Biomed. Semant., 8(1):18:1–18:7, 2017.
doi:10.1186/s13326-017-0126-0.

40 Bijan Parsia, Peter Patel-Schneider, and Boris
Motik. Owl 2 web ontology language structural

specification and functional-style syntax. W3c re-
commendation, W3C, 2012. URL: https://www.
w3.org/TR/owl2-syntax/.

41 Peter F. Patel-Schneider and Boris Motik. OWL
2 Web Ontology Language Mapping to RDF
Graphs. W3c recommendation, W3C, 2012. URL:
https://www.w3.org/TR/owl-mapping-to-rdf/.

42 Antonella Poggi, Domenico Lembo, Diego Cal-
vanese, Giuseppe De Giacomo, Maurizio Lenzer-
ini, and Riccardo Rosati. Linking data to on-
tologies. J. Data Semantics, 10:133–173, 2008.
doi:10.1007/978-3-540-77688-8_5.

43 Valentina Presutti and Aldo Gangemi. Content on-
tology design patterns as practical building blocks
for web ontologies. In Qing Li, Stefano Spaccapi-
etra, Eric S. K. Yu, and Antoni Olivé, editors,
Conceptual Modeling - ER 2008, 27th Interna-
tional Conference on Conceptual Modeling, Bar-
celona, Spain, October 20-24, 2008. Proceedings,
volume 5231 of LNCS, pages 128–141. Springer,
2008. doi:10.1007/978-3-540-87877-3_11.

44 Leo Sauermann and Richard Cyganiak. Cool uris
for the semantic web. Technical report, W3C, 2008.
URL: http://www.w3.org/TR/cooluris/.

45 Ralph Schäfermeier, Adrian Paschke, and Hein-
rich Herre. Ontology design patterns for rep-
resenting context in ontologies using aspect ori-
entation. In Krzysztof Janowicz, Adila Alfa
Krisnadhi, María Poveda Villalón, Karl Hammar,
and Cogan Shimizu, editors, Proceedings of the
10th Workshop on Ontology Design and Patterns
(WOP 2019) co-located with 18th International
Semantic Web Conference (ISWC 2019), Auck-
land, New Zealand, October 27, 2019, volume
2459 of CEUR Workshop Proceedings, pages 32–
46. CEUR-WS.org, 2019. URL: https://ceur-ws.
org/Vol-2459/paper3.pdf.

46 Cogan Shimizu and Karl Hammar. Comodide
- the comprehensive modular ontology engineer-
ing IDE. In Mari Carmen Suárez-Figueroa, Gong
Cheng, Anna Lisa Gentile, Christophe Guéret,
C. Maria Keet, and Abraham Bernstein, ed-
itors, Proceedings of the ISWC 2019 Satellite
Tracks (Posters & Demonstrations, Industry, and
Outrageous Ideas) co-located with 18th Interna-
tional Semantic Web Conference (ISWC 2019),
Auckland, New Zealand, October 26-30, 2019,
volume 2456 of CEUR Workshop Proceedings,
pages 249–252. CEUR-WS.org, 2019. URL: https:
//ceur-ws.org/Vol-2456/paper65.pdf.

47 Cogan Shimizu, Quinn Hirt, and Pascal Hitzler.
MODL: A modular ontology design library. In
Krzysztof Janowicz, Adila Alfa Krisnadhi, María
Poveda-Villalón, Karl Hammar, and Cogan Shim-
izu, editors, Proceedings of the 10th Workshop
on Ontology Design and Patterns (WOP 2019)
co-located with 18th International Semantic Web
Conference (ISWC 2019), Auckland, New Zealand,
October 27, 2019, volume 2459 of CEUR Work-
shop Proceedings, pages 47–58. CEUR-WS.org,
2019. URL: https://ceur-ws.org/Vol-2459/
paper4.pdf.

48 Martin G. Skjæveland, Henrik Forssell, Johan W.
Klüwer, Daniel P. Lupp, Evgenij Thorstensen,
and Arild Waaler. Pattern-based ontology design

TGDK

https://doi.org/10.1007/978-3-319-58068-5_3
https://doi.org/10.1007/978-3-319-58068-5_3
https://ceur-ws.org/Vol-1080/owled2013_16.pdf
https://ceur-ws.org/Vol-1080/owled2013_16.pdf
https://ceur-ws.org/Vol-2757/SSWS2020_paper4.pdf
https://ceur-ws.org/Vol-2757/SSWS2020_paper4.pdf
https://doi.org/10.1007/978-3-540-71209-1_40
http://www.w3.org/TR/owl-profiles
https://doi.org/10.1145/2757001.2757003
https://ceur-ws.org/Vol-614/owled2010_submission_17.pdf
https://ceur-ws.org/Vol-614/owled2010_submission_17.pdf
https://doi.org/10.1186/s13326-017-0126-0
https://www.w3.org/TR/owl2-syntax/
https://www.w3.org/TR/owl2-syntax/
https://www.w3.org/TR/owl-mapping-to-rdf/
https://doi.org/10.1007/978-3-540-77688-8_5
https://doi.org/10.1007/978-3-540-87877-3_11
http://www.w3.org/TR/cooluris/
https://ceur-ws.org/Vol-2459/paper3.pdf
https://ceur-ws.org/Vol-2459/paper3.pdf
https://ceur-ws.org/Vol-2456/paper65.pdf
https://ceur-ws.org/Vol-2456/paper65.pdf
https://ceur-ws.org/Vol-2459/paper4.pdf
https://ceur-ws.org/Vol-2459/paper4.pdf

5:54 The Reasonable Ontology Templates Framework

and instantiation with reasonable ontology tem-
plates. In Eva Blomqvist, Óscar Corcho, Mat-
thew Horridge, David Carral, and Rinke Hoek-
stra, editors, Proceedings of the 8th Workshop
on Ontology Design and Patterns (WOP 2017)
co-located with the 16th International Semantic
Web Conference (ISWC 2017), Vienna, Austria,
October 21, 2017, volume 2043 of CEUR Work-
shop Proceedings. CEUR-WS.org, 2017. URL:
https://ceur-ws.org/Vol-2043/paper-04.pdf.

49 Martin G. Skjæveland, Anders Gjerver, Chris-
tian M. Hansen, Johan Wilhelm Klüwer, Morten R.
Strand, Arild Waaler, and Per Øyvind Øverli.
Semantic Material Master Data Management at
Aibel. In Proceedings of the ISWC 2018 In-
dustry Track, volume 2180 of CEUR Workshop
Proceedings, 2018. URL: https://ceur-ws.org/
Vol-2180/paper-90.pdf.

50 Martin G. Skjæveland, Daniel P. Lupp, Leif Har-
ald Karlsen, and Henrik Forssell. Practical onto-
logy pattern instantiation, discovery, and main-
tenance with reasonable ontology templates. In
Denny Vrandecic, Kalina Bontcheva, Mari Carmen
Suárez-Figueroa, Valentina Presutti, Irene Celino,
Marta Sabou, Lucie-Aimée Kaffee, and Elena Sim-
perl, editors, The Semantic Web - ISWC 2018,
volume 11136 of LNCS, pages 477–494. Springer,
2018. doi:10.1007/978-3-030-00671-6_28.

51 Martin G. Skjæveland, Daniel P. Lupp, Leif Har-
ald Karlsen, and Johan W. Klüwer. OTTR: formal
templates for pattern-based ontology engineering.
In Eva Blomqvist, Torsten Hahmann, Karl Ham-
mar, Pascal Hitzler, Rinke Hoekstra, Raghava
Mutharaju, María Poveda-Villalón, Cogan Shim-
izu, Martin G. Skjæveland, Monika Solanki, Vo-
jtech Svátek, and Lu Zhou, editors, Advances
in Pattern-Based Ontology Engineering, exten-
ded versions of the papers published at the Work-
shop on Ontology Design and Patterns (WOP),
volume 51 of Studies on the Semantic Web,
pages 349–377. IOS Press, 2021. doi:10.3233/
SSW210025.

52 Martin G. Skjæveland. The Core OTTR Template
Library, volume 51 of Studies on the Semantic

Web, chapter 23, pages 378–393. IOS Press, 2021.
doi:10.3233/SSW210026.

53 Erik Snilsberg. Reverse OTTR: A query language
for RDF. Master’s thesis, University of Oslo, 2022.

54 Erik Snilsberg, Leif Harald Karlsen, Egor V. Ko-
stylev, and Martin G. Skjæveland. Foundations
of ontology template language OTTR (exten-
ded abstract). In Laura Giordano, Jean Chris-
toph Jung, and Ana Ozaki, editors, Proceedings
of the 37th International Workshop on Descrip-
tion Logics (DL 2024), Bergen, Norway, June
18-21, 2024, volume 3739 of CEUR Workshop
Proceedings. CEUR-WS.org, 2024. URL: https:
//ceur-ws.org/Vol-3739/abstract-24.pdf.

55 Yulia Svetashova, Baifan Zhou, Tim Pychynski,
Stefan Schmidt, York Sure-Vetter, Ralf Mikut, and
Evgeny Kharlamov. Ontology-enhanced machine
learning: A bosch use case of welding quality mon-
itoring. In Jeff Z. Pan, Valentina A. M. Tamma,
Claudia d’Amato, Krzysztof Janowicz, Bo Fu, Axel
Polleres, Oshani Seneviratne, and Lalana Kagal,
editors, The Semantic Web - ISWC 2020 - 19th
International Semantic Web Conference, Athens,
Greece, November 2-6, 2020, Proceedings, Part
II, volume 12507 of Lecture Notes in Computer
Science, pages 531–550, Berlin, Heidelberg, 2020.
Springer. doi:10.1007/978-3-030-62466-8_33.

56 Tania Tudorache. Ontology engineering: Cur-
rent state, challenges, and future directions. Se-
mantic Web, 11(1):125–138, December 2020. doi:
10.3233/SW-190382.

57 Tania Tudorache, Csongor Nyulas, Natalya Frid-
man Noy, and Mark A. Musen. Webprotégé: A
collaborative ontology editor and knowledge acquis-
ition tool for the web. Semantic Web, 4(1):89–99,
2013. doi:10.3233/SW-2012-0057.

58 Denny Vrandecic. Explicit knowledge engineering
patterns with macros. In Proceedings of the On-
tology Patterns for the Semantic Web Workshop
at the 4th International Semantic Web Confer-
ence, ISWC 2005, Galway, Ireland, November
6-10, 2005. Ed.: Chris Welty. Galway, 2005.

https://ceur-ws.org/Vol-2043/paper-04.pdf
https://ceur-ws.org/Vol-2180/paper-90.pdf
https://ceur-ws.org/Vol-2180/paper-90.pdf
https://doi.org/10.1007/978-3-030-00671-6_28
https://doi.org/10.3233/SSW210025
https://doi.org/10.3233/SSW210025
https://doi.org/10.3233/SSW210026
https://ceur-ws.org/Vol-3739/abstract-24.pdf
https://ceur-ws.org/Vol-3739/abstract-24.pdf
https://doi.org/10.1007/978-3-030-62466-8_33
https://doi.org/10.3233/SW-190382
https://doi.org/10.3233/SW-190382
https://doi.org/10.3233/SW-2012-0057

TØIRoads: A Road Data Model Generation Tool
Grunde Haraldsson Wesenberg #

Department of Informatics, University of Bergen, Norway
Institute of Transport Economics, Oslo, Norway

Ana Ozaki #

Department of Informatics, University of Oslo, Norway
Department of Informatics, University of Bergen, Norway

Abstract
We describe road data models which can repres-
ent high level features of a road network such as
population, points of interest, and road length/-
cost and capacity, while abstracting from time and
geographic location. Such abstraction allows for
a simplified traffic usage and congestion analysis
that focus on the high level features. We provide
theoretical results regarding mass conservation and
sufficient conditions for avoiding congestion within
the model. We describe a road data model gener-

ation tool, which we call “TØI Roads”. We also
describe several parameters that can be specified
by a TØI Roads user to create graph data that can
serve as input for training graph neural networks
(or another learning approach that receives graph
data as input) for predicting congestion within the
model. The road data model generation tool allows,
for instance, the study of the effects of population
growth and how changes in road capacity can mit-
igate traffic congestion.

2012 ACM Subject Classification General and reference → Evaluation
Keywords and phrases Road Data, Transportation, Graph Neural Networks, Synthetic Dataset Genera-
tion
Digital Object Identifier 10.4230/TGDK.2.2.6
Category Resource Paper
Supplementary Material Software (Source Code): https://github.com/gruwesen/TOIROADS [19]

archived at swh:1:dir:a86388944844fcc00f4cad67e1ec75a998f36eae

Funding Grunde Haraldsson Wesenberg: The author is supported by the Norwegian Research Council,
project 322480.
Ana Ozaki: The author is supported by the Norwegian Research Council, projects 322480, 316022.
This work was partly supported by the Research Council of Norway through its Centre of Excellence
Integreat - The Norwegian Centre for knowledge-driven machine learning, project number 332645.
Received 2024-07-02 Accepted 2024-11-08 Published 2024-12-18
Editors Aidan Hogan, Ian Horrocks, Andreas Hotho, Lalana Kagal, and Uli Sattler
Special Issue Resources for Graph Data and Knowledge

1 Introduction

Modelling and predicting traffic is fundamental for the administration of a city and its surroundings
as it directly impacts the economy and everyday lives of the population [11, 2, 9, 1]. While works
on traffic prediction tend to focus on short-term prediction (e.g., 12 steps of 5 minutes in the
future) [14, 18, 5], a high-level view of the main properties of a road network is crucial for long-term
city planning. For instance, one may want to plan for the increase of road capacity by enlarging
road segments or to plan for the development of new links in the road network if a systematic
congestion scenario is foreseen due to an increase of the population or significant changes in traffic
flow resulting from the construction of new points of interest in the city.

© Grunde Wesenberg and Ana Ozaki;
licensed under Creative Commons License CC-BY 4.0

Transactions on Graph Data and Knowledge, Vol. 2, Issue 2, Article No. 6, pp. 6:1–6:12
Transactions on Graph Data and Knowledge

T G D K Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:Grunde.Wesenberg@toi.no
https://orcid.org/0009-0009-3867-4207
mailto:anaoz@uio.no
https://orcid.org/0000-0002-3889-6207
https://doi.org/10.4230/TGDK.2.2.6
https://github.com/gruwesen/TOIROADS
https://archive.softwareheritage.org/swh:1:dir:a86388944844fcc00f4cad67e1ec75a998f36eae;origin=https://github.com/gruwesen/TOIROADS;visit=swh:1:snp:3c7d6f6043fd8df8104755d878cdde71362099e4;anchor=swh:1:rev:dc099ff67dcf19839bee5d872d7ded3fea7da500
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/tgdk
https://www.dagstuhl.de/tgdk
https://www.dagstuhl.de

6:2 TØIRoads: A Road Data Model Generation Tool

The solutions to the high-level setting are classically explored in the context of agent-based
traffic simulators [16]. However, agent-based traffic simulators, such as MATSIM [10], are co-
evolutionary tools which inherently cannot be parallelized. The complete configuration of features
and parameters used in the real world traffic simulators include the specification of a number of
agent-based traffic routines. This complexity makes their format hard to use in machine learning
approaches, which are parallelizable. Machine learning approaches, in particular those based on
graph neural networks, are useful for predicting what would happen in these scenarios [12, 20, 6],
however, they need datasets with the relevant features.

In this work we present a road data model generation tool, which we call “TØIRoads”, that
can create datasets synthetically, based on user defined parameters. We describe road data models
which can represent high level features of a road network such as population, points of interest,
and road length/cost and capacity. Such abstraction allows for a simplified traffic usage and
congestion analysis that focus on the high level features. We provide theoretical results regarding
mass conservation and sufficient conditions for avoiding congestion within the model.

A main benefit of generating road data synthetically is that the data is independent of any
particular city structure. Datasets of varying sizes can be created, simulating the fact that road
networks also vary in size. Moreover our road data generator has the interesting feature that the
user can give a particular structure (which could realistically represent the information from a real
world road network) and use our road data model generation tool to create variants (“mutations”)
of this network, e.g., with increasing population, which could indicate possible future congestion
issues if the population grows without an increase of capacity in the road network.

In Section 3, we describe our road data models and establish some theoretical properties related
to these data models. In Section 4, we describe several parameters that can be specified by a
TØIRoads user to create graph data that can serve as input for training graph neural networks
(or another learning approach that receives graph data as input) for predicting congestion within
the model. In Section 5 we present some statistics associated with the datasets generated by
TØIRoads. Finally, we conclude in Section 6.

2 Related Work

Traffic prediction is a broad research field that has been heavily studied in the literature [3, 11, 13].
Most works focus on short term or even real time traffic prediction, with the goal of supporting
drivers to find an optimal path. Indeed, as many cars and drivers today are sending their
information to the internet, some researchers have been very successful in predicting traffic based
on real time driver resolution data [7].

Jiang and Luo (2022) describe some datasets used for traffic prediction with graph neural
networks as well as what variants of graph neural networks are used for the prediction tasks [11].
They categorize studies by scale and domain, and include passenger flow for bus and metro systems,
as well as various studies focusing on road traffic flow, speed, congestion and other variables.
What is common among the road traffic datasets is the usage of counting stations in city road
systems. Counting stations can have different time resolution as well as various measurements in
addition to simple counting of vehicles. Olug et al. (2024) [17] show for a dataset like this that
adding features, such as population density and districts, to the counting station data points can
greatly improve predictions. These datasets related to various modes of transportation are based
on available data and as such are quite relevant to traffic prediction research.

Bui et al writes about using spatial temporal graph neural networks for traffic forecasting [3],
and points to how to construct the adjacency matrix of a graph based on traffic counting station
nodes is an open problem, in terms of effectively capturing information streams. For instance, in

G. Wesenberg and A. Ozaki 6:3

the urban vehicle detection system dataset [4] that they use, there is no single way to make the
adjacency matrix, as there are many road links between each counting station. The TØIRoads
dataset generator can take as input a graph structure based on real world data and make datasets
with variants of the original data, and so, it might be used as a tool for studying this graph
construction problem.

Here we consider traffic from the point of view of road administrators, also called road planners,
who have the goal of predicting the need e.g., of improving road capacity in certain road segments to
avoid congestion in the city. Our model is made to work as an aggregate of traffic data, representing
high level features of a road network, such as population, points of interest, and road length/cost
and capacity, while representing the graph structure in detail, at a road segment level. Our model
is not restricted to a particular graph structure and it can generate graph structures synthetically.
There are various works in the literature on generating graph data synthetically [8, 15], however,
here we use features and structural constraints that are meaningful for road traffic prediction. We
prove theoretical results related to traffic conservation and congestion for our road data models.

3 Modelling Road Traffic

In this section we describe our road data models. The model is an abstraction of the road traffic
conditions found in real world scenarios, useful to estimate road usage and congestion. The road
network is represented with a graph, where nodes are road segments and edges connect road
segments which would be connected in the road network. High population contributes to increase
the traffic of a road segment, while high cost contributes to decreasing the traffic. Road capacity
is a feature that combines with the measure of traffic to determine if a road segment is congested
or not. See Section 4.3 for a detailed example containing the notions presented here.

3.1 Formal Definition
We formally define a road traffic model based on the components related to road usage and
congestion described above. We call this model RoadGNN.

▶ Definition 1 (RoadGNN). A RoadGNN road data model is a labelled graph G = (V, E, L),
where V is a finite set of nodes representing road segments, E is a (finite) set of edges representing
connections between road segments, and L is a labelling function mapping nodes to their respective
attributes. Each node v ∈ V represents a road segment and v is associated via the labelling function
L with the following attributes:

road weight wv ∈ R with wv > 0,
capacity cv ∈ R with cv > 0,
population pv,t ∈ N from node v to each node t ∈ V ,

where wv is a weight value associated with node v, depending on its length/cost; cv quantifies the
road capacity associated with node v, and pv,t represents the flow with origin in v and destination
in t. In symbols, L(v) = (wv, cv, pv,t1 , . . . , pv,tn) with t1, . . . , tn ∈ V .

In the following we consider a fixed but arbitrary labelled graph G. We omit G from the
notation to simplify it since there is no risk of confusion. A path from s ∈ V to t ∈ V is a sequence
of nodes v1, . . . , vk ∈ V with s = v1, t = vk, and (vi, vi+1) ∈ E for all 1 ≤ i < k. We define a total
order on paths where path p1 is shorter than p2, in symbols p1 < p2, if the sum of the weights
wv1 , . . . , wvk

of the nodes v1, . . . , vk in p1 is smaller than that sum in p2.

▶ Remark 2. All labelled graphs we consider in this work are strongly connected, that is, they have
the property that for every pair of nodes (s, t) ∈ V × V there is a path from s to t.

TGDK

6:4 TØIRoads: A Road Data Model Generation Tool

For each pair of nodes (s, t), define Ss,t as the set of shortest paths between s and t. Also, we
denote by Sv

s,t the subset of paths in Ss,t where v ∈ V occurs. Given a finite set S, we write |S| for
the number of elements in S. By definition, sets of shortest paths in the graph are finite. Given a
node v ∈ V , we write in_pop(v) as a shorthand for

∑
s∈V ps,v and out_pop(v) as a shorthand for∑

t∈V pv,t. Let in(v) and out(v) denote the sets of incoming and out going nodes from node v.
We now describe how we estimate the values associated with road usage and congestion. We

assume that agents aim at trips that minimize road usage, by sticking with shortest paths when
calculating a route.

▶ Definition 3 (Road Usage). The road usage of node v ∈ V , denoted Uv, is defined as follows:∑
(s,t)∈V 2

ps,t ·
|Sv

s,t|
|Ss,t|

.

In real traffic, a road is not congested when the traffic is below capacity, and congested when
the traffic is above capacity. We define our congestion coefficient as the quotient between road
usage and capacity, and call the node congested if this is 1 or more.

▶ Definition 4 (Congestion). Congestion is the ratio between road usage and capacity, in symbols,

Cv := Uv

cv
.

We say that a node v is congested if Cv ≥ 1.

▶ Remark 5. By definition of Uv, we have that Uv ≤ in_pop(v) + out_pop(v).
We now establish theoretical bounds regarding traffic conservation and congestion.

▶ Theorem 6 (Conservation). For all v ∈ V ,
1. Uv ≤

∑
u∈in(v)(Uu − in_pop(u)) + out_pop(v)

2. Uv ≤
∑

u∈out(v)(Uu − out_pop(u)) + in_pop(v).

Proof. We start proving Point 1. Let v be a node in V . By definition of Uv, we can write Uv, as
follows: ∑

(s,t)∈(V \{v})×V

ps,t ·
|Sv

s,t|
|Ss,t|

+
∑

(v,t)∈{v}×V

pv,t ·
|Sv

v,t|
|Sv,t|

.

By definition, Sv
v,t is the set of shortest paths from s to v that passes through v, which coincides

with the set of shortest paths from s to v, denoted Sv,t. In other words, Sv
v,t = Sv,t. So Uv is

∑
(s,t)∈(V \{v})×V

ps,t ·
|Sv

s,t|
|Ss,t|

+ out_pop(v).

It remains to show that∑
(s,t)∈(V \{v})×V

ps,t ·
|Sv

s,t|
|Ss,t|

≤
∑

u∈in(v)

(Uu − in_pop(u)).

Given a node v and pair of nodes (s, t), if a path p is in Sv
s,t and s ̸= v then p is in Su

s,t for some
u ∈ in(v). Then,∑

(s,t)∈(V \{v})×V

ps,t ·
|Sv

s,t|
|Ss,t|

≤
∑

u∈in(v)

∑
(s,t)∈V 2

ps,t ·
|Su

s,t|
|Ss,t|

.

G. Wesenberg and A. Ozaki 6:5

In other words,∑
(s,t)∈(V \{v})×V

ps,t ·
|Sv

s,t|
|Ss,t|

≤
∑

u∈in(v)

Uu.

Moreover, we have that u ̸= t since by assumption there is a path in Sv
s,t (in other words, v belongs

to a shortest path between s and t, which would not be the case if u = t since u ∈ in(v)). So we
can subtract the population associated with those paths:∑

(s,t)∈(V \{v})×V

ps,t ·
|Sv

s,t|
|Ss,t|

≤
∑

u∈in(v)

(Uu −
∑
s∈V

ps,u).

This means that∑
(s,t)∈(V \{v})×V

ps,t ·
|Sv

s,t|
|Ss,t|

≤
∑

u∈in(v)

(Uu − in_pop(u))

as required. The proof of Point 2 is analogous. ◀

We now provide sufficient (but not necessary) conditions for preventing node congestion.

▶ Theorem 7 (Outgoing Congestion). For all v ∈ V , if
1. cv ≥

∑
u∈out(v) cu + in_pop(v), and

2. ∀u ∈ out(v), Cu < 1,
then v is not congested.

Proof. We can rewrite Assumption 1 as

cv ≥ ∆v +
∑

u∈out(v)

Uu + in_pop(v) (1)

where

∆v :=
∑

u∈out(v)

(cu − Uu).

By Point 2 of Theorem 6,

Uv ≤
∑

u∈out(v)

(Uu − out_pop(u)) + in_pop(v).

Adding ∆v +
∑

u∈out(v) out_pop(u) on both sides,

Uv + ∆v +
∑

u∈out(v)

out_pop(u) ≤ ∆v +
∑

u∈out(v)

Uu + in_pop(v).

By Eq. 1,

Uv + ∆v +
∑

u∈out(v)

out_pop(u) ≤ cv.

By Assumption 2, ∀u ∈ out(v), cu > Uu. Thus, ∆v > 0. Since
∑

u∈out(v) out_pop(u) ≥ 0, we have
that cv > Uv. In other words, v is not congested. ◀

We also have an analogous theorem for the incoming congestion, which can be proved in a
similar way as for outgoing congestion.

▶ Theorem 8 (Incoming Congestion). For all v ∈ V , if
1. cv ≥

∑
u∈in(v) cu + out_pop(v), and

2. ∀u ∈ in(v), Cu < 1,
then v is not congested.

TGDK

6:6 TØIRoads: A Road Data Model Generation Tool

3.2 A Practical Special Case

In the model just described each node v has a feature pv,t associated with each other node t in
the graph, which quantifies the population going from v to t. This means that the number of
features in a node grows depending on the size of the graph (in particular, in the number of nodes),
which is not ideal in practice. So here we consider a simplified model, called S-RoadGNN, which
associates a fixed number of features (4 features, namely, road weight, capacity, population, and
points of interest) to each node. The idea is that people live along roads (population), and they
travel to points of interest (POI) that are along the roads. The traffic associated with each node is
given by the amount of transport demand density and it depends on its close and far neighbours.
Although this simplification takes away some of the expressivity of our road data models (see
Remark 12), it is flexible enough to create a range of road data models which are useful to study
the effects of population growth and how changes in road capacity can mitigate traffic congestion.

▶ Definition 9 (S-RoadGNN). A S-RoadGNN road data model is a labelled graph G = (V, E, L),
where V is a finite set of nodes representing road segments, E is a (finite) set of edges representing
connections between road segments, and L is a labelling function mapping nodes to their respective
attributes. Each node v ∈ V has the following attributes:

road weight wv ∈ R with wv > 0,
capacity cv ∈ R with cv > 0,
population pv ∈ N,
points of interest iv ∈ N,

where wv is a weight value associated with node v, representing a road segment, depending on
its cost/length; cv quantifies the road capacity associated with node v; and finally, pv and iv are
associated with v depending on the population and on the points of interest in the vicinity of the
road segment represented by v. In symbols, L(v) = (wv, cv, pv, iv).

▶ Definition 10 (Road Usage). The road usage of node v ∈ V , denoted Uv, is defined as follows:

∑
(s,t)∈V 2

ps · it ·
|Sv

s,t|
|Ss,t|

.

▶ Definition 11 (Congestion). Congestion is as in Definition 4: the ratio between road usage and
capacity. A node v is congested if Cv ≥ 1.

▶ Remark 12. S-RoadGNN can be seen as a special case of RoadGNN where ps,t = ps · it. In
RoadGNN, we can have models where e.g., there is traffic from a node s to a node t, but no traffic
from another node u that has some population to t. This is not possible in S-RoadGNN because
in this model whenever a node u has some population and another node t has some points of
interest, there is some traffic from u to t, namely pu · it.

We formalize this remark with the following theorem.

▶ Theorem 13. Let G be an S-RoadGNN road data model and let G′ be the RoadGNN road data
model that is defined in the same way as G, except that ps,t := ps · it for all s, t ∈ V . For all
v ∈ V , Uv = U ′

v, where Uv and U ′
v correspond to the road usage of v in G and G′, respectively.

It follows from Theorem 13 that the conservation and congestion bounds established for RoadGNN
also hold for S-RoadGNN. We are now ready to describe TØIRoads, which is a tool for generating
S-RoadGNN road data models.

