Resilience in Knowledge Graph Embeddings

Arnab Sharma &

Data Science Group (DICE), Heinz Nixdorf Institute, Paderborn University, Germany

N’Dah Jean Kouagou &

Data Science Group (DICE), Heinz Nixdorf Institute, Paderborn University, Germany

Axel-Cyrille Ngonga Ngomo &

Data Science Group (DICE), Heinz Nixdorf Institute, Paderborn University, Germany

— Abstract

In recent years, knowledge graphs have gained in-
terest and witnessed widespread applications in vari-
ous domains, such as information retrieval, question-
answering, recommendation systems, amongst oth-
ers. Large-scale knowledge graphs to this end have
demonstrated their utility in effectively represent-
ing structured knowledge. To further facilitate the
application of machine learning techniques, know-
ledge graph embedding models have been developed.
Such models can transform entities and relation-
ships within knowledge graphs into vectors. How-
ever, these embedding models often face challenges
related to noise, missing information, distribution
This can lead to
sub-optimal embeddings and incorrect inferences,

shift, adversarial attacks, etc.

thereby negatively impacting downstream applica-
tions. While the existing literature has focused so

far on adversarial attacks on KGE models, the chal-
lenges related to the other critical aspects remain
unexplored. In this paper, we, first of all, give a
unified definition of resilience, encompassing sev-
eral factors such as generalisation, in-distribution
generalization, distribution adaption, and robust-
ness. After formalizing these concepts for machine
learning in general, we define them in the context
of knowledge graphs. To find the gap in the exist-
ing works on resilience in the context of knowledge
graphs, we perform a systematic survey, taking into
account all these aspects mentioned previously. Our
survey results show that most of the existing works
focus on a specific aspect of resilience, namely ro-
bustness. After categorizing such works based on
their respective aspects of resilience, we discuss the
challenges and future research directions.
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1 Introduction

In recent years, there has been significant progress in the construction and application of knowledge
graphs (KGs). Many KGs, including Freebase [14], DBpedia [4], YAGO [91], and NELL [20],
have been developed and successfully implemented in various real-world applications. Due to
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their effectiveness in knowledge representation, KGs now find applications in domains such as
information retrieval [32], question answering [42], and recommendation systems [99], amongst
others. A KG serves as a structured depiction of knowledge, organized as a multi-relational
graph where nodes denote entities or concepts, and edges signify relationships between them [53].
Knowledge therein is represented using assertions — model statements (which could in some cases
be real-world facts) — in the form of triples denoted as (h,r,t), where h and t correspond to the
head and tail entities respectively, and r represents the relationship between them. For instance,
the fact “Biden is the president of USA” can be represented in a KG as (Biden, president0f, USA).

Knowledge Graph Embedding (KGE) involves transforming the entities and relations within a
KG into vectors [15,35,103,121,124]. This transformation makes computational operations more
feasible, allowing machine learning and deep learning techniques to be applied to extract insights
from the KG. Consequently, an effective KGE model should aim to preserve the properties and
semantics inherent in the original KG. Based on the type of KGE models, entities and relations
are commonly embedded in d-dimensional vector spaces V such as R? (real numbers) [15], C?
(complex numbers) [97], or even H? (quaternions) [21].

Despite their effectiveness in capturing complex relationships between entities of KGs and
facilitating various downstream tasks, KGE models can be vulnerable to adversarial manipula-
tions [11,12,80,108,119,122]. Since these models rely heavily on the observed connections in a given
graph, noise or missing information can lead to sub-optimal embeddings and potentially incorrect
inferences. For instance, the presence of incorrect triples (in the sense of non-conformity with an
ontology, or wrong assertions) might lead to poorly performing KGE models on certain downstream
tasks [57,129]. To this end, a deliberate attack or the presence of noise can both equally degrade
the performance. KGE models might also struggle to generalize to out-of-distribution or unseen
data, e.g., when the underlying data distribution changes or when encountering new entities or
relations. Since KGs often contain sensitive and critical information pertaining to individuals or
organizations, this might give rise to potential security vulnerabilities. For instance, an attacker
might subtly alter the relation between entities or introduce fictitious entities and relationships
that distort the model’s understanding of the graph and make the KGE model learn poisoned
embeddings. Such adversarial attacks on KGE models can take various forms, such as adding,
deleting, or modifying triples within the knowledge graph, where such perturbations are often
minimal and crafted to exploit vulnerabilities in the embedding process. Due to the usage of KGE
models in various downstream tasks, such adversarial attacks can cause potential disruptions in
these tasks, for instance, in

1. Question answering, adversarial modifications can cause KGE models to produce incorrect
or manipulated answers or fail to retrieve relevant information,

2. Recommendation systems, the embeddings can be poisoned to promote certain items
unfairly, leading to biased or irrelevant recommendations,

3. Information extraction, adversarial perturbations can result in inaccurate extractions of facts,

affecting downstream applications like content summarization or data integration, amongst

others.
Therefore, to reliably use KGE models in downstream tasks, there is a need to develop models that
can function without any potential disruption even in the presence of such adversarial conditions.

Although the aforementioned challenges pose potential threats to the use of KGE models in
critical downstream tasks, current efforts to deal with these challenges still remain infancy. The
existing literature mostly contains works addressing challenges related to noisy data, distribution
shifts, and adversarial attacks in the context of graph neural networks [24,40,127]. So far, works
considering KGE models mostly focused on performing adversarial attacks on them [11,12,119,122].
The core idea behind these attacks is to target specific facts and modify the KGE model to either
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increase or decrease their plausibility scores. These scores reflect the likelihood of a fact being true:
higher scores imply higher probability, while lower scores imply lower probability. For instance, if
(Biden, President0f, USA) is selected as the target triple, one type of adversarial attack would be
to make the underlying KGE model assign a low plausibility score to it. In this case, such attacks
are typically dealt with via a min-max optimization function, where the objective is to minimize the
inclusion/deletion of adversarial/existing triples in/from the underlying KG [119]. Simultaneously,
the attacker aims to maximize the objective function, which involves either increasing or decreasing
the plausibility of a targeted fact being true.

Since KGs are used in many safety-critical environments, safeguarding sensitive information
and preserving user privacy are paramount considerations in deploying KGE models in real-world
settings. Furthermore, we need to enable KGE models to adapt to dynamic environments and
evolving data distributions to enhance their resilience to concept drift and temporal changes.
Therefore, in this work, we first of all propose the concept of resilience in the context of ML, and
further extend the definition for KGE models. We aim to bridge the gap in resilience literature
on KGE from a holistic perspective that considers the diverse facets of robustness, adaptability,
distribution shift, and consistency, amongst others. By addressing these aspects comprehensively,
researchers can propel the development of resilient KGE models that not only excel in performance
metrics but also demonstrate stability and reliability in real-world applications. Note that, our
resilience definition is quite generic, i.e., it does not depend on any specific application domain.
Precisely, we give a generic formal definition of resilience in ML models considering (i) generalization
consistency, (ii) distribution adaptation, (iii) in-distribution generalization, (iv) robustness, and
(v) missing entry handling. We then discuss these aspects of resilience in the context of KGE
models. To this end, we survey the works on KGE models considering the aforementioned aspects
of resilience. Specifically, we provide a survey of works studying the resilience of KGE models in
any of the aspects from (i)—(v). After discussing these works, we highlight possible challenges and
suggest future work directions.

Note that this paper provides two-faceted contributions. After exploring existing literature on
KGE models, we recognize the need for a holistic definition of resilience in embedding models.
Therefore, in this work, we first introduce a formal definition of resilience, considering five aspects.
Thereafter, we discuss the related works in this context. In this sense, our paper is not purely a
survey, rather, it combines a conceptual framework that defines and evaluates resilience in KGE
models with a survey of different notions of resilience. Additionally, we propose a comparative
analysis of existing methods and explore potential challenges and future works.

This paper is organized as follows. Section 2 formalizes the notions of KGs and KGE models.
The definition of resilience is given in Section 3. Section 4 describes the methodology regarding
the collection of papers. Existing works discussing aspects of resilience are presented in Section 5.
Section 6 presents and discusses different aspects of robustness. Section 10 highlights existing
challenges and potential future work directions, and Section 11 concludes the paper.

2 Foundations

A knowledge graph is a collection of assertions that describe a domain of interest. In this paper,
we consider knowledge graphs composed of triples (h,r,t) € £ X R x £, where £ is a discrete set of
entities and R is a discrete set of relations. Therefore, KGs are representations of information in a
discrete space. More formally, a KG is defined as a set of triples G := {(h,r,t) € ExRxE}, where £
and R stand for a set of entities and a set of relations [7,35]. To facilitate downstream applications,
KGE algorithms have been developed to represent a KG in a continuous, low-dimensional vector
space. Given a KG G C & x R x &, the goal of a KGE model is to learn continuous vector
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representations for entities and relation types in G such that these representations can be used to
recover all the facts in G. Most KGE approaches are tailored towards link prediction [21,53], i.e.,
their scoring function is ¢g : £ X R x £ — R, where © denotes parameters and often comprises E,
R, and additional parameters (e.g., affine transformations, batch normalizations, convolutions).
Given an assertion in the form of a triple (h,r,t) € £ x R x £, a prediction § := ¢g(h,r,t) signals
the likelihood of (h,r,t) being true [35,103,121]. Therefore, KGE models are learned in such a
way that the scoring function assigns a higher score to the triples that exist in the KG compared
to the non-existing ones.

Let V denote a normed-division algebra, e.g. R, C,H, or O [6,34,97,116,125]. A KGE model
of a KG comprises entity embeddings E € VI€I*Xd and relation embeddings R € VIRI*?- where
d. and d, are the size of the embedding vectors. Note that some KGE models represent entities or
relations as matrices or higher-dimensional tensors, e.g., RESCAL [65,76]. Throughout this paper,
we will focus on vector representations for entities and relations and denote embedding vectors with
bold fonts, for instance, the embedding of h, r, and ¢ will be denoted as h, r, and t, respectively.
Since KGs contain triples which represent the existing facts only, to learn a KGE model effectively,
non-existing facts, i.e., negative facts often need to be incorporated into the learning process. For
that, a technique called negative sampling is used to generate a number of false facts or negative
triples. To this end, Bordes et al. [15] proposed a negative sampling technique by perturbing an
entity in a randomly sampled triple from the KG. In this setting, a triple (h,r,t) € G is considered
as a positive example, whilst {(h,r,z)|z € EA (h,r,z) & G} U {(z,r,t)|z € EA (z,7,t) & G} is
regarded as the set of possible candidate negative triples corresponding to (h,r,t). During training,
k negative triples are constructed for every correct triple.

3 Resilience

As mentioned beforehand, resilience is a term that is frequently used when engineering systems,
more specifically in the context of building fault-tolerant systems [90]. In those systems, resilience
refers to the ability of a system to maintain its functionality and performance in the face of
faults, failures, disruptions, or adverse conditions. In other words, a resilient system is capable of
detecting, mitigating, and recovering from faults or failures, ensuring continuous operation and
minimal impact on its overall performance and availability. Therefore, in [10], the authors defined
the resilience of a system using

availability, i.e., the readiness for correct service,

reliability, i.e., the probability of performing correctly for a period of time,

safety, i.e., the robustness against adversarial manipulations,

integrity, i.e., the absence of improper system altercation, and

Rl o

maintainability, i.e., the ability to undergo modifications and repairs.

