
Hans Langmaack, Erich Neuhold,
Manfred Paul (editors):

Software Construction -

Foundation and Application

Dagstuhl-Seminar-Report; 29
13.-17.1.92 (9203)

Hans Langmaack, Erich Neuhold,
Manfred Paul (editors) :

Software Construction -
Foundation and Application

Dagstuhl-Seminar-Report; 29
13.-17.1.92 (9203)

ISSN 0940-1121

Copyright © 1992 by IBFI GmbH, Schloß Dagstuhl, W-6648 Wadern, Germany
TeI.: +49-6871 - 2458
Fax: +49-6871 - 5942

Das Internationale Begegnungs- und Forschungszentrum für Informatik (IBFI) ist eine gemein-
nützige GmbH. Sie veranstaltet regelmäßig wissenschaftliche Seminare, welche nach Antrag
der Tagungsleiter und Begutachtung durch das wissenschaftliche Direktorium mit persönlich
eingeladenen Gästen durchgeführt werden.

Verantwortlich für das Programm:
Prof. Dr.-Ing. Jose Encarnagao,
Prof. Dr. Winfried Görke,
Prof. Dr. Theo Härder,
Dr. Michael Laska,
Prof. Dr. Thomas Lengauer,
Prof. Ph. D. Walter Tichy,
Prof. Dr. Reinhard Wilhelm (wissenschaftlicher Direktor)

Gesellschafter: Universität des Saarlandes,
Universität Kaiserslautern,
Universität Karlsruhe,
Gesellschaft für Informatik e.V., Bonn

Träger: Die Bundesländer Saarland und Rheinland-Pfalz

Bezugsadresse: Geschäftsstelle Schloß Dagstuhl
Informatik, Bau 36
Universität des Saarlandes
W - 6600 Saarbrücken

Germany
Tel.: +49 -681 - 302 - 4396
Fax: +49 -681 - 302 - 4397

e-mail: office@dag.uni-sb.de

ISSN 0940-1121

Copyright© 1992 by IBFI GmbH, SchloB Dagstuhl, W-6648 Wadern, Germany
Tel.: +49-6871 - 2458
Fax: +49-6871 - 5942

Das lnternationale Begegnungs- und Forschungszentrum tor lnformatik (IBFI) ist eine gemein
nutzige GmbH. Sie veranstaltet regelmaBig wissenschaftliche Seminare, welche nach Antrag
der Tagungsleiter und Begutachtung durch das wissenschaftliche Direktorium mit personlich
eingeladenen Gasten durchgefOhrt warden.

Verantwortlich fur das Programm:
Prof. Dr.-lng. Jose Encama~o.
Prof. Dr. Winfried Gorke,
Prof. Dr. Theo Harder,
Dr. Michael Laska,
Prof. Dr. Thomas Lengauer,
Prof. Ph. D. Walter Tichy,
Prof. Dr. Reinhard Wilhelm (wissenschaftlicher Direktor)

Gesellschafter: Universitat des Saarlandes,
Universitat Kaiserslautern,
Universitat Karlsruhe,
Gesellschaft fur lnformatik e.V., Bonn

Trager: Die Bundeslander Saarland und Rheinland-Pfalz

Bezugsadresse: Geschaftsstelle SchloB Dagstuhl
lnformatik, Bau 36
Universitat des Saarlandes
w -6600 Saarbrucken
Germany
Tel.: +49 -681 - 302 - 4396
Fax: +49 -681 - 302 - 4397
e-mail: office@dag.uni-sb.de

DAGSTUHL SEMINAR

ON

Software Construction � Foundation and

Application

Organized by :

Hans Langmaack (Christian-Albrechts-Universität zu Kiel)
Erich Neuhold (GMD-IPSI, Darmstadt)

Manfred Paul (Technische Universität München)

Schloß Dagstuhl, January 13 - 17, 1992

DAGSTUHL SEMINAR

ON

Software Construction - Foundation and
Application

Organized by :

Hans Langmaack (Christian-Albrechts-Universitat zu Kiel)

Erich Neuhold (GMD-IPSI, Darmstadt)

Manfred Paul (Technische Universitat Miinchen)

Schlol3 Dagstuhl , January 13 - 17, 1992

3

Contents

1 Preface

2 Final Seminar Programme

3 Abstracts of Presentations

Bisimulation Semantics for Concurrency with Atomicity and Action,

Re�nement
Jaco W. de Bakker

Relational Speci�cation of Data Types and Programs
Rudolf Berghammer

Interactive Programming with Higher Order Objects, Part II
Rudolf Berghammer O O O O I Q I 0 O I I O O I I O I I I O U O O O O D I 0 I

Compiling Software Directly into Hardware
Jonathan Bowen

Speci�cation and Re�nement of Interactive Systems
Manfred Broy .