G. Wesenberg and A. Ozaki 6:7

4 TØIRoads: Road Data Model Generation

Here we present our road data model generator, named TØIRoads, for simulating traffic conditions
in a simplified road network. The road data models generated by TØIRoads are instances of the
model described in Section 3.2. We first describe the parameters that the user can give and then
the procedure for generating road data models according to the parameters given by the user.

4.1 Parameters for Road Data Model Generation
The user can give as input the number of road data models to be created, together with the
minimum and maximum number of nodes allowed in each road data model. The user can also
influence the graph density, which is the ratio between the number of edges in the graph and the
total number of possible edges it could have. This is a number between 0 and 1 that quantifies
the amount of edges that should be added after a graph GN with N nodes is constructed.

We now describe further parameters that the user can give as input to TØIRoads, related to
the features outlined in Definition 1.

Road weight (length): the user can give as input the minimum and maximum values for the
cost/length of a node representing a road segment.
Capacity: the user can give as input the minimum and maximum values for the capacity of a
road segment. In addition, the user can specify a parameter called capacity factor that is used
to multiply the capacity values, in this way, the user can create road data models that tend to
be more or less congested, depending on how the capacity factor is defined.
Population: the user can give as input the maximum value for the population associated with
a node representing a road segment, with the minimum value being 0. There is also a rate
parameter where the user can specify the proportion of nodes with non-zero value.
Points of interest: the user can give as input the maximum value for the points of interest
associated with a node representing a road segment, with the minimum value being 0. There is
also a rate parameter where the user can specify the proportion of nodes with non-zero value.

For the minimum and maximum values above, TØIRoads chooses a value in the corresponding
interval, using the uniform distribution, and generates the road data models.

4.2 The Algorithm for Road Data Model Generation
In addition to the specification in Section 3.2, the graph data has some constraints, motivated by
how road networks are designed in practice. The tool is made to generate graphs of arbitrary size,
with a few control elements. There are no self-loops and the graph is strongly connected, which
makes sense considering the structure of a road network. We formally state these properties in
Propositions 14 and 15.

▶ Proposition 14. Every road data model returned by Algorithm 1 is strongly connected.

Sketch. The algorithm starts creating a graph G1 with just one node, which by definition, forms
a strongly connected graph. Then, given Gi, with i ≥ 1, the algorithm creates Gi+1 by adding to
Gi a new node n and two edges: one going from n to a random node in Gi and one coming from
a random node to n. In this way, if Gi is strongly connected, the same will hold to Gi+1. ◀

If N is the number of nodes in a graph GN then this procedure creates 2N − 2 edges since at each
iteration 2 edges are added and the initial graph has no edges. Although this procedure creates
a strongly connected graph, its density is only (2N − 2)/(N(N − 1)), since a fully connected
(directed) graph has N(N − 1) edges. In practice, road networks can be much more dense. As
mentioned in Section 4.1, TØIRoads allows the user to adjust this by including a parameter called

TGDK

6:8 TØIRoads: A Road Data Model Generation Tool

density. In fact, the implementation can add a bit more variation to this, which is useful to
create multiple similar but different graphs in the dataset, using a variation flag. If true then the
density value given by the user is multiplied by a random number between 0.9 and 1.1. The choice
of the edges to be added follows a uniform distribution. We state this property in Proposition 15.

▶ Proposition 15. Every road data model returned by Algorithm 1 has density d, provided that
d > (2N − 2)/(N(N − 1)) and the variation flag is set to false.

Sketch. If the density parameter given by the user is lower than (2N − 2)/(N(N − 1)) then there
is no change in density (since we want to ensure the graph is strongly connected). Otherwise, the
algorithm adds edges randomly so as to reach the desired density (which is the density value d

given as input by the user if the variation flag is false, otherwise, a value close to d). In detail, the
algorithm first selects the N2 − 3N + 2 possible edges that could be added (that is, not those
2N − 2 that were included in the creation of the strongly connected graph). Then, it randomly
chooses a desired number among these possible edges to reach density d. ◀

The description of the algorithm for generating road data models is given by Algorithm 1,
assuming for simplicity that the variation flag is set to false.

Algorithm 1 Road Data Model Generation.

1: input: number n of road data models, interval I for the number of nodes in each data model,
density d, and intervals for road weight, capacity, population, and points of interest (Sec 4.1).

2: output: n road data models satisfying Proposition 14 and Proposition 15
3: for i = 1 to n do
4: Randomly choose a number of nodes m in I.
5: Set road weight, capacity, population, and points of interest values to each node
6: Create a strongly connected graph Gi with m nodes (as in Proposition 14)
7: if density > (2N − 2)/(N2 − N) then
8: Add random edges so as to reach the desired density d (Proposition 15)
9: end if

10: Calculate road usage as in Definition 10
11: Calculate congestion as in Definition 11
12: end for
13: return G1, . . . , Gn

4.3 Example Run

For the convenience of the reader, we present an example run illustrating our definitions in
Section 3 and the strategy in Sections 4.1 and 4.2. We choose small numbers for conciseness.
Suppose the user wants to create a simple dataset with just one road data model where the graph
has 3 nodes. Assume TØIRoads creates G1, G2, G3 as in Figure 1. Now suppose the user sets the
following parameters for the features:

road weight is a number between 1 and 5;
road capacity is a value between 1 and 3;
the capacity factor is 1;
the rates for points of interest and population are both 0.7; and
the maximum population and points of interest (per node representing a node segment) is 3.

G. Wesenberg and A. Ozaki 6:9

Figure 1 Graph Structure of G1, G2, G3.

weight: 4 capacity: 1

weight: 2 capacity: 2

population: 1 points of interest: 0

population: 2 points of interest: 3

population: 0 points of interest: 2

weight: 3 capacity: 3

n1

n2

n3

Figure 2 Road Data Model.

Given the parameters above and the graph structure illustrated in Figure 1, suppose TØIRoads
creates the road data model illustrated in Figure 2. In the road data model of Figure 2, there are
two paths from n1 to n2. The shortest one p1 corresponds to the sequence n1, n2 (sum of weights
6) and the longest path p2 is the sequence n1, n3, n2 (sum of weights 9), by the order relation
defined in Section 3.1. Considering V = {n1, n2, n3}, the road usage of n2 is

∑
(s,t)∈V 2

ps · it ·
|Sn2

s,t|
|Ss,t|

= 1 · 3 + 2 · 3 + 2 · 0 + 0 · 0 + 0 · 3 = 9.

Since the capacity of this node is only 1, in this road data model, we have congestion in node n2.

4.4 Graph Mutator

The graph mutator is an additional component added to the implementation to facilitate the
creation of variants of a particular road data model given as input. The idea of this component is
to give the user the possibility to train a machine learning model with enough data to simulate
“what if” scenarios starting from a specific road data model, that could have realistic values from
a city related to population, points of interest, etc. The parameters that the user can set are:

the number of mutations of the original road data model that are to be generated,
the percentage of nodes that should change
the maximum values for the population, points of interest, and capacity.

The graph mutator component of TØIRoads chooses a value in the corresponding interval,
according to the uniform distribution and generates the variations of the features values of the
original graph (keeping the structure of the original graph).

TGDK

6:10 TØIRoads: A Road Data Model Generation Tool

5 Datasets generated by TØIRoads

In this section we provide some experimental results using TØIRoads for generating datasets.
The experiments were performed on an Intel(R) Xeon(R) Silver 4116 CPU @ 2.10GHz with
4 cores (x86_64 architecture) with 11 GB of memory. The code used for the experiments is
available at https://github.com/gruwesen/TOIROADS. Our hypotheses are that (i) the run
time is heavily affected by density and number of nodes, (ii) congestion is affected by the number
of nodes and the maximum number of population per node, and (iii) congestion is affected by
the ratio of nodes that have a population value. From the mathematical point of view, points of
interest and population are interchangeable variables in S-RoadGNN. So the same behaviour for
population would hold for points of interest, meaning that there would be no need to perform
experiments varying the points of interest instead of population. For this reason, runtime and
congestion assessments are only done varying population. We first present some results regarding
the time needed to create the datasets.

Table 1 Runtime in seconds for generating 10 graphs varying the number of nodes and density.

Nodes 50 50 100 100 200 200 300 300 500 500
Density 0.04 0.5 0.04 0.5 0.04 0.5 0.04 0.5 0.04 0.5

Time 0.257 0.697 1.450 7.244 12.949 98.942 53.141 487.046 351.428 3732.413

The results in Table 1 show how increasing the number of nodes and density affects the runtime.
For this experiment, the values of the remaining parameters were kept fix and set as follows: the
road weight (indicating cost/length) was a number between 1 and 10, the population and points
of interest rate was 0.4, the maximum for population and points of interest (per node representing
a road segment) was 3, finally, road capacity was a number between 10 and 20.

We now present results showing how increasing the population (and not road capacity) can
lead to more congested nodes in the road data model.

Table 2 Congestion increasing according to population increase at 0.4 population rate.

Nodes 50 50 50 100 100 100 200 200 200
Total nodes 1000 1000 1000 2000 2000 2000 4000 4000 4000

Max population 4 10 40 4 10 40 4 10 40

Congested nodes 807 898 934 1624 1681 1829 3051 3250 3428
Congestion % 80.7% 89.8% 93.4% 82.1% 84.1% 91.5% 76.3% 81.3% 85.7%

Table 2 describes how max population increases the number of congested nodes when considering
three sets of 20 graphs, each with 50, 100, and 200 nodes. The capacity is set to a random number
between [3

√
n, 3n], where n is the number of nodes, as this interval has been found to often yield

a medium amount of congestion in S-RoadGNN. As can be seen from the table, increasing the
max population increases congestion at every node number.

Table 3 describes how the population rate increases the congestion level in a similar manner to
Table 2. Again, we see an increase in the number of congested nodes as we increase the population
rate, similar to when we increase the maximum population. To reiterate, the max population is
the max value of a node that has population, while the population rate describes the part of nodes
that contain a population. Decreasing the population rate to 0.2 did more to lessen congestion
than decreasing the max population.

To illustrate how this dataset can be used in the context of traffic prediction, we have made an
experiment using a graph neural network (GNN) that predicts node congestion. In this experiment

https://github.com/gruwesen/TOIROADS

G. Wesenberg and A. Ozaki 6:11

Table 3 Congestion increasing according to population rate increase at 40 max population.

Nodes 50 50 50 100 100 100 200 200 200
Total nodes 1000 1000 1000 2000 2000 2000 4000 4000 4000

Population rate 0.2 0.4 0.8 0.2 0.4 0.8 0.2 0.4 0.8

Congested nodes 608 778 957 1244 1575 1904 2240 2975 3749
Congestion % 60.8% 77.8% 95.7% 62.2% 78.75% 95.2% 56.0% 74.4% 93.73%

Figure 3 Example of Congestion Prediction with a Graph Neural Network.

we trained a GNN model on a dataset generated by S-RoadGNN to predict whether a node is
congested or not. We included in Figure 3 a graphical representation of the prediction results
of the GNN. Figure 3 shows the resulting predictions for a single example graph after twenty
epochs of training. This experiment was run using a Graph Attention Network (GAT) with three
layers. The training dataset contained 100 graphs of 20 nodes, while the validation set contained
40 graphs of 20 nodes. The specific graph that is drawn in Figure 3 was drawn randomly from the
validation set. In this figure, the model correctly predicted congestion in 13 of the 20 nodes.

6 Conclusion

We motivate and present road data models, some of their theoretical properties and a tool,
called TØIRoads, for generating datasets within these models. While one may be tempted to
assume that preventing congestion is always desirable, this may not be the case if congestion of
non-environmental friendly means of transportation, such as private cars, serve as incentive for the
use of public transportation. Nevertheless, being able to study the scenarios related to changes in
the population and traffic flow depending on points of interest and to predict congestion (whether
to prevent it or not) is important for long-term city planning. As future work, we plan to include
a few more parameters such as a sensible strategy for adding location information (currently only
represented in a relative way, based on paths and their weights) to our road data models. A
potential improvement would be to allow different densities per region of the graph, to simulate
more dense districts, as commonly happens to districts that are close to the center of a city.

TGDK

6:12 TØIRoads: A Road Data Model Generation Tool

References
1 Azzedine Boukerche, Yanjie Tao, and Peng Sun.

Artificial intelligence-based vehicular traffic flow
prediction methods for supporting intelligent trans-
portation systems. Comput. Networks, 182:107484,
2020. doi:10.1016/j.comnet.2020.107484.

2 Azzedine Boukerche and Jiahao Wang. Machine
learning-based traffic prediction models for intelli-
gent transportation systems. Comput. Networks,
181:107530, 2020. doi:10.1016/j.comnet.2020.
107530.

3 Khac-Hoai Nam Bui, Jiho Cho, and Hongsuk
Yi. Spatial-temporal graph neural network for
traffic forecasting: An overview and open re-
search issues. Appl. Intell., 52(3):2763–2774, 2022.
doi:10.1007/s10489-021-02587-w.

4 Khac-Hoai Nam Bui, Hongsuk Yi, and Jiho Cho.
UVDS: A new dataset for traffic forecasting with
spatial-temporal correlation. In Ngoc Thanh
Nguyen, Suphamit Chittayasothorn, Dusit Niyato,
and Bogdan Trawinski, editors, Intelligent Inform-
ation and Database Systems - 13th Asian Confer-
ence, ACIIDS 2021, Phuket, Thailand, April 7-10,
2021, Proceedings, volume 12672 of Lecture Notes
in Computer Science, pages 66–77. Springer, 2021.
doi:10.1007/978-3-030-73280-6_6.

5 Jeongwhan Choi and Noseong Park. Graph neural
rough differential equations for traffic forecast-
ing. ACM Trans. Intell. Syst. Technol., 14(4):74:1–
74:27, 2023. doi:10.1145/3604808.

6 Zhiyong Cui, Ruimin Ke, Ziyuan Pu, Xiaolei Ma,
and Yinhai Wang. Learning traffic as a graph: A
gated graph wavelet recurrent neural network for
network-scale traffic prediction. Transportation Re-
search Part C: Emerging Technologies, 115:102620,
2020. doi:10.1016/j.trc.2020.102620.

7 Austin Derrow-Pinion, Jennifer She, David Wong,
Oliver Lange, Todd Hester, Luis Perez, Marc
Nunkesser, Seongjae Lee, Xueying Guo, Brett Wilt-
shire, Peter W. Battaglia, Vishal Gupta, Ang Li,
Zhongwen Xu, Alvaro Sanchez-Gonzalez, Yujia
Li, and Petar Velickovic. ETA prediction with
graph neural networks in google maps. In Gianluca
Demartini, Guido Zuccon, J. Shane Culpepper,
Zi Huang, and Hanghang Tong, editors, CIKM
’21: The 30th ACM International Conference on
Information and Knowledge Management, Vir-
tual Event, Queensland, Australia, November 1
- 5, 2021, pages 3767–3776. ACM, 2021. doi:
10.1145/3459637.3481916.

8 Alessio Gravina and Danilo Numeroso. NumGraph.
https://numgraph.readthedocs.io.

9 Xiao Han, Guojiang Shen, Xi Yang, and Xiangjie
Kong. Congestion recognition for hybrid urban
road systems via digraph convolutional network.
Transportation Research Part C: Emerging Tech-
nologies, 121:102877, 2020. doi:10.1016/j.trc.
2020.102877.

10 Andreas Horni, Kai Nagel, and Kay Axhausen.
Introducing MATSim, pages 3–8. Ubiquity Press,
August 2016. doi:10.5334/baw.1.

11 Weiwei Jiang and Jiayun Luo. Graph neural net-
work for traffic forecasting: A survey. Expert

Syst. Appl., 207:117921, 2022. doi:10.1016/j.
eswa.2022.117921.

12 Weiwei Jiang, Jiayun Luo, Miao He, and Weixi
Gu. Graph neural network for traffic forecasting:
The research progress. ISPRS Int. J. Geo Inf.,
12(3):100, 2023. doi:10.3390/ijgi12030100.

13 Alexandra Kapp, Julia Hansmeyer, and Helena
Mihaljevic. Generative models for synthetic urban
mobility data: A systematic literature review.
ACM Comput. Surv., 56(4):93:1–93:37, 2024. doi:
10.1145/3610224.

14 Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan
Liu. Diffusion convolutional recurrent neural net-
work: Data-driven traffic forecasting. In 6th In-
ternational Conference on Learning Represent-
ations, ICLR 2018, Vancouver, BC, Canada,
April 30 - May 3, 2018, Conference Track Pro-
ceedings. OpenReview.net, 2018. URL: https:
//openreview.net/forum?id=SJiHXGWAZ.

15 Jiaqi Ma, Jiong Zhu, Yuxiao Dong, Danai Koutra,
Jingrui He, Qiaozhu Mei, Anton Tsitsulin, Xingjian
Zhang, and Marinka Zitnik. The 3rd workshop
on graph learning benchmarks (GLB 2023). In
Ambuj K. Singh, Yizhou Sun, Leman Akoglu,
Dimitrios Gunopulos, Xifeng Yan, Ravi Kumar,
Fatma Ozcan, and Jieping Ye, editors, Proceedings
of the 29th ACM SIGKDD Conference on Know-
ledge Discovery and Data Mining, KDD, pages
5870–5871. ACM, 2023. doi:10.1145/3580305.
3599224.

16 Johannes Nguyen, Simon T. Powers, Neil Ur-
quhart, Thomas Farrenkopf, and Michael Guck-
ert. An overview of agent-based traffic simulat-
ors. Transportation Research Interdisciplinary
Perspectives, 12:100486, 2021. doi:10.1016/j.
trip.2021.100486.

17 Eren Olug, Kiymet Kaya, Resul Tugay, and
Sule Gündüz Ögüdücü. IBB traffic graph data:
Benchmarking and road traffic prediction model.
CoRR, abs/2408.01016, 2024. doi:10.48550/
arXiv.2408.01016.

18 Chao Song, Youfang Lin, Shengnan Guo, and
Huaiyu Wan. Spatial-temporal synchronous graph
convolutional networks: A new framework for
spatial-temporal network data forecasting. In
AAAI, pages 914–921. AAAI Press, 2020. doi:
10.1609/aaai.v34i01.5438.

19 Grunde Haraldsson Wesenberg.
gruwesen/TOIROADS. Software, version 1.0., Nor-
wegian Research Council, project 322480, swhId:
swh:1:dir:a86388944844fcc00f4cad67e1ec75a99
8f36eae (visited on 2024-12-11). URL:
https://github.com/gruwesen/TOIROADS,
doi:10.4230/artifacts.22621.

20 Bing Yu, Haoteng Yin, and Zhanxing Zhu. Spatio-
temporal graph convolutional networks: A deep
learning framework for traffic forecasting. In
Jérôme Lang, editor, Proceedings of the Twenty-
Seventh International Joint Conference on Arti-
ficial Intelligence, IJCAI 2018, July 13-19, 2018,
Stockholm, Sweden, pages 3634–3640. ijcai.org,
2018. doi:10.24963/ijcai.2018/505.

https://doi.org/10.1016/j.comnet.2020.107484
https://doi.org/10.1016/j.comnet.2020.107530
https://doi.org/10.1016/j.comnet.2020.107530
https://doi.org/10.1007/s10489-021-02587-w
https://doi.org/10.1007/978-3-030-73280-6_6
https://doi.org/10.1145/3604808
https://doi.org/10.1016/j.trc.2020.102620
https://doi.org/10.1145/3459637.3481916
https://doi.org/10.1145/3459637.3481916
https://doi.org/10.1016/j.trc.2020.102877
https://doi.org/10.1016/j.trc.2020.102877
https://doi.org/10.5334/baw.1
https://doi.org/10.1016/j.eswa.2022.117921
https://doi.org/10.1016/j.eswa.2022.117921
https://doi.org/10.3390/ijgi12030100
https://doi.org/10.1145/3610224
https://doi.org/10.1145/3610224
https://openreview.net/forum?id=SJiHXGWAZ
https://openreview.net/forum?id=SJiHXGWAZ
https://doi.org/10.1145/3580305.3599224
https://doi.org/10.1145/3580305.3599224
https://doi.org/10.1016/j.trip.2021.100486
https://doi.org/10.1016/j.trip.2021.100486
https://doi.org/10.48550/arXiv.2408.01016
https://doi.org/10.48550/arXiv.2408.01016
https://doi.org/10.1609/aaai.v34i01.5438
https://doi.org/10.1609/aaai.v34i01.5438
https://archive.softwareheritage.org/swh:1:dir:a86388944844fcc00f4cad67e1ec75a998f36eae;origin=https://github.com/gruwesen/TOIROADS;visit=swh:1:snp:3c7d6f6043fd8df8104755d878cdde71362099e4;anchor=swh:1:rev:dc099ff67dcf19839bee5d872d7ded3fea7da500
https://archive.softwareheritage.org/swh:1:dir:a86388944844fcc00f4cad67e1ec75a998f36eae;origin=https://github.com/gruwesen/TOIROADS;visit=swh:1:snp:3c7d6f6043fd8df8104755d878cdde71362099e4;anchor=swh:1:rev:dc099ff67dcf19839bee5d872d7ded3fea7da500
https://github.com/gruwesen/TOIROADS
https://doi.org/10.4230/artifacts.22621
https://doi.org/10.24963/ijcai.2018/505

Whelk: An OWL EL+RL Reasoner Enabling New Use
Cases
James P. Balhoff 1 #

Renaissance Computing Institute, University of North Carolina, Chapel Hill, NC, USA

Christopher J. Mungall #

Lawrence Berkeley National Laboratory, Berkeley, CA, USA

Abstract
Many tasks in the biosciences rely on reasoning
with large OWL terminologies (Tboxes), often com-
bined with even larger databases. In particular,
a common task is retrieval queries that utilize re-
lational expressions; for example, “find all genes
expressed in the brain or any part of the brain”.
Automated reasoning on these ontologies typically
relies on scalable reasoners targeting the EL subset
of OWL, such as ELK. While the introduction of
ELK has been transformative in the incorporation
of reasoning into bio-ontology quality control and
production pipelines, we have encountered limita-
tions when applying it to use cases involving high
throughput query answering or reasoning about
datasets describing instances (Aboxes).

Whelk is a fast OWL reasoner for combined
EL+RL reasoning. As such, it is particularly use-
ful for many biological ontology tasks, particularly
those characterized by large Tboxes using the EL
subset of OWL, combined with Aboxes targeting
the RL subset of OWL. Whelk is implemented in
Scala and utilizes immutable functional data struc-
tures, which provides advantages when performing
incremental or dynamic reasoning tasks. Whelk
supports querying complex class expressions at a
substantially greater rate than ELK, and can an-
swer queries or perform incremental reasoning tasks
in parallel, enabling novel applications of OWL rea-
soning.

2012 ACM Subject Classification Information systems → Web Ontology Language (OWL); Software
and its engineering → Software libraries and repositories; Applied computing → Life and medical
sciences
Keywords and phrases Web Ontology Language, OWL, Semantic Web, ontology, reasoner
Digital Object Identifier 10.4230/TGDK.2.2.7
Category Resource Paper
Supplementary Material Software (Source code): https://github.com/INCATools/whelk [9]

archived at swh:1:dir:f8919707e053212b2c74bc63988a06ffe03fb796
Software (Evaluation scripts and input ontologies): https://doi.org/10.5281/zenodo.13891879 [7]
InteractiveResource (Whelk on the Web): https://balhoff.github.io/whelk-web/

Acknowledgements We would like to thank N.L. Harris for helpful comments on a draft of the paper.
Received 2024-07-01 Accepted 2024-11-10 Published 2024-12-18
Editors Aidan Hogan, Ian Horrocks, Andreas Hotho, Lalana Kagal, and Uli Sattler
Special Issue Resources for Graph Data and Knowledge

1 Introduction

OWL (Web Ontology Language) is heavily used in the biosciences as a framework for constructing
widely used ontologies, for example the Gene Ontology [17], Uberon [30], Human Phenotype
Ontology [16], SNOMED-CT [22], and the NCI Thesaurus [35]. These ontologies are characterized
by a number of features: (1) their large size relative to other ontologies; (2) the use of existential

1 Corresponding author

© James P. Balhoff and Christopher J. Mungall;
licensed under Creative Commons License CC-BY 4.0

Transactions on Graph Data and Knowledge, Vol. 2, Issue 2, Article No. 7, pp. 7:1–7:17
Transactions on Graph Data and Knowledge

T G D K Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:balhoff@renci.org
https://orcid.org/0000-0002-8688-6599
mailto:cjmungall@lbl.gov
https://orcid.org/0000-0002-6601-2165
https://doi.org/10.4230/TGDK.2.2.7
https://github.com/INCATools/whelk
https://archive.softwareheritage.org/swh:1:dir:f8919707e053212b2c74bc63988a06ffe03fb796;origin=https://github.com/INCATools/whelk;visit=swh:1:snp:900616057d4dbe7b6bcfee048b79dd78b399df31;anchor=swh:1:rev:6186eaa434399203d6fad9ff47d0e0df61acb98c
https://doi.org/10.5281/zenodo.13891879
https://balhoff.github.io/whelk-web/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/tgdk
https://www.dagstuhl.de/tgdk
https://www.dagstuhl.de

7:2 Whelk: An OWL EL+RL Reasoner Enabling New Use Cases

restrictions to encode graph-oriented information such as partonomies and developmental lineages
(we call this the Relation Graph); and (3) the fact that the majority of axioms are encoded using
the EL subset of OWL [42]. As such, they are amenable to automated reasoning using engines
that are tuned for this profile, the most notable of which is the ELK Reasoner, introduced in
2010 [24]. In fact the introduction of ELK has been instrumental in making reasoning scalable for
bio-ontologies [28]. ELK is the default reasoner in the ROBOT tool [23], and is deployed as a part
of the production pipelines for dozens of ontologies [27].

However, two limitations of ELK constrain its applications: (1) It has limited support for
instance graphs (Aboxes) in that, while it infers class membership, it does not materialize inferred
object property assertions. Nor does it implement SWRL [21], a language for extending OWL with
custom reasoning rules. Additionally, the expressivity of the OWL EL profile excludes key types
of object property axioms, such as inverse and functional properties. Nonetheless, most available
OWL reasoners with support for rich Abox reasoning do not scale to the size and complexity of
terminologies easily handled by ELK. (2) Classification and query answering are blocking operations
on a mutable state. That is, although ELK supports incremental reasoning, after new axioms are
added and classified, querying the previous state of the ontology requires removing those just added.
Likewise, because answering complex queries typically requires some incremental classification,
ELK processes a single query at a time. Reasoner queries are frequently used to explore biomedical
terminologies, e.g., find all classes that are a MuscleOrgan and (partOf some Head).

In order to support various use cases hindered by those limitations, we implemented the
Whelk reasoner, based on the ELK algorithm described by Kazakov et al [24]. In addition to
the OWL EL reasoning rules defined for ELK, Whelk supports the OWL RL profile [42] as well
as reasoning with SWRL rules. Whelk’s implementation is based on immutable functional data
structures [32], so that each time axioms are added, a new reasoner state is created; references
to the previous state remain unchanged. This allows Whelk to answer queries concurrently, and
also allows concurrent incremental classification of unrelated sets of axioms – for example, various
Abox ontologies which build upon the same ontology Tbox. The Tbox can be classified ahead
of time and reused. We evaluated Whelk on varied benchmarks taken from real-world ontology
reasoning scenarios, comparing Whelk to two releases of ELK, the state of the art open source
OWL EL reasoner.

2 OWL ontologies

OWL is an ontology language for the Semantic Web [40]. An ontology is a formal representation
of concepts within a domain and the logical relationships between those concepts, supporting
knowledge representation with explicit semantics. The semantics of OWL are based in Description
Logics [2]. The format we use for OWL examples in this paper follows the user-friendly Manchester
syntax [41]. An OWL ontology models a domain using classes, properties, and individuals, and
consists of axioms making statements about these entities. Individuals are specific objects within the
model (e.g., Bob, Alice, NewY orkCity), while classes are used to define categories of individuals
(e.g., Person, City). Individuals are said to be instances of classes. Properties denote relationships
between individuals in the model (e.g., Bob livesIn NewY orkCity). In addition to simple named
classes, complex class expressions can be constructed that define categories based on combinations
of other class expressions and properties. For example, the concept “all entities that live in some
City” can be constructed using an expression known as an existential restriction, which describes a
relationship which all members of the class must have (in Manchester syntax, livesIn some City).
By constructing the intersection of that expression with the class Person, we can create an
expression representing the class of city dwellers: Person and (livesIn some City). Named classes,

J. P. Balhoff and C. J. Mungall 7:3

e.g., CityDweller, can be linked to expressions defining them using an equivalent class axiom:
CityDweller EquivalentTo (Person and (livesIn some City)). Classes can also be related
hierarchically to one another via a subclass axiom (e.g., City SubClassOf GeographicalRegion),
and declared to have no instances in common (e.g., GeographicalRegion DisjointWith Person).
Likewise, OWL supports hierarchical relationships among properties, as well as property features
such as transitivity and property chains, which allow us to infer new relationships between
individuals that are linked by a sequence of intervening relationships. A familiar property chain
example would be inference of hasUncle from a path: hasParent ◦ hasBrother → hasUncle.

