
Transactions on
Graph Data and Knowledge

Volume 2 | Issue 3 | December, 2024

TGDK, Vol. 2, Issue 3 ISSN 2942-7517 https://www.dagstuhl.de/tgdk

https://www.dagstuhl.de/tgdk

ISSN 2942-7517

ACM Classification 2012
Computing methodologies → Knowledge representa-
tion and reasoning; Information systems → Semantic
web description languages; Information systems →
Graph-based database models; Computing methodolo-
gies → Machine learning; Theory of computation →
Graph algorithms analysis; Mathematics of computing
→ Graph theory

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik
GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany.
Online available at
https://www.dagstuhl.de/dagpub/2942-7517.

Publication date
December, 2024

Digital Object Identifier
10.4230/TGDK.2.3.0

Bibliographic information published by the Deutsche
Nationalbibliothek
The Deutsche Nationalbibliothek lists this publica-
tion in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at
https://dnb.d-nb.de.

License
This work is licensed under a Creative Commons At-
tribution 4.0 International license (CC BY 4.0): https:
//creativecommons.org/licenses/by/4.0.

In brief, this license authorizes each
and everybody to share (to copy, dis-

tribute and transmit) the work under the following
conditions, without impairing or restricting the au-
thors’ moral rights:

Attribution: The work must be attributed to its
authors.

The copyright is retained by the corresponding authors.

Aims and Scope
Transactions on Graph Data and Knowledge (TGDK)
is an Open Access journal that publishes original re-
search articles and survey articles on graph-based ab-
stractions for data and knowledge, and the techniques
that such abstractions enable with respect to integra-
tion, querying, reasoning and learning. The scope of
the journal thus intersects with areas such as Graph
Algorithms, Graph Databases, Graph Representation
Learning, Knowledge Graphs, Knowledge Represent-
ation, Linked Data and the Semantic Web. Also in-
scope for the journal is research investigating graph-
based abstractions of data and knowledge in the con-
text of Data Integration, Data Science, Information
Extraction, Information Retrieval, Machine Learning,
Natural Language Processing, and the Web.

The journal is Open Access without fees for readers or
for authors (also known as Diamond Open Access).

Editors in Chief
Aidan Hogan
Andreas Hotho
Lalana Kagal
Uli Sattler

Editorial Office
Schloss Dagstuhl – Leibniz-Zentrum für Informatik
TGDK, Editorial Office
Oktavie-Allee, 66687 Wadern, Germany
tgdk@dagstuhl.de
https://www.dagstuhl.de/tgdk

https://www.dagstuhl.de/tgdk
https://www.dagstuhl.de/dagpub/2942-7517
https://doi.org/10.4230/TGDK.2.3.0
https://dnb.d-nb.de
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/tgdk

Contents

List of Authors
. 0:vii

Papers

Unified Multimedia Segmentation – A Comprehensive Model for URI-based Media
Segment Representation

Jan Willi, Abraham Bernstein, and Luca Rossetto . 1:1–1:34

Strong Faithfulness for ELH Ontology Embeddings
Victor Lacerda, Ana Ozaki, and Ricardo Guimarães . 2:1–2:29

Transactions on Graph Data and Knowledge, Vol. 2, Issue 3, Article No. 0, pp. 0:i–0:viii
Transactions on Graph Data and Knowledge

T G D K Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/tgdk
https://www.dagstuhl.de/tgdk
https://www.dagstuhl.de

List of Authors

Abraham Bernstein (1)
University of Zurich, Switzerland

Ricardo Guimarães (2)
Zivid AS, Norway

Victor Lacerda (2)
University of Bergen, Norway

Ana Ozaki (2)
University of Oslo, Norway;
University of Bergen, Norway

Luca Rossetto (1)
University of Zurich, Switzerland;
Dublin City University, Ireland

Jan Willi (1)
University of Zurich, Switzerland

Transactions on Graph Data and Knowledge, Vol. 2, Issue 3, Article No. 0, pp. 0:i–0:viii
Transactions on Graph Data and Knowledge

T G D K Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-0128-4602
https://doi.org/10.4230/TGDK.2.3.1
https://orcid.org/0000-0002-9622-4142
https://doi.org/10.4230/TGDK.2.3.2
https://orcid.org/0000-0002-1317-040X
https://doi.org/10.4230/TGDK.2.3.2
https://orcid.org/0000-0002-3889-6207
https://doi.org/10.4230/TGDK.2.3.2
https://orcid.org/0000-0002-5389-9465
https://doi.org/10.4230/TGDK.2.3.1
https://orcid.org/0009-0000-6584-3744
https://doi.org/10.4230/TGDK.2.3.1
https://www.dagstuhl.de/tgdk
https://www.dagstuhl.de/tgdk
https://www.dagstuhl.de

Unified Multimedia Segmentation – A Comprehensive
Model for URI-based Media Segment Representation
Jan Willi #

University of Zurich, Switzerland

Abraham Bernstein #

University of Zurich, Switzerland

Luca Rossetto1 #

University of Zurich, Switzerland
Dublin City University, Ireland

Abstract
In multimedia annotation, referencing specific seg-
ments of a document is often desired due to its
richness and multimodality, but no universal rep-
resentation for such references exists. This signif-
icantly hampers the usage of multimedia content
in knowledge graphs, as it is modeled as one large
atomic information container. Unstructured data –
such as text, audio, images, and video – can com-
monly be decomposed into its constituent parts, as
such documents rarely contain only one semantic
concept. Hence, it is reasonable to assume that
these advances will make it possible to decompose
these previous atomic components into logical seg-
ments. To be processable by the knowledge graph
stack, however, one needs to break the atomic na-
ture of multimedia content, providing a mechanism

to address media segments.
This paper proposes a Unified Segmentation

Model capable of depicting arbitrary segmentations
on any media document type. The work begins
with a formal analysis of multimedia and segmen-
tation, exploring segmentation operations and how
to describe them. Building on this analysis, it then
develops a practical scheme for expressing segmenta-
tion in Uniform Resource Identifiers (URIs). Given
that this approach makes segments of multimedia
content referencable, it breaks their atomic nature
and makes them first-class citizens within knowl-
edge graphs. The proposed model is implemented
as a proof of concept in the MediaGraph Store, a
multimedia knowledge graph storage and querying
engine.

2012 ACM Subject Classification Information systems → Document representation; Information
systems → Web data description languages; Computing methodologies → Knowledge representation
and reasoning; Information systems → Multimedia information systems; Information systems →
Multimedia and multimodal retrieval
Keywords and phrases Multimodal Knowledge Graphs, Multimedia Segmentation, Multimedia Repre-
sentation
Digital Object Identifier 10.4230/TGDK.2.3.1
Supplementary Material The source code for MeGraS is published on Github under an MIT license.
The test suite is published on Github under a Creative Commons Attribution license.
Software: https://github.com/lucaro/MeGraS [63]

archived at swh:1:dir:d2dfb84bd390d27ad96190f973dfa484b9e68bc0
Audiovisual: https://github.com/lucaro/Unified-Media-Segmentation-Test-Suite [62]
Funding This work was partly supported by the Swiss National Science Foundation through project
“MediaGraph” (contract no. 202125).
Received 2024-03-03 Accepted 2024-09-30 Published 2024-12-18

1 Corresponding Author

© Jan Willi, Abraham Bernstein, and Luca Rossetto;
licensed under Creative Commons License CC-BY 4.0

Transactions on Graph Data and Knowledge, Vol. 2, Issue 3, Article No. 1, pp. 1:1–1:34
Transactions on Graph Data and Knowledge

T G D K Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:willi.jan@gmx.ch
https://orcid.org/0009-0000-6584-3744
mailto:bernstein@ifi.uzh.ch
https://orcid.org/0000-0002-0128-4602
mailto:rossetto@ifi.uzh.ch
https://orcid.org/0000-0002-5389-9465
https://doi.org/10.4230/TGDK.2.3.1
https://github.com/lucaro/MeGraS
https://archive.softwareheritage.org/swh:1:dir:d2dfb84bd390d27ad96190f973dfa484b9e68bc0;origin=https://github.com/lucaro/MeGraS;visit=swh:1:snp:223a0c5b2c4d4793f3e3d8b25cefeeafd8a41c11;anchor=swh:1:rev:0bd62c1f4848ca23d1164d35916eaaaddf8645f5
https://github.com/lucaro/Unified-Media-Segmentation-Test-Suite
https://data.snf.ch/grants/grant/202125
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/tgdk
https://www.dagstuhl.de/tgdk
https://www.dagstuhl.de

1:2 Unified Multimedia Segmentation

1 Introduction

Be it social media platforms, streaming services, news outlets, or video games, multimedia content
is ubiquitous and takes up a big part of today’s devices’ bandwidth. Multimedia content, in
comparison to pure textual content, carries vast amounts of knowledge whose capture is far from
trivial. This is due to both the multimodality of multimedia as well as the interconnectedness
of the individual pieces of knowledge captured by a media object. A video clip, for instance,
not only includes factual information about elements of the scene, like objects, humans, or
dialog, but also contains relations between these elements and implicitly conveys sentiments
and emotions. To capture these knowledge elements and their relations, two ingredients are
needed: First, individual elements of a multimedia object, henceforth called segments, need to be
unambiguously referenceable. Such segments can be multi-dimensional and of different modalities,
such as temporal, spatial, or some combination thereof. Second, a structural representation of
interconnected knowledge must be able to capture semantic annotations of segments and relations
between them. For knowledge that can be easily represented in textual form, this is frequently
done using knowledge graphs, which are graph structures where nodes contain facts and edges
establish relations. Multimedia content, however, exceeds text in richness and is thus unsuitable
to be expressed in traditional knowledge graphs.

In literature, this problem has been approached from different perspectives. The rise of
multimedia content on the Web led to numerous file standards, like SVG or MPEG-7, which
describe metadata of multimedia and can annotate specific regions of it. Following that, efforts
were made to formalize these standards using Semantic Web technologies to improve the processing
of annotations by computers. This led to a number of proposed ontologies, such as the COMM
Ontology [2]. At the same time, another stream of research focused on leveraging Uniform Resource
Identifiers (URIs), a core concept of the Semantic Web, to uniquely describe not only complete
media objects but also segments of it. Such URIs can then be used in Resource Description
Framework (RDF) triples to annotate (or other knowledge graph representations cf. [33]) and relate
multimedia segments. A notable mention of this is the Media Fragments URI 1.0 specification [75],
which establishes a syntax for accessing fragments of a media object. Similar concepts can also be
found in other sectors, like the International Image Interoperability Framework (IIIF) [71], an
initiative for standards for image delivery in cultural heritage institutions, which features a URI
scheme to access full or partial images. In all of this literature, work was focused on specific use
cases and applications with only a limited number of segmentation and media document types.
The only exception is the General Fragment Model by [23], which attempts to generalize the
notion of media fragments in an ontological way. It is, however, a primarily abstract model, and
no practical implementation exists.

In this paper, we present an RDF-compatible approach for the unified representation of
multimedia segmentations with the aim of making multimedia first-class citizens in knowledge
graphs. The goal of this paper is to tackle segmentation and its representation equally in a more
holistic way. To that end, a Unified Segmentation Model is defined, which aims to be universal
enough to describe all possible segments of all possible multimedia documents and yet be practical
enough to be implemented into a real-world application.

Hence, the contributions of this paper are three-fold:
1. We discuss the properties of media segmentation, put them onto a solid formal foundation,

independent of specific media types, and introduce our Unified Segmentation Model based on
that foundation.

2. We present an RDF-compatible URI-based approach for the unified representation of arbitrary
segments of multimedia content that leverages the insights of the Unified Segmentation Model.

3. We illustrate the applicability of the approach in a prototypical implementation.

J. Willi, A. Bernstein, and L. Rossetto 1:3

These contributions provide the foundation to break the atomicity of multimedia content in a
principled manner allowing multimedia segments to become first-class citizens in the knowledge
graph domain.

The remainder of this paper is structured as follows: Section 2 discusses how literature currently
annotates the created segments to close the gap between data and knowledge. In Section 3, the
segmentation model is formally established and reasoned, and resulting properties, characteristics,
and classes are discussed. Sections 4 and 5 then bridge the gap to the concrete implementation
in Section 6 by translating the theoretical principles into applicable URI schemes and discussing
their use in knowledge graph applications, respectively. A discussion follows in Section 7, after
which Section 8 concludes the paper.

2 Segment Annotation

In multimedia content analysis, semantic knowledge is crucial for efficient manipulation and
retrieval of media [9]. In many cases, though, semantic annotations may not target the whole
media document but refer to specific segments. Therefore, to effectively annotate multimedia
content, annotations need to be able to refer to any possible segment of that content. To
this end, literature and practice have proposed and established various file types, standards,
recommendations, and frameworks. The many existing approaches can be distinguished into two
classes. Media documents can be annotated with segment information in metadata documents.
Later, with the rise of the Semantic Web, work was put into ensuring the interoperability of
applications that produce such multimedia annotations. Segments can be captured in the Uniform
Resource Identifier (URI) that specifies the resource. Apart from segment, the term fragment is
often found in literature. In the following, the two are used interchangeably.

This section discusses these two approaches, followed by a foray into the more generic General
Fragment Model and a discussion of the insights gathered by reviewing these related works.

2.1 Metadata-based Annotation
This first category consists of approaches that store segment information in a file separate from the
original multimedia resource. While these typically XML-based files allow for conveying extensive
segments, an indirection is required. The semantic description of a segment refers to the definition
of the segment, and not the segment itself [74, 52]. In other words, segmentation is defined by a
part of a description document, which in turn represents the multimedia document.

2.1.1 Synchronized Multimedia Integration Language
The Synchronized Multimedia Integration Language (SMIL) is an XML-based language to create
interactive multimedia presentations [34]. Users can include multimedia, like audio, video, and
text, and define timings, transitions, and animations. For that, SMIL supports both temporal
and spatial fragments. For the former, the user can specify the beginning and end of the desired
snippet of a longer video or audio object. For the latter, SMIL allows cropping rectangles from
images or videos. Additionally, transitions of the rectangle can be defined, which enables the
creation of a primitive spatio-temporal fragment.

2.1.2 Scalable Vector Graphics
The Scalable Vector Graphics (SVG) format, also based on XML, is used to describe two-
dimensional vector and raster images [40]. Besides rectangles, arbitrary paths can be specified,
allowing for any fragment shapes. Additionally, with svgView, fragments can be established

TGDK

1:4 Unified Multimedia Segmentation

directly in the URI of an SVG object, although only rectangular regions are supported. Temporal
segments are not naturally supported, but SVG allows adding HTML or SMIL as foreign objects,
which themselves could contain content with a temporal component.

2.1.3 MPEG-7
The MPEG-7 standard is created by the Moving Picture Experts Group (MPEG) for describing
multimedia content of many different types [37]. Unlike previous MPEG standards, which focus
on storing content, MPEG-7 provides means to store information about the content. MPEG-7
defines four building blocks [3, 65, 41]:

Descriptors describe syntax and semantics of a feature that characterizes the content.
Description schemes describe the structure of relationships between components (descriptors
or description schemes).
The description definition language allows creating descriptors and description schemes as well
as extension and modification of existing description schemes.
Syntax tools are used for binarization, synchronization, transport, and storage of descriptions.

The Segment description schema can be used to annotate temporal, spatial, and spatio-temporal
fragments using XML-based metadata [65]. Temporal fragments are specified using starting time
and duration. Spatial regions are created from polygon coordinates, allowing for arbitrary shapes.
It is also possible to construct a segment from multiple components. On top of that, time frames
and regions can be combined into spatio-temporal fragments.

2.1.4 Ontological Segment Description
[7] proposed the Semantic Web as an extension to the World Wide Web. Its goal is to share data,
resulting in a Web of Data on the web of documents of the traditional web. The Semantic Web
architecture makes use of various standards. XML, for example, can be used to create structure
in webpages by annotating sections with tags, but it says nothing about the meaning of those
structures [10]. For that, the Resource Description Framework (RDF) is used [13]. In the form of
triples (i.e., (subject, predicate, object) tuples), assertions between things and properties
are made, and a knowledge graph is built. The elements of the triples are either literals or URIs,
with the latter pointing to further information about a resource. This Linked Data principle
enables information linking and ensures unique definitions of concepts [4]. RDF alone does not
prevent different systems from using different terms for the same concept. For computers to
understand and reuse information across systems, shared vocabularies and ontologies, which define
common concepts and relationships, are needed. A vocabulary is usually a simple description
scheme specified in RDF Schema (RDFS) [29]. More complex semantics are usually modeled
in the Web Ontology Language (OWL) [17]. Lastly, the SPARQL query language [68] for RDF
provides an SQL-like syntax to extract data.

At the same time, multimedia content on the Web has increased, and newly created media
formats, as described above, allow metadata annotations. These are, however, not easily un-
derstandable by computers, as the different standards lack formal semantics [70]. To address
this issue, Semantic Web technologies are required, and a number of ontologies for single media
and multimedia as well as several different ontologies to annotate various types of multimedia
documents have been proposed.

For image description, for instance, [49] proposes a vocabulary to describe regions of various
shapes, such as polygons, rectangles, or circles, and link them to images together with additional
information. Numerous ontologies based on MPEG-7 have been proposed to describe the semantics
of general multimedia. The first attempt is made by [35], who models parts of MPEG-7 using

J. Willi, A. Bernstein, and L. Rossetto 1:5

the ABC core ontology by [45] as a foundation. [76] builds on this and extends it to an ontology
called DS-MIRF. [36] takes a slightly different approach in their audio-visual core ontology and
focuses more on adding genre or themes to segments. [9] proposes a framework that uses the core
ontology DOLCE [25] with two multimedia ontologies, namely Multimedia Structure Ontology
and Visual Descriptor Ontology. [26] is the first to produce a full MPEG-7 ontology, called
Rhizomik, by automatically mapping XML Schema to OWL. [2] proposes COMM, a core ontology
for multimedia annotation. Unlike previous ontologies, it does not directly translate MPEG-7, but
the authors re-engineer MPEG-7 to capture the intended semantics of the standard fully. This
ontology covers the most used parts of the specification.

Beyond MPEG-7, the Ontology for Media Resources 1.0 defines a core vocabulary to describe
media resources and a mapping to a set of media formats that support metadata [67]. Its goal is to
unify metadata properties across commonly used multimedia formats. The Multimedia Metadata
Ontology (M3O) by [64] also looks beyond MPEG-7 and provides a generic modeling framework
that can be integrated with media formats like SMIL or SVG.

2.2 URI-based Annotation
With the rising presence of multimedia on the Web, there were efforts to encode segment information
in URIs. [5], later superseded by [6], defines the generic URI syntax as a sequence of components:
<scheme>:<authority>/<path>?<query>#<fragment>

The mandatory scheme defines the context of the URI, like the protocol or notation used. The
authority indicates the place of governance of the remainder of the URI, such as a domain or an
IP address. The path then identifies the desired resource, followed by the query and fragment,
identified by question marks and number signs, respectively, to target components within that
resource. While both query and fragment can be used to refer to segments of the resource, they
come with different consequences. Queries in the form of key-value pairs are sent to the server and
interpreted, after which the server returns a new resource, which has no relation to the original
one [80]. Fragments keep the reference to the original by identifying a secondary resource, which
is a subset or view of the primary one. Conversely, URI fragments are not transmitted to a server
but are interpreted only client-side after the complete original resource is transmitted [30].

To formalize the description of segments as part of a URI, several standards have been proposed,
which the following describes in closer detail.

2.2.1 Hypertext Markup Language
In the Hypertext Markup Language (HTML), URI fragments are used to reference anchor
elements and allow jumping to specific content on the same or another page. Anchors are
created using either the name or id attribute. Such a fragment URI, for example, looks like this:
http://example.com#section-1. To resolve it, the fragment name is compared to all element IDs of
the document tree, and the first matching element is used [32]. To solve the problem of changing
IDs and broken references, text fragments can be used instead, which directly reference textual
content [12]. Being a relatively recent specification, it is only implemented in Chromium-based
browsers at the time of writing.

2.2.2 XPointer
In XML, the XPointer Framework defines ways of addressing specific components through URI
fragments [28]. Besides the shorthand form for referencing specific element names, two schemes
allow advanced references. The element() scheme can be used to traverse the XML tree and

TGDK

1:6 Unified Multimedia Segmentation

target specific children [27] (e.g., example.xml#element(/1/4)). The xpointer() scheme extends
the functionality even more and allows operations on ranges and strings, allowing highly specific
addressing of segments [18] (e.g., example.xml#xpointer(string-range(//title, ’text’, 4, 5))).

2.2.3 Text
[78] proposes the usage of URI fragment identifiers for plain text files. Its proposal, later partly
captured in [79], includes the char and line schemes, used either as single positions or ranges. For
example, the segment of lines 11 to 20 is identified as: http://example.com/text.txt#line=10,20.

Additionally, the length and md5 schemes are provided for integrity checks. In a similar fashion,
[31] defines URI fragment schemes to select specific rows, columns, and cells in comma-separated
values (CSV) documents. For example, a segment of cells that starts at the second row and second
column and ends at the eighth row and sixth column is targeted like this:
http://example.com/data.csv#cell=2,2-8,6

2.2.4 MPEG-21
MPEG-21 is another standard developed by the MPEG, focusing on creating, delivering, and
consuming multimedia [38]. The key components of the MPEG-21 framework include digital items
created by and exchanged between users. Digital items are virtual containers for resources, which
include both multimedia objects as well as metadata [11]. One such example is a music album,
which, besides the actual audio tracks, may include lyrics, copyright information, cover art, and
metadata about the songs or the artist.

Most relevant for this paper, part 17 of the specification defines URI-based fragment identifiers
[39]. With four different schemes, which can also be combined, specific parts of resources can be
addressed:

ffp() identifies items and tracks by their name or ID.
offset() is used to indicate the start and, optionally, the length of a byte segment of the
resource.
mp() is applicable to audio-visual resources and can be used to specify temporal, spatial, or
spatio-temporal segments in numerous ways.
mask() applies a binary mask to a video resource.

The following example applies both a temporal and a spatial segmentation to a video:
video.mp4\#mp(~time(’ntp’,’0:00:05’,’0:00:15’)*mp(~region(rect(100,100,200,200)))

While these schemes provide powerful means to address segments without indirections, [52]
deems them over-designed and ambiguous due to their complexity. For instance, both ffp() and
mp() can be used to segment a track. Additionally, only MPEG formats are supported.

2.2.5 Temporal URI
Temporal URIs have been proposed as part of the Continuous Media Markup Language (CMML)
and the file format Annodex, which together enable hyperlinking and annotating continuous media,
like audio or video [57, 58]. A user can express one or multiple temporal segments by specifying
start and end times: video.mp4?t=15/25. The specification allows both URI fragments and URI
queries to be used depending on the needs.

2.2.6 Media Fragments URI 1.0
All file standards described above, although providing means to specify temporal and spatial
segments, have certain problems associated, like indirections, complex expressions, or too narrow
scopes. Therefore, [73] concludes that a standardized way to address segments is needed, which

J. Willi, A. Bernstein, and L. Rossetto 1:7

should follow the cool URIs practices published by [16]. This allows media content to become
a first-class citizen on the Web. Based on this proposition, the Media Fragments URI 1.0 W3C
specification was created [75, 52]. URI fragments are chosen over URI queries, as fragments keep
the relation to the original. That way, a media fragment is of the same file type as the parent
resource. This setup ensures that media fragments follow the Linked Data principles [30]. The
specification includes four fragment dimensions, which, due to being logically independent, can be
combined freely:

Temporal fragments are set with start and end time, where different time formats are supported:
video.mp4#t=5,15
Spatial fragments are limited to rectangles, specified as pixel coordinates or in percentages.
The rectangle is distinctly defined by xywh, i.e., the position of the top left corner pixel and
width and height of the bounding box: image.jpg#xywh=200,200,100,50
One or multiple tracks can be segmented from media objects with multiple tracks (e.g., video,
audio, subtitle track) by specifying track names: video.ogg#track=audio
The id dimension is used to select a named fragment, such as a chapter from an audiobook:
audio.mp3#id=chapter-1

In major browsers, however, only temporal fragments are natively supported.2 Using the other
dimensions requires custom software. As far as we were able to ascertain, there are also no other
applications, such as dedicated media players, that natively support media fragments. In addition
to that, existing Web infrastructure can only use byte ranges to refer to parts of a resource, like
a temporal or named fragment. To resolve and retrieve media fragments over HTTP, different
strategies are proposed in the specification and in literature [19, 22, 21, 48, 80].

No mapping: As defined in [5], URI fragment identifiers are only interpreted by the user agent
after the full resource is downloaded from the server. This approach, which can be found in
browser implementations, only requires the user agent to be able to interpret and render media
fragments. On the downside, this wastes bandwidth, as potentially large parts of the resource
are discarded upon retrieval.
User-side mapping: The user agent maps fragments to byte ranges. This is possible when the
user agent has already downloaded parts of the resources, like headers or an index, and knows
about the mapping. Then, a partial content request for this specific range can be sent to the
server.
Server-side mapping: The user agent requests the fragment in a special header, and the server
performs the mapping. While special extensions must be installed on the server, this solution
is the most efficient for bandwidth and latency. [19] implements a prototype in NinSuna, a
platform for multimedia content selection and adaptation [20].
Third-party mapping: A Media Fragments Translation Service (MFTS) [48] performs the
mapping to byte ranges, either as a service for the user agent or as a proxy between a user
agent and server. This approach requires minimal changes to the existing infrastructure.

While proper implementation of the full specification hence requires different client and server
considerations, there exist various media management and retrieval systems that rely on media
fragments, like the works of [42], [56], or [66]. The last, for example, implements a prototype
system that can first segment videos of parliament speakers using video and audio segmentation
techniques and second present the segments together with additional annotations on parliamentary
websites. Beyond that, [47] uses media fragments for adaptive streaming over HTTP.

2 https://bugs.chromium.org/p/chromium/issues/detail?id=94368
https://bugzilla.mozilla.org/show_bug.cgi?id=648595
https://trac.webkit.org/changeset/104197/webkit

TGDK

https://bugs.chromium.org/p/chromium/issues/detail?id=94368
https://bugzilla.mozilla.org/show_bug.cgi?id=648595
https://trac.webkit.org/changeset/104197/webkit

1:8 Unified Multimedia Segmentation

2.2.7 Media Fragments URI Extensions
The media fragments URI specification exhibits a number of limitations, such as no spatio-temporal
fragmentation or spatial fragments being limited to rectangles. To address these limitations,
extensions to the specification were proposed by [43]. Those extensions provide more options for
spatial fragments, like circles, ellipses, or polygons. They also introduce static and animated shape
transformations, which can be applied to spatial fragments. These additions enable more precise
fragment specifications, as well as spatio-temporal fragments. The authors also provide a CSS
extension to style fragments directly. On GitHub, more similar extensions can be found.3

While media fragments can be used in Semantic Web technologies, multimedia-specific queries
are not supported. Hence, [44] presents SPARQL-MM, an extension that provides spatio-temporal
filter and aggregation functions to SPARQL. This allows, for example, querying a video snippet
that contains two specific persons, as long as the persons are identified by a fragment URI. [55]
follows a similar idea and provides support for temporal SPARQL queries with media fragments.
They introduce query logic that can compare temporal fragments to, for instance, query events
that happened before a certain event.

2.2.8 International Image Interoperability Framework
The International Image Interoperability Framework (IIIF), as described by [71], is both a set
of standards for image delivery and a community of cultural heritage institutions, like museums,
libraries, and archives. Its goal is to allow the sharing of digital images using Linked Open Data
principles. It provides application programming interfaces (APIs) for interoperable access to images
and metadata stored in different repositories. At its core, IIIF has two APIs: The Presentation
API provides metadata in the form of a JSON manifest. It describes a IIIF item (e.g., a book,
newspaper, or artwork) as a collection of references to resources (e.g., scans of individual pages) and
defines its structure and layout. Additionally, it can contain annotations, where media segments
are typically referenced following the Media Fragments URI specification. Various IIIF clients
exist that can load and display these manifests. Images are queried through the Image API with
standard HTTP requests. A specific image and desired characteristics are specified in a URI fol-
lowing the format: <image API>/<identifier>/<region>/<size>/<rotation>/<quality>.<format>.
The identifier references the image, region defines a rectangular segment, either as pixel
coordinates, percentages, or “full”. Size and rotation are used to scale and rotate the region,
respectively, while quality allows turning the image grayscale or black and white. Lastly, format
specifies the image file format. The client application uses the region specifier to only fetch the
image section currently in view. An advantage of this is that the browser can work with standard
HTTP requests and does not need to distinguish between statically served and dynamically
generated images. Thus, unlike when relying on the Media Fragments URI specification, the
browser requires no additional logic to retrieve partial images. This fact makes it convenient
to use IIIF image URIs in the general Semantic Web context independently of the presentation
API [51].

With IIIF, the image server does all the work. It prepares the requested image segment from
the original according to the request URI and sends it back over HTTP. The requested images
are generated “on the fly” from high-quality images and transformed into the requested format.
There exist several image server implementations online4 and in literature [61].