Note that, due to the lack of resilience definition in the ML literature, we use this as our starting
point. While the typical definition of resilience in fault-tolerant systems provides a useful help for
understanding resilience in the machine learning domain, it needs to be extended and adapted to
account for the unique characteristics, challenges, and considerations inherent in machine learning
models and systems. More specifically, for ML models, resilience cannot be defined by using these
parameters directly since they do not capture the typical data-driven workflow that is used in ML.
For this, we need to consider other factors such as consistent performance in a distribution, or
when a distribution shift occurs, robustness, stability, amongst others.

This paper makes a two-fold contribution in addressing this gap. First, after analyzing existing
works on KGE models, we identify the necessity for a holistic definition of resilience tailored to
embedding models. To this end, we propose a formal definition of resilience, considering aspects
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that encapsulate the ability of a model to generalize, adapt, and maintain stable performance
under varying conditions. Second, we provide a structured discussion of related works that align
with these resilience principles, offering insights into existing approaches and their limitations. As
mentioned beforehand, our work is not purely a survey; rather, it combines theoretical formalization
with a comprehensive review, bridging the gap between conceptual understanding and practical
advancements in resilient knowledge representation.

To define resilience, we start with some basic formalization. Let us consider an ML model as a
function f which takes as input x coming from a specific distribution D. We define two types
of distributions from where the data might come, the source distribution which is defined as Dy
from where the training data comes, and the target distribution D; on which the model would
typically operate. The sets of values corresponding to the distributions D, and D; can be defined
as Xs and Xy, respectively. H(Ds, D;) defines a divergence measure between the two distributions
D, and D;. Furthermore, we define L¢ as the loss function of the model measuring the model’s
performance on a set of data instances. Note that, the loss function can be of any type, however,
our definition is independent of it. An ML model f is said to be resilient if it conforms to the
following constraints:

Generalization consistency corresponds to the ability of the model to generalize consistently
across different distributions of data. This can be formally defined as

Je> 05tV Dy, Dy, [Ep,(Ly) —Ep,(Ls)] <, (1)

where € defines a threshold that basically bounds the difference between the average losses on
the training data distribution D, and the target data distribution D;. Xu et al. [112] defined
this as the robustness property of the learning algorithms where they argued that a robust
algorithm should achieve similar performance on the training and testing data that are close
in some sense; which basically corresponds to the robust optimization problem. However, in
connection to resilience, we define this as the consistency property over the generalization of
the model f. To this end, we simply say that the loss occurring on the data instances taken
from the target distribution might differ only by a threshold € from the loss occurring on the
instances of the source distribution. Note that, in that sense, this definition could also be
termed as out of distribution generalization, since this captures how well a model can perform
when the inputs are out-of-distribution compared to the training dataset. Furthermore, in
this definition, we are not concerned with whether a model f achieves high accuracy or low
loss on the training data; with generalization consistency, we aim to signify that the model’s
performance should not vary drastically between the training and test data distributions.

In the context of knowledge graph embedding models, generalization consistency refers to
the model’s ability to meaningfully construct embeddings for unseen entities or relations,
and accurately predict missing links between entities based on the learned patterns from the
training data. Assuming L4, is a loss function which can be used to train the parameterized
embedding model ¢g, generalization consistency can be defined as

Je>0s.t. VDg,Dgr, [Eg(Lye) — Egr(Loo)| < e, (2)

where Dg and Dg: refer to the distribution of the training knowledge graph’s data and that of
the test knowledge graph’s data, respectively.

Distribution adaption corresponds to the model’s ability to adapt to a target domain (i.e., test
data distribution) without significantly compromising its performance as achieved on the source
domain (i.e., training data distribution). This can be defined as follows

Ve>0,30>0st VD, Dy, H(Ds,Dy) <= |Ep,(Ly)—Ep,(Lf)| <, (3)
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where H(Ds,D;) defines any divergence measure such as maximum mean discrepancy
(MMD) [89], Kullback-Leibler (KL) divergence [59], or Wasserstein distance [106]. Informally,
if the distributions Ds and D; are different with a bound J, then the average prediction losses
on the data instances in these distributions must not differ more than e. Note that, the
distributional mismatch between the training and test data has been studied in many settings,
for instance, in [13,39,54,82,88,115] and as pointed out by the authors in [1] most of these
works assume the covariate shift where only the distribution of class labels differs between the
training and test distributions. There exist some works such as [9,29,41] which consider shift
of generic data distributions, however, none of them consider this as part of the resilience of
ML models. For KGE models, distribution adaptation refers to a model’s ability to adjust its
parameters to account for changes in a given knowledge graph. When new entities, relation
types, or new links are added to (or removed from) a given knowledge graph, the resulting
graph data distribution might deviate from the initial one. In this case, the KGE model’s
adaptation to this distribution change can be formally defined as follows.

Ve>0,35>0st. V ’Dg,Dg/, 'H(’Dg,Dg/) <di= |EDQ(‘C¢6) 7EDQ,(£¢@)| <e (4)

Unlike generalization consistency, which assumes stable data conditions, distribution adaptation

ensures that the model can adjust to new distributions without significant performance degrad-

ation. In other words, generalization consistency ensures stability across similar distributions,
while distribution adaptation guarantees stability on dynamic or shifted distributions.

Note that, in the context of graphs, a distribution shift refers to a change in the statistical

distribution of the graph data. This can manifest in different ways, such as

1. Node feature distribution shift which occurs when the distribution of node attributes
or features changes over time or across different subsets of the graph. For example,
in a knowledge graph representing entities and their attributes (e.g., people and their
professions), a node attribute shift could involve changes in the distribution of professions
among individuals over time or across different subsets of the graph. Nodes may furthermore
be added to or removed from the knowledge graph, leading to changes in the overall node
distribution. This could happen, for instance, when new entities are discovered or when
outdated entities are removed from the knowledge graph.

2. Node degree shift which happens when some relationships between entities are removed
(e.g., two entities that were previously friends are no longer friends) or added, e.g., (an
entity gets married to another entity). It could also be the case that new entities are
introduced but with little to zero links to other entities in the graph. When such changes in
relationships between entities are significant, the average degree of nodes in the considered
knowledge graph might also shift.

3. Edge feature distribution shift which refers to changes in the properties or attributes
associated with the relationships (edges) between nodes in the knowledge graph. For
example, in a knowledge graph representing relationships between entities (e.g., co-authorship
relationships between researchers), an edge attribute shift could involve changes in the
publication venues or collaboration patterns over time. New relationships may further be
established or existing relationships may be removed from the knowledge graph, leading to
changes in the edge distribution. This could occur due to the emergence of new relationships
or the obsolescence of existing ones.

4. Graph structure shift which involves alterations in the overall structure or topology of

the knowledge graph, including changes in connectivity patterns between nodes, changes in
node/edge attributes (e.g., many entities and relationships in the reference knowledge graph
now have textual descriptions), and changes in entity type hierarchies. For example, in a
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knowledge graph representing hierarchical relationships (e.g., taxonomy or ontology), changes
in the hierarchy or the addition of new branches can lead to structural shifts. Changes
to the schema or ontology of the knowledge graph, such as the addition, modification, or
removal of entity types, relationship types, or property types, can also constitute graph
structure shifts. These changes may reflect updates in domain knowledge or evolving data
modeling requirements.
To make the distinction between generalization consistency and distribution adaption more
concrete in the context of KGE models, we consider the following example. Consider a
recommendation system based on a knowledge graph. Generalization consistency would
ensure that the embeddings trained on historical data remain effective for predicting new
links in the same dataset. However, distribution adaptation would be required if the dataset
undergoes significant changes, such as the inclusion of new user demographics or shifting
product categories.

In-distribution generalization corresponds to the model’s ability to perform consistently across
different instances or subsets of a data distribution. Typically, this distribution could be
the target distribution D; where the data instances come from the model deployment phase.
Formally, consistency can be defined as follows,

Je>0st. VS,S CDg, |Es(Ly) —Es(Ly)]| <e (5)

Here we enforce that, for any two non-empty subsets S and S’ from the distribution Dg, the
expected losses achieved on the two sets differ at most only by some parameter € '. If the
observed differences between the losses are statistically significant (e.g., greater than ), it
indicates that the model’s performance varies consistently across different subsets of the data,
suggesting potential limitations or biases in the model. On the other hand, if the observed
differences are not statistically significant, it suggests that the model’s performance remains
consistent across subsets, providing greater confidence in its resilience. Furthermore, this
measure of consistency is different from the generalization consistency in the sense that herein
we consider uniform performance across different sub-spaces of the same distribution space,
whereas in case of generalization consistency, two different distributions are considered.
In-distribution generalization for the KGE models refers to the model’s ability to maintain
consistent performance across different instances or subsets of the knowledge graph data
distribution, particularly when deployed in real-world applications where the distribution of
incoming triples may vary. In other words, the KGE model should demonstrate resilience
to variations in the distribution of knowledge graph data encountered during deployment,
ensuring that its performance remains reliable and predictable across different scenarios. This
consistency is crucial for maintaining the effectiveness and reliability of the model in real-world
applications where the knowledge graph would evolve over time or across different contexts.

Robustness focuses on the model’s stability with respect to some small changes in the input. In
the literature, two versions of robustness are generally considered, namely local and global
robustness [47,85]. Informally, local robustness corresponds to a single point x, and requires
any points within a specific distance A to x to be classified as the same as the former. More
formally, this can be defined with respect to a data point x as

Je>0st. Va, [z -2, <A=||f(z) - f(@)], <e (6)

! Note that, here we have considered a strong notion of consistency, however, a weaker notion can also be
chosen where the subsets must follow some specific rules.

TGDK
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On the other hand, Seshia et al. [85] defined global robustness considering all the points within
a specific distribution D. In other words, for every point z within a considered distribution,
any other point 2’ which is within A distance from z should be classified as the same class as
2. This can be formally defined as

Je>0st. Va,2' €D, |lz—2'|, <A=||f(z) - f(@)]| <e. (7)

Note that, in the literature, robustness is more often associated with the idea of local robustness
for a single point or a set of points. Thus, in defining resilience, we would primarily consider
the local robustness property of ML models. Note that, herein, f(z) could be a single integer
or could also be a probability. This would depend on the type of the underlying model.

In the context of KGE models, we can adapt the concept of local robustness to refer to the
model’s ability to produce consistent embeddings for entities or relations that are similar in
the graph structure. Informally, local robustness in this context would correspond to: any
entity (respectively, relation) within a specific neighborhood of an entity h (respectively a
relation r), defined by a distance metric, should have an embedding that is similar to that of h
(respectively 7). More formally, for an entity or a relation x in the knowledge graph, and for
any other entity or relation z’ within a specific distance A of x in the graph structure, the
embeddings produced by the KGE model, say x and x’ should be similar, with their distance
in the embedding space bounded by e. Given a knowledge graph G, this idea of robustness can
be formally defined as

Je>0st Va2’ € G dg(r,r') <A=dpm(x,x') <, (8)

where dg : G xG — R, is a distance on the graph G, e.g., Adamic-Adar index, Katz similarity, or
Common Neighbors, and dg,; a distance function in the embedding space, e.g., the Euclidean
distance. € is a threshold that limits the allowable difference between embeddings to ensure
local robustness.

The above definition of robustness concerns the functionality of the embedding models in
generating robust embeddings. However, we require further robustness notion encompassing
the KGE model as well as the scoring function together. To this end, first of all, we define the
adversarial robustness.