Strictness Control in Term Rewriting
Ole-Johan Dahl .

Transformational Development of Digital Circuits
Walter Dosch

SADT-Diagrams as Interface for Reuseable Software Components
Peter Forbrig .

What is lost in Program Proving due to Clarke�s Theorem?
Michal Grabowski

Normal Form Approach to FPCA Implementation of occam
He Jifeng

Speci�cation based on Type Theory
Friedrich W. von Henke

The Complexity of Verifying Functional Programs
Hardi Hungar .

A Generator for Formulae Manipulating Editors
Stefan Jähnichen

Distinguishing Divergence from Chaos � The Semantics of Failing Com-
putations in CSP

Burghard von Karger O O O O I O I O O I I 0 O O O O O 0 O O O O C O I O C I 0

Optimal Interprocedural Data Flow Analysis
Jens Knoop .

1 4

14

17

19

Contents

1 Preface 6

2 Final Seminar Programme 8

3 Abstracts of Presentations 12

Bisimulation Semantics for Concurrency with Atomicity and Ar/ion
Refinement

Jaco W . de Bakker . 12

Relational Specification of Data Types and Programs
Rudolf Berghammer

Interactive Programming with Higher Order Objects, Part I I
Rudolf Berghammer .

Compiling Software Directly into Hardware
Jonathan Bowen

Specification and R efinement of Interactive Systems
Manfred Broy

Strictness Control in Term R ew1·iting
Ole-Johan Dahl

Transformational Development of Digital Circuits
Walter Dosch

SA DT-Diagrams as Interface for Reuseable Software Components
Peter Forbrig .

What is lost in Program Proving due to Clarke's Theorem?
Michal Grabowski .

Normal Form Approach to FPGA Implementation of occam
He Jifeng

Specification based on Type Theory
Friedrich W. von Henke

The Complexity of Verifying Functional Programs
Hardi Hungar

A Generator for Formulae Manipulating Editors
Stefan Jiihnichen

Distinguishing Divergence from Chaos - The Semantics of Failing Com
putations in CSP

12

14

15

15

16

16

17

17

18

Burghard von Karger . 18

Optimal lnterprocedural Data Flow Analysis
Jens Knoop 19

4

On-line Garbage Collection Algorithms
Antoni Kreczmar . 19

On Programming Languages Interpreters � Total Correctness
Hans Langmaack . 20

Bridging Existing Caps between Theory Based Software Development and
Practice

Peter E. Lauer . 21

Speci�cations Using the Data Type Syntactic Nodes
Vladimir Levin . 22

On the Speci�cation of Files and Coroutines
Grazyna Mirkowska & Andrzej Salwicki 22

Computational Completeness of Speci�cation and Programming Lan-
guages over Various Data Structures

Nikolai S. Nikitchenko . 23

About Timed and Hybrid Systems
Amir Pnueli . 23

Tools and Methods to create Simulators / C++ �Prototypes for the Spec-
i�cation Languages SDL/OSDL and LOTOS

Andreas Prinz . 24

Specifying and Verifying Requirements of Real- Time Systems
Anders P. Ravn . 25

Concurrent Temporal Logic
Wolfgang Reisig . 25

A Note on Compositional Re�nement
Willem-Paul de Roever . 26

Toward Formal Development of Programs from Algebraic Speci�cations:
Parameterisation Revisited

Don Sannella . 26

Erploiting Concurrency for Linear Time Model Checking of Petri {Vets
Bernd-Holger Schlingloff . Q 27

Semantic Domains with Congruences
Gunther Schmidt . 28

Interactive Programming with Higher Order Objects, Part I
Gunther Schmidt . 28

Logic Based Program Development and Tactical Theorem Proving
Werner Stephan: . . .p . 29

List of Participants 30

On-line Garbage Collection Algorithms
Antoni Kreczmar

On Programming Languages Interpreters - Total Correctness

19

Hans Langmaack . 20

Bridging Existing Gaps between Theory Based Software Development and
Practice

Peter E. Lauer . 21

Specifications Using the Data Type Syntactic Nodes
Vladimir Levin . 22

On the Specification of Files and Coroutines
Grazyna Mirkowska & Andrzej Salwicki