3 https://github.com/tomayac/dynamic-media-fragments
https://github.com/oaubert/mediafragment-prototype

4 https://iiif.io/get-started/image-servers/

https://github.com/tomayac/dynamic-media-fragments
https://github.com/oaubert/mediafragment-prototype
https://iiif.io/get-started/image-servers/

J. Willi, A. Bernstein, and L. Rossetto 1:9

It has been recognized that IIIF is limited to images and should be extended to support
other media formats, such as audio and video. To that end, [15] coins the acronym IxIF to
represent all non-image resources and provides an interim implementation; an audio and video
(A/V) working group has been set up subsequently. The initial timetable was to extend the
presentation API and then move on to content APIs. For the latter, [59] looks into an IIIF-
based video framework and conducts some experiments on encoding and decoding speeds of
videos, which is crucial for real-time delivery. Later, the working group decided to only focus
on the presentation API, as it was deemed much more important. Nonetheless, there exists
one account of an IIIF-like API for A/V content [50]. This API defines the request syntax
<A/V API>/<identifier>/<region>/<size>/<rotation>/<temporal_region>/<quality>.<format>,
where the added temporal_region parameter determines the time interval and controls playback
speed.

2.2.9 EPUB Canonical Fragment Identifier
The EPUB Canonical Fragment Identifier (EPUB CFI) specification defines ways to access specific
content inside an electronic publication (EPUB) document [72]. Such a reference code can,
for example, look like this: book.epub#epubcfi(/6/4[chap01ref]!/4[body01]/10[para05]/3:10).
Slashes are used to navigate the document tree, where even and odd indices describe child elements
and chunks of character data, respectively (/6 therefore denotes the third child element, while /3
refers to the second chunk of data). Exclamation marks perform an indirection step by accessing
another document referenced in the current element. Square brackets assert the ID of the current
element, and colons are used for character offsets. While the standard is generally used to extract
XML or text elements, it also features identifiers for temporal, spatial, and spatio-temporal offsets.
A fragment identifier in this format tends to become complicated quickly and only applies to the
EPUB format, thus further limiting its applicability as a fragment representation.

2.2.10 OData
The Open Data Protocol (OData)5 is a REST-based protocol for defining CRUD operations. It
enables the encoding of filtering operations and function calls into HTTP URLs. An example for
retrieving a filtered list of documents authored in or after 2024 that contain the term “Painting”
in their title could look like this:
/OData/Documents?\$filter=AuthorDate geq 2024-01-01 and contains(Name, "Painting").
While OData is primarily used for structured data encoded in JSON, it has also found uses in
hypermedia applications.

2.3 General Fragment Model
A more generalized approach to segment representation is presented in [23, 24]. They argue that
all fragment identification schemes described so far are too narrow and basic. For this reason, they
propose a General Fragment Model (GFM), an ontological model that can describe fragments of
generalized media types and query them.

The model has the following three main concepts. First, information artifacts are objects with
codified content, such as images, text, or audio files. Second, indexers are functions that map
tokens to fragments of an information artifact. Lastly, an anchor is a particular token applied to
an indexer and denotes a fragment of the information artifact. The set of possible tokens for a
particular indexer is defined as a token set. Figure 1 shows the relations of these concepts.

5 https://www.odata.org/

TGDK

https://www.odata.org/

1:10 Unified Multimedia Segmentation

Information
Artifact Indexer Token Set

Fragment Anchor Token

target domain

part instance

denotes argument

member

Figure 1 Conceptual model of the General Fragment Model adapted from [23].

A simple example is an image information artifact and a rect indexer function that extracts
rectangular sections from the image. A possible anchor is then rect(img, [0,0,100,100]), which
defines a fragment of size 100 × 100 in the top left corner of an image called img. Instead of img,
another anchor can be passed, allowing for the arbitrary composition of anchors, like extracting a
rectangular fragment but only the red color channel: channel(rect(img, [0,0,100,100]), "red").

The authors further investigate classes of indexers and present a taxonomy of non-disjoint
categories.

Identity indexers map all segments to themselves.
Binary indexers enumerate all bits of information of the information artifact. This indexer
exists for every information artifact.
Tabular indexers are further distinguished into vector indexers and dictionary indexers. Vector
indexers create a vector space for the information artifact, such that the indexer domain is a
totally-ordered set. This constructs a partial order of information parts. The binary indexer
is a special type of this. Dictionary indexers map non-ordered input symbols to parts of the
information artifact.
Spatio-temporal indexers allow the selection of n-dimensional regions.
Query indexers are formulae that reference media segments according to some criteria. The
authors compare them to prepared statements in query languages like SQL.

The model is implemented in the knowledge representation framework Hyperknowledge, which
focuses on multimedia content. It uses the construct of anchors to link fragments to graph nodes.
For example, a spatial anchor on an image node represents a section of that image. By keeping
the notions of indexer function and tokens very general, the GFM can be implemented in different
forms supporting many use cases.

2.4 Interpretations and Implications
In summary, many ways exist to represent segmentation, either as a metadata annotation external
to the medium or placed in a URI path, query, or fragment. One can observe some commonalities
and tendencies in this multitude of proposals, further motivating this paper.

The number of proposed standards is remarkable, especially considering the relatively short
period at the beginning of this century, in which most emerged. It indicates that many researchers
saw a need for segment annotation at roughly the same time, but no single proposal could outdo
the others. This, in turn, hints that each solution has shortcomings, be it only a very specific
use case, restricted media support, or limited segment options. Conversely, universal and diverse
approaches, such as MPEG-7 and later MPEG-21, quickly tend to be too complex and ambiguous.
This is arguably also true for multimedia ontologies, where many either focus on specific media
types or try to model MPEG-7. In many cases, the proposed standards are not widespread but
occupy a rather niche space without much technological support.

J. Willi, A. Bernstein, and L. Rossetto 1:11

Table 1 Overview of segment annotation mechanisms found in the literature. ✓* indicates that support
for a functionality requires an extension beyond the original definition.

SM
IL

SV
G

M
P

E
G

-7

X
Po

in
te

r

M
P

E
G

-2
1

M
ed

ia
Fr

ag
m

en
ts

U
R

I

II
IF

E
P

ub

G
FM

External Metadata ✓ ✓ ✓ – – – – – ✓

Server-side – – – – – partial ✓ – –

Spatial some ✓ ✓ ✓ ✓ ✓* some ✓ ✓

Temporal ✓ – ✓ – ✓ ✓ ✓* – ✓

Spatio-temporal some – ✓ – ✓ ✓* ✓* – ✓

Filter – some – – – – some – ✓

Text – – – ✓ – ✓ – ✓ ✓

Image ✓ ✓ ✓ – ✓ ✓ ✓ – ✓

Audio ✓ – ✓ – ✓ ✓ ✓* – ✓

Video ✓ – ✓ – ✓ ✓ ✓* – ✓

3D – – – – – – – – ✓

Type-agnostic ✓ ✓ – – – – – – ✓

Format-agnostic ✓ ✓ – ✓ – ✓ ✓ – ✓

Implementation Available ✓ ✓ ✓ ✓ – partial ✓ ✓ –

The first somewhat common approach is the Media Fragments URI 1.0 specification, whose
authors identified the above-mentioned issues. The result is a standard describing temporal,
spatial, track, and id segments in a URI. This is, however, not without problems. Most notable for
this paper is that while different segment types are supported, their flexibility is still lacking, as,
for example, spatial segments can only be rectangles. Although there are proposals for extensions,
none of them seem to have been picked up, which appears to be a general theme again. A
considerable body of literature exists about the specification, but real applications are relatively
rare, and browser support is still partially or fully lacking.

Interestingly, the standard with the most real-world relevance appears to be the IIIF image
API, which is the only one coming from a different origin and motivation. Nonetheless, it offers a
way to describe an image segment with a distinct URI, making it suitable for use outside of IIIF
as an identifier of a resource in a knowledge context. Again, the segment flexibility is minimal,
with only rectangles supported, and extensions were looked into but, so far, came to nothing.

Table 1 provides a comparison of the concrete segmentation annotation mechanisms discussed
in this section. It shows that there is a broad range of capabilities, both in theory and in practice,
across the various schemes that can be found in the literature. Most of the schemes focus on one
specific type of media, most commonly text or images, or on a specific set of use cases.

Generalizations towards arbitrary media or segmentations are underrepresented in literature,
with the General Fragment Model being the only account. It shares a similar derivation and
motivation with this paper but then focuses more on an ontological structure. While it can describe
virtually any segmentation, it offers few deductions of properties toward possible implementations.
There appears to exist an implementation of numerous types of segmentations following the
General Fragment Model, but these seem to be built case by case instead of in a general manner,
as the model suggests. Unfortunately, the implementation is mostly closed-source and provides
few insights into the applied mechanics.

TGDK

1:12 Unified Multimedia Segmentation

We aim to close this gap by proposing the Unified Segmentation Model for media documents.
The model combines the expressiveness of the various methods discussed above into a simple and
unified representation. Furthermore, it is specified in such a way that it does not rely on the
client to implement the segmentation scheme. This makes it much more easily interoperable with
existing standards and technologies. The following discusses the model and how it can be used in
the context of multimodal knowledge graphs.

3 Unified Segmentation Model

In this section, the formal part of the Unified Segmentation Model is designed and presented. It
aims to abstract various media segmentations and provide a generalized segmentation operation
independent of the media document type. First, the formal model is developed, and properties
of different types of segmentations are discussed. The second part investigates approaches for
describing segmentation rules. This sets the stage for concrete types relevant to the implementation.

3.1 Multimedia Object
To arrive at a model of segmentation, the first step is to generalize multimedia documents regardless
of their type. As established previously, any multimedia document consists of n dimensions, where
each can be temporal or spatial. An audio track, for example, has one temporal dimension, an
image has two spatial dimensions, while a video comprises one temporal and two spatial dimensions.
These n dimensions span an n-dimensional space in which a concrete multimedia object can be
seen as a bounded, finite subset of the space. Usually, this subspace is not continuously defined
but consists of a finite amount of discrete data points. In a raster image, these are the pixels, and
the subspace is bounded by the width and height of the image, whereas a video is a temporal
enumeration of images additionally bounded by a duration.

The data point coordinates only determine the extent of the media object. To fully represent a
specific piece of multimedia, additional description information for each data point can be required,
again consisting of one or multiple dimensions. For a digital audio track, each sampling point has
an amplitude. For an image, each pixel needs a color value, for instance, a mixture of red, green,
and blue colors. Alternatively, the descriptions can also be empty, as is the case with a 3D model,
provided that no materials or surfaces are defined.

Formally, any arbitrary multimedia object M can thus be described as

M ⊂ P × D, (1)

where P and D indicate the space of possible data points and descriptions, respectively. They are
both defined as n-ary cartesian products of a number of dimensions

P = dim1 × · · · × dimn and D = dim1 × · · · × dimm, (2)

where each dimension dim is an arbitrary number set, such as N or R. The number set depends
on the application and can have constraints. An RGB color channel, for instance, is limited to 256
elements, while each ASCII character is one of 128. Figure 2 gives a visualization of this definition
for two- and three-dimensional data points. Formulated differently, the media object M defines
a binary relation with domain P and codomain D. Such a binary relation fulfills the functional
(right-unique) and total property, i.e.

∀p ∈ P, ∀d1 ∈ D, ∀d2 ∈ D : ((p, d1) ∈ M ∧ (p, d2) ∈ M) ⇒ d1 = d2 (3)
∀p ∈ P, ∃d ∈ D : (p, d) ∈ M (4)

J. Willi, A. Bernstein, and L. Rossetto 1:13

In other words, this means that data points are unique, while their descriptions are not, and every
data point has a valid description. From this, it follows that the relation is a function P → D but
is neither injective nor surjective.

x

y (
(x, y), (a, b, c)

)

x

y

z (
(x, y, z), (a, b, c)

)

Figure 2 Schematic representation of a media object consisting of ordered pairs of data points and
descriptions. Each data point has n dimensions (here x, y or x, y, z) and each description has m dimensions
(here a, b, c).

3.2 Segmentation Operation

Segmentation is defined as the process of extracting a part from a whole. Applying this to the
formal definition of a multimedia object, a segmentation function can be defined as

s : M → M ′, M ′ ⊆ M. (5)

It takes as input a media object M , which is an arbitrary subset of the space P × D, and yields
another media object M ′ of the same space. To uphold the definition of segmentation, the result
must be a subset of the original media object. This very general function s can have all sorts of
implementations depending on the segmentation and media object at hand but can be grouped
into three variants – filters, reductions, and transformations – as well as post-processing operations,
which we discuss in the following.

3.2.1 Filter Segmentation

Most segmentation tasks revolve around wanting to retain a subset of the data points of the initial
media object. The filter operation is thus generally defined as

sf (M) = {m | m ∈ M ∧ f(m)}, (6)

where the filter function

f : P × D → {true, false} (7)

is an indicator function that decides for each data point in the space whether it should be kept
or not. It can use any properties of the data point itself or its description to make the decision.
Examples of such filter segmentations are the selection of a rectangular cutout of an image, a
scene from a movie, an excerpt of an audio recording, or one page from a PDF document.

TGDK

1:14 Unified Multimedia Segmentation

The filter segmentation is not limited to a single filter function but can consist of an arbitrary
number of sub-filters f1, . . . , fk, which are combined using Boolean algebra operations. For only
conjunctions, the filter operation is defined as

sf (M) = {m | m ∈ M ∧ f1(m) ∧ · · · ∧ fk(m)}. (8)

For arbitrary Boolean operations, data points are part of the segment if the Boolean combination
of indicator functions yields 1. This allows the mixture of any filter criteria, for instance, only
keeping image pixels of certain colors, which are located in a certain area of the image and do not
have large illumination changes compared to neighboring pixels. From Equation 8, it follows that

{m | m ∈ M ∧ f1(m) ∧ · · · ∧ fk(m)}
⇔ {m | m ∈ M ∧ f1(m)} ∩ · · · ∩ {m | m ∈ M ∧ fk(m)}
⇔ sf1(M) ∩ · · · ∩ sfk

(M), (9)

using the definition of set intersection. Equally, by the definition of set union, it follows that

{m | m ∈ M ∧ (f1(m) ∨ · · · ∨ fk(m))} ⇔ sf1(M) ∪ · · · ∪ sfk
(M). (10)

This shows that the conjunction and disjunction of sub-filters are equivalent to the intersection
and union of segments, respectively, where each segment is created using one particular sub-filter.
The same relationship can also be shown for arbitrary combinations of operators.

As the segmentation result is another media object, multiple filter segmentations can be applied
consecutively, i.e.,

sfk

(
sfk−1 (... (sf2 (sf1(M))))

)
= (sfk

◦ · · · ◦ sf1)(M). (11)

Thereby, the multimedia object is increasingly filtered by every segmentation. This corresponds
to applying all filter operations in the same segmentation operation, which can be written as a
conjunction of filters. As derived above, this is equivalent to the intersection of the segments that
result from applying the filter segmentations to the original media object. It follows that nested
filter segmentations are commutative:

(sfk
◦ · · · ◦ sf1)(M) = sf1(M) ∩ . . . ∩ sfk

(M) = (sf1 ◦ · · · ◦ sfk
)(M) (12)

As an illustration, consider a temporal video segment, which is afterward cropped to a square. Its
result is equivalent to first cropping the whole video and then cutting it to the desired length. The
segmentations can also operate on the same dimensions, such as in an image with overlapping
segment areas, where the order of segmentation does not matter for the outcome.

3.2.2 Reduction Segmentation
Alternatively, a user might want to keep all data points but segment the description of each point.
This reduction operation

sr(M) = {(p, r(d)) | (p, d) ∈ M} (13)

applies a reduction function

r : D → D′, dim(D′) ≤ dim(D) (14)

to the description of each data point. Like the filter function, this dimensionality reduction
function is not allowed to modify the individual data points but can only select which dimensions
to keep or discard. A possible application could be extracting one color channel of an image.

J. Willi, A. Bernstein, and L. Rossetto 1:15

The reduction function can be seen as a special filter function, which operates on only the
codomain of the media object. However, it does not filter elements of the set but the description
dimensions of each element. In other words, the scope of each data point description is changed.
Hence, set theory operations are not applicable in a mathematical sense. However, one can
interpret the description of a data point as an m-dimensional set instead of an m-tuple of values.
Thereby, the reduction function can be described as a filter function on each set of values, enabling
the combination by set operations. Then, the reduction operation is commutative. See Section 4.2
for a practical example.

Filter and reduction operations can also be combined but require caution, as commutativity is
not always given. In some cases, the filter operation might use properties affected by a reduction
operation, for example, a filter operation based on color and a reduction operation that drops
specific color channels. In other cases, segmentations are commutative, like selecting one color
channel and cropping the image. A solution to this uncertainty is adapting the filter operation to
only use data point information (i.e., P) without changing its semantics. For instance, the filtering
based on color can also be represented as filtering of certain point coordinates that happen to have
said color. With this trick, filter and reduction functions operate on disjoint pieces of information,
which ensures commutativity.

3.2.3 Transformation
Besides operations that directly affect ordered pairs of the set, utility operations need to be
considered. One issue is the fact that a certain media object can have different representations,
where each one is defined in a different space. To ensure that any segmentation can be applied,
the media object might need to be transformed in preparation. Such a transformation function

t : M → M ′, M ⊂ P × D, M ′ ⊂ P ′ × D′ (15)

transforms a media object M from one space to a media object M ′ in another space, such that M

is semantically equivalent to M ′. The two media objects can have different sets of dimensions.
An example of that is the Fourier transformation of an audio signal from time and amplitude
dimensions to frequency and magnitude dimensions. Any such transformation must be reversible,
such that the inverse transformation can be applied to the segmented media object to restore the
format of the original media object. Note, however, that such transformations can be lossy.

3.2.4 Postprocessing
Postprocessing operations can be applied to the result of a segmentation operation. Strictly
speaking, these are not part of the segmentation definition, as they modify the media object
instead of just selecting a fraction of it. However, for real-world applications, postprocessing can
be vital for usability, as it allows speeding up a song, rotating an image, performing anti-aliasing
to smoothen edges, or removing a constant dimension. The last allows turning a single frame of a
video, which is so far just a very short video, into an image by removing the temporal dimension.
As these operations do not fulfill the segmentation definition, they are not discussed further in
this context.

3.3 Compound Media Object
So far, a media object is considered a subset of a single n-dimensional space. However, there are
cases where the media object comprises a collection of individual media. Such a compound media
object C can be defined as

C = {Mi | i = 1, . . . , m}, (16)

TGDK

1:16 Unified Multimedia Segmentation

where each Mi corresponds to a media object as defined in Equation 1 and can potentially have
different dimensionalities and structures. A prime example of a compound media object is a movie,
which consists of a video track, one or multiple audio tracks, and possibly subtitles.

The segmentation operations established before are also applicable to compound media objects
by applying the operation to each individual sub-object, i.e.,

s(C) = {s(Mi) | Mi ∈ C}. (17)

In practice, this can result in any number of sub-objects being affected by the segmentation,
and the others are left unchanged. If the movie is cropped, only the video track is modified, but if
a scene is extracted, all sub-objects are temporally segmented. A special case of compound media
object segmentation is removing all data points from one or more sub-objects. This corresponds
to a subsetting operation and can, for example, be used to extract a movie’s audio. While this is
technically a filter operation that leaves certain media objects empty, it resembles more a reduction
operation, where certain elements are dropped.

3.4 Segmentation Definedness
So far, the filter and reduction operations retain a subset of data points and description dimensions,
respectively. An issue with this generalization is that the promise of the segmentation definition,
extracting a part from a whole, is not necessarily given. With the ultimate goal of real-world
applicability, some considerations need to be made.

The filter operation may select multiple non-overlapping clusters of data points. For example,
two rectangles from an image with space between them. To keep the semantics of the media
object and thus remain a valid segmentation, the segmented data points need to keep their relative
position. Therefore, the space between the rectangles has to remain, and the two segment parts
cannot be shrunk together. To this end, all data points inside the bounding box of the segmentation
need to be retained. Only data points beyond the bounds can be safely discarded. To still be
able to represent any segmentation, the description must be set to null if the data point is not
part of the desired segment. For that, the notion of neutral elements o and neutral descriptions
(o1, . . . , om) is introduced. A neutral element is a special value of that specific dimension, which
indicates the absence of that dimension. Neutral descriptions are m-tuples of neutral elements,
which fully void the description part of a data point without changing its signature. In the example
of the two rectangles in an image, all pixels between the rectangles are neutralized by setting
them to transparent color values. Regions outside of the rectangles can be cropped safely.

The reduction operation suffers from a similar issue. If the dimensionality of the data point
description is changed by discarding undesired dimensions, the media object can potentially lose
its definedness. For instance, an image in RGBA color space can get rid of its alpha channel and
still be a valid RGB image, but an image with only two color channels is invalid or requires special
file formats for storage. As a solution, the reduction function needs to replace dimensions not part
of the segmentation with a neutral element oj of the specific dimension. For RGB, the undesired
color channel would be set to zero for each data point, such that this color no longer contributes
to the image.

4 Applied Segmentation

To ultimately be able to implement the Unified Segmentation Model in a real application, another
level of abstraction needs to be discussed. First, the classes of operations outlined above need to be
refined into more distinct and meaningful subclasses covering all realistically desired segmentations.

J. Willi, A. Bernstein, and L. Rossetto 1:17

Second, thought must go into the serialization of segmentation. In other words, schemes must
be developed on how the segmentation instructions can be represented textually. The goal is
to fit this description into a URI to ensure both usability and compactness without sacrificing
expressiveness. All segmentation URIs described in this chapter have the form
<reference to multimedia object>/<segmentation type>/<segmentation description>

First, the base of the URI has to reference the media object on which the segmentation is
performed. For convenience, this part is omitted from here on. Then, the URI needs to inform
about the specific segmentation type via a keyword, followed by the actual description of the
segmentation of this type. The keyword is necessary to distinguish between similar segmentations,
which cannot be inferred from the description alone. This allows proper segmentation processing
and ensures uniqueness across types. Additionally, it needs to be discussed how to ensure
that a particular segmentation has only one unambiguous URI representation, such that each
segmentation is uniquely definable.

4.1 Filter Segmentation
For filter segmentation, we can distinguish between several different types of filter functions. The
following lists their properties and presents URI schemes for the representation of each of them.

4.1.1 Segment Boundary
Segments can be described in terms of their boundary, as segment data points are usually coherent.
Due to the limited amount of information needed, this approach is well suitable to be conveyed in
a URI. This is supported by the observation that all URI-based segment annotation approaches
presented in Section 2 describe segments in terms of boundaries. Depending on the dimensionality
of the boundary, different considerations are necessary.

One-dimensional Segmentation

For segmentation in only one dimension, things remain relatively simple. However, flexibility
is needed to handle different measures and units because many multimedia documents can be
segmented along a single dimension. For instance, a video can be segmented with timestamps or
frame numbers, while a PDF or text document is only segmented along integer page or character
numbers, respectively. In all cases, a segment is serializable as a list of intervals in ascending order.
This is showcased in Figures 3 and 4 with a 30 seconds audio clip and a 44-character text sentence,
respectively. As an alternative to absolute numbers, the same segment can be equivalently defined
using relative numbers in the range [0, 1]. The output can be shrunk to the bounds of the segment,
cutting off the irrelevant parts at the beginning and end. Inside the bounds, parts not in the
segment cannot be removed but must be nullified to adhere to the segmentation definition. In
audio, this means muting non-segment parts, a video could turn those parts black or transparent,
and text documents could replace the respective characters with whitespaces.

Sometimes, the media object is not represented in the correct space to apply the segmentation
directly. In such a case, a transformation needs to be applied first. A prime example of this
is segmenting an audio track by frequency, which requires a Fourier transformation from time
and amplitude space to frequency and magnitude space. Then, one-dimensional segmentation
can be performed as usual before the result is transformed back to its original space, here using
an inverse Fourier transformation. It is to mention that while the formal definition required an
explicit statement of this transformation and its inverse, this is no longer necessary but implicitly

TGDK

1:18 Unified Multimedia Segmentation

/time/<list of ranges >

/time /5 -12 ,15 -22 ,26 -28

/time /0.2 -0.4 ,0.5 -0.8 ,0.86 -0.93

s

0 30

Figure 3 An example segmentation of an audio snippet by time in seconds. The absolute and relative
URI representations on the left correspond to the visualization on the right, with the segmented parts
shown in red.

/character/<list of ranges>

/character/4-12,15-22,26-28

/character/0.091-0.273,0.341-0.5,0.591-0.636

The quick brown fox
jumps over the lazy dog.

Figure 4 An example segmentation of a plain text by characters. The absolute and relative URI
representations on the left correspond to the visualization on the right, with the segmented parts shown
in red.

derived from the specified segmentation type. An example of a frequency segmentation is shown
in Figure 5, where a frequency range is selected. This particular segmentation thus corresponds to
applying both a high- and low-pass filter.

/ frequency /<list of ranges >

/ frequency /1000 -4000

400 Hz 2 kHz 10 kHz

−24 dB

−48 dB

−72 dB

Figure 5 An example segmentation of an audio snippet by frequency between 1000 Hz and 4000 Hz. A
Fourier transform operation precedes the segmentation to translate the time space to a frequency space.

Two-dimensional Segmentation

Segmentations along two simultaneous dimensions need to describe areas of a plane spanned by
the two dimensions. This type of segmentation can be applied to various media, such as images,
videos, or PDF documents. In all cases, the media object can be viewed as a single or stack of
two-dimensional planes, and the segmentation punches out a specific shape or area of each plane.
A suitable analogy would be that of a cookie cutter.

Rectangle

In the simplest case, a single rectangular shape is desired. Assuming that the rectangle is not
tilted, it is sufficient to define the minimum and maximum x and y coordinates, either as absolute
values (e.g., pixels) or relative numbers in range [0, 1]. An example is presented in Figure 6, where
Big Buck Bunny is segmented from a screenshot of Blender Foundation’s eponymous short film [8].

J. Willi, A. Bernstein, and L. Rossetto 1:19

/rect/<xmin>,<xmax>,<ymin>,<ymax>

/rect/165,340,35,315

/rect/0.236,0.486,0.088,0.785

Figure 6 Rectangular segmentation of a 700 × 400 screenshot from Big Buck Bunny [8]. The URIs of
absolute and relative point coordinates on the left correspond to the visualization on the right.

Polygon and Spline

If the segment area is still one closed shape but more complex, polygonal or spline structures can
be used when the edges are straight or rounded, respectively. Such forms are describable by an
enumeration of points on the plane. If a polygon is desired, these points are connected by lines
between consecutive points. In the case of closed splines, the point requirements depend on the
type of spline. For instance, cubic Bézier splines require each Bézier curve to have four control
points, whereas basis splines need additional care to ensure a closed shape [69]. In any case, the
points can be serialized as shown in Figures 7 and 8 as absolute or relative coordinates. To ensure
the unambiguity of the URI, one can establish a rule in which winding direction to specify points
and with which point to start, such as starting at the left lowermost coordinate and proceeding
clockwise. The output image can be cropped to the rectangular bounding box of the segmentation.
Pixels inside the bounds that are not part of the segment need to be changed to transparent. The
model does not explicitly define how to handle pixels on the boundary.

/polygon/<point1>,<point2>,<point3>,...

/polygon/(170,35),(165,180),(225,320)
,(340,275),(335,65),(300,35)

/polygon/(0.243,0.088),(0.236,0.45)
,(0.321,0.8),(0.486,0.688)
,(0.479,0.163),(0.429,0.088)

Figure 7 Polygonal segmentation of a 700 × 400 screenshot from Big Buck Bunny [8]. The URIs of
absolute and relative point coordinates on the left correspond to the visualization on the right. The
polygon is shown in red, and the resulting image is outlined in black, where pixels outside of the polygon
are turned transparent.

They can either be assigned proportionally using an alpha component or completely based on the
majority of their area (as is the case in our implementation, see Section 6),

SVG Path

As an alternative, or if the segment comprises disjoint segments, the concept of SVG’s path
property can be used to outline the segment area. Its specification is made to represent a shape
as a description string, serialization is thus built-in. It features instructions to define linear and

TGDK

1:20 Unified Multimedia Segmentation

/bezier/<start>,<control1>,<control2>,<
end>,<control1>,...

/bezier/(190,30),(130,40),(150,300)
,(225,320),(400,360),(450,-20)
,(190,30)

/bezier/(0.271,0.075),(0.186,0.1)
,(0.214,0.75),(0.321,0.8)
,(0.571,0.9),(0.643,-0.05)
,(0.271,0.075)

Figure 8 Bézier spline segmentation of a 700 × 400 screenshot from Big Buck Bunny [8]. The URIs of
absolute and relative point coordinates on the left correspond to the visualization on the right. The shape
is drawn in red, with semi-transparent Bézier control points, and the resulting image is outlined in black,
where pixels outside of the shape are turned transparent.

curved line segments and an operator to move the cursor to draw disconnected shapes [40]. All of
them are used in the example shown in Figure 9, where the Bézier spline segment from Figure 8
is extended with a disjoint triangular segment. On the downside, unique serialization is not as
straightforward, especially with composite shapes. Nonetheless, one can still come up with some
ordering, especially since the move operation allows a lot of flexibility.

/path/<svg path>

/path/M 190,30 C 130,40 150,300 225,300 C
400,360 400,-20 190,30 M 410,60 L

470,130 L 480,70 Z

Figure 9 SVG path segmentation of a 700 × 400 screenshot from Big Buck Bunny [8]. The URI on the
left corresponds to the visualization on the right. The segment is drawn in red, with the Bézier control
points given as semi-transparent lines, and the cursor move command M is displayed as a dashed line. The
resulting image is shown in black, where pixels outside of the boundaries are turned transparent.

