Arthur I. Karshmer, Jürgen Nehmer (editors):

Operating Systems of the 90s and Beyond

Dagstuhl-Seminar-Report; 18 8.-12.7.1991 (9128) ISSN 0940-1121 Copyright © 1992 by IBFI GmbH, Schloß Dagstuhl, W-6648 Wadern, Germany Tel.: +49-6871 - 2458 Fax: +49-6871 - 5942

Das Internationales Begegnungs- und Forschungszentrum für Informatik (IBFI) ist eine gemeinnützige GmbH. Sie veranstaltet regelmäßig wissenschaftliche Seminare, welche nach Antrag der Tagungsleiter und Begutachtung durch das wissenschaftliche Direktorium mit persönlich eingeladenen Gästen durchgeführt werden.

Verantwortlich für das Programm:

	Prof. DrIng. José Encarnaçao, Prof. Dr. Winfried Görke, Prof. Dr. Theo Härder, Dr. Michael Laska, Prof. Dr. Thomas Lengauer, Prof. Ph. D. Walter Tichy, Prof. Dr. Reinhard Wilhelm (wissenschaftlicher Direktor).
Gesellschafter:	Universität des Saarlandes, Universität Kaiserslautern, Universität Karlsruhe, Gesellschaft für Informatik e.V., Bonn
Träger:	Die Bundesländer Saarland und Rheinland Pfalz.
Bezugsadresse:	Geschäftsstelle Schloß Dagstuhl Informatik, Bau 36 Universität des Saarlandes W - 6600 Saarbrücken Germany Tel.: +49 -681 - 302 - 4396 Fax: +49 -681 - 302 - 4397 e-mail: office@dag.uni-sb.de

Arthur I. Karshmer, Jürgen Nehmer (editors)

Operating Systems of the 90s and Beyond

Dagstuhl-Seminar-Report 8.7.1991 - 12.7.1991

List of Participants

Babaogly, Özalp, University of Bologna, Italy Banatre, Jean Pierre, INRIA/IRISA, Rennes, France Birman, Kenneth P., Cornell University, Ithaca, USA *Cole, Robert, Hewlett Packard, Bristol, Great Britain Christian, Flaviu, IBM Almaden Research Laboratory, San Jose, USA Gien, Michael, Chorus Systems SA, St. Quentin en Yvelines, France Gifford, David K., MIT, Cambridge, USA Härtig, Hermann, Gesellschaft für Mathematik und Datenverarbeitung, St. Augustin, FRG Herrtwich, Ralf Guido, IBM European Networking Center, Heidelberg, FRG Hofmann, Fridolin, Universität Erlangen, FRG *Horn, Christian, Trinity College Dublin, Ireland Joy, Bill, SUN Microsystems, Mountain View, USA Karshmer, Arthur, New Mexico State University, Las Cruces, USA Kopetz, Hermann, Technische Universität Wien, Austria Kröger, Reinhold, Gesellschaft für Mathematik und Datenverarbeitung, St. Augustin, FRG Lamming, Mike, Xerox EuroPARC, Cambridge, Great Britain Lazowska, Eduard, University of Washington, Seattle, USA LeLann, Gerard, INRIA, Le'Chesnay, France Mullender, Sape J., University of Twente, Enschede, Netherlands Needham, Roger, Cambridge University, Great Britain Nehmer, Jürgen, Universität Kaiserslautern, FRG Neuman, Clifford, University of Washington, Seattle, USA Randell, Brian, University of Newcastle upon Tyne, Great Britain Saltzer, Jerome, MIT, Cambridge, USA Satyanarayanan, M., Carnegie Mellon University, Pittsburgh, USA Schlichtiger, Peter, Siemens AG, München, FRG Schlichting, Richard, University of Arizona, Tucson, USA Schmutz, Hermann, IBM European Networking Center, Heidelberg, FRG Shapiro, Marc, INRIA, Rocquencourt, France Shrivastave, Santosh, University of Newcastle upon Tyne, Great Britain Sloman, Morris, Imperial College, London, Great Britain Spector, Alfred, Transarc Corporation, Pittsburgh, USA Stiegler, Helmut, Siemens AG, München, FRG Tokoro, Mario, Keio University, Yokohama, Japan Tripathi, Satish, University of Maryland, College Park, USA Wettstein, Horst, Universität Karlsruhe, FRG Zahorjan, John, University of Washington, Seattle, USA Zwaenepol, Willy, INRIA, Le Chesnay, France