Adversarial robustness for KGE models refers to a model’s ability to maintain its perform-
ance and produce reliable predictions in the presence of worst-case perturbations intentionally
crafted to degrade its functionality. Herein, we define the robustness property considering
the KGE model+scoring function whereas the previous robustness definition (Equation 8)
considers solely the KGE models. The perturbations considered can be applied to the symbolic
KG or directly to the embedding space and are designed to maximize the model’s predictive
errors. Formally, adversarial robustness by considering the symbolic KG can be described as

Eg(Loo)

Je>0st. VG, G, U(G,G)<A = —L7%7
6.¢) Eg (Ly) +71

9)
where (G, G’) denotes the structural similarity of two graphs, Eg(Lye ), Eg/(L4e) denote the
expected loss of the embedding model ¢g on the graphs G and G’, respectively, and 7 is an
infinitesimal number (e.g., n = 1078, i.e., a small but non-zero scalar value). ¢ in the ideal case
should be close to 1. ¥(G,G’) could be defined using graph isomorphism [49], or sub-graph
similarity [81] matching technique such as graphlet similarity, frequent subgraph mining, or
global graph similarity techniques. Such a measure could be decided based on the specific
domain. Note that, the above definition considers changes in the KG, however, this could
be extended considering perturbations performed on the embedding. Formally, adversarial
robustness by considering the embedding can be described as
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Ee(Lso)

VP8 e 10
Ee (Loo) + 7 (10)

Je>0st. VEE U(EE)<A =

Here E and E’ represent the original and perturbed embeddings, respectively. ¥(E,E’)
measures the similarity or distance between E and E’. This can be defined as ||E — E'||,
(e.g., p =1 for the L1 norm and p = 2 for the L2 norm) or % (cosine similarity) or
> ;E;ilog (%) (KL divergence).

Note that Elquations (8)—(10) give a generic notion of adversarial robustness which can be
extended by considering the case where the aim is to degrade the score of a specific triple,
i.e., ¢pg(h,r,t) by doing ¢ changes on the KG G or on the embedding space E. The existing
works on adversarial robustness of KGE models, while lacking a formal definition, focus on
this specific notion [75,86,87,111,128].

Non-adversarial robustness corresponds to the ability of a KGE model (including its scoring
function) to be invariant to a certain level of noise present in a KG. More specifically, the
performance of a robust KGE model should not degrade considerably when noise is prevalent
in KG. Consider G as a clean KG and G’ as a noisy KG, where the latter is obtained by adding
§ amount of noise to the KG G, i.e., G’ = G + 6. 2 Then the robustness can be defined as

EQ([’tﬁe)
_S0\ge) g 11
Eg (Lso) +1 ()

where Eg(Lge ), Eg/ (Lo ) denote the expected loss of the embedding model ¢g on the graphs G
and G, respectively, and 7 is an infinitesimal number. This implies that the performance of the
KGE models should remain almost the same even when § amount of noise is present in G. Note
that we assume the expected loss not to be zero, as it is often the case in most machine learning
tasks. Note that the primary difference between adversarial and non-adversarial robustness
lies in the nature of the perturbations. Adversarial perturbations are crafted with intent and
precision, targeting the model’s weaknesses, while non-adversarial perturbations are accidental
and random, reflecting real-world data imperfections. Additionally, adversarial robustness
is critical for security-focused applications to protect against malicious attacks, whereas
non-adversarial robustness is essential for ensuring reliability in a real-world environment.

Stability w.r.t. incomplete input deals with the model’s ability to handle missing values, more
specifically, maintain accurate predictions despite the presence of missing values in the input
features. We can express this as follows:

Je>0st. Va,o* |z >|z*] A Sim(z,z*) <5 =||f(z) — f(2")]| > e (12)

Herein Sim(z, *) measures the similarity between two vectors  and z* with unequal numbers
of elements (i.e., |z| > |z*|). One such similarity measure could be the cosine similarity, which
is often used for comparing the similarity between vectors in high-dimensional spaces. The
cosine similarity measures the cosine of the angle between two vectors and is defined as the
dot product of the vectors divided by the product of their magnitudes. Elements that are
missing in one vector but present in the other are effectively treated as zeros in the dot product.
Another approach is to use measures that explicitly handle missing values, such as the Jaccard
similarity or the Pearson correlation coefficient, with the imputation of missing values.

2 Here, + is not the usual addition, but a perturbation operator instead.
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In the context of KGs, this aspect of resilience deals with the ability of a KGE model to
maintain stable predictions despite missing nodes, edges, or attributes in the input knowledge
graph. To this end, we define stability to incomplete input formally as follows:

Je>0st VG, GG > |G°] ASIN(G,G*) <6 = |[Eg(Lss) — Egr(Loo)|| < €. (13)

where G is the original, complete knowledge graph, and G’ is the incomplete KG with missing
nodes, edges, or attributes. Sim(G,G*) measures the structural similarity between the two
graphs. For KGs, Sim() could be graph edit distance, i.e., number of node/edge insertions,
deletions, or modifications required to transform G into G’, or Jaccard similarity over entity/re-
lation sets, amongst others. Note that, this definition implies that the expected loss of the
embedding model ¢g on the graphs G and G, Eg(Ly ), Eg/(L4o) respectively, should not
change more than a fixed threshold e. The similarity measure can be quite flexible and will
potentially depend on the domain (for e.g., image classification, graph data, and others), and
hence, we do not fix the Sim() function. Depending on this function and the domain of the
application, the bound § will also change, however, not drastically.

4 Paper Collection Methodology

To discuss resilience in KGs and KGE models, in this work, we further review existing works in

this domain. While doing a literature survey of such works, we adhere to specific inclusion criteria

for compiling papers for our review. If a paper satisfies any or many of the following criteria, it is

considered for inclusion:

1. the paper introduces or discusses the overarching concept of any related aspect outlined in
Section 3.

2. the paper proposes an approach, study, or tool/framework aimed at developing resilient or
robust KGE models.

3. the paper introduces a set of measurement criteria applicable for defining resilience of KGE
models or KGs.

We briefly discuss some papers focusing solely on using KGs to make resilient systems, however,
we do not delve into detail on this. To comprehensively gather papers across various research
domains, we initiated our search process by employing precise keyword queries on prominent
scientific databases such as Google Scholar, DBLP, and arXiv. The keywords that we searched
for are detailed in the Keywords column in Table 1. We conducted searches across the three
repositories until 23.09.2024, aiming to encompass a broad spectrum of literature. The specifics of
the paper collection outcomes are outlined in Table 1. It is observed that the papers obtained
from Google Scholar and arXiv were subsets of those gathered from DBLP. Therefore, we solely
present the results obtained from DBLP. Furthermore note that apart from the papers that discuss
resilience in KGE models, or in KGs, we also report the results here where any of the aspects of
resilience (as described in Section 3) are discussed in the body of the paper.

Note that there exist a number of surveys discussing primarily two aspects of resilience proposed
in this paper, such as robustness of deep learning models [28,74,113], language models [27,48];
distribution adaption [64]. However, none of them give a definition of resilience considering
the notions that we describe above and discuss the related works encompassing these aspects
individually. Moreover, such a study is not done considering the KGE models. The closest work
to ours are the works related to GNNs. Existing literature considering GNNs is quite vast and
furthermore, there already exist surveys discussing the robustness [31,114] and some other aspects
of resilience of graph neural networks [123,131]. Discussing the works related to the resilience
of GNNs would extend this paper to a much greater extend. Therefore, we do not consider the
GNNs in this paper.
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Table 1 Paper query results. Here, “Body” represents the main content of a paper. Numbers correspond
to the number of articles where the keyword occurred more than once.

Keywords Title Body
resilience in knowledge graphs 4 0
resilience in knowledge graph embedding models 2 6
generalization consistency in/of knowledge graphs 0 0
generalization consistency in/of knowledge graph embedding models 0 0
domain adaption in/of knowledge graph embedding models 0 2
distribution shift of knowledge graphs 1 0
in-distribution generalization of knowledge graph embedding models 1 0
robustness of knowledge graph embedding models 8 18

5 Resilience in KGE

The existing works considering resilience in KGE models mainly focus on a specific aspect, that is
building KGE models that are resilient against the noise present in the KGs. To this end, there
exist a number of such contributions [75,86,87,111,128]. These works consider if the performance
of the model does not degrade with noise present in the KG, then the underlying KGE model is
said to be resilient. This, however, is not resilience based on the definition provided in Section 3
where we defined resilience as a multi-faceted term that takes into account many aspects. Based
on our definition of resilience, the work on resilience to safeguard against noises in the KGs
mostly aligns with the definition of robustness, more specifically, the non-adversarial robustness
(as defined in Equation 11). Therefore, we categorize this line of work related to resilience against
noise as part of the non-adversarial robustness.

Moreover, there exist some works which concentrate on constructing resilient systems leveraging
KGs [3,30,58,117]. For instance, the works in [117] focus on building a KG-based risk assessment
framework to improve the resiliency of supply chain management. A KG is built in [58] from
the natural disaster data to improve the disaster management department’s resilience towards
such incidents. A similar sort of study is done in [3] to employ a resilient management system in
case a crisis happens in a city. To assess the resiliency of the cyber-physical system for a water
management system, Dagnas et al. [30] utilized the KG as a modeling graph.

Apart from the works mentioned earlier, no other works could be found that consider resilience
(as we defined in this work) as part of KGs or KGE models, therefore, in this work, we further
survey the existing literature by considering individual aspects of resilience as described in Equation
(1)—(13). Figure 1 shows the categorization of the works found corresponding to the aspects
of resilience that we described in Section 3. There exist works that focus on improving the
generalizability of the KGE models [50,55,62,107], or focusing on the logical consistency of the
ontological rules [33,37,38,51,84], however, no work exists discussing generalization consistency,
distribution adaption, and stability to incomplete input of KGE models. A very recent work by
Zhu et al. [133] discusses the in-distribution generalization aspect and this is the only work that
we could find related to this aspect of resilience.

More importantly, all the works found in regards to resilience in KGE can be distributed along
two fields of robustness, namely adversarial and non-adversarial. There exists work such as by
Zhu et al. [132] where they proposed to use KG to tackle the distribution shift problem for the
few-shot learning approach. More specifically, by using KGs, the aim is to capture the semantic
relationship between different categories of instances. Despite the data samples originating from
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Figure 1 Categorisation of different works based on the underlying approaches in the context of
resilience for knowledge graph embedding models.

diverse distributions, they frequently possess shared auxiliary knowledge, along with prior semantic
relationships between classes. For this, KG can be used to find out when such a distribution shift
occurs and help the underlying model to adapt.

Note that there exists temporal KG which dynamically evolves over time [56]. The idea therein
is to model the temporal information in KGs to keep track of how different assertions/facts
evolve over time. For this, the KG is defined as G; := {(h,r,t,t') € € Xx R x & x T}, where t/
basically points to the timestamp for a specific fact. For instance, “(Barack Obama, President_ of,
USA, [2009-2017])” is an assertion associated with a timestamp [2009-2017] for which it is true.
Temporal KGs are called dynamic KGs since they are not static and evolve with the addition of
new timestamps corresponding to assertions, and there are KGE models that attempt to learn
embeddings for such graphs, such as [2,52,92,94,120]. Although such KGE models learn to
map entities and relations into an embedding space that changes over time, we do not expect
the learned embeddings to adapt to the distribution shift of the KG. This is because such KGE
approaches assume that, alike typical KGs, the distribution of temporal KGs does not change
and only a new timestamp is added by replacing the old timestamp, for instance, (h,r,t,t’) is
replaced by (h,r,t,t*). The underlying KGE models therefore only need to adapt based on this
newly added timestamp. Therefore, we do not consider such works under distribution adaption
aspect of resilience, and a survey on temporal KGE models can be found here [101].