Three-dimensional Segmentation

Three-dimensional segmentations need the most care, as their dimensional complexity can lead
to computational and representational limitations. The cookie-cutter analogy no longer holds
here, as the third dimension is also constrained in some way. Instead, one can think of these
segmentations as taking the cuboid of the media object and carving it into, possibly multiple,
arbitrary shapes.

Rotoscoping

If the segmentation is simple enough, a shortcut can be made by diminishing the importance of
one dimension, therefore turning the problem into a 2.5-dimensional segmentation. In what is
known in the film industry as rotoscoping, a 3D segment is described as a series of keyframes.

J. Willi, A. Bernstein, and L. Rossetto 1:21

Each keyframe defines a two-dimensional segment at a point in the third dimension. For points not
directly defined, the shape can be linearly interpolated from the nearest neighbors. To, for instance,
segment a car passing through a video scene at a constant speed, it might be sufficient to segment
only the first and last frame of the scene in question and interpolate everything in between. This
approach, therefore, allows for smooth three-dimensional segmentations with minimal instructions.
This is beneficial for serialization, as seen in the example in Figure 10. Nonetheless, this approach
can also be used for complex segmentations, for example, by defining an image mask for each
video frame.

/rotoscope/<timestamp>,<type>,<description>;
...;<timestamp>,<type>,<description>

/rotoscope/0,rect,0,100,0,100;
400,rect,150,300,100,200

t

x

y

100 300

100

200
400

Figure 10 Rotoscope segmentation, where a series of 2D shapes determines the 3D segment. The URI
of two rectangles at different points in time on the left implicitly defines shapes for time points in between,
as visualized on the right.

3D Mesh

If the segmentation becomes too complex, it can alternatively be described as a three-dimensional
mesh. Applying this mesh to a media object largely depends on the media type. In the case of a
video, the 3D mesh must be sliced using the time coordinate to yield a 2D segment for each video
frame. If the media object is itself a 3D object, the intersection must be computed between it and
the segment, for example, using Constructive Solid Geometry algorithms [60, 46].

While this approach allows virtually any three-dimensional segmentation, the URI serialization
can become complex, as the complete mesh definition must be embedded into it. For that, it
makes sense to draw inspiration from simple mesh file formats, such as Wavefront OBJ, Polygon
File Format (PLY), or StereoLithography File Format (STL) [54, 77, 1]. In the first, for example,
vertices are specified with a v, followed by the coordinates, and faces with f and a list of vertex
indices. The unit cube, for example, is then defined as displayed in Figure 11.

1 v 0 0 0
2 v 1 0 0
3 v 1 1 0
4 v 0 1 0
5 v 0 0 1
6 v 1 0 1
7 v 1 1 1
8 v 0 1 1

1 f 1 2 3 4
2 f 5 6 7 8
3 f 1 2 6 5
4 f 2 3 7 6
5 f 3 4 8 7
6 f 1 4 8 5

v8

v4 v3

v7

v6

v2v1

v5
f1

f2

f3

f4

f4

f6

Figure 11 Unit cube in the Wavefront OBJ 3D mesh format. On the left, vertices are described by
their coordinates and faces by their vertex indices, and the resulting hexahedron mesh is shown on the
right.

TGDK

1:22 Unified Multimedia Segmentation

Instead of listing the entities by line in a file, they can be encoded into a URI in a comma-
separated sequence. One issue with these file formats and, hence, the URI serialization is that
the order of vertices and faces can be arbitrary. The same object can thus have many different
serializations. To solve this ambiguity, faces of more than three vertices can be triangulated, and
faces and vertices can be sorted based on a given rule.

An applied example is shown in Figure 12, where the same three-dimensional segmentation as
in Figure 10 is presented, this time as a 3D mesh in Wavefront OBJ format.

/mesh/<vertices>,<faces>

/mesh/v 0 0 0,v 0 100 0,v 100 0 0,v 100 100 0,
v 150 100 400,v 150 200 400,v 300 100
400,v 300 200 400,f 1 5 6,f 1 5 7,f 1 6
2,f 1 7 3,f 2 6 8,f 2 8 4,f 3 1 2,f 3 2
4,f 5 7 8,f 5 8 6,f 7 3 4,f 7 4 8

t

x

y

100 300

100

200
400

Figure 12 Three-dimensional segmentation defined using a 3D mesh. The serialized Wavefront OBJ
format on the left corresponds to the red hexahedron on the right.

4.1.2 Cut Equation
An alternative to the straightforward boundary definition is the usage of algebraic expressions,
which describe hypersurfaces and can cover a variety of smooth shapes. As these expressions
require little description space, they are a good candidate for short URIs. In Figure 13, where the
equation is y > −0.019x2 + 9.6x − 900, all points above the curve are segmented as they fulfill the
stated inequality. As a last step, the output can be cropped to the segment bounds, which is the
whole image in this case.

/cut/<equation >

/cut/y > -0.019x ^2+9.6x -900

Figure 13 Two-dimensional segmentation of a screenshot from Big Buck Bunny [8] using a quadratic
equation to define a cut. The URI must indicate which side of the cut to keep, either as a Boolean value
or as an inequality. The URIs on the left yield the segment visualized on the right.

4.1.3 Explicit Masking
If describing segment boundaries becomes too complex, an alternative, which allows data point-
accurate segment description, is a binary mask. Such a mask can be described in a URI as an
enumeration of binary values. This scheme is usable for any media object type, but an enumeration

J. Willi, A. Bernstein, and L. Rossetto 1:23

order needs to be established for media of more than one dimension. For images, this can, for
instance, be line-wise from top to bottom, as shown in the example in Figure 14. When the mask
is two-dimensional, it can alternatively be represented as a serialized binary image, which can
additionally be base64-encoded to shorten the length of it drastically. In that case, no ambiguities
must be dealt with, provided the mask matches the media object. This approach, also presented
in Figure 14, corresponds to the Data-URL scheme specified in [53]. In the example’s case of
only 10 × 10 pixels, listing binary values is more efficient, but with larger masks, the encoded
PNG becomes superior. In the worst case, when the mask is completely randomized, the base64
encoding is one sixth the size of the binary enumeration. Otherwise, the encoding can be multiple
orders of magnitude smaller with more coherent masks.

/mask/<mask>

/mask/0010001100110010011001100111000101
011011010011011101110011101110011001
001111100010011011110001110010

/mask/iVBORw0KGgoAAAANSUhEUgAAAAoAAAAKAQ
AAAAClSfIQAAAAJklEQVR4XmNgZmA42cCQzs
AQdoDB9wBDcQPDMwcGOwaG2QcYZBoAcpAIJe
jCIp4AAAAASUVORK5CYII=

Figure 14 Two variants of describing a randomized two-dimensional segmentation mask, either as
binary values or the base64 encoding of a binary PNG image.

4.1.4 Space-filling Curve

Clear enumeration orders of data points are provided by space-filling curves, making its application
rather straightforward. Due to its locality preservation properties, the Hilbert curve is chosen for
this purpose. While such a curve is defined to visit every data point, one can instead play with
the curve’s order. This determines the maximum index and thus controls the resolution of the
segmentation. For example, a first-order Hilbert curve for two dimensions splits each dimension
in half, yielding four sub-squares, each corresponding to one curve index. Therefore, the URI
serialization of a segmentation needs to carry information about the order of the curve and a
series of index ranges. An example of a third-order Hilbert curve applied to an image is given in
Figure 15. It shows a roughly similar excerpt as the previous image segmentations, but precision
could be improved by increasing the order and, hence, the number of index ranges. In the same
way, Hilbert curves can also be used to segment media of higher dimensions, such as videos. In
both cases, the media object can be cropped to the segment bounds, and data points not in the
segment need to be neutralized.

4.2 Reduction Segmentation

Reduction segmentations have less variability, making them simpler to serialize and able to cover all
desired segmentations simultaneously. In essence, one only needs to list the description dimensions
to retain. The allowed dimension names depend largely on the concrete segmentation. In Figure
16, only the red and blue color channels are selected by listing them by their name in the URI. In
the output image, the green color value is set to zero for all pixels, such that the image is still
storable in RGB format.

TGDK

1:24 Unified Multimedia Segmentation

/ hilbert /<curve order >,< index ranges >

/ hilbert /3 ,2 ,6 -17 ,28 -31 ,50 ,61

Figure 15 Hilbert curve segmentation of a square screenshot from Big Buck Bunny [8]. The Hilbert
curve is of third order, which corresponds to 64 indices. The URI on the left first specifies the curve order,
followed by the index ranges to segment. This segment is visualized on the right, where the curve starts
with index 1 in the bottom left corner.

/ color /< selections >

/ color /red ,blue

Figure 16 Segmentation by color of a screenshot from Big Buck Bunny [8]. The URI of a two-color
selection on the left is visualized on the right.

4.3 Compound Media Segmentation
All types described so far also translate to compound media objects. In most practical examples,
one or more sub-objects are segmented while the others remain untouched. The only thing
left out is the special case of selecting a subset of media objects. Although this operation is,
strictly speaking, filtering, it makes sense to classify this among the reduction segmentations for
practicality. The main reason is that sub-objects to segment need to be specified in the same
manner with a list of keywords. In the compound media example of a movie with video, audio,
and subtitles, a segmentation for only audio could then look like /stream/audio or alternatively
/stream/1 if the audio stream is known to have an index of 1. The result of this segmentation is
then solely the audio of the movie.

4.4 Segmentation Combination
As established in the formal model, filter functions can be combined using Boolean operations,
which correspond to set operations between the segments. The intersection, in particular, is
inherently already defined through the proposed URI scheme. All other operations, such as
complement, union, or set difference, exist between two segments but would require additional
care and investigation. An important fact for the intersection is that the result of segmentation
on a media object is another valid media object. This means that a second segmentation can be
applied. As shown, this consecutive application of two filter segmentations corresponds to the
intersection of the segments, where the order in which the two are listed is irrelevant. Such a URI
of arbitrarily many nested segmentations then has the form

J. Willi, A. Bernstein, and L. Rossetto 1:25

/<segment type 1>/<segment description 1>/.../<segment type n>/<segment description n>

This allows two considerations. First, it creates the possibility of describing a high-dimensional
segmentation in terms of a combination of lower-dimensional segmentations. For instance, a
spatio-temporal segmentation of a square of a video snippet

/rotoscope/200,rect,0,100,0,100;600,rect,0,100,0,100

is equivalent to segmenting first by time and then by space or vice versa

/time/200-600/rect/0,100,0,100

This only works if the dimensions are not disjoint, as, in this example, the rectangle is independent
of time and can thus be taken apart.

Second, two filter segmentations can operate on the same dimensions. From a theoretical
perspective, this combines the filter functions using logical conjunctions, as described previously.
In practice, however, one must be cautious, as a segmentation can introduce a linear translation of
the data point coordinates. This is due to neutral data points outside of the segment boundaries
being trimmed. For illustration, consider two segmentations that extract a rectangular shape from
a 700 × 400 image, as shown in Figure 17. The first segmentation changes the image dimensions
to 240 × 325, and the lower left corner moves from (100, 35) to (0, 0). The second segmentation
must thus be linearly translated with respect to the first one. Only then can the two URIs be
concatenated to result in the correct intersection segment.

/rect/100,340,35,360

/rect/165,500,10,315

/rect/100,340,35,360/rect/65,400,-25,280

Figure 17 Intersection of two rectangular segmentations of a 700 × 400 screenshot from Big Buck
Bunny [8]. On the left, combining the first two segmentations yields the third, which is adapted to the
change in the image size. The corresponding visualization is on the right.

Reduction segmentation follows a similar setup. Here, the concatenation of two segment URIs
is the intersection of the dimensions of the data point descriptions. Unlike filter segmentations,
reduction segmentations can be combined without any transformations necessary. This is due to
the elements to segment being dimensions that have no order or offset. Therefore, changing them
does not change the boundaries of the media object. For instance, consider two image segments
/color/red,green and /color/green,blue which, when combined, produce an image with only
green-scale colors. Likewise, filter and reduction segmentations can be combined. As the two
operate on fully separate layers, they are again independent, can be combined both ways and do
not need any transformations.

5 Unified Multimedia Segmentation in Knowledge Graphs

While the segmentation mechanisms described above can be used for general-purpose media access
analogously to IIIF, they was primarily designed with knowledge organization tasks in mind.
Specifically, it can be effectively used in knowledge graphs in order to compactly and efficiently

TGDK

1:26 Unified Multimedia Segmentation

refer to a concept that is better represented by a specific part of a multimedia document rather
than the document as a whole. To illustrate the utility of our proposed scheme, consider the
example shown in Figure 18, which shows a rectangular region of an image being annotated with
a label.

“Big Buck Bunny”
schema:label

Figure 18 Rectangular segmentation of a larger screenshot from Big Buck Bunny [8] annotated with
the label “Big Buck Bunny”.

The information depicted in Figure 18 can be represented in different ways using established
graph models. Listing 1 shows an example of how a representation using traditional RDF methods
could look like. In order to capture the fact that a specific image region is supposed to be
annotated, the example introduces an extra graph entity <http://example.org/bunny> and two
relation types; <image:in> and <image:rectRegion> , representing the relationship of an image
region and the type of region, respectively. Since existing RDF graph stores have no notion of
multimedia documents or the information contained therein, the representation requires three
triples together with extra relations, the semantics of which need to be known by a client.

Listing 1 Classical RDF graph example in N-Triples notation.
<http://example.org/bunny> <image:in> <https://peach.blender.org/wp-content/uploads/bbb-splash.png> .
<http://example.org/bunny> <image:rectRegion> "165,340,35,315" .
<http://example.org/bunny> <schema:label> "Big Buck Bunny" .

The same information could also be represented using a property graph. Listing 2 shows a
possible structure using the Property Graph Exchange Format [14]. This example uses two nodes,
one representing the whole image and one for the specific region. The latter has then both the
label as well as the details about how the boundaries of the segmentation are defined as properties.
An alternative representation would have the segmentation boundaries as properties of the relation,
rather than the entity. The expressiveness would be equivalent in this case.

Listing 2 Property graph example in PGEF notation.
101 :Image src:"https://peach.blender.org/wp-content/uploads/bbb-splash.png"
102 :Segment type:rect coords:"165,340,35,315" label:"Big Buck Bunny"

102 -> 101 :segments

When using a graph store that is aware of the types of media documents and supports our
proposed segmentation scheme, the same information can be represented more succinctly. Listing 3
shows an RDF N-Triple example that compacts the information previously represented in three
triples into just one. This example assumes that the graph store listens to example.org and
is also directly storing the media document and implementing the segmentation. A practical
implementation of such a graph store is outlined in Section 6.

J. Willi, A. Bernstein, and L. Rossetto 1:27

Listing 3 RDF graph example in N-Triples notation with support for unified multimedia segmentation
scheme.
<http://example.org/bbb-splash/segment/rect/165,340,35,315> <schema:label> "Big Buck Bunny" .

RDF is especially suitable for our proposed scheme since it inherently uses URLs to represent
nodes in the graph. Addressing segments of known documents, rather than the document as a
whole, therefore, does not require the introduction of placeholder nodes with no inherent meaning
as in Listing 1. Instead, both <http://example.org/bbb-splash/segment/rect/165,340,35,315>

and <http://example.org/bbb-splash> in the context of Listing 3 would be valid URLs that
directly return the expected content. An additional benefit of a graph store implementing our
scheme directly is, that it would be aware that these two graph entities are related, specifically
that the former is a segment of the latter. This information could then be exploited when querying
the graph without the need to explicitly materialize such relations.

While our segmentation scheme is especially suited to RDF graph representations, it is by no
means limited to it. Listing 4 exemplifies the use of the scheme in a property graph, which enables
the representation of the entire relevant information content in a single node without the need for
any relations.

Listing 4 Property graph example in PGEF notation using the unified multimedia segmentation
scheme.
101 :Image src:"http://example.org/bbb-splash/segment/rect/165,340,35,315" label:"Big Buck Bunny"

6 Implementation

Based on the theoretical considerations of the previous sections, the Unified Segmentation Model
is implemented in the MediaGraph Store (MeGraS) codebase,6 a storage and querying engine for
multimodal data written in Kotlin. MeGraS is a graph store that follows the MediaGraph concept,
which treats media components of multimodal knowledge graphs not as a collection of opaque
documents external to the graph but as parts of the graph itself. The goal of the implementation
is to showcase the soundness of the formal model. To that end, the schemes established in the
previous section serve as the basis. The scope of the implementation is set to cover the most
important document types and types of segmentation. We also implement a test suite7 for all
segmentations supported by MeGraS, which serves not only as validation of our implementation
but can also serve to validate other implementation of our proposed scheme.

The MediaGraph Store is constructed as a web server, exposing a REST API where users can
add media and metadata and run queries on it. Metadata, including references to the corresponding
files on the hard drive, are stored as RDF triples in a database.

Adding Multimedia Objects

Upon addition via an HTTP-POST request, each media object is stored in its raw format and
a transcoded canonical format. The server then returns a canonical ID. With that generated
canonical ID, the media object is then retrievable under the URI of the form

<server address >/< canonical id >

6 https://github.com/lucaro/MeGraS
7 https://github.com/lucaro/Unified-Media-Segmentation-Test-Suite

TGDK

https://github.com/lucaro/MeGraS
https://github.com/lucaro/Unified-Media-Segmentation-Test-Suite

1:28 Unified Multimedia Segmentation

Accessing Media Segments

The implementation provided in this paper now adds functionality to additionally request segments
of a media object using a URI of the form
<server address>/<canonical id>/segment/<segment type>/<segment description>

which, after processing, generates a segment. Segment type and description largely correspond to
the syntax from Section 4. Because segments remain legitimate media objects of the same type
as the original, segmentations can be arbitrarily nested. One can even directly request multiple
segmentations in one request URI. These are then processed one by one.

The system follows a lazy-loading approach and caches all media, meaning that a certain
segmentation is performed only the first time it is requested. Repeated requests then yield the
cached result directly. For that, a canonical segment ID is generated from the segmentation type
and description, with which a certain segmentation is uniquely identified and requested using a
URI of the form
<server address >/< canonical id >/c/< segment id >

This is the only form of URIs that will directly return the actual content of the segment. All
other requests containing a segment definition, as described above, will be re-directed to the
representation containing the segment ID. This mechanism also allows the combination of equivalent
segment definitions into the same segment with the same ID. The equivalence of different ways of
referring to the same segment is also reflected in the underlying graph structure by inserting a
triple using the sameAs relation. An additional advantage of this representation is its compactness
compared to possibly very verbose segment definitions when it is used as part of graph queries.

7 Discussion

The goal of the Unified Segmentation Model was to generalize the process of segmentation and
describe it in mathematical terms. For that, a multimedia object and the segmentation operation
on arbitrary media objects were defined. Media objects were constructed as sets of data points
whose properties are separated into coordinate dimensions and description dimensions. This
separation proved to be valuable, as segmentation can target either of the two. Consequently, the
segmentation operation could be defined as either a filter or a reduction, where a filter selects
a subset of coordinates, and a reduction retains only a part of the description dimensions. The
strength of this setup is its generality, as the model can portray all conceivable types of multimedia
documents and segmentations of them. Additionally, its mathematical core allows deductions
using set theory and Boolean algebra. This breadth of functionality, based on a proper formal
foundation, enables our model to fulfill all criteria outlined in Table 1.

In literature, only the General Fragment Model (GFM) [23, 24] tries to take a similarly general
perspective. All other accounts are more of a means to an end, as they are application-oriented
and focus on concrete use cases. Unlike the Unified Segmentation Model presented here, the GFM
is constructed as an ontology to systemize the definition of segments. Nonetheless, parallels can
be observed and are summarized in Table 2. In the GFM, an indexer function maps tokens to
fragments of the information artifact. This corresponds to a segmentation function that creates
segments of the multimedia object. Concrete filter or reduction functions can be seen as tokens.
Applying them to media objects corresponds to the GFM’s notion of anchors. The token set of the
GFM defines the set of possible tokens, which is the set of valid and complete filter and reduction
functions. This shows that the proposed model can be represented in terms of the GFM. While
the GFM is a powerful abstract formalization of segmentation description, our model far exceeds
it by providing a formal model that adds concrete instantiations that allow the investigation of
properties and the extraction of characteristics.

J. Willi, A. Bernstein, and L. Rossetto 1:29

Table 2 Comparison of core concepts of the General Fragment Model with the proposed Unified
Segmentation Model.

General Fragment Model Unified Segmentation Model

information artifact multimedia object
indexer function segmentation function
tuple token filter or reduction function
token set set of all valid and complete functions
anchor segmentation function applied to multimedia object

A vital part of the formal model is the reflection on how filter and reduction function internals
can be described. Again, parallels to the GFM’s indexer taxonomy are visible. Unlike the GFM,
though, it paves the way toward implementation. It can be observed that the rules by which a
segmentation operates are stateable in different fashions depending on the use case and can be
translated into each other. This addresses some of the model’s difficulties of its generality and
creates a solid foundation for the implementation.

Before implementation was possible, the Unified Segmentation Model needed to be given a
more concrete shape to prepare for implementation by closely examining the specific segmentation
function types. The choice of a URI-based approach was never a question, as metadata-based
segment description adds an indirection and thus defeats the purpose of the whole project: making
media first-class citizens in knowledge graphs. The segmentation types and categories were created
based on the investigation of how segmentation rules can be described. Surely, not all proposed
segmentations are equally important for real-life applications. Space-filling curves, for instance, are
a fascinating mental model to establish a locality-preserving order, but not something one would
regularly create segments with. At the same time, URI serialization of the segment descriptions
was investigated. The main challenge of this part is the right balance between generality and
implementable concreteness. The resulting segmentation types and serializations should be capable
of covering all desirable segmentations with little adaptations.

An issue introduced by this concretization is rigidity. To textually describe multi-dimensional
segments and to do it uniquely requires a certain level of regulation. However, determining the
best representation is not always trivial, as this can depend on the context. This factor can take
away intuitiveness, as different users would represent a particular segmentation differently. To
use the proposed URI schemes to describe segmentations, one has to use the right segment type
keywords8 and closely follow the segment description syntax.

This is comparable to URI-based segment annotation approaches from the literature, where
the same necessary evil can be found many times. Most notably, existing approaches suffer at
least one of two issues: weak segmentation coverage or ambiguity and complexity. For instance,
the Media Fragments URI specification only supports limited segmentations but is very expressive,
whereas the MPEG-21 standard is more powerful but overly ambiguous and unintuitive. This
work tries to absorb the best of both worlds and combat both problems simultaneously. Against
the first, the proposed schemes cover all conceivable segmentations, or at least the ones realistically
used in practice. Adding more variations should be simple, though, as the same pattern can
be continued. For the second, efforts were made to keep the URIs as concise and expressive as
possible, such that the human eye can also understand them to a certain degree. Unlike almost all

8 To standardize the kinds of segment types permissible, one could have a standard with a list of suggested/sup-
ported keywords or an “ontology”/vocabulary, which may include mathematical specifications that may/or
may not be interpreted on the fly

TGDK

1:30 Unified Multimedia Segmentation

standards, this work fully refrains from using URI fragments because they are intended to identify
secondary resources or views instead of representing a segment as its own resource in relation to
its parent. Additionally, a practical reason against fragments is that they are typically interpreted
by the client application, which requires client support. In a case like the Media Fragments URI
specification, clients must either segment locally or translate URI fragments and send requests
for partial content, neither of which is fully implemented in standard browsers. URI queries are
equally not desired, as they create new resources without a relation to the original. Instead, URI
paths are employed, corresponding to how knowledge graph nodes are usually represented. IIIF
served as a model here, as its image processing is purely server-side, and images are fetched as
path URIs using standard HTTP requests. Additionally, IIIF is the only approach that combines
Semantic Web technology with multimedia on a technical level, as it defines a consistent URI
scheme for accessing full and partial image content. Unfortunately, IIIF’s flexibility to describe
segments is minimal, and only images are supported, despite various efforts to extend to more
media types.

8 Conclusions

This work was guided by the question of how to universally represent segments of multimedia
documents for use in knowledge graphs. While the annotation of partial media content, and thus
the need for a textual segment representation, is nothing new to the literature and Semantic Web
applications, all theoretical and practical solutions have certain shortcomings. Metadata-based
annotations use a secondary document to define segments of the main document, thus introducing
an indirection. URI-based approaches are either very limited in their capabilities or are too
complex to use. Further, URI fragments are most often used, which are interpreted client-side
and thus require special client software. Only IIIF, through its image API, provides a standard
HTTP interface for image segment retrieval. Unfortunately, available solutions are limited in the
range of supported multimedia documents and segmentation types. Furthermore, only the General
Fragment Model tries to generalize the conceptual segmentation model but lacks expressiveness.

To fill the gap in the literature, this paper proposes a Unified Segmentation Model, which can
express an arbitrary segmentation on any multimedia document and comprises both a formal
model and an applied URI scheme. The former mathematically describes multimedia objects and
investigates different types of segmentation functions, which allows the inference of set-theoretical
properties. It is then deduced by which rules concrete segmentation functions select partial content
and how these rules can be described. In contrast to the many approaches found in literature, this
theoretical foundation is defined independently of any specific existing media type. Based on these
investigations, a URI scheme is presented that covers all types of segmentations and proposes
serializations of segmentations typically found in research and real life. Due to its content-agnostic
theoretical foundation, this scheme is not tightly bound to existing media formats and can easily
be extended to future information representations. This might even include currently not widely
used data types and modalities, such as, for example, holographic information or smells. Our
proposed URI scheme is then implemented in the MediaGraph Store, a storage and querying
engine for multimedia knowledge graphs. The implementation encompasses a representative set of
segmentations and supports various media, namely text, audio, image, video, PDF, and 3D mesh.

In the future, the Unified Segmentation Model can certainly allow for more deductions and
considerations. For instance, only the intersection of two segments is inherently supported, as
it corresponds to the concatenation of their URIs. Here, the formal model could be leveraged
further to investigate other set operations, increasing the expressive power of media segments in
knowledge graphs. Additionally, future work could delve into properties that efficiently determine

J. Willi, A. Bernstein, and L. Rossetto 1:31

equivalence, containment, and overlap, as the current deductions are too basic to be useable in
practice. Some segment serializations tend to become very large, which is cumbersome, hinders
performance, and ultimately can lead to HTTP errors. Therefore, more thought should go into
alternative encodings of these segments to increase compaction without sacrificing segment quality.
Beyond the sole representation of segments, future work should finally address the querying,
discovery, and retrieval of media segments.

But even in the light of these limitations, the Unified Segmentation Model and its associated
URI scheme seem to provide a crucial element to advance the state of multimedia data usage in
knowledge graphs by breaking the atomicity of multimedia content in a theoretically-founded,
media-type agnostic approach and on the Web and a stepping stone for extensions that can finally
turn multimedia data into a first-class citizen in knowledge graphs and the Web of Data.

References
1 3D Systems, Inc. Stereolithography interface spec-

ification, October 1989.
2 Richard Arndt, Raphaël Troncy, Steffen Staab,

Lynda Hardman, and Miroslav Vacura. COMM:
Designing a well-founded multimedia ontol-
ogy for the web. In The Semantic Web,
pages 30–43. Springer, 2007. doi:10.1007/
978-3-540-76298-0_3.

3 Ana B. Benitez, Seungyup Paek, Shih-Fu Chang,
Atul Puri, Qian Huang, John R. Smith, Chung-
Sheng Li, Lawrence D Bergman, and Charles N. Ju-
dice. Object-based multimedia content description
schemes and applications for MPEG-7. Signal Pro-
cessing: Image Communication, 16(1-2):235–269,
September 2000. doi:10.1016/s0923-5965(00)
00030-8.

4 Tim Berners-Lee. Linked data, July 2006. (Re-
trieved 2023-07-20). URL: https://www.w3.org/
DesignIssues/LinkedData.

5 Tim Berners-Lee, Roy T. Fielding, and Larry
Masinter. Uniform resource identifiers (URI):
generic syntax. RFC, 2396(2396):1–40, August
1998. doi:10.17487/RFC2396.

6 Tim Berners-Lee, Roy T. Fielding, and Larry Mas-
inter. Uniform resource identifier (URI): generic
syntax. RFC, 3986(3986):1–61, January 2005.
doi:10.17487/RFC3986.

7 Tim Berners-Lee, James Hendler, and Ora Lassila.
The semantic web. Scientific American, 284(5):34–
43, 2001.

8 Blender Foundation. Big buck bunny, 2008.
(Retrieved 2023-05-24). doi:10.1145/1504271.
1504321.

9 Stephan Bloehdorn, Siegfried Handschuh, Steffen
Staab, Yannis Avrithis, Yiannis Kompatsiaris, Vas-
silis Tzouvaras, Kosmas Petridis, Nikos Simou, and
Michael G. Strintzis. Knowledge representation
for semantic multimedia content analysis and rea-
soning. In European Workshop on the Integration
of Knowledge, Semantics and Digital Media Tech-
nology (EWIMT), November 2004.

10 Jon Bosak and Tim Bray. Xml and the second-
generation web. Scientific American, 280(5):89–93,
1999.

11 Ian S. Burnett, Fernando Pereira, Rik Van de
Walle, and Rob Koenen. The MPEG-21 Book.
Wiley, 2006.

12 Nick Burris and David Bokan. Text fragments.
W3C community group draft report, W3C, De-
cember 2022. URL: https://wicg.github.io/
scroll-to-text-fragment/.

13 Jeremy Carroll and Graham Klyne. Resource
description framework (RDF): Concepts and ab-
stract syntax. W3C recommendation, W3C, Febru-
ary 2004. URL: https://www.w3.org/TR/2004/
REC-rdf-concepts-20040210/.