An OWL reasoner can be used to perform a number of tasks with regard to an OWL ontology,
by computing the implied consequences of the asserted axioms. One of the most common tasks is
Tbox (terminology) classification, that is, computing the hierarchical relationships (subsumptions)
among all classes in the ontology. Checking if any classes are inferred to be equivalent to
owl:Nothing (the empty class) is a common quality control task for OWL-based terminologies.
Another common task is Abox (assertions) materialization: computing all inferred relationships
between individuals, as well as the inferred types of the individuals (their class membership).
Consistency checking evaluates whether the ontology contains a logical impossibility, based on
the provided axioms. Different OWL applications may focus only on a subset of reasoning tasks.
Development of large bio-ontologies is often solely focused on classification. Developers of an
anatomical terminology may make heavy use of class expressions and inferred subsumptions to
ensure consistent modeling and automatic calculation of a complex hierarchy, but never create
instances of the terms. On the other hand, other ontology use cases may be more focused
on instance graphs, computing inferred relationships between individuals, possibly using a less
complex schema-like terminology. An OWL reasoner may also be used to answer queries over the
inferred knowledge, returning all subclasses known for a given class, or all individuals which are
instances of a given class. Queries using complex class expressions are commonly referred to as
DL (description logic) queries.

Even though the complete OWL DL language is decidable, in practice for many tasks DL
reasoning over ontologies of non-trivial size is time and compute-intensive, and often infeasible.
For this reason OWL provides a number of profiles (language subsets), each of which limits the
language in specific ways in order to allow more efficient reasoning. The profiles are designed
to provide adequate expressivity for particular use cases. For example, the OWL EL profile
provides logical features commonly used in the development of large complex terminologies, such
as bio-ontologies, where the focus is ontology classification based on existential restrictions and
intersections, and quality control using disjoint classes axioms. The OWL RL profile is more
targeted to inference of relationships among large numbers of individuals, providing additional
property features such as inverse properties and functional properties, while at the same time
having fewer features for inferring class hierarchies as compared to EL.

3 Features and implementation

Whelk is implemented in Scala, a programming language for the Java Virtual Machine (JVM), which
is fully interoperable with Java and has strong support for functional programming, plus language
constructs that encourage immutable data structures [44]. Whelk provides an implementation of
the OWLReasoner interface defined by the Java OWL API [20], making it readily usable within
popular software for working with OWL such as Protégé [31] and ROBOT [23]. Whelk can also
be used within pure Scala programs without reliance on the OWL API. Via Scala.js [45], it can
be used as part of browser-based JavaScript applications, and can also be compiled to native code
using Scala Native [43].

TGDK

7:4 Whelk: An OWL EL+RL Reasoner Enabling New Use Cases

Whelk supports all axiom types within the OWL EL and RL profiles [42], with the limitation
that reasoning about data property values (concrete values such as strings or numbers) is not
supported. Additionally, HasKey axioms are not supported. Whelk also extends OWL EL and RL
reasoning with SWRL rules (again with the exception of data property values). SWRL rules allow
matching arbitrary patterns of class assertions and object property assertions to generate new
inferred class and object property assertions about individuals.

3.1 Parallel extension of reasoning state
As described above, Whelk is built on immutable data structures which return a new instance
when modified, rather than allowing mutation. Implementations based on shared structure allow
reasonable performance and efficient use of memory [32]. A Whelk reasoner instance is initialized
with a starting set of axioms. All reasoning rules are applied, and a reasoning state object is
returned containing the classification derived up to that point. This reasoning state can be
extended with additional asserted axioms. Reasoning continues until classification is complete,
and a new reasoning state is returned. Any references to the earlier reasoning state are still valid,
and can be queried without reflecting conclusions derived from extension with the second set of
axioms. Thus any number of independent extensions to the reasoning state can be created. This
is much like programming with a singly linked list in a language like Lisp or Haskell; prepending a
new item to a list of size 2 results in a new list of size 3, but doesn’t affect references to the first
list, which still consists of 2 elements.

When answering a DL query, the reasoning state is extended with an equivalent class axiom
representing the query expression. Once additional reasoning is completed and the query is
answered, the new reasoning state can simply be discarded in order to roll back to the initial state.
This approach provides Whelk with very fast DL query performance. Since the reasoning state is
immutable, any number of queries can be processed simultaneously without interference. Currently,
while any kind of axiom can be provided in the starting set, only class (Tbox) and individual
(Abox) axioms are supported when extending reasoning states. Adding new property (Rbox)
axioms or SWRL rules after the initial classification is complete requires a complete reclassification
(a limitation shared with ELK). The approach described for processing DL queries works equally
well for other use cases, such as extending a reasoning state representing a large terminology with
various sets of Abox axioms describing individuals instantiating that terminology, or applying sets
of additional Tbox axioms representing alternative conceptions of a domain.

3.2 Supported reasoning tasks
Like ELK, Whelk supports standard OWL reasoning tasks such as classification, coherency and
consistency checking, and queries for subclasses, superclasses, or instances of arbitrary class
expressions. In addition, Whelk is also able to materialize all inferred relationships between
individuals (object property assertions), a feature not directly supported by ELK.

3.3 Reasoning implementation
3.3.1 OWL EL
Whelk’s EL reasoning is based on the inference rules detailed in figure 3 of Kazakov et al.[24].
Although the concrete implementation looks quite different from the source code of ELK due to
the choice of language and use of immutable data structures, Whelk’s implementation closely
follows Algorithm 2 of Kazakov et al., taking an expression from the queue and applying each
rule in turn, adding any generated expressions to the queue. Whelk’s Scala code is compact and

J. P. Balhoff and C. J. Mungall 7:5

attempts to transform the ELK rules to programming code as directly as possible. As one example,
ELK’s rule R−

⊓ handles the case that a concept that is a subclass of an intersection expression
should be inferred to be a subclass of each of the concepts in the intersection:

C ⊑ D1 ⊓ D2

C ⊑ D1 C ⊑ D2

The Scala version of this rule is a function that accepts a concept inclusion (subclass inference)
from the queue, along with the current reasoner state (which holds various indices providing fast
lookup into the ontology and computed inferences) and the queue collecting produced expressions
to which rules will be applied. If the superclass in the concept inclusion is an intersection (called
a Conjunction in the data model), then two new concept inclusions are added to the queue:

def ruleMinConj (
ci: ConceptInclusion ,
reasoner : ReasonerState ,
todo: Stack[QueueExpression]): ReasonerState =
ci match {

case ConceptInclusion (sub , Conjunction (left , right)) =>
todo.push(ConceptInclusion (sub , left))
todo.push(ConceptInclusion (sub , right))
reasoner

case _ => reasoner
}

ELK 0.6.0 improved its coverage of OWL EL by adding support for property range axioms.
The latest release of Whelk also supports the use of property ranges. ELK currently lacks complete
support for “self restrictions”, that is, class expressions stating that all instances of that class have
a specific property relation to themselves. These expressions are fully supported by Whelk, which
enables the use of a useful pattern known as rolification [25], in which a property acts as a sort
of marker for a class. As one example, the OBO Relation Ontology (RO) includes the following
axioms defining a rolification property for the class KinaseActivity and using it in a property
chain:

KinaseActivity SubClassOf (isKinaseActivity some Self)

capableOf ◦ isKinaseActivity ◦ hasDirectInput → phosphorylates

This in effect defines a property chain capableOf ◦ hasDirectInput that is only matched when
the intermediate node has the type KinaseActivity.

3.3.2 OWL RL
As stated above, Whelk extends the ELK design with support for the OWL RL profile. Handling
of OWL RL axiom types that are not included within the OWL EL profile is accomplished via
three approaches. First, certain OWL RL axioms, while not explicitly included in OWL EL, can
be transformed to equivalent EL constructs. For example, OWL EL does not include union class
expressions (e.g., Animal or P lant). These expressions are allowable within OWL RL, but only
when used on the subclass side of subclass axioms. By asserting a subclass for such expressions
for each of the union operands when loading the ontology, we can obtain the inferences supported
by OWL RL using the ELK reasoning rules. Thus, if an expression such as C or D appears in the
ontology, we need only to inject these axioms:

C SubClassOf (C or D)

TGDK

7:6 Whelk: An OWL EL+RL Reasoner Enabling New Use Cases

D SubClassOf (C or D)

For OWL RL complement expressions, e.g., not C, we inject:

(C and (not C)) SubClassOf owl:Nothing

And for OWL RL cardinality restrictions of cardinality 0, e.g., p max 0 C, we inject:

(p max 0 C) and (p some C) SubClassOf owl:Nothing

The first two transformations are also supported by ELK [14].
Secondly, support for the remaining OWL RL class expression constructs is provided by

additional rules implemented similarly to the standard ELK rules. These include “all values from”
restrictions and cardinality restrictions of cardinality 1. For example, the rule for “all values from”
can be written in the style used in Kazakov et al., where i and j are individuals:

i ⊑ ∀R.C i R−→ j

j ⊑ C

In this rule, i R−→ j is a link, a type of conclusion representing existential restrictions used in the
ELK reasoning rules; a link between two individuals is equivalent to an object property assertion.
As part of Abox materialization, Whelk generates all inferred links between individuals, so that
there is no need for this rule to consider the property hierarchy. This rule is implemented by two
Scala functions similar to the above example: one to handle newly generated concept inclusions,
and one to handle newly generated links.

Lastly, other OWL RL axiom types are transformed to equivalent SWRL rules, and handled
by Whelk’s SWRL rule engine. For example, the inverse properties axiom p inverseOf r is
transformed to these SWRL rules, where leading question marks indicate variables:

p(?x, ?y) → r(?y, ?x)

r(?x, ?y) → p(?y, ?x)

3.3.3 SWRL rule engine
The Whelk SWRL rule engine is implemented as an extension of the EL reasoner. It supports
inference based on user-defined rules which can match patterns of individual types and relationships
(as above, reasoning with datatype property values is not currently supported). An example of such
a rule included in the OBO Relation Ontology is one that infers “phosphorylates” relationships
between gene product instances:

directlyRegulates(?a1, ?a2) ∧ KinaseActivity(?a1) ∧ enabledBy(?a1, ?g1)
∧ enabledBy(?a2, ?g2) → phosphorylates(?g1, ?g2)

SWRL rules perform instance-level reasoning; that is, they match and produce class assertions
and property assertions for individuals. As stated above, Whelk generates SWRL rules for certain
OWL RL axioms; these ensure that all inferred relations between individuals are materialized.
Like the EL reasoner, the SWRL rule engine works on a queue of produced expressions. When an
expression is taken from the EL reasoner queue, if it is a concept inclusion involving an individual,
or a link where the subject and object are individuals, it is also added to the SWRL engine queue.
The SWRL rule engine is an implementation of the widely used Rete pattern-matching algorithm
first developed by Forgy [15] and described in detail by Doorenbos [13]. Its design is an adaptation

J. P. Balhoff and C. J. Mungall 7:7

of our earlier work on an RDF rule engine [4]. When the rule engine is constructed, it builds a
tree of join nodes, where each node represents a pattern occurring in the body of a rule, linked
in such a way that a path from the root to a leaf represents a complete rule body. As concept
inclusions and links are taken from the queue, they are sent to any join nodes which use the same
class or property predicate. Join nodes in turn check their predecessor join nodes (if any) for
compatible partial solutions, and if found, activate successor join nodes. The final node in a tree
branch is a production node representing a rule head, which may generate a new concept inclusion
or link (representing class assertions and object property assertions), which is added to the EL
reasoner queue.

This integration does result in some redundant derivation of inferences. For example, while the
ELK reasoning algorithm handles transitive properties and property chains, it attempts to derive
only the links required for complete classification of named classes in the ontology [24]. In order
to compute a complete set of OWL RL inferences and to materialize all inferred object property
assertions, we additionally create SWRL rules for transitive properties and property chains for use
in the rule engine. While there may exist a more efficient approach, the integration nonetheless
provides the capability for computing Abox inferences while working with terminologies requiring
an OWL EL reasoner for scalability, a feature not available from most EL reasoners.

4 Evaluation

4.1 Testing

The Whelk codebase includes a suite of unit tests to verify that it derives identical subsumptions
to ELK for OWL EL axioms. Inferences for OWL RL are compared to the output of the OWL
reasoner HermiT [18] (which supports all OWL features but is not scalable for large ontologies)
using test cases targeting the reasoning rules outlined in the OWL RL profile spec [42]. The test
suite can be easily extended by adding new test ontologies to the repository.

4.2 Performance

We compared Whelk 1.2.1 to two versions of ELK: the long-established ELK 0.4.3, and the
very recently released ELK 0.6.0, which adds support for object property range axioms. In the
performance evaluations we make use of three ontologies (Table 1):

UNIV-BENCH-OWL2EL – a benchmark Tbox covering the OWL EL profile [34].
uberon-go-cl-ro – a merged set of ontologies from the OBO Foundry containing mutually
referential axioms: Uberon anatomy ontology, Gene Ontology (GO), Cell Ontology (CL),
Relation Ontology (RO) [30, 17, 12, 36]. Because the published versions of OBO ontologies
typically include the precomputed classification, our test ontology was derived from the source
version of each component ontology.
nci-thesaurus – the NCI Thesaurus reference terminology from the National Cancer Insti-
tute [35].

Each performance evaluation was implemented as a custom Scala script. All testing scripts and
input ontologies are available from the whelk-paper GitHub repository archived at https://doi.
org/10.5281/zenodo.13891879. All performance tests were executed on an Apple MacBook Pro
with an M2 Max chip with 12 cores, and 64 GB RAM. We set the maximum heap size for the
Java Virtual Machine to 16 GB.

TGDK

https://doi.org/10.5281/zenodo.13891879
https://doi.org/10.5281/zenodo.13891879

7:8 Whelk: An OWL EL+RL Reasoner Enabling New Use Cases

Table 1 Characteristics of test ontologies.

Ontology Classes Object properties Logical axioms
UNIV-BENCH-OWL2EL 131 82 398

uberon-go-cl-ro 70,057 656 108,610
nci-thesaurus 188,034 97 258,241

4.2.1 Computed subsumptions
Because the three reasoners differ slightly in support for axiom types, we filtered out axioms
making use of ObjectUnionOf and ObjectHasSelf expressions as well as ObjectPropertyRange
axioms. We programmatically verified that all three reasoners derived the same class subsumptions
for each test ontology.

4.2.2 Ontology classification speed
We measured the time required for each reasoner to classify each of the input ontologies and answer
a query to check the coherency of the ontology (“list any classes equivalent to owl:Nothing”).
Within a single process for each reasoner and ontology combination, we computed the classification
of each ontology 12 times. We discarded the first two runs (to allow warmup of the JVM) and
computed the average of the remaining 10 runs. ELK’s classification algorithm is multi-threaded,
while Whelk’s is single-threaded only; we allowed ELK to use all available CPUs. The UNIV-
BENCH-OWL2EL ontology is so tiny that each reasoner takes only a fraction of a second, and so
we exclude it from further performance tests. For classification of nci-thesaurus, ELK 0.4.3 is ~10
times faster than Whelk, completing the task in 2.4 seconds vs. 24.2 seconds for Whelk (Figure
1). On the other hand, ELK 0.6.0 is significantly slower than its previous release, comparable
to Whelk with a time of 23.2 seconds. For uberon-go-cl-ro, ELK 0.4.3 outperforms Whelk by a
larger margin (~20 times faster), at 2.3 seconds vs. 46.8 seconds. ELK 0.6.0 is the slowest for
uberon-go-cl-ro, averaging 99.7 seconds. The decrease in performance between ELK 0.4.3 and
0.6.0 is unexpected, and we plan to investigate this issue with the developers.

4.2.3 DL query speed
In order to measure how quickly each reasoner can answer successive DL queries, for each
ontology (uberon-go-cl-ro and nci-thesaurus) we extracted all complex class expressions used,
at all levels of nesting. This procedure provides us with class expressions likely to represent
relevant queries, rather than generating random combinations of classes and properties. After
classifying the ontology, we queried the reasoner for subclasses of each class expression, using the
‘getSubclasses’ method of the OWLReasoner interface. As assurance that each reasoner returned
the same subclasses, we collected the number of subclasses returned for each class expression and
reported the sum. The query script submitted queries to the reasoner at each of three levels of
parallelism: 1 (query all expressions sequentially), 4, or 8 workers. We measured the time required
to answer all queries for all combinations of ontology, reasoner, and parallelism, averaging three
runs following a warmup run.

For sequential queries, ELK 0.4.3 and 0.6.0 perform similarly, executing 46,685 queries against
nci-thesaurus at 51 and 47 queries per second, respectively (Figure 2). In comparison, Whelk
is able to execute 2306 queries per second. As expected, at higher levels of concurrent queries,
ELK’s performance remains the same. Whelk’s query answering speed scales with the number of
workers: 8159 queries per second using 4 workers; 13,679 queries per second using 8 workers.

J. P. Balhoff and C. J. Mungall 7:9

0.01
2.37 2.33

0.03

23.20

99.73

0.10

24.16

46.81

elk-0.4.3
elk-0.6.0
whelk

Av
er

ag
e

cl
as

si
fic

at
io

n
tim

e
(s

ec
on

ds
)

0

10

20

30

40

50

60

70

80

90

100

110

Ontology / Reasoner
UNIV-BENCH-OWL2EL nci-thesaurus uberon-go-cl-ro

Comparison of classification speed

Figure 1 Time required for each reasoner to classify and check coherency of three input ontologies
(lower is better). ELK 0.4.3 is 10-20 times faster than Whelk for the two large ontologies that we tested
(nci-thesaurus and uberon-go-cl-ro).

Results for executing 66,169 queries against uberon-go-cl-ro follow the same pattern, although
in this case ELK 0.6.0 outperforms 0.4.3 (94 queries per second vs. 24, for sequential queries).
Again Whelk is much faster at 1397 queries per second (sequentially) and 8735 queries per second
(8 workers).

4.2.4 Abox consistency checking speed
We next tested how quickly each reasoner could perform incremental reasoning when extending
an ontology with multiple independent sets of Abox axioms, after having previously classified the
Tbox. We used the uberon-go-cl-ro ontology as a Tbox for a collection of 4590 Gene Ontology
Causal Activity models (GO-CAMs) [37]. This ontology contains axioms defining most of the
biological concepts and relations used in the GO-CAMs. The GO-CAMs are small Abox ontologies
of class assertions and object property assertions, containing an average of 43 logical axioms, with

TGDK

7:10 Whelk: An OWL EL+RL Reasoner Enabling New Use Cases

51 50 49 24 24 2447 47 50 94 94 97

2306

8159

13679

1397

5038

8735

elk-0.4.3
elk-0.6.0
whelk

Q
ue

rie
s

pe
r s

ec
on

d

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

10,000

11,000

12,000

13,000

14,000

15,000

Ontology / Parallelism / Reasoner
nci-thesaurus (sequential) nci-thesaurus (4 workers) nci-thesaurus (8 workers) uberon-go-cl-ro (sequential) uberon-go-cl-ro (4 workers) uberon-go-cl-ro (8 workers)

Comparison of DL query speed

Figure 2 Query answering rate at different levels of parallelism of DL query submission (higher is
better). ELK processes a single query at a time, while Whelk responds to parallel requests. Whelk’s
sequential DL query speed is ~15-50 times greater than ELK for these two ontologies, and up to 279 times
faster when handling 8 queries at a time.

the smallest containing 4 and the largest containing 2590. Similarly to the DL query test, we used
each reasoner to first classify the ontology, then added each Abox either sequentially or in parallel
using 4 or 8 workers. We measured the time to classify and then query the consistency of all 4590
Aboxes, averaging three runs following a warmup run. For the two ELK reasoners, for each Abox
we added its axioms to the base ontology using the OWL API and used the OWLReasoner “flush”
method to trigger classification. After querying the consistency of the result, we removed the
Abox axioms from the ontology. Because Whelk is designed particularly for this scenario, we used
its Scala API directly rather than going through OWL API, which does not allow adding axioms
in parallel.

Both ELK reasoners found 36 inconsistent Aboxes. Whelk detected 56 inconsistent Aboxes;
this difference is expected since Whelk supports OWL RL constructs that ELK does not. In the
sequential scenario, ELK 0.4.3’s greater classification speed allowed it to outperform the other
reasoners, checking 121 Aboxes per second compared to 84 for Whelk and 28 for ELK 0.6.0 (Figure
3). As in the DL query test, performing the tasks in parallel did not provide appreciable benefit
for the ELK reasoners, but allowed much higher throughput using Whelk, checking 286 Aboxes
per second with 4 workers, and 498 Aboxes per second with 8 workers.

5 Applications

5.1 Relation graph materialization
A substantial number of ontology use cases in the biosciences translate to what we call “re-
lation graph” questions, such as “what are the parts of the nucleus” or “where is this gene
localized”. These can be translated to OWL subclass queries involving existential restrictions, e.g.
?c SubClassOf R some D or C SubClassOf R some ?d. The latter is particularly challenging,

J. P. Balhoff and C. J. Mungall 7:11

121.35

136.29 134.62

27.93 28.07 27.72

84.12

286.37

497.57

elk-0.4.3
elk-0.6.0
whelk

Ab
ox

es
 c

he
ck

ed
 p

er
 s

ec
on

d

0

50

100

150

200

250

300

350

400

450

500

550

Parallelism / Reasoner
sequential 4 workers 8 workers

Comparison of Abox consistency checking speed

Figure 3 Abox consistency checking rate at different levels of parallelism of axiom addition (higher
is better). ELK processes a single incremental reasoning task at a time, while Whelk can extend its
reasoning state in parallel.

as the way to answer this with standard OWL query interfaces is to test subsumption for different
values of ?d, rather than executing a single query. A relation graph in the sense we describe is
illustrated in Figure 4, which shows a small subset of the Gene Ontology TBox depicting subclass
axioms and subclass existential axioms as edges.

We previously implemented a system for computing such entailed existential relation edges
using the OWL API and the ELK reasoner, but we found the performance did not scale to the
level we needed. Constructing and classifying named versions of all combinations of properties
and classes quickly generates a prohibitively large ontology. Performing successive DL queries can
be done with a manageable, constant memory size, at the cost of a possibly long runtime. Using
Whelk, we created a tool called “relation-graph”, which efficiently materializes every inferred
relationship C SubClassOf R some D for all properties and classes from an input ontology.
Relation-graph relies on Whelk’s much faster query answering performance, and also performs
queries in parallel. Further, it makes use of the class and property hierarchies to avoid unnecessary
queries. Entailed C SubClassOf R some D relationships are output as simple RDF triples C R D,
which lend themselves to straightforward SPARQL queries that are logically complete after the
relation-graph materialization.

TGDK

7:12 Whelk: An OWL EL+RL Reasoner Enabling New Use Cases

Relation-graph is a crucial component of the Ubergraph construction pipeline, which generates
an RDF knowledge graph combining many OBO library ontologies along with the full set of
materialized relation graph edges [3]. The Ubergraph relation closure has proved to be a valuable
resource for conveniently harnessing the logical semantics provided by its component ontologies [10,
19], and relation-graph itself is used to support a number of other applications [33, 38]. As part
of the relation-graph tool, Whelk has been of critical value in making the Ubergraph reasoning
precomputation feasible. Ubergraph is based on a large merged ontology, presently consisting
of more than 5 million logical axioms, with almost 4 million named classes and more than 1000
object properties. It takes Whelk approximately 40 minutes to classify the ontology, while ELK
0.4.3 can classify this ontology in 99 seconds. However, in the course of building Ubergraph,
the relation-graph tool first classifies the ontology and then uses Whelk to execute more than
90 million DL queries. In our tests, on this ontology ELK completes ~2.5 queries per second;
at that rate it would take more than 400 days to complete this task, while this phase of the
Ubergraph build completes in less than 8 hours using relation-graph with Whelk, making the
extended classification time a worthwhile trade-off.

5.2 Reasoning with Aboxes and biomedical terminologies in Protégé and
ROBOT

Whelk is the only reasoner available for the OWL API we are aware of which can efficiently
classify large biomedical ontologies such as Uberon, Gene Ontology (GO), and NCI Thesaurus
and also materialize inferred object property assertions. It therefore fills a valuable niche for
those who are using such ontologies to reason over instance models, for example within the Gene
Ontology GO-CAM project [37]. The GO Consortium uses GO-CAMs to describe the activity of
gene products within cellular processes, using OWL to provide a much more expressive modeling
capability than traditional flat gene-to-term associations. The modeling in GO-CAMs relies on the
rich property axiomatization in the OBO Relation Ontology, including inverse property axioms
and SWRL rules. The core reference terminology, combining GO, Uberon, CL, RO, and several
other ontologies, consists of nearly 1 million logical axioms. Being able to load this ontology into
Protégé and classify a GO-CAM is invaluable for exploring modeling consequences or debugging
unexpected inferences found in a particular model. Whelk can also be used to materialize Abox
inferences within the command-line OWL tool ROBOT. This can done for one of the GO-CAM
files described above with a command such as the following:

robot merge -i uberon-go-cl-ro.ofn -i gocam-5b91dbd100000506.ttl \
reason --reasoner whelk --axiom-generators "ClassAssertion PropertyAssertion" \
-o inferred.ttl

Unexpected inferences can also be debugged within ROBOT, using the “explain” feature it
shares in common with Protégé.

5.3 Reasoner-driven web services
We have integrated Whelk as a reasoner option within Owlery [5], an application for exposing OWL
reasoner functionalities via a set of web services. Like Protégé and ROBOT, Owlery is built upon
the Java OWL API and thus integration of any reasoner supporting the OWLReasoner interface
is trivial. Owlery supports standard OWLReasoner queries such as subclasses, superclasses, and
equivalent classes of submitted class expressions, returning the results in a JSON-LD format. A
distinct advantage to using Whelk within such a web services application is that, while the initial

J. P. Balhoff and C. J. Mungall 7:13

continuant

owl:Thing

independent
continuant

material
entity

anatomical
entity

biological
entity

connected
anatomical
structure

material
anatomical
entity

cell

cellular_component

intracellular
anatomical
structure

P

cellular
anatomical
entity

cytoplasm

P

vacuole

P

P

intracellular
membrane-bounded

organelle

plasma
membrane

membrane
cell

periphery

P

endomembrane
system

P

O

hasP

hasP

organelle

membrane-bounded
organelle

hasP

intracellular
organelle

P

P

Figure 4 Subgraph of the GO Tbox focused on “endomembrane system”, rendered as a relation
graph. Solid lines indicate asserted axioms and dashed lines entailed. Black: SubClassOf ; Blue
(P): C SubClassOf partOf some D; Red (hasP)): C SubClassOf hasP art some D. Grey (O):
C SubClassOf overlaps some D. The entailed dashed lines follow from the indicated axioms plus:
partOf and hasP art are transitive, and there is a property chain hasP art ◦ partOf → overlaps.

ontology classification at startup may be slower, such a service can then run indefinitely, and
subsequent queries to the reasoner are non-blocking, allowing scaling to a much higher level of
concurrent traffic as demonstrated by the DL queries tests above (figure 2).

In addition to server-side web services, as noted above Whelk can be compiled to JavaScript
using Scala.js. As far as we are aware, Whelk is the only OWL reasoner available for use within
web browser client-side code. We provide a demonstration at https://balhoff.github.io/
whelk-web/.

TGDK

https://balhoff.github.io/whelk-web/
https://balhoff.github.io/whelk-web/

7:14 Whelk: An OWL EL+RL Reasoner Enabling New Use Cases

5.4 Testing hypothetical axioms
We previously implemented a system (k-BOOM [29]) for converting ontology term mappings
into precise logical relationships; k-BOOM generates hypothetical axioms representing possible
interpretations of a set of mappings, and attempts to find the set of interpretations which is both
logically coherent and has the highest joint probability. This system was used to construct the
initial version of the Mondo, a disease ontology which provides a unified logical view over several
different source terminologies [39]. The original version of k-BOOM, based on ELK, required more
than a day of runtime to analyze the term mapping inputs for Mondo. We have implemented
a new tool, boomer [8], which is based on Whelk and can perform the same task in a matter of
minutes.

6 Discussion

While ELK 0.4.3 provides much higher performance for ontology classification, Whelk’s design
allows it to target use cases for which ELK does not perform as well. As shown above, these
use cases primarily involve concurrent extension of existing reasoner states, although even for
sequential DL queries without parallelism, Whelk’s design proves to result in very high performance.
While our work directly reuses the rules for inference defined in the ELK publication, the success of
Whelk in supporting the particular scenarios described here brings to light the value in exploring
alternative reasoner implementations targeting different software ecosystems or performance use
cases. Unfortunately, a recent study shows that only 25 of 73 tested OWL reasoner implementations
are usable and actively maintained [1]. Many OWL reasoners have begun life as research prototypes
providing a single implementation, and very few have grown into community-developed open
source projects (although there are exceptions, for example Openllet [11]).