Computational Completeness of Specification and Programming Lan
guages over Various Data Structures

. . . . 22

Nikolai S. Nikitchenko . 23

About Timed and Hybrid Systems
Amir Pnueli

Tools and Methods to create Simulators /C++ - Prototypes for the Spec
ification Languages SDL/OSDL and LOTOS

23

Andreas Prinz . 24

Specifying and Verifying Requirements of Real-Time Systems
Anders P. Ravn . 25

Concurrent Temporal Logic
Wolfgang Reisig 25

A Note on Compositional Refinement
Willem-Paul de Roever

Toward Formal Development of Programs from Algebraic Specifications:
Parameterisation Revisited

. ... 26

Don Sannella . 26

Exploiting Concurrency for Linear Time Model Checking of Petri flets
Bernd-Roiger Schlingloff . 27

Semantic Domains with Congruences
Gunther Schmidt 28

Interactive Programming with Higher Order Objects, Part I
Gunther Schmidt . 28

Logic Based Program Development and Tactical Theorem Proving
Werner Stephan, . 29

List of Participants 30

5

1 Preface

This seminar in Dagstuhl was the continuation of a series which the organizers have held
biannually for a number of years under the title Mathematical Tools for the Construction
of Software at the Mathematical Research Institute Oberwolfach. One essential intention
therewith was, among others, to provide a forum for scientists interested and active in the
areas covered by IFIP / TC 2 in order to allow interaction with the Working Groups of
that International Technical Committee. A reason for this intention was that by IFIP rules
the direct co-operation with its Working Groups is restricted to their members whereas
the seminars in Oberwolfach just as now in Dagstuhl are certainly not.

The seminar was the �rst of the series mentioned above held in Dagstuhl. Its title Soft-
ware Construction � Foundation and Application is a modi�cation of the former intended
to emphasize that applications and foundations of programming should receive equal at-
tention in this seminar. It had 35 participants all involving themselves very actively. 32
presentations were given leading to lively and fruitful discussions. The presentations can
roughly be categorized along the following streams:

o Proving and verifying programs

0 Semantics of programming concepts

0 Concurrent programs and non-deterministic constructs

o Compiling and developing software

0 Logic for programming

0 Interactive programming

The discussions both during the sessions and in the evenings have shown that the
talks given were well received and have met great interest. One focus of broader interest
was for instance the specification of programs and, speaking more generally, of systems.
In this context the re�nement of interactive systems and type theory played a particular
role. Other topics which have triggered engaged discussions were the handling of non-
determinism and concurrency in connection with particular language concepts including
but not restricted to CSP and OCCAM. Moreover the transformation a.nd the compilation
of programs through interpreters and other means like e.g. data flow analysis have led
to activities among the participants. Last not least some well known specialists in the
�eld of the logical foundations of computing have given very stimulating talks on speci�c
topics.

In summary the participants agreed to have visited a seminar which was worth at-
tending with respect to both scienti�c communications a.nd personal contacts, the latter
having been supported not the least by the traditional hike on one beautyful afternoon
and evening.

The organizers wish to thank all who have helped to make the seminar a success. First
we are grateful to the participants and speakers for their presentations and contributions

1 Preface

This seminar in Dagstuhl was the continuation of a series which the organizers have held
biannually for a number of years under the title Mathematical Tools for the Construction
of Software at the Mathematical Research Institute Oberwolfach. One essential intention
therewith was, among others, to provide a forum for scientists interested and active in the
areas covered by IFIP /TC 2 in order to allow interaction with the Working Groups of
that International Technical Committee. A reason for this intention was that by IFIP rules
the direct co-operation with its Working Groups is restricted to t heir members whereas
the seminars in Oberwolfach just as now in Dagstuhl are certainly not.

The seminar was the first of the series mentioned above held in Dagstuhl. Its title Soft
ware Construction - Foundation and Application is a modification of t he former intended
to emphasize that applications and foundations of programming should receive equal at
tention in this seminar. It had 35 participants all involving themselves very actively. 32
presentations were given leading to lively and fruitful discussions. T he presentations can
roughly be categorized along the following streams:

• Proving and verifying programs

• Semantics of programming concepts

• Concurrent programs and non-deterministic constructs

• Compiling and developing software

• Logic for programming

• Interactive programming

The discussions both during the sessions and in the evenings have shown that the
talks given were well received and have met great interest. One focus of broader interest
was for instance the specification of programs and, speaking more generally, of systems.
In this context the refinement of interactive systems and type t heory played a particular
role. Other topics which have triggered engaged discussions were the handling of non
determinism and concurrency in connection with particular language concepts including
but not restricted to CSP and OCCAM. Moreover the transformation and the compilation
of programs through interpreters and other means like e.g. data flow analysis have led
to activities among the participants. Last not least some well known specialists in the
field of the logical foundations of comput ing have given very stimulating talks on specific
topics.