Since there do not exist any works considering the aspects of resilience apart from robustness
and in-distribution generalization, in the following, we first describe the related works encompassing
the two areas that exist regarding the resilience of KGE.
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6 Robustness

The concept of robustness in KGE models, as discussed earlier, can be divided into two main types:
adversarial and non-adversarial robustness. As mentioned in Section 3, adversarial robustness
concerns the model’s ability to withstand intentional attacks, where malicious entities modify the
knowledge graph (KG) to compromise the KGE model’s performance. In contrast, non-adversarial
robustness deals with the model’s resilience against noise and inconsistencies naturally present in
KGs, without any malicious intent. In the following subsections, we provide a detailed survey
of the current research related to these two areas of robustness in KGE models. We begin with
adversarial robustness, followed by an exploration of non-adversarial robustness techniques.

6.1 Adversarial Robustness

Despite its significance, the existing works on adversarial robustness in KGE models are in
their infancy. The majority of studies focus on generating adversarial examples to deliberately

manipulate the knowledge graph and assess the vulnerability of KGE models [11,12,80,108,119,122].

These works proposed methods for attacking the KGE models by generating adversarial examples
to study the robustness of the existing KGE models. Below we categorize them based on the
approaches used to perform such attacks.

6.1.1 Optimization Approach

One of the earlier works in this area [122] introduced a data poisoning attack strategy, aiming to
alter the score of a target triple (hy, 7, %) by modifying the KG. To achieve the poisoning goal,
they assumed the attacker had a fixed budget (for instance, like A in Equation 8) in terms of
the number of changes that could be made on the KG. To this end, they have given two attack
strategies, namely direct and indirect attack.

Direct attack. The direct attack involves identifying the necessary perturbations, such
as adding or removing triples, to achieve the attacker’s objective — for example, reducing
the likelihood of a target fact (h,r¢,t;) being true. This process starts by determining the
embedding shift € required for either the head entity h; or the tail entity t; of the target triple
to ensure that the new score ¢f (he, ¢, 1), learned on the adversarially modified KG, is lower
than the original score ¢g (ht, 7, t:). Potential perturbations are evaluated and ranked based on
a scoring metric, guiding the selection of the most effective changes. The top M perturbations
are then chosen using an optimization technique, taking into account the attacker’s budget
and constraints.

Indirect attack. Performing a direct attack that involves shifting the embeddings of the
target triple might be detected by using some kind of sanity check. Hence, to make the attack
stealthy, the authors in [122] proposed indirect attack which involves shifting the embedding of
the entities which are some k-hops away from the target triple (h¢,7¢,t:). The changes would
then propagate to the required embedding shifting of the target triple.

The adversarial attacks described above are performed considering the KG itself, and therefore,
it adheres to Definition 9. While direct and indirect adversarial attacks on knowledge graph
embeddings leverage optimization techniques to identify the most impactful perturbations, there
are drawbacks when using such an approach in this process. One key limitation is that KGs have
a highly discrete and complex structure, making it difficult to navigate the search space effectively
using straightforward optimization.

1:13

TGDK



1:14

Resilience in Knowledge Graph Embeddings

6.1.2 Gradient-based and Attribution Attacks

Gradient-based approaches have emerged as a more effective alternative to performing adversarial
attacks on the KGE models compared to simple optimization approaches. Note that the adversarial
attack performed herein follows the definition of Equation 10. By leveraging the continuous
embedding space of KGE models, gradient-based methods allow for a more effective exploration
of potential perturbations. These approaches identify influential triples or paths in the KG by
analyzing the gradient of the model’s loss function with respect to the embeddings, enabling
targeted modifications that maximize the attack’s impact. Unlike optimization-based methods,
gradient-based approaches offer computational advantages by operating in a lower-dimensional,
continuous space, albeit with limitations in their applicability to specific types of KGE models.

Building on the ideas of direct and indirect attacks that target specific triples or entities in
the knowledge graph, Pezeshkpour et al. [80] followed a typical gradient-based approach to find
out the most influential neighboring triple (h}, 7, t:) of the target triple (he,r,t:), the removal
(G\ {(h},r},t1)}) or addition (G U {(h},r;,t:)}) of which would maximize the attack objective
which can be defined as

argmax ¢@(h/t7 Tty tt) - (béa(ht, Tt, tt)7

(h},ry)

where ¢g (he, ¢, t) defines the score when trained on either G\ {(h, 7}, t:)} or GU{(h}, i, te)}.
However, searching for such a hj,r; is computationally expensive since the size of the search space
is |€] X |R| (number of entities in G X number of relations in G). Therefore, unlike the previous
work [122], the authors herein modified the objective function by performing the search in the
embedding domain, i.e., in the continuous space which gives the embedding for the optimal head
and relation as h},r}. Thereafter, an autoencoder is used to get h},r; from h},r,. However, one
of the drawbacks of this approach is that it could only be used for multiplicative KGE models and
moreover it does not take into account the nature of the KGE model being attacked.

Bhardwaj et al. [12] proposed a poisoning attack on KGE models by leveraging the inductive
capabilities of these models, encapsulated through relationship patterns such as symmetry, inversion,
and composition within a knowledge graph. Their approach aims to either decrease or increase
the model’s confidence in predicting a target triple hq, ¢, ;. For instance, if the attacker’s goal is
to decrease the score, they aim to ensure that ¢g(he,re,t:) > ¢g(h,r,t), where ¢ is the model
learned on the KG modified with the addition of adversarial triples, referred to as decoy triples.
These decoy triples are selected based on the inductive relation patterns that the KGE model
captures. For example, if there exists a target triple h,r,t composed of h;,r1,t and ¢, 79, t;, an
additive model that captures the symmetry relationship can be exploited, such that r; +ro =r.
The model then selects a relation r; as the target relation, minimizing the Euclidean distance
|rs — (r1+12)|. By doing so, the method identifies the relation that strongly captures the symmetry.
Once the target relation is chosen, two decoy triples are added in the form of h,r1,t* and t*, 7o, t’.
These added triples manipulate the inductive properties of the KGE model, indirectly decreasing
the score of the original target triple h,r,t. By exploiting the underlying inductive patterns that
KGE models learn, such as symmetry and composition, this approach makes the target triple less
likely to be predicted as true.

Bhardwaj et al. [11] further extended their approach by employing instance attribution methods
from the domain of interpretable machine learning to carry out data poisoning attacks on KGE
models. The aim of these attacks remains similar to their previous work: reducing the likelihood
of the target triple (h¢,r,t;) being correctly predicted by the KGE model. They specifically
defined the attacker’s capability as the ability to make a single change (either by removing or
adding a triple) within the neighborhood of the target triple. The neighborhood is constructed
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based on triples that share either the subject or object of the target triple, formally defined
as H = (hp,Tn,tn) | hn € he,te V ity € hy,t;. To identify which triple should be manipulated,
they introduced an influence score Z((hs,1t,t:), (h,7,t)). This score measures the effect that a
particular training triple (h,r,t) has on the model’s prediction for the target triple (h, ¢, t:). A
larger influence score indicates that removing the triple (h,r,t) would significantly reduce the
predicted score for (h¢,7,t:). However, directly retraining the KGE model for each triple removal
is computationally expensive. To tackle this, the authors adopted techniques from interpretable
machine learning, specifically using similarity metrics in the embedding space.

You et al. [119] recently proposed a model-agnostic, semantic, and stealthy data poisoning
attack on KGE models, addressing several aspects: black-box attack, semantically preserving
poisoning, and stealthiness by ensuring good performance for clean triples. Unlike previous works,
their approach focuses on inserting indicative paths rather than individual triples to maximize the
prediction probability of a target poisoned triple. The attack goal can be formalized as

mj%X ¢@(hta Tt, tt)a

where 7' is the set of triples in the indicative path. In their approach, the key idea is to add
indicative paths that comprise more than one triple, which encourages the KGE model to predict
the malicious fact as true. They translate the relation of the malicious fact into a sequence of
relations using a path template. For example, a path template pp,_;, could be hy Dy e 2ty
where 71,75 is a relation template, and e is an entity satisfying certain semantic constraints. The
steps involve using the Path Ranking Algorithm (PRA) to generate candidate relation paths.
Next, they leverage semantic constraints by selecting entities for the indicative paths that adhere
to the domain and range constraints of the relations involved. The selection is carried out using a
gradient-based search technique to find the indicative paths that maximize the prediction score
for the target triple h¢,r:,t;. By ensuring that the added paths align with semantic constraints
and maximize the plausibility of the malicious triple, their approach not only remains stealthy
but also effectively biases the model’s predictions towards the attacker’s objective. This method is
validated through extensive evaluations on benchmark datasets, demonstrating its effectiveness in
achieving a high attack success rate under various opaque-box settings.

6.1.3 Surrogate Model-based Attack

Building on the approaches discussed in the previous sections, where gradient-based and attribution-
based methods target specific triples or entities in the knowledge graph, surrogate model-based
attacks introduce an alternative perspective. Instead of directly manipulating the embeddings or
leveraging inductive patterns, these attacks employ an intermediate surrogate model to simulate
the behavior of the original KGE model. By doing so, they enable the attacker to optimize
adversarial manipulations in a more computationally efficient manner, particularly for downstream
tasks where KGE models are used to answer user queries.

Xi et al. [108] introduced ROAR, an attack strategy designed to attack KGE models through
both knowledge graph poisoning and query misguiding. ROAR particularly focuses on downstream
applications where KGEs provide answers to user queries. The goal of the attack is to manipulate
the response to a specific query by poisoning the knowledge graph in a manner that maximizes the
probability of the targeted fact being true. The attack begins by generating a surrogate knowledge
graph G’ from the original one. This surrogate graph is used to build a surrogate knowledge graph
reasoner, which consists of a surrogate embedding function ¢’ and a transformation function 1.
These functions are trained on a set of question-answer pairs sampled from G’. The challenge here
is that directly searching for poisoning facts that make the targeted fact true in the discrete space
of the knowledge graph is computationally expensive.

1:15

TGDK



1:16

Resilience in Knowledge Graph Embeddings

To overcome this, the authors first employ latent space optimization. They search for an
anchor entity connected to the target fact and identify facts in the embedding space which, when
added, increase the probability of the targeted fact. These potential additions to the graph are
gathered in a set of embeddings {h;,r;,t;}Y ;. Next, the effectiveness of adding each potential
fact is assessed using a fitness score, which indicates how much each fact’s addition would increase
the plausibility of the target fact. Based on this score, the top n, facts are selected for addition
to the knowledge graph. This selection process ensures that only the most influential facts are
included in the poisoning attack, thereby maximizing the impact on the targeted queries. This
two-step process of latent space optimization followed by fitness-based selection makes ROAR
a highly adaptable and effective adversarial attack against KGEs, especially in scenarios where
downstream applications rely on the knowledge graph for query resolution.