While Whelk is primarily maintained by a single developer, it is now used within a number
of different applications supporting life sciences research projects making use of ontology-based
knowledge graphs, which support its continued development. The Whelk codebase is fairly compact
(the core EL reasoning rules comprise less than 500 lines of Scala), and we have created preliminary
ports to other languages, including Rust [6], allowing it to be used with the recently developed
horned-owl package [26].

Whelk’s development and extensions to the ELK inference rules have been driven by a pragmatic
approach. For example, the EL and RL reasoning engines derive some duplicate inferences. While
we would welcome input on a more efficient integration, the current implementation returns sound
results and provides useful Abox inference features as an add-on to OWL EL.

In this paper we have explored the utility of the Whelk reasoner almost entirely in contrast to
its precursor, ELK. This is a testament to how universally important the ELK reasoner has been
to the bio-ontology ecosystem, allowing reasoner-driven quality control pipelines to become the
norm for many widely used ontologies. ELK still remains vitally important for those workflows,
as well as for most interactive terminology development within Protégé. But for the additional
types of use cases described here, Whelk provides distinct advantages.

References
1 Konrad Abicht. Owl reasoners still useable in 2023,

2023. doi:10.48550/arXiv.2309.06888.

2 Franz Baader, Diego Calvanese, Deborah L.
McGuinness, Daniele Nardi, and Peter F. Patel-
Schneider, editors. The Description Logic Hand-
book: Theory, Implementation and Applications.
Cambridge University Press, 2 edition, 2007.

3 J Balhoff, Ugur Bayindir, Anita R Caron,
N Matentzoglu, David Osumi-Sutherland, and
C Mungall. Ubergraph: integrating OBO ontolo-
gies into a unified semantic graph. In ICBO 2022:
International Conference on Biomedical Ontology
(ICBO), 2022. doi:10.5281/zenodo.7249759.

https://doi.org/10.48550/arXiv.2309.06888
https://doi.org/10.5281/zenodo.7249759

J. P. Balhoff and C. J. Mungall 7:15

4 J Balhoff, Benjamin M Good, S Carbon, and
C Mungall. Arachne: An OWL RL reasoner
applied to gene ontology causal activity mod-
els (and beyond). In 17th International Seman-
tic Web Conference (ISWC 2018), October 2018.
doi:10.5281/zenodo.2397192.

5 James P Balhoff. owlery: Owlery is a set of
REST web services which allow querying of an
OWL reasoner containing a configured set of on-
tologies. Accessed: 2024-6-29. URL: https:
//github.com/phenoscape/owlery.

6 James P Balhoff. whelk-rs: Whelk is an OWL
EL reasoner. Accessed: 2024-6-29. URL: https:
//github.com/INCATools/whelk-rs.

7 James P. Balhoff. Incatools/whelk-paper, Octo-
ber 2024. Software, v1.1.0. doi:10.5281/zenodo.
13891879.

8 James P Balhoff and Christopher J Mungall.
boomer: Bayesian OWL ontology merging. Ac-
cessed: 2024-6-29. URL: https://github.com/
INCATools/boomer.

9 James P. Balhoff and Christopher J. Mungall.
Whelk reasoner. Software, version 1.2.1., swhId:
swh:1:dir:f8919707e053212b2c74bc63988a06ffe
03fb796 (visited on 2024-12-10). URL:
https://github.com/INCATools/whelk,
doi:10.4230/artifacts.22615.

10 Katy Börner, Sarah A Teichmann, Ellen M
Quardokus, James C Gee, Kristen Browne, David
Osumi-Sutherland, Bruce W Herr, 2nd, Andreas
Bueckle, Hrishikesh Paul, Muzlifah Haniffa, Laura
Jardine, Amy Bernard, Song-Lin Ding, Jeremy A
Miller, Shin Lin, Marc K Halushka, Avinash Bop-
pana, Teri A Longacre, John Hickey, Yiing Lin,
M Todd Valerius, Yongqun He, Gloria Pryhuber,
Xin Sun, Marda Jorgensen, Andrea J Radtke,
Clive Wasserfall, Fiona Ginty, Jonhan Ho, Joel
Sunshine, Rebecca T Beuschel, Maigan Brusko,
Sujin Lee, Rajeev Malhotra, Sanjay Jain, and
Griffin Weber. Anatomical structures, cell types
and biomarkers of the human reference atlas. Na-
ture cell biology, 23(11):1117–1128, November 2021.
doi:10.1038/s41556-021-00788-6.

11 Openllet code repository. openllet: Openllet is an
OWL 2 reasoner in java, build on top of pellet.
Accessed: 2024-6-29. URL: https://github.com/
Galigator/openllet.

12 Alexander D Diehl, Terrence F Meehan, Yvonne M
Bradford, Matthew H Brush, Wasila M Dahdul,
David S Dougall, Yongqun He, David Osumi-
Sutherland, Alan Ruttenberg, Sirarat Sarntivijai,
Ceri E Van Slyke, Nicole A Vasilevsky, Melissa A
Haendel, Judith A Blake, and Christopher J
Mungall. The cell ontology 2016: enhanced con-
tent, modularization, and ontology interoperabil-
ity. Journal of biomedical semantics, 7(1):44, July
2016. doi:10.1186/s13326-016-0088-7.

13 Robert B Doorenbos. Production Matching
for Large Learning Systems. PhD thesis,
Carnegie Mellon University, 1995. URL:
http://reports-archive.adm.cs.cmu.edu/anon/
1995/CMU-CS-95-113.pdf.

14 ELK code repository. Elk: Owl fea-
tures. Accessed: 2024-10-04. URL:
https://github.com/liveontologies/
elk-reasoner/wiki/OwlFeatures.

15 Charles L Forgy. Rete: A fast algorithm for the
many pattern/many object pattern match prob-
lem. Artificial intelligence, 19(1):17–37, September
1982. doi:10.1016/0004-3702(82)90020-0.

16 Michael A Gargano, Nicolas Matentzoglu, Ben
Coleman, Eunice B Addo-Lartey, Anna V Anagnos-
topoulos, Joel Anderton, Paul Avillach, Anita M
Bagley, Eduard Bakštein, James P Balhoff, Gareth
Baynam, Susan M Bello, Michael Berk, Holli
Bertram, Somer Bishop, Hannah Blau, David F
Bodenstein, Pablo Botas, Kaan Boztug, Jolana
Čady, Tiffany J Callahan, Rhiannon Cameron,
Seth J Carbon, Francisco Castellanos, J Harry Cau-
field, Lauren E Chan, Christopher G Chute, Jaime
Cruz-Rojo, Noémi Dahan-Oliel, Jon R Davids,
Maud de Dieuleveult, Vinicius de Souza, Bert
B A de Vries, Esther de Vries, J Raymond De-
Paulo, Beata Derfalvi, Ferdinand Dhombres, Clau-
dia Diaz-Byrd, Alexander J M Dingemans, Bruno
Donadille, Michael Duyzend, Reem Elfeky, Shahim
Essaid, Carolina Fabrizzi, Giovanna Fico, Helen V
Firth, Yun Freudenberg-Hua, Janice M Fuller-
ton, Davera L Gabriel, Kimberly Gilmour, Jes-
sica Giordano, Fernando S Goes, Rachel Gore
Moses, Ian Green, Matthias Griese, Tudor Groza,
Weihong Gu, Julia Guthrie, Benjamin Gyori,
Ada Hamosh, Marc Hanauer, Kateřina Hanušová,
Yongqun Oliver He, Harshad Hegde, Ingo Hel-
big, Kateřina Holasová, Charles Tapley Hoyt,
Shangzhi Huang, Eric Hurwitz, Julius O B Jacob-
sen, Xiaofeng Jiang, Lisa Joseph, Kamyar Kera-
matian, Bryan King, Katrin Knoflach, David A
Koolen, Megan L Kraus, Carlo Kroll, Maaike
Kusters, Markus S Ladewig, David Lagorce, Meng-
Chuan Lai, Pablo Lapunzina, Bryan Laraway,
David Lewis-Smith, Xiarong Li, Caterina Lucano,
Marzieh Majd, Mary L Marazita, Victor Martinez-
Glez, Toby H McHenry, Melvin G McInnis, Julie A
McMurry, Michaela Mihulová, Caitlin E Millett,
Philip B Mitchell, Veronika Moslerová, Kenji
Narutomi, Shahrzad Nematollahi, Julian Nevado,
Andrew A Nierenberg, Nikola Novák Čajbiková,
John I Nurnberger, Jr, Soichi Ogishima, Daniel
Olson, Abigail Ortiz, Harry Pachajoa, Guiomar
Perez de Nanclares, Amy Peters, Tim Putman,
Christina K Rapp, Ana Rath, Justin Reese, Lau-
ren Rekerle, Angharad M Roberts, Suzy Roy,
Stephan J Sanders, Catharina Schuetz, Eva C
Schulte, Thomas G Schulze, Martin Schwarz, Katie
Scott, Dominik Seelow, Berthold Seitz, Yiping
Shen, Morgan N Similuk, Eric S Simon, Balwinder
Singh, Damian Smedley, Cynthia L Smith, Jake T
Smolinsky, Sarah Sperry, Elizabeth Stafford, Ray
Stefancsik, Robin Steinhaus, Rebecca Strawbridge,
Jagadish Chandrabose Sundaramurthi, Polina Ta-
lapova, Jair A Tenorio Castano, Pavel Tesner,
Rhys H Thomas, Audrey Thurm, Marek Turnovec,
Marielle E van Gijn, Nicole A Vasilevsky, Markéta
Vlčková, Anita Walden, Kai Wang, Ron Wap-
ner, James S Ware, Addo A Wiafe, Samuel A
Wiafe, Lisa D Wiggins, Andrew E Williams, Chen
Wu, Margot J Wyrwoll, Hui Xiong, Nefize Yalin,
Yasunori Yamamoto, Lakshmi N Yatham, Anas-
tasia K Yocum, Allan H Young, Zafer Yüksel,
Peter P Zandi, Andreas Zankl, Ignacio Zarante,
Miroslav Zvolský, Sabrina Toro, Leigh C Car-

TGDK

https://doi.org/10.5281/zenodo.2397192
https://github.com/phenoscape/owlery
https://github.com/phenoscape/owlery
https://github.com/INCATools/whelk-rs
https://github.com/INCATools/whelk-rs
https://doi.org/10.5281/zenodo.13891879
https://doi.org/10.5281/zenodo.13891879
https://github.com/INCATools/boomer
https://github.com/INCATools/boomer
https://archive.softwareheritage.org/swh:1:dir:f8919707e053212b2c74bc63988a06ffe03fb796;origin=https://github.com/INCATools/whelk;visit=swh:1:snp:900616057d4dbe7b6bcfee048b79dd78b399df31;anchor=swh:1:rev:6186eaa434399203d6fad9ff47d0e0df61acb98c
https://archive.softwareheritage.org/swh:1:dir:f8919707e053212b2c74bc63988a06ffe03fb796;origin=https://github.com/INCATools/whelk;visit=swh:1:snp:900616057d4dbe7b6bcfee048b79dd78b399df31;anchor=swh:1:rev:6186eaa434399203d6fad9ff47d0e0df61acb98c
https://github.com/INCATools/whelk
https://doi.org/10.4230/artifacts.22615
https://doi.org/10.1038/s41556-021-00788-6
https://github.com/Galigator/openllet
https://github.com/Galigator/openllet
https://doi.org/10.1186/s13326-016-0088-7
http://reports-archive.adm.cs.cmu.edu/anon/1995/CMU-CS-95-113.pdf
http://reports-archive.adm.cs.cmu.edu/anon/1995/CMU-CS-95-113.pdf
https://github.com/liveontologies/elk-reasoner/wiki/OwlFeatures
https://github.com/liveontologies/elk-reasoner/wiki/OwlFeatures
https://doi.org/10.1016/0004-3702(82)90020-0

7:16 Whelk: An OWL EL+RL Reasoner Enabling New Use Cases

mody, Nomi L Harris, Monica C Munoz-Torres,
Daniel Danis, Christopher J Mungall, Sebastian
Köhler, Melissa A Haendel, and Peter N Robin-
son. The human phenotype ontology in 2024:
phenotypes around the world. Nucleic acids re-
search, 52(D1):D1333–D1346, January 2024. doi:
10.1093/nar/gkad1005.

17 Gene Ontology Consortium, Suzi A Aleksander,
James Balhoff, Seth Carbon, J Michael Cherry,
Harold J Drabkin, Dustin Ebert, Marc Feuermann,
Pascale Gaudet, Nomi L Harris, David P Hill,
Raymond Lee, Huaiyu Mi, Sierra Moxon, Christo-
pher J Mungall, Anushya Muruganugan, Tremayne
Mushayahama, Paul W Sternberg, Paul D Thomas,
Kimberly Van Auken, Jolene Ramsey, Deborah A
Siegele, Rex L Chisholm, Petra Fey, Maria Cristina
Aspromonte, Maria Victoria Nugnes, Federica
Quaglia, Silvio Tosatto, Michelle Giglio, Suvarna
Nadendla, Giulia Antonazzo, Helen Attrill, Gil
Dos Santos, Steven Marygold, Victor Strelets,
Christopher J Tabone, Jim Thurmond, Pinglei
Zhou, Saadullah H Ahmed, Praoparn Asanitthong,
Diana Luna Buitrago, Meltem N Erdol, Matthew C
Gage, Mohamed Ali Kadhum, Kan Yan Chloe Li,
Miao Long, Aleksandra Michalak, Angeline Pesala,
Armalya Pritazahra, Shirin C C Saverimuttu, Ren-
zhi Su, Kate E Thurlow, Ruth C Lovering, Colin
Logie, Snezhana Oliferenko, Judith Blake, Karen
Christie, Lori Corbani, Mary E Dolan, Harold J
Drabkin, David P Hill, Li Ni, Dmitry Sitnikov,
Cynthia Smith, Alayne Cuzick, James Seager, Lau-
rel Cooper, Justin Elser, Pankaj Jaiswal, Parul
Gupta, Pankaj Jaiswal, Sushma Naithani, Manuel
Lera-Ramirez, Kim Rutherford, Valerie Wood, Jef-
frey L De Pons, Melinda R Dwinell, G Thomas
Hayman, Mary L Kaldunski, Anne E Kwitek, Stan-
ley J F Laulederkind, Marek A Tutaj, Mahima
Vedi, Shur-Jen Wang, Peter D’Eustachio, Lu-
cila Aimo, Kristian Axelsen, Alan Bridge, Nevila
Hyka-Nouspikel, Anne Morgat, Suzi A Aleksander,
J Michael Cherry, Stacia R Engel, Kalpana Karra,
Stuart R Miyasato, Robert S Nash, Marek S
Skrzypek, Shuai Weng, Edith D Wong, Erika
Bakker, Tanya Z Berardini, Leonore Reiser, An-
drea Auchincloss, Kristian Axelsen, Ghislaine
Argoud-Puy, Marie-Claude Blatter, Emmanuel
Boutet, Lionel Breuza, Alan Bridge, Cristina
Casals-Casas, Elisabeth Coudert, Anne Estreicher,
Maria Livia Famiglietti, Marc Feuermann, Ar-
naud Gos, Nadine Gruaz-Gumowski, Chantal Hulo,
Nevila Hyka-Nouspikel, Florence Jungo, Philippe
Le Mercier, Damien Lieberherr, Patrick Masson,
Anne Morgat, Ivo Pedruzzi, Lucille Pourcel, Syl-
vain Poux, Catherine Rivoire, Shyamala Sundaram,
Alex Bateman, Emily Bowler-Barnett, Hema Bye-
A-Jee, Paul Denny, Alexandr Ignatchenko, Rizwan
Ishtiaq, Antonia Lock, Yvonne Lussi, Michele Ma-
grane, Maria J Martin, Sandra Orchard, Pedro Ra-
poso, Elena Speretta, Nidhi Tyagi, Kate Warner,
Rossana Zaru, Alexander D Diehl, Raymond Lee,
Juancarlos Chan, Stavros Diamantakis, Daniela
Raciti, Magdalena Zarowiecki, Malcolm Fisher,
Christina James-Zorn, Virgilio Ponferrada, Aaron
Zorn, Sridhar Ramachandran, Leyla Ruzicka, and
Monte Westerfield. The gene ontology knowl-

edgebase in 2023. Genetics, 224(1), May 2023.
doi:10.1093/genetics/iyad031.

18 Birte Glimm, Ian Horrocks, Boris Motik, Gior-
gos Stoilos, and Zhe Wang. HermiT: An OWL
2 reasoner. Journal of Automated Reason-
ing, 53(3):245–269, October 2014. doi:10.1007/
s10817-014-9305-1.

19 Bruce W Herr, 2nd, Josef Hardi, Ellen M
Quardokus, Andreas Bueckle, Lu Chen, Fusheng
Wang, Anita R Caron, David Osumi-Sutherland,
Mark A Musen, and Katy Börner. Specimen,
biological structure, and spatial ontologies in
support of a human reference atlas. Scien-
tific data, 10(1):171, March 2023. doi:10.1038/
s41597-023-01993-8.

20 Matthew Horridge and Sean Bechhofer. The
OWL API: A java API for OWL ontologies. Se-
mantic Web, 2(1):11–21, 2011. doi:10.3233/
SW-2011-0025.

21 Ian Horrocks, Peter F Patel-Schneider, Harold Bo-
ley, Said Tabet, Benjamin Grosof, and Mike Dean.
SWRL: A semantic web rule language combining
OWL and RuleML. URL: https://www.w3.org/
Submission/SWRL/.

22 SNOMED International. SNOMED international.
Accessed: 2024-6-27. URL: https://www.snomed.
org/.

23 Rebecca C Jackson, James P Balhoff, Eric Dou-
glass, Nomi L Harris, Christopher J Mungall,
and James A Overton. ROBOT: A tool for
automating ontology workflows. BMC bioin-
formatics, 20(1):407, July 2019. doi:10.1186/
s12859-019-3002-3.

24 Yevgeny Kazakov, Markus Krötzsch, and Fran-
tišek Simančík. The incredible ELK. Journal of
Automated Reasoning, 53(1):1–61, November 2013.
doi:10.1007/s10817-013-9296-3.

25 Adila Krisnadhi, Frederick Maier, and Pascal Hit-
zler. OWL and rules. In Axel Polleres, Claudia
d’Amato, Marcelo Arenas, Siegfried Handschuh,
Paula Kroner, Sascha Ossowski, and Peter Patel-
Schneider, editors, Reasoning Web. Semantic Tech-
nologies for the Web of Data: 7th International
Summer School 2011, Galway, Ireland, August
23-27, 2011, Tutorial Lectures, pages 382–415.
Springer Berlin Heidelberg, Berlin, Heidelberg,
2011. doi:10.1007/978-3-642-23032-5_7.

26 Phil Lord. horned-owl. Accessed: 2024-6-30. URL:
https://github.com/phillord/horned-owl.

27 Nicolas Matentzoglu, Damien Goutte-Gattat,
Shawn Zheng Kai Tan, James P Balhoff, Seth Car-
bon, Anita R Caron, William D Duncan, Joe E
Flack, Melissa Haendel, Nomi L Harris, William R
Hogan, Charles Tapley Hoyt, Rebecca C Jack-
son, Hyeongsik Kim, Huseyin Kir, Martin Lar-
ralde, Julie A McMurry, James A Overton, Bjoern
Peters, Clare Pilgrim, Ray Stefancsik, Sofia Mc
Robb, Sabrina Toro, Nicole A Vasilevsky, Ra-
mona Walls, Christopher J Mungall, and David
Osumi-Sutherland. Ontology development kit: a
toolkit for building, maintaining and standardizing
biomedical ontologies. Database: the journal of
biological databases and curation, 2022, October
2022. doi:10.1093/database/baac087.

28 C J Mungall, H Dietze, and D Osumi-Sutherland.
Use of OWL within the gene ontology. In Maria

https://doi.org/10.1093/nar/gkad1005
https://doi.org/10.1093/nar/gkad1005
https://doi.org/10.1093/genetics/iyad031
https://doi.org/10.1007/s10817-014-9305-1
https://doi.org/10.1007/s10817-014-9305-1
https://doi.org/10.1038/s41597-023-01993-8
https://doi.org/10.1038/s41597-023-01993-8
https://doi.org/10.3233/SW-2011-0025
https://doi.org/10.3233/SW-2011-0025
https://www.w3.org/Submission/SWRL/
https://www.w3.org/Submission/SWRL/
https://www.snomed.org/
https://www.snomed.org/
https://doi.org/10.1186/s12859-019-3002-3
https://doi.org/10.1186/s12859-019-3002-3
https://doi.org/10.1007/s10817-013-9296-3
https://doi.org/10.1007/978-3-642-23032-5_7
https://github.com/phillord/horned-owl
https://doi.org/10.1093/database/baac087

J. P. Balhoff and C. J. Mungall 7:17

Keet and Valentina Tamma, editors, Proceedings
of the 11th International Workshop on OWL: Ex-
periences and Directions (OWLED 2014), pages
25–36, Riva del Garda, Italy, October 17-18, 2014,
October 2014. doi:10.1101/010090.

29 Christopher J Mungall, Sebastian Koehler, Peter
Robinson, Ian Holmes, and Melissa Haendel. k-
BOOM: A bayesian approach to ontology structure
inference, with applications in disease ontology
construction, May 2016. doi:10.1101/048843.

30 Christopher J Mungall, Carlo Torniai, Georgios V
Gkoutos, Suzanna E Lewis, and Melissa A Haen-
del. Uberon, an integrative multi-species anatomy
ontology. Genome biology, 13(1):R5, January 2012.
doi:10.1186/gb-2012-13-1-r5.

31 Mark A Musen and Protégé Team. The protégé
project: A look back and a look forward. AI mat-
ters, 1(4):4–12, June 2015. doi:10.1145/2757001.
2757003.

32 Chris Okasaki. Purely Functional Data Struc-
tures. PhD thesis, Carnegie Mellon Univer-
sity, 1996. URL: https://www.cs.cmu.edu/~rwh/
students/okasaki.pdf.

33 Tim E Putman, Kevin Schaper, Nicolas Matent-
zoglu, Vincent P Rubinetti, Faisal S Alquaddoomi,
Corey Cox, J Harry Caufield, Glass Elsarboukh,
Sarah Gehrke, Harshad Hegde, Justin T Reese,
Ian Braun, Richard M Bruskiewich, Luca Cap-
pelletti, Seth Carbon, Anita R Caron, Lauren E
Chan, Christopher G Chute, Katherina G Cortes,
Vinícius De Souza, Tommaso Fontana, Nomi L
Harris, Emily L Hartley, Eric Hurwitz, Julius O B
Jacobsen, Madan Krishnamurthy, Bryan J Lar-
away, James A McLaughlin, Julie A McMurry,
Sierra A T Moxon, Kathleen R Mullen, Shawn T
O’Neil, Kent A Shefchek, Ray Stefancsik, Sab-
rina Toro, Nicole A Vasilevsky, Ramona L Walls,
Patricia L Whetzel, David Osumi-Sutherland,
Damian Smedley, Peter N Robinson, Christo-
pher J Mungall, Melissa A Haendel, and Mon-
ica C Munoz-Torres. The monarch initiative in
2024: an analytic platform integrating pheno-
types, genes and diseases across species. Nucleic
acids research, 52(D1):D938–D949, January 2024.
doi:10.1093/nar/gkad1082.

34 Gunjan Singh, Sumit Bhatia, and Raghava
Mutharaju. OWL2Bench: A benchmark for OWL
2 reasoners. In The Semantic Web – ISWC 2020,
pages 81–96. Springer International Publishing,
2020. doi:10.1007/978-3-030-62466-8_6.

35 Nicholas Sioutos, Sherri de Coronado, Margaret W
Haber, Frank W Hartel, Wen-Ling Shaiu, and
Lawrence W Wright. NCI thesaurus: a seman-
tic model integrating cancer-related clinical and
molecular information. Journal of biomedical
informatics, 40(1):30–43, February 2007. doi:
10.1016/j.jbi.2006.02.013.

36 Barry Smith, Werner Ceusters, Bert Klagges, Ja-
cob Köhler, Anand Kumar, Jane Lomax, Chris
Mungall, Fabian Neuhaus, Alan L Rector, and
Cornelius Rosse. Relations in biomedical on-
tologies. Genome biology, 6(5):R46, April 2005.
doi:10.1186/gb-2005-6-5-r46.

37 Paul D Thomas, David P Hill, Huaiyu Mi, David
Osumi-Sutherland, Kimberly Van Auken, Seth
Carbon, James P Balhoff, Laurent-Philippe Al-
bou, Benjamin Good, Pascale Gaudet, Suzanna E

Lewis, and Christopher J Mungall. Gene ontol-
ogy causal activity modeling (GO-CAM) moves
beyond GO annotations to structured descrip-
tions of biological functions and systems. Na-
ture genetics, 51(10):1429–1433, October 2019.
doi:10.1038/s41588-019-0500-1.

38 Santiago Timón-Reina, Mariano Rincón, Rafael
Martínez-Tomás, Bjørn-Eivind Kirsebom, and Tor-
mod Fladby. A knowledge graph framework for
dementia research data. NATO Advanced Science
Institutes series E: Applied sciences, 13(18):10497,
September 2023. doi:10.3390/app131810497.

39 Nicole A Vasilevsky, Nicolas A Matentzoglu, Sab-
rina Toro, Joseph E Flack, IV, Harshad Hegde,
Deepak R Unni, Gioconda F Alyea, Joanna S
Amberger, Larry Babb, James P Balhoff, Tay-
lor I Bingaman, Gully A Burns, Orion J Buske,
Tiffany J Callahan, Leigh C Carmody, Paula Car-
rio Cordo, Lauren E Chan, George S Chang, Sean L
Christiaens, Michel Dumontier, Laura E Failla,
May J Flowers, H Alpha Garrett, Jr, Jennifer L
Goldstein, Dylan Gration, Tudor Groza, Marc
Hanauer, Nomi L Harris, Jason A Hilton, Daniel S
Himmelstein, Charles Tapley Hoyt, Megan S Kane,
Sebastian Köhler, David Lagorce, Abbe Lai, Mar-
tin Larralde, Antonia Lock, Irene López Santi-
ago, Donna R Maglott, Adriana J Malheiro, Bir-
git H M Meldal, Monica C Munoz-Torres, Tris-
tan H Nelson, Frank W Nicholas, David Ochoa,
Daniel P Olson, Tudor I Oprea, David Osumi-
Sutherland, Helen Parkinson, Zoë May Pendling-
ton, Ana Rath, Heidi L Rehm, Lyubov Remen-
nik, Erin R Riggs, Paola Roncaglia, Justyne E
Ross, Marion F Shadbolt, Kent A Shefchek, Mor-
gan N Similuk, Nicholas Sioutos, Damian Smedley,
Rachel Sparks, Ray Stefancsik, Ralf Stephan, An-
drea L Storm, Doron Stupp, Gregory S Stupp,
Jagadish Chandrabose Sundaramurthi, Imke Tam-
men, Darin Tay, Courtney L Thaxton, Eloise
Valasek, Jordi Valls-Margarit, Alex H Wagner,
Danielle Welter, Patricia L Whetzel, Lori L White-
man, Valerie Wood, Colleen H Xu, Andreas Zankl,
Xingmin Aaron Zhang, Christopher G Chute, Pe-
ter N Robinson, Christopher J Mungall, Ada
Hamosh, and Melissa A Haendel. Mondo: Uni-
fying diseases for the world, by the world, April
2022. doi:10.1101/2022.04.13.22273750.

40 W3C OWL Working Group. Owl 2 web ontology
language document overview (second edition). Ac-
cessed: 2024-10-04. URL: https://www.w3.org/
TR/owl2-overview/.

41 W3C OWL Working Group. Owl 2 web ontology
language manchester syntax (second edition). Ac-
cessed: 2024-10-04. URL: https://www.w3.org/
TR/owl2-manchester-syntax/.

42 W3C OWL Working Group. OWL 2 web on-
tology language profiles (second edition). URL:
https://www.w3.org/TR/owl2-profiles/.

43 École Polytechnique Fédérale Lausanne (EPFL).
Scala native. Accessed: 2024-6-25. URL: https:
//scala-native.org/.

44 École Polytechnique Fédérale Lausanne (EPFL).
The scala programming language. Accessed: 2024-
6-30. URL: https://www.scala-lang.org/.

45 École Polytechnique Fédérale Lausanne (EPFL).
Scala.js. Accessed: 2024-6-25. URL: https:
//www.scala-js.org.