In summary the participants agreed to have visited a seminar which was worth at
tending with respect to both scientific communications and personal contacts, the latter
having been supported not the least by the traditional hike on one beautyful afternoon
and evening.

The organizers wish to thank all who have helped to make the seminar a success. First
we are grateful to the participants and speakers for t heir presentations and contributions

6

during the discussions. Thanks go also to the people of the International Meeting and
Research Center Dagstuhl and, particularly, to its secretaries who have been a big help
not only in the preparatory phase but also on every day during the whole week of the
seminar. Further thanks go to the director and to the council of the research center. The
participants were all very impressed about what had been accomplished already during
the relatively short period since the center has begun its activities. We only mention
here the computing and communication facilities, and the collection of scienti�c books
and journals which forms a good basis for a computing science library to be built upon.
Finally, we are very grateful to Jens Knoop for editing this report so professionally.

H. Langmaack E. Neuhold M. Paul

during the discussions. Thanks go also to the people of the International Meeting and
Research Center Dagstuhl and, particularly, to its secretaries who have been a big help
not only in the preparatory phase but also on every day during the whole week of the
seminar. Further thanks go to the director and to the council of the research center. The
participants were all very impressed about what had been accomplished already during
the relatively short period since the center has begun its activities. We only mention
here the computing and communication facilities, and the collection of scientific books
and journals which forms a good basis for a computing science library to be built upon.
Finally, we are very grateful to Jens Knoop for editing this report so professionally.

H. Langmaack E. Neuhold M. Paul

7

2 Final Seminar Programme

Monday, January 13, 1992

8:50 Opening Remarks
M. Paul, Germany

Session 1, 9:00 � 12:00
Chair: H. Langmaack

9:00 Optimal Interprocedural Data Flow Analysis
J. Knoop, Germany

9:40 Strictness Control in Term Rewriting
O.-J. Dahl, Norway

10:20 BREAK

10:40 SADT-Diagrams as Interface for Reuseable Software Components
P. Forbrig, Germany

11:20 Tools and Methods to create Simulators / C++ � Prototypes for the Speci�cation
Languages SDL/OSDL and LOTOS
A. Prinz, Germany

Session 2, 15:30 - 17:45
Chair: M. Paul

15:30 On the Speci�cation of Files and Coroutines, Part I
A. Salwicki, France

16:10 On the Speci�cation of Files and Coroutines, Part II
G. Mirkowska, France

16:50 BREAK

17:05 Relational Speci�cation of Data Types and Programs
R. Berghammer, Germany

Tuesday, January 14, 1992

Session 3, 9:00 � 12:00
Chair: A. Salwicki

9:00 Bisimulation Semantics for Concurrency with Atomicity and Re�nement
J. W. de Bakker, The Netherlands

2 Final Seminar Programme

Monday, January 13, 1992

8:50 Opening Remarks
M. Paul, Germany

Session 1, 9:00 - 12:00

Chair: H. Langmaack

9:00 Optimal lnterprocedural Data Flow Analysis
J. Knoop, Germany

9:40 Strictness Control in Term Rewriting
0.-J. Dahl, Norway

10:20 BREAK

10:40 SADT-Diagrams as Interface for Reuseable Softwa1·e Components
P. Forbrig, Germany

11:20 Tools and Methods to create Simulators / C++ - Prototypes for the Specification
Languages SDL/OSDL and LOTOS
A. Prinz, Germany

Session 2, 15:30 - 17:45

Chair: M. Paul

15:30 On the Specification of Files and Coroutines, Part I
A. Salwicki, France

16:10 On the Specification of Files and Coroutines, Part II
G. Mirkowska, France

16:50 BREAK

17:05 Relational Specification of Data Types and Programs
R. Berghammer, Germany

Tuesday, January 14, 1992

Session 3, 9:00 - 12:00

Chair: A. Salwicki

9:00 Bisimulation Semantics for Concurrency with Atomicity and Refinement
J. W. de Bakker, The Netherlands

