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Preface

In recent years the integration of functional and logic programming has become a major
research topic. Functional languages permit efficient (parallel) implementations whereas
logic languages offer a greater flexibility for problem oriented programming. Therefore,
an increasing number of researchers investigates possible combinations of both program-
ming styles in order to achieve a proper balance between the needs of programmers and
machines.

The idea of organizing a Dagstuhl seminar on this topic originated from two projects:
an Esprit Basic Research Action with K. Apt coordinating the part on integration of
functional and logic programming, and an Accion Integrada where research groups of
M. Rodriguez Artalejo at the Universidad Complutense Madrid and of K. Indermark at
the RWTH Aachen collaborate on the development and implementation of the language
BABEL.

The seminar covered the main research directions within the integration �eld: language
design, semantics, logics, type theory, evaluation strategies and implementation techni-
ques. This report contains the abstracts of all talks, as they have been written into the
seminar book by the lecturers, and a list of addresses of the invited researchers.

Schloß Dagstuhl offered an excellent environment for carrying out this seminar. Thanks
are due to the management and the domestic servants of Schloß Dagstuhl for providing
all participants a pleasant stay.
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Narrowing as an Incremental Constraint

Satisfaction Algorithm

Maria Alpuente Moreno Falaschi, Giorgio Levi
Universidad Politécnica de Valencia Universität di Pisa

In this paper we are concerned with an instance of the CLP scheme specialized in solving
equations with respect to a Horn equational theory E. The intended structure is given
by the �nest partition H / E induced by E on the Herbrand Universe H over a �nite
one sorted alphabet. This work deals with the description of an incremental constraint
solver as the kernel of an operational semantics for the language CLP(H/ The
primary issues are: how to verify the solvability of constraints in the structure of H / E
by using some sound and complete semantic uni�cation procedure such as narrowing,
how to simplify constraints in a computation sequence, how to simplify constraints in
the computation process and how to pro�t from �nitely failed derivations as a heuristic
for optimizing the algorithms. Fixpoint and model-theoretic semantics are obtained as
a straightforward way from the results about Constraint Logic Programming.

Logics with Constraints

Héléne Kirchner, Claude Kirchner, Michael Rusinowitch
INRIA Lorraine & CRIN

A framework for �rst order constrained deduction is proposed in this paper. The syn-
tax and semantics of so-called symbolic constraints and of constrained formulas are
de�ned. Constrained deduction rules are given for equational logic, Horn clause 10-
gic and �rst-order logic with equality. They are applied to clausal theorem proving,
unfailing completion and completion modulo a set of axioms.

The Meaning of LIFE

Hassan Ai°t-Kaci Andreas Podelski

DEC Paris Research Laboratories LITP, University of Paris-7

LIFE (Logic, Inheritance, Functions, Equations) is an experimental programming lan-
guage proposing to integrate three paradigms proven useful for symbolic computation.
From the programmer�s standpoint, it may be perceived as a language taking after 10-
gic programming, functional programming, and ob ject-oriented programming. From a
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formal perspective, it may be seen as an instance (or rather, a composition of three in-
stances) of a Constraint Logic Programming scheme due to Höhfeld and Smollca re�ning
that of J affar and Lassez. We start with an informal overview showing the functionality
of LIFE as a programming language, illustrating how the constructs of LIFE offer rather
unusual and (pleasantly) startling conveniences. The second part is a formal account of
LIFE�s object uni�cation seen as constraint-solving over speci�c domains. We build on
work by Smolka and Rounds to develop type-theoretic, logical, and algebraic renditions
of a calculus of order-sorted feature approximations. This approximation semantics is
shown to be congruent with an operational semantics expressed as a set of complete
and consistent syntax-driven non-deterministic constraint normalization rules, including
functional beings.

LML: A Functional Meta-Language

for Logic Programming
Dino Pedreschi

Universita di Pisa

LML (Logical Meta-Language) is a functional language equipped with a data type of
theories, whose objects represent logic programs. Theories come with operators for
querying them, to obtain sets of answers, and combining them together, to build more
complex ones. Thus, from one perspective, LML can be viewed as yet another ap-
proach to the integration of functional and logic programming, aiming at amalgamating
within a single framework the expressiveness of both paradigms. From another perspec-
tive, however, LML may be viewed as a programming language for the construction of
knowledge based systems, in which chunks of knowledge are represented as separated
logic theories. According to this perspective, the functional layer acts as a meta-level
framework for the underlying logic programming component: theories are ordinary data
values, which can be manipulated by suitable operators. This accounts for describing
the dynamic evolution of theories, and addressing the issue of modularity. In my talk
I presented an overview of the language and its type system, together with motivating
examples (modular system construction, and reconstruction of default reasoning).
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The Functional Logic Language Babel