TGDK

https://doi.org/10.1101/010090
https://doi.org/10.1101/048843
https://doi.org/10.1186/gb-2012-13-1-r5
https://doi.org/10.1145/2757001.2757003
https://doi.org/10.1145/2757001.2757003
https://www.cs.cmu.edu/~rwh/students/okasaki.pdf
https://www.cs.cmu.edu/~rwh/students/okasaki.pdf
https://doi.org/10.1093/nar/gkad1082
https://doi.org/10.1007/978-3-030-62466-8_6
https://doi.org/10.1016/j.jbi.2006.02.013
https://doi.org/10.1016/j.jbi.2006.02.013
https://doi.org/10.1186/gb-2005-6-5-r46
https://doi.org/10.1038/s41588-019-0500-1
https://doi.org/10.3390/app131810497
https://doi.org/10.1101/2022.04.13.22273750
https://www.w3.org/TR/owl2-overview/
https://www.w3.org/TR/owl2-overview/
https://www.w3.org/TR/owl2-manchester-syntax/
https://www.w3.org/TR/owl2-manchester-syntax/
https://www.w3.org/TR/owl2-profiles/
https://scala-native.org/
https://scala-native.org/
https://www.scala-lang.org/
https://www.scala-js.org
https://www.scala-js.org

MELArt: A Multimodal Entity Linking Dataset for Art
Alejandro Sierra-Múnera # Ñ

Hasso Plattner Institute, University of Potsdam, Potsdam, Germany

Linh Le # Ñ

The University of Queensland, Brisbane, Australia

Gianluca Demartini # Ñ

The University of Queensland, Brisbane, Australia

Ralf Krestel # Ñ

ZBW – Leibniz Information Centre for Economics, Kiel, Germany
Kiel University, Kiel, Germany

Abstract
Traditional named entity linking (NEL) tools have
largely employed a general-domain approach, span-
ning across various entity types such as persons,
organizations, locations, and events in a multitude
of contexts. While multimodal entity linking data-
sets exist (e.g., disambiguation of person names
with the help of photographs), there is a need to
develop domain-specific resources that represent
the unique challenges present in domains like cul-
tural heritage (e.g., stylistic changes through time,
diversity of social and political context). To address
this gap, our work presents a novel multimodal
entity linking benchmark dataset for the art domain
together with a comprehensive experimental evalu-
ation of existing NEL methods on this new dataset.
The dataset encapsulates various entities unique
to the art domain. During the dataset creation

process, we also adopt manual human evaluation,
providing high-quality labels for our dataset. We
introduce an automated process that facilitates
the generation of this art dataset, harnessing data
from multiple sources (Artpedia, Wikidata and
Wikimedia Commons) to ensure its reliability and
comprehensiveness. Furthermore, our paper de-
lineates best practices for the integration of art
datasets, and presents a detailed performance ana-
lysis of general-domain entity linking systems, when
applied to domain-specific datasets. Through our
research, we aim to address the lack of datasets
for NEL in the art domain, providing resources
for the development of new, more nuanced, and
contextually rich entity linking methods in the
realm of art and cultural heritage.

2012 ACM Subject Classification Computing methodologies → Information extraction

Keywords and phrases A Multimodal Entity Linking Dataset, Named Entity Linking, Art Domain,
Wikidata, Wikimedia, Artpedia

Digital Object Identifier 10.4230/TGDK.2.2.8

Category Resource Paper

Supplementary Material The source code for generating MELArt is published on Github under an
MIT license and the code for the experiments described in Section 4.3 is also published on Github.
The annotations included in MELArt and the candidates’ information except for the image files, are
available on the UQ Research Data Manager under an CC-BY license. The image files can be extracted
from Wikimedia using a file contained in the same repository and a script described in the Github
repository.
Dataset (Dataset): https://doi.org/10.48610/8a1ccdf [10]
Software (Dataset generation code): https://github.com/HPI-Information-Systems/MELArt [11]

archived at swh:1:dir:ec4380448f4087c011040d0e3dca7832baa11182
Software (Experiments code): https://github.com/HPI-Information-Systems/MELArt_experiments [12]

archived at swh:1:dir:203f2a69c5bc9064db3873a0160ca52f62095c25

© Alejandro Sierra-Múnera, Linh Le, Gianluca Demartini, and Ralf Krestel;
licensed under Creative Commons License CC-BY 4.0

Transactions on Graph Data and Knowledge, Vol. 2, Issue 2, Article No. 8, pp. 8:1–8:22
Transactions on Graph Data and Knowledge

T G D K Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:alejandro.sierra@hpi.de
https://www.hpi.de
https://orcid.org/0000-0003-3637-4904
mailto:linh.le@uq.edu.au
https://www.uq.edu.au
https://orcid.org/0000-0002-1241-1881
mailto:g.demartini@uq.edu.au
https://www.uq.edu.au
https://orcid.org/0000-0002-7311-3693
mailto:rkr@informatik.uni-kiel.de
https://www.zbw.eu
https://orcid.org/0000-0002-5036-8589
https://doi.org/10.4230/TGDK.2.2.8
https://doi.org/10.48610/8a1ccdf
https://github.com/HPI-Information-Systems/MELArt
https://archive.softwareheritage.org/swh:1:dir:ec4380448f4087c011040d0e3dca7832baa11182;origin=https://github.com/HPI-Information-Systems/MELArt;visit=swh:1:snp:9b0a0c452561dcdc103f9ed0a9f04c47b9d44e9d;anchor=swh:1:rev:87d105610ce56b43f713e71996aab2d4870cdbc3
https://github.com/HPI-Information-Systems/MELArt_experiments
https://archive.softwareheritage.org/swh:1:dir:203f2a69c5bc9064db3873a0160ca52f62095c25;origin=https://github.com/HPI-Information-Systems/MELArt_experiments;visit=swh:1:snp:18220ea00d0e05c5cc15921eb46ad2ec7b7cadaa;anchor=swh:1:rev:2a727327612af583acb11103aa1291bec66a6749
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/tgdk
https://www.dagstuhl.de/tgdk
https://www.dagstuhl.de

8:2 MELArt: A Multimodal Entity Linking Dataset for Art

Funding The article is based upon work conducted as part of the Australia–Germany Joint Research
Cooperation Scheme (Universities Australia – DAAD). Project number 57600378.
Alejandro Sierra-Múnera: Funded by the HPI Research School on Data Science and Engineering

Received 2024-07-02 Accepted 2024-11-15 Published 2024-12-18

Editors Aidan Hogan, Ian Horrocks, Andreas Hotho, Lalana Kagal, and Uli Sattler

Special Issue Resources for Graph Data and Knowledge

1 Introduction

The art world, rich in historical and cultural value, is facing a noticeable challenge in the application
of computational techniques due to the limited availability of comprehensive datasets for machine
learning tasks, despite the existence of some notable datasets, like, for example, The Metropolitan
Museum of Art’s Open Access dataset [17], which offers over 397,121 images of public-domain
artworks with rich metadata including 224,208 classes. Similarly, the Rijksmuseum dataset includes
extensive collections of Dutch art, pivotal for studies in European art history. WikiArt [7] and
Google’s Art & Culture datasets1 provide broader scopes, encompassing diverse global art pieces.
Additionally, Artemis [1] stands out as a unique dataset focusing on the emotional responses to art,
offering a different dimension for analysis. Artpedia [13], further enriches the available resources
for computational art research by associating paintings with corresponding visual and contextual
sentences from Wikipedia. IICONGRAPH [9], defines a knowledge graph focused on iconographic
and iconological statements for the Italian cultural-heritage landscape.

Despite these advancements, none of these resources are tailored for the task of entity linking or
entity disambiguation, in which connections between art subject mentions and their corresponding
entities in a knowledge graph can be automatically discovered.

Artpedia, as a comprehensive art resource, offers vast potential for developing an art entity
linking dataset. It features a diverse collection of artworks, detailed metadata, high-quality images,
and rich contextual information, making it a reliable source for art research [13]. The manual
selection of text related to the artworks in Artpedia is its strength, enhanced by the manual
classification between visual (describing what is depicted in the artwork) and contextual (describing
other aspects of the artwork) sentences. The detailed descriptions and contextual information
provided by Artpedia are vital for textual analysis, which, when combined with visual data, can
significantly enhance entity recognition and linking accuracy. Utilizing Artpedia’s resources to
develop an entity linking dataset would not only leverage the reliability of Artpedia’s textual
descriptions, but also offer new insights into the complexity between visual elements and contextual
information in artworks, advancing both the technological and cultural understanding of art.

Wikidata, although being a general purpose knowledge graph, contains specific relations that
connect artworks with their corresponding subjects, and, compared to other domain-specific
resources, covers more artworks with a good density of subjects per artwork [3]. This coverage,
plus the tight connection between Artpedia, Wikipedia and Wikidata, suggests the potential to
combine these resources and integrate textual and structured connections between artworks and
subjects.

In this paper, we present a new dataset for multimodal (i.e., containing textual mentions
and images) named entity linking in art that addresses the limitations of current datasets by: i)
integrating Artpedia’s detailed textual descriptions of artworks to enhance the entity recognition

1 https://artsandculture.google.com/

https://artsandculture.google.com/

A. Sierra-Múnera, L. Le, G. Demartini, and R. Krestel 8:3

and linking; and ii) meticulously integrating Artpedia with Wikidata; iii) retrieving structured
information about paintings from Wikidata; vi) focusing on named entities in the depicted art and
expanding their reference labels; vii) implementing named entity recognition and linking using
these expanded labels.

2 Entity Linking Challenges in the Art Domain

Entity linking, involves the identification, disambiguation, and connection of entities mentioned in
text, to their corresponding entities in a knowledge base. In the specific realm of entity linking,
the art field presents unique challenges. In the art domain, it is especially important to not only
consider text, but also the images associated with the artworks.

However, the scarcity of datasets tailored to entity linking in artwork is a significant barrier
to developing effective techniques. This domain is filled with subjective interpretations and
ambiguities, complicating the task of entity linking [5]. For example, a single symbol or motif might
have varying meanings in different cultures and historical periods, requiring extensive contextual
knowledge for precise entity identification. The inconsistency in image quality, influenced by the
age of the artwork or the materials used in its creation, often results in detail or color fidelity
loss. This variability adds complexity to the processes of entity recognition and linking, needing
algorithms to handle these idiosyncrasies. Therefore, developing efficient entity linking methods in
the art domain involves addressing these challenges and highlights the need for custom art-related
entity linking datasets, particularly those that are multimodal. Multimodal entity linking datasets
for the general domain have been proposed. However, in contrast to datasets like WikiMEL [14],
TwitterMEL [2] and WikiDiverse [15], where the images are photographs and the entities are
typically persons, for the majority of art subjects the visual representations in MELArt, the dataset
we propose in this work, come from paintings. These artistic representations of the subjects come
with a high variety of styles and contexts, making it challenging for an automated model to deal
with. We adhere to the multimodal entity linking task defined in these datasets, treating the input
as a sentence with a mention accompanied by an image, and the objective is to link the correct
entity to the mention. An example of the task, specific to the art domain, can be found in Figure
1. Here the input is the sentence “Mary, sitting on a throne . . . ” with the corresponding mention
“Mary”, with the additional image from the painting. The output should be a score or a ranking
of candidate entities, like the candidates on the right in Figure 1, in which the ground truth entity
(Q345 in this example) should be at the top of the ranking. Including the image of the painting
and potential images for the candidate entities is essential for the art domain, given the visual
nature of artwork.

The art domain presents distinctive challenges due to the rich historical context, variability in
artistic descriptions, and the interplay of various figures and symbols. We want to illustrate the
unique challenges of entity linking within the art domain through specific example sentences with
links to Wikidata entities.

Complex Scene Composition. The example sentence “Here the Virgin lifts the veil over the
sleeping Child, who is turned toward the audience, with her other arm around the young John,
who has a reed across his shoulder” contains the NEL challenge of identifying and linking multiple
figures present in a single artwork. The entities involved in this example are the Virgin Mary
(Q345), the Christ Child (Q942467), and the Child Saint John (Q1698874). The NEL task
complexity arises in distinguishing each figure and associating them with their respective symbolic
attributes, like the veil and the reed.

TGDK

8:4 MELArt: A Multimodal Entity Linking Dataset for Art

"Mary, sitting on a throne, is portrayed at the moment that she is
startled out of her reading, reacting with a graceful and composed

reluctance, looking with surprise at the celestial messenger."

Annunciation with
St. Margaret and St.
Ansanus (Q979440)
painting by Simone
Martini and Lippo
Memmi

Mary Magdalene (Q63070)
human biblical figure, human. follower of
Jesus

Virgin Mary (Q345)
human biblical figure, human. mother of
Jesus

Mary, Queen of Scots (Q131412)
human. Queen of Scotland from 1542 to
1567

Figure 1 Multimodal entity linking example in the art domain. On the right, we show 3 potential
entity candidates for the mention Mary marking Virgin Mary (Q345) as the correct entity for the artwork
on the left. The text corresponds to a visual sentence from the Artpedia dataset.

High Disambiguation. The sentence “Queen Charlotte dropped behind Montagne due to the
loss of this mast and thus failed to capture her, and led to criticism of the painting” presents
a sophisticated entity linking challenge. The primary task is to accurately identify and link
“Queen Charlotte” to the entity HMS Queen Charlotte (the ship - Q680379), a task complicated
by the potential misinterpretation of “Queen Charlotte” as a person entity, especially given the
use of the pronoun “her” in the sentence. This situation underscores a notable aspect of entity
disambiguation, where the capacity for multimodal entity linking to discern between human and
non-human entities becomes crucial. Such a capability is particularly significant given that many
existing datasets exhibit a pronounced bias towards the presence of person entities, highlighting
the need for more nuanced and context-aware approaches in entity linking methods for the art
domain.

Artistic Historical Linkage. The sentence “The central panel shows the Crucifixion of Christ
with John the Apostle and the Virgin Mary” necessitates a precise entity linking process, wherein
the name mention “Christ” must be correctly linked to the entity Jesus (Q302) rather than Christ
Child (Q942467). The accurate identification of this historical event hinges on the detection
of the Cross in the image, which serves as a critical visual cue signifying the Crucifixion. This
visual element is essential for distinguishing between the adult Jesus at the Crucifixion and
other representations of Jesus, such as the Christ Child. The presence of other key figures in
the narrative, such as John the Apostle and the Virgin Mary, further contextualizes the scene,
reinforcing the correct linkage to the Crucifixion event. This example highlights the importance of
contextual and iconographic cues in historical art for accurate entity linking, especially in complex
religious narratives where different phases of a central figure’s life are depicted.

Through these examples, we can see how the art domain poses unique challenges for entity
linking, including the need for disambiguation, dealing with variable descriptions, understanding
the historical and artistic context, distinguishing between multiple entities, and recognizing artistic
authorship. Each aspect addresses the multifaceted nature of entity linking in the realm of art
history and criticism.

3 Dataset Construction

Our art entity linking dataset construction method, as depicted in Fig. 2, incorporates a multi-step
process that is in alignment with the critical components of the dataset. The following details
each step in the process:

A. Sierra-Múnera, L. Le, G. Demartini, and R. Krestel 8:5

Title: Cambrai Madonna.

Sentences: [It displays the gilded,
decorated background typical of
Byzantine devotional paintings, while
Mary is dressed in a blue robe with gold
lined edging., ...]

Mary,
Christ Child

Mary (Q345): Mary, St Mary the
Virgin, Madonna, ...
Christ Child (Q942467) : Child
Jesus, Santo Niño, Infant Jesus,
Baby Jesus, ...

Mary, Mary, Mary (Q113570633)
Marie Curie'' (Q7186)
...

Artpedia
Title: Cambrai Madonna.
QID: Q2002404

Depicts:
 Mary (Q345)
 Christ Child (Q942467)
Image:
https://commons.wikimedia.org/wiki/...

Entity and Image
Extraction

It displays the gilded, decorated
background typical of Byzantine
devotional paintings, while Mary is
dressed in a blue robe with gold
lined edging

Label Expansion

Named Entity Recognition and
Linking

Candidate ExpansionMELArt

Figure 2 The MELArt automatic construction process.

Extraction of Painting Title and Visual/Contextual Sentences: The Artpedia title of
the painting, such as “Portrait of Mlle Rachel”, along with contextual sentences like “Portrait
of Mlle Rachel is an oil painting on millboard”, are extracted from the Artpedia dataset.
Entity and Image Extraction (Multiple-art sources integration): This step involves
querying the unique identifier of the painting from Wikidata, like, for example, “Q979440” (see
Fig. 1). Additionally, the image of the painting is retrieved from Wikimedia. This step is
discussed in Section 3.1.
Label Expansion: This phase entails expanding the set of surface forms used to refer to
the depicted named entities, taking advantage of Wikidata’s alternative labels. This step is
discussed in Section 3.2.
Named Entity Recognition and Linking: This process identifies occurrences of names
within texts. It utilizes the expanded set of labels to cover the different ways used to refer to
the depicted entities. This step is discussed in Section 3.3
Candidate Expansion: This step creates an extensive set of Wikidata entities that, besides
the depicted entities, could be referenced from the text. This is a crucial step to make our
dataset valuable for the evaluation of NEL models. This step is discussed in Section 3.4.

3.1 Entity and Image Extraction
Given the need to ensure precise matching and integration of data across data sources, to efficiently
merge Artpedia with the two other online databases, Wikidata and Wikimedia Commons, a
structured approach is necessary. Our process can be systematically broken down to:
1. Locating the artwork’s Entity-ID by Title: Identify and locate the specific entity in Wikidata

using its Artpedia title (which is equivalent to its Wikipedia article and unique inside Artpedia).
This step is implemented by querying Wikidata’s links to Wikipedia articles using the following
SPARQL query2:

2 All the Wikidata extraction is performed on a dump downloaded on 2024-09-13 and generated on 2024-09-
06T23:44:15Z installed on QLever [4] as SPARQL engine.

TGDK

8:6 MELArt: A Multimodal Entity Linking Dataset for Art

PREFIX schema : <http :// schema .org/>
SELECT ? wikipedia_title ? wikidata_id WHERE {{

VALUES ? wikipedia_title {" @title "@en }.
? wikipedia_id schema :name ? wikipedia_title .
? wikipedia_id schema : about ? wikidata_id .
? wikipedia_id schema : isPartOf <https :// en. wikipedia .org />.

}}

where @title is the title from Artpedia. In this process we found that for a subset of 20
paintings, the match was not possible. The two main reasons for a missing match were: i)
deleted Wikipedia articles like “Charles II in armor” and ii) Wikipedia articles that became
disambiguation pages like “The Three Musicians (painting)”. For those cases we manually
defined the matching between Artpedia’s title and Wikidata.

2. Extract from Wikidata, using SPARQL, the following predicates for each artwork:
P18: image. We extract the URL of the first image for each painting that is part of
Wikimedia Commons.
P180: depicts. This corresponds to each “entity visually depicted in an image, literarily
described in a work, or otherwise incorporated into an audiovisual or other medium”.

3.2 Label Expansion
In this step, we take advantage of the rich set of alternative labels defined in Wikidata entities
to consider the multiple surface forms that might be present in Artpedia artwork description
sentences to refer to depicted entities. To do so, we extract Wikidata’s alternative labels for the
depicted entities. For each of the depicted entities, we list all the available alternative labels.
For example, the entity Virgin Mary (Q345) can be referred to by multiple surface forms, which
include among others: Our Lady, The Virgin Mary, Madonna, and Holy Virgin.

At the end of this process, the total number of labels for depicted named entities becomes
12,966, averaging 2.9 labels per depicted entity.

3.3 Named Entity Recognition and Linking
In this stage, we create a rich set of mention-entity pairs by finding the depicted entity labels inside
Artepdia’s sentences. This pair construction is a critical step, as it forms the backbone of the
MELArt dataset, linking the entities mentioned in the artwork descriptions to their corresponding
entities within a structured and accessible knowledge base. This structure is critical for facilitating
research and applications in art and cultural heritage data analysis. The steps we use are the
following:
1. Select named entities. The depicted entities identified in the previous step are carefully filtered

to preserve named entities and remove general entities. Given the set of all the entities depicted
in an artwork, we decide to only keep named entities as iconographic statements. In our
process, this is important because automatically matching non-named entities might create
false positives since their surface forms are common words. Similar to [9], to determine if an
entity is a named entity (i.e., an iconographic statement), we extract the English labels, and
check if any of them contain an uppercase character. In this way we avoid entities like horse
or hand and keep entities like Christ or Paris. An initial evaluation of using Wikidata entity
types (i.e., using instance_of predicates) as a filter for named entities, with a manually defined
set of classes like human and city, showed smaller coverage of entities as compared to the
capitalization heuristic. An inspection of the missed entities showed that the selection of the set

A. Sierra-Múnera, L. Le, G. Demartini, and R. Krestel 8:7

Table 1 Compilation of the Name Mention “Gustave Courbet” and different entities sharing this label.

Label Description Instance of

Gustave Courbet French painter (1819-1877) Human
Gustave Courbet Exhibition Fondation Beyeler Art Exhibition
Gustave Courbet 2007–2008 Exhibition at Metro-

politan Museum
Art Exhibition

Gustave Courbet Print in the National Gallery of
Art (NGA 162984)

Print

Gustave Courbet (Temporary) Art exhibition Art Exhibition
Gustave-Courbet-Straße Street in Mitte district, Berlin,

Germany
Street

Gustave-Courbet-Straße Street in Taucha, Saxony, Ger-
man

Street

Gustave Courbet’s Meeting:
A Portrait of the Artist as a
Wandering Jew

Journal article; published in
1967

Academic journal
article

Gustave Courbet’s “The
Sleepers”. The Lesbian Im-
age in Nineteenth-Century
French Art and Literature

Article Scholarly Article

rue Gustave-Courbet Street in Paris, France Street
Allée Gustave-Courbet Alley of Montreuil in Seine-

Saint-Denis, France
Allée

of classes needed to cover all the depicted named entities in the dataset is a manually intensive
and error-prone task. We thus refrain from manually defining and maintaining such an entity
type set and instead follow the more automated process that looks at letter capitalization.

2. Match the labels to the artwork sentences. For each of the paintings, we match any of the
labels of the depicted named entities to the visual and contextual sentences from Artpedia,
using the Spacy’s Phrase Matcher3. The result is a set of spans in the sentences corresponding
to the depicted entities. Given that the list of possible entities is limited by the depicted named
entities, this approach focuses on high matching precision. The matching is case-sensitive, to
avoid false positives, especially with names like Our Lady which are composed of common
words.

3. Filter nested mentions. In the case of overlapping matches, where one match is completely
contained in another match, we select the longer and more specific entity mention. For instance,
if the entity Madonna and Child is recognized as an entity, but in the same span Madonna is
also recognized, then the latter will not be considered.

3.4 Candidate Expansion

In this stage, given the recognized and linked mentions, we build an extensive set of Wikidata
entities that can be potentially linked to the depicted entities. We base our expansion on the
assumption that entities sharing labels are challenging to disambiguate, with a limited context.

3 https://spacy.io/api/phrasematcher

TGDK

https://spacy.io/api/phrasematcher

8:8 MELArt: A Multimodal Entity Linking Dataset for Art

Table 1 illustrates various entity candidates for the name “Gustave Courbet”. It exemplifies the
multifaceted challenges inherent in entity disambiguation tasks within art datasets. The table shows
the wide variety of meanings that can be connected to a single name, highlighting how one term can
have many different interpretations or associations. The labels in the table range from the person
“Gustave Courbet” himself to various exhibitions themed around him, and even streets named after
him. This example shows how widely a single name can be interpreted, pointing to different entities
or concepts each time it is mentioned. The descriptions confer granularity, distinguishing the
historical individual from specific art expositions and location entities. Crucially, the “Instance of”
category elucidates the ontological nature of each referent, spanning classifications like “Temporary
Exhibition”, “Print”, and “Scholarly Article.” This typological diversity underscores the need for
an advanced semantic analysis approach, incorporating label and feature extraction (from both
text and image) to ensure precision in the mapping of nominal references to their corresponding
entities within a knowledge base such as Wikidata. The steps we use are the following:

1. Wikidata labels full-text index. We first index all the English entity labels from Wikidata into
an Apache Solr4 core. This system is configured to index the text of the labels using an English
analyzer composed of tokenization, stop word removal, possessive filter and stemmer. In
addition to the labels, we include the number of Wikipedia articles for each entity to represent
the popularity of the entity.

2. Expand the candidates list using the mentions’ text. Given the set of matched mentions in
the sentences, we expand the set of candidate matching entities for those mentions using the
indexed Wikidata labels. For each mention (e.g., “Mary”) we perform two queries to the Solr
index. First, we find the 25 most similar labels to the mention, based on the BM25 algorithm
(k1=1.2,b=0.75). This returns candidates with very similar labels like “Mary, Mary, Mary”
(Q113570633). Additionally, we perform the same search but sorting the results according
to the number of Wikipedia links in descending order and choosing the first 25 results. This
query finds entities like “Marie Curie” (Q7186) with only a partial label match, but with a
high popularity. We then include these two sets of candidates and the ground truth entity to
the universe of MELArt candidates. This final set contains 53,901 entities.

3. Extract details from the candidates. For each of the candidate entities, we use SPARQL to
extract the following predicates.

P18: image. For each candidate entity, we extract all Wikimedia Commons images, except
those that correspond to the Artpedia artwork images. We filter those because for some
candidate entities, the related images already correspond to the paintings in which they
have been depicted. If we were to keep them, that would make the entity linking task trivial
in those cases. For instance, the painting Ophelia(Q21192340) by John William Waterhouse
depicts the character Ophelia(Q1800888) from Hamlet, but the image associated with the
Wikidata entity of the character is Waterhouse’s painting.

P31: instance of. We extract the classes the entity belongs to, and their main labels.

We extract Wikidata’s English description of the entity.

4. Download images. Together with the painting image links, and all the candidate images, the
image files are downloaded from Wikimedia Commons or Wikipedia in a few cases. Wikimedia
Commons links are given priority in case there is are multiple images for a painting.

4 https://solr.apache.org/

https://solr.apache.org/

A. Sierra-Múnera, L. Le, G. Demartini, and R. Krestel 8:9

4 Evaluation and Results

We perform two types of evaluation of the quality of the MELArt dataset. First, we evaluate the
reliability of the automatically annotated dataset by employing human annotators who check its
correctness. The second involves the use of MELArt with state-of-the-art (SOTA) entity linking
models.

4.1 Data Quality Evaluation Using Human Annotations

To evaluate the quality of MELArt, we follow a multistep process with two human annotators that
manually complete the entity recognition and linking tasks on a sample of the painting description
sentences. The goal of this evaluation is to answer the following question: are the automatically
annotated mentions precise and exhaustive? Ideally, all the annotations should correspond to
correct entity mentions, and they should be linked to the right Wikidata entities.

We limit the scope of this evaluation to annotations of linked Wikidata entities, thus avoiding
the identification of depicted entities not linked in Wikidata, even though there are hints in the
text indicating their presence. For instance, for the painting Rucellai Madonna (Q948745) and
the visual sentence “The painting depicts the Virgin and Child enthroned, surrounded by angels
on a gold background.” an annotator could identify Madonna and Child (Q9309699) as a good fit
for the “Virgin and Child” span, however, according to Wikidata’s triples, this artwork depicts
Virgin Mary (Q345) and Christ Child (Q942467) as independent entities. In such cases, we assume
Wikipedia’s links as the ground truth and refrain from adding extra links.

Step 1: Initial joint exploration of a small sample

The initial step involves the selection of a sample containing 30 paintings, which was presented
to both annotators. The annotators jointly explored the sample, identifying and discussing
annotation errors and agreeing on precise definitions to address borderline cases. From this initial
data exploration step, the following coding rules were agreed upon:

In the presence of nested entities, the more specific one must be chosen, and the nested
annotations must be removed. For instance, the entity Madonna and Child is preferred to
annotating Madonna if both entities are present in the artwork.
The article preceding the entities should be included, only if it is capitalized. For instance,
“The painting depicts the [Virgin] and . . . ” should not include the article the, while “ . . . from
left to right, John the Baptist, [The Virgin Mary] with . . . ” should include it.
Only nominal mentions are considered, avoiding pronouns referring to the entities in a different
span of text.

Step 2: Independent Annotation

In this step, a bigger random sample of 100 painting descriptions was drawn from the dataset.
Annotators worked independently on their assigned tasks to mitigate bias. The annotators did not
have access to the annotation made by the other annotator, but they had access to the automatic
annotations. The annotators based their decision on their own understandings of the task and the
available information about the paintings in Wikipedia and Wikidata.

After this step, we compared the annotations derived from each annotator and computed
inter-annotator agreement using Krippendorff’s Alpha. The value of alpha after the second step
was 0.89, which can be interpreted as a high level of agreement.