^{*} No attendance at the workshop

Workshop Schedule

Monday, July 8, 1991

Aorning Session:	Issue of Size, Scalability, and Distribution in Future Operating Systems
ession Chair:	Morris Sloman
peaker:	M. Satyanarayanan, "An Agenda for Research in Large Scale Distributed Data Repositories"
Afternoon Session:	Impact on Operating Systems by Future Trends in Hardware and Communication Technology
ession Chair:	Jean Pierre Banatre
peaker:	B. Joy, "Future Operating Systems: An Environmental Scenario and Consequential Challenges"

Tuesday, July 9, 1991

Aorning Session:	Fault Tolerance Support in Future Operating Systems
ession Chair:	Özalp Babaoglu
peaker:	F. Christian, "Basic Concepts and Issues in Fault-Tolerant Distributed Systems"
Afternoon Session:	Trends in Real-Time Operating Systems
ession Chair:	Satish Tripathi
peaker:	H. Kopetz, "Event-Triggered versus Time-Triggered Real-Time Systems"
Evening Session:	Supporting Multimedia Applications in Distributed Systems
ession Chair:	Reinhold Kröger
peaker:	M. Lamming, "Towards a Human Memory Prosthesis"

Chursday, July 11, 1991

Aorning Session:	Security and Protection Support in Future Operating Systems
ession Chair:	Sape Mullender
peaker:	B.C. Neuman, "Protection and Security Issues for Future Systems"
Afternoon Session:	Integration Heterogeneous Operating Systems
ession Chair:	John Zahorjan
peaker:	H. Schmutz, "Autonomous Heterogeneous Computing - Some Open Problems"

riday, July 12, 1991

Closing Session:	The Next Generation of Operating Systems: What is needed and how do we get it
ession Chair:	Richard Schlichting
peaker:	R. Needham, "What Next? Some Speculations"

Operating Systems of the 1990s And Beyond: Where Do We Go From Here?

Edited by:

Arthur I. Karshmer New Mexico State University

Jürgen Nehmer Universität Kaiserslautern

Architectural and hardware advances in computing systems design are occurring at an ever quickening rate, but it is not clear that the operating systems that make these new systems useful are keeping pace. Indeed, it is the operating system that masters the complexity of the ever more complex computing devices being built to make them useful tools. In the past, the existence of a variety of operating systems has made the difference between an interesting architecture and a useful computing environment.

Today, as more and more complex computational structures are emerging, and new and more powerful communication technologies are becoming available, we are faced with the need to develop new generations of operating systems to harness their power. A few of the new challenges to face the operating system implementor include, but are not restricted to:

- Unreliable communications,
- · Fault tolerance,
- · Issues of size and scalability,
- · Integration of heterogeneous systems,
- · Supporting advanced applications, such as multimedia,
- · Protection and security issues in faulty/untrustworthy distributed systems,
- · Coping with existing systems in networked environments.

What form should future operating systems take to address these and numerous other complex problems? In which area is further research indicated? Is the current generation of operating systems a valid platform for the operating systems of the next decade and beyond, or should we be designing a whole new generation of operating systems from the bottom up? What type of architectural support for operating systems and communications hardware should be built into the next generation of computers?

These are general questions that our workshop attempted to address. It is our belief that now is the time to address these questions in a manner that will have some chance of producing useful results in the form of guidelines for future operating systems design and development. Three compelling circumstances lead us to believe that this is the time to act in terms of plotting a rational course for operating systems of the 1990s and beyond:

 The commercially available operating systems of today, including UNIX, have been designed, or based on designs, that are twenty years old, with time-sharing on a single node machine being the foundation of the design. Networking and distributed computing facilities were "add-ons" and not part of the basic system design. Today's new computing architectures are moving in different directions, unfortunately, with operating systems that have been pieced together to do the job.