14 Hirokazu Chiba, Ryota Yamanaka, and Shota
Matsumoto. Property graph exchange format.
CoRR, abs/1907.03936, 2019. arXiv:1907.03936,
doi:10.48550/arXiv.1907.03936.

15 Tom Crane. Wellcome library ixif "interim"
implementation, 2015. (Retrieved 2023-02-
27). URL: https://gist.github.com/tomcrane/
7f86ac08d3b009c8af7c.

16 Richard Cyganiak and Leo Sauermann. Cool URIs
for the semantic web. W3C note, W3C, December
2008.

17 Mike Dean and Guus Schreiber. OWL web on-
tology language reference. W3c recommendation,
W3C, February 2004. URL: https://www.w3.org/
TR/2004/REC-owl-ref-20040210/.

18 Steven DeRose, Eve Maler, and Ron Daniel.
XPointer xpointer() scheme. W3C working draft,
W3C, December 2002. URL: https://www.w3.
org/TR/2002/WD-xptr-xpointer-20021219/.

19 Davy Van Deursen, Wim Van Lancker, Erik Man-
nens, and Rik Van de Walle. NinSuna: A server-
side w3c media fragments implementation. In
2010 IEEE International Conference on Multi-
media and Expo (ICME). IEEE, July 2010. doi:
10.1109/icme.2010.5583192.

20 Davy Van Deursen, Wim Van Lancker, Wes-
ley De Neve, Tom Paridaens, Erik Mannens,
and Rik Van de Walle. NinSuna: a fully in-
tegrated platform for format-independent multi-
media content adaptation and delivery using se-
mantic web technologies. Multimedia Tools and
Applications, 46(2-3):371–398, September 2009.
doi:10.1007/s11042-009-0354-0.

21 Davy Van Deursen, Raphaël Troncy, Erik
Mannens, and Silvia Pfeiffer. Protocol for
media fragments 1.0 resolution in HTTP.
W3C working draft, W3C, December

TGDK

https://doi.org/10.1007/978-3-540-76298-0_3
https://doi.org/10.1007/978-3-540-76298-0_3
https://doi.org/10.1016/s0923-5965(00)00030-8
https://doi.org/10.1016/s0923-5965(00)00030-8
https://www.w3.org/DesignIssues/LinkedData
https://www.w3.org/DesignIssues/LinkedData
https://doi.org/10.17487/RFC2396
https://doi.org/10.17487/RFC3986
https://doi.org/10.1145/1504271.1504321
https://doi.org/10.1145/1504271.1504321
https://wicg.github.io/scroll-to-text-fragment/
https://wicg.github.io/scroll-to-text-fragment/
https://www.w3.org/TR/2004/REC-rdf-concepts-20040210/
https://www.w3.org/TR/2004/REC-rdf-concepts-20040210/
https://arxiv.org/abs/1907.03936
https://doi.org/10.48550/arXiv.1907.03936
https://gist.github.com/tomcrane/7f86ac08d3b009c8af7c
https://gist.github.com/tomcrane/7f86ac08d3b009c8af7c
https://www.w3.org/TR/2004/REC-owl-ref-20040210/
https://www.w3.org/TR/2004/REC-owl-ref-20040210/
https://www.w3.org/TR/2002/WD-xptr-xpointer-20021219/
https://www.w3.org/TR/2002/WD-xptr-xpointer-20021219/
https://doi.org/10.1109/icme.2010.5583192
https://doi.org/10.1109/icme.2010.5583192
https://doi.org/10.1007/s11042-009-0354-0

1:32 Unified Multimedia Segmentation

2011. URL: https://www.w3.org/TR/2011/
WD-media-frags-recipes-20111201/.

22 Davy Van Deursen, Raphaël Troncy, Erik Man-
nens, Silvia Pfeiffer, Yves Lafon, and Rik Van
de Walle. Implementing the media fragments
URI specification. In International Conference
on World Wide Web. ACM, April 2010. doi:
10.1145/1772690.1772931.

23 Sandro Rama Fiorini, Wallas Henrique Sousa dos
Santos, Rodrigo Costa Mesquita Santos, Guil-
herme Augusto Ferreira Lima, and Márcio Ferreira
Moreno. General fragment model for information
artifacts. CoRR, abs/1909.04117, 2019. arXiv:
1909.04117, doi:10.48550/arXiv.1909.04117.

24 Sandro Rama Fiorini, Guilherme Ferreira Lima,
and Marcio F. Moreno. Demo: Tools for informa-
tion fragmentation in knowledge graphs*. CEUR
Workshop Proceedings, 2980:1–5, 2021. URL:
https://ceur-ws.org/Vol-2980/paper377.pdf.

25 Aldo Gangemi, Nicola Guarino, Claudio Masolo,
Alessandro Oltramari, and Luc Schneider. Sweet-
ening ontologies with DOLCE. In Knowledge Engi-
neering and Knowledge Management: Ontologies
and the Semantic Web, pages 166–181. Springer,
2002. doi:10.1007/3-540-45810-7_18.

26 Roberto García and Òscar Celma. Semantic in-
tegration and retrieval of multimedia metadata.
In Siegfried Handschuh, Thierry Declerck, and
Marja-Riitta Koivunen, editors, Proceedings of
the 5th International Workshop on Knowledge
Markup and Semantic Annotation (SemAnnot
2005) located at the 4rd International Semantic
Web Conference ISWC 2005, 7th November 2005,
Galway, Ireland, volume 185 of CEUR Workshop
Proceedings. CEUR-WS.org, 2005. URL: https:
//ceur-ws.org/Vol-185/semAnnot05-07.pdf.

27 Paul Grosso, Eve Maler, Jonathan Marsh,
and Norman Walsh. XPointer element()
scheme. W3C recommendation, W3C, March
2003. URL: https://www.w3.org/TR/2003/
REC-xptr-element-20030325/.

28 Paul Grosso, Eve Maler, Jonathan Marsh, and Nor-
man Walsh. XPointer framework. W3C recommen-
dation, W3C, March 2003. URL: https://www.w3.
org/TR/2003/REC-xptr-framework-20030325/.

29 Ramanathan Guha and Dan Brickley. RDF
vocabulary description language 1.0: RDF
schema. W3C recommendation, W3C, Febru-
ary 2004. URL: https://www.w3.org/TR/2004/
REC-rdf-schema-20040210/.

30 Michael Hausenblas, Raphaël Troncy, Tobias
Bürger, and Yves Raimond. Interlinking mul-
timedia: How to apply linked data principles
to multimedia fragments. In Christian Bizer,
Tom Heath, Tim Berners-Lee, and Kingsley
Idehen, editors, Proceedings of the WWW2009
Workshop on Linked Data on the Web, LDOW
2009, Madrid, Spain, April 20, 2009, volume
538 of CEUR Workshop Proceedings. CEUR-
WS.org, 2009. URL: https://ceur-ws.org/
Vol-538/ldow2009_paper17.pdf.

31 Michael Hausenblas, Erik Wilde, and Jeni Ten-
nison. URI fragment identifiers for the text/csv
media type. RFC, 7111(7111):1–13, January 2014.
doi:10.17487/RFC7111.

32 Ian Hickson, Robin Berjon, Steve Faulkner, Travis
Leithead, Erika Doyle Navara, Theresa O’Connor,
and Silvia Pfeiffer. HTML5. W3C recommenda-
tion, W3C, October 2014. URL: https://www.w3.
org/TR/2014/REC-html5-20141028/.

33 Aidan Hogan, Eva Blomqvist, Michael Cochez,
Claudia D’amato, Gerard De Melo, Claudio
Gutierrez, Sabrina Kirrane, José Emilio Labra
Gayo, Roberto Navigli, Sebastian Neumaier, Axel-
Cyrille Ngonga Ngomo, Axel Polleres, Sabbir M.
Rashid, Anisa Rula, Lukas Schmelzeisen, Juan Se-
queda, Steffen Staab, and Antoine Zimmermann.
Knowledge graphs. ACM Comput. Surv., 54(4),
July 2021. doi:10.1145/3447772.

34 Philipp Hoschka. Synchronized multimedia inte-
gration language (SMIL) 1.0 specification. W3C
recommendation, W3C, June 1998. URL: https:
//www.w3.org/TR/1998/REC-smil-19980615/.

35 Jane Hunter. Adding multimedia to the se-
mantic web: Building an MPEG-7 ontology.
In Isabel F. Cruz, Stefan Decker, Jérôme
Euzenat, and Deborah L. McGuinness, edi-
tors, Proceedings of SWWS’01, The first Se-
mantic Web Working Symposium, Stanford
University, California, USA, July 30 - Au-
gust 1, 2001, pages 261–283. CEUR-WS.org,
2001. URL: http://www.semanticweb.org/
SWWS/program/full/paper59.pdf, doi:10.1002/
0470012617.ch3.

36 Antoine Isaac and Raphaël Troncy. Designing and
Using an Audio-Visual Description Core Ontol-
ogy. Workshop on Core Ontologies in Ontology
Engineering, 118, 2004.

37 ISO/IEC 15938. Multimedia Content Description
Interface (MPEG-7). Standard, Moving Picture
Experts Group, 2001.

38 ISO/IEC 21000. Multimedia Framework (MPEG-
21). Standard, Moving Picture Experts Group,
2002.

39 ISO/IEC 21000-17. Multimedia framework (mpeg-
21) – part 17: Fragment identification of mpeg re-
sources. Standard, Moving Picture Experts Group,
2006.

40 Dean Jackson. Scalable vector graphics (SVG):
the world wide web consortium’s recommenda-
tion for high quality web graphics. In Tom Ap-
polloni, editor, Proceedings of the 29th Interna-
tional Conference on Computer Graphics and In-
teractive Techniques, SIGGRAPH 2002, San An-
tonio, Texas, USA, July 21-26, 2002, Abstracts
and Applications, page 319. ACM, January 2002.
doi:10.1145/1242073.1242327.

41 Rob Koenen and Fernando Pereira. MPEG-7:
The Generic Multimedia Content Description Stan-
dard, Part 1. IEEE Multimedia, 9(2):78–87, 2002.
doi:10.1109/93.998074.

42 Thomas Kurz, Georg Güntner, Violeta Dam-
janovic, Sebastian Schaffert, and Manuel Fer-
nandez. Semantic enhancement for media as-
set management systems - integrating the red
bull content pool in the web of data. Multim.
Tools Appl., 70(2):949–975, August 2014. doi:
10.1007/s11042-012-1197-7.

43 Thomas Kurz and Harald Kosch. Lifting me-
dia fragment uris to the next level. In Euro-
pean Semantic Web Conference ESWC, Interna-

https://www.w3.org/TR/2011/WD-media-frags-recipes-20111201/
https://www.w3.org/TR/2011/WD-media-frags-recipes-20111201/
https://doi.org/10.1145/1772690.1772931
https://doi.org/10.1145/1772690.1772931
https://arxiv.org/abs/1909.04117
https://arxiv.org/abs/1909.04117
https://doi.org/10.48550/arXiv.1909.04117
https://ceur-ws.org/Vol-2980/paper377.pdf
https://doi.org/10.1007/3-540-45810-7_18
https://ceur-ws.org/Vol-185/semAnnot05-07.pdf
https://ceur-ws.org/Vol-185/semAnnot05-07.pdf
https://www.w3.org/TR/2003/REC-xptr-element-20030325/
https://www.w3.org/TR/2003/REC-xptr-element-20030325/
https://www.w3.org/TR/2003/REC-xptr-framework-20030325/
https://www.w3.org/TR/2003/REC-xptr-framework-20030325/
https://www.w3.org/TR/2004/REC-rdf-schema-20040210/
https://www.w3.org/TR/2004/REC-rdf-schema-20040210/
https://ceur-ws.org/Vol-538/ldow2009_paper17.pdf
https://ceur-ws.org/Vol-538/ldow2009_paper17.pdf
https://doi.org/10.17487/RFC7111
https://www.w3.org/TR/2014/REC-html5-20141028/
https://www.w3.org/TR/2014/REC-html5-20141028/
https://doi.org/10.1145/3447772
https://www.w3.org/TR/1998/REC-smil-19980615/
https://www.w3.org/TR/1998/REC-smil-19980615/
http://www.semanticweb.org/SWWS/program/full/paper59.pdf
http://www.semanticweb.org/SWWS/program/full/paper59.pdf
https://doi.org/10.1002/0470012617.ch3
https://doi.org/10.1002/0470012617.ch3
https://doi.org/10.1145/1242073.1242327
https://doi.org/10.1109/93.998074
https://doi.org/10.1007/s11042-012-1197-7
https://doi.org/10.1007/s11042-012-1197-7

J. Willi, A. Bernstein, and L. Rossetto 1:33

tional Workshop on Linked Media, volume 1615.
CEUR-WS.org, 2016. URL: https://ceur-ws.
org/Vol-1615/limePaper3.pdf.

44 Thomas Kurz, Sebastian Schaffert, Kai Schlegel,
Florian Stegmaier, and Harald Kosch. SPARQL-
MM - extending SPARQL to media fragments.
In Lecture Notes in Computer Science, pages
236–240. Springer International Publishing, 2014.
doi:10.1007/978-3-319-11955-7_26.

45 Carl Lagoze and Jane Hunter. The ABC on-
tology and model. In Keizo Oyama and Hi-
ronobu Gotoda, editors, 2001 International Con-
ference on Dublin Core and Metadata Applications,
pages 160–176. Dublin Core Metadata Initiative,
2001. URL: http://dcpapers.dublincore.org/
pubs/article/view/655.

46 David H. Laidlaw, W. Benjamin Trumbore, and
John F. Hughes. Constructive solid geometry for
polyhedral objects. In 1986 Conference on Com-
puter Graphics and Interactive Techniques (SIG-
GRAPH). ACM, 1986. doi:10.1145/15922.15904.

47 Wim Van Lancker, Davy Van Deursen, Erik Man-
nens, and Rik Van de Walle. HTTP adaptive
streaming with media fragment URIs. In 2011
IEEE International Conference on Multimedia
and Expo (ICME). IEEE, July 2011. doi:10.1109/
icme.2011.6012149.

48 Wim Van Lancker, Davy Van Deursen, Erik Man-
nens, and Rik Van de Walle. Implementation
strategies for efficient media fragment retrieval.
Multimedia Tools and Applications, 57(2):243–267,
March 2011. doi:10.1007/s11042-011-0785-2.

49 Jim Ley. Thoughts on an image description vocab-
ulary, August 2003. (Retrieved 2023-06-05). URL:
http://jibbering.com/discussion/image.html.

50 Library of Congress. Streaming services:
An audio and video (a/v) delivery api for
the library of congress. (Retrieved 2023-
03-01). URL: https://www.loc.gov/apis/
micro-services/streaming-services/.

51 Gene Loh. Linked data and IIIF: Integrating taxon-
omy management with image annotation. In 2017
Pacific Neighborhood Consortium Annual Confer-
ence and Joint Meetings (PNC). IEEE, November
2017. doi:10.23919/pnc.2017.8203521.

52 Erik Mannens, Davy Van Deursen, Raphaël
Troncy, Silvia Pfeiffer, Conrad Parker, Yves Lafon,
Jack Jansen, Michael Hausenblas, and Rik Van
De Walle. A URI-based approach for addressing
fragments of media resources on the web. Multime-
dia Tools and Applications, 59(2):691–715, 2012.
doi:10.1007/s11042-010-0683-z.

53 Larry Masinter. The "data" URL scheme. RFC,
2397(2397):1–5, August 1998. doi:10.17487/
RFC2397.

54 James D. Murray and William vanRyper. En-
cyclopedia of graphics file formats, 2nd Edition.
Springer, 2 edition, May 1996. URL: http://
oreilly.com/catalog/9781565921610.

55 Klinsukon Nimkanjana and Suntorn Witosurapot.
A simple approach for enabling sparql-based
temporal queries for media fragments. In Ka-
mal Zuhairi Zamli, Vitaliy Mezhuyev, and Luigi
Benedicenti, editors, Proceedings of the 7th Inter-
national Conference on Software and Computer
Applications, ICSCA 2018, Kuantan, Malaysia,

February 08-10, 2018, pages 212–216. ACM, 2018.
doi:10.1145/3185089.3185126.

56 Lyndon J. B. Nixon, Matthias Bauer, Cristian
Bara, Thomas Kurz, and John Pereira. Con-
nectme: Semantic tools for enriching online video
with web content. In 2012 I-SEMANTICS
Posters & Demonstrations Track, volume 932
of CEUR Workshop Proceedings, pages 55–62.
CEUR-WS.org, 2012. URL: https://ceur-ws.
org/Vol-932/paper11.pdf.

57 Silvia Pfeiffer, Conrad Parker, and Claudia Schrem-
mer. Annodex: a simple architecture to enable
hyperlinking, search & retrieval of time–continuous
data on the web. In Nicu Sebe, Michael S. Lew,
and Chabane Djeraba, editors, Proceedings of the
5th ACM SIGMM International Workshop on Mul-
timedia Information Retrieval, MIR 2003, Novem-
ber 7, 2003, Berkeley, CA, USA, pages 87–93.
ACM, 2003. doi:10.1145/973264.973279.

58 Silvia Pfeiffer and Craig Parker. Specify-
ing time intervals in URI queries and frag-
ments of time-based Web resources. Internet-
Draft draft-pfeiffer-temporal-fragments-03,
Internet Engineering Task Force, 2005.
URL: https://datatracker.ietf.org/doc/
draft-pfeiffer-temporal-fragments/03/.

59 Julien A. Raemy, Peter Fornaro, and Lukas
Rosenthaler. Implementing a video framework
based on IIIF: A customized approach from long-
term preservation video formats to conversion
on demand. Archiving Conference, 14(1):68–73,
May 2017. doi:10.2352/issn.2168-3204.2017.1.
0.68.

60 A. A. G. Requicha and H. B. Voelcker. Construc-
tive solid geometry. Technical report, production
automation project tm-25, University of Rochester,
November 1977.

61 Lukas Rosenthaler, Peter Fornaro, Andrea Bianco,
and Benjamin Geer. Simple image presentation
interface (SIPI) – an IIIF-based image-server.
Archiving Conference, 14:28–33, May 2017. doi:
10.2352/issn.2168-3204.2017.1.0.28.

62 Luca Rossetto. lucaro/Unified-Media-
Segmentation-Test-Suite. Audiovisual (visited on
2024-12-12). URL: https://github.com/lucaro/
Unified-Media-Segmentation-Test-Suite,
doi:10.4230/artifacts.22623.

63 Luca Rossetto and Jan Willi. lucaro/MeGraS. Soft-
ware, swhId: swh:1:dir:d2dfb84bd390d27ad961
90f973dfa484b9e68bc0 (visited on 2024-12-12).
URL: https://github.com/lucaro/MeGraS, doi:
10.4230/artifacts.22622.

64 Carsten Saathoff and Ansgar Scherp. M3O: The
multimedia metadata ontology. In 2009 Workshop
on Semantic Multimedia Database Technologies,
10th International Workshop of the Multimedia
Metadata Community (SeMuDaTe), volume 539,
pages 4–15. CEUR-WS.org, 2009.

65 Philippe Salembier and John R. Smith. Mpeg-7
multimedia description schemes. IEEE Transac-
tions on Circuits and Systems for Video Technol-
ogy, 11(6):748–759, 2001. doi:10.1109/76.927435.

66 Elena Sánchez-Nielsen, Francisco Chávez-
Gutiérrez, Javier Lorenzo-Navarro, and Modesto
Castrillón-Santana. A multimedia system to
produce and deliver video fragments on demand

TGDK

https://ceur-ws.org/Vol-1615/limePaper3.pdf
https://ceur-ws.org/Vol-1615/limePaper3.pdf
https://doi.org/10.1007/978-3-319-11955-7_26
http://dcpapers.dublincore.org/pubs/article/view/655
http://dcpapers.dublincore.org/pubs/article/view/655
https://doi.org/10.1145/15922.15904
https://doi.org/10.1109/icme.2011.6012149
https://doi.org/10.1109/icme.2011.6012149
https://doi.org/10.1007/s11042-011-0785-2
http://jibbering.com/discussion/image.html
https://www.loc.gov/apis/micro-services/streaming-services/
https://www.loc.gov/apis/micro-services/streaming-services/
https://doi.org/10.23919/pnc.2017.8203521
https://doi.org/10.1007/s11042-010-0683-z
https://doi.org/10.17487/RFC2397
https://doi.org/10.17487/RFC2397
http://oreilly.com/catalog/9781565921610
http://oreilly.com/catalog/9781565921610
https://doi.org/10.1145/3185089.3185126
https://ceur-ws.org/Vol-932/paper11.pdf
https://ceur-ws.org/Vol-932/paper11.pdf
https://doi.org/10.1145/973264.973279
https://datatracker.ietf.org/doc/draft-pfeiffer-temporal-fragments/03/
https://datatracker.ietf.org/doc/draft-pfeiffer-temporal-fragments/03/
https://doi.org/10.2352/issn.2168-3204.2017.1.0.68
https://doi.org/10.2352/issn.2168-3204.2017.1.0.68
https://doi.org/10.2352/issn.2168-3204.2017.1.0.28
https://doi.org/10.2352/issn.2168-3204.2017.1.0.28
https://github.com/lucaro/Unified-Media-Segmentation-Test-Suite
https://github.com/lucaro/Unified-Media-Segmentation-Test-Suite
https://doi.org/10.4230/artifacts.22623
https://archive.softwareheritage.org/swh:1:dir:d2dfb84bd390d27ad96190f973dfa484b9e68bc0;origin=https://github.com/lucaro/MeGraS;visit=swh:1:snp:223a0c5b2c4d4793f3e3d8b25cefeeafd8a41c11;anchor=swh:1:rev:0bd62c1f4848ca23d1164d35916eaaaddf8645f5
https://archive.softwareheritage.org/swh:1:dir:d2dfb84bd390d27ad96190f973dfa484b9e68bc0;origin=https://github.com/lucaro/MeGraS;visit=swh:1:snp:223a0c5b2c4d4793f3e3d8b25cefeeafd8a41c11;anchor=swh:1:rev:0bd62c1f4848ca23d1164d35916eaaaddf8645f5
https://github.com/lucaro/MeGraS
https://doi.org/10.4230/artifacts.22622
https://doi.org/10.4230/artifacts.22622
https://doi.org/10.1109/76.927435

1:34 Unified Multimedia Segmentation

on parliamentary websites. Multimedia Tools and
Applications, 76(5):6281–6307, February 2016.
doi:10.1007/s11042-016-3306-5.

67 Felix Sasaki, Tobias Bürger, Wonsuk Lee, Florian
Stegmaier, Joakim Söderberg, Jean-Pierre EVAIN,
Werner Bailer, Thierry Michel, John Strassner,
Véronique Malaisé, and Pierre-Antoine Champin.
Ontology for media resources 1.0. W3C recommen-
dation, W3C, February 2012. URL: https://www.
w3.org/TR/2012/REC-mediaont-10-20120209/.

68 Andy Seaborne and Eric Prud’hommeaux.
SPARQL query language for RDF.
W3C recommendation, W3C, January
2008. URL: https://www.w3.org/TR/2008/
REC-rdf-sparql-query-20080115/.

69 Ching-Kuang Shene. B-spline curves:
Closed curves, 2011. (Retrieved 2023-05-
24). URL: https://pages.mtu.edu/~shene/
COURSES/cs3621/NOTES/spline/B-spline/
bspline-curve-closed.html.

70 Tomo Sjekavica, Ines Obradović, and Gordan
Gledec. Ontologies for Multimedia Annotation:
An overview. In 2013 European Conference of
Computer Science (ECCS), pages 123–129, 2013.

71 Stuart Snydman, Robert Sanderson, and Tom
Cramer. The international image interoperabil-
ity framework (iiif): A community & technol-
ogy approach for web-based images. Archiving
Conference, 12(1):16–16, 2015. doi:10.2352/issn.
2168-3204.2015.12.1.art00005.

72 Peter Sorotokin, Garth Conboy, Brady Duga, John
Rivlin, Don Beaver, Kevin Ballard, Alastair Fettes,
and Daniel Weck. Epub canonical fragment identi-
fiers 1.1. Recommended specification, IDPF, 2017.
URL: https://idpf.org/epub/linking/cfi/.

73 Raphaël Troncy, Òscar Celma, Suzanne Little,
Roberto García, and Chrisa Tsinaraki. MPEG-

7 based multimedia ontologies: Interoperability
support or interoperability issue. In International
Workshop on Multimedia Annotation and Retrieval
enabled by Shared Ontologies (MARESO), pages
2–15, 2007.

74 Raphaël Troncy, Lynda Hardman, and Jacco Van
Ossenbruggen. Identifying Spatial and Temporal
Media Fragments on the Web. In W3C Video on
the Web Workshop, pages 4–9, 2007.

75 Raphaël Troncy, Erik Mannens, Silvia Pfeiffer, and
Davy Van Deursen. Media fragments URI 1.0
(basic). W3C recommendation, W3C, Septem-
ber 2012. URL: https://www.w3.org/TR/2012/
REC-media-frags-20120925/.

76 Chrisa Tsinaraki, Panagiotis Polydoros, and
Stavros Christodoulakis. Interoperability sup-
port for ontology-based video retrieval applica-
tions. In Lecture Notes in Computer Science,
pages 582–591. Springer, Berlin, Heidelberg, 2004.
doi:10.1007/978-3-540-27814-6_68.

77 Greg Turk. The ply polygon file format, 1994. (Re-
trieved 2023-05-28). URL: http://gamma.cs.unc.
edu/POWERPLANT/papers/ply.pdf.

78 Erik Wilde and Marcel Baschnagel. Fragment iden-
tifiers for plain text files. In ACM Conference on
Hypertext and Hypermedia. ACM, September 2005.
doi:10.1145/1083356.1083398.

79 Erik Wilde and Martin J. Dürst. URI frag-
ment identifiers for the text/plain media type.
RFC, 5147(5147):1–17, April 2008. doi:10.17487/
RFC5147.

80 Ting Wu, Zhuoming Xu, Lixian Ni, Yuanhang
Zhuang, Junhua Wang, and Qin Yan. Towards a
media fragment URI aware user agent. In 2014
Web Information System and Application Confer-
ence (WISA), pages 37–42. IEEE, September 2014.
doi:10.1109/wisa.2014.15.

https://doi.org/10.1007/s11042-016-3306-5
https://www.w3.org/TR/2012/REC-mediaont-10-20120209/
https://www.w3.org/TR/2012/REC-mediaont-10-20120209/
https://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/
https://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/
https://pages.mtu.edu/~shene/COURSES/cs3621/NOTES/spline/B-spline/bspline-curve-closed.html
https://pages.mtu.edu/~shene/COURSES/cs3621/NOTES/spline/B-spline/bspline-curve-closed.html
https://pages.mtu.edu/~shene/COURSES/cs3621/NOTES/spline/B-spline/bspline-curve-closed.html
https://doi.org/10.2352/issn.2168-3204.2015.12.1.art00005
https://doi.org/10.2352/issn.2168-3204.2015.12.1.art00005
https://idpf.org/epub/linking/cfi/
https://www.w3.org/TR/2012/REC-media-frags-20120925/
https://www.w3.org/TR/2012/REC-media-frags-20120925/
https://doi.org/10.1007/978-3-540-27814-6_68
http://gamma.cs.unc.edu/POWERPLANT/papers/ply.pdf
http://gamma.cs.unc.edu/POWERPLANT/papers/ply.pdf
https://doi.org/10.1145/1083356.1083398
https://doi.org/10.17487/RFC5147
https://doi.org/10.17487/RFC5147
https://doi.org/10.1109/wisa.2014.15

Strong Faithfulness for ELH Ontology Embeddings
Victor Lacerda #

University of Bergen, Norway

Ana Ozaki #

University of Oslo, Norway
University of Bergen, Norway

Ricardo Guimarães #

Zivid AS, Norway

Abstract
Ontology embedding methods are powerful ap-
proaches to represent and reason over structured
knowledge in various domains. One advantage of
ontology embeddings over knowledge graph embed-
dings is their ability to capture and impose an un-
derlying schema to which the model must conform.
Despite advances, most current approaches do not
guarantee that the resulting embedding respects
the axioms the ontology entails. In this work, we
formally prove that normalized ELH has the strong
faithfulness property on convex geometric models,
which means that there is an embedding that pre-
cisely captures the original ontology. We present a

region-based geometric model for embedding nor-
malized ELH ontologies into a continuous vector
space. To prove strong faithfulness, our construc-
tion takes advantage of the fact that normalized
ELH has a finite canonical model. We first prove
the statement assuming (possibly) non-convex re-
gions, allowing us to keep the required dimensions
low. Then, we impose convexity on the regions and
show the property still holds. Finally, we consider
reasoning tasks on geometric models and analyze
the complexity in the class of convex geometric
models used for proving strong faithfulness.

2012 ACM Subject Classification Theory of computation → Description logics
Keywords and phrases Knowledge Graph Embeddings, Ontologies, Description Logic
Digital Object Identifier 10.4230/TGDK.2.3.2
Supplementary Material The authors declare that this article involves no relevant supplemental
resources.
Funding Victor Lacerda: Lacerda is supported by the NFR project “Learning Description Logic
Ontologies”, grant number 316022, led by Ozaki.
Ana Ozaki: Ozaki is supported by the NFR project “Learning Description Logic Ontologies”, grant
number 316022.
Received 2024-04-24 Accepted 2024-10-23 Published 2024-12-18

1 Introduction

Knowledge Graphs (KGs) are a popular method for representing knowledge using triples of the
form (subject, predicate, object), called facts.