6.1.4 Untargeted Attack

Apart from the adversarial attacks primarily focusing on making the KGE model perform badly
on a specific triple, there exists a type of attack aiming to downgrade the overall accuracy of
KGE models. This is referred to as untargeted attacks [57,129], and so far only a few works
have considered this. To this end, Zhao et al. [129] proposed a logic-rule-driven framework for
conducting untargeted adversarial attacks on knowledge graph embeddings. The key idea herein
is to perform adversarial additions or deletions that can systematically degrade overall model
performance. To achieve this, the authors exploit logic rules that summarize global structural
patterns in a KG. First, they use NCRL, a neural rule learning method [25], to extract high-
and low-confidence rules from the graph. Based on these rules, they design two attack strategies,
namely adversarial deletion and addition. In adversarial deletion, triples that strongly support
high-confidence rules are removed, breaking reliable structural dependencies and preventing the
model from learning accurate regularities. In contrast, in the case of addition, low-confidence rules
are deliberately corrupted into non-existing rules which are then used to generate noisy triples.
This then distorts the KG’s semantics and encourages the model to capture misleading patterns.
Therefore, the attacks do not focus on a specific target fact or triple, rather aim to disrupt the
overall performance of the KGE models in the underlying tasks.

Based on a similar idea of performing untargeted attacks, Kapoor et al. [57] studied the
robustness of KGE models considering three different attack surfaces, namely graph, parameter,
and the labels. To this end, they first consider the knowledge graph perturbation, wherein a subset
of triples from the KG is randomly modified by replacing either the head entity or the relation
with another from the graph. This introduces structural inconsistencies without introducing new
entities or relations. In parameter perturbation, embedding vectors are considered where the noise
vectors are added directly to a subset of entity or relation embeddings during training. This is
similar to the adversarial attacks like [5,60,67] where an attacker gains limited access to model
parameters and subtly corrupts the representation space. Finally, in label perturbation, the label
vectors used in training are inverted, flipping positives to negatives and vice versa.

6.1.5 Adversarial Training

Most of the works studied adversarial attack approaches for knowledge graph embedding models.
To this end, we could find only the work by Zhang et al. [126] that focused on developing a defence
approach against such attacks. They proposed a two-fold approach to improve the robustness of
KGE models against adversarial perturbations. Firstly, by considering the adversarial training
approach using GAN, the approach uses a generator—discriminator setup where the generator
proposes adversarial perturbation triples and the discriminator learns to distinguish true from
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perturbed triples. This forces the KGE model to become more resilient by directly training on
adversarially crafted negatives. In the second step, to filter malicious triples from the graph,
the authors propose subgraph-based detection methods. They focus on subgraphs around target
triples, apply link prediction scores, and compare outputs of models trained on different subgraph
partitions. This approach generates candidate completions from clean subgraphs to identify likely
adversarial additions.

6.2 Non-adversarial Robustness

While adversarial robustness focuses on defending against malicious attacks, non-adversarial
robustness concerns the model’s resilience to naturally occurring noise and inconsistencies in KGs as
defined in Equation 11. Real-world KGs are often incomplete, contain errors, and exhibit conflicting
information due to the diverse sources from which they are constructed. A robust KGE model
should be able to handle these imperfections without significantly compromising its performance.
Several approaches have been proposed to improve the robustness of KGE models under noisy KGs,
ranging from confidence score-based methods to GAN-based frameworks, reinforcement learning
techniques, multi-modal approach, and ensemble approach [26,70,71,75,86,87,98,111,128,130].
Below we discuss the existing works considering these approaches.

6.2.1 Confidence Score-based Approaches

Confidence score-based approaches have been proposed to enhance the robustness of the
KGE models by quantifying the reliability of each triple within the KG. These methods assign a
confidence score, trustworthiness value, or distance-based measure to each triple, allowing the
model to prioritize more reliable data during training [71,75,86,87,111,130]. The confidence
scores guide the learning process, helping the model to distinguish between correct and noisy
triples, thus reducing the impact of inaccuracies present in real-world KGs. In this section, we
discuss several works that introduce different mechanisms for computing and utilizing confidence
scores to improve the robustness of KGE models. These mechanisms range from local and global
confidence scores to trustworthiness evaluations and distance-based assessments.

6.2.1.1 Local and Global Confidence Score

Xie et al. [111] introduced one of the earliest methods to address noise in knowledge graphs by
developing KGE models that are robust to such noise. They proposed a novel approach known
as the confidence-aware knowledge representation learning (CKRL) framework, which assigns a
confidence score to each triple in the KG. This score indicates the correctness and significance of
each triple, allowing the model to prioritize more reliable triples during learning. Their model
builds upon the translation-based KGE approach, specifically utilizing TransE [16], as the scoring
function ¢g. The standard margin-based ranking loss function [22] was modified to incorporate
the confidence scores of triples. The revised objective function aims to minimize the impact of
noisy triples by giving higher importance to more reliable triples. Specifically, they introduced the
confidence-aware loss function:

Z Z [’Y+¢@(hara t) - ¢@(hara I)} 'C(har7t)7

(h,r,t)eSt (h,r,z)eS—

where ~y is the margin, and ST, S~ are the sets of positive and negative triples, respectively.
Here, C'(h,r,t) is the confidence score for the triple h,r,¢t. A higher confidence score signals that
the model should prioritize this triple during training. In essence, triples with lower scores are
weighted less, which are essentially considered as noisy.
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The computation of the confidence score C'(h,r,t) involves two components: local and global
confidence scores as described below.

Local confidence score. This score evaluates how well a triple conforms to the translation
assumption within the KGE model. The triple’s quality is updated iteratively during training.
If a triple does not align with the translation rule, its confidence decreases by a geometric rate
a. Conversely, if it does align, the confidence increases at a constant rate 5. This iterative
adjustment ensures that the confidence scores reflect the quality of triples over time.

Global confidence score. Global confidence scores assess a triple’s reliability by analyzing
its broader structural context in the knowledge graph (KG). It consists of prior path confidence
(PP), and adaptive path confidence (AP). PP measures how often a relation co-occurs with
multi-step paths connecting the same entities. If similar paths frequently support the relation,
PP is high. AP learns semantic similarity between a relation and its multi-step paths using
embeddings. If a path relates to the target relation, AP is computed as high.

By combining these scores, CKRL effectively learns embeddings while simultaneously detecting
and mitigating the influence of noise in the KG. This pioneering work laid the foundation for later
developments in confidence-aware KGE models.

In a later work, Shan et al. [86] argued that the confidence score mechanism proposed by Xie et
al. [111] could lead to the zero loss problem. This issue occurs when the negative triples sampled
during training quickly fall outside the margin in the ranking loss function, resulting in zero loss.
When this happens, the negative triples cease to contribute to refining the model’s embeddings,
leading to slow convergence, reduced accuracy, and diminished effectiveness in detecting noise
within the knowledge graph. To address this problem, Shan et al. introduced a novel confidence-
aware negative sampling method. They proposed a mechanism to assign a confidence score not just
to positive triples but also to negative triples, with the goal of identifying high-quality negative
triples that could contribute more significantly to the model’s learning process. The key idea is to
incorporate the confidence scores of negative triples into the training process.

Shao et al. [87] extended the confidence score-based methods by introducing a novel framework
called DSKRL (Dissimilarity-Support-Aware Knowledge Representation Learning) to handle noise
in KGs more effectively. Their approach incorporates two main components: triple dissimilarity
and triple support, leveraging both structural and auxiliary information in KGs. While the former
measures how well the entities and relations in a triple match, using entity hierarchical types and
relation paths, the latter combines local and dynamic path support to assess a triple’s credibility.
After computing both the dissimilarity estimator and triple support, they are combined to improve
the noise resilience in KGE models.

6.2.1.2 Trustworthiness Score

While confidence score-based methods focus on quantifying the reliability of individual triples
through local and global assessments, trustworthiness score approaches extend this concept
by leveraging semantic information and structural properties of entities and relations within
the Knowledge Graph (KG). These methods aim to evaluate entities’ inherent credibility and
associations, refining the training process to prioritize trustworthy information. More specifically,
such approaches differ from traditional confidence scores by incorporating additional semantic and
contextual cues, such as entity types, descriptions, and path-based correlations. This integration
allows for a more nuanced understanding of the data, enabling KGE models to better handle noise
and inconsistencies in real-world KGs.
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In [130], Zhao et al. proposed TransT, a method to compute the trustworthiness value of a
triple by leveraging entity types and descriptions. The key idea is that certain entity types are
more credible for specific relations. For example, a living entity (e.g., /people/person) is a more
suitable subject for was_born_in than a non-living one (e.g., /book/written_work). TransT
quantifies trustworthiness using two components:

Entity type trustiness (TT) measures type compatibility for a relation:

1
TT(h,r,t) = - > exp(—d(hi,r i),
(hist:)ET(r)

where T (r) is the set of valid type pairs, and d measures alignment between types and relations.
Entity description trustiness (DT) captures semantic consistency using cosine similarity:

DT (h,r,t) = cos(dp +r,dy),

where d;, and d; are entity description embeddings, and r is the relation vector. The final
trustworthiness score is a weighted combination:

T(h,r,t) =« -TT(h,r,t)+ p-DT(h,r,t),

where a and 8 control the contributions of the two factors. This trustworthiness score is
integrated into the knowledge graph embedding model, prioritizing reliable triples during training.

While TransT focuses on assessing trustworthiness at the entity level, leveraging type com-
patibility and semantic descriptions, Ma et al. [71] take a structural approach with PTrustE by
evaluating path trustworthiness and triple embeddings. Instead of relying solely on entity-level
attributes, PTrustE incorporates path-based reasoning to detect noisy triples, capturing both
local and global structural features within the knowledge graph. More specifically, given a triple
(h,r t), PTrustE first searches all paths between the head entity A and the tail entity ¢. Each path
consists of a series of intermediate entities and relations, which are then used to compute both
local and global trustworthiness scores. Specifically, two types of trustworthiness are introduced.
local triple trustworthiness and global triple trustworthiness. In the absence of connecting paths,
the confidence score of the triple relies more heavily on the local trustworthiness score derived
from triple embeddings rather than path-based features. More specifically, PTrustE evaluates
whether h and t are structurally disconnected or if they exist in separate KG components. The
triple is likely to be erroneous if the entities belong to isolated graph fragments. In such cases,
embedding-based similarity and logical constraints from the KG are used to assess plausibility,
rather than path-based reasoning.

PTrustE focuses on detecting noise in KGs by leveraging path trustworthiness and probabilistic
logic, since it primarily aims to filter out incorrect triples before embedding learning. An alternative
approach to handling noisy triples is to directly modify the training objective rather than discarding
them outright. Nayyeri et al. [75] introduced a modification to the marginal ranking loss function
to handle noisy data in knowledge graphs (KGs), particularly focusing on incorrect triples. Their
approach does not build on the previous confidence score-based works but instead introduces
a distance-based strategy to identify and manage noisy triples effectively. In their method, the
authors define separate objective functions for positive and negative triples and then combine them
into a unified loss function. One key component of their approach is a distance function, which
intuitively measures the likelihood of a triple being correct or noisy. During the optimization
process, this distance is constrained to lie within the range [0, ], where 7 serves as a discriminator
that separates positive and negative triples. A probability function is employed to assign a score
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based on the computed distance. A high probability indicates a high likelihood of the triple
being incorrect (noisy), whereas a lower probability suggests a higher confidence in the triple’s
correctness. The objective is to minimize the overall loss by maximizing the likelihood of correct
triples and minimizing the likelihood of noisy ones.