Mario Rodriguez Artalejo
Univ. Complutense, Madrid

Functional logic languages were proposed by U.S. Reddy as a way to integrate the fun-
ctional and logic programming paradigms. They have functional syntax, but use narro-
wing as operational semantics. This execution mechanism includes the usual reduction
from functional languages and also covers SLD�resolution, provided that de�nite Horn
clauses �Head +-� Body� are viewed as conditional rewrite rules �Head => true +- body�.
The talk presented the functional logic language BABEL, which has been worked out in
cooperation by research groups in Madrid and Aachen. BABEL is a higher order lan-
guage with polymorphic types, syntactically similar to SML or Miranda. The execution
mechanism is narrowing. Programs allow to de�ne types by declarations and functions
by constructor based conditional equations whose boolean condition may include extra
variables not occurring in the left hand side. These so called free variables must be
�rst order and are solved by narrowing during execution. Higher order variables are
also forbidden in the goals, which are expressions to be narrowed until obtaining a �nal
result in normal form and an answer substitution.

In the talk, these features of the language were explained and illustrated by examples.
Some other works in relation to BABEL�s implementation and extension were announced
for later talks by other participants.

S-SLD-Resolution � An Operational Semantics

for Logic Programs With External Procedures

Johan Boye
Univ. of Linkoping, Sweden

This paper presents a new operational semantics for logic programs with external proce-
dures, introduced by Bonnier & Maluszy�ski in ISCLP �88. A new resolution procedure
S-SLD-resolution is de�ned, in which each step of computation is characterized by a
goal and a set of equational constraints, whose satis�ability cannot be decided with
the information at hand. This approach improves the completeness of the resulting
system, since further computation may result in the information needed to solve some
earlier unsolved constraints. We also state a sui�cient condition to distinguish a class
of programs for which no unsolved constraints will remain at the end of computation.
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Higher Order Logic Programming
with Combinators

Juan Carlos Gonzalez Moreno

Universidad Politécnica de Madrid

We describe an extension of the �rst order functional logic language BABEL which sup-
ports higher order programming, including higher order logic variables. The operational
semantics is based on lazy narrowing and subsumes reduction and SLD-resolution. Ge-
neral higher order uni�cation is avoided and a decidable uni�cation is used instead. By
means of a syntactical translation, we relate the operational semantics to the declara-
tive semantics of the �rst order fragment of the language. This provides soundness and
completeness theorems which give an exact characterization of the expected solutions
on the higher order level. The class of potential solutions is program dependent. For
some programs, it is as powerful as the class of z\-expressions.
In the approach that we describe, we use a restricted form of higher order narrowing,
based on a decidable uni�cation concept. General higher order uni�cation, which is
known to be undecidable, will be avoided.

BABEL Implementation Based On

Lazy Narrowing
Juan J osé Moreno Navarro

Universidad Politécnica de Madrid

The talk discusses the implementation of lazy narrowing in the framework of a graph
reduction machine. By extending an appropiate architecture for purely functional lan-
guages an abstract graph narrowing machine for the functional logic language BABEL
is constructed. The machine is capable of performing uni�cation and backtracking. The
techniques used in functional programming to cope with lazy evaluation are not direct-
ly applicable, but must be modi�ed due to the logical component of the implemented

&#39; language. A prototype implementation of the new machine has been developed. A
demonstration of the current available BABEL system was presented.
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An Abstract BABEL-Machine

Based On Innermost Narrowing

Herbert Kuchen, Rita Loogen Juan J osé Moreno Navarro
RWTH Aachen Universidad Politécnica de Madrid

Mario Rodriguez Artalejo
Universidad Complutense de Madrid

An abstract machine for the functional logic language BABEL is presented. This ma-
chine is based on innermost narrowing. It uses a graph to represent the state of com-
putation. Hence, it is a starting point for a parallel implementation, while a stack
machine is more efficient for a sequential implementation. The machine was developed
by extending an abstract machine for a purely functional language by uni�cation and
backtracking mechanisms. Due to a special treatment of deterministic computations a
behaviour similar to that of purely fundtional languages can be achieved for (mainly)
deterministic programs. Experimental results and comparisons with other languages
like PROLOG and SML are promising.