Although public KGs, such as Wikidata [25], contain a large number of facts, they are
incomplete. This has sparked interest in using machine learning methods to suggest plausible facts
to add to the KG based on patterns found in the data. Such methods are based on knowledge
graph embedding (KGE) techniques, which aim to create representations of KGs in vector spaces.
By representing individuals in a vector space, these individuals can be ranked by how similar they
are to each other, based on a similarity metric.

Their proximity in a vector space may be indicative of semantic similarity, which can be
leveraged to discover new facts: if two individuals are close to each other in the embedding space,
it is likely that they share a pattern of relations to other individuals. These patterns of relations
can indicate of assertions not explicitly stated in the source knowledge graph.

© Victor Lacerda, Ana Ozaki, and Ricardo Guimarães;
licensed under Creative Commons License CC-BY 4.0

Transactions on Graph Data and Knowledge, Vol. 2, Issue 3, Article No. 2, pp. 2:1–2:29
Transactions on Graph Data and Knowledge

T G D K Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:victor.botelho@uib.no
https://orcid.org/0000-0002-1317-040X
mailto:anaoz@uio.no
https://orcid.org/0000-0002-3889-6207
mailto:rfguimaraes0@gmail.com
https://orcid.org/0000-0002-9622-4142
https://doi.org/10.4230/TGDK.2.3.2
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/tgdk
https://www.dagstuhl.de/tgdk
https://www.dagstuhl.de

2:2 Strong Faithfulness for ELH Ontology Embeddings

Many attempts have been made to learn representations of knowledge graphs for use in
downstream tasks [8]. These methods have traditionally focused only on embedding triples (facts),
ignoring the conceptual knowledge about the domain expressed using logical operators. The former
corresponds to the “Assertion Box”(ABox) of the ontology, while the latter corresponds to the
“Terminological Box” (TBox) part of a knowledge base, with both being quite established notions
in the fields of Description Logic and Semantic Web [2, 12]. Embeddings that consider both types
of logically expressed knowledge are a more recent phenomenon (see Section 2), and we refer to
them as ontology embeddings, where the ontology can have both an ABox and a TBox. Ontology
embeddings offer advantages over traditional KGEs as they exploit the semantic relationships
between concepts and roles. This enables ontology embeddings to better capture rich and nuanced
relationships between concepts, making them good candidates for tasks requiring fine-grained
reasoning, such as hierarchical reasoning and logical inference.

One question that arises in the study of ontology embeddings is the following: how similar
to the source ontology are the generated embeddings? Being more strict, if we fix a semantics
in order to interpret the generated embeddings, are they guaranteed to precisely represent the
meaning of the source ontology and its entailments (of particular interest, the TBox entailments)?
This property is called the strong faithfulness property [20] and, so far, no previous work for EL
ontology embeddings has attempted to prove the property holds for their embedding method.
Moreover, the existence of embedding models satisfying this property for the ELH language has
not been formally proven. Given that ontologies languages in the EL family have received most
of the attention by the existing literature on ontology embeddings [22, 23, 1, 26, 14], this is a
significant gap which we investigate in this work.

Contribution

We investigate whether ELH has the strong faithfulness property over convex geometric models.
We first prove the statement for embeddings in low dimensions, considering a region-based
representation for (possibly) non-convex regions (Section 4). Also, we prove that the same
property does not hold when we consider convex regions and only 1 dimension. We then investigate
strong faithfulness on convex geometric models with more dimensions (Section 5). This result
contributes to the landscape of properties for embedding methods based on geometric models [5,
Proposition 11] and it provides the foundation of the implementation of FaithEL [16]. We do so
including embeddings for role inclusions, a problem that has not been well studied in the ELH
ontology embedding literature. We also consider model checking in convex geometric models, a
topic that has not been covered in previous works (Section 6).

2 Ontology Embeddings

Various methods for embedding ontologies have been proposed, with ontologies in the EL family
being their primary targets. EL is a simple yet powerful language.

These embedding methods are region-based, that is, they map concepts to regions and entities
to vectors (in some cases, entities are transformed into nominals and also embedded as regions),
and represent roles using translations or regions within the vector space.

The precise shape of the embedding regions varies depending on the method. In EmEL [19]
and ELem [15], the embeddings map concepts to n-dimensional balls. One disadvantage of this
approach is that the intersection between two balls is not itself a ball. Newer approaches addressing
this issue such as BoxEL, Box2EL, and ELBE [26, 14, 23], starting with BoxE [1], represent
concepts as n-dimensional boxes. BoxE introduced the use of so-called “translational bumps” to

V. Lacerda, A. Ozaki, and R. Guimarães 2:3

capture relations between entities, an idea followed by Box2EL. Another language, ALC, has been
studied under a cone semantics [20], which uses axis-aligned cones as its geometric interpretation.
In the context of KGEs, n-dimensional parallelograms have also been used in ExpressivE [21].

Other approaches for accommodating TBox axioms in the embeddings have also been considered.
Approaching the problem from a different direction, OWL2Vec* [7] targets the DL language
SROIQ and does not rely on regions, but uses the NLP algorithm word2vec to include lexical
information (such as annotations) along with the graph structure of an OWL ontology. Another
framework, TransOWL [9], uses background knowledge injection to improve link prediction for
models such as TransE and TransR. Additionally, there has been an increased interest in querying
KGEs, with strategies utilizing query rewriting techniques being put in place to achieve better
results [13].

Although expressively powerful and well performing in tasks such as subsumption checking
and link prediction, the generated embeddings often lack formal guarantees with respect to the
source ontology. In the KGE literature, it is a well known that, e.g., TransE [3] is unable to
model one-to-many relations (a difficulty present even in recent ontology embedding methods such
as BoxEL) or symmetric relations. This has spurted a quest for more expressive models, with
the intention of capturing an increasing list of relation types and properties such as composition,
intersection, hierarchy of relations, among others [17, 27, 24, 21].

Expressivity is a key notion in ontology embedding methods, which often also feature these
relation types and potentially other forms of constraints. For example, in Box2EL, ELem, and
ELBE [14, 15, 23], axioms of the form ∃r.C ⊑ ⊥ are only approximated by ∃r.⊤ ⊑ ⊥. This means
that strong TBox faithfulness is not respected. Moreover, only EmEL and Box2EL [19, 14] include
embeddings for role inclusions. In the case of EmEL, the axiom r ⊑ s also enforces s ⊑ r, which
means it is not strongly faithful, while Box2EL has also been shown to not be strongly faithful [5].

3 Basic Notions

3.1 The Description Logic ELH
Let NC , NR, and NI be countably infinite and pairwise disjoint sets of concept names, role names,
and individual names, respectively. ELH concepts C, D are built according to the syntax rule

C, D ::= ⊤ | ⊥ |A | (C ⊓D) | ∃r.C

where A ∈ NC and r ∈ NR. ELH concept inclusions (CIs) are of the form C ⊑ D, role inclusions
(RIs) are of the form r ⊑ s, ELH concept assertions are of the form A(a) and role assertions
are of the form r(a, b), where A ∈ NC , a, b ∈ NI , r, s ∈ NR, and C, D range over ELH concepts.
Instance queries (IQs) are role assertions or of the form C(a), with C being an arbitrary ELH
concept. An ELH axiom is an ELH CI, an RI, or an IQ. A normalized ELH TBox is one that
only contains CIs of the following forms:

A1 ⊓A2 ⊑ B, ∃r.A ⊑ B, and A ⊑ ∃r.B

where A1, A2, A, B ∈ NC and r ∈ NR. We say that an ELH concept is in normal form if it is
of the form A, ∃r.A, or A ⊓ B, with A, B ∈ NC and r ∈ NR. Similarly, an ELH ontology is in
normal form if its TBox part is a normalized ELH TBox. An IQ is in normal form if it is a role
assertion or of the form C(a) with C being a concept in normal form. The semantics of ELH is
defined classically by means of interpretations I = (∆I , ·I), where ∆I is a non-empty countable
set called the interpretation domain, and ·I is an interpretation function mapping each concept

TGDK

2:4 Strong Faithfulness for ELH Ontology Embeddings

name A in NC to a subset AI of ∆I , each role name r in NR to a binary relation rI ⊆ ∆I ×∆I ,
and each individual name a in NI to an element aI ∈ ∆I . We extend the function ·I inductively
to arbitrary concepts by setting ⊤I := ∆I , ⊥I := ∅, and

(C ⊓D)I := CI ∩DI , and
(∃r.C)I := {d ∈ ∆I | ∃e ∈ CI such that (d, e) ∈ rI}.

An interpretation I satisfies: (1) C ⊑ D iff CI ⊆ DI ; (2) r ⊑ s iff rI ⊆ sI , (3) C(a) iff aI ∈ CI ;
(4) r(a, b) iff (aI , bI) ∈ rI .

An ELH TBox T (Terminological Box) is a finite number of ELH concept and role inclusions.
An ELH ABox A (Assertion Box) is a finite number of ELH concept and role assertions. The
union of a TBox and an ABox forms an ELH ontology. An ELH ontology O entails an ELH axiom
α, in symbols O |= α if for every interpretation I, we have that I |= O implies I |= α (we may
write similarly for the CI and RI entailments of a TBox). We denote by NC(O), NR(O), NI(O)
the set of concept names, role names, and individual names occurring in an ontology O. We may
also write NI(A) for the set of individual names occurring in an ABox A. The signature of an
ontology O, denoted sig(O), is the union of NC(O), NR(O), and NI(O).

3.2 Geometric models
We go from the traditional model-theoretic interpretation of the ELH language to geometric
interpretations, using definitions from previous works by [10] and [6]. Let m be a natural number
and f : Rm × Rm 7→ R2·m a fixed but arbitrary linear map satisfying the following:
1. the restriction of f to Rm × {0}m is injective;
2. the restriction of f to {0}m × Rm is injective;
3. f(Rm × {0}m) ∩ f({0}m × Rm) = {02·m};
where 0m denotes the vector (0, ..., 0) with m zeros. We say that a linear map that satisfies Points
1, 2, and 3 is an isomorphism preserving linear map.

▶ Example 1. The concatenation function is a linear map that satisfies Points 1, 2, and 3. E.g.,
if we have vectors v1 = (n1, n2, n3) and v2 = (m1, m2, m3) then for f being the concatenation
function we would have f(v1, v2) = (n1, n2, n3, m1, m2, m3). Other linear maps that satisfy
Points 1, 2, and 3 can be created with permutations. E.g., defining the function f such that
f(v1, v2) = (n1, m1, n2, m2, n3, m3).

▶ Definition 2 (Geometric Interpretation). Let f be an isomorphism preserving linear map and
m a natural number. An m-dimensional f -geometric interpretation η of (NC , NR, NI) assigns to
each

A ∈ NC a region η(A) ⊆ Rm

r ∈ NR a region η(r) ⊆ R2·m, and
a ∈ NI a vector η(a) ∈ Rm.

We now extend the definition for arbitrary ELH concepts:

η(⊥) := ∅
η(⊤) := Rm,

η(C ⊓D) := η(C) ∩ η(D), and
η(∃r.C) := {v ∈ Rm | ∃u ∈ η(C) with f(v, u) ∈ η(r)}.

Intuitively, the function f combines two vectors that represent a pair of elements in a classical
interpretation relation. An m-dimensional f -geometric interpretation η satisfies

V. Lacerda, A. Ozaki, and R. Guimarães 2:5

an ELH concept assertion A(a), if η(a) ∈ η(A),
a role assertion r(a, b), if f(η(a), η(b)) ∈ η(r),
an ELH IQ C(a), if η(a) ∈ η(C),
an ELH CI C ⊑ D, if η(C) ⊆ η(D), and
an RI r ⊑ s, if η(r) ⊆ η(s).

We write η |= α if η satisfies an ELH axiom α. When speaking of m-dimensional f-geometric
interpretations, we may omit m-dimensional and f-, as well as use the term “model” instead
of “interpretation”. A geometric interpretation satisfies an ontology O, in symbols η |= O, if it
satisfies all axioms in O. We say that a geometric interpretation is finite if the regions associated
with concept and role names have a finite number of vectors and we only need to consider a finite
number of individual names, which is the case when considering the individual names that occur
in an ontology.

Motivated by the theory of conceptual spaces and findings on cognitive science [11, 28], and by
previous work on ontology embeddings for quasi-chained rules [10], we consider convexity as an
interesting restriction for the regions associated with concepts and relations in a geometric model.

▶ Definition 3. A geometric interpretation η is convex if, for every E ∈ NC ∪ NR, every
v1, v2 ∈ η(E) and every λ ∈ [0, 1], if v1, v2 ∈ η(E) then (1− λ)v1 + λv2 ∈ η(E).

▶ Definition 4. Let S = {v1, . . . , vm} ⊆ Rd. A vector v is in the convex hull S∗ of S iff there
exist v1, . . . , vn ∈ S and scalars λ1, λ2, ..., λn ∈ R such that

v =
n∑

i=1
λivi = λ1v1 + λ2v2 + ... + λnvn,

where λi ≥ 0, for i = 1, . . . , n, and
∑n

i=1 λi = 1.

Apropos of convexity, we highlight and prove some of its properties used later in our results.

▶ Proposition 5. For finite S1, S2 ⊆ Rd, where d is an arbitrary dimension, we have that S1 ⊆ S2
implies S∗

1 ⊆ S∗
2 .

In the following, whenever we say a vector is binary, we mean that its values in each dimension
can only be 0 or 1.

▶ Theorem 6. Let S ⊆ {0, 1}d where d is an arbitrary dimension. For any n ∈ N, for any
v =

∑n
i=1 λivi, such that vi ∈ S, if v ∈ S∗ \ S then v is non-binary.

▶ Corollary 7. If v is binary and v ∈ S∗ then v ∈ S.

Finally, we define strong faithfulness based on the work by [20].

▶ Definition 8 (Strong Faithfulness). Let O be a satisfiable ontology (or any other representation
allowing the distinction between IQs and TBox axioms). Given an m-dimensional f-geometric
interpretation η, we say that:

η is a strongly concept-faithful model of O iff, for every concept C and individual name b, if
η(b) ∈ η(C) then O |= C(b);
η is a strongly IQ faithful model of O iff it is strongly concept-faithful and for each role r and
individual names a, b: if f(η(a), η(b)) ∈ η(r), then O |= r(a, b);
η is a strongly TBox-faithful model of O iff for all TBox axioms τ : if η |= τ , then O |= τ .

TGDK

2:6 Strong Faithfulness for ELH Ontology Embeddings

▶ Example 9. Let O be an ontology given by T ∪ A with T = {A ⊑ B} and A = {A(a), B(b)}.
Let ηI be a (non-convex) geometric interpretation of O in R, where ηI(A) = {0, 1, 2}, ηI(B) =
{0, 1, 2, 3}, ηI(a) = 2, and ηI(b) = 3. Note that O |= A(a) and O |= B(b), and by definition
ηI(a) ∈ ηI(A), ηI(b) ∈ ηI(B). Also, O |= A ⊑ B and ηI(A) ⊆ ηI(B). So one can see that ηI is
both a strongly concept and TBox-faithful model of O. If we let η′

I be a geometric interpretation
such that η′

I(A) = {0, 1, 2, 3} = ηI(B), we now have that η′
I(b) ∈ η′

I(A), which means η′
I is not a

strongly concept-faithful model of O (since O ̸|= A(b)), and we have that η′
I(B) ⊆ η′

I(A), which
means it is not a strongly TBox-faithful model of O (since O ̸|= B ⊑ A).

We say that an ontology language has the strong faithfulness property over a class of geo-
metric interpretations C if for every satisfiable ontology O in this language there is a geometric
interpretation in C that is both a strongly IQ faithful and a strongly TBox faithful model of O.

The range of concepts, roles, and individual names in Definition 8 varies depending on the
language and setting studied. We omit the notion of weak faithfulness by [20] as it does not apply
for ELH since ontologies in this language are always satisfiable (there is no negation). The “if-then”
statements in Definition 8 become “if and only if” when η satisfies the ontology. Intuitively, strong
faithfulness expresses how similar the generated embedding is to the original ontology.

We observe that strong faithfulness with respect to the TBox component of the ontology is
extremely desirable: it guarantees that concept and role inclusions are also enforced when coupled
with a geometric interpretation in the embedding space. On the other hand, strong IQ faithfulness
is not a desirable property for learned embeddings. Although this might seem counter-intuitive at
first, it is a reasonable statement: an embedding that is strongly IQ faithful is unsuitable for link
prediction, as the only assertions that hold in the embedding are those that already hold in the
original ontology. This means that no new facts are truly discovered by the model. Here we prove
both strong TBox and IQ faithfulness for ELH for theoretical reasons.

Finally, observe that an embedding model that is both strongly TBox and IQ faithful must
have the same TBox and IQ consequences as the original ontology. This is a stronger requirement
than establishing that an embedding model for an ontology O (within a method) exist if and only
if a classical model for O exists, which is a property of sound and complete embedding methods [5].

4 Strong Faithfulness

In this section we prove initial results about strong faithfulness for ELH. In particular, we prove
that ELH has the strong faithfulness property over m-dimensional f -geometric interpretations
for any m ≥ 1 but this is not the case if we require that regions in the geometric interpretations
are convex. We first introduce a mapping from classical interpretation to (possibly) non-convex
geometric interpretations and then use it with the notion of canonical model to establish strong
faithfulness for ELH.

▶ Definition 10. Let I = (∆I , ·I) be a classical ELH interpretation, and we assume without loss
of generality, since ∆I is non-empty and countable, that ∆I is a (possibly infinite) interval in N
starting on 0. Let µ̄ : ∆I 7→ R1 be a mapping from our classical interpretation domain to a vector
space where:

µ̄(d) =
{

(−∞,−d] ∪ [d,∞), if ∆I is finite and d = max(∆I),
(−d− 1,−d] ∪ [d, d + 1), otherwise.

where d ∈ N and (−d− 1,−d] and [d, d + 1) are intervals over R1, closed on d and −d, and open
on d + 1 and −d− 1.

V. Lacerda, A. Ozaki, and R. Guimarães 2:7

1 2 3 40

0

A A AB

1 2 3

Figure 1 A partial visualization (showing only the positive section of the real line) of a geomet-
ric interpretation η̄I where elements d0 . . . d3 are mapped to their respective intervals, and where
µ̄(d0), µ̄(d2), µ̄(d3) ∈ η̄I(A) and µ̄(d2) ∈ η̄I(B).

▶ Remark 11. For any interpretation I, µ̄ covers the real line, that is,
⋃

d∈∆I µ̄(d) = R1.

▶ Definition 12. We call η̄I the geometric interpretation of I and define it as follows. Let I be a
classical ELH interpretation. The geometric interpretation of I, denoted η̄I , is defined as:

η̄I(a) := d, such that d = aI , for all a ∈ NI ,

η̄I(A) := {v ∈ µ̄(d) | d ∈ AI}, for all A ∈ NC , and
η̄I(r) := {f(v, e) | v ∈ µ̄(d) for (d, e) ∈ rI}, for all r ∈ NR.

In Figure 1, we illustrate with an example the mapping in Definition 12. We now show that
for (possibly) non-convex geometric models, a classical interpretation I models arbitrary IQs and
arbitrary TBox axioms if and only if their geometrical interpretation η̄I also models them.

▶ Theorem 13. For all ELH axioms α, I |= α iff η̄I |= α.

We now provide a definition of canonical model for ELH ontologies inspired by a standard
chase procedure. In our definition, we use a tree shaped interpretation ID of an ELH concept
D, with the root denoted ρD. This is defined inductively. For D a concept name A ∈ NC we
define IA as the interpretation with ∆IA := {ρA}, AIA := {ρA}, and all other concept and role
names interpreted as the empty set. For D = ∃r.C, we define ID as the interpretation with
∆ID := {ρD} ∪∆IC , all concept and role name interpretations are as for IC except that we add
(ρD, ρC) to rID and assume ρD is fresh (i.e., it is not in ∆IC). Finally, for D = C1 ⊓C2 we define
∆ID := ∆IC1 ∪ (∆IC2 \ {ρC2}), assuming ∆IC1 and ∆IC2 are disjoint, and with all concept and
role name interpretations as in IC1 and IC2 , except that we connect ρC1 with the elements of
∆IC2 in the same way as ρC2 is connected. That is, we identify ρC1 with the root ρC2 of ID2 .

▶ Definition 14. The canonical model ĪO of a satisfiable ELH ontology O is defined as the union
of a sequence of interpretations I0, I1, . . ., where I0 is defined as:

∆I0 := {a | a ∈ NI(A)},
AI0 := {a | A(a) ∈ A} for all A ∈ NC , and
rI0 := {(a, b) | r(a, b) ∈ A}, for all r ∈ NR.

Suppose In is defined. We define In+1 by choosing a CI or an RI in O and applying one of the
following rules:

if C ⊑ D ∈ O and d ∈ CIn \DIn then define In+1 as the result of adding to In a copy of the
tree shaped interpretation ID and identifying d with the root of ID (assume that the elements
in ∆ID are fresh, that is, ∆ID ∩∆In = ∅);
if r ⊑ s ∈ O and (d, e) ∈ rIn \ sIn then set In+1 as the result of adding (d, e) to sIn .

We assume the choice of CIs and RIs and corresponding rule above to be fair, i.e., if a CI or RI
applies at a certain place, it will eventually be applied there.

TGDK

2:8 Strong Faithfulness for ELH Ontology Embeddings

A B

Figure 2 An illustration of the region ηI(A) ∩ ηI(B).

▶ Theorem 15. Let O be a satisfiable ELH ontology and let ĪO be the canonical model of O
(Definition 14). Then,

for all ELH IQs and CIs α over sig(O), ĪO |= α iff O |= α; and
for all RIs α over sig(O), ĪO |= α iff O |= α.

We are now ready to state our theorem combining the results of Theorems 13 and 15 and the
notion of strong faithfulness for IQs and TBox axioms.

▶ Theorem 16. Let O be a satisfiable ELH ontology and let ĪO be the canonical model of O
(see Definition 14). The m-dimensional f -geometric interpretation of ĪO (see Definition 12) is a
strongly IQ and TBox faithful model of O.

What Theorem 16 demonstrates is that the existence of canonical models for ELH allows us to
connect our result relating classical and geometric interpretations to faithfulness. This property
of canonical models is crucial and can potentially be extended to other description logics that
also have canonical models (however, many of such logics do not have polynomial size canonical
models, a property we use in the next section, so we focus on ELH in this work).

▶ Corollary 17. For all m ≥ 1 and isomorphism preserving linear maps f , ELH has the strong
faithfulness property over m-dimensional f -geometric interpretations.

However, requiring that the regions of the geometric model are convex makes strong faithfulness
more challenging. The next theorem hints that such models require more dimensions and a more
principled approach to map ELH ontologies in a continuous vector space.

▶ Theorem 18. ELH does not have the strong faithfulness property over convex 1-dimensional
f -geometric models.

Proof. We reason by cases in order to show impossibility of the strong faithfulness property for
the class of convex 1-dimensional f -geometric model for arbitrary ELH ontologies. Let O be an
ELH ontology, A, B, C ∈ NC concept names, a, b ∈ NI individuals, and let η(A), η(B), η(C),
η(a), and η(b) be their corresponding geometric interpretations to R1. Assume O |= A ⊓ B(a).
There are three initial cases on how to choose the interval placement of η(A) and η(B):

Null intersection: (η(A) ∩ η(B)) = ∅.
If (η(A) ∩ η(B)) = ∅, then either (η(a) ∈ η(A) and (η(a) ̸∈ η(B), or (η(a) ∈ η(B) and
(η(a) ̸∈ η(A). Recall the definition of satisfiability for concept assertions. Since we assumed
O |= A⊓B(a), we would want our geometric interpretation to be such that η(a) ∈ η(A)∩η(B),
a contradiction.
Total inclusion: η(A) ⊆ η(B) and/or η(B) ⊆ η(A).
Consider an extension O′ of our ontology where O′ |= A(c) and O′ ̸|= B(c). If we let
η(A) ⊆ η(B), it is clear that our ontology cannot be faithfully modeled, since by our assumption
of total inclusion, we would have that η(c) ∈ η(A) and η(c) ∈ η(B), which goes against
O′ ̸|= B(c). The same holds for the total inclusion in the other direction, where η(B) ⊆ η(A).
Therefore, we go to our last initial case to be considered.
Partial intersection: (η(A) ∩ η(B)) ̸= ∅.
This is in fact the only way of faithfully giving a geometric interpretation to our concept
assertion A ⊓B(a), while still leaving room for ABox axioms such that an arbitrary element
could belong to one of our classes A or B without necessarily belonging to both of them. Then,
η(A) ∩ η(B) and η(A) ̸⊆ η(B) nor η(B) ̸⊆ η(A).

V. Lacerda, A. Ozaki, and R. Guimarães 2:9

After having forced the geometric interpretation of our two initial concepts A and B to partially
intersect, we now show that by adding a third concept C, in which O |= A ⊓ B ⊓ C(a), either
η(A) ⊂ η(B)∪ η(C) or η(B) ⊂ η(A)∪ η(C), even though this interpretation is not included in our
original ontology. We are unable to include a concept assertion A(a) ∈ O without also having
that η(a) ∈ η(C) in our geometric interpretation, or likewise for the case in which B(a) ∈ O.

Stemming from the fact that our geometric interpretation must be convex, and it is modeled
in an euclidean R1 space, we can visualize our classes A, B, and C as intervals on the real line.
Assume, without loss of generality, that η(A) is placed to the left of η(B) (see Figure 2). Then, C

can only be placed either to the right of B or to the left of A.
By reasoning in the same way as before, we know that η(C) must partially intersect with either

η(A) or η(B), so one end of the interval representing C must be placed in η(A) ∩ η(B), without
us having that either η(C) ⊆ η(A), η(C) ⊆ η(B), η(C) ⊆ η(A) ∩ η(B) or η(C) ⊆ η(A) ∪ η(B).
This last requirement is due to the fact that we want to be able to have an ontology such that
O |= C(a) and where O ̸|= A(a), O ̸|= B(a), or O ̸|= A(a) ⊓ B(a). Assuming the intersection
between η(A) and η(B) ̸= ∅ there are three more cases to be considered:

C is in the intersection of A and B: η(C) ⊆ η(A) ∩ η(B) (Fig. 2 (a)).
If η(C) ⊆ η(A) ∩ η(B), it is immediately clear that by extending O such that O |= C(b) but
O ̸|= A(b), we would end up with η(b) ∈ η(C). But since we assumed that η(C) ⊆ η(A)∩ η(B),
this means that η(b) ∈ η(A), and therefore our geometric interpretation would model the
concept assertion A(b), a contradiction.
C goes from the intersection: η(A) ∩ η(B) to η(A) \ η(B) (Fig. 2 (b)).
In this situation, we would have η(C) ⊆ η(A), and if O |= C(a), we would necessarily have
that η(a) ∈ η(C), but this means we would also have η(a) ∈ η(A), leading to the unwarranted
consequence that η |= A(a). There is one last case.
C is placed in a region such that: η(C) ∩ (η(A) ∪ η(B)) ̸= ∅ and η(C) \ (η(A) ∪
η(B)) ̸= ∅ (Fig. 2 (c)).
This would mean that η(B) ⊆ η(A) ∪ η(C), and that any concept assertion B(a) would entail
either C(a) or A(a) in our geometric interpretation, while it is not necessary that O |= A(a) or
O |= B(a). Since we are in R1, this desired placement can happen either to the right or to the
left of the number line. By assumption that η(A) has been placed to the left of η(B) as shown
in Figure 2 and following, we have just shown that placing η(C) to the right of η(B) leads to a
contradiction. The same reasoning applies if we choose to place it to the left of η(A).

There are no more cases to be considered. ◀

The problem illustrated in Theorem 18 arises even if the ontology language does not have
roles (as it is the case, e.g., of Boolean ALC, investigated by [20]). It also holds if we restrict
to normalized ELH. We address the problem of mapping normalized ELH ontologies to convex
geometric models in the next section.

5 Strong Faithfulness on Convex Models

We prove that normalized ELH has the strong faithfulness property over a class of convex geometric
models. We introduce a new mapping µ from the domain of a classical interpretation I to a vector
space and a new geometric interpretation ηI based on this mapping. Our proofs now require us to
fix the isomorphism preserving linear map f used in the definition of geometric interpretations
(Definition 2). We choose the concatenation function, denoted ⊕, as done in the work by [10].
The strategy for proving strong faithfulness for normalized ELH requires us to (a) find a suitable
non-convex geometric interpretation for concepts and roles, and (b) show that the convex hull of
the region maintains the property intact.

TGDK

2:10 Strong Faithfulness for ELH Ontology Embeddings

A B

C

A B

C

A B

C

(a)

(b)

(c)

Figure 3 The three possible cases when there is an element in the intersection of A, B, C.

µ(d) = 1 1 1... ...

a0 A0 An

0 0

r0, d0

0 0 0... ...

am r0, dp ro, d0 ro, dp

Figure 4 A mapping to the binary vector µ(d) when d ∈ ∆I , where d ∈ aI
0 , d ∈ AI

0 and (d, d0) ∈ rI
0 .