To summarize, confidence score-based methods improve the performance of KGE models
by adjusting the influence of noisy triples during training. These methods vary in how they
compute and integrate confidence scores, leveraging different aspects of local consistency, global
structural reasoning, and adaptive loss functions. Early approaches like CKRL [111] introduced
confidence-aware learning by assigning local and global confidence scores to triples, refining
embeddings iteratively. However, CKRL suffered from the zero-loss problem, where negative
triples quickly became uninformative. To mitigate this, Shan et al. [86] proposed a confidence-aware
negative sampling strategy, dynamically selecting high-quality negative triples to improve training
effectiveness. Expanding beyond embeddings, DSKRL [87] integrated semantic knowledge, such
as entity types and relation paths, to compute confidence scores, improving robustness against
inconsistencies but requiring additional structured information. Alternatively, PTrustE [71]
introduced a path-based trustworthiness framework, assessing global and local triple reliability
through correlation networks and probabilistic logic. While effective in structured graphs, PTrustE
is computationally expensive and less applicable to sparse KGs. A distinct approach was taken by
Nayyeri et al. [75], who modified the ranking loss function to incorporate a distance-based confidence
score, adjusting training weights dynamically instead of explicitly assigning confidence scores. This
method avoids reliance on heuristic scoring functions but requires fine-tuning distance thresholds
for optimal performance. Embedding-based approaches are computationally efficient but can
struggle with noisy negatives, whereas semantic-aware models (DSKRL) improve interpretability
but depend on auxiliary knowledge. Path-based trustworthiness methods (PTrustE) enhance
global reasoning but introduce high complexity, and distance-based confidence models (Nayyeri et
al.) provide a principled alternative at the cost of hyperparameter sensitivity. The optimal choice,
therefore, depends on dataset characteristics, noise levels, and computational constraints.

6.2.2 GAN-based Approaches

While confidence score and trustworthiness score approaches address noise by quantifying the
reliability of triples or entities based on structural and semantic properties, Generative Adversarial
Network (GAN)-based approaches adopt a more dynamic mechanism. These methods introduce an
adversarial framework to detect and mitigate noise in Knowledge Graphs (KGs) by simultaneously
learning to generate and classify noisy triples. More specifically, GAN-based approaches leverage
adversarial training to refine the embeddings by detecting and mitigating the impact of noisy
triples during training. By generating synthetic noisy triples and training the model to differentiate
between true and noisy triples, these methods ensure that the learned embeddings remain robust.

NoiGAN [26] extends the idea of confidence score proposed in Section 6.2.1. They argued,
similar to the previously described approaches, that using only the confidence score as an indication
of how well a triple fits to the KGE model might lead to bias and uncertainty. Therefore, the
confidence score C(h,r,t) in this work is learned by using a generator and discriminator as a
generative adversarial network (GAN). More specifically, they proposed a learning framework
inspired by the adversarial training [8,63, 73] methods. In the GAN framework, NoiGAN consists
of two main components: a generator and a discriminator. The generator is designed to generate
noisy triples, while the discriminator is trained to distinguish between true and noisy triples,
ultimately computing the confidence score for each triple. During training, the KGE model uses
this confidence score as a guiding signal to eliminate noisy data.
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Given a true triple (h,,t), the generator generates a noisy triple (h’,r, ') from an initially
generated negative sample candidate set A(h,r,t). This is achieved through a neural network that
takes as input the embedding vectors of the triple (h’,7,t') and outputs a probability indicating
the plausibility of the triple being noisy. More formally, the generator aims to maximize the
expected reward:

Ro= Y B r)mcii(hrnemlog o, 1)),
(h,r,t)

where fp(h',r,t') is the probability predicted by the discriminator that the generated triple
(W', r,t') is true. The generator uses reinforcement learning to generate triples that can effectively
fool the discriminator. The discriminator, on the other hand, acts as a noisy triple classifier. It
aims to distinguish between true triples and noisy triples generated by the generator.

Apart from the embedding models, the GAN-based approach is also used in KG-based systems
such as in the entity-alignment approach. To this end, Pie et al. [78] propose an approach to
make robust cross-lingual entity alignment between KGs by incorporating noise detection into the
alignment process using a generative adversarial network (GAN)-based approach [46]. The model
consists of a Graph Neural Network (GNN) for entity embedding and a Generative Adversarial
Network (GAN) for noise detection. The GAN therein consists of a generator G and a discriminator
D. The generator generates fake entity pairs, while the discriminator assigns a trust score T'(eq, e2)
to distinguish correct and noisy pairs. To align entities across KGs, a margin-based ranking loss is
used to bring correct entity pairs closer together and push noisy pairs further apart.

6.2.3 Reinforcement Learning Approaches

Reinforcement Learning (RL) approaches take a different perspective by formulating noise detection
and triple selection as a decision-making problem. RL-based methods focus on improving the
robustness of KGE models by systematically identifying and removing noisy triples before the
training process begins. This proactive approach ensures that the KGE models are trained on
cleaner datasets, leading to more reliable embeddings. A recent work by Zhang et al. [128]
proposes a multi-task reinforcement learning (RL) framework to make the KGE models robust by
identifying and removing noisy triples from the training dataset. Unlike previous approaches that
directly train on noisy datasets, this method first cleans the dataset before the training process,
ensuring that the KGE models are learned on a noise-free graph. The authors define the state,
action, reward, and the objective of the RL framework in the following manner.

State. Each state in RL is represented as the set of triples that have already been selected as
clean and the current triple that is under consideration. Mathematically, the state at time
step t can be defined as s; = (Tselected, (7,7, 1)), where Tyelected is the set of triples that have
already been marked as clean up to time ¢, and (h,r,t) is the triple being evaluated.

Action. The RL agent takes an action to either select or reject the triple (h,r,t). The action
space A consists of binary decisions, A = {0, 1}, where 1 indicates selecting the triple as clean,
and 0 indicates rejecting it.

Reward. The reward function is designed based on the scoring functions of multiple KGE models
like TransE, DistMult, ConvE, or RotatE, along with a heuristic term that encourages the
model to select more triples. The reward R for a set of selected triples Tyelocteq is calculated as

1 Tselected
R= rE— Z do(h,r,t) + a7| ‘;f eCtel |,
selected (h7rxt)€Tselected total

where « is a hyperparameter, and |Tiota1| is the total number of triples in the KG.
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Objective. The aim of the RL model is to maximize the expected reward by selecting those triples
that exhibit higher plausibility.

The authors highlight that this approach has the potential drawback of filtering out a large number
of triples, which could include some correct triples. However, the RL framework’s use of scoring
functions from different KGE models helps to mitigate this by making decisions based on the
inferred relationships and plausibility scores.

6.2.4 Multi-modal Knowledge Representation

Multi-modal methods aim to combine information from different knowledge sources to better
capture the semantics and context of entities and relations within the knowledge graph. This
integration enables the model to mitigate the effects of noise in a single modality by relying on
complementary information from other modalities. To this end, the work closest to the idea of
robustness of KGE models is done by Lu et al. [70] where they propose multi-modal knowledge
representation learning (MMKRL) to generate robust KGE models. The idea therein is to use
several knowledge such as textual knowledge, entity description, visual knowledge to generate
the embedding [95,105,110]. MMKRL essentially consists of two main modules: knowledge
reconstruction and adversarial training, where the knowledge reconstruction module aligns and
integrates various knowledge embeddings to reconstruct multi-modal knowledge graphs, while the
training module enhances robustness and performance using adversarial strategies.

6.2.5 Ensemble Approaches

Ensemble-based approaches combine multiple models trained on diverse subgraphs of the Know-
ledge Graph (KG). This strategy leverages the principle that an ensemble of learners can outperform
individual models, especially in the presence of noise or inconsistencies in the data. By aggregating
predictions from multiple models, ensemble-based approaches mitigate the impact of errors or
biases present in a single model. Wan et al. [98] proposed an ensemble-based approach to enhance
the robustness of the KGE models. Their method involves generating a set of diverse subgraphs
from a given KG G and training an individual base learner for each subgraph.

Due to the complexity of KGs, traditional graph sampling methods are not directly applicable.
To address this, Wan et al. employ a random walk-based approach [69] to sample meaningful
subgraphs. The random walk process starts by selecting an initial fact (h,r,t) uniformly at random
from the KG G. Then, the random walk samples a neighbor of the current node, following the
relations in the KG. This sampling continues until a predefined boundary condition L (e.g., a
maximum path length or number of nodes) is met. After executing multiple random walks, a set
of subgraphs {G1,Go,...,G,} is generated. For each subgraph G;, a shallow KGE model ¢g, is
trained independently to obtain entity and relation embeddings. The model’s goal is to learn an
embedding function ¢g, (h,r,t) that maximizes the plausibility of triples in the subgraph. The
final ensemble model combines the outputs of these n base learners. Let ¢ensemble represent the
final embedding function, which is defined as a weighted combination of the individual models:

¢ense1nble(h7 T, t) = Z O‘i(yb@a‘, (h7 r, t)a
=1

where «; is the weight assigned to model ¢g, based on its prediction performance. The weights «;
are determined by an uncertainty measure, which reflects the predictive capability of each model
on its corresponding subgraph. For example, the uncertainty can be calculated using entropy
or variance in the predictions. The robustness of this ensemble approach is then evaluated by
injecting noise into the KG G. Wan et al. demonstrate that their ensemble model performs
significantly better than individual KGE models in the presence of noisy triples.
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6.3 Comparative Analysis and Future Directions

The previous sections explored various approaches to enhance the robustness of KGE models
when KGs contain noisy triples. These approaches differ in how they detect and mitigate noise,
with some focusing on explicit confidence estimation, others leveraging adversarial learning, and
some incorporating external multimodal information. In this section, we contrast these methods,
analyze their respective strengths and limitations, and propose potential hybrid strategies to
further enhance resilience. To better understand how different robustness approaches complement
or compete with one another, first of all, we categorize them based on key aspects such as
information used for noise handling, adaptability to different types of noise, and computational

complexity as summarized in Table 2.

Table 2 Comparison of different noise-robust KGE approaches.

lobal plausibility

Approach Key Mechanism Strengths Limitations
Confidence | Assigns confidence scores | Adaptive to structured | Struggles with ad-
score to triples based on local/g- | noise, interpretable versarial noise, requires

careful calibration

Trust score

Uses entity type and path-
based information to de-
termine trustworthiness

Strong semantic reason-
ing, robust to inconsist-
encies

Relies on well-defined
entity types, limited ad-
aptability

GAN Generator-discriminator Dynamically adapts to | Training  instability,
model to filter mnoise | different noise patterns | risk of mode collapse
iteratively

RL-based Reinforcement learning se- | Generalizes well, avoids | Filtering errors can
lects reliable triples pre- | overfitting to noise lead to knowledge loss
training

Multi- Uses text and images to | Effective for missing or | Requires external data

modal supplement KG informa- | ambiguous data sources, computation-
tion ally expensive

Ensemble Aggregates  predictions | Improves generaliza- | Computational over-
from multiple KGE mod- | tion and robustness head, limited effect in
els adversarial settings

Furthermore, given the strengths and limitations of individual methods, a promising direction
is to develop hybrid approaches that integrate complementary techniques. Below, we suggest three
strategies to enhance robustness by combining different noise-handling mechanisms.