- UNIX has formed the foundation for a de facto international standard for operating systems. Is UNIX the proper foundation for future efforts? Is its basic structure appropriate for computing equipment currently coming onto the market, or more importantly for new machines that will be unveiled in the near future?
- We are now at a crossroad characterized by a change in technology from traditional single-node systems to networks of computers, distributed machines and massively parallel systems. It is not clear that current operating systems technology is poised to take advantage of these new machines when they do become available.

For all of the above reasons, an international workshop entitled "Operating Systems of the 1990s And Beyond: Where Do We Go From Here" was organized and held at the International Conference and Research Center for Computer Science (IBFI) at Dagstuhl Castle in the Federal Republic of Germany. The Overriding motivation behind the workshop was to provide an opportunity for a relatively small number of leading researchers in operating systems from both universities and industry to meet and discuss current problems and future directions.

The workshop was structured into several working sessions and one final session which was planned as a workshop summary. During each session, a white paper was presented followed by several position papers, all of which were mingled with open discussion. The complete material including the text of all white and position papers as well as a condensation of the discussion is contained in the workshop proceedings (A. Karshmer, J. Nehmer (Eds.), "Operating Systems of the 90s and Beyond", Proceedings, LNCS 563, Springer-Verlag). In the following, abstracts for each white paper presentation are given.

"An Agenda for Research in Large-Scale Distributed Data Repositories"

M. Satyanarayanan School of Computer Science Carnegie Mellon University

Access to shared data is provided today by distributed file systems and databases. In this paper, we explore certain usage and technological trends that will radically change the way shared data is used in the future. The usage trends include the growing need to access shared data from anywhere, increasing scale, and the increasing importance of efficient search. The technology trends include the advent of portable machines, the availability of software and hardware for using diverse types of data, and the growing diversity of network speeds and capabilities. These trends induce fundamental research problems in the area of *adaptive system behaviour, secure remote execution*, and *extensibility*.

"Future Operating Systems: An Environmental Scenario and Consequential Challenges"

B. Joy

Sun Microsystems Mountain View, California

(Summary not by the author) Future operating systems should address a very different environment from those which exist today. Three different types are expected for many future systems: (1) Systems automating a building or campus, (2) Systems included in vehicles, and (3) "nomadic" systems such as personal and portable computers. In the paper, the implications of such environments for the design of operating systems in the 1990s are discussed. Of major importance for future operating systems are technical aspects such as desktop node parallelism, high-speed communications, storage cost reduction due to the emergence of high-quality video, and support for distributed, disconnected and partially cached data. The influence of object-orientation and some of its drawbacks on next generation operating systems is also discussed.

"Autonomous Heterogeneous Computing- Some Open Problems --- "

H. Schmutz IBM European Networking Center Heidelberg, Germany

The Integration of heterogeneous operating systems is, in practice, at best at its very beginning and still far from being materialized in its full potential. The subject involves a wide spectrum of issues, including those related to the semantics of functions, to security and to system management. In this paper we will identify some missing functions in each of these areas to prove that there is a significant demand for research, standardization and software extensions.

"Event-Triggered versus Time-Triggered Real-Time Systems"

H. Kopetz Technical University of Vienna Austria

This paper compares the temporal properties of event-triggered and time-triggered distributed real-time systems. In an event-triggered system a processing activity is initiated as a consequence of the occurrence of a significant event. In a time-triggered system, the activities are initiated periodically at predetermined points in real-time. In the first part of this paper, a model of a distributed real-time system is presented and the characteristic attributes of TT-systems and ET-systems are described. The comparison focuses on the issue of predictability, testability, resource utilization, extensibility, and assumption coverage.

"Basic Concepts and Issues in Fault-Tolerant Distributed Systems"

F. Christian IBM Almaden Research Center San Jose, California

The dependability of computing services will become increasingly important in the 90s and beyond. This paper proposes a small number of basic concepts that can be used to explain the architecture of present and future fault-tolerant distributed systems and discusses a list of architectural issues that we find useful to consider when designing or examining such systems. For each issue we present known solutions and design alternatives, we discuss their relative merits and we give examples of systems which adopt one approach or the other. The aim is to introduce some order in the complex discipline of designing and understanding fault-tolerant distributed systems.