▶ Definition 19. Let I = (∆I , ·I) be a classical ELH interpretation, and O an ELH ontology.
We start by defining a new map µ : ∆I 7→ Rd, where d corresponds to |NI(O)| + |NC(O)| +
|NR(O)| · |∆I |. We assume, without loss of generality, a fixed ordering in our indexing system for
positions in vectors, where indices 0 to |NI(O)| − 1 correspond to the indices for individual names;
|NI(O)| to k = |NI(O)| + |NC(O)| − 1 correspond to the indices for concept names; and k to
k + (|NR(O)| · |∆I |)− 1 correspond to the indices for role names together with an element of ∆I .
We adopt the notation v[a], v[A], and v[r, d] to refer to the position in a vector v corresponding
to a, A, and r together with an element d, respectively (according to our indexing system). For
example, v[a] = 0 means that the value at the index corresponding to the individual name a is 0.
A vector is binary iff v ∈ {0, 1}d. We now define µ using binary vectors. For all d ∈ ∆I , a ∈ NI ,
A ∈ NC and r ∈ NR:

µ(d)[a] = 1 if d = aI , otherwise µ(d)[a] = 0,
µ(d)[A] = 1 if d ∈ AI , otherwise µ(d)[A] = 0, and
µ(d)[r, e] = 1 if (d, e) ∈ rI , otherwise µ(d)[r, e] = 0.

Figure 4 illustrates a possible mapping for element d ∈ ∆I , where d ∈ aI
0 , d ∈ AI

0 and
(d, d0) ∈ rI

0 .

▶ Example 20. Let O be an ontology such as in Example 9, with T = {A ⊑ B}, A being extended
to A′ = {A(a), B(b), r(a, b)}. Let I be an interpretation such that ∆I = {d, e}, with aI = d,
bI = e, rI = {(d, e)}, AI = {d}, and BI = {d, e}. In this case, µ : ∆I 7→ R6, with |NI(O)| = 2
(corresponding to a and b), |NC(O)| = 2 (corresponding to A and B), and |NR(O)| · |∆I | = 2
corresponding to r, d, and e. Assume our ordering in the definition holds, and assume further
that the names in the signature of O are ordered alphabetically. We have that the six dimensions
correspond to, respectively: a, b, A, B, [r, d], [r, e]. By applying the mapping to the elements of ∆I ,
we get the vectors µ(d) = (1, 0, 1, 1, 0, 1) and µ(e) = (0, 1, 0, 1, 0, 0).

We now introduce a definition for (possibly) non-convex geometric interpretations, in line with
the mapping µ above.

V. Lacerda, A. Ozaki, and R. Guimarães 2:11

▶ Definition 21. Let I be a classical ELH interpretation. The geometric interpretation of I,
denoted ηI , is defined as:

ηI(a) := µ(aI), for all a ∈ NI ,

ηI(A) := {µ(d) | µ(d)[A] = 1, d ∈ ∆I}, for all A ∈ NC ,

ηI(r) := {µ(d)⊕ µ(e) | µ(d)[r, e] = 1, d, e ∈ ∆I}, for all r ∈ NR.

We provide two examples, one covering both concept and role assertions, and one (which can
be represented graphically), covering only concept assertions.

▶ Example 22. Let O, I be as in Example 20. Then, the geometric interpretation ηI of I is as:
ηI(a) = µ(d), ηI(b) = µ(e), ηI(A) = {µ(d)}, ηI(B) = {µ(d), µ(e)}, ηI(r) = {µ(d) ⊕ µ(e)}. We
remark that this is a strongly faithful TBox embedding.

An intuitive way of thinking about our definition µ is that it maps domain elements to a subset
of the vertex set of the d-dimensional unit hypercube (see Example 23).

0

1

1

1

a

A

B

µ(e)

µ(d)

Figure 5 A mapping of µ(d) and µ(e) according to interpretation I. The axes colored in red, blue,
and green correspond to the dimensions associated with a, A, and B, respectively.

▶ Example 23. Consider A, B ∈ NC and a ∈ NI . Let I be an interpretation with d, e ∈ ∆I such
that d = aI , d ∈ AI , and e ∈ AI ∩ BI . We illustrate µ(d) and µ(e) in Figure 5. In symbols,
µ(d)[a] = 1, µ(d)[A] = 1, and µ(d)[B] = 0, while µ(e)[a] = 0, µ(e)[A] = 1, and µ(e)[B] = 1.

Before proving strong faithfulness with convex geometric models, we show that ηI preserves
the axioms that hold in the original interpretation I. It is possible for two elements d, e ∈ ∆I

to be mapped to the same vector v as a result of our mapping µ. This may happen when d, e

̸∈ {aI | a ∈ NI} but it does hinder our results.

▶ Proposition 24. If µ(d) = µ(e), then d ∈ CI iff e ∈ CI .

We use a similar strategy as before to prove our result.

▶ Theorem 25. For all ELH axioms α, I |= α iff ηIO |= α.

TGDK

2:12 Strong Faithfulness for ELH Ontology Embeddings

Since the definition of ηI uses vectors in a dimensional space that depends on the size of ∆I

and O, we need the canonical models to be finite. Therefore, we employ finite canonical models
for normalized ELH because canonical models for arbitrary ELH CIs are not guaranteed to be
finite. Our definition of canonical model is a non-trivial adaptation of other definitions found in
the literature (e.g., [4, 18]).

Let A be an ELH ABox, T a normalized ELH TBox, and O := A ∪ T . We first define:

∆IO
u := {cA |A ∈ NC(O) ∪ {⊤}} and

∆IO
u+ := ∆IO

u ∪ {cA⊓B |A, B ∈ NC(O)} ∪ {c∃r.B | r ∈ NR(O), B ∈ NC(O) ∪ {⊤}}.

▶ Definition 26. The canonical model IO of O is defined as

∆IO := NI(A) ∪∆IO
u+, aIO := a,

AIO := {a ∈ NI(A) | O |= A(a)} ∪ {cD ∈ ∆IO
u+ | T |= D ⊑ A}, and

rIO := {(a, b) ∈ NI(A)×NI(A) | O |= r(a, b)} ∪
{(a, cB) ∈ NI(A)×∆IO

u | O |= ∃r.B(a)} ∪ {(c∃s.B , cB) ∈ ∆IO
u+ ×∆IO

u | T |= s ⊑ r}

∪ {(cD, cB) ∈ ∆IO
u+ ×∆IO

u | T |= D ⊑ A, T |= A ⊑ ∃r.B, for some A ∈ NC(O)},

for all a ∈ NI , A ∈ NC , and r ∈ NR.

The following holds for the canonical model just defined.

▶ Theorem 27. Let O be a normalized ELH ontology. The following holds
for all ELH IQs and CIs α in normal form over sig(O), IO |= α iff O |= α; and
for all RIs α over sig(O), IO |= α iff O |= α.

The main difference between our definition and other canonical model definitions in the
literature is related to our purposes of proving strong faithfulness, as we discuss in Section 5. We
require the CIs and RIs (in normal form and in sig(O)) that are entailed by the ontology are
exactly those that hold in the canonical model.

▶ Theorem 28. Let O be an ELH ontology and let IO be the canonical model of O (Definition 26).
The d-dimensional (possibly non-convex) ⊕-geometric interpretation ηIO of IO is a strongly and
IQ and TBox faithful model of O.

We now proceed with the main theorems of this section. Note that the dimensionality of the
image domain of µ can be much higher than the one for µ̄ in Section 4 (which can be as low as
just 1, see Corollary 17). We use the results until now as intermediate steps to bridge the gap
between classical and convex geometric interpretations. In our construction of convex geometric
interpretations, the vectors mapped by µ and the regions given by the non-convex geometric
interpretation ηI are the anchor points for the convex closure of these sets. We introduce the
notion of the convex hull of a geometric interpretation ηI using Definition 4.

▶ Definition 29. We denote by η∗
I the convex hull of the geometric interpretation ηI and define

η∗
I as follows:

η∗
I(a) := µ(aI), for all a ∈ NI ;

η∗
I(A) := {µ(d) | d ∈ AI}∗, for all A ∈ NC ; and
η∗

I(r) := {µ(d)⊕ µ(e) | (d, e) ∈ rI}∗, for all r ∈ NR.

V. Lacerda, A. Ozaki, and R. Guimarães 2:13

▶ Remark 30. In Definition 29, η∗
I(a) = ηI(a) for all a ∈ NI . We include the star symbol in the

notation to make it clear that we are referring to the geometric interpretation of individual names
in the context of convex regions for concepts and roles.

▶ Theorem 31. Let ηI be a geometric interpretation as in Definition 21. If α is an ELH CI, an
ELH RI, or an ELH IQ in normal form then ηI |= α iff η∗

I |= α.

We are now ready to consider strong IQ and TBox faithfulness for convex regions.

▶ Theorem 32. Let O be a normalized ELH ontology and let IO be the canonical model of O
(Definition 26). The d-dimensional convex ⊕-geometric interpretation of IO (Definition 29) is a
strongly IQ and TBox faithful model of O.

We now state a corollary analogous to Corollary 17, though here we cannot state it for all classes
of m-dimensional f -geometric interpretations (we know by Theorem 18 that this is impossible for
any class of 1-dimensional geometric interpretations). We omit “m-dimensional” in Corollary 33 to
indicate that this holds for the larger class containing geometric interpretations with an arbitrary
number of dimensions (necessary to cover the whole language).

▶ Corollary 33. Normalized ELH has the strong faithfulness property over ⊕-geometric interpret-
ations.

▶ Remark 34 (Number of parameters). The final number of parameters for the convex geometric
interpretation ηIO of the canonical model IO built on ontology O is, thus: O(d · n) where d is the
embedding dimension given by map µ (Definition 19), and n = |∆IO |.

6 Model Checking on Geometric Models

Here we study upper bounds for the complexity of model checking problems using convex geometric
models as those defined in Definition 29 and normalized ELH axioms. The results and algorithms
in this section are underpinned by Theorem 31, which allow us to use ηI instead of η∗

I for model
checking purposes. The advantage of using ηI instead of η∗

I is that the algorithms need to inspect
only finitely many elements in the extension of each concept and each role, as long as the original
interpretation I has finite domain (and we only need to consider a finite number of concept, role,
and individual names). For example, let I = (∆I , ·I) with ∆I finite. If A ∈ NC then η∗

I(A) can
have infinitely many elements, while ηI(A) will have at most |∆I | elements (by Definition 21).
Before presenting the algorithms, we discuss some assumptions that facilitate our analysis:
1. indexing vectors and comparing primitive types use constant time;
2. accessing the extension of an individual, concept, or role name in ηI takes constant time;
3. iterating over ηI(A) (and also ηI(r)) consumes time O(|∆I |) (O(|∆I | · |∆I |)) for all A ∈ NC

(r ∈ NR); and
4. if A ∈ NC (r ∈ NR), testing if v ∈ ηI(A) (v ∈ ηI(r)) consumes time O(d · |∆I |) (O(d ·
|∆I | · |∆I |)).

Assumption (1) is standard when analysing worst-case complexity. The others are pessimistic
assumptions on the implementation of ηI (and η∗

I). E.g., encoding the binary vectors as integers
and implementing bit wise operations could reduce the complexity of membership access and
iteration. Also, using a hash map with a perfect hash function would decrease the membership
check to constant time.

We are now ready to present our upper bounds. For normalised ELH CIs, we provide
Algorithm 1 to decide if a concept inclusion holds in a convex geometric model built as in
Definition 29. Theorem 31 guarantees that η∗

I |= C ⊑ D iff ηI |= C ⊑ D for any CI in normalised

TGDK

2:14 Strong Faithfulness for ELH Ontology Embeddings

ELH. Thus, as long as ∆I is finite, Algorithm 1 terminates and outputs whether η∗
I |= C ⊑ D.

Theorem 35 establishes that Algorithm 1 runs in polynomial time in the size of ∆I and the
dimension of vectors in η∗

I .

Algorithm 1 Check if a convex geometric model (Definition 29) satisfies an ELH CI in normal form.

Require: a convex geometric interpretation η∗
I and an ELH concept inclusion in normal form α

Ensure: returns True if η∗
I |= α, False otherwise

1: if α = A ⊑ B then ▷ A, B ∈ NC
2: for v ∈ ηI(A) do
3: if v[B] = 0 then return False

4: else if α = A1 ⊓A2 ⊑ B then ▷ A1, A2, B ∈ NC
5: for v ∈ ηI(A1) do
6: if v[A2] = 1 ∧ v[B] = 0 then return False

7: else if α = A ⊑ ∃r.B then ▷ A, B ∈ NC, r ∈ NR
8: for v ∈ ηI(A) do count ← 0
9: for u ∈ ηI(B) do

10: if v ⊕ u ∈ ηI(r) then
11: count← count + 1
12: if count = 0 then return False
13: else if α = ∃r.A ⊑ B then ▷ A, B ∈ NC, r ∈ NR
14: for v ⊕ u ∈ ηI(r) do
15: if u[A] = 1 and v[B] = 0 then return False

16: return True

▶ Theorem 35. Given a finite geometric interpretation ηI and an ELH CI in normal form,
Algorithm 1 runs in time in O(d · n4), where d is as in Definition 19 and n = |∆I |.

As d depends linearly on ∆I and the size of the signature. If the latter is regarded as a
constant, we can simply say that Algorithm 1 has time in O(n5), where n = |∆I |. Similarly as for
Algorithm 1, Theorem 31 allows us to design an algorithm to determine if a convex geometric
model η∗

I satisfies an IQ in normal form α, as we show in Algorithm 2.

Algorithm 2 check if a convex geometric model (as in Definition 29) satisfies an ELH IQ in normal
form.

Require: a convex geometric interpretation η∗
I and an ELH IQ in normal form α

Ensure: returns True if η∗
I |= α, False otherwise

1: if α = A(a) then ▷ A ∈ NC, a ∈ NI
2: if ηI(a)[A] = 1 then return True

3: else if α = (A ⊓B)(a) then ▷ A, B ∈ NC, a ∈ NI
4: if (ηI(a)[A] = 1) ∧ (ηI(a)[B] = 1) then return True

5: else if α = (∃r.A)(a) then ▷ A ∈ NC, r ∈ NR, a ∈ NI
6: for u ∈ ηI(A) do
7: if ηI(a)⊕ u ∈ ηI(r) then return True

8: else if α = r(a, b) then ▷ r ∈ NR, a, b ∈ NI
9: if ηI(a)⊕ ηI(b) ∈ ηI(r) then return True

return False

Theorem 36 shows that Algorithm 2 runs in time polynomial in d · |∆I |.

V. Lacerda, A. Ozaki, and R. Guimarães 2:15

▶ Theorem 36. Given a finite geometric interpretation ηI and an ELH IQ in normal form,
Algorithm 2 runs in time O(d · n3), with d as in Definition 19 and n = |∆I |.

Next, we present Algorithm 3, which handles RIs. Again, as a consequence of Theorem 31, we
only need to check the inclusion between two finite sets of vectors in R2·d. Finally, we show an
upper bound using Algorithm 3.

Algorithm 3 Check if a convex geometric model (as in Definition 29) satisfies an ELH role inclusion.

Require: a convex geometric interpretation η∗
I and an ELH role inclusion r ⊑ s

Ensure: returns True if η∗
I |= r ⊑ s, False otherwise

1: for v ∈ ηI(r) do
2: if v ̸∈ ηI(s) then return False

return True

▶ Theorem 37. Given a finite geometric interpretation ηI and an ELH role inclusion, Algorithm 3
runs in time in O(d · n4), where d is as in Definition 19 and n = |∆I |.

The three algorithms presented in this section run in polynomial time in d · |∆I |. We recall
that the construction of ηI (and also η∗

I) requires that both the signature and ∆I are finite (which
is reasonable for normalized ELH), otherwise the vectors in ηI would have infinite dimension.

7 Conclusion and discussion

We have proven that ELH has the strong faithfulness property over (possibly) non-convex geometric
models, and that normalized ELH has the strong faithfulness property over convex geometric
models. Furthermore, we give upper bounds for the complexity of checking satisfaction for ELH
axioms in normal form in the class of convex geometric models that we use for strong faithfulness.

As future work, we would like to implement an embedding method that is formally guaranteed
to generate strongly TBox faithful embeddings for normalized ELH ontologies, as well as expand
the language so as to cover more logical constructs present in EL++.

References
1 Ralph Abboud, Ismail Ceylan, Thomas

Lukasiewicz, and Tommaso Salvatori. BoxE: A box
embedding model for knowledge base completion.
In H. Larochelle, M. Ranzato, R. Hadsell, M. F.
Balcan, and H. Lin, editors, Advances in Neural
Information Processing Systems, volume 33,
pages 9649–9661. Curran Associates, Inc., 2020.
doi:10.5555/3495724.3496533.

2 Franz Baader, Ian Horrocks, Carsten Lutz, and
Uli Sattler. An Introduction to Description Lo-
gic. Cambridge University Press, USA, 1st edition,
2017. doi:10.1017/9781139025355.

3 Antoine Bordes, Nicolas Usunier, Alberto Garcia-
Duran, Jason Weston, and Oksana Yakhnenko.
Translating embeddings for modeling multi-
relational data. In C. J. Burges, L. Bottou,
M. Welling, Z. Ghahramani, and K. Q. Weinber-
ger, editors, Advances in Neural Information Pro-
cessing Systems, volume 26. Curran Associates,
Inc., 2013. doi:10.5555/2999792.2999923.

4 Stefan Borgwardt and Veronika Thost. LTL over
EL Axioms. Technische Universität Dresden, 2015.
doi:10.25368/2022.213.

5 Camille Bourgaux, Ricardo Guimarães, Raoul
Koudijs, Victor Lacerda, and Ana Ozaki. Know-
ledge base embeddings: Semantics and theoret-
ical properties. In Proceedings of the Twenty-
First International Conference on Principles of
Knowledge Representation and Reasoning, pages
823–833, Hanoi, Vietnam, November 2024. Interna-
tional Joint Conferences on Artificial Intelligence
Organization. doi:10.24963/kr.2024/77.

6 Camille Bourgaux, Ana Ozaki, and Jeff Z. Pan.
Geometric models for (temporally) attributed de-
scription logics. In Martin Homola, Vladislav
Ryzhikov, and Renate A. Schmidt, editors, DL,
volume 2954 of CEUR Workshop Proceedings.
CEUR-WS.org, 2021. URL: https://ceur-ws.
org/Vol-2954/paper-7.pdf.

7 Jiaoyan Chen, Pan Hu, Ernesto Jimenez-Ruiz,
Ole Magnus Holter, Denvar Antonyrajah, and Ian
Horrocks. Owl2vec*: embedding of owl ontologies.

TGDK

https://doi.org/10.5555/3495724.3496533
https://doi.org/10.1017/9781139025355
https://doi.org/10.5555/2999792.2999923
https://doi.org/10.25368/2022.213
https://doi.org/10.24963/kr.2024/77
https://ceur-ws.org/Vol-2954/paper-7.pdf
https://ceur-ws.org/Vol-2954/paper-7.pdf

2:16 Strong Faithfulness for ELH Ontology Embeddings

Machine Learning, 110(7):1813–1845, July 2021.
doi:10.1007/s10994-021-05997-6.

8 Yuanfei Dai, Shiping Wang, Neal N. Xiong, and
Wenzhong Guo. A Survey on Knowledge Graph
Embedding: Approaches, Applications and Bench-
marks. Electronics, 9(5):750, May 2020. doi:
10.3390/electronics9050750.

9 Claudia d’Amato, Nicola Flavio Quatraro, and Nic-
ola Fanizzi. Injecting background knowledge into
embedding models for predictive tasks on know-
ledge graphs. In Ruben Verborgh, Katja Hose,
Heiko Paulheim, Pierre-Antoine Champin, Maria
Maleshkova, Oscar Corcho, Petar Ristoski, and
Mehwish Alam, editors, The Semantic Web, pages
441–457. Springer International Publishing, 2021.
doi:10.1007/978-3-030-77385-4_26.

10 Víctor Gutiérrez-Basulto and Steven Schock-
aert. From knowledge graph embedding to on-
tology embedding? an analysis of the compat-
ibility between vector space representations and
rules. In Michael Thielscher, Francesca Toni,
and Frank Wolter, editors, KR, pages 379–388.
AAAI Press, 2018. URL: https://aaai.org/
ocs/index.php/KR/KR18/paper/view/18013, doi:
10.4230/OASIcs.AIB.2022.3.

11 Peter Gärdenfors. Conceptual Spaces: The Geo-
metry of Thought. The MIT Press, March 2000.
doi:10.7551/mitpress/2076.001.0001.

12 Pascal Hitzler, Markus Krötzsch, and Sebastian
Rudolph. Foundations of Semantic Web Techno-
logies. Chapman & Hall/CRC, 2009.

13 Anders Imenes, Ricardo Guimarães, and Ana
Ozaki. Marrying query rewriting and know-
ledge graph embeddings. In RuleML+RR, pages
126–140. Springer-Verlag, 2023. doi:10.1007/
978-3-031-45072-3_9.

14 Mathias Jackermeier, Jiaoyan Chen, and Ian Hor-
rocks. Dual box embeddings for the description
logic el++. In Tat-Seng Chua, Chong-Wah Ngo,
Ravi Kumar, Hady W. Lauw, and Roy Ka-Wei
Lee, editors, Proceedings of the ACM on Web
Conference, WWW, pages 2250–2258. ACM, 2024.
doi:10.1145/3589334.3645648.

15 Maxat Kulmanov, Wang Liu-Wei, Yuan Yan, and
Robert Hoehndorf. EL embeddings: Geometric
construction of models for the description logic
EL++. In Sarit Kraus, editor, Proceedings of the
Twenty-Eighth International Joint Conference on
Artificial Intelligence, IJCAI 2019, Macao, China,
August 10-16, 2019, pages 6103–6109. ijcai.org,
2019. doi:10.24963/ijcai.2019/845.

16 Victor Lacerda, Ana Ozaki, and Ricardo
Guimarães. Faithel: Strongly tbox faithful know-
ledge base embeddings for EL. In Sabrina Kirrane,
Mantas Šimkus, Ahmet Soylu, and Dumitru Ro-
man, editors, Rules and Reasoning, pages 191–
199, Cham, 2024. Springer Nature Switzerland.
doi:10.1007/978-3-031-72407-7_14.

17 Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang
Liu, and Xuan Zhu. Learning entity and re-

lation embeddings for knowledge graph comple-
tion. Proceedings of the AAAI Conference on
Artificial Intelligence, 29(1), February 2015. doi:
10.1609/aaai.v29i1.9491.

18 Carsten Lutz and Frank Wolter. Deciding in-
separability and conservative extensions in the
description logic el. Journal of Symbolic Com-
putation, 45(2):194–228, February 2010. doi:
10.1016/j.jsc.2008.10.007.

19 Sutapa Mondal, Sumit Bhatia, and Raghava
Mutharaju. Emel++: Embeddings for EL++ de-
scription logic. In Andreas Martin, Knut Hinkel-
mann, Hans-Georg Fill, Aurona Gerber, Doug
Lenat, Reinhard Stolle, and Frank van Harmelen,
editors, AAAI-MAKE, volume 2846 of CEUR
Workshop Proceedings. CEUR-WS.org, 2021. URL:
https://ceur-ws.org/Vol-2846/paper19.pdf.

20 Özgür Lütfü Özçep, Mena Leemhuis, and Diedrich
Wolter. Cone semantics for logics with negation. In
Christian Bessiere, editor, IJCAI, pages 1820–1826.
ijcai.org, 2020. doi:10.24963/ijcai.2020/252.

21 Aleksandar Pavlovic and Emanuel Sallinger. Ex-
pressivE: A spatio-functional embedding for know-
ledge graph completion. In The Eleventh Inter-
national Conference on Learning Representations,
ICLR 2023, Kigali, Rwanda, May 1-5, 2023. Open-
Review.net, 2023. URL: https://openreview.
net/pdf?id=xkev3_np08z.

22 Xi Peng, Zhenwei Tang, Maxat Kulmanov, Kexin
Niu, and Robert Hoehndorf. Description logic
EL++ embeddings with intersectional closure.
CoRR, abs/2202.14018, 2022. arXiv:2202.14018,
doi:10.48550/arXiv.2202.14018.

23 Xi Peng, Zhenwei Tang, Maxat Kulmanov, Kexin
Niu, and Robert Hoehndorf. Description logic
EL++ embeddings with intersectional closure.
CoRR, abs/2202.14018, 2022. arXiv:2202.14018.

24 Théo Trouillon, Johannes Welbl, Sebastian Riedel,
Éric Gaussier, and Guillaume Bouchard. Complex
embeddings for simple link prediction. arXiv, June
2016. doi:10.48550/arXiv.1606.06357.

25 Denny Vrandečić and Markus Krötzsch. Wikidata:
A free collaborative knowledgebase. Commun.
ACM, 57(10):78–85, September 2014. doi:10.
1145/2629489.

26 Bo Xiong, Nico Potyka, Trung-Kien Tran, Mo-
jtaba Nayyeri, and Steffen Staab. Faithful em-
beddings for EL++ knowledge bases. In The Se-
mantic Web – ISWC 2022, pages 22–38. Springer
International Publishing, 2022. doi:10.1007/
978-3-031-19433-7_2.

27 Bishan Yang, Wen-tau Yih, Xiaodong He, Jian-
feng Gao, and Li Deng. Embedding entities and
relations for learning and inference in knowledge
bases. arXiv, August 2015. arXiv:1412.6575.

28 Frank Zenker and Peter Gärdenfors. Applications
of Conceptual Spaces: The Case for Geometric
Knowledge Representation, volume 359 of Synthese
Library. Springer International Publishing, 2015.
doi:10.1007/978-3-319-15021-5.

https://doi.org/10.1007/s10994-021-05997-6
https://doi.org/10.3390/electronics9050750
https://doi.org/10.3390/electronics9050750
https://doi.org/10.1007/978-3-030-77385-4_26
https://aaai.org/ocs/index.php/KR/KR18/paper/view/18013
https://aaai.org/ocs/index.php/KR/KR18/paper/view/18013
https://doi.org/10.4230/OASIcs.AIB.2022.3
https://doi.org/10.4230/OASIcs.AIB.2022.3
https://doi.org/10.7551/mitpress/2076.001.0001
https://doi.org/10.1007/978-3-031-45072-3_9
https://doi.org/10.1007/978-3-031-45072-3_9
https://doi.org/10.1145/3589334.3645648
https://doi.org/10.24963/ijcai.2019/845
https://doi.org/10.1007/978-3-031-72407-7_14
https://doi.org/10.1609/aaai.v29i1.9491
https://doi.org/10.1609/aaai.v29i1.9491
https://doi.org/10.1016/j.jsc.2008.10.007
https://doi.org/10.1016/j.jsc.2008.10.007
https://ceur-ws.org/Vol-2846/paper19.pdf
https://doi.org/10.24963/ijcai.2020/252
https://openreview.net/pdf?id=xkev3_np08z
https://openreview.net/pdf?id=xkev3_np08z
https://arxiv.org/abs/2202.14018
https://doi.org/10.48550/arXiv.2202.14018
https://arxiv.org/abs/2202.14018
https://doi.org/10.48550/arXiv.1606.06357
https://doi.org/10.1145/2629489
https://doi.org/10.1145/2629489
https://doi.org/10.1007/978-3-031-19433-7_2
https://doi.org/10.1007/978-3-031-19433-7_2
https://arxiv.org/abs/1412.6575
https://doi.org/10.1007/978-3-319-15021-5

V. Lacerda, A. Ozaki, and R. Guimarães 2:17

A Appendix

A.1 Omitted proofs for Section 3
▶ Proposition 5. For finite S1, S2 ⊆ Rd, where d is an arbitrary dimension, we have that S1 ⊆ S2
implies S∗

1 ⊆ S∗
2 .

Proof. Let S1, S2 be finite sets with S1 ⊆ S2. We first prove the statement for v ∈ S1 ⊆ S∗
1 and

then for u ∈ S∗
1 \ S1. Let v ∈ S1 be an arbitrary vector. By assumption, v ∈ S2, and by the

definition of convex hull, v ∈ S∗
2 . Now, by Definition 4 let u ∈ S∗

1 \ S1 be defined by
∑n

i=1 λivi

where v1 . . . vn ∈ S1 and n ≤ |S1|. Since S1 ⊆ S2, v1 . . . vn ∈ S2 and, by Definition 4, since
u =

∑n
i=1 λivi, this gives us that u ∈ S∗

2 . Thus, S1 ⊆ S2 implies S∗
1 ⊆ S∗

2 . ◀

▶ Theorem 6. Let S ⊆ {0, 1}d where d is an arbitrary dimension. For any n ∈ N, for any
v =

∑n
i=1 λivi, such that vi ∈ S, if v ∈ S∗ \ S then v is non-binary.

Proof. For this proof we use a notation introduced in Definition 19. We reason by cases. We
need to cover all combinations of values that λi may take for arbitrary n. We cover two cases.
One where all λ are strictly greater than zero and strictly lesser than 1, and a case where some λi

may be zero. By setting n = 1, we have v = λ1x1. By definition, λ1 = 1, giving us either v = 0 or
v = 1, both binary vectors, which means v ∈ S∗ iff v ∈ S. Therefore, this case is not in the scope
of our lemma, and we assume n > 1.