TGDK

8:10 MELArt: A Multimodal Entity Linking Dataset for Art

Figure 3 Example of the curation of an annotation disagreement. The top annotations correspond to
annotator A and B. The bottom annotation is the curated ground truth as determined by the discussion
among annotators.

Step 3: Aggregation and Definition of the Ground Truth
The final step combines the individual annotations into a unified dataset, resolving the few
discrepancies through discussion among the human annotators. Both annotators explored the
set of 100 documents, using the curation functionalities of the INCEpTION tool, and discussed
disagreements until the set of annotations was considered curated and consistent. We consider
this curated sample as ground truth entity linking annotations under the scope of the ‘depicted’
predicate of Wikidata. Figure 3 shows an example of the resolution of a disagreement. In this
example the disagreement relates to the boundaries of the mention and whether the mention
should include the article The for the second mention. As per the rule discussed in Section 4.1 the
article should be included, but given that it is at the beginning of a sentence, and it is capitalized
for that reason, and the name of the entity in Wikidata does not contain the article, the annotators
agreed not to include it. In the same example, we show the cases in which named entities are not
included in the dataset. Here “Jesus” is an entity mentioned in the text, but not depicted in the
painting, thus not part of the multimodal annotations of MELArt.

Step 4: Using Sequence Labeling Metrics to Measure MELArt Quality
In the last step, MELArt annotations are compared against the final version of the ground truth for
the sample of 100 paintings. Specifically, we compute precision, recall and F1 for the presence of
manually annotated mentions in the automatically generated annotations. To consider a mention
as a true positive, the left or right boundaries of the span must match, as well as the assigned
entity id.

Human Evaluation Results
The evaluation metrics for MELArt data against the manually curated ground truth focus on the
assessment of the dataset’s quality. We observed an F1-score of 0.79 with Precision being notably
high (0.90). This reflects the dataset’s high level of reliability in terms of correctly identifying
relevant items. The majority of false positives, correspond to mentions not considered as named
entities by the human annotators, but included by MELArt heuristics. An example is several
mentions to the entity “mother” (Q7560), which contains one label in uppercase. The recall score
(0.70), indicates the dataset’s comprehensive nature, encompassing a broad range of relevant items.
However, it also shows how automatically matching the labels of Wikidata to natural language
does not cover all possible surface forms. This was also observed during the annotation process,
in which multiple entities were identified as missing. One of the most common patterns missed by
our automatic annotation approach are mentions only containing the first name, last name, or
portions of the entity name. For example, the entity Frida Kahlo is mentioned in certain cases as

A. Sierra-Múnera, L. Le, G. Demartini, and R. Krestel 8:11

contextual visual
Sentence type

2

4

6

8

10

12
Nu

m
be

r o
f m

en
tio

ns

(a) Number of mentions per sentence.

contextual visual
Sentence type

0

20

40

60

80

100

Nu
m

be
r o

f w
or

ds

(b) Number of words per sentence.

Figure 4 Complexity of sentences per sentence type.

Frida, which, given the context, can be identified by a human annotator as being the artist, but
may be missed by the automatic processes we used to generate MELArt. On the other hand, we
believe that the annotations contained in MELArt serve the purpose of training and evaluating
next-generation approaches for the multimodal entity linking task in the art domain, given its high
precision. It is also important to note that the traditional NEL task starts with a set of pre-defined
mentions, so NEL-specific models are not directly affected by missing mentions. Ideally, more
mentions could be included in the dataset, including pronominal mentions, increasing the difficulty
of the linking task. However, imprecise while exhaustive annotations would hinder the evaluation
benchmarking potential of the dataset.

In general, the reported metrics suggest that the automatically generated dataset is of high
quality, offering a reliable and accurate basis for the training of multimodal NEL models.

The published version of MELArt, used for training and evaluation, includes the manual
curated ground truth as the test portion of the dataset, and all the paintings not included in the
manual evaluation are part of the training or validation portions of the dataset. The division
between training and validation portions is based on a random 80:20 split.

4.2 Resulting Dataset: Statistics and Analysis
In total, MELArt covers 1,616 artworks split in training (1,188), validation (328) and test (100)
sets.

The dataset resulting from the process described above was constructed from 7,170 visual and
14,526 contextual sentences from Artpedia, contrasted with the matching of 2,118 visual and 2,716
contextual sentences in MELArt. The reduction in number of sentences is due to many sentences
not directly mentioning the depicted entities (e.g., “The couple had been married for only a brief
period”). The numbers also show a slightly stronger representation of visual sentences (44%) in
MELArt as compared to Artpedia (33%). This is expected given that depicted entities are more
likely to be mentioned in visual than contextual sentences.

The final MELArt statistics after introducing the manual annotations are:
Number of mentions: 6,585
The training, validation, and test splits correspond to: 4,632, 1,308, and 645 mentions
respectively.
2,916 mentions are associated to visual sentences and 3,669 to contextual sentences.

TGDK

8:12 MELArt: A Multimodal Entity Linking Dataset for Art

In Figure 4, we can see that although there are especially long contextual sentences, the trend
in terms of number of mentions and number of words per sentence remains similar among visual
and contextual sentences.

test train val
Split

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Nu
m

be
r o

f s
en

te
nc

es
 p

er
 p

ai
nt

in
g

Figure 5 Number of sentences per artwork by dataset split.

Considering the split of the dataset, we can see in Figure 5 that in terms of number of sentences
for each artwork, the automatically annotated training and validation sets show similar trends.
The manually annotated test set, however, has slightly more annotated sentences per artwork.
This can be interpreted as a result of the lower recall of the automatic annotations, resulting in
less mentions per artwork in the automatic annotations as compared to the manually annotated
test set. When training a model with MELArt, this does not impose a problem in terms of the
format of the training and validation data points, but raises an interesting challenge about linking
potentially unseen surface forms that can be found in the test set.

1300 1400 1500 1600 1700 1800 1900 2000
Year

0

10

20

30

40

50

60

70

80

Nu
m

be
r o

f a
rtw

or
ks

Figure 6 Artworks in MELArt by year of inception according to Wikidata.

A. Sierra-Múnera, L. Le, G. Demartini, and R. Krestel 8:13

In terms of the artworks in the dataset, we can leverage the information in Wikidata to
understand potential biases in the dataset sources and generated annotations. Figure 6 shows
a histogram representing the periods in which the included artworks were created5. We can see
three strongly represented periods: one covering the 15th and 16th centuries, one for the 17th
century, and lastly the 19th century.

0 20 40 60 80
Number of artworks

High Renaissance
Early Netherlandish painting

Venetian school
Italian Renaissance

Baroque
Early Renaissance

Dutch Golden Age painting
neoclassicism

mannerism
Pre-Raphaelite Brotherhood

academic art
Romanticism

Impressionism
German Renaissance

Realism
Northern Renaissance

surrealism
post-impressionism

realism
Hudson River school

M
ov

em
en

t

(a) Number of artworks per movement.

1 10 100 1000
Number of artworks (log)

religious art
portrait

genre art
landscape painting

mythological painting
history painting

nude
self-portrait

allegory
group portrait

cityscape
marine art

still life
equestrian portrait

animal art
figure painting
battle painting

religious painting
Veduta

interior view

Ge
nr

e

(b) Number of artworks per genre.

Figure 7 Top 20 most represented movements and genres in MELArt.

By observing the movements and genres in Figure 7, it is clear that the Renaissance is the
most common movement in the dataset, being also tightly related with the religious art genre.
The genres show a stronger skewness towards religious art and portrait, which might be a result of
focusing on named entities in MELArt. Analyzing the category distribution of Artpedia paintings
before and after matching with the Wikidata “Depicts” predicate, reveals interesting distribution
differences. In the Artpedia dataset, “religious art” (660 paintings), “portrait” (585), and “genre
art” (259) are the most popular genres, while in the MELArt dataset, the dominance of “religious
art” (571) and “portrait” (295) persists. Notably, “genre art” sees a significant drop from 259 to
121 in the matched dataset. Categories like “mythological painting” and “history painting” show
a smaller decrease in representation. The matched dataset also exhibits a drastic reduction in
categories like “landscape art” and “animal art”, highlighting a potential under-representation of
these genres in MELArt due to the lack of named entities depicted in them. This comparison
reveals a skew in MELArt’s representation of art, with a strong focus on religious and portrait
art, while other genres like “landscape art” being less prominently featured due to the scarcity
of named entities in them. This reflects possible biases and limited art genre diversity in both
Artpedia and MELArt.

In Figure 8 we analyze the origin of the artworks according to the artists, where it is clear that
the dataset is strongly skewed towards European art. Another clear bias in the dataset is related
to the gender of the artists: out of 468, 413 are male, 27 are female and 1 is a non-binary/queer
artist, according to gender information in Wikidata.

5 Making use of Wikidata’s inception date (P571).

TGDK

8:14 MELArt: A Multimodal Entity Linking Dataset for Art

0 20 40
Number of artworks

Titian
Rembrandt

Peter Paul Rubens
Caravaggio

Pietro Perugino
El Greco
Raphael

Giovanni Bellini
Vincent van Gogh
Diego Velázquez

Lorenzo Lotto
Andrea Mantegna

Jean-Auguste-Dominique Ingres
Jacques-Louis David

Pierre-Auguste Renoir
Anthony van Dyck

Sandro Botticelli
Antonio da Correggio

Albrecht Dürer
Édouard Manet

Ar
tis

t

(a) Number of artworks per artist.

0 100 200
Number of artworks

France
Republic of Venice

Unknown
Dutch Republic

United States of America
United Kingdom of Great Britain and Ireland

Spain
Spanish Netherlands
Holy Roman Empire
Republic of Florence

Italy
Kingdom of the Netherlands

Kingdom of Great Britain
Duchy of Milan

Crown of Castile
Southern Netherlands
Habsburg Netherlands

United Kingdom
Germany

Switzerland

Co
un

try

(b) Number of artworks per artist’s nationality.

Figure 8 Top 20 most represented artists and their nationalities in MELArt.

0 10 20 30 40 50 60
Frequency as a percentage of mentions

human (Q5)
mythical character (Q4271324)
legendary figure (Q13002315)

human whose existence is disputed (Q21070568)
human biblical figure (Q20643955)

deity (Q178885)
geographical feature (Q618123)

fictional character (Q95074)
geographic region (Q82794)

concept (Q151885)
Quranic character (Q18563360)

occurrence (Q1190554)
Roman deity (Q11688446)

mythological Greek character (Q22988604)
organization (Q43229)

human settlement (Q486972)
artistic theme (Q1406161)

administrative territorial entity (Q56061)
mythical creature (Q2239243)

property (Q937228)

Cl
as

s

51.5 %
37.0 %

27.2 %
27.1 %

25.8 %
13.6 %

10.0 %
8.1 %
7.9 %
7.4 %

6.4 %
5.3 %
5.2 %

4.6 %
4.5 %
4.4 %
4.1 %
4.0 %

3.2 %
3.1 %

Figure 9 Top 20 most represented classes in MELArt’s mentions.

We also illustrate statistics about the depicted subjects in the annotations in Figures 9 and 10.
We observe that although entities from different classes6 are mentioned in the sentences it is more
common to find humans and its subclasses than others, e.g., geographical features.

In terms of concrete entities, aligned with the genres seen in Figure 7, religious entities are
very prominent, with Mary (Q345) being the most frequently mentioned entity in the dataset.
We also see that the dataset is skewed towards a group of entities, having half of the mentions
linked to the most frequent five percent of the 1,306 mentioned entities, and eighty percent of the
mentions being covered by one third of all the entities.

All the artworks have an associated image in the dataset. Roughly half of the full candidate
set contain at least one image. In the subset of mentioned candidates more than 90% contain at
least one image.

6 We restrict our analysis to Wikidata classes directly related to the mentions.

A. Sierra-Múnera, L. Le, G. Demartini, and R. Krestel 8:15

1 10 100 1000
Number of mentions (log)

Mary (Q345)
Jesus (Q302)
man (Q8441)

Venus (Q47652)
Jerome (Q44248)

Christ Child (Q942467)
tree (Q10884)

Annunciation (Q154326)
Rembrandt (Q5598)

Catherine of Alexandria (Q179718)
Cupid (Q5011)

Napoleon (Q517)
dress (Q200539)

Saint Peter (Q33923)
John the Baptist (Q40662)

Dante Alighieri (Q1067)
David (Q41370)

John the Evangelist (Q328804)
Jupiter (Q4649)

Bacchus (Q645312)

En
tit

y

761
416

279
132

86
68
66
65
58
54
52
48
43
43
40
39
38
35
34
33

(a) Number of mentions by entity (Top 20).

0 10 20 30 40 50 60 70 80 90 100
Rank of entity as a percentage

0

10

20

30

40

50

60

70

80

90

100

Cu
m

ul
at

iv
e

m
en

tio
n

fre
qu

en
cy

 a
s a

 p
er

ce
nt

ag
e

(b) Skewness of the entity representation.

Figure 10 Sparsity of the entity mentions.

4.3 Evaluation of Entity Linking Baselines using MELArt
In this section, we present the evaluation of tree entity linking methods using the MELArt dataset.
To this end, each method ranks the candidates according to its specific scoring function, and we
leverage on common ranking evaluation metrics to compare them. The resulting scores are sorted
in descending order to compute Hits at k (H@k), Mean Reciprocal Rank (MRR), and Mean Rank
(MR). These metrics are computed as follows:

H@k = 1
N

∑
i

I(rank(i) < k) (1)

MRR = 1
N

∑
i

1
rank(i) (2)

MR = 1
N

∑
i

rank(i) (3)

The metric H@k reflects the presence of the correct entity within the top k entities ranked
by score. MRR denotes the average of the inverse of the rank of the correct entity, and MR
represents the average rank of the correct entity relative to all entities. Thus, higher values of
H@k and MRR correspond to better performance, whereas for MR, a lower value denotes superior
performance. The measured ranks are computed per mention, meaning that if a sentence has two
entities mentioned, each one is ranked independently.

In order to showcase the use of our dataset to evaluate multimodal entity linking method
effectiveness on art data, we tested one entity and relation linking tool for Wikidata and trained
and tested two state-of-the-art (SOTA) entity-linking methods using our MELArt dataset.

MIMIC (KDD-2023)
In this work [6], the authors introduce a novel framework, called MIMIC, to improve multimodal
entity linking which connects web content to a multimodal knowledge graph. Addressing the
limitations of previous methods in handling abbreviated texts and implicit visual cues, MIMIC
uses an input and feature encoding layers and three specialized interaction units: TGLU (Text-
based Global-Local Interaction Unit) for textual context, VDLU (Vision-based Dual Interaction

TGDK

8:16 MELArt: A Multimodal Entity Linking Dataset for Art

Unit) for visual cues, and CMFU (Cross-modal Fusion-based Interaction Unit) for cross-modal
fusion. This approach, validated on three benchmark datasets, significantly outperforms existing
models, showcasing its efficiency in extracting and integrating complex multimodal data. In our
experiments, we evaluate three configurations for MELArt using this model: “MIMIC” refers
to including the painting and candidate images when present for the multi-modal entity linking
tasks, “MIMIC (no cand. image)” excludes the candidate images and uses only the paintings, and
“MIMIC (no images)” where MIMIC only uses the textual information. The textual information
that describes the candidates is the concatenation of the main label, the entity description, and
its types. For instance, “Mary” (Q345) is described as the string “Mary. mother of Jesus. Types:
human biblical figure”.

For training the bi-encoder, the following hyperparameters were used:
Learning rate: 1e−5

CLIP model: openai/clip-vit-base-patch32
Batch size: 128
Maximum number of epochs: 20

BLINK (EMNLP-2020)

This work [16] introduces a new methodology for text-based entity linking, particularly targeting
zero-shot scenarios. This approach is notable for its ability to link text to entities in a knowledge
base without having seen these entities during the training phase. The authors propose a two stage
model. The first stage (bi-encoder) uses dense vector representations for entity retrieval, a method
that significantly enhances scalability and efficiency. The second stage (cross-encoder), uses the
top-k most similar entities discovered by the bi-encoder, and re-ranks them by jointly encoding the
sentence (context) and candidate text. This innovative approach offers a more effective solution
for zero-shot entity linking challenges, where traditional methods often struggle due to the lack of
prior training data on new entities. In our experiments, we train and evaluate the bi-encoder, and
use the best bi-encoder candidates to train a cross-encoder. It is important to note that there is
a risk of propagating errors from the bi-encoder to the cross-encoder, especially during training.
Thus, by using the best bi-encoder for training the cross-encoder we explore the upper bound of
BLINK’s performance using MELArt. We train the bi-encoder using bert-large-uncased, extracting
the top 30 candidates, and train the cross-encoder with those candidates using bert-base-uncased.
For reporting MR and MRR we assume a rank of 500 for entities that have not been found in the
top 30 candidates of a mention.

For training the bi-encoder the following hyperparameters were used
Learning rate: 3e−5

BERT model: bert-large-uncased
Batch size: 8
Maximum number of epochs: 10

For training the cross-encoder:
Learning rate: 2e−5

BERT model: bert-base-uncased
Batch size: 2
Maximum number of epochs: 5

A. Sierra-Múnera, L. Le, G. Demartini, and R. Krestel 8:17

FALCON 2.0 (CIKM-202O)
This tool presented in [8], and available through an API7, allows users to submit portions of text,
and it automatically recognizes and links entities to and relations in the Wikidata knowledge graph.
The authors propose to jointly recognize and link entities and relations. The recognition phase
is based on the concept of N-Gram tiling based on English morphological rules, and the linking
phase ranks triples of recognized entities and relations based on the background knowledge from
the knowledge graph. We acknowledge that FALCON does not necessarily solve the same task as
MIMIC and BLINK, due to its more complex task of both recognition and linking. Additionally,
FALCON does not use the candidate set of MELArt, but the whole set of Wikidata entities as
candidates, making the ranking exercise harder. However, in our evaluation experiments, we want
to include FALCON as an off-the-shelf alternative to specialized entity linking models.

Entity Linking Results

Table 2 Results of SOTA Entity Linking baselines on our dataset. The numbers enclosed by brackets
correspond to the standard devition for multiple runs.

Baselines H@1 H@3 H@5 H@10 H@20 MR MRR

BLINK (Bi-
encoder)

0.19
(±0.06)

0.37
(±0.1)

0.46
(±0.09)

0.58
(±0.08)

0.71
(±0.09)

128.51
(±41.02)

0.32
(±0.07)

BLINK (Cross-
encoder)

0.76
(±0.01)

0.82
(±0.01)

0.83
(±0.01)

0.84
(±0.01)

0.85
(±0.00)

76.25
(±0.1)

0.79
(±0.01)

MIMIC 0.37
(±0.01)

0.53
(±0.01)

0.61
(±0.01)

0.71
(±0.03)

0.86
(±0.04)

50.03
(±15.49)

0.48
(±0.01)

MIMIC (no
cand. image)

0.37
(±0.02)

0.54
(±0.01)

0.63
(±0.02)

0.73
(±0.01)

0.86
(±0.03)

56.14
(±17.72)

0.49
(±0.01)

MIMIC (no im-
ages)

0.36
(±0.02)

0.53
(±0.01)

0.62
(±0.01)

0.73
(±0.02)

0.84
(±0.03)

71.81
(±24.68)

0.48
(±0.01)

FALCON 2.0 0.09 0.13 0.16 0.16 0.19 403.95 0.12

By executing these SOTA entity linking methods on our new dataset, we aim to assess the
usefulness of MELArt for training these models, as well as understanding how challenging MELArt
is as a test dataset. In our work, BLINK [16] and MIMIC [6] are chosen as the SOTA baselines.
BLINK, a SOTA method for textual entity linking tasks, provides a rigorous standard against
the text-processing capabilities of new systems to be evaluated. MIMIC, a SOTA multimodal
entity linking, is employed alongside BLINK to test the integration and interpretation of both
textual and visual features in the entity linking task. Additionally, FALCON 2.0 [8], serves as
a text-based entity recognition and linking baseline. FALCON inference model is different from
specialized entity-linking models like MIMIC and BLINK because instead of being provided with
a mention intended to be linked, the input is only the raw text. FALCON recognizes the entities
and relations in the texts and ranks candidates for each recognized span. Thus, in our evaluation
we run FALCON with the test set of MELArt, and then for each mention in the evaluation set,
we match the surface form with the mention text. If the surface form of the recognized entity
overlaps with the text in MELArt’s mention, we evaluate the top k candidates of FALCON. We
only consider a hit, if the mention can be matched to the surface form of an entity span from

7 https://labs.tib.eu/falcon/falcon2/api-use

TGDK

https://labs.tib.eu/falcon/falcon2/api-use

8:18 MELArt: A Multimodal Entity Linking Dataset for Art

hit
s@

1
hit

s@
3

hit
s@

5

hit
s@

10

hit
s@

20
0.0

0.2

0.4

0.6

0.8

1.0

Hi
ts

@
k

MIMIC
MIMIC (no images)
MIMIC (no candidate image)
BLINK (Biencoder)
BLINK (Crossencoder)

Figure 11 Hits@K for different values of k in different runs.

FALCON. Given that not all mentions can be matched between FALCON and MELArt, and that
we only consider the first 50 ranked candidates from FALCON, similar to BLINK we assume a
rank of 500 when the ground truth could not be found in the first 50 results.

Based on Table 2, MIMIC and BLINK exhibit distinct performance characteristics as observed
across the various evaluation metrics considered. In all measures except H@20, BLINK (Cross-
encoder) outperforms the other baselines, suggesting that textual information remains the most
important feature to disambiguate between candidates. However, comparing BLINK and FALCON,
we observe that training and fine-tuning the model, which is the setup for BLINK experiments,
strongly improves the linking results. However, comparing BLINK and FALCON in absolute
numbers is not a fair comparison, given the fact that FALCON also performs the recognition
phase that can propagate errors to the linking phase. In fact, in our experiments, only 20% of the
MELArt mentions could be matched to FALCON recognized spans, thus hindering FALCON’s
measures in general. What is very clear, is that the cross-encoder training has a strong positive
impact on the distinct measures.

MIMIC is the only multi-modal baseline in our experiments, and from the three configurations
that we used for MIMIC, we observe that including images does not significantly improve per-
formance, suggesting that the difference in style between multiple representations of the same
entity confuses the computer vision components of the linking model.

Finally, observing Figure 11, where we compare the variance in results with different seeds
for each model, we note that the bi-encoder’s performance varies a lot depending on the initial
parameter values. In fact, with one of the seeds that we tested, we obtained results close to zero
for all measures, but we excluded that test from the compiled results. This variability of the
bi-encoder is a high risk for the cross-encoder model because it relies on the bi-encoder predictions
to perform the final re-ranking. Contrary to the bi-encoder, the BLINK cross-encoder has very
low variety for a fixed set of candidates.

A. Sierra-Múnera, L. Le, G. Demartini, and R. Krestel 8:19

MIMIC (1)
1. Adam. first man according to the
Abrahamic creation and religions
such as Judaism, Christianity, and
Islam. Types: human biblical figure,
mythical character, protoplast
(Q70899)

2. Adam. Wikimedia disambiguation
page. Types: Wikimedia disambiguation
page (Q71568)

3. Adam Adam. . Types: human
(Q94779082)

BLINK Cross-enc.(1)
1. Adam. first man according to the
Abrahamic creation and religions such
as Judaism, Christianity, and Islam.
Types: human biblical figure, mythical
character, protoplast (Q70899)

2. ildephonsus of toledo. scholar and
theologian. types : human (Q456069)

3. john adam. british colonial governor of
india (1779 - 1825). types : human
(Q441081)

Adam is shown scratching the right crown part of his
scalp.

Answer:

Adam (Q70899)

first man according to the Abrahamic creation and
religions such as Judaism, Christianity, and Islam
Types: human biblical figure, protoplast, mythical
character

FALCON (1)
1.Adam. first man according to the
Abrahamic creation and religions such
as Judaism, Christianity, and Islam.
Types: human biblical figure, mythical
character, protoplast (Q70899)

2. Adam Adam. . Types: human
(Q94779082)

3. Ádám. A novel by Zsigmond Justh. Types:
literary work (Q72078825)

BLINK Bi.enc. (8)
1. Adam Adam. . Types: human
(Q94779082)

2. Adam Baldwin. American actor. Types:
human (Q312161)

3. Adam (Adam Goodes). painting by Alan
Jones. Types: painting (Q104318681)

M
EL

A
rt

Figure 12 Top-ranked entities for the mention Adam. On top the ground truth as defined in the
manual annotations of MELArt, on the bottom the predictions and the ground truth rank in parentheses.

Qualitative Analysis

By exploring the top-ranked entities of MIMIC and BLINK (Cross-encoder) we identify some
challenges for NEL models. An example which most of the models, including FALCON, were able
to correctly link is seen in Figure 12. Here, except for BLINK (Bi-encoder), all models confidently
assigned Adam (Q70899) as the top-ranked entity.

Figure 13 shows a more challenging example. Both MIMIC and BLINK in their best versions,
failed to include the right answer in their top results. We can see from the predicted rankings in
fact that similar entities were chosen by the models. This example also shows the data quality
challenges present in sources like Wikidata where the same painting has two QID and MIMIC
accidentally detected the duplicate entity. Probably, the usage of the images by MIMIC resulted
in a high similarity between the two image files, even though they are not the same file.

In the example portrayed in Figure 14, BLINK predicts the ground truth on top of the ranking,
even without the visual information, but only using the textual information. MIMIC on the other
hand, ranked the ground truth very low. From the examples that we explored in this study, it is
noticeable that MIMIC tends to favor other artworks with similar subjects in the ranking. We can
also observe here some noise in the candidate set represented by Wikidata entity disambiguation
pages. Different from Figure 14, in Figure 15 MIMIC outperforms BLINK that does not even

TGDK

8:20 MELArt: A Multimodal Entity Linking Dataset for Art

MIMIC (124)
Maria Anna, Queen of Spain. painting by
Diego Velázquez and workshop. Types:
painting. (Q27981333)

Maria Anna of Spain. Wife of Holy
Roman Emperor Ferdinand III (1606-
1646). Types: human. (Q158662)

Maria Anna of Spain. print in the
National Gallery of Art (NGA 39748).
Types: print (Q65358630)

BLINK (>30)
Maria Anna of Spain. Wife of Holy Roman
Emperor Ferdinand III (1606-1646). Types:
human. (Q158662)

Infanta Maria of Spain. (1580-1583);
daughter of Philip II of Spain and Anna of
Austria. Types: human (Q3847598)

Anna. town in Valencia, Spain. Types:
municipality of the Valencian Community,
municipality of Spain (Q1824255)

Dona Mariana (known as Maria Anna) (b. 1634) was
the daughter of Emperor Ferdinand III and the
Infanta Maria Anna of Spain, and then nineteen
years old.

Answer:

Mariana of Austria (Q311469)
Queen consort of Spain (1634-1696)
Types: human

M
EL

A
rt

Figure 13 Top-ranked entities for the mention Maria Anna. On top the ground truth as defined in the
manual annotations of MELArt, on the bottom the predictions and the ground truth rank in parentheses.

MIMIC (475)
1. The Great St Bernard. painting by
Joseph Mallord William Turner. Types:
watercolor painting (Q18571394)

2. St. Bernard. Wikimedia
disambiguation page. Types: Wikimedia
disambiguation page (Q9340925)

3. St. Bernard. human settlement in
Nova Scotia, Canada. Types: human
settlement (Q7587291)

BLINK Cross-enc.(1)
1. Great St Bernard Pass. mountain pass
in the Western Alpes. Types: mountain
pass, border crossing (Q623424)

2. Bernard of Menthon. Priest and founder.
Types: human (Q736265)

3. Bernard of Clairvaux. Burgundian saint,
abbot and theologian (1090-1153). Types:
human (Q188411)

David's works also show Napoleon's journey
through the Great St. Bernard Pass, but there are
significant stylistic differences between the two
conceptions.

Answer:

Great St Bernard Pass (Q623424)

mountain pass in the Western Alpes
Types: mountain pass, border crossing

M
EL

A
rt

Figure 14 Top-ranked entities for the mention Great St. Bernard. On top the ground truth as defined
in the manual annotations of MELArt, on the bottom the predictions and the ground truth rank in
parentheses.

A. Sierra-Múnera, L. Le, G. Demartini, and R. Krestel 8:21

MIMIC (1)
1. Simon of Cyrene. human biblical
figure in Matthew 27:32, man who was
forced by the Romans to carry the
cross of Jesus. Types: human biblical
figure (Q328739)

2. Simon of Cyrene carries the cross.
fifth Station of the Cross. Types: statio
(Q114315626)

3. Order of Simon of Cyrene. . Types:
award (Q7100546)

BLINK Cross-enc.(>30)
1. Saint Catherine of Alexandria. sculpture by
David Zürn. Types: sculpture (Q124993845)

2. St Catherine of Alexandria. painting by
Bernhard Strigel. Types: painting (Q64789016)

3. Simon Simon. Swiss topographer (1857-1925).
Types: human (Q28082980)

Finally, at the top left is Simon of Cyrene, his face
upside upturned.