8

9:40 Semantic Domains with Congruences
G. Schmidt, Germany

10:20 BREAK

10:40 Distinguishing Divergence from Chaos in CSP
B. v. Karger, Germany

11:20 Logic Based Program Development and Tactical Theorem Proving
W. Stephan, Germany 0

Session 4, 15:30 � 17:45
Chair: O.-J. Dahl

15:30 About Timed and Hybrid Systems
A. Pnueli, Israel

16:10 Specifying and Verifying Embedded Real- Time Systems
A. P. Ravn, Denmark

16:50 BREAK

17:05 Concurrent Temporal Logic
W. Reisig, Germany

Wednesday, January 15, 1992

Session 5, 9:00 - 12:00
Chair: J. W. de Bakker

9:00 Compiling Software directly into Hardware
J. Bowen, UK

9:40 Normal Form Approach to FPCA Implementation of occam
He Jifeng, UK

10:20 BREAK

10:40 Transformational Development of Digital Circuits
W. Dosch, Germany

11:20 Speci�cations Using the Data Type Syntactic Nodes
V. Levin, Russia

a: a: a: AFTERNOON EXCURSION a: =0: a:

9:40 Semantic Domains with Congruences
G. Schmidt, Germany

10:20 BREAK

10:40 Distinguishing Divergence from Chaos in CSP
B. v. Karger, Germany

11:20 Logic Based Program Development and Tactical Theorem Proving
W. Stephan, Germany

Session 4, 15:30 - 17:45

Chair: 0.-J. Dahl

15:30 About Timed and Hybrid Systems
A. Pnueli, Israel

16:10 Specifying and Verifying Embedded Real-Time Systems
A. P. Ravo, Denmark

16:50

17:05

BREAK

Concurrent Temporal Logic
W. Reisig, Germany

Wednesday, January 15, 1992

Session 5, 9 :00 - 12:00

Chair: J. W. de Bakker

9:00 Compiling Software directly into Hardware
J. Bowen, UK

9:40 Normal Form Approach to FPGA Implementation of occam
He Jifeng, UK

10:20 BREAK

10:40 Transformational Development of Digital Circuits
W. Dosch, Germany

11 :20 Specifications Using the Data Type Syntactic Nodes
V. Levin, Russia

* * * AFTERNOON EXCURSION * * *

9

Thursday, January 16, 1992

Session 6, 9:00 � 12:00
Chair: A. Pnueli

9:00 A Note on Compositional Re�nement
W.-P. de Roever, Germany

9:40 Composition and Re�nement of Functional System Speci�cations
M. Broy, Germany

10:20 BREAK

10:40 Exploiting Concurrency for Linear Time Model Checking of Petri Nets
H. Schlingloff, Germany

11:20 A Generator of Formulae Manipulating Editors
St. Jähnichen, Germany

Session 7, 15:00 � 18:00
Chair: He Jifeng

15:00 Computational Completeness of Speci�cation and Programming Languages over
Various Data Structures

N. Nikitchenko, Ukraine

15:40 What is lost in Program Proving due to Clarlce�s Theorem?
M. Grabowski, Poland

16:20 BREAK

16:40 The Complexity of Verifying Functional Programs
H. Hungar, Germany

17:20 On-Line Garbage Collection Algorithms
A. Kreczmar, Poland

Friday, January 17, 1992

Session 8, 9:00 � 11:30
Chair: G. Goos

9:00 Bridging Existing Gaps between Theory Based Software Development and Prac-
tice 2

P. E. Lauer, Canada

10

Thursday, January 16, 1992

Session 6, 9:00 - 12:00

Chair: A. Pnueli

9:00 A Note on Compositional Refinement
W.-P. de Roever, Germany

9:40 Composition and Refinement of Functional System Specifications
M. Broy, Germany

10:20 BREAK

10:40 Exploiting Concurrency for Linear Time Model Checking of Petri Nets
H. Schlingloff, Germany

11:20 A Generator of Formulae Manipulating Editors
St. Jahnichen, Germany

Session 7, 15:00 - 18:00

Chair: He Jifeng

15:00 Computational Completeness of Specification and Programming Language$ over
Various Data Structures
N. Niki tchenko, Ukraine

15:40 What is lost in Program Proving due to Clarke's Theorem?
M. Grabowski, Poland