Case 1 (0 < λi < 1): We prove the case by induction on the number of n.
Base case: In the base case n = 2. Let v1, v2 ∈ S with v1 ̸= v2. Then, there is a dimension d

such that v1[d] ̸= v2[d]. Since v1 and v2 are binary, we can assume, without loss of generality,
v1[d] = 1 and v2[d] = 0. Now let v = λ1v1 + λ2v2 be a vector, with λ1 + λ2 = 1. Since we
assumed ∀λi 0 < λi < 1, this means v ̸∈ {0, 1}d because v[d] = λ1, which is strictly between 0
and 1. Therefore, v is non-binary.
Inductive step: Assume our hypothesis holds for v1, . . . , vn−1.
Let v ∈ S∗. We know that v =

∑n
i=1 λivi, with 0 < λi < 1, with vi ∈ S, and with

∑n
i=1 λi = 1.

Since ∀i̸=j vi ̸= vj , there is a dimension d such that ∃l, m with vl[d] ̸= vm[d]. Since S is a
set of binary vectors, we decompose the value of a dimension d as a sum of vectors where
vi[d] = 1 and vj [d] = 0. In order to do this, we introduce an ordering and assume, without
loss of generality, that vi[d] = 1 ∀1 ≤ i ≤ k where k < n, and vj [d] = 0 ∀k + 1 ≤ j < n. More
explicitly:

v[d] =
k∑

i=1
λivi[d] +

n∑
j=k+1

λjvj [d].

However,
∑n

j=k+1 λjvj [d] = 0, so we only have to look at the first sum. Clearly, v[d] ̸= 0,
because vl[d] ̸= vm[d]. Since there exists at least one λj > 0 and, in this case ∀λi 0 < λi < 1,
it is impossible for the sum to be equal to 1, giving us v[d] ∈ (0, 1).
Case 2 (∃λi = 0 and ∀λj ̸=i we have 0 ≤ λj < 1):
We prove the case directly. We start by noting that for this case to hold, n ≥ 3, as n = 2
would mean λ1 = 0 and λ2 < 1, which goes against the criterion that

∑n
i=1 λivi = 1 from the

definition. Now, assume n ≥ 3. We denote by m the number of λi where λi = 0. Pick m such
that 1 ≤ m ≤ n− 2. Then, there are at least n−m ≥ 2 λj such that 0 < λj < 1. Which is
the situation covered by Case 1.

There are no more cases to be considered. ◀

TGDK

2:18 Strong Faithfulness for ELH Ontology Embeddings

▶ Corollary 7. If v is binary and v ∈ S∗ then v ∈ S.

Proof. The corollary follows directly from Theorem 6. ◀

A.2 Omitted proofs for Section 4
▶ Lemma 38. For all d ∈ ∆I , for all ELH concepts C, it is the case that d ∈ CI iff µ̄(d) ⊆ η̄I(C)
(see Definition 12).

Proof. We provide an inductive argument in order to prove the claim.

Base case: Assume C = A ∈ NC , and assume d ∈ AI .
By the definition of η̄I , d ∈ AI iff for all v ∈ µ̄(d), v ∈ η̄I(A), that is, iff µ̄(d) ⊆ η̄I(A). Now

assume C = ⊤, and assume d ∈ CI . By the definition of η̄I , if d ∈ CI , then µ̄(d) ⊆ η̄I(C). Now
assume µ̄(d) ⊆ η̄I(C). Since we assumed C = ⊤, we have that µ̄(d) ⊆ R1, with d ∈ ∆I . When
C = ⊥, the statement is vacuously true.

Inductive step: Assume our hypothesis holds for C1 and C2. There are two cases:

Case 1 (C1 ⊓ C2): Assume d ∈ (C1 ⊓ C2)I by the semantics of ELH, d ∈ (C1 ⊓ C2)I iff
d ∈ CI

1 and d ∈ CI
2 . By the inductive hypothesis, d ∈ CI

i iff µ̄(d) ⊆ ηI(Ci), i ∈ {1, 2}. But this
happens iff d ∈ η̄I(C1) ∩ η̄I(C2). By the definition of η̄I , this means that µ̄(d) ⊆ η̄I(C1 ⊓ C2)
iff d ∈ (C1 ⊓ C2)I .
Case 2 (∃r.C1): Assume d ∈ (∃r.C1)I by the semantics of ELH, d ∈ (∃r.C1)I iff (d, e) ∈ rI

and e ∈ CI
1 . By the inductive hypothesis, e ∈ CI

1 iff µ̄(e) ⊆ η̄I(C1). By the definition of η̄I ,
(d, e) ∈ rI iff f(v, e) ∈ η̄I(r) where v ∈ µ̄(d). By the semantics of η̄I , f(v, e) ∈ η̄I(r) and
e ∈ η̄I(C1) iff µ̄(d) ⊆ η̄I(∃r.C1). ◀

▶ Lemma 39. For all interpretations I, all ELH concepts C, and all a ∈ NI , it is the case that
I |= C(a) iff η̄I |= C(a)

Proof. By the semantics of ELH, we know I |= C(a) iff aI ∈ CI . By Lemma 38, we know that
aI ∈ CI iff η̄I(aI) ∈ η̄I(C). By the semantics of geometric interpretation, this is the case iff
η̄I |= C(a). ◀

▶ Lemma 40. For all r ∈ NR, for all a, b ∈ NI , we have η̄I |= r(a, b) iff I |= r(a, b).

Proof. By the semantics of ELH, I |= r(a, b) iff (aI , bI) ∈ rI . By the definition of η̄I , we have
(aI , bI) ∈ rI iff f(v, bI) ∈ η̄I(r) for all v ∈ µ̄(aI). From the Definition 12, bI = η̄I(b), hence
(aI , bI) ∈ rI iff f(v, η̄I(b)) ∈ η̄I(r) for all v ∈ µ̄(aI). Since η̄I(a) ∈ µ̄(aI), we get, by the semantics
of η̄I , that f(η̄I(a), η̄I(b)) ∈ η̄I(r) iff η̄I |= r(a, b). Giving us I |= r(a, b) iff η̄I |= r(a, b). ◀

▶ Lemma 41. Let O be an ELH ontology and let ĪO be the canonical model of O (Definition 14).
The geometrical interpretation η̄ĪO

of ĪO (Definition 12) is a strongly IQ faithful model of O.

Proof. Since IO is a canonical model of O, IO |= α iff O |= α (Theorem 15). By Lemmas 39
and 40, IO |= α iff η̄ĪO

|= α. Then, we have that O |= α iff η̄ĪO
|= α. ◀

▶ Lemma 42. Let I be an interpretation, and µ̄ be a mapping derived from Definition 10. For all
ELH concepts C, if v ∈ η̄I(C), then there is d ∈ ∆I such that v ∈ µ̄(d), and d ∈ CI .

Proof. We provide an inductive argument for the claim.

V. Lacerda, A. Ozaki, and R. Guimarães 2:19

Base case: Assume C = A ∈ NC and let v ∈ η̄I(A). By the definition of η̄I , it is the case
that v ∈ η̄I(A) iff v ∈ {v′ ∈ µ̄(d) | d ∈ AI}. Assume C = ⊤. By the definition of η̄I , we have
v ∈ η̄I(C) iff v ∈ µ̄(d) such that µ̄(d) ⊆ R1. This means v ∈ µ̄(d) and µ̄(d) ⊆ η̄I(C), for some
d ∈ ∆I . When C = ⊥, the statement is vacuously true.

Inductive step: Assume our hypothesis holds for C1 and C2.

Case 1 (C1 ⊓ C2): Assume v ∈ η̄I(C1 ⊓C2). Then, by the definition of η̄I , it is the case that
v ∈ η̄I(C1) and v ∈ η̄I(C2). By the inductive hypothesis, if v ∈ η̄I(C1), then ∃d ∈ ∆I such
that v ∈ µ̄(d) and d ∈ CI

1 , and if v ∈ η̄I(C2), then ∃d′ ∈ ∆I such that v ∈ µ̄(d′) and d′ ∈ CI
2 .

By definition of µ̄, this can only be if d′ = d since µ̄ maps elements of ∆I to mutually disjoint
subsets of R1. By the semantics of ELH, if d ∈ CI

1 and d ∈ CI
2 then d ∈ (C1 ⊓ C2)I .

Case 2 (∃r.C1): Assume v ∈ η̄I(∃r.C1). By the definition of η̄I , this means v is such that
f(v, e) ∈ η̄I(r) where v ∈ µ̄(d) for (d, e) ∈ rI and e ∈ η̄I(C1). By the inductive hypothesis,
there is an e′ ∈ ∆I such that e ∈ µ̄(e′) and e′ ∈ CI

1 . As e′ ∈ ∆I ⊆ N, by the construction of µ̄,
it is the case that e′ = e. Therefore, we have e ∈ CI

1 . By the definition of µ̄ and the semantics
of ELH, this means ∃d ∈ ∆I such that v ∈ µ̄(d) and d ∈ (∃r.C1)I . ◀

▶ Lemma 43. Let I be an interpretation and η̄I the geometric interpretation of I (Definition 12).
For all ELH concepts C and D, I |= C ⊑ D iff η̄I |= C ⊑ D.

Proof. Let C, D be ELH concepts. Assume I |= C ⊑ D. By the semantics of ELH, this means
CI ⊆ DI . Let v ∈ η̄I(C) be a vector. By Lemma 42, we know there is d ∈ ∆I and d ∈ CI such
that v ∈ µ̄(d) and µ̄(d) ⊆ η̄I(C). By Lemma 38, this means d ∈ CI , and, by assumption, that
d ∈ DI . By Lemma 38, this means µ̄(d) ⊆ ηI(D). Since we have shown v ∈ µ̄(d) such that η̄I(C)
implies v ∈ η̄I(D), this means η̄I |= C ⊑ D.

Now assume η̄I |= C ⊑ D. By the semantics of geometric interpretation, this means η̄I(C) ⊆
η̄I(D). Let d ∈ CI . We know, by Lemma 38, that d ∈ CI iff µ̄(d) ⊆ η̄I(C). By assumption, this
means µ̄(d) ⊆ η̄I(D). Again by Lemma 38, this means d ∈ DI . Since we have shown d ∈ CI

implies d ∈ DI , we have I |= C ⊑ D. ◀

▶ Lemma 44. Let I be an interpretation, µ̄ be a mapping (Definition 10), and η̄I the geometric
interpretation of I (Definition 12) derived from µ̄. For all role names r ∈ NR, if f(v, e) ∈ η̄I(r),
then there are d, e ∈ ∆I such that v ∈ µ̄(d) for (d, e) ∈ rI .

Proof. Assume z = f(v, e) ∈ η̄I(r). By the definition of η̄I , we have z ∈ {f(v, e) | v ∈
µ̄(d) for (d, e) ∈ rI}. This means v ∈ µ̄(d) for d ∈ ∆I , and, by definition, e ∈ ∆I . ◀

▶ Lemma 45. Let I be an interpretation and η̄I the geometric interpretation of I (Definition 12).
For all roles r, s ∈ NR, it is the case that I |= r ⊑ s iff η̄I |= r ⊑ s.

Proof. Assume I |= r ⊑ s. By the semantics of ELH, rI ⊆ sI . Now let v ∈ η̄I(r). By
Lemma 44, there is d ∈ ∆I such that v ∈ µ̄(d), e ∈ ∆I , and (d, e) ∈ rI . By assumption, this
gives us (d, e) ∈ sI . By the construction of η̄I , this means f(v, e) ∈ η̄I(s) for v ∈ µ̄(d). Hence,
f(v, e) ∈ η̄I(r) implies f(v, e) ∈ η̄I(s) and we can conclude that η̄I |= r ⊑ s. Now assume
η̄I |= r ⊑ s. By the semantics of η̄I , η̄I(r) ⊆ η̄I(s). Let (d, e) ∈ rI . From the definition of η̄I , we
know there is f(v, e) ∈ η̄I(r) such that v ∈ µ̄(d). By assumption, we have f(v, e) ∈ η̄I(s) and,
by the definition of η̄I , this is the case iff (d, e) ∈ sI . Since (d, e) was arbitrary, we conclude
I |= r ⊑ s. ◀

▶ Theorem 13. For all ELH axioms α, I |= α iff η̄I |= α.

TGDK

2:20 Strong Faithfulness for ELH Ontology Embeddings

Proof. For the case where α is a concept inclusion, the result comes from Lemma 43. For the
case where α is a role inclusion, the result comes from Lemma 45. For the case where α is an IQ,
the result comes from Lemma 39 and from Lemma 40. ◀

▶ Lemma 46. Let O be an ELH ontology and let ĪO be the canonical model of O (see Definition 14).
The m-dimensional f -geometric interpretation of ĪO (see Definition 12) is a strongly TBox faithful
model of O. That is, O |= τ iff η̄ĪO

|= τ , where τ is either an ELH⊥ concept inclusion or an ELH
role inclusion.

Proof. Since we know ĪO is canonical, O |= α iff ĪO |= α. By Lemma 43 we know I |= C ⊑ D iff
η̄I |= C ⊑ D, and by Lemma 45 we know I |= r ⊑ s iff η̄I |= r ⊑ s. This means that ĪO |= C ⊑ D

iff η̄ĪO
|= C ⊑ D and ĪO |= r ⊑ s iff η̄ĪO

|= r ⊑ s, giving us O |= τ iff η̄ĪO
|= τ . ◀

▶ Theorem 16. Let O be a satisfiable ELH ontology and let ĪO be the canonical model of O
(see Definition 14). The m-dimensional f -geometric interpretation of ĪO (see Definition 12) is a
strongly IQ and TBox faithful model of O.

Proof. The theorem follows by Lemma 41 and by Lemma 46. ◀

A.3 Omitted proofs for Section 5

▶ Proposition 24. If µ(d) = µ(e), then d ∈ CI iff e ∈ CI .

Proof. We provide an inductive argument for the claim.

Base case: Notice that if µ(d) = µ(e), then µ(d)[i] = n iff µ(e)[i] = n, for all i. That is, the
value at the ith index is n for µ(d) and µ(e), otherwise they would not be the same vector. Now,
assume C = A ∈ NC , and d ∈ CI . By the definition of µ, µ(d)[C] = 1. Since µ(d) = µ(e), we
have that µ(d)[C] = 1 iff µ(e)[C] = 1. But, by the definition of µ, µ(e)[C] = 1 iff e ∈ CI , thus
giving us our result.

Inductive step: Assume our hypothesis holds for C1 and C2.
Assume µ(d) = µ(e). By the semantics of ELH, d ∈ (C1 ⊓ C2)I iff d ∈ CI

1 and d ∈ CI
2 . By

the induction hypothesis, this happens iff e ∈ CI
1 and e ∈ CI

2 . This means, of course, by the
semantics of ELH, that e ∈ CI

1 and e ∈ CI
2 iff e ∈ (C1 ⊓ C2)I . Finally, we get d ∈ (C1 ⊓ C2)I iff

e ∈ (C1 ⊓ C2)I .
We prove the case (∃r.C1) directly. Assume µ(d) = µ(e), and d ∈ (∃r.C1)I . Then, by

the semantics of ELH, ∃d′ such that d′ ∈ CI
1 , and r(d, d′)I . By the definition of µ, we know

µ(d)[r, d′] = 1. But from our initial observation, µ(d)[r, d′] = 1 iff µ(e)[r, d′] = 1. By definition of
µ, µ(e)[r, d′] = 1 iff (e, d′) ∈ rI . By the semantics of ELH, whenever d′ ∈ CI

1 and (e, d′) ∈ rI we
have that e ∈ (∃r.C1)I . ◀

▶ Lemma 47. Let I be an interpretation, and µ a mapping derived from Definition 19. For all
normalized ELH concepts C, if v ∈ ηI(C), then there is d ∈ ∆I such that v = µ(d) and d ∈ CI .

Proof. We provide an inductive argument for the claim.

Base case: Assume C = A ∈ NC and assume v ∈ ηI(C). By the definition of ηI , it is the case
that v ∈ ηI(C) iff v[C] = 1. This is the case iff v = µ(d), for some d ∈ ∆I .

V. Lacerda, A. Ozaki, and R. Guimarães 2:21

Inductive step: Assume our hypothesis holds for C1 and C2. We prove two cases.
Case 1 (C1 ⊓ C2): Assume v ∈ ηI(C1 ⊓ C2). Then, by definition of ηI , it is true that
v ∈ ηI(C1) and v ∈ ηI(C2). By the inductive hypothesis, if this is the case, then v = µ(d) ∈ C1
and v = µ(d) ∈ C2, for d ∈ ∆I . This gives us v = µ(d) ∈ ηI(C1) ∩ ηI(C2), which means
v = µ(d) ∈ ηI(C1 ⊓ C2), for d ∈ ∆I .
Case 2 (∃r.C1): Assume v ∈ ηI(∃r.C1). Then, by the definition of ηI , ∃u ∈ ηI(C1) and
v ⊕ u ∈ ηI(r). By the inductive hypothesis, if u ∈ ηI(C1), we get u = µ(e) ∈ ηI(C1), for
e ∈ ∆I . Now, v ⊕ u ∈ ηI(r) iff v ⊕ u ∈ {µ(d)⊕ µ(e) | µ(d)[r, e] = 1}, for d, e ∈ ∆I . This gives
us v = µ(d) such that µ(d)[r, e] = 1. By construction of ηI , if we have u = µ(e) ∈ ηI(C1), and
v = µ(d) such that µ(d)[r, e] = 1 with v ⊕ u ∈ ηI(r), this means v = µ(d) ∈ ηI(∃r.C1), for
some d ∈ ∆I . ◀

▶ Lemma 48. Let I be an interpretation and let µ be as in Definition 19. For all r ∈ NR, if
u⊕ w ∈ ηI(r), then there are d, e ∈ ∆I such that u = µ(d), w = µ(e), and (d, e) ∈ rI .

Proof. Assume v = u⊕w ∈ ηI(r). Then, by the definition of ηI(r), it is the case that v ∈ {µ(d)⊕
µ(e) | µ(d)[r, e] = 1, for d, e ∈ ∆I}. This means there are d, e ∈ ∆I such that v = µ(d)⊕µ(e) and
µ(d)[r, e] = 1. By construction of µ, it is true that µ(d)[r, e] = 1 iff (d, e) ∈ rI . This means there
are d, e ∈ ∆I such that u = µ(d), w = µ(e) and (d, e) ∈ rI . ◀

▶ Lemma 49. For all d ∈ ∆I , for all ELH concepts C, d ∈ CI iff µ(d) ∈ ηI(C).

Proof. We provide an inductive argument for the claim.
For all d ∈ ∆I , for all ELH concepts C, d ∈ CI iff µ(d) ∈ ηI(C).

Base case: Assume C = A ∈ NC and d ∈ CI . By the definition of µ, d ∈ CI iff µ(d)[C] = 1.
By the definition of geometric interpretation, µ(d)[C] = 1 iff µ(d) ∈ ηI(C).

Inductive step: assume our hypothesis holds for C1 and C2. We consider two cases:
Case 1 (C1 ⊓ C2): Assume d ∈ (C1 ⊓ C2)I . This is the case iff d ∈ CI

1 and d ∈ CI
2 . By

the inductive hypothesis, we have that µ(d) ∈ ηI(C1) and d ∈ ηI(C2). But µ(d) ∈ ηI(C1)
and d ∈ ηI(C2) iff µ(d) ∈ ηI(C1 ⊓ C2). Finally, by the semantics of geometric interpretation,
µ(d) ∈ ηI(C1 ⊓ C2) iff d ∈ (C1 ⊓ C2)I .
Case 2 (∃r.C1): Assume d ∈ (∃r.C1)I . Then, by the semantics of ELH, ∃e ∈ CI

1 such
that (d, e) ∈ rI . By the inductive hypothesis, we get µ(e) ∈ ηI(C1). By the definition of
ηI , (d, e) ∈ rI iff µ(d)⊕ µ(e) ∈ ηI(r). But, by the semantics of our geometric interpretation,
µ(d)⊕ µ(e) ∈ ηI(r) and µ(e) ∈ ηI(C1) iff µ(d) ∈ ηI(∃r.C1). ◀

▶ Lemma 50. For all interpretations I, all ELH concepts C, all a ∈ NI , I |= C(a) iff ηI |= C(a).

Proof. I |= C(a) iff aI ∈ CI . By Lemma 49, aI ∈ CI iff µ(aI) ∈ ηI(C). By the semantics of
geometric interpretation, µ(aI) ∈ ηI(C) iff ηI |= C(a). ◀

▶ Lemma 51. For all r ∈ NR, all a, b ∈ NI , I |= r(a, b) iff ηI |= r(a, b).

Proof. Assume I |= r(a, b). By the semantics of ELH, this means there are d, e ∈ ∆I such that
d = aI , e = bI , and (aI , bI) ∈ rI . By the definition of µ, this means µ(d)[a] = 1, that µ(e)[b] = 1,
and that µ(d)[r, e] = 1. By the definition of geometric interpretation, this means µ(d) = ηI(a),
that µ(e) = ηI(b), and that µ(d)⊕ µ(e) ∈ ηI(r), which is the case iff ηI |= r(a, b).

Now assume ηI |= r(a, b). This means that ηI(a) ⊕ ηI(b) ∈ ηI(r). By Lemma 48, we have
that ∃d, e ∈ ∆I such that ηI(a) = µ(d), ηI(b) = µ(e), and (d, e) ∈ rI . But, by the definition of
geometric interpretation and construction of µ, we have ηI(a) = µ(d) iff d = aI , and ηI(b) = µ(e)
iff e = bI , and (aI , bI) ∈ rI . By the semantics of ELH, this means I |= r(a, b). ◀

TGDK

2:22 Strong Faithfulness for ELH Ontology Embeddings

▶ Lemma 52. If IO is the canonical model of O, then the geometrical interpretation ηIO of IO is
strongly IQ faithful with respect to O. That is, O |= α iff ηIO |= α, where α is an ELH IQ.

Proof. IO is canonical, therefore IO |= α iff O |= α. By Lemma 50 we have that I |= C(a) iff
ηI |= C(a), and by Lemma 51 we have that I |= r(a, b) iff ηI |= r(a, b). This just means I |= α iff
ηIO |= α, giving us ηIO |= α iff O |= α. ◀

▶ Lemma 53. For all C, D it is the case that I |= C ⊑ D iff ηI |= C ⊑ D.

Proof. Let C, D be ELH concepts. Assume I |= C ⊑ D. By the semantics of ELH, this means
CI ⊆ DI . Let v ∈ ηI(C). By Lemma 47 we have that v = µ(d) ∈ ηI(C). We know, by Lemma 49,
that µ(d) ∈ ηI(C) iff d ∈ CI . Since we have d ∈ CI , we also have, by assumption, d ∈ DI . Again
by Lemma 49, this gives us µ(d) ∈ ηI(D). Since d was chosen arbitrarily, this is the case iff
ηI |= C ⊑ D.

Now assume ηI |= C ⊑ D. By the semantics of ELH, ηI(C) ⊆ ηI(D). Now assume d ∈ CI .
We know, by Lemma 49, that this is the case iff µ(d) ∈ ηI(C). By assumption, we get µ(d) ∈ ηI(D).
Since v was arbitrary, and we showed that d ∈ CI implies d ∈ DI , this means I |= C ⊑ D. ◀

▶ Lemma 54. For all r, s ∈ NR, it is the case that I |= r ⊑ s iff ηI |= r ⊑ s.

Proof. Assume I |= r ⊑ s. B the semantics of ELH, rI ⊆ sI . Now let v = u ⊕ w ∈ ηI(r).
This means v ∈ {µ(d) ⊕ µ(e) | (d, e) ∈ rI}, and, by Lemma 48 there are d, e ∈ ∆I such that
u = µ(d), w = µ(e) and (d, e) ∈ rI . By assumption, (d, e) ∈ sI . By construction of µ, this means
µ(d)[s, e] = 1. Since we know v = µ(d)⊕ µ(e) and µ(d)[s, e] = 1, by the definition of ηI we have
that v ∈ ηI(s), and, therefore ηI |= r ⊑ s.

Now assume ηI |= r ⊑ s. By the semantics of ELH, this means ηI(r) ⊆ ηI(s). Let
(d, e) ∈ rI . By the construction of µ, this means µ(d)[r, e] = 1. By the definition of ηI , there is
v = µ(d)⊕ µ(e) ∈ ηI(r). By assumption, v ∈ ηI(s). But, by Lemma 48, there are d, e ∈ ∆I such
that u = µ(d), w = µ(e), and (d, e) ∈ sI . Since we have proven (d, e) ∈ rI implies (d, e) ∈ sI , this
means I |= r ⊑ s. ◀

▶ Theorem 25. For all ELH axioms α, I |= α iff ηIO |= α.

Proof. When α is a concept inclusion, the result comes from Lemma 53. When α is a role inclusion,
the result comes from Lemma 54. When α is an IQ, the result comes from Lemma 50 and from
Lemma 51 ◀

▶ Theorem 27. Let O be a normalized ELH ontology. The following holds
for all ELH IQs and CIs α in normal form over sig(O), IO |= α iff O |= α; and
for all RIs α over sig(O), IO |= α iff O |= α.

Proof. We divide the proof into claims, first for assertions and then for concept and role inclusions.
In the following, let O = T ∪ A be an ELH ontology in normal form, with T being the set of
ELH concept and role inclusions in O and A being the set of ELH assertions in O. As mentioned
before, NC(O), NR(O), and NI(A) denote the set of concept, role, and individual names occurring
in O, respectively. In the following, let A, A1, A2, B, B′ be arbitrary concept names in NC(O), let
a, b be arbitrary individual names in NI(A), and let r, s, s′ be arbitrary role names in NR(O).

▷ Claim 55. IO |= A(a) iff O |= A(a).

Proof. Assume O |= A(a). Now, by the definition of IO (Definition 26), it is the case that
AIO ⊇ {a ∈ NI(A) | O |= A(a)}. By assumption, we have that a ∈ AIO . But since a ∈ NI(A),
by the definition of IO, we have aIO = a and, therefore, aIO ∈ AIO , which means IO |= A(a).

V. Lacerda, A. Ozaki, and R. Guimarães 2:23

Now assume IO |= A(a). This means aIO ∈ AIO . We know, by the definition of IO,
that aIO = a. Also by the definition of IO, we know AIO = {a ∈ NI(A) | O |= A(a)} ∪
{cD ∈ ∆IO

u+ | O |= D ⊑ A}. Since a ∈ NI(A), we have that a ̸∈ ∆IO
u+, and thus, O |= A(a). ◁

▷ Claim 56. IO |= r(a, b) iff O |= r(a, b).

Proof. Assume O |= r(a, b). By the definition of canonical model (Definition 26), rIO ⊇
{(a, b) ∈ NI(A) × NI(A) | O |= r(a, b)}. Since we assumed that O |= r(a, b), we have that
(a, b) ∈ rIO . Now, again by the definition of IO, we have that aIO = a, and bIO = b. This means
(aIO , bIO) ∈ rIO , which is the case iff IO |= r(a, b).
Now assume IO |= r(a, b). Then, we know (aIO , bIO) ∈ rIO . By definition of rIO , we have
that (a, b) ∈ rIO . Since a, b ∈ NI , by definition of IO, we have O |= r(a, b). ◁

▷ Claim 57. IO |= ∃r.A(a) iff O |= ∃r.A(a).

Proof. Assume O |= ∃r.A(a). By the definition of IO (Definition 26), we have rIO ⊇
{(a, cA) ∈ NI(A) × ∆IO | O |= ∃r.A(a)}. This means (a, cA) ∈ rIO . Also, by the definition
of the canonical model, aIO = a and cA ∈ AIO , and therefore aIO ∈ (∃r.A)IO . This gives us
IO |= ∃r.A(a).
Now assume IO |= ∃r.A(a). Then, aIO ∈ (∃r.A)IO . By the definition of the canonical model,
either (1) there is b ∈ NI(A) such that (a, b) ∈ rIO and b ∈ AIO or (2) there is cA′ ∈ ∆IO

u such
(a, cA′) ∈ rIO and cA′ ∈ AIO . In case (1), by the definition of IO, we have that (a, b) ∈ rIO means
that O |= r(a, b). We also have that it is the case that b ∈ AIO . By the definition of the canonical
model, this means that b ∈ {b ∈ NI(A) | O |= A(b)}, so O |= A(b). By the semantics of ELH,
O |= r(a, b) and O |= A(b) implies O |= ∃r.A(a). In case (2), by the definition of IO, (a, cA′) ∈ rIO

means that O |= ∃r.A′(a). Again by the definition of IO, cA′ ∈ AIO implies T |= A′ ⊑ A. This
gives us O |= ∃r.A(a). ◁

▷ Claim 58. IO |= A1 ⊓A2 ⊑ B iff O |= A1 ⊓A2 ⊑ B.

Proof. Assume O |= A1 ⊓ A2 ⊑ B. We make a case distinction based on the elements in
∆IO := NI(A) ∪∆IO

u+.
a ∈ NI(A): Assume a ∈ (A1 ⊓ A2)IO . This is the case iff a ∈ AIO

1 and a ∈ AIO
2 . By

the definition of IO, this means O |= A1(a) and O |= A2(a). By assumption, this gives us
O |= B(a), which, by the definition of IO, means that a ∈ BIO . Therefore, IO |= B(a). Since
a was an arbitrary element in NI(A), this holds for all elements of this kind.
cD ∈ ∆IO

u+: Assume cD ∈ (A1 ⊓ A2)IO . This means cD ∈ AIO
1 and cD ∈ AIO

2 . By the
definition of IO, this gives us that T |= D ⊑ A1 and T |= D ⊑ A2. By assumption, this means
T |= D ⊑ B. But, by the definition of IO, this means cD ∈ BIO . Since cD was an arbitrary
element in ∆IO

u+, this argument can be applied for all elements of this kind.
We have thus shown that, for all elements d in ∆IO , if d ∈ (A1 ⊓ A2)IO then d ∈ BIO . So
IO |= A1 ⊓A2 ⊑ B.
Now, assume O ̸|= A1 ⊓ A2 ⊑ B. We show that IO ̸|= A1 ⊓A2 ⊑ B by showing that cA1⊓A2 ∈
(A1 ⊓ A2)IO but cA1⊓A2 ̸∈ BIO . By definition of IO, cA1⊓A2 ∈ AIO

i since T |= A1 ⊓ A2 ⊑ Ai

(trivially), where i ∈ {1, 2}. Then, by the semantics of ELH, cA1⊓A2 ∈ (A1 ⊓ A2)IO . We now
argue that cA1⊓A2 ̸∈ BIO . This follows again by the definition of IO and the assumption that
O ̸|= A1 ⊓ A2 ⊑ B, since the definition means that cD ̸∈ BIO iff O |= D ⊑ B and we can take
D = A1 ⊓A2. ◁

▷ Claim 59. IO |= ∃r.B ⊑ A iff O |= ∃r.B ⊑ A.