Answer:
Simon of Cyrene (Q328739)

human biblical figure in Matthew 27:32, man who
was forced by the Romans to carry the cross of
Jesus. Types: human biblical figure

M
EL

A
rt

Figure 15 Top-ranked entities for the mention Simon of Cyrene. On top the ground truth as defined
in the manual annotations of MELArt, on the bottom the predictions and the ground truth rank in
parentheses.

consider the ground truth in the top-30 candidates. This is a typical issue of error propagation
in models like BLINK in which a lighter model (Bi-encoder) first filters a set of candidates for a
stronger model to re-rank in the second stage.

5 Conclusion

In this paper, we have introduced a novel multimodal entity linking dataset, characterized by
its reliability and thorough evaluation tested over various entity linking baselines, both in a
multimodal and in a text-based setting. The dataset is automatically extracted from multiple
sources and supplemented with meticulous human annotations. The MELArt dataset, carefully
curated and rigorously tested, presents a novel resource that challenges traditional NEL approaches
and offers rich opportunities for advancing the field of entity linking in the art domain.

The results obtained from our experimental evaluation reveal that our dataset poses a significant
challenge to existing general-domain pretrained entity linking models, and that training and fine-
tuning models enhance their in-domain linking performance. This makes our dataset MELArt
a valuable asset for researchers and practitioners in this domain. The results also indicate that
there is room for improvement in the usage of images which are particularly important for the art
domain, and that specialized models might gain better performance.

References
1 Panos Achlioptas, Maks Ovsjanikov, Kilichbek

Haydarov, Mohamed Elhoseiny, and Leonidas J.
Guibas. Artemis: Affective language for visual
art. In IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2021, virtual,
June 19-25, 2021, pages 11569–11579. Computer
Vision Foundation / IEEE, 2021. doi:10.1109/
CVPR46437.2021.01140.

2 Omar Adjali, Romaric Besançon, Olivier Fer-
ret, Hervé Le Borgne, and Brigitte Grau. Mul-
timodal entity linking for tweets. In Advances
in Information Retrieval - 42nd European Con-
ference on IR Research, ECIR 2020, Lisbon,
Portugal, April 14-17, 2020, Proceedings, Part
I, volume 12035 of Lecture Notes in Computer

TGDK

https://doi.org/10.1109/CVPR46437.2021.01140
https://doi.org/10.1109/CVPR46437.2021.01140

8:22 MELArt: A Multimodal Entity Linking Dataset for Art

Science, pages 463–478. Springer, 2020. doi:
10.1007/978-3-030-45439-5_31.

3 Sofia Baroncini, Bruno Sartini, Marieke van
Erp, Francesca Tomasi, and Aldo Gangemi. Is
dc:subject enough? A landscape on iconography
and iconology statements of knowledge graphs
in the semantic web. Journal of Documenta-
tion, 79(7):115–136, March 2023. doi:10.1108/
JD-09-2022-0207.

4 Hannah Bast and Björn Buchhold. Qlever: A
query engine for efficient sparql+text search. In
Proceedings of the 2017 ACM on Conference on
Information and Knowledge Management, CIKM
2017, Singapore, November 06 - 10, 2017, CIKM
’17, pages 647–656, New York, NY, USA, 2017.
ACM. doi:10.1145/3132847.3132921.

5 Sabine Lang and Björn Ommer. Trans-
forming information into knowledge: How
computational methods reshape art history.
Digital Humanities Quaterly, 15(3), 2021.
URL: http://www.digitalhumanities.org/dhq/
vol/15/3/000560/000560.html.

6 Pengfei Luo, Tong Xu, Shiwei Wu, Chen Zhu,
Linli Xu, and Enhong Chen. Multi-grained mul-
timodal interaction network for entity linking.
In Proceedings of the 29th ACM SIGKDD Con-
ference on Knowledge Discovery and Data Min-
ing, KDD 2023, Long Beach, CA, USA, Au-
gust 6-10, 2023, pages 1583–1594. ACM, 2023.
doi:10.1145/3580305.3599439.

7 Roberto Pirrone, Vincenzo Cannella, Orazio
Gambino, Arianna Pipitone, and Giuseppe Russo.
Wikiart: An ontology-based information retrieval
system for arts. In Ninth International Conference
on Intelligent Systems Design and Applications,
ISDA 2009, Pisa, Italy , November 30-December
2, 2009, pages 913–918. IEEE Computer Society,
2009. doi:10.1109/ISDA.2009.219.

8 Ahmad Sakor, Kuldeep Singh, Anery Patel, and
Maria-Esther Vidal. Falcon 2.0: An entity and
relation linking tool over wikidata. In CIKM ’20:
The 29th ACM International Conference on In-
formation and Knowledge Management, Virtual
Event, Ireland, October 19-23, 2020, CIKM ’20,
pages 3141–3148, New York, NY, USA, 2020. ACM.
doi:10.1145/3340531.3412777.

9 Bruno Sartini. IICONGRAPH: improved icon-
ographic and iconological statements in know-
ledge graphs. In The Semantic Web - 21st In-
ternational Conference, ESWC 2024, Hersonis-
sos, Crete, Greece, May 26-30, 2024, Proceedings,
Part II, volume 14665 of Lecture Notes in Com-
puter Science, pages 57–74, Cham, 2024. Springer.
doi:10.1007/978-3-031-60635-9_4.

10 Alejandro Sierra-Múnera, Linh Le, Gianluca De-
martini, and Ralf Krestel. MELArt Dataset.
Dataset (visited on 2024-12-10). URL: https:
//doi.org/10.48610/8a1ccdf.

11 Alejandro Sierra-Múnera, Linh Le, Gianluca De-
martini, and Ralf Krestel. MELArt Dataset Gen-
eration. Software, swhId: swh:1:dir:ec4380448f
4087c011040d0e3dca7832baa11182 (visited
on 2024-12-10). URL: https://github.
com/HPI-Information-Systems/MELArt,
doi:10.4230/artifacts.22529.

12 Alejandro Sierra-Múnera, Linh Le, Gianluca
Demartini, and Ralf Krestel. MELArt Experi-
ments. Software, swhId: swh:1:dir:203f2a69c
5bc9064db3873a0160ca52f62095c25 (visited
on 2024-12-10). URL: https://github.com/
HPI-Information-Systems/MELArt_experiments,
doi:10.4230/artifacts.22616.

13 Matteo Stefanini, Marcella Cornia, Lorenzo
Baraldi, Massimiliano Corsini, and Rita Cuc-
chiara. Artpedia: A new visual-semantic data-
set with visual and contextual sentences in the
artistic domain. In Image Analysis and Pro-
cessing - ICIAP 2019 - 20th International Con-
ference, Trento, Italy, September 9-13, 2019, Pro-
ceedings, Part II, volume 11752 of Lecture Notes in
Computer Science, pages 729–740. Springer, 2019.
doi:10.1007/978-3-030-30645-8_66.

14 Peng Wang, Jiangheng Wu, and Xiaohang Chen.
Multimodal entity linking with gated hierarchical
fusion and contrastive training. In SIGIR ’22: The
45th International ACM SIGIR Conference on Re-
search and Development in Information Retrieval,
Madrid, Spain, July 11 - 15, 2022, pages 938–948.
ACM, 2022. doi:10.1145/3477495.3531867.

15 Xuwu Wang, Junfeng Tian, Min Gui, Zhixu Li,
Rui Wang, Ming Yan, Lihan Chen, and Yanghua
Xiao. Wikidiverse: A multimodal entity linking
dataset with diversified contextual topics and en-
tity types. In Proceedings of the 60th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), ACL 2022,
Dublin, Ireland, May 22-27, 2022, pages 4785–
4797. Association for Computational Linguistics,
2022. doi:10.18653/v1/2022.acl-long.328.

16 Ledell Wu, Fabio Petroni, Martin Josifoski, Se-
bastian Riedel, and Luke Zettlemoyer. Scal-
able zero-shot entity linking with dense entity re-
trieval. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Pro-
cessing, EMNLP 2020, Online, November 16-20,
2020, pages 6397–6407. Association for Computa-
tional Linguistics, 2020. doi:10.18653/v1/2020.
emnlp-main.519.

17 Nikolaos-Antonios Ypsilantis, Noa Garcia, Guangx-
ing Han, Sarah Ibrahimi, Nanne van Noord, and
Giorgos Tolias. The met dataset: Instance-level
recognition for artworks. In Proceedings of the
Neural Information Processing Systems Track on
Datasets and Benchmarks 1, NeurIPS Datasets
and Benchmarks 2021, December 2021, virtual,
2021. URL: http://cmp.felk.cvut.cz/met/.

https://doi.org/10.1007/978-3-030-45439-5_31
https://doi.org/10.1007/978-3-030-45439-5_31
https://doi.org/10.1108/JD-09-2022-0207
https://doi.org/10.1108/JD-09-2022-0207
https://doi.org/10.1145/3132847.3132921
http://www.digitalhumanities.org/dhq/vol/15/3/000560/000560.html
http://www.digitalhumanities.org/dhq/vol/15/3/000560/000560.html
https://doi.org/10.1145/3580305.3599439
https://doi.org/10.1109/ISDA.2009.219
https://doi.org/10.1145/3340531.3412777
https://doi.org/10.1007/978-3-031-60635-9_4
https://doi.org/10.48610/8a1ccdf
https://doi.org/10.48610/8a1ccdf
https://archive.softwareheritage.org/swh:1:dir:ec4380448f4087c011040d0e3dca7832baa11182;origin=https://github.com/HPI-Information-Systems/MELArt;visit=swh:1:snp:9b0a0c452561dcdc103f9ed0a9f04c47b9d44e9d;anchor=swh:1:rev:87d105610ce56b43f713e71996aab2d4870cdbc3
https://archive.softwareheritage.org/swh:1:dir:ec4380448f4087c011040d0e3dca7832baa11182;origin=https://github.com/HPI-Information-Systems/MELArt;visit=swh:1:snp:9b0a0c452561dcdc103f9ed0a9f04c47b9d44e9d;anchor=swh:1:rev:87d105610ce56b43f713e71996aab2d4870cdbc3
https://github.com/HPI-Information-Systems/MELArt
https://github.com/HPI-Information-Systems/MELArt
https://doi.org/10.4230/artifacts.22529
https://archive.softwareheritage.org/swh:1:dir:203f2a69c5bc9064db3873a0160ca52f62095c25;origin=https://github.com/HPI-Information-Systems/MELArt_experiments;visit=swh:1:snp:18220ea00d0e05c5cc15921eb46ad2ec7b7cadaa;anchor=swh:1:rev:2a727327612af583acb11103aa1291bec66a6749
https://archive.softwareheritage.org/swh:1:dir:203f2a69c5bc9064db3873a0160ca52f62095c25;origin=https://github.com/HPI-Information-Systems/MELArt_experiments;visit=swh:1:snp:18220ea00d0e05c5cc15921eb46ad2ec7b7cadaa;anchor=swh:1:rev:2a727327612af583acb11103aa1291bec66a6749
https://github.com/HPI-Information-Systems/MELArt_experiments
https://github.com/HPI-Information-Systems/MELArt_experiments
https://doi.org/10.4230/artifacts.22616
https://doi.org/10.1007/978-3-030-30645-8_66
https://doi.org/10.1145/3477495.3531867
https://doi.org/10.18653/v1/2022.acl-long.328
https://doi.org/10.18653/v1/2020.emnlp-main.519
https://doi.org/10.18653/v1/2020.emnlp-main.519
http://cmp.felk.cvut.cz/met/

Horned-OWL: Flying Further and Faster with
Ontologies
Phillip Lord #

School of Computing, Newcastle University,
United Kingdom

Björn Gehrke #

Institute for Implementation Science in Health Care,
Faculty of Medicine, University of Zurich,
Switzerland

Martin Larralde #

Leiden University Medical Center,
The Netherlands
Structural and Computational Biology Unit,
EMBL, Heidelberg, Germany

Janna Hastings
Institute for Implementation Science in Health Care,
Faculty of Medicine, University of Zurich,
Switzerland
School of Medicine, University of St. Gallen,
Switzerland
Swiss Institute of Bioinformatics, Switzerland

Filippo De Bortoli #

TU Dresden, Germany
Center for Scalable Data Analytics and Artificial
Intelligence (ScaDS.AI), Dresden/Leipzig, Germany

James A. Overton #

Knocean Inc., Toronto, Canada

James P. Balhoff
Renaissance Computing Institute,
University of North Carolina, Chapel Hill, NC, USA

Jennifer Warrender #

School of Computing, Newcastle University,
United Kingdom

Abstract
Horned-OWL is a library implementing the OWL2
specification in the Rust language. As a library,
it is aimed at processes and manipulation of onto-
logies, rather than supporting GUI development;
this is reflected heavily in its design, which is for
performance and pluggability; it builds on the Rust
idiom, treating an ontology as a standard Rust
collection, meaning it can take direct advantage
of the data manipulation capabilities of the Rust
standard library. The core library consists of a
data model implementation as well as an IO frame-
work supporting many common formats for OWL:
RDF, XML and the OWL functional syntax; there

is an extensive test library to ensure compliance to
the specification. In addition to the core library,
Horned-OWL now supports a growing ecosystem:
the py-horned-owl library provides a Python front-
end for Horned-OWL, ideal for scripting ontology
manipulation; whelk-rs provides reasoning services;
and horned-bin provides a number of command line
tools.

The library itself is now mature, supporting the
entire OWL2 specification, in addition to SWRL
rules, and the ecosystem is emerging into one of the
most extensive for manipulation of OWL ontologies.

2012 ACM Subject Classification Applied computing → Life and medical sciences; Software and its
engineering → Software libraries and repositories; Information systems → Web Ontology Language
(OWL)
Keywords and phrases Web Ontology Language, OWL, Semantic Web
Digital Object Identifier 10.4230/TGDK.2.2.9
Category Resource Paper
Supplementary Material Version 1.0.0 of the source code for Horned-OWL was used for the performance
results. Version 1.0.1 of the source code for py-horned-owl were used for the performance results.
Software (Source Code): https://github.com/phillord/horned-owl [12]
Software (Documentation): https://docs.rs/horned-owl/1.0.0/horned_owl/ [10]
Software (Source Code): https://github.com/ontology-tools/py-horned-owl
Software (Source Code): https://github.com/INCATools/whelk-rs

© Phillip Lord, Björn Gehrke, Martin Larralde, Janna Hastings, Filippo De Bortoli, James A. Overton,
James P. Balhoff, and Jennifer Warrender;
licensed under Creative Commons License CC-BY 4.0

Transactions on Graph Data and Knowledge, Vol. 2, Issue 2, Article No. 9, pp. 9:1–9:14
Transactions on Graph Data and Knowledge

T G D K Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:phillip.lord@newcastle.ac.uk
https://orcid.org/0000-0002-4699-6769
mailto:bjoern.gehrke@uzh.ch
https://orcid.org/0009-0007-7488-0257
mailto:martin.larralde@embl.de
https://orcid.org/0000-0002-3947-4444
https://orcid.org/0000-0002-3469-4923
mailto:filippo.de_bortoli@tu-dresden.de
https://orcid.org/0000-0002-8623-6465
mailto:james@overton.ca
https://orcid.org/0000-0001-5139-5557
https://orcid.org/0000-0002-8688-6599
mailto:jennifer.warrender@newcastle.ac.uk
https://orcid.org/0000-0003-1033-2431
https://doi.org/10.4230/TGDK.2.2.9
https://github.com/phillord/horned-owl
https://docs.rs/horned-owl/1.0.0/horned_owl/
https://github.com/ontology-tools/py-horned-owl
https://github.com/INCATools/whelk-rs
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/tgdk
https://www.dagstuhl.de/tgdk
https://www.dagstuhl.de

9:2 Horned-OWL: Flying Further and Faster with Ontologies

Funding Björn Gehrke: Funded by the Wellcome Trust in the GALENOS project.
Filippo De Bortoli: Supported by the German Federal Ministry of Education and Research (BMBF,
SCADS22B) and the Saxon State Ministry for Science, Culture and Tourism (SMWK) by funding the
competence center for Big Data and AI “ScaDS.AI Dresden/Leipzig”.
Acknowledgements During the course of this work Ignazio Palmisano provided extensive help supporting
our understanding of the OWL2 specification, and how the OWL API implemented it. We are very
grateful; Horned-OWL would not have been possible without him.
Received 2024-06-27 Accepted 2024-11-19 Published 2024-12-18
Editors Aidan Hogan, Ian Horrocks, Andreas Hotho, Lalana Kagal, and Uli Sattler
Special Issue Resources for Graph Data and Knowledge

1 Introduction

The Web Ontology Language (OWL) has been in existence since 2003, moving to OWL2 in
2009 [5, 4]. It provides a specification for developing ontologies, which provides computationally
amenable, logical descriptions of the world. These ontologies are applicable to any domain of
knowledge, but have become embedded in biomedicine in particular, where ontologies have got
both large individually (in biology, the widely used Gene Ontology - GO [14] - contains ∼ 50,000
terms, while in the medical domain SNOMED CT contains roughly 300,000 terms), and spread over
an enormous range of biological domains, with the BioPortal [13] containing over 1000 ontologies,
containing 14 million terms.

OWL consists of a set of different specifications that describe a data model, a formal semantics
that can be used to determine computational entailment, and a number of different syntaxes for
serialization, including a mapping to RDF which enables OWL to play its part in the semantic
web.

The majority of the current infrastructure for OWL is built using Java; at the time of the
inception of OWL, Java was in its prime, and was one of the most common languages in scientific
computing. As a result, much of the infrastructure for OWL is implemented in Java, including
the OWL API [6] and Apache Jena.

The use of Java brings with it a number of issues. While it is possible to write fast Java,
neither the language nor the standard idioms for its use are designed for performance; for example,
while the Gene Ontology is large in ontological terms it is only 50,000 terms and 500,000 axioms
or when serialized as RDF 5,000,000 triples; in computational terms this is not large, but using
the OWL API, GO can still take minutes to read into memory. Second, Java is less and less widely
used in scientific computing having been largely displaced by Python; this limits Java’s practical
utility, especially within Jupyter notebooks which have become a major tool for reproducible
science. Finally, Java poorly integrates with machine learning and AI tooling which again is
mainly implemented in Python, which limits the ease with which knowledge-rich OWL ontologies
can be used with or by this massive growth area in computing.

In this paper, we introduce and describe Horned-OWL, a novel library that provides a Rust API
to process OWL ontologies. Compared to the OWL API [6], this library is aimed at scalability
and performance; analytical capabilities, rather than GUI development; and interoperability with
Python.

Currently, Horned-OWL implements the core OWL data model, which we discuss in detail
in Section 2.2, a pluggable system for indexing which is the focus of Section 2.3 and support
for (de)serialization in RDF/XML as well as some other formats detailed by the W3C standard,
detailed in Section 2.4.

Aside from the library, Horned-OWL provides a suite of tools to operate with ontologies akin
to ROBOT [7] that showcase the usage of the library itself. This suite, named horned-bin, is
presented in Section 3, where we additionally describe existing tools that rely on the library, such

P. Lord et al. 9:3

as the whelk-rs reasoner (Section 3.2) and the py-horned-owl interface (Section 3.3). An evaluation
of the performance of the library appears in Section 4 and shows that Horned-OWL substantially
outperforms the OWL API particularly in memory usage.

2 Horned-OWL

2.1 Background on OWL2
We start with a brief discussion of the OWL2 specification; an overview is available directly from
W3C [5] which we summarize here.

OWL2 is part of the Semantic Web stack which, as the name suggests, brings explicit semantics,
while integrating with the Web. It is widely used as a language for the representation of ontologies,
which are models of a domain shared between a community of users. In OWL2, the explicit
semantics comes from an underlying description logic, which itself maps to first order logic; the
link to the web comes from an alignment with the syntax and semantics of RDF/S which is the
semantic web representation of a knowledge graph, the use of XML Schema datatypes and IRIs as
its primary identifier.

Although at heart, OWL2 simply describes a set of individuals and the relationships between
them, it is fairly complex: it has six different types of named entity and 37 different types of
axiom. This complexity is such that OWL also supports profiles; simpler subsets with different
computational properties. As well as this semantics, OWL2 has three different syntaxes, plus
a mapping to RDF which itself has at least five different syntaxes in common use. On top of
this, we also have SWRL, which, although not strictly part of OWL2, is sometimes used in OWL
ontologies.

It is this complexity which makes OWL2 rather challenging to implement; it was a design aim
to support all of OWL2 (including SWRL), however, because we wanted it to operate over the
many biological ontologies that already exist; this is also a complex ecosystem and most of the
parts of OWL2 are used somewhere in that ecosystem.

2.2 Design
The core of Horned-OWL is the model namespace. As the name suggests, this implements the
core data model of OWL. As a part of the semantic web, OWL is built largely on top of the IRI
(Internationalized Resource Identifiers). This is defined in Horned-OWL simply as follows:

1 pub struct IRI<A>(pub (crate) A);

The type A is generic and could be any type; we will cover the reason for introducing this
genericity in a later section describing the Python implementation. While the type of A is not
constrained on the IRI struct, in practice the vast majority of methods in Horned-OWL do constrain
it to the ForIRI trait, which allows using the contents as a string. This design pattern of types
unconstrained on struct, but constraints on methods is common in Rust and considered best
practice. In practice, the most common type of A is Rc<str> which is a reference counted pointer,
meaning that multiple instances of the same IRI do not each instantiate their own string.

1 impl<T: ?Sized> ForIRI for T where
2 T: AsRef<str>
3 + Borrow<str>
4 // Other traits omitted for length
5 {
6 }

TGDK

9:4 Horned-OWL: Flying Further and Faster with Ontologies

The generation of new IRI instances is handled by a single entity, called Build. This also
handles the generation of AnonymousIndividual instances which, by definition, do not have IRI
identifiers. The Build object allows caching and sharing of IRI and, in addition, operates as an
“Arena” object, meaning that all IRI instances in an ontology will share the same lifetime.

1 pub struct Build<A: ForIRI>(g
2 RefCell<BTreeSet<IRI<A>>>,
3 RefCell<BTreeSet<AnonymousIndividual<A>>>,
4);

While OWL uses IRIs to identify most entities, in Horned-OWL, we use a struct for all OWL
named entities; this is known as the newtype pattern in Rust and adds type safety to most of
the methods in Horned-OWL; it is not possible to pass an IRI identifying a class to a function
requiring an object property, for instance. The Class struct is defined as follows:

1 pub struct Class<A>(IRI<A>)

An OWL ontology consists of a number of components; in Horned-OWL these are all modelled
as a single large enum. This enum includes all OWL axioms, the ontology IRI and version IRI;
and, although not strictly part of OWL, we also support SWRL rules through this mechanism.
This varies slightly from the formal definition of OWL; the main advantage of this approach is
described later.

Any component in OWL can also support a set of annotations which we support through the
use of the following struct:

1 pub struct AnnotatedComponent<A> {
2 pub component: Component<A>,
3 pub ann: BTreeSet<Annotation<A>>,
4 }

Ontology components themselves have individual representations. For example, a
DeclareClass axiom is defined using a “tuple struct” as follows:

1 pub struct DeclareClass<A>(Class<A>)

Conversely, the SubClassOf axiom uses named fields, trading concision for readability.

1 pub struct SubClassOf<A> {
2 sup: ClassExpression<A>,
3 sub: ClassExpression<A>
4 }

The complexity of OWL is such that Horned-OWL uses a system of rules to determine naming,
with as much consistency as possible, to ensure that in use it maintains the principle of least
surprise; it should be possible to guess most field names for anyone familiar with OWL.

An ontology itself is represented by an empty “tagging” trait in Horned-OWL as follows:

1 pub trait Ontology<A> {
2 }

This seems rather perverse given that Horned-OWL is an API for ontologies, but the reason
is because an OWL ontology is treated as a set of components; the ontology needs no methods
because all information about that Ontology object is available from one of its components. In

P. Lord et al. 9:5

practice, every type that implements Ontology also supports conversion to a Rust Iterator; this
means that Ontology is simply a specialisation of a Rust collection1.

In addition, a MutableOntology type has been defined which provides a generic mechanism
for adding and removing entities from an ontology.

2.3 Indexing
To make practical use of the ontology as a collection that Horned-OWL implements, we need
to support one or more indexes – mechanisms for efficient look up and querying of ontology
components. Horned-OWL does not take the route of providing sensible defaults for its “standard”
ontology implementation. Instead, it enables a series of indexes which can be plugged in; this
ensures that in use we pay only for the cost of indexes that we need to use.

Currently, Horned-OWL provides data structures for ontologies with four or less indexes; there
is no fundamental limitation here, and higher numbers would be possible. Within Horned-OWL
itself, three indexes are the most that are used at one time, for the RDF reader.

The simplest ontology index is the SetIndex with associated SetOntology. This simply stores
all ontology components in a memory-backed set. It is useful on its own, but also in conjunction
with other indexes, because it guarantees to record all components added to it. However, access
to components of the ontology requires iteration.

Perhaps the most useful index is the ComponentMappedOntology; this allows rapid access to
ontology components based on their type. For example, the following code, which is a unit test,
shows how to access to all the DeclareClass axioms. As with the SetOntology, this also stores
all components added to it.

1 let mut o = ComponentMappedOntology::new_rc();
2 let b = Build::new_rc();
3 o.declare(b.class("http://www.example.com/a"));
4 assert_eq!(o.i().declare_class().count(), 1);

Other ontology index types include:

Declaration Mapped: Look up the type of a named entity given an IRI
IRI Mapped: Look up components containing a given IRI
Logically Mapped: Look up components logically equal (i.e. ignoring annotations) to an existing

component

The importance of these ontology indexes cannot be overstated. For instance, the RDF reader
constructs and returns an RDFOntology which uses a SetIndex, DeclarationMappedIndex and
a LogicallyMappedIndex. This is critical because RDF parsing requires regularly looking up
triples that have been already parsed to understand and decode later triples; in particular, it must
understand the declared type of many IRIs. Without use of the DeclarationMappedIndex this
requires a full iteration of the ontology for each lookup which, in practice, means the RDF parser
would operate in cubic or worse time. This would result in catastrophically poor performance; our
first naive implementation of RDF parsing took well over an hour to parse the Gene Ontology for
example. The equivalent XML parser does not need these indexes as the type of an IRI is always
given at point of use; the plugging indexing system means, that is does not have to pay the cost
of building them.

1 Restrictions in its type system means that it was not possible to represent this notion directly in Rust. The
recent addition of “Generic Associated Types” may make this representation possible; however, GATs are
currently quite limited and their availability came well after Horned-OWL was developed.

TGDK

9:6 Horned-OWL: Flying Further and Faster with Ontologies

2.4 Input/Output Framework
In its current version, Horned-OWL supports several different syntaxes of OWL: the OWL/XML
syntax defined by part of the OWL 2 specification 2, the OWL/RDF syntax and the OWL
functional syntax. The io module contains a submodule for each syntax, which in turn consists of
a reader and a writer module. Each of these different formats has some idiosyncrasies.

We first offered support for the OWL/XML syntax, as it was relatively straightforward to
implement. The reader works on a single file at a time and returns both an ontology (currently, a
SetOntology) and a PrefixMapping supplying the IRI prefixes. In this case, both the reader and
writer heavily rely on the quick-xml crate.

Supporting the OWL/RDF syntax is rather more complex. One of the main challenges is
that, to correctly parse an ontology written using this syntax, we must also recursively parse all
the imported RDF graphs to determine the kind of entity associated to an IRI, which may be
declared in one of the imported graphs or later in the ontology that is currently being parsed. In
contrast for OWL/XML this is not needed, as the type of each IRI is given at the point of use.
For this reason, the OWL/RDF reader, which reads a single ontology, comes with a companion
closure_reader which attempts to parse the full import closure. This has been optimised so
that the closure_reader only parses those parts of the ontology that are absolutely necessary –
imported ontologies are only parsed until all the IRIs encountered previously are associated to a
declared entity.

Another issue is that no ordering of the triples in the RDF graph is guaranteed, and so the
parser may have to traverse the list of RDF triples multiple times; in some more perverse cases,
this could result in poor performance; for example, an RDF list where the triples appear from the
last item to the first would parse in quadratic time; in practice, all the ontologies we have found
in RDF use a first to last appearance which parses in linear time. As was noted in Section 2.3,
Horned-OWL indexes are used to avoid other cases which would result in quadratic or worse
performance. The reader, therefore, returns a highly indexed ontology type. To read RDF triples,
the reader relies on the rio crate.

The OWL/RDF writer in Horned-OWL uses the pretty_rdf crate, which was implemented
specifically to support Horned-OWL. The rio crate, which is used in the reader, is focused on
serialisation of RDF as a set of triples; pretty_rdf, conversely, supports many of the RDF shorthand
syntaxes, something that the OWL API also supports. This makes the RDF output more readable
and concise, at the cost of increased time and complexity in serialisation.