Confidence score with GAN-based noise correction.
effective first step in detecting structured noise, while GAN-based filtering adapts dynamically
to unstructured noise. A potential hybrid model could first use a confidence estimator, such as
CKRL, to assign preliminary confidence scores to triples. These confidence scores help distinguish
between highly reliable triples and those suspected as being noisy. Once the confidence scores are
assigned, the high-confidence triples can be fed directly into a standard KGE training process to
learn robust embeddings from cleaner data. Meanwhile, the low-confidence triples, which are more

Confidence-based methods provide an

likely to contain noise, are passed into a GAN-based filtering mechanism. The GAN consists of a
generator that produces synthetic noise and a discriminator that learns to distinguish between
correct and incorrect triples. During training, the discriminator iteratively refines its decision
boundary by learning from both real and generated noisy triples.
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RL-based filtering with multi-modal learning. RL-based models excel at identifying and removing
highly noisy triples, making them suitable to use as an initial data-cleaning step before training
a multi-modal KGE model. The combination of RL and multi-modal learning allows for more
effective noise reduction while leveraging complementary knowledge sources to enhance embeddings.
For instance, an RL agent could be trained to evaluate triples based on a reward function that
incorporates multiple KGE scoring functions. The agent iteratively selects high-confidence triples
while discarding unreliable ones. Once the RL agent filters out noisy triples, a multi-modal KGE
model is trained exclusively on the cleaned dataset. This model integrates information from
textual descriptions, entity attributes, and visual embeddings to improve the quality of entity
and relation representations. The multi-modal embeddings can further be used to refine the
RL-based filtering in a feedback loop. If a previously filtered triple gains support from external
modalities (e.g., a missing relation is inferred via textual descriptions), it may be reintroduced
into the knowledge graph.

Ensemble learning with path-based trustworthiness scores. Ensemble learning enhances ro-
bustness by aggregating predictions from multiple KGE models, while path-based trustworthiness
scoring ensures that models are weighted based on their reliability in capturing meaningful entity-
relation patterns. Instead of training a single KGE model, multiple models are trained on different
subgraphs generated through random walks, clustering-based sampling, or relation-specific parti-
tions. Thereafter, each entity pair in the KG is evaluated based on the reliability of intermediate
paths connecting them. Approaches like PTrustE [71] could be used to score paths based on
semantic consistency, redundancy, and coherence with established entity-type constraints. The
final embedding for a given entity or relation is determined by aggregating the predictions from
the ensemble models, weighted according to their path-based trustworthiness scores. Models that
perform better on structurally supported paths contribute more to the final representation. These
hybrid approaches offer promising directions for improving the robustness of KGE models.

7 Robustness of KG-based Systems

There are some works that do not directly discuss the robustness of the KGE models; however,
they consider the KG-driven systems, such as entity linking [72], cross-lingual entity alignment [78],
knowledge-grounded dialogue system [100], improving the robustness of the facts of KG [109].

Mao et al. [72] propose a robust entity linking method that tackles 3 aspects, namely, inefficient
graph encoders, the need for negative sampling, and catastrophic forgetting in semi-supervised
learning. To improve the graph encoders therein, they use relational attention to update the
entity features. Furthermore, the authors prove that negative samples are unnecessary in entity
linking. It adopts a symmetric negative-free alignment loss to align entity pairs without generating
negative samples thereby removing the need for negative samples, and aligning entity pairs with
the loss function. Finally, to mitigate catastrophic forgetting, the approach stores previously
learned embeddings and selectively reviews them during each training iteration. This approach
allows the model to maintain alignment accuracy without retraining on all previous data. The
evaluation has shown state-of-the-art results with improved robustness.

Pei et al. [78] propose REA (Robust Entity Alignment), a method for cross-lingual entity
alignment between noisy knowledge graphs (KGs). Existing entity alignment models assume
clean labeled data, but in real-world scenarios, labeled entity pairs often contain errors that
degrade the alignment quality. REA first encodes the structure of knowledge graphs using a
Graph Neural Network (GNN). The GNN processes entities and their relationships within each
knowledge graph, learning meaningful embeddings that capture the structural similarities between
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entities, even if they exist in different languages. For example, if “Eiffel Tower” in an English
knowledge graph has the same connections as “Tour d’Eiffel” in a French knowledge graph, their
embeddings should be similar. The approach further introduces a trust score for each labeled
entity pair. The trust score acts as a measure of confidence, determining how reliable a given
entity alignment is. REA also uses a margin-based ranking loss function. This function ensures
that correctly aligned entity pairs have their embeddings placed closer together, while incorrect
pairs are pushed further apart in the learned space. The noise detection module within REA,
which operates using an adversarial training framework, continuously updates the trust scores
based on newly identified errors. In turn, the noise-aware entity alignment module adjusts the
entity embeddings based on these refined trust scores. This iterative learning process ensures
that the model becomes increasingly accurate, filtering out noise while improving the quality of
entity alignment. An extensive evaluation on real-world multilingual knowledge graph datasets
such as DBP15K, DWY100K [93] show that REA outperforms state-of-the-art methods (e.g.,
GCN-Align [104], MuGNN [19]) in noisy settings. REA provides a robust approach for integrating
multilingual knowledge graphs, ensuring high-quality entity alignment despite label noise.

Wang et al. [100] introduce an entity-based contrastive learning framework, named EnCo,
to enhance the robustness of knowledge-grounded dialogue (KGD) systems. Given a dialogue
context C' = {uy,us,...,u,—1} consisting of utterances u; and an external knowledge set K =
{(h1,71,t1), .-y (hmyTm, tm)} comprising knowledge triples where h;, r;, and ¢; represent the head
entity, relation, and tail entity respectively, the goal of a KGD system is to generate a response
u, based on C' and K. The authors aim to enhance the robustness of KGD models to handle
real-world perturbations, including semantic-irrelevant (e.g., misspellings, paraphrasing) and
semantic-relevant (e.g., incorrect entity replacements) perturbations. To this end, they leverage
contrastive learning to improve robustness by constructing positive and negative samples and
training the model to recognize semantic similarities and differences.

Xiao et al. [109] address the problem of evaluating the robustness of outstanding facts (OFs)
derived from KGs. An OF is defined as a statement highlighting how an entity stands out based
on specific attributes when compared to its peers. Consider a KG G containing information about
universities and their employees, including attributes like gender. An OF from this KG might
state: “At the American Council on Education (ACE), only 31% of the employees are male.” This
statement could suggest a notable gender disparity at ACE-affiliated institutions. However, the
robustness of this fact needs to be evaluated by considering the broader context and possible data
variations. To formalize this, Xiao et al. introduce the concept of robustness by analyzing how the
“strikingness” of an OF changes under various perturbations. Let S(f) denote the strikingness of
an OF f in a given context. The goal is to ensure that S(f) remains consistent even when the
context or data changes slightly. The authors propose two types of perturbations to evaluate this:

Entity perturbation. It assesses the robustness of an OF by replacing its context entity c

with a similar entity ¢’. Formally, let ¢ represent the context entity in the OF f. We replace ¢

with ¢/, where ¢’ is chosen based on its similarity to ¢. The similarity between entities ¢ and ¢
is computed as

, n_ IN(e) N N(d)]

S = N LN @)
where N(c) and N(c') are the sets of neighbors of ¢ and ¢, respectively.
Data perturbation. It involves modifying the KG by adding or altering edges, thereby
changing the peer entity set of the OF. Formally, the relevance of a data perturbation is
quantified using a head-tail relevance function, which measures the semantic connection of
the newly added edges to the original fact. Given an added edge (h',r’,t’), the head-tail
relevance function R(h',r’,t') evaluates whether the modification preserves the context’s
semantic integrity.
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The robustness of an OF is then defined by the expected strikingness E,p)[S(f)] over a per-
turbation relevance distribution (PRD) p(P). This method of evaluating robustness relates to
earlier discussions in the literature on robustness, specifically, similar to our proposed robustness
formalization in Equation 10. Much like ensuring that KGE models are resilient against adversarial
attacks and noise (e.g., as described in works like Xie et al. [111] and Shan et al. [86]), evaluating
OFs for robustness ensures that their interpretations remain valid across different contexts.

8 Robustness Improvement Using Knowledge Graphs

Note that, similar to using KGs to improve the resilience of several systems, there also exist a
number of works that use KGs [83,118] and KGE models [61] to improve the robustness of ML
models. However, the notion of robustness therein pertains to the effectiveness of performing the
underlying tasks. Below we describe some of them.

Multi-object detection. Lang et al. [61] propose the use of KGEs to develop more robust
multi-object detection models. The main idea is to use KGEs to incorporate semantic knowledge
into object detection, aiming to achieve more structured and semantically grounded predictions.
Traditional object detection models often use a one-hot encoding approach, treating object classes
as discrete and unrelated. This method maximizes inter-class distances but ignores the semantic
relationships between different object types. The authors therein introduce a new formulation
where they replace these learnable class prototypes with fixed object type embeddings derived from
knowledge graphs. Specifically, the object detector learns to map visual features into a semantic
embedding space, using either word embeddings (like GloVe) [79] or embeddings derived directly
from knowledge graphs using any standard KGE models. In their evaluation, this approach
demonstrated more semantically grounded misclassifications, meaning the errors made by the
model were often more contextually appropriate. Additionally, their evaluation on benchmark
datasets showed that KGE-based models matched or even outperformed traditional one-hot
methods, particularly in challenging object detection benchmarks.

Deep learning. Radtke et al. [83] propose using KGs to enhance deep learning models for fault
diagnostics in prognostics and health management (PHM). They introduce a KG-enhanced deep
learning approach to incorporate domain-invariant knowledge, improving model robustness and
generalization. The method leverages the structure of KGs to encode semantic information
hierarchically and combines this with supervised contrastive learning to create a more stable
feature representation. Experimental results demonstrate that this approach increases the model’s
ability to handle domain shifts, making fault diagnostics more resilient across varying conditions.

Recommender system. Yang et al. [118] propose knowledge graph contrastive learning (KGCL)
to suppress noise and enhance item representations in recommender systems. Their approach
addresses challenges such as long-tail entity distributions and noisy, topic-irrelevant connections
in Knowledge Graphs (KGs). More specifically, to improve robustness, KGCL generates two
perturbed views of the KG, G; and Gs, by randomly dropping edges. This introduces structural
perturbations, allowing the model to learn robust embeddings by contrasting entity representations
across different views. KGCL then employs contrastive learning to maximize agreement between
the same entity’s embeddings in different views while minimizing similarity with other entities
that are not close.
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9 In-distribution Generalization

The work by Zhu et al. [133] is the only work that contributes to this aspect of resilience. Therein,
they define this as predictive multiplicity, a phenomenon where multiple models with similar
accuracy make conflicting predictions for the same query. The authors conduct an empirical study
on multiple KGE models and datasets to measure predictive multiplicity. For each KGE algorithm,
they train multiple models with different random initializations and hyperparameters. They then
select a set of “competing” models — those whose link prediction performance is virtually the
same as a best baseline model (within a small tolerance ¢, e.g. 1% difference in Hits@K). Using
this set of models, the authors evaluate how often their predictions diverge. For each test query

(a partially specified triple such as (h,r,?)), they compare the model’s top-ranked results. If

one model’s top answer is different from another’s, that query is counted as a conflicting case.