"Protection and Security Issues for Future Systems"

B.C. Neuman Department of Computer Science and Engineering University of Washington

(Summary not by the author) Becoming increasingly dependent on computers in daily life brings with it a heigthened need for security in the computer systems we use. The distributed nature of recent systems has made it difficult to apply many of the security techniques used in centralized systems. Additionally, many of the services which are becoming available by computers are placing new demands on protection and security mechanisms. These services require interaction between parties that are mutually suspicious of one another; the servers require protection from users, while at the same time the users require protection from malicious or incompetent service providers. The aim of this paper is to examine the problems of protection and security as applied to future computer systems and it describes recent work that addresses some of the issues.

"Towards a Human Memory Prosthesis"

M.G. Lamming Rank Xerox EuroPARC Cambridge, England

(Summary not by the author) As the cost of computation drops and wireless data networks emerge, we can expect to see new families of mobile applications emerging based on hand-held stylus-based computers. Initial applications will focus on activities that involve data capture, such as insurance assessment, surveying and market research. As the infrastructure matures we can expect applications offering users benefits such as (1) the ability to carry around a personalized and familiar remote-control user-interface through which they can interact with any computer-based equipment they encounter, (2) the ability to access personal and public data bases and services wherever they are, and (3) the ability to have the computer maintain records of their activities. The paper describes a personal, multi-media, mobile application that is under investigation at EuroPARC as part of a project to investigate Activity-based Information Retrieval (AIR). It is presented as a possible example of a new class of application that may emerge in the next decade. It provides some insights in the type and level of support that mobile applications will require.

"What Next? Some Speculations"

R. Needham University of Cambridge Cambridge, England

(Summary not by the author) It can be observed that sometimes too many functions are offered by operating systems in a monolithic way. Operating systems that run in workstations are frequently capable of supporting computations on the behalf of users not sitting at the workstation in addition to work on behalf of the "real" user, who may not be pleased. It isn't clear that running an operating system with that facility is a good idea. The major design goal for future operating systems should be simplicity, by means that there'll come into being one or two de facto standards, like an RPC mechanism and a small lightweight kernel. These will be used without further clutter as a basis for building such things as file servers and so forth, and also for putting together workstation software. In consequence much of the generalized resource sharing which has been characteristic of operating systems for many years will largely go away. It is the challenge for operating systems research to develop techniques for the speedy and efficient implementation of specialised servers which will depend upon a great deal of what is now thought of as operating systems knowledge. Also of major importance for future systems is to handle material which has genuine real-time aspects, such as audio and video streams. A third topic discussed in the paper is about main memory size. Instead of struggling to get enough into memory, in the future will struggle to keep track of what's there. The state that's represented by hundreds of megabytes of material is valuable in itself, and it will be very important not to have to reload or reconstruct it, because it would take too long.

.

Dagstuhl-Seminar 9128:

Özalp **Babaoglu** Universitá di Bologna Dipartimento di Matematica Piazza Porta S. Donato 5 I-40127 Bologna Italy ozalp@dm.unibo.it

Jean Pierre **Banatre** Université de Rennes IRISA Campus de Beaulieu Avenue du Général Leclerc F-35042 Rennes Cedex France Jean_Pierre.Banatre@irisa.fr

Kenneth P. **Birman** Cornell University Department of Computer Science 4130 Upson Hall Ithaca NY 14853-7510 USA birman@cs.cornell.edu

Flaviu **Christian** IBM Almaden Research Center K 53/802 650 Harry Road San Jose CA 95120-6099 USA flaviu@ibm.com

Michael Gien Chorus Systems SA 6 Avenue Gustave Eiffel F-78182 St. Quentin en Yvelines France mg@chorus.fr

David K. Gifford MIT Laboratory of Computer Science 545 Technology Square Cambridge MA 02139 USA gifford@brokaw.lcs.mit.edu

Helmut **Härtig** Gesellschaft für Mathematik und Datenverarbeitung mbH Schloß Birlinghoven Postfach 12 40 W-5205 St. Augustin 1 Germany haertig@gmdzi.gmd.de

List of Participants (update

Ralf Guido Herrtwich IBM Deutschland GmbH

Europäisches Zentrum für Netzwerkforschung Tiergartenstraße 8 W-6900 Heidelberg Germany rgd@gysvmhd1.iinus1.ibm.com