TGDK

2:24 Strong Faithfulness for ELH Ontology Embeddings

Proof. Assume O |= ∃r.B ⊑ A. We make a case distinction based on the elements in
∆IO := NI(A) ∪∆IO

u+.
a ∈ NI(A): Assume a ∈ (∃r.B)IO . In this case, by definition of IO, either (1) there is b ∈ NI(A)
such that (a, b) ∈ rIO and b ∈ BIO or (2) there is cB′ ∈ ∆IO

u such that (a, cB′) ∈ rIO and
cB′ ∈ BIO . In case (1), by definition of IO, (a, b) ∈ rIO implies that O |= r(a, b). Also,
b ∈ BIO implies that O |= B(b). Together with the assumption that O |= ∃r.B ⊑ A, this
means that O |= A(a). Again by definition of IO, we have that a ∈ AIO . In case (2), by
definition of IO, (a, cB′) ∈ rIO implies that O |= ∃r.B′(a). Also, by definition of IO, cB′ ∈ BIO

implies that T |= B′ ⊑ B. Then, O |= ∃r.B(a). By assumption O |= ∃r.B ⊑ A, which means
that O |= A(a). Again by definition of IO, we have that a ∈ AIO . Since a was an arbitrary
element in NI(A), this argument can be applied for all elements of this kind.
cD ∈ ∆IO

u+: Assume cD ∈ (∃r.B)IO . In this case, by definition of IO, either (1) there
is cB′ ∈ ∆IO

u such that (cD, cB′) ∈ rIO and cB′ ∈ BIO or (2) D is of the form ∃s.B′,
(cD, cB′) ∈ rIO , cB′ ∈ BIO , and T |= s ⊑ r. In case (1), by definition of IO, T |= D ⊑ A

and T |= A ⊑ ∃r.B′. Again by definition of IO, cB′ ∈ BIO implies T |= B′ ⊑ B. This
means that T |= D ⊑ ∃r.B. By assumption O |= ∃r.B ⊑ A, which means T |= ∃r.B ⊑ A.
Then, T |= D ⊑ A. By definition of IO, we have that cD ∈ AIO . In case (2), we have that
T |= D ⊑ ∃r.B′ since D is of the form ∃s.B′ and T |= s ⊑ r. Also, as cB′ ∈ BIO , by definition
of IO, T |= B′ ⊑ B. Then, T |= D ⊑ ∃r.B. By assumption, O |= ∃r.B ⊑ A, which then means
that T |= D ⊑ A. By definition of IO, we have that cD ∈ AIO . Since cD was an arbitrary
element in ∆IO

u+, this argument can be applied for all elements of this kind.
We have thus shown that, for all elements d in ∆IO , if d ∈ (∃r.B)IO then d ∈ AIO . So
IO |= ∃r.B ⊑ A.
Now, assume O ̸|= ∃r.B ⊑ A. We show that IO ̸|= ∃r.B ⊑ A by showing that c∃r.B ∈ (∃r.B)IO

but c∃r.B ̸∈ AIO . By the definition of IO, (c∃s.B , cB) ∈ rIO if T |= s ⊑ r, which is trivially the
case for s = r, and cB ∈ BIO by definition of IO. We now argue that c∃r.B ̸∈ AIO . By definition
of IO, an element of the form cD is in AIO iff T |= D ⊑ A. By assumption O ̸|= ∃r.B ⊑ A which
means T ̸|= ∃r.B ⊑ A. So c∃r.B is not in AIO . ◁

▷ Claim 60. IO |= A ⊑ ∃r.B iff O |= A ⊑ ∃r.B.

Proof. Assume O |= A ⊑ ∃r.B. We make a case distinction based on the elements in
∆IO := NI(A) ∪∆IO

u+.
a ∈ NI(A): Assume a ∈ AIO . By definition of IO, we have O |= A(a). By assumption
O |= A ⊑ ∃r.B, so O |= ∃r.B(a). Then, by definition of IO, (a, cB) ∈ rIO . Again by definition
of IO, we have cB ∈ BIO . So a ∈ (∃r.B)IO . Since a was an arbitrary element in NI(A), the
argument golds for all similar elements.
cD ∈ ∆IO

u+: Assume cD ∈ AIO . By definition of IO, we have that T |= D ⊑ A. By assumption,
O |= A ⊑ ∃r.B which means T |= A ⊑ ∃r.B. Then, by definition of IO, (cD, cB) ∈ rIO . Again
by definition of IO, we have that cB ∈ BIO . So cD ∈ (∃r.B)IO . Since cD was an arbitrary
element in ∆IO

u+, this argument holds for all similar elements.
We have thus shown that, for all elements d in ∆IO , if d ∈ AIO then d ∈ (∃r.B)IO . This means
that IO |= A ⊑ ∃r.B.
Now, assume O ̸|= A ⊑ ∃r.B. We show that IO ̸|= A ⊑ ∃r.B by showing that cA ∈ AIO but
cA ̸∈ (∃r.B)IO . By definition of IO, we have that {cD ∈ ∆IO

u+ | T |= D ⊑ A} ⊆ AIO . For D = A we
trivially have that T |= A ⊑ A, so cA ∈ AIO . We now show that cA ̸∈ (∃r.B)IO . Suppose this is not
the case and there is some element d ∈ ∆IO such that (cA, d) ∈ rIO and d ∈ BIO . By definition of
IO, this can happen iff d is of the form cB′ in ∆IO

u and, moreover, T |= A ⊑ A′ and T |= A′ ⊑ ∃r.B′

for some A′ ∈ NC(O). We now argue d = cB′ ∈ BIO implies T |= B′ ⊑ B. By definition of IO,

V. Lacerda, A. Ozaki, and R. Guimarães 2:25

cB′ ∈ BIO iff T |= B′ ⊑ B. Since T |= A ⊑ A′ and T |= A′ ⊑ ∃r.B′, we have T |= A ⊑ ∃r.B,
which means O |= A ⊑ ∃r.B. This contradicts our assumption that there is some element d ∈ ∆IO

such that (cA, d) ∈ rIO and d ∈ BIO . Thus, cA ̸∈ (∃r.B)IO , as required. ◁

▷ Claim 61. IO |= r ⊑ s iff O |= r ⊑ s.

Proof. Assume O |= r ⊑ s. We make a case distinction based on the elements in ∆IO and how
they can be related in the extension of a role name in the definition of IO.

(a, b) ∈ NI(A) × NI(A): Assume (a, b) ∈ rIO . We first argue that in this case O |= r(a, b).
By definition of IO, (a, b) ∈ rIO iff O |= r(a, b). Since by assumption O |= r ⊑ s we have
that O |= s(a, b), so (a, b) ∈ sIO . Since (a, b) was an arbitrary pair in NI(A) × NI(A), the
argument can be applied for all such kinds of pairs.
(a, cB) ∈ NI(A)×∆IO

u : Assume (a, cB) ∈ rIO . We first argue that in this case O |= ∃r.B(a).
By definition of IO, we have that (a, cB) ∈ rIO iff O |= ∃r.B(a). By assumption O |= r ⊑ s.
So O |= ∃s.B(a). Then, again by definition of IO, we have that (a, cB) ∈ sIO . Since (a, cB)
was an arbitrary pair in NI(A)×∆IO

u , this argument can be applied for all such kinds of pairs.
(cD, cB) ∈ ∆IO

u+ ×∆IO
u : Assume (cD, cB) ∈ rIO . In this case, by definition of IO, either (1)

T |= D ⊑ A and T |= A ⊑ ∃r.B, for some A ∈ NC(O), or (2) D is of the form ∃s′.B and
T |= s′ ⊑ r. In case (1), since by assumption O |= r ⊑ s, we have that T |= D ⊑ A and T |=
A ⊑ ∃s.B, for some A ∈ NC(O). Then, by definition of IO, it follows that (cD, cB) ∈ sIO . In
case (2), since T |= s′ ⊑ r and by assumption O |= r ⊑ s (which means T |= r ⊑ s), we have
that T |= s′ ⊑ s. Then, again by definition of IO, as in this case D is of the form ∃s′.B, it
follows that (cD, cB) ∈ sIO . Since (cD, cB) was an arbitrary pair in ∆IO

u+×∆IO
u , this argument

can be applied for all such kinds of pairs.
We have thus shown that IO |= r ⊑ s.
Now, assume O ̸|= r ⊑ s. We show that IO ̸|= r ⊑ s. By definition of IO, we have that
{(c∃s.B , cB) ∈ ∆IO

u+ ×∆IO
u | T |= s ⊑ r} ⊆ rIO . By taking B = ⊤ and s = r (and since trivially

T |= r ⊑ r), we have in particular that (c∃r.⊤, c⊤) ∈ rIO . We now argue that (c∃r.⊤, c⊤) /∈ sIO .
By definition of IO, a pair of the form (c∃s′.B , cB) is in sIO iff T |= s′ ⊑ s. By assumption
O ̸|= r ⊑ s, which means T ̸|= r ⊑ s. So the pair (c∃r.⊤, c⊤) is not in sIO . ◁

This finishes our proof. ◀

▶ Lemma 62. Let O be a normalized ELH ontology and let IO be the canonical model of O
(Definition 26). The d-dimensional ⊕-geometric interpretation of IO (Definition 21) is a strongly
TBox faithful model of O.

Proof. From Theorem 27, if τ is an ELH CI in normal form or an ELH role inclusion over sig(O),
then IO |= τ iff O |= τ . Since, by Lemma 53 it is the case that I |= C ⊑ D iff ηI |= C ⊑ D

(where C and D are arbitrary ELH concepts) and by Lemma 54 it is the case that I |= r ⊑ s iff
ηI |= r ⊑ s (with r, s ∈ NR), we have that I |= τ iff ηIO |= τ , where τ is a TBox axiom in normal
form. This gives us ηIO |= τ iff O |= τ for any normalized TBox axiom. ◀

▶ Theorem 28. Let O be an ELH ontology and let IO be the canonical model of O (Definition 26).
The d-dimensional (possibly non-convex) ⊕-geometric interpretation ηIO of IO is a strongly and
IQ and TBox faithful model of O.

Proof. This result follows from Lemmas 52 and 62. ◀

▶ Lemma 63. For all r ∈ NR, all a, b ∈ NI , it is the case that ηI |= r(a, b) iff η∗
I |= r(a, b).

TGDK

2:26 Strong Faithfulness for ELH Ontology Embeddings

Proof. We know that η∗
I |= r(a, b) iff it is true that η∗

I(a)⊕ η∗
I(b) ∈ η∗

I(r). From the definition of
η∗

I we know η∗
I(a)⊕ η∗

I(b) = ηI(a)⊕ ηI(b). Since µ(d) is binary for any d, we have ηI(a)⊕ ηI(b)
is binary. From Corollary 7, we have ηI(a)⊕ ηI(b) ∈ ηI(r), which, by the definition of satisfaction
is the case iff ηI |= r(a, b). ◀

▶ Lemma 64. For any vector v, such that v is a result of the mapping in Definition 19, if
v ∈ η∗

I(A), then v[A] = 1.

Proof. By the definition of η∗
I and that of convex hull, for all v, it holds that v ∈ η∗

I(A) means ∃
λi0 ≤ λi ≤ 1 such that v =

∑n
i=1 viλi, with vi ∈ ηI(A). By the definition of ηI , it is true that

vi ∈ ηI(A) is the case iff vi[A] = 1, for all 1 ≤ i ≤ n. By the definition of convex hull, this means
v[A] = 1. ◀

▶ Lemma 65. For all ELH IQs in normal form α, it is the case that η∗
I |= α iff ηI |= α.

Proof. If α is a role assertion the lemma follows from Lemma 63. Now, we will consider the
remaining cases. Let A, B ∈ NC be concept names, and a ∈ NI be an individual name. We make
a case distinction and divide the proof into claims for readability.

▷ Claim 66. Case 1: η∗
I |= A(a) iff ηI |= A(a).

Proof. Assume η∗
I |= A(a). By the semantics of geometric interpretation, η∗

I(a) ∈ η∗
I(A). By

the definition of µ, it is the case that η∗
I(a) is binary and, by the definition of η∗

I , it is the case
that η∗

I(a) = ηI(a). From Corollary 7 we get that ηI(a) ∈ ηI(A), which is the case iff ηI |= A(a).
Now assume ηI |= A(a). This means ηI(a) ∈ ηI(A). By definition of η∗

I , we know ηI(a) =
η∗

I(a), and by Proposition 5 we know ηI(A) ⊆ η∗
I(A). By assumption, η∗

I(a) ∈ η∗
I(A). By the

semantics of geometric interpretation, this means η∗
I |= A(a). ◁

▷ Claim 67. Case 2: η∗
I |= (∃r.A(a)) iff ηI |= (∃r.A(a)).

Proof. Assume η∗
I |= ∃r.A(a). By the semantics of η∗

I , we have that η∗
I(a) ∈ η∗

I(∃r.A). By the
definition of η∗

I , we know η∗
I(a) = ηI(a). Also, by construction of µ, it is the case that ηI(a) is

binary. If there is a binary v ∈ η∗
I(A) such that η∗

I(a)⊕ v ∈ η∗
I(r) then we are done. In this case,

by Corollary 7, we have that v ∈ ηI(A) and ηI(a)⊕ v ∈ ηI(r). This means, by the semantics of
ηI , that ηI |= ∃r.A(a).
Otherwise, for all v ∈ η∗

I(A) such that η∗
I(a) ⊕ v ∈ η∗

I(r) we have that v is non-binary (and,
moreover, such v exists). We rename this vector to z, giving us z = η∗

I(a) ⊕ v ∈ η∗
I(r). This

means that z =
∑n′

i=1 v′
iλ

′
i, such that ∃λ′

i with 0 ≤ λ′
i ≤ 1 and

∑n′

i=1 λ′
i = 1, and it also means

that v′
1, . . . , v′

n′ ∈ ηI(r). For clarity, we call the vector on the left-hand side of the concatenation
operation its prefix pref(x), and the one on the right-hand side its suffix suf(x). For example,
regarding the vector z ∈ R2·d renamed above, we have pref(z) = η∗

I(a) ∈ Rd and suf(z) = v ∈ Rd.
We now need to demonstrate that z ∈ ηI(∃r.A(a)). We show that (1) pref(z)[a] = 1, (2)

pref(z)[r, e] = 1, and (3) suf(z)[A] = 1.
1. We now argue that, for any v′

i ∈ ηI(r) such that
∑n

i=1 v′
iλ

′
i = z, it must be the case that

pref(v′
i) = η∗

I(a). This is because η∗
I(a) cannot be written as a convex combination of vectors

w′ ∈ (ηI(r) \ {η∗
I(a)⊕ v | v ∈ Rd}) such that pref(v′

i) =
∑n

i=1 w′
iλk. If this was the case, every

w′ would have pref(w′)[a] = 0, which, multiplied by any λ′
i, would of course still result in

pref(w′)[a] = 0, contradicting the fact that z = η∗
I(a)⊕ v. Since we know pref(z) = η∗

I(a), we
have that pref(z)[a] = 1.

2. We now argue that pref(z)[r, e] = 1. By Lemma 48, we know that, for v′
i ∈ ηI(r), there are

d, e ∈ ∆I such that pref(v′
i) = µ(d), suf(v′

i) = µ(e), and (d, e) ∈ rI , which, by the definition of
µ, gives us pref(v′

i)[r, e] = 1.

V. Lacerda, A. Ozaki, and R. Guimarães 2:27

3. From the fact we have assumed v ∈ η∗
I(A) and v = suf(z), we know that suf(z) =

∑n
i=1 viλi

with vi ∈ ηI(A). As v ∈ η∗
I(A), we get from Lemma 64 that suf(z)[A] = 1.

From these facts, we have that for z =
∑n

i=1 v′
iλ

′
i, it is true that pref(z)[a] = 1, that pref(z)[r, e] = 1,

and that suf(z)[A] = 1. By definition of ηI , this means pref(z) = ηI(a), that z ∈ ηI(r), and that
suf(z) = v ∈ ηI(A). Finally, by the semantics of ηI , we have ηI |= ∃r.A(a).

Now assume ηI |= ∃r.A(a). By the semantics of ηI , this means ηI(a) ∈ ηI(∃r.A). We know,
by the definition of η∗

I , that ηI(a) = η∗
I(a), and therefore it is binary. Now, η∗

I(a) ∈ ηI(∃r.A)
means η∗

I(a)⊕ v ∈ ηI(r) and v ∈ ηI(A). Since η∗
I(a)⊕ v ∈ ηI(r), this means it is a binary vector,

and by Proposition 5, it gives us η∗
I(a)⊕ v ∈ η∗

I(r). Since v itself is binary and v ∈ ηI(A), again
by Proposition 5, we have v ∈ η∗

I(A). This means, by the semantics of η∗
I , that η∗

I |= ∃r.A(a).

▷ Claim 68. Case 3: η∗
I |= A ⊓B(a) iff ηI |= A ⊓B(a)

Assume η∗
I |= A ⊓ B(a). By the semantics of geometric interpretation, this means

η∗
I(a) ∈ η∗

I(A) and η∗
I(a) ∈ η∗

I(B). By the definition of η∗
I , it is the case that η∗

I(a) = ηI(a), and
it is therefore binary. But, by Corollary 7 this means ηI(a) ∈ ηI(A) and ηI(a) ∈ ηI(B). This
means ηI(a) ∈ ηI(A) ∩ ηI(B), which gives us ηI |= A ⊓B(a).

Now assume ηI |= A ⊓ B(a). This means ηI(a) ∈ ηI(A) and ηI(a) ∈ ηI(B). By definition
of η∗

I we have ηI(a) = η∗
I(a), and by Proposition 5 we have η∗

I(a) ∈ η∗
I(A) and η∗

I(a) ∈ η∗
I(B).

This means η∗
I(a) ∈ η∗

I(A) ⊓ η∗
I(B), giving us η∗

I |= A ⊓B(a). ◁

This finishes our proof. ◀

▶ Lemma 69. Let O be a normalized ELH ontology and IO be the canonical model of O. The
geometrical interpretation η∗

IO
of IO is strongly IQ faithful with respect to O. That is, O |= α iff

η∗
IO
|= α, where α is an ELH IQ in normal form.

Proof. Since IO is canonical, IO |= α iff O |= α. By Lemma 52, we know O |= α iff ηIO |= α. By
Lemma 65, we have that if α is an ELH IQ in normal form then ηI |= α iff η∗

I |= α. This means
ηIO |= α iff η∗

IO
|= α. Hence, η∗

IO
|= α iff O |= α. ◀

▶ Lemma 70. For all C, D, it is the case that I |= C ⊑ D iff η∗
I |= C ⊑ D, where C ⊑ D is a

TBox axiom.

Proof. Let C, D be ELH concepts. We prove the statement in two directions.
Assume I |= C ⊑ D. By Lemma 53, we know I |= C ⊑ D iff ηI |= C ⊑ D, which means

ηI(C) ⊆ ηI(D). By Proposition 5, this implies η∗
I(C) ⊆ η∗

I(D). Finally, by the definition of
satisfaction, this is the case iff η∗

I |= C ⊑ D. Now assume η∗
I |= C ⊑ D. Then, by the semantics

of geometric interpretation, η∗
I(C) ⊆ η∗

I(D). This means if v ∈ η∗
I(C), then v ∈ η∗

I(D), with
v =

∑n
i=1 λivi and v1, . . . , vn ∈ ηI(C). So, assume CI is non-empty. Then, there is d ∈ CI , which,

by Lemma 49 is the case iff µ(d) ∈ ηI(C). By the definition of convex hull, µ(d) ∈ η∗
I(C). By

assumption, µ(d) ∈ η∗
I(D), and since µ(d) is binary, Corollary 7 gives us that µ(d) ∈ ηI(D). But

again by Lemma 49, this is the case iff d ∈ DI . Since d was arbitrary, we have I |= C ⊑ D. ◀

▶ Lemma 71. For all r, s ∈ NR, it is the case that I |= r ⊑ s iff η∗
I |= r ⊑ s.

Proof. First, assume I |= r ⊑ s. By Lemma 54, we know I |= r ⊑ s iff ηI |= r ⊑ s, which
means ηI(r) ⊆ ηI(s). By Proposition 5, this implies η∗

I(r) ⊆ η∗
I(s), which, by the definition of

satisfaction is the case iff η∗
I |= r ⊑ s.

Assume η∗
I |= r ⊑ s. Then, by the semantics of geometric interpretation, η∗

I(r) ⊆ η∗
I(s), which

means if v ∈ η∗
I(r), then v ∈ η∗

I(s), where v =
∑n

i=1 λivi for v1, . . . , vn ∈ ηI(r). Assume rI is non-
empty. Then, there must be (d, e) ∈ rI . We must now show (d, e) ∈ sI is true. Since (d, e) ∈ rI ,

TGDK

2:28 Strong Faithfulness for ELH Ontology Embeddings

by the definition of ηI , we have µ(d)⊕ µ(e) ∈ ηI(r) with both µ(d) and µ(e) being binary vectors.
By the definition of convex hull, µ(d)⊕ µ(e) ∈ η∗

I(r). Now, by assumption, µ(d)⊕ µ(e) ∈ η∗
I(s),

but since µ(d)⊕ µ(e) is binary, by Corollary 7 we have that µ(d)⊕ µ(e) ∈ ηI(s). By definition of
ηI , we have that µ(d)[s, e] = 1. By definition of µ, for all d′ such that µ(d′) = µ(d) we have that
(d′, e) ∈ sI . In particular, this holds for d′ = d. So (d, e) ∈ sI . We have shown that if (d, e) ∈ rI ,
then (d, e) ∈ sI , which is the case iff I |= r ⊑ s. ◀

▶ Theorem 31. Let ηI be a geometric interpretation as in Definition 21. If α is an ELH CI, an
ELH RI, or an ELH IQ in normal form then ηI |= α iff η∗

I |= α.

Proof. The result for IQs in normal form follows from Lemma 65; the one for concept inclusions
follows from Lemmas 53 and 70; and the one for role inclusion follows from Lemma 54 and from
Lemma 71. ◀

▶ Lemma 72. Let O be a normalized ELH ontology and let IO be the canonical model of O
(Definition 26). The d-dimensional convex ⊕-geometric interpretation of IO (Definition 29) is
a strongly TBox faithful model of O. That is, O |= τ iff η∗

IO
|= τ , where τ is either a concept

inclusion in normal form or a role inclusion.

Proof. Theorem 27 implies that if τ is an ELH CI in normal form or an ELH RI then O |= τ iff
IO |= τ . From Lemma 70, we know η∗

I |= C ⊑ D iff I |= C ⊑ D, and by Lemma 71 we get that
η∗

I |= r ⊑ s iff I |= r ⊑ s. This means that if τ is an ELH CI in normal form or an ELH RI then
IO |= τ iff η∗

IO
|= τ . ◀

▶ Theorem 32. Let O be a normalized ELH ontology and let IO be the canonical model of O
(Definition 26). The d-dimensional convex ⊕-geometric interpretation of IO (Definition 29) is a
strongly IQ and TBox faithful model of O.

Proof. The theorem follows from Lemmas 69 and 72. ◀

A.4 Omitted proofs for Section 6
▶ Theorem 35. Given a finite geometric interpretation ηI and an ELH CI in normal form,
Algorithm 1 runs in time in O(d · n4), where d is as in Definition 19 and n = |∆I |.

Proof. Algorithm 1 has four main parts that are never executed in the same run, each corresponding
to one of the normal forms that the input concept inclusion α can take.

α = A ⊑ B: In this case, the algorithm will execute lines Algorithms 1–1. From assumption 1,
Algorithm 1 spends time O(1) and by assumption 3 this line is run O(|∆I |) times. Hence, in
this case, the algorithm consumes time O(|∆I |).

α = A1 ⊓ A2 ⊑ B: From assumption 3, the loop from Algorithms 1–1 is executed O(|∆I |) times.
Each iteration consumes time O(1) by assumption 1. Thus, Algorithm 1 runs in time O(|∆I |)
in this case.

α = A ⊑ ∃r.B: According to assumption 3, the nested loop from Algorithms 1–1 uses time
O(|∆I | · |∆I |). The membership check in Algorithm 1 takes time O(d · |∆I | · |∆I |), by
assumption 4. Therefore, we get that Algorithm 1 requires time O(d · n4), where n = |∆I |.

α = ∃r.A ⊑ B: Algorithm 1 will execute from Algorithms 1–1 for CIs in this normal form.
Each iteration of the for loop starting in Algorithm 1 consumes constant time according to
assumption 1. Furthermore, the loop has O(|∆I | · |∆I |) iterations due to assumption 3. Hence,
Algorithm 1 uses time O(|∆I | · |∆I |) for CIs in this normal form.

Therefore, Algorithm 1 consumes time O(d · n4). ◀

V. Lacerda, A. Ozaki, and R. Guimarães 2:29

▶ Theorem 36. Given a finite geometric interpretation ηI and an ELH IQ in normal form,
Algorithm 2 runs in time O(d · n3), with d as in Definition 19 and n = |∆I |.

Proof. We consider each the four forms that an ELH IQ in normal form α can assume separately.
In each of them a ∈ NI, A, B ∈ NC, and r ∈ NR.

α = A(a): Due to assumptions 1 and 2, Algorithm 2 uses time O(1).
α = (A ⊓ B)(a): As in the previous case, the assumption 1 and 2 imply that Algorithm 2

executes in time O(1).
α = (∃r.A)(a): By assumption 3, Algorithm 2 is run O(|∆I |) times, each iteration consuming

time in O(d · |∆I | · |∆I |) (from assumptions 2 and 4). Therefore, Algorithm 2 spends time
O(d · n3) in such instance queries, where n = |∆I |.

α = r(a, b): Algorithm 2 runs in time O(d · |∆I | · |∆I |) due to assumptions 2 and 4.

Therefore, Algorithm 2 consumes time O(d · n3). ◀

▶ Theorem 37. Given a finite geometric interpretation ηI and an ELH role inclusion, Algorithm 3
runs in time in O(d · n4), where d is as in Definition 19 and n = |∆I |.

Proof. There are O(|∆I | · |∆I |) iterations of the for loop starting in Algorithm 3 in a single run
of Algorithm 3 as a consequence of the assumption 3. Additionally, each iteration consumes
time O(d · |∆I | · |∆I |) by assumption 4. Therefore, Algorithm 3 runs in time O(d · n4), where
n = |∆I |. ◀

TGDK

	p000-Frontmatter
	p001-Willi
	1 Introduction
	2 Segment Annotation
	2.1 Metadata-based Annotation
	2.1.1 Synchronized Multimedia Integration Language
	2.1.2 Scalable Vector Graphics
	2.1.3 MPEG-7
	2.1.4 Ontological Segment Description

	2.2 URI-based Annotation
	2.2.1 Hypertext Markup Language
	2.2.2 XPointer
	2.2.3 Text
	2.2.4 MPEG-21
	2.2.5 Temporal URI
	2.2.6 Media Fragments URI 1.0
	2.2.7 Media Fragments URI Extensions
	2.2.8 International Image Interoperability Framework
	2.2.9 EPUB Canonical Fragment Identifier
	2.2.10 OData

	2.3 General Fragment Model
	2.4 Interpretations and Implications

	3 Unified Segmentation Model
	3.1 Multimedia Object
	3.2 Segmentation Operation
	3.2.1 Filter Segmentation
	3.2.2 Reduction Segmentation
	3.2.3 Transformation
	3.2.4 Postprocessing

	3.3 Compound Media Object
	3.4 Segmentation Definedness

	4 Applied Segmentation
	4.1 Filter Segmentation
	4.1.1 Segment Boundary
	4.1.2 Cut Equation
	4.1.3 Explicit Masking
	4.1.4 Space-filling Curve

	4.2 Reduction Segmentation
	4.3 Compound Media Segmentation
	4.4 Segmentation Combination

	5 Unified Multimedia Segmentation in Knowledge Graphs
	6 Implementation
	7 Discussion
	8 Conclusions

	p002-Lacerda
	1 Introduction
	2 Ontology Embeddings
	3 Basic Notions
	3.1 The Description Logic ELH
	3.2 Geometric models

	4 Strong Faithfulness
	5 Strong Faithfulness on Convex Models
	6 Model Checking on Geometric Models
	7 Conclusion and discussion
	A Appendix
	A.1 Omitted proofs for Section 3
	A.2 Omitted proofs for Section 4
	A.3 Omitted proofs for Section 5
	A.4 Omitted proofs for Section 6