From Reduction Machines
To Narrowing  Machines

Rita Loogen
RWTH Aachen

Narrowing, the evaluation mechanism of functional logic languages, can be seen as a
generalization of reduction, the evaluation mechanism of purely functional languages.
The unidirectional pattem matching, which is used for parameter passing in functional
languages is simply replaced by the bedirectional uni�cation known from logic program-
ming languages. The talk showed, how to extend a reduction machine, that has been
designed for the evaluation of purely functional languages to a machine that performs
narrowing. The necessary extensions concern the realization of uni�cation and back-
tracking. The latter has to be incorporated to handle nondeterministic computations.
The narrowing machine enables a space-efficient handling of nested expressions and
embodies an optimized treatment of deterministic computations.
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Optimizing Narrowing Strategies

Alexander Bockmayr Stefan Krischer
Max-Planck-Institut Saarbrücken CRIN Nancy

Rewriting and narrowing provide a nice theoretical framework for the integration of
logic and functional programming. For practical applications however, narrowing in
its original form is much too inefficient. Therefore many optimizations have been pro-
posed during the last years. In this talk, we consider narrowing for arbitrary canonical
term rewrite systems. We don�t impose such restrictions as constructor discipline, left-
linearity or non-overlapping left-hand sides. In the �rst part of our talk we present the
most important narrowing strategies for this general case that are known today. We give
also quantitative results to compare their e�iciency. In the second part, we show how
the efficiency of narrowing can be further improved by reducibility tests. We introduce
a new narrowing strategy, LSE�SL left-to-right basic normal narrowing, sketch the proof
of its completeness and illustrate it by various examples.

Type-driven Evaluation

for Integrating FP and LP

Staffan Bonnier

University of Linkiiping, Sweden

We give a formal operational basis for integrating Horn Clause programs with procedures
of any typed functional language. The functional procedures are assumed to admit
normal form reduction of any term t whose variables play no signi�cant role during
reduction. A sufficient condition for the safe reduction of t, formulated in terms of,
the type of t, is developed. The core of the integration is a uni�cation algorithm
which employs this condition in order to unify terms modulo the rules of the functional
procedures.
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Introducing Sharing into OR-Parallel
Implementations of L+F Programming

W. Damm, F. Liu, T. Peikenkamp
FB Informatik, Univ. of Oldenburg

The talk presents a method enhancing OR-parallel execution models by sharing common
computation paths between OR-parallel processes and thus avoiding recomputations of
solutions which do not depend on bindings established by left sibling processes. In
the sequential case, it covers optimizations achieved by intelligent backtracking. The
proposed concept of sharing computations is independent of particular aspects of OR-
parallel execution model and can thus be combined with optimized implementation
schemes for binding arrays or lazy process generation schemes as task stealing. Moreo-
ver, it allows a straightforward extension to resolution based implementations of L+F
languages such as the language K-LEAF developed at the University of Pisa.

A WAM-Based Implementation

of Narrowing and Rewriting
Michael Hanus

Universität Dortmund

We present an efficient implementation method for a language that amalgamates func-
tional and logic programming styles. The operational semantics of the language consists
of resolution to solve predicates and narrowing and rewriting to evaluate functional ex-
pressions. The implementation is based on an extension of the Warren Abstract Machine
(WAM). This extension causes no overhead for pure logic programs and allows the exe-
cution of fuctinal programs by narrowing and rewriting with the same efficiency as their
relational equivalents. Moreover, there are many cases where functional programs are
more efficiently executed than their relational equivalents.
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Constraints Unify

Functional and Logic Programming

� Introducing

Constraint Functional Logic Programming

Yi�Ke Guo, Helen Pull

Imperial College, London, UK

To integrate the functional and logic styles of programming, a new declarative pro-
gramming paradigm, constraint functional logic programming (CFLP), is presented. A
CFLP system exhibits all constraint, functional and logic programming features, and
uni�es them systematically. CFLP extends functional logic programming (FLP), which
provides an equation solving capability over a functional program to general constraint �
programming, and permits the use of constraints for programming as well as for posing
queries. CFLP also generalises constraint logic programming (CLP) by admitting user-
de�ned functions as a purely functional subsystem of a CLP language. The resulting
system has a concise semantic foundation. Various computational models such as re-
duction for evaluating expressions, narrowing for solving equations and resolution for
deducing logical consequences are combined via constraint solvers. This paper presents
the motivation for designing CFLP, and presents its semantics. A CFLP language,
Falcon, (Functional And Logic language with CONstraints) is then proposed to give a
concrete representation of the framework. The expressive power of the CFLP paradigm
and its programming style are illustrated by some example programs in Falcon.