Fridolin **Hofmann** Friedrich Alexander Universität Fachbereich Informatik W-8520 Erlangen Germany fhofmann@informatik.uni-erlangen.de

Bill **Joy** Sun Microsystems MTV 01-40 2550 Garcia Avenue Mountain View CA 94043 USA wnj@sun.com

Arthur Karshmer New Mexico State University Department of Computer Science Las Cruces NM 88003 USA karshmer@nmsu.edu

Hermann **Kopetz** Technische Universität Wien Abteilung für Technische Informatik Treitlstraße 3/182 A-1040 Wien Austria 、 hk@vmars.tuwien.as.at

Reinhold **Kröger** Gesellschaft für Mathematik und Datenverarbeitung mbH Schloß Birlinghoven Postfach 12 40 W-5205 St. Augustin 1 Germany kroeger@gmdzi.gmd.de

Mike Lamming Xerox Europarc 61 Regent Street Cambridge CB2 1 AB Great Britain lamming@europarc.xerox.com Eduard Lazowska University of Washington Department of Computer Science and Engineering / FR-35 Seattle WA 98195 USA Iazowska@cs.washington.edu

Gérard **LeLann** INRIA Domaine de Voluceau Rocquencourt BP 105 F-78153 Le Chesnay Cedex France gll@score.inria.fr

Sape J. **Mullender** CWI - Mathematisch Centrum Kruislaan 413 NL-1098 SJ Amsterdam The Netherlands mullender@cs.utwente.nl

Roger **Needham** Cambridge University Computer Laboratory Pembroke Street Cambridge CB2 3QG Great Britain rmn@cl.cam.ac.uk

Jürgen **Nehmer** Universität Kaiserslautern FB Informatik Postfach 3049 W-6750 Kaiserslautern Germany nehmer@informatik.uni-kl.de

Clifford **Neuman** University of Washington Department of Computer Science and Engineering / FR-35 Seattle WA 98195 USA bcn@june.cs.washington.edu

Brian **Randell** University of Newcastle upon Tyne Computing Laboratory Newcastle upon Tyne NE1 7RU Great Britain Brian.Randell@newcastle.ac.uk Jerome **Saltzer** MIT Laboratory of Computer Science 545 Technology Square Cambridge MA 02139 USA saltzer@mit.edu M. **Satyanarayanan** Carnegie Mellon University School of Computer Science Pittsburgh PA 15213 USA M.Satya@cs.cmu.edu

Peter **Schlichtiger** Siemens Nixdorf Informationssysteme AG STM 052 Otto-Hahn-Ring 6 W-8000 München 83 Germany

Richard **Schlichting** University of Arizona Department of Computer Science Tucson AZ 85721 USA rick@cs.arizona.edu

Hermann **Schmutz** IBM Deutschland GmbH Europäisches Zentrum für Netzwerkforschung Tiergartenstraße 8 W-6900 Heidelberg Germany schm@gysvmhd1.iinus1.ibm.com

Marc **Shapiro** INRIA Domaine de Voluceau Rocquencourt BP 105 F-78153 Le Chesnay Cedex France shapiro@sor.inria.fr

Santosh **Shrivastava** University of Newcastle upon Tyne Computing Laboratory Newcastle upon Tyne NE1 7RU Great Britain Santosh.Shrivastava@newcastle.ac.uk

Morris Sloman

Imperial College of Science Department of Computer Science 180 Queen's Gate London SW7 2BZ Great Britain mss@doc.ic.ac.uk

Alfred Spector

Transarc Corporation The Gulf Tower 707 Grant Street Pittsburgh PA 15219 USA spector@transarc.com Helmut **Stiegler** Siemens Nixdorf Informationssysteme AG STM 052 Otto-Hahn-Ring 6 W-8000 München 83 Germany

Mario Tokoro

Keio University Dept. of Computer Science 3-14-1 Hiyoshi Yokohama 223 Japan mario@keio.ac.jp

Satish Tripathi

Univ. of Maryland at College Park Department of Computer Science College Park MD 20742 USA tripathi@cs.umd.edu

Horst Wettstein

Universität Karlsruhe Fakultät für Informatik Vincenz-Prießnitz-Str. 1 W-7500 Karlsruhe Germany tel.: wettstn@ira.uka.de