16:20 BREAK

16:40 The Complexity of Verifying Functional Programs
H. Hungar, Germany

17:20 On-Line Garbage Collection Algorithms
A. Kreczmar, Poland

Friday, January 1 7, 1992

Session 8, 9:00 - 11:30

Chair: G. Goos

9:00 Bridging Existing Gaps between Theory Based Software Development and Prac
tice
P. E. Lauer, Canada

10

9:40 Toward Formal Development of Programs from Algebraic Speci�cations: Param-
eterisation Revisited

D. Sannella, UK

10:20 BREAK

10:50 Speci�cation based on Type Theory
F. W. v. Henke, Germany

Session 9, 15:30 - 17:45
Chair: W.-P. de Roever

15:30 Interactive Programming with Higher-Order_Objects, Part I
G. Schmidt, Germany

16:10 Interactive Programming with Higher-Order Objects, Part II
R. Berghammer, Germany

16:50 BREAK

17:05 On Programming Languages Interpreters � Total Correctness
H. Langmaack, Germany

11

9:40 Toward Formal Development of Programs from Algebraic Specifications: Param
eterisation Revisited
D. Sannella, UK

10:20 BREAK

10:50 Specification based on Type Theory
F. W. v. Henke, Germany

Session 9, 15:30 - 17:45

Chair: W.-P. de Roever

15:30 Interactive Programming with Higher-Order. Objects, Part I
G. Schmidt, Germany

16:10 Interactive Programming with Higher-Order Objects, Part II
R. Berghammer, Germany

16:50 BREAK

17:05 On Programming Languages Interpreters - Total Correctness
H. Langmaack, Germany

11

3 Abstracts of Presentations

The following abstracts appear in alphabetical order of speakers.

Bisimulation Semantics for Concurrency with
Atomicity and Action Re�nement

J aco W. de Bakkerl
CWI & Vrije Universiteit Amsterdam

Amsterdam, The Netherlands

A comparative semantic study is made of two notions in concurrency, viz. atomicity and
action re�nement. Parallel composition is modeled by interleaving, and re�nement is
taken in the version where actions are re�ned by atomized statements. The bisimulation
domain used in the semantic de�nitions is obtained as solution of a system of domain
equations over complete metric spaces. Both operational and denotational models are
developed, and their equivalence is established using higher-order techniques and Banach�s
�xed point theorem. The operational semantics for re�nement is based on transition rules
rather than on some form of syntactic substitution.

Relational Speci�cation of Data Types and Programs

Rudolf Berghammer
Universität der Bundeswehr München

München, Germany

In the last years the relational calculus of Tarski has widely been used by computer
scientists to describe the semantics of programming languages (including the domains
necessary), even in the presence of nondeterministic or higher-order constructs.

In this talk, abstract relation algebra is proposed as a practical means for speci�cation
of data types and programs. After a short introduction into abstract relation algebra, we
de�ne the concept of a relational speci�cation by transferring some fundamental notions
of the algebraic speci�cation approach to the relational case. Then we demonstrate the
usefulness of the relational approach and give an impression of relational calculations in
the �eld of speci�cations by means of two examples.

In the �rst example we specify the natural numbers with zero and the successor oper-
ation. With the help of this speci�cation we show a typical pattern for a relational proof
of monomorphy. Furthermore, we demonstrate that in the relational case it is possible
to prove totality by computational induction if the generation-principle is described as a
�xed point property.

�This is joint work with E. P. de Vink of the Vrije Universiteit Amsterdam, Amsterdam, The Nether-
lands. The research of J. W. de Bakker was partially supported by ESPRIT Basic Research Action 3020:
Integration.

12

3 Abstracts of Presentations

The following abstracts appear in alphabetical order of speakers.

Bisimulation Semantics for Concurrency with
Atomicity and Action Refinement

Jaco W. de Bakker1

CWI & Vrije Universiteit Amsterdam
Amsterdam, The Netherlands

A comparative semantic study is made of two notions in concurrency, viz. atomicity and
action refinement. Parallel composition is modeled by interleaving, and refinement is
taken in the version where actions are refined by atomized statements. The bisimulation
domain used in the semantic definitions is obtained as solution of a system of domain
equations over complete metric spaces. Both operational and denotational models are
developed, and their equivalence is established using higher-order techniques and ilanach's
fixed point t heorem. The operational semantics for refinement is based on transition rules
rather than on some form of syntactic substitution.