The ambiguity metric is computed as the percentage of test queries with any such conflict, and

discrepancy reflects the maximum disagreement rate among the models. These metrics provide a

quantitative measure of predictive multiplicity for the link prediction task.

After measuring the extent of conflicting predictions, the authors apply ensemble voting
methods to combine model outputs. Each model in the competing set produces a ranked list of
candidate entities for a query. The authors apply three voting schemes to aggregate these rankings
into one result,

1. majority voting which picks the candidate that appears as the top choice for most models,

2. borda voting, which assigns points based on rank position (e.g., a candidate gets more points
for being ranked 1st, slightly fewer for 2nd, and so on, across all models) and then selects the
candidate with the highest total points, and

3. range voting, which uses the actual prediction scores from each model (rescaled to a common
range) and sums them up for each candidate.

These methods generate an aggregated ranking intended to reflect a consensus. The impact of

aggregation is assessed by recomputing the ambiguity and discrepancy metrics on the combined

ranking, and by checking the standard accuracy metrics (Hits@QK) to ensure that the ensemble
prediction is still performing well.

10 Challenges and Future Works

Future research in the domain of resilience on knowledge graphs and KGE models presents a
number of possibilities to improve different aspects of resilience that we defined in this work.
We can envisage works aiming at developing KGE models considering generalization consistency,
distribution adaptation, and in-distribution generalization, amongst others. We describe future
work directions in more detail in the following.

Generalization under Distribution Shift. One promising avenue for future work is the develop-
ment of resilient KGE models that can adaptively adjust to changes in the underlying data
or graph structure. Traditional KGE models often assume static or stationary environments,
which may not hold in dynamic or evolving KGs. Future research could explore dynamic
embedding techniques that continuously update entity and relation embeddings to capture
temporal or contextual changes, for instance, when new entities or relations are added to the
KG. Additionally, integrating uncertainty modeling and probabilistic reasoning mechanisms
into KGE models could enhance their resilience to noisy or uncertain data. Some existing
works attempt to quantify uncertainty in KGE models, such as probabilistic soft logic-based
methods in [23] and confidence-aware embedding techniques in [66]. The work in [23] em-
ploys probabilistic soft logic to generate confidence scores capturing structural and assertional
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uncertainties, enabling the model to provide confidence-based predictions when new entities
and relations are introduced. Similarly, [66] defines a KG as uncertain when each assertion
is associated with a confidence score, which is integrated into the KGE learning process to
adjust predictions dynamically. These studies establish an important foundation for making
KGE models aware of distribution shifts by incorporating uncertainty estimation.

To further enhance robustness against distribution shifts, conformal prediction could be
incorporated into KGE models. Conformal prediction provides a mathematically sound
framework for quantifying the uncertainty of model predictions by constructing prediction
sets that offer guaranteed coverage probabilities [44]. Instead of generating point estimates,
KGE models could output prediction intervals for link prediction tasks, ensuring that the true
answer is included within a certain confidence level. Note that there already exist some works
incorporating this technique in KGE models, such as [134] where the authors apply conformal
prediction theory, which enables uncertainty-aware answer set prediction by ensuring that the
correct answer is included within a generated answer set with probabilistic guarantees. This
shows the potential of utilizing conformal prediction in KGE models in dealing with resilience.
For instance, adaptive conformal prediction techniques could be applied to KG completion
tasks, where the KGE model dynamically updates its uncertainty estimates as new data arrives.
When distribution shifts occur, such as new entities being introduced or relationships evolving,
the conformal predictor could adjust its confidence intervals accordingly. This is particularly
useful in real-world applications, where decision-making systems rely on KGE models and
require calibrated confidence scores for each prediction.

Besides uncertainty-aware learning and conformal prediction, other techniques could be explored
to increase the robustness of KGE models in dynamic environments such as:

Bayesian knowledge graph embeddings. Instead of learning fixed embeddings, a Bayesian
approach would model entity and relation embeddings as probability distributions (e.g., using
Gaussian distributions) [96], allowing the model to express uncertainty in predictions explicitly.
This would be particularly effective in scenarios where distribution shifts occur.
Meta-learning for KGE adaptation. A meta-learning framework could be designed to
quickly adapt KGE models when distribution shifts occur. Few-shot learning techniques,
such as Model-Agnostic Meta-Learning (MAML) [43], could be used to train KGE models to
generalize across different graph structures with minimal re-training. This would be beneficial
in dynamic knowledge graphs, where new domains or unseen entities frequently appear.
Contrastive learning for distribution shift detection. Contrastive learning techniques
could be integrated to detect and quantify shifts in graph structures [45]. By learning embedding
distances between past and present snapshots of a KG, models can determine when a significant
shift has occurred and retrain embeddings accordingly. This approach could also be combined
with self-supervised learning, enabling KGE models to update embeddings without requiring
extensive labeled data.

Incorporating conformal prediction, Bayesian embeddings, meta-learning, and contrastive
learning into KGE models could significantly enhance their ability to handle distribution shifts
and noisy data. Note that, the list of approaches mentioned here is not exhaustive, and there
could be further techniques to tackle the aforementioned problems. Future research should
delve into exploring more such approaches and find out explore how these techniques can be
efficiently integrated into KGE pipelines while ensuring computational scalability and real-time
adaptation capabilities.

Adversarial and non-adversarial robustness. Another possible research direction is that of resi-

lience of KGE models against adversarial attacks and manipulations, i.e., developing KGE
models that are adversarially robust. As mentioned beforehand, real-world KGs might suffer
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from adversarial attacks where adversaries may attempt to exploit vulnerabilities in the KG
or KGE models to inject false information, manipulate inference results, or disrupt system
functionality. There have already been some works to this end, however, all of them focus
on developing methods to perform targeted attacks, i.e., considering a specific fact to add
or remove from the KG and thereby making the KGE model learn based on the attackers’
goal. To this end, only the KG has been considered as a possible attack surface. However,
there can be other possibilities, for instance, the parameters of the already trained KGE model
can be attacked. Such kind of attacks are often prevalent in the ML domain and termed
Trojan attacks [67,68,102] where the attacker aim to make the model learn their objective
either by generating inputs with certain triggers, or by changing the already trained model’s
parameters. For KGE models, such Trojan attacks could correspond to the modification of
the entries of learned embedding vectors so as to achieve a specific attacker’s objective. Apart
from considering targeted attacks by taking into account different attack surfaces, it would also
be needed to consider performing non-targeted attacks [57], where the idea is to simply disrupt
the performance of the underlying KGE models by introducing noise in the KGs or in the
KGE models. As mentioned previously, there are already some works which considered such
kind of attacks. However, more sophisticated attack approaches to this end could be explored.

Additionally, the targeted attacks so far have been considered only for a specific type of task,
namely link prediction tasks. KGE models are used in many critical downstream application
tasks [32,42,99], and hence, more research is needed to understand how to perform adversarial
attacks on such KGE-based tasks. This basically opens up a number of different attack surfaces
along with the need to explore different attack dimensions, including non-targeted attacks.

While several works considered adversarial attacks on KGE models, a much-needed direction
to be focused on is the development of defence mechanisms against such attacks that can
detect and mitigate adversarial attacks in real-time, thereby enhancing the overall robustness
of KG-based applications. This would include developing graph-based anomaly detection
algorithms to identify and mitigate adversarial attacks or abnormal patterns in the KG,
performing adversarial training of KGE algorithms, developing certified guaranteed methods
to build robust KGE models, and so on. Furthermore, defence mechanisms should be extended
to combat non-targeted attacks, effectively addressing noise, or incompleteness inherent in
KGs. This entails the creation of robust data integration and ensemble algorithms capable of
handling diverse and noisy information from various sources. Moreover, exploring techniques
for automated error detection, correction, and data validation within KGs could significantly
enhance their quality and reliability over time.

Recently, the works to combine large language models (LLMs) with KGEs are gaining popular-
ity [77]. There is a potential that by augmenting LLMs to KGEs, one could achieve improved
robustness. Leveraging the semantic richness of natural language representations encoded in
LLMs, such as BERT [36] or GPT [17], may enhance the understanding and representation
of entities and relations in the KG. This integration could potentially mitigate the impact of
noisy or incomplete KGs on downstream tasks.

Stability to incomplete inputs. Existing works primarily focus on handling missing data through
imputation or data augmentation rather than explicitly ensuring robustness against missingness.
The lack of standardized evaluation benchmarks and theoretical formulations of stability further
hinders progress in this area. Therefore, to this end, we first of all require a benchmark to
evaluate different approaches. Afterward, we require suitable graph similarity metrics depending
on different domains, moving beyond standard metrics like graph edit distance or Jaccard
similarity. Furthermore, we can envisage using adversarial training [18] where missing elements
are simulated during training to improve resilience. To this end, dropouts for KGEs, randomly
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removing nodes/edges during training could also help. Knowledge distillation technique is quite
useful in learning where a model trained on complete KGs transfers knowledge to one dealing
with incomplete KGs. Apart from the training techniques, adapting loss functions could also
be considered. For instance, a stability-aware loss function could be designed that explicitly
penalize drastic embedding changes due to missing data, ensuring bounded divergence within
€. To this end, furthermore, a consistency regularization technique, where models minimize
differences in predictions from full vs. incomplete graphs could also be used.

Finally, resilience has already been vastly explored in fault-tolerant systems, therefore, interdis-
ciplinary approaches that draw insights from fields such as network science, complex systems theory,
and resilience engineering could provide valuable perspectives and methodologies for enhancing the
resilience of KGs and KGE models. By leveraging principles from these domains, researchers can
develop holistic, multi-faceted strategies for improving the reliability and robustness of KG-based
systems in diverse application domains.

11 Conclusion

In this work, we explored the resilience of knowledge graph embedding models, addressing
their ability to withstand and adapt to various challenges such as noise, adversarial attacks,
and dynamic changes in the underlying knowledge graphs. While significant research has been
conducted on robustness, particularly adversarial robustness, there is a pressing need to consider
a more comprehensive notion of resilience. This broader understanding includes aspects such
as generalization consistency, distribution adaption, and performance stability under diverse
real-world conditions. A key finding of this survey is that while adversarial robustness has received
considerable attention, with various strategies to perform attacks on KGE models, resilience
in non-adversarial contexts is equally critical. Models must not only defend against malicious
interventions but also maintain their reliability in the presence of natural noise and inconsistencies
prevalent in real-world KGs. The surveyed works on non-adversarial robustness primarily focus on
mitigating the effects of noise by incorporating confidence-aware learning and enhanced negative
sampling strategies. However, these approaches often overlook the dynamic nature of KGs,
particularly temporal and evolving KGs, where distribution shifts are inevitable. Addressing such
shifts through adaptive retraining mechanisms remains an open challenge. Moreover, ensuring
in-distribution generalization across diverse application domains is essential. KGE models must
be able to operate effectively even with incomplete input data, which is a common scenario in
real-world applications. Achieving this consistency demands that future research goes beyond
traditional robustness frameworks, integrating novel methodologies from graph neural networks,
reinforcement learning, and explainable Al to enhance both the adaptability and transparency of
KGE models. In conclusion, while much progress has been made in improving the robustness of
KGE models, a more holistic approach to resilience — incorporating adaptability, consistency, and
robustness in the face of both adversarial and natural challenges — will be key to unlocking the
full potential of these models in real-world, dynamic, and noisy environments.
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