John **Zahorjan** University of Washington Department of Computer Science and Engineering / FR-35 Seattle WA 98195 USA zahorjan@samar.cs.washington.edu

Willy **Zwaenepol** INRIA

Domaine de Voluceau Rocquencourt BP 105 F-78153 Le Chesnay Cedex France willy@sor.inria.fr

Zuletzt erschienene und geplante Titel:

H. Aft , B. Chazelle, E. Weizi (editors): Computational Geometry, Dagstuhl-Seminar-Report; 22, 07.1011.10.91 (9141)
F.J. Brandenburg , J. Berstel, D. Wotschke (editors): Trends and Applications in Formal Language Theory, Dagstuhl-Seminar-Report; 23, 14.10 18.10.91 (9142)
H. Comon, H. Ganzinger, C. Kirchner, H. Kirchner, JL. Lassez, G. Smolka (editors): Theorem Proving and Logic Programming with Constraints, Dagstuhl-Seminar-Report; 24, 21.1025.10.91 (9143)
H. Noltemeier, T. Ottmann, D. Wood (editors): Data Structures, Dagstuhl-Seminar-Report; 25, 4.118.11.91 (9145)
A. Dress, M. Karpinski, M. Singer(editors): Efficient Interpolation Algorithms, Dagstuhl-Seminar-Report; 26, 26.12.91 (9149)
B. Buchberger, J. Davenport, F. Schwarz (editors): Algorithms of Computeralgebra, Dagstuhl-Seminar-Report; 27, 1620.12.91 (9151)
K. Compton, J.E. Pin, W. Thomas (editors): Automata Theory: Infinite Computations, Dagstuhl-Seminar-Report; 28, 610.1.92 (9202)
H. Langmaack, E. Neuhold, M. Paul (editors): Software Construction - Foundation and Application, Dagstuhl-Seminar-Report; 29, 1317.1.92 (9203)
K. Ambos-Spies, S. Homer, U. Schöning (editors): Structure and Complexity Theory, Dagstuhl-Seminar-Report; 30, 37.02.92 (9206)
B. Booß, W. Coy, JM. Pflüger (editors): Limits of Modelling with Programmed Machines, Dagstuhl-Seminar-Report; 31, 1014.2.92 (9207)
K. Compton, J.E. Pin, W. Thomas (editors): Automata Theory: Infinite Computations, Dagstuhl-Seminar-Report; 28, 610.1.92 (9202)
H. Langmaack, E. Neuhold, M. Paul (editors): Software Construction - Foundation and Application, Dagstuhl-Seminar-Report; 29, 1317.1.92 (9203)
K. Ambos-Spies, S. Homer, U. Schöning (editors): Structure and Complexity Theory, Dagstuhl-Seminar-Report; 30, 37.2.92 (9206)
B. Booß, W. Coy, JM. Pflüger (editors): Limits of Modelling with Programmed Machines, Dagstuhl-Seminar-Report; 31, 1014.2.92 (9207)
N. Habermann, W.F. Tichy (editors): Future Directions in Software Engineering, Dagstuhl-Seminar-Report; 32; 17.221.2.92 (9208)
R. Cole, E.W. Mayr, F. Meyer auf der Heide (editors): Parallel and Distributed Algorithms; Dagstuhl-Seminar-Report; 33; 2.36.3.92 (9210)
P. Klint, T. Reps (Madison, Wisconsin), G. Snelting (editors): Programming Environments; Dagstuhl-Seminar-Report; 34; 9.313.3.92 (9211)
 HD. Ehrich, J.A. Goguen, A. Sernadas (editors): Foundations of Information Systems Specification and Design; Dagstuhl-Seminar-Report; 35; 16.319.3.9 (9212)
W. Damm, Ch. Hankin, J. Hughes (editors): Functional Languages: Compiler Technology and Parallelism; Dagstuhl-Seminar-Report; 36; 23.327.3.92 (9213)
Th. Beth, W. Diffie, G.J. Simmons (editors): System Security; Dagstuhl-Seminar-Report; 37; 30.33.4.92 (9214)
C.A. Ellis, M. Jarke (editors): Distributed Cooperation in Integrated Information Systems; Dagstuhl-Seminar-Report; 38; 6.4 8.4.92 (9215)