Mastering Recursive Schemes

by Weak Combinatory Logic
Corrado Böhm

Univ. di Roma, �La Sapienza�

The use of �xed point combinators to solve recursive equation systems, although ubiqui-
tous, has as fundamental disadvantage the loss of strong normalization property. We
show that such a disadvantage vanishes if:

1. We implement term algebras by a weak combinatory logic reduction machine,
which is also useful to minimize the compiling and coding work.
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2. We solve any recursive equation system by exhibiting combinators in normal form,
which represent the (higher order) functions solving the systems. &#39;

Given any set of recursive scheme de�ning a set of functions the method consists of
�nding the set of minimum common recursive schemes (one for each domain algebra)
such that each scheme needed for the de�nition of any function is an instance of an
element of the above set. Then the problem of representing every function is reduced to
the easier problem to �nd the combinators representing the constructors of each domain
algebra.

Type Inference in Polymorphic Type Discipline

Simona Ronchi Della Rocha

Universita di Torino (Italy)

We study the problem of the automatic inference of types in the polymorphic type disci-
pline for lambda calculus (PTD). PTD is an extension of Classical Curry�s functionality
theory, in which types can be universally quanti�ed. In the PTD, it can be shown that
a principal type in the sense of Curry does not exist. Moreover, the problem of whether
the set of terms having a type in this discipline is recursive is still open; this set is a
paper subject of the set of strongly normalizing terms. We de�ne a countable set of type
assignment systems t,, (n E w), which is a complete strati�cation of the polymorphic
type assignment system. Every system t� is decidable. Then we build a type inference
algorithm for every system t�. This algorithm generates for any untyped term M and
integer n, the (�nite) set of the minimal types derivable for M in t,,, if any. The set is
minimal with respect to a partial order relation de�ned in such a way that, if M can
be typed in Curry�s type discipline, then for each n its (principal) Curry�s type is the
minimum of the relation. In fact we are looking for a conservative extension of the ML
type inference algorithm (which is based on Curry�s types).
A type inference problem is always connected to an uni�cation problem. The type
inference algorithm for Curry�s types is based on the classical �rst-order uni�cation
procedure of Robinson. For solving the type inference problem in polymorphic type
discipline, we are dealing with particular instances of the semi�uni�cation problem. This
problem has been proved to be undecidable by Kfoury et al. We give a parameterized
solution for a restricted class of instances of semiuni�cation problems, containing all
the instances of typing problems in PTD. The technical tool is a uni�cation procedure,
which is a conservative extension of the classical one, but it never gives a failure. A
situation that classically is interpreted as a failure here gives a positive information,
namely the need of a quanti�ed variable in the place in which the failure occurred. In
order to do this, information about the structure of the terms to be uni�ed must be also
supplied to the algorithm. The de�ned strati�cation of PTD is not only a technical tool
for the type inference, but it seems to be interesting in itself. to coincides with Curry�s
type assignment system, and in t1 all the normal forms can be typed.
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Compiling Lazy Narrowing into Prolog
Cheong P. H.
LIENS Paris

Lazy narrowing is a complete refutation procedure for K-LEAF, a �rst-order logic +
functional language. Lazy narrowing is simulated by �rst putting clauses and goals into
�at form and then interpreting the �at form by outermost SLD-resolution. In this talk,
we show how K-LEAF can be directly compiled into Prolog. More general the method
suggests an efficient compilation of lazy narrowing into Prolog.

Uniform Narrowing Strategies
Rachid Echahed

Li�a-Imag, Grenoble, France

We focus on the computational aspects of programming languages with initial seman-
tics, which are based on Horn clause logic with equality. We discuss �rst the �right�
de�nitions of soundness and completeness that should be considered for such langua-
ges. Then, we propose SLDIE-resolution as a unique inference rule which is strongly
complete. This rule is parameterized by a complete algorithm of resolution of equa-
tions in the initial model. We investigate algorithms of resolution of equations based
on narrowing. We introduce the notion of strategies that ensure the completeness of
narrowing algorithms. Then, we de�ne a class of programs called �uniform programs�
for which any strategy is complete, and prove the decidability of this class of programs.
At last, we give a complete set of inference rules that results from the integration of
SLD-resolution and narrowing with strategies.