Relational Specification of D ata Types and Programs

Rudolf Berghammer
Universitat der Bundeswehr Munchen

Munchen, Germany

In the last ye.ars the relational calculus of Tarski has widely been used by computer
scientists to describe t he semantics of programming languages (including the domains
necessary), even in the presence of nondeterministic or higher-order constructs.

In this talk, abstract relation algebra is proposed as a practical means for specification
of data types and programs. After a short introduction into abstract relation algebra, we
define the concept of a relational specification by transferring some fundamental notions
of the algebraic specification approach to the relational case. Then we demonstrate the
usefulness of the relational approach and give an impression of relational calculations in
the field of specifications by means of two examples.

In t he first example we specify the natural numbers with zero and the successor oper
ation. Wit h the help of this specification we show a typical pattern for a relational proof
of monomorphy. Furthermore, we demonstrate that in the relational case it is possible
to prove totality by computational induction if t he generation-principle is described as a
fixed point property.

1T his is joint work with E. P. de Vink of the Vrije Universiteit Amsterdam, Amsterdam, The Nether
lands. The research of J . W . de Bakker was part ially supported by ESPRIT Basic Research Action 3020:
Integration.

12

In the second example we specify relationally the problem of computing a kernel of a
Noetherian directed graph. Using a �xed point theorem for antitone mappings, then we
transform this specification into another one which has the same class of models but �
due to the speci�c form of the axioms � immediately provides an algorithmic solution of
the posed problem in the form of a functional iteration.

Interactive Programming with Higher Order Objects,
Part II2

Rudolf Berghammer
Universität der Bundeswehr München

München, Germany

In this second part of the talk, the use of abstract relation algebra to describe the semantics
of the HOPS language is demonstrated.

Firstly, we give a relational description of most of the domains necessary in denota-
tional semantics. We deal with the direct product of domains, the direct sum of domains,
and the domain of partial functions. This latter domain is introduced as a speci�c sub-
domain of the domain of all relations. Its de�nition uses the symmetric quotient and the
right residual of two relations as auxiliary constructs. Due to the relational approach we
are able to distinguish between an �applicable� function (which is a functional relation)
and its corresponding element in the function space (which is a point in the relational
sense). �

Having given a relational description of domains, we demonstrate by means of some
language constructs how to de�ne a relational semantics for the HOPS language. For
instance, in the case of a function abstraction Amt we have that the semantics describes
exactly the transition of the semantics of t to the corresponding element in the function
domain.

Compiling Software Directly into Hardware

Jonathan Bowen3

Oxford University Computing Laboratory
Oxford, UK

The emergence of Field Programmable Gate Arrays (FPGAS) has enabled the reprogram-
ming of digital circuitry to be undertaken as easily as computer programs are changed
today. A sequence of bits (typically held in a static RAM) de�nes the wiring of a digital

2See also �Interactive Programming with Higher Order Objects, Part I � by Gunther Schmidt. i
3The work was undertaken as part of the European ESPRIT Basic Research Action ProCoS (�Prov-

ably Correct Systems�) project (BRA 3104) and the UK Information Engineering Directorate safemos
project (IED3/ 1/1036). Their �nancial support is gratefully acknowledged.

13

In the second example we specify relationally the problem of computing a kernel of a
Noetherian directed graph. Using a fixed point theorem for antitone mappings, then we
transform this specification into another one which has the same class of models but -
due to the specific form of the axioms - immediately provides an algorithmic solution of
the posed problem in the form of a functional iteration.

Interactive Programming with Higher Order Objects,
Part 112

Rudolf Berghammer
Universitat der Bundeswehr Miinchen

Miinchen, Germany

In this second part of the talk, the use of abstract relation algebra to describe the semantics
of the HOPS language is demonstrated.

Firstly, we give a relational description of most of the domains necessary in denota
tional semantics. We deal with the direct product of domains, the direct sum of domains,
and the domain of partial functions. T his latter domain is introduced as a specific sub
domain of the domain of all relations. Its definition uses the symmetric quotient and the
right residual of two relations as auxiliary constructs. Due to the relational approach we
are able to distinguish between an "applicable" function (which is a functional relation)
and its corresponding element in the function space (which is a point in the relational
sense).

Having given a relational description of domains, we demonstrate by means of some
language constructs how to define a relational semantics for the HOPS language. For
instance, in the case of a function abstraction >.x.t we have that the semantics describes
exactly the transition of the semantics of t to the corresponding element in the function
domain.