Support for the OWL functional syntax is a recent addition to Horned-OWL; this uses the
Pest crate to generate the parser from a parsing expression grammar. The writer is implemented
through a Rust trait and supports writing most types of the horned-owl crate without copying
data or requiring a dedicated writer type.

Although not yet complete, we plan to fully support the Manchester syntax for ontologies,
which will bring Horned-OWL into parity with the OWL API in terms of the syntaxes it supports 3.

Furthermore, the fact that rio supports other RDF syntaxes such as N3 and Turtle means that
Horned-OWL could be further expanded to offer readers for these formats; with a little more effort,
we could also support writing in these formats as pretty_rdf uses a data model very similar to rio,
and rio can write to these syntaxes. However, we lack a good use case for doing this work. One
current limitation, however, is that Rio does not return an IRI prefix mapping for RDF which
makes roundtripping hard.

2 https://www.w3.org/TR/owl2-xml-serialization/
3 We remain a little conflicted as to whether this is a good thing; while each of the syntaxes have their advantages,

it is not so clear why so many syntaxes are needed

https://github.com/tafia/quick-xml/
https://github.com/oxigraph/rio
https://github.com/phillord/pretty_rdf
https://pest.rs/
https://www.w3.org/TR/owl2-xml-serialization/

P. Lord et al. 9:7

3 Ecosystem

3.1 Command Line
As well as providing a library, Horned-OWL provides an increasing number of command line tools.
These support a git-style subcommand command line and provide tools for operating on OWL
files in batch. For the current release, these tools are rather biased toward the sort of functionality
needed for debugging Horned-OWL, but we expect these to expand into a full suite for OWL
manipulation in batch in due course. Currently available tools include:
horned-big: Generates OWL files of arbitrary size, useful for performance testing
horned-compare: Compares the statistics of two ontologies
horned-materialize: Downloads the OWL import closure
horned-parse: Parses an OWL file for errors only
horned-summary: Provides summary statistics of an ontology

3.2 Reasoning interface and whelk-rs
Horned-OWL includes a preliminary reasoner interface defining functions for classifying ontologies,
checking entailments and consistency, and retrieving inferred superclasses and subclasses. This
interface is implemented by whelk-rs, a port to Rust of the Whelk reasoner, which targets the Java
OWL API, which is an adaptation of the reasoning rules defined by Kazakov et al. [8]. whelk-rs
supports the OWL EL profile, a subset of the OWL language targeted to scalable reasoning on
large, structured terminologies such as biomedical ontologies. Initial testing suggests that whelk-rs
is approximately twice as fast as the original Scala-based Whelk reasoner. Our expectation is that
performance will improve further with plans to adopt a more idiomatic Rust coding style in the
future.

3.3 Python bindings and py-horned-owl
One of the shortcomings of Rust is its learning curve, which is notoriously steeper than that of
many other programming languages. In particular, the ownership and borrowing mechanisms
of Rust and the fact that it is strongly typed result in this language being not very well suited
for prototyping and short development cycles. On the other hand, a language like Python is
rather easy to use and widely employed in many industrial and research areas, including scientific
computing; however, it tends to be rather slow, especially for highly computational tasks.

The goal of the py-horned-owl4 library is to make the power and functionality of Horned-OWL
available to Python programmers. In this, we are following a frequent design pattern, used by
libraries such as NumPy or SciPy, implementing a front-end for most use in Python with a backend
written in a more performant native language (C, C++ or Fortran in the case of NumPy and
SciPy).

Under the hood, py-horned-owl uses the PyO3 bindings to map the data structures, enums
and functions defined in Horned-OWL to Python classes, union types and methods. This allows
for the creation and manipulation of ontology components within the Python environment,
similarly to what is done in Horned-OWL for Rust. For example, py-horned-owl provides the
PyIndexedOntology class, representing an ontology with helper methods to query its components
based on one or more indexes. One of these indexes is IRIMappedIndex, which allows quick access
to components by their IRI.

4 https://github.com/ontology-tools/py-horned-owl

TGDK

https://pyo3.rs
https://github.com/ontology-tools/py-horned-owl

9:8 Horned-OWL: Flying Further and Faster with Ontologies

We can load existing ontologies using the open_ontology method, which supports all OWL
serialisations available in Horned-OWL. The axioms and components of the ontology can be queried.
The following illustrates a typical scenario of usage:

1 import pyhornedowl
2 ontology = pyhornedowl.open_ontology("<path/to/ontology>")
3 # Get all components
4 components = ontology.get_components()
5 # Construct an axiom
6 from pyhornedowl.model import *
7 axiom = SubClassOf(
8 ontology.clazz(":Child"),
9 ObjectSomeValuesFrom(

10 ontology.object_property(":has_parent"),
11 ontology.clazz(":Human"))
12)
13 # Add the axiom
14 ontology.add_axiom(axiom)

Since PyO3 outputs native Python modules, the static type information asserted in Rust is lost
in the conversion process. However, py-horned-owl provides stubs that encode type information
and provide hints which, for example, allow IDEs or other tools to do static type checking.

The development of py-horned-owl has directly influenced that of Horned-OWL. In earlier
versions of the crate, IRIs were implemented as a newtype wrapper around Rc<str>; however,
this type cannot be used across threads which is required for PyO3, necessitating instead the use
of Arc<str>; this type is fully synchronized which, according to the documentation, comes at a
20-30% performance cost. To avoid paying unnecessary allocation and performance costs and
retain flexibility, the types used in Horned-OWL have been then made fully generic, leading to the
current version of the crate.

4 Evaluation

4.1 Testing
Horned-OWL contains an extensive series of tests to ensure consistency and compliance to the
OWL2 specification: in total there are 928 unit tests, 46 doc tests (which are unit tests but visible
as examples in code documentation) and 7 integration tests. The test set takes around 3s to run;
the majority of this time comes from the doc tests, which is quite normal for Rust.

The bulk of these tests come from the IO framework. All of the readers and writers use
a common series of tests. Test files are written using Tawny-OWL [11] which provides a clean,
declarative and documentable representation of OWL, backed by the OWL API [11]. These files
are then used to generate all the other required formats. For the OWL reader, tests are written
by hand and compared to pre-determined semantics hard-coded in Rust; for example we generate
ontology serialisations containing a single class declaration:

1 (defclass C)

The generated OWX file is parsed and resultant Horned-OWL ontology is checked as follows:

1 assert_eq!(ont.i().declare_class().count(), 1);
2 assert_eq!(
3 String::from(&ont.i().declare_class().next().unwrap().0),
4 "http://www.example.com/iri#C"
5);

P. Lord et al. 9:9

Other readers are checked by parsing and comparing the ontology to that generated by parsing
the OWX files. Writers are tested by roundtripping: reading, writing and reading again. These
tests are predominantly defined parametrically: addition of a new ontology defined in Tawny-OWL
will automatically result in new tests for all serialisations; similarly, we will be able to test any
new serialisations against these ontologies.

There are a few other forms of test: the RDF reader includes some tests with triples in differing
orders which Tawny-OWL cannot directly produce; and some tests cannot directly compare RDF or
OWX read ontologies as these two formats differ slightly in their expressive capability. The test set
is extensive with 130 different ontologies defined in Tawny-OWL, defining 373 logical components,
13 annotations, and 126 meta components (Ontology IRIs). All 48 of the Horned-OWL component
types are used in these ontologies (each type of OWL axiom, SWRL rule and meta component)
are present in these files, excepting doc IRIs which are implicit.

We have recently adopted the pre-commit framework, meaning that our tests are defined
declartively and run before commit or push; additionally, standardized format and use of Rust
idiom are enforced through the rustfmt and clippy tools respectively.

4.2 Performance
In order to test the performance of Horned-OWL we perform a series of tasks, using real world
ontologies where possible. This performance testing can be found in the owl-performance repository
and was conducted on a Ubuntu (64-bit) VM with 24GB of memory5.

In Figure 1, we show the results of generating a simple large ontology: in this case, a set of
OWL class declarations. This predominately tests for in-memory performance at constructing
an ontology, then serialization of a structurally simple ontology; this functionality is built into
Horned-OWL directly; equivalent code was written for the OWL and py-horned-owl. Horned-OWL
shows approximately linear performance and is faster than the OWL API. py-horned-owl scales
similarly.

The use of an artifical form of ontology is useful for testing scalability, because we can generate
ontologies with an arbitrary number of axioms. However, the performance against real world
ontologies might be quite different, and for this reason, we test against these next. We have chosen
a number of well-known ontologies present in BioPortal; these differ in their size, in terms of logical
content, annotation and the complexity of their axiomatisation. The largest, the NCBI taxonomy,
representing the species taxonomy, is the simplest consisting only of classes, annotations and
subclass statements. Details are shown in Table 1.

Table 1 Size and Complexity of Test Ontologies.

No. Triples No. Component Size on Disk
BFO 1221 741 155k
GO 256778 752036 121M
ChEBI 7466140 4281507 772M
NCBI Taxonomy 17648344 16134154 1.5G

We test the parsing performance by simply parsing these ontologies and testing against time,
as shown in Figure 2. Horned-OWL is faster in all cases. As can be seen, py-horned-owl shows
a small performance penalty. Some of this may be because of the cost of the interface between
Python and Rust, or the use of the synchronized Arc instead of the single-threaded Rc.

5 The JVM was set to a max heap size of 10G.

TGDK

https://pre-commit.com
https://github.com/jaydchan/owl-performance

9:10 Horned-OWL: Flying Further and Faster with Ontologies

Figure 1 Generating a big ontology.

Finally, we test memory usage. This is a somewhat complex task given the different nature
of the environments we are testing. Rust has deterministic memory use, but both Java and
Python are garbage collected and will tend to use the memory that is available to them. We
took, therefore, the simple approach of running each in restricted memory, we achieved on Ubuntu
through the use of the systemd-run command. We test only whether the parsing completed or
not. As can be seen from Figure 3, Horned-OWL is capable of running in a memory constrained
environment. We have additionally tested extreme memory constraints: Horned-OWL is capable
of parsing bfo.owl in 2M of memory, which is 20x smaller than the OWL API.

Performance testing is always a difficult task: there are many factors and variables to control
and the tasks carried out are often time-consuming making heavy use of CPU. The results are
frequently insightful, however; as a result of the work for this paper, we uncovered a performance
bug in the associated pretty_rdf crate that resulted in poorly scalable performance while writing
RDF6; likewise our analysis of py-horned-owl has made us reconsider the use and representation
of indexes which resulted in substantial performance improvements. However, we will always be
limited in a capacity to make such improvements while the performance testing is hard; therefore,
we have now re-implemented a formal benchmarking harness for Horned-OWL; Rust support has
considerably advanced since our first effort in this area; this should make our performance test
results less emphemeral and will make future decisions on optimisations more possible.

In short, it is clear that Horned-OWL is already highly performant in terms of both CPU and
memory usage and has a clear path to becoming more so.

6 A three-line bugfix restored linear rather than quadratic performance which meant writing NCBI taxonomy
became practical; see https://github.com/phillord/pretty_rdf/commit/66466737

https://github.com/phillord/pretty_rdf/commit/66466737

P. Lord et al. 9:11

Figure 2 Parsing various well known ontologies.

4.3 Comparison to other libraries
Since the Horned-OWL project started a number of other OWL libraries have been developed,
which cover some of the same ground as Horned-OWL. Most notably here is OWLReady (now
OWLReady2) which is a Python implementation of OWL2 [9]; its emphasis is on a high-level
Object Oriented interface in Python for OWL, somewhat similar to Tawny-OWL [11] which takes a
similar approach in Clojure. While this form of interface is very convenient for programming, our
experience with both Tawny-OWL and the OWL API is that it is not as convenient for dynamic
ontology manipulation and analyses. Additionally, it is likely to come with an overhead; our
early analysis tends to confirm this, as Horned-OWL appears to be significantly more performant
than OWLReady. A more recent addition to this space is COWL [2]; this is aimed at memory
constrained embedded systems; it provides a data model and supports functional syntax only.
Currently, Horned-OWL cannot perform well in this space, but we note that Rust does provide
strong support for embedded systems through the no_std environment; this could be supported in
later versions of Horned-OWL, providing a crate that, like COWL, supports only the data model
and limited syntax options.

4.4 Limitations
Horned-OWL has a number of limitations.

We are currently testing Horned-OWL against all ontologies in BioPortal [13]. Unfortunately,
the complexity of OWL means that comparing results to the OWL API is non-trivial; in addition,
there are some known failures.

In the ideal world, given the predominance of the OWL API for the generation of OWL, we
would like Horned-OWL to be identical with OWL API serializations. This is extremely challenging
for a number of reasons; and this is particularly true for the RDF serialisation of OWL. First,

TGDK

9:12 Horned-OWL: Flying Further and Faster with Ontologies

Figure 3 Bar chart showing the affect restricting memory has on the parsing tools.

for a general OWL ontology it is neither possible to determine unambiguously what the RDF
serialisation is nor, in reverse, determine the OWL ontology from a given RDF representation.
Second, to add to this complexity, RDF provides a number of “shortcut” syntaxes which are both
complex to implement and mean that a single RDF graph can be serialized in many different ways.

Similarly, while the XML representation of OWL is much less ambiguous and should roundtrip
cleanly whether produced by the OWL API or Horned-OWL, the two are not currently lexically
identical if for no other reason than for the use of whitespace. These lexical differences also
impact on RDF/XML representation of OWL. This would be problematic for uses of Horned-OWL
where ontologies are stored in tools such as git; switching regularly between the OWL API and
Horned-OWL would result in a large number of misleading diffs. This could be circumvented by
roundtripping the final ontology in a pipeline using either Horned-OWL or the OWL API. We
note that a similar issue is currently caused by different versions of the OWL API which do not
produce whitespace identical serialisation; we are sure the same issue will face Horned-OWL as
it evolves.

We note that some differences in behaviour between Horned-OWL and the OWL API are
pushing at the limitations of the OWL specification; it is not always clear which is correct.
For example, the OWL API will produce empty IRI tags (<IRI></IRI>) which Horned-OWL
refuses to parse; we see the impact of this in the performance testing, as Horned-OWL currently
cannot parse bfo.owx. Similarly the OWL API adds typing information for built in classes
(<owl:AnnotationProperty rdf:about="http://www.w3.org/2000/01/rdf-schema#comment"/>),
which are probably correct but unnecessary; Horned-OWL benignly reports these as unhandled.

P. Lord et al. 9:13

5 Discussion

Horned-OWL itself is now feature complete for OWL2, as well as including SWRL rules. As these
specifications are now stable and themselves unlikely to evolve, our hope is that Horned-OWL
itself will now show a similarly slow evolution. The core library (i.e. the Horned-OWL crate) now
contains the data model and serialisation: the other features that we have added (the indexing
described earlier, plus a visitor and some normalisation functionality) were necessary for efficient
implementation of this core.

This does not mean that the overall environment of Horned-OWL will not expand; however,
we will do so by adding additional crates. We have already gone this route by removing the
command line function to its own crate (horned-bin) albeit one managed in the same repository as
Horned-OWL; again, this is for reasons of performance; users of the library should not need to bear
to the cost of additional dependencies required by these binaries. In the case of the command line
library, we already have a good idea of the functionality that it is likely to need: the ROBOT
tool [7] which is built on the OWL API, provides a clear exemplar here. For py-horned-owl, there is
no real equivalent capability for scripting OWL and it will be interesting to see what functionality
will be developed there. Finally, we note a possibility raised by Horned-OWL that we have not yet
fully explored: Rust has strong support for WebAssembly which raises the possibility that OWL
might yet become usable on the web.

One key area limitation for the current Horned-OWL ecosystem is in reasoning. Currently,
whelk-rs provides support for the EL profile, but there is no DL reasoner available. We note that
history has not been kind to many OWL2 reasoners with most abandoned or no longer usable [1].
Nonetheless, it should be possible to either port one of these to Rust, as whelk-rs has been, or use
them directly through the Rust C ABI interface. We have not yet begun exploring whether this
would be possible, nor whether it would be sensible, since the high worst case complexity of DL
means the reasoners might not scale to the size of ontology that Horned-OWL can otherwise handle.

The initial experiments on Horned-OWL started over seven years ago. At this time, Rust was
relatively immature, making initial progress quite slow. It has been pleasing to see that both
the language and ecosystem has advanced substantially since this time. This has included an
increased support for Semantic Web technologies: Horned-OWL for example, makes use of the rio7

crate which provides RDF parsing support. Other Semantic Web technologies that are supported
in Rust include SPARQL through the oxigraph, SHACL and shape expressions through the rudof
crate and Linked Data through the sophia framework [3], to mention a few. Horned-OWL fits
cleanly into this ecosystem, by providing support for OWL.

We believe that Horned-OWL is essential to the future utility and importance of the OWL
specification and ontologies more generally. We have already noted the practical reality that Python
now has completed a virtual take over in scientific computing, and that without good support
for OWL in this language, scientists will simply move to other technologies. More importantly,
however, while ontologies have been enormously successful, particularly in biomedicine, they now
feature in much of the same space as newer AI technologies; these have highlighted what has
always been a fundamental limitation of scalability. Horned-OWL cannot fully resolve this problem,
but with its focus on performance it is a step in the right direction.

7 https://github.com/oxigraph/rio

TGDK

https://crates.io/crates/oxigraph
https://crates.io/crates/rudof-cli
https://github.com/oxigraph/rio

9:14 Horned-OWL: Flying Further and Faster with Ontologies

References
1 Konrad Abicht. OWL reasoners still useable in

2023, 2023. arXiv:2309.06888, doi:10.48550/
arXiv.2309.06888.

2 Ivano Bilenchi, Floriano Scioscia, and Michele
Ruta. Cowl: A lightweight OWL library for the
semantic web of everything. In Giuseppe Agapito,
Anna Bernasconi, Cinzia Cappiello, Hasan Ali
Khattak, In-Young Ko, Giuseppe Loseto, Mi-
chael Mrissa, Luca Nanni, Pietro Pinoli, Azzurra
Ragone, Michele Ruta, Floriano Scioscia, and Ab-
hishek Srivastava, editors, Current Trends in Web
Engineering - ICWE 2022 International Work-
shops, BECS, SWEET and WALS, Bari, Italy,
July 5-8, 2022, Revised Selected Papers, volume
1668 of Communications in Computer and In-
formation Science, pages 100–112. Springer, 2022.
doi:10.1007/978-3-031-25380-5_8.

3 Pierre-Antoine Champin. Sophia: A Linked
Data and Semantic Web toolkit for Rust. The
Web Conference 2020: Developers Track, April
2020. URL: https://www2020devtrack.github.
io/site/schedule.

4 Bernardo Cuenca Grau, Ian Horrocks, Boris Motik,
Bijan Parsia, Peter Patel-Schneider, and Ulrike
Sattler. OWL 2: The next step for OWL.
Journal of Web Semantics, 6(4):309–322, 2008. Se-
mantic Web Challenge 2006/2007. doi:10.1016/
j.websem.2008.05.001.

5 W3C OWL Working Group. OWL 2 Web On-
tology Language Document Overview (Second
Edition), 2012. URL: https://www.w3.org/TR/
owl2-overview/.

6 Matthew Horridge and Sean Bechhofer. The
OWL API: A java API for OWL ontologies. Se-
mantic Web, 2(1):11–21, 2011. doi:10.3233/
SW-2011-0025.

7 Rebecca C. Jackson, James P. Balhoff, Eric Dou-
glass, Nomi L. Harris, Christopher J. Mungall, and
James A. Overton. ROBOT: A tool for automating
ontology workflows. BMC Bioinform., 20(1):407:1–
407:10, 2019. doi:10.1186/S12859-019-3002-3.

8 Yevgeny Kazakov, Markus Krötzsch, and Frantisek
Simancik. The Incredible ELK - From Polyno-
mial Procedures to Efficient Reasoning with EL

ontologies. J. Autom. Reason., 53(1):1–61, 2014.
doi:10.1007/S10817-013-9296-3.

9 Jean-Baptiste Lamy. Owlready: Ontology-oriented
programming in Python with automatic classifica-
tion and high level constructs for biomedical onto-
logies. Artificial Intelligence in Medicine, 80:11–28,
2017. doi:10.1016/j.artmed.2017.07.002.

10 Phillip Lord. Horned-OWL. Software (visited on
2024-11-29). doi:10.4230/artifacts.22531.

11 Phillip Lord. The Semantic Web takes Wing:
Programming Ontologies with Tawny-OWL, 2013.
arXiv:1303.0213.

12 Phillip Lord, Martin Larralde Björn Gehrke, Janna
Hastings, Filippo De Bortoli, James A. Over-
ton, James P. Balhoff, and Jennifer Warrender.
Horned-OWL. Software (visited on 2024-11-29).
doi:10.4230/artifacts.22530.

13 Natalya F. Noy, Nigam H. Shah, Patricia L. Whet-
zel, Benjamin Dai, Michael Dorf, Nicholas Grif-
fith, Clement Jonquet, Daniel L. Rubin, Margaret-
Anne Storey, Christopher G. Chute, and Mark A.
Musen. BioPortal: ontologies and integrated data
resources at the click of a mouse. Nucleic Acids
Research, 2009. doi:10.1093/nar/gkp440.

14 The Gene Ontology Consortium. The Gene On-
tology Resource: 20 years and still GOing strong.
Nucleic Acids Research, 47(D1):D330–D338, Janu-
ary 2019. doi:10.1093/nar/gky1055.

https://arxiv.org/abs/2309.06888
https://doi.org/10.48550/arXiv.2309.06888
https://doi.org/10.48550/arXiv.2309.06888
https://doi.org/10.1007/978-3-031-25380-5_8
https://www2020devtrack.github.io/site/schedule
https://www2020devtrack.github.io/site/schedule
https://doi.org/10.1016/j.websem.2008.05.001
https://doi.org/10.1016/j.websem.2008.05.001
https://www.w3.org/TR/owl2-overview/
https://www.w3.org/TR/owl2-overview/
https://doi.org/10.3233/SW-2011-0025
https://doi.org/10.3233/SW-2011-0025
https://doi.org/10.1186/S12859-019-3002-3
https://doi.org/10.1007/S10817-013-9296-3
https://doi.org/10.1016/j.artmed.2017.07.002
https://doi.org/10.4230/artifacts.22531
https://arxiv.org/abs/1303.0213
https://doi.org/10.4230/artifacts.22530
https://doi.org/10.1093/nar/gkp440
https://doi.org/10.1093/nar/gky1055

	p000-Frontmatter
	p001-Hogan
	1 Resources Articles
	2 Resources for Graph Data & Knowledge

	p002-Reiz
	1 Introduction
	2 Related Work
	2.1 Related Quality Frameworks
	2.2 Related Metric Calculation Software
	2.3 The Need for Another Calculation Tool

	3 NEOntometrics
	3.1 The Architecture of the Metric Calculation
	3.2 The Architecture Of The Application
	3.3 The Metric Explorer
	3.4 A Frontend for Humans and an Interface for Machines

	4 Bringing NEOntometrics Into Use
	4.1 Analyzing Ontology Evolution with NEOntometrics
	4.2 Adapting NEOntometrics by Adapting the Metric Ontology
	4.2.1 Restructuring the Ontology Metrics
	4.2.2 Creating New Ontology Metrics

	5 Evaluation
	5.1 Evaluation Strategy
	5.2 Evaluation Episodes
	5.3 Evaluation of Computational Performance

	6 Conclusion

	p003-Ackermann
	1 Introduction
	1.1 Related work
	1.2 Our contribution

	2 dblp as a Knowledge Graph
	2.1 The dblp ontology
	2.1.1 Core entities
	2.1.2 Reification entities

	2.2 Key statistics

	3 How to access the dblp Knowledge Graph and the citation data
	3.1 RDF dumps of the dblp Knowledge Graph
	3.2 RDF dumps of the dblp KG with citation data
	3.3 Public SPARQL endpoint with associated user interface
	3.4 Setting up your own SPARQL endpoint
	3.5 SPARQL queries embedded into the dblp website
	3.6 Linked Open Data API

	4 SPARQL queries and performance
	4.1 A basic SPARQL query
	4.2 SPARQL autocompletion
	4.3 A more advanced SPARQL query
	4.4 Federated queries
	4.5 Querying both the dblp KG and the citation data
	4.6 Performance

	5 Discussion and outlook

	p004-Samuel
	1 Introduction
	2 Motivation and Use Cases
	3 Related Works
	4 Methods
	4.1 Computational Reproducibility Dataset Generation
	4.2 FAIR Jupyter Ontology and KG Construction

	5 Results
	6 Discussion
	7 Supplementary Material Statement
	8 Impact of the Resource
	9 Conclusion

	p005-Skjaeveland
	1 Introduction
	2 Overview
	2.1 Language
	2.1.1 Templates, base templates and instances
	2.1.2 Parameter types and non-blank flags
	2.1.3 Optional parameters and none values
	2.1.4 Default values
	2.1.5 Expansion modes and list values

	2.2 Template Libraries
	2.3 Template Instantiation
	2.4 History
	2.5 Resources

	3 Fundamentals
	3.1 Terms and Types
	3.2 Template Instances
	3.3 Templates
	3.4 Instance Expansion
	3.5 Template Library and Dataset

	4 Serialization Formats
	4.1 stOTTR: Terse OTTR Syntax
	4.2 wOTTR: RDF Vocabulary

	5 Template Libraries
	5.1 Template Life-cycle Management
	5.1.1 Status
	5.1.2 Versioning

	5.2 Metadata
	5.3 docTTR: Template Documentation System
	5.4 Template Relations for Library Maintenance
	5.5 Template Development Methodologies
	5.6 Public Template Libraries

	6 Instantiation Tools
	6.1 tabOTTR: Tabular OTTR Template Instances
	6.2 bOTTR: Batch Instantiation of OTTR Templates
	6.2.1 InstanceMap
	6.2.2 Sources
	6.2.3 ArgumentMap

	7 Implementations
	7.1 Lutra: The Reference Implementation of OTTR
	7.2 maplib: Support for Data Frame Mappings with OTTR
	7.3 OTTR Extension: Semantic MediaWiki Extension
	7.4 pyOTTR: Python Packages
	7.5 emacs-ottr-toolkit

	8 Uses
	8.1 Grundfos' Industrial Ontology Engineering Platform
	8.2 Bosch's Ontology-Enhanced Machine Learning System
	8.3 CapGemini and Norwegian Maritime Authority: Modelling Regulatory Requirements as SHACL Shapes
	8.4 DiProMag: Ontology of Magnetocaloric Materials
	8.5 Aibel: Identifying Redundancies in a Large Template Library

	9 Related Work
	10 Future Work
	11 Conclusion

	p006-Wesenberg
	1 Introduction
	2 Related Work
	3 Modelling Road Traffic
	3.1 Formal Definition
	3.2 A Practical Special Case

	4 TØIRoads: Road Data Model Generation
	4.1 Parameters for Road Data Model Generation
	4.2 The Algorithm for Road Data Model Generation
	4.3 Example Run
	4.4 Graph Mutator

	5 Datasets generated by TØIRoads
	6 Conclusion

	p007-Balhoff
	1 Introduction
	2 OWL ontologies
	3 Features and implementation
	3.1 Parallel extension of reasoning state
	3.2 Supported reasoning tasks
	3.3 Reasoning implementation
	3.3.1 OWL EL
	3.3.2 OWL RL
	3.3.3 SWRL rule engine

	4 Evaluation
	4.1 Testing
	4.2 Performance
	4.2.1 Computed subsumptions
	4.2.2 Ontology classification speed
	4.2.3 DL query speed
	4.2.4 Abox consistency checking speed

	5 Applications
	5.1 Relation graph materialization
	5.2 Reasoning with Aboxes and biomedical terminologies in Protégé and ROBOT
	5.3 Reasoner-driven web services
	5.4 Testing hypothetical axioms

	6 Discussion

	p008-Sierra-Munera
	1 Introduction
	2 Entity Linking Challenges in the Art Domain
	3 Dataset Construction
	3.1 Entity and Image Extraction
	3.2 Label Expansion
	3.3 Named Entity Recognition and Linking
	3.4 Candidate Expansion

	4 Evaluation and Results
	4.1 Data Quality Evaluation Using Human Annotations
	4.2 Resulting Dataset: Statistics and Analysis
	4.3 Evaluation of Entity Linking Baselines using MELArt

	5 Conclusion

	p009-Lord
	1 Introduction
	2 Horned-OWL
	2.1 Background on OWL2
	2.2 Design
	2.3 Indexing
	2.4 Input/Output Framework

	3 Ecosystem
	3.1 Command Line
	3.2 Reasoning interface and whelk-rs
	3.3 Python bindings and py-horned-owl

	4 Evaluation
	4.1 Testing
	4.2 Performance
	4.3 Comparison to other libraries
	4.4 Limitations

	5 Discussion