Guarded Functional Programming,
Non-Determinism, and Laziness

Roland Dietrich °

GMD Karlsruhe

Guarded Term ML is a language which integrates functional programming, represented
by equations and rewriting, and logic programming, represented by Horn clauses and
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SLD-resolution: the selection of a guarded equation for rewriting expression is deter-
mined by pattern matching with the left hand side and solving the guard which is a
Horn logic goal. Only one solution of the guard is considered (�committed choice�).
Stream comprehensions evaluate to a stream of expressions which are achieved when
applying all answer substitution of a goal to an expression. These streams can be
consumed in functional expressions. Lazy evaluation of streams enable to deal with
in�nite streams and avoid unnecessary computations. With streams, non-determinism
and backtracking which is inherent in the logic programming world can be exploited
in the functional world. Because functional expressions are not allowed for guarded or
Horn clauses, both worlds are kept strongly separate.
Besides an introduction to the basic concepts of Guarded Term ML, the talk gives
examples how to use it to program different kinds of mathematical objects as pure
functions, non-deterministic functions, set-valued functions and pure relations.

A General Approach to the Implementation

of Functional Logic Languages

Hendrik C. R. Lock

GMD Karlsruhe

It has become apparent that SLD-resolution, narrowing and reduction are the essential
operational models of an interesting large class of functional logic languages. The talk
discussed a unifying approach to their implementation by means of abstract machines.
In part one, the features of operational models were identi�ed, and further, the basic
features of abstract machines were introduced. Then, it was shown which machine
feature supports which operational feature. Machine features can be composed freely
thus obtaining new, more powerful abstract machines. By means of the relation between
operational models and their features, and by the support relation between those and
basic machine features, a design space is obtained. The design space speci�es ways of
combining machines (in terms of required features) in order to obtain an implementation
of a particular operational model. Furthermore, it was discussed that the design of an
abstract machine is also a compromise towards the requirements imposed by the target
level and by cock generation. So, a design should take that into account. In order to be
able to apply the well-understood conventional compilation techniques we pointed out
that the instruction code should be block-structured, allow scoping, contain no labels
nor gotos, and that values are �denoted by intermediate variables.
In the second part of this talk an abstract machine has been presented which is an
instance of the top mode in that design space, called the JUMP machine. In particular,
it is based on a conventional stack based architecture which is extended by all required
features, such that lazy narrowing, for instance, can be implemented. As a particular
result, when restricting evaluation to ground term reduction, the machine just behaves
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like an e�cient stack machine for graph reduction, and can be seen as a variant of the
�Spineless Tagless G-Machine�. A compiler for the functional logic language GTML
will be available in April 1991.

K-LEAF - A Logic plus Functional Language

Catuscia Palamidessi

Centre for Mathematics and Computer Science
Amsterdam, The Netherlands

and

Department of Computer Science
Utrecht University, The Netherlands

The language K-LEAF (Kernel language for Logic, Equations, And Functions) was
developed in the context of the ESPRIT Project 415 (Parallel Architectures and Lan-
guages for Advanced Information Processing) as a declarative (�rst-order) approach to
parallel and distributed programming.
The basic aims in the design of K-LEAF are

o combining in a unique language the two main declarative paradigms: the logic
and the functional ones, and

o allowing the speci�cation of interactive (possibly nonterminating) processes.

At the syntactical level, the integration of predicates and (�rst-order) functions is achie-
ved in K-LEAF by expressing the functional part as a conditional equational system, so
embedding it into the Horn clause formalism. The operational semantics is based on the
flattening technique, which allows to deal with equality just as any other user-de�ned
predicate symbol, and to use SLD-Resolution as the sole computational mechanism.
In order to express nonterminating processes, K-LEAF allows the underlying �term
rewriting system (associated to the equational part) to be noncanonical. (This was
in contrast with most of the other logic plus functional proposals of the same period.)
The difficulties that arise concerning effectiveness, due to the presence of in�nite (and
partial) functions, are dealt with by means of a distinction between two kinds of equality,
and by imposing restrictions on their use in the bodies and in the queries. .
The language has a model-theoretic semantics based on algebraic CPO�s. The two
kinds of equality are semantically characterized by their behaviour w.r.t. continuity,
and the syntactical restrictions on the language are shown to be the minimal conditions
necessary for the least Herbrand model to be effective, i.e. for the operational semantics
(SLD-Resolution) to be complete.
K-LEAF was used as a Kernel language to implement IDEAL, a logic plus functional
formalism which also includes higher-order features. The language was provided with
primitives to express concurrency and it was implemented on an Extended WAM.
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