Compiling Software Directly into Hardware

Jonathan Bowen 3

Oxford University Comput ing Laboratory
Oxford, UK

The emergence of Field Programmable Gate Arrays (FPGAs) has enabled the reprogram
ming of digital circuitry to be undertaken as easily as computer programs are changed
today. A sequence of bits (typically held in a static RAM) defines the wiring of a digital

2See also "Interactive Programming with Higher Order Objects, Part I " by Gunther Schmidt.
3The work was undertaken as part of the European ESPRIT Basic Research Action ProCoS ("Prov

ably Correct Systems") project (BRA 3104) and the UK Information Engineering Directorate safe mos
project (IED3/ l / 1036). Their financial support is gratefully acknowledged.

13

circuit in such devices in much the same way that a sequence of bits can de�ne the instruc-
tions for a general purpose computer. In particular, highly parallel algorithms mapped
onto such an architecture can be greatly speeded up using the natural concurrency of
hardware.

Currently software support is limited, as it was for early computers. In the same
way that most programmers have moved from assembler to high-level languages for all
but the most time-critical applications, it is likely that in the future most hardware
will be produced using more abstract notions than the individual low-level components
available to fabricate them. It is foreseen that high-level languages will be routinely used
to describe the design of the hardware and these descriptions will be compiled (often fully
automatically) into a low-level description of the hardware (e.g., a netlist of components
and their interconnections). At Oxford, a prototype has been developed in SML to compile
an occam program to a netlist for a synchronous circuit. C

Other work at Oxford has concentrated on proving software compilation correct. The
proof is considerably simpli�ed by de�ning the target machine as an interpreter in the
high-level language that is being compiled. This allows the proof to be largely conducted
using algebraic laws about the high-level language. The compiling scheme for each con-
struct in the language is formulated as a theorem that must be proved correct with respect
to a re�nement ordering using these laws. The theorems are normally in the form of Horn
clauses, and thus may be translated almost directly into a logic programming language
such as Prolog. The same technique has been adapted to a hardware compiler by de�ning
the circuit as a simulator written in the high-level language.

Speci�cation and Re�nement of Interactive Systems

Manfred Broy
Technische Universität München

München, Germany

A formal framework for the functional property�oriented speci�cation of components of
interactive distributed systems and their re�nement is given. The re�nement supports
the change of both the syntactic interface (the number and types of channels) and the
behavior (the granularity of messages).

Strictness Control in Term Rewriting

Ole-Johan Dahl

Universitetet i Oslo

Oslo, Norway

The concept of function de�nition by Terminating Generator Induction (TGI) over an
identi�ed generator basis was explained. Case constructs with respect to generators give
rise to convergent sets of rewrite rules. Termination can be ensured by simple syntactic

14

circuit in such devices in much the same way that a sequence of bits can define the instruc
tions for a general purpose computer. In particular, highly parallel algorithms mapped
onto such an architecture can be greatly speeded up using the natural concurrency of
hardware.

Currently software support is limited, as it was for early computers. In the same
way that most programmers have moved from assembler to high-level languages for all
but the most time-critical applications, it is likely that in the future most hardware
will be produced using more abstract notions than the individual low-level components
available to fabricate them. It is foreseen that high-level languages will be routinely used
to describe the design of the hardware and these descriptions will be compiled (often fully
automatically) into a low-level description of the hardware (e.g., a netlist of components
and their interconnections). At Oxford, a prototype has been developed in SML to compile
an occa m program to a netlist for a synchronous circuit.

Other work at Oxford has concentrated on proving software compilation correct. The
proof is considerably simplified by defining the target machine as an interpreter in the
high-level language that is being compiled. This allows the proof to be largely conducted
using algebraic laws about the high-level language. The compiling scheme for each con
struct in the language is formulated as a theorem that must be proved correct with respect
to a refinement ordering using these laws. The theorems are normally in the form of Horn
clauses, and thus may be translated almost directly into a logic programming language
such as Prolog. The same technique has been adapted to a hardware compiler by defining
the circuit as a simulator written in the high-level language.

Specification and Refinement of Interactive Systems

Manfred Broy
Technische Universitat Miinchen

Miinchen, Germany

A formal framework for the functional property-oriented specification of components of
interactive distributed systems and their refinement is given. The refinement supports
the change of both the syntactic interface (the number and types of channels) and the
behavior (the granularity of messages).

Strictness Control in Term Rewriting

Ole-Johan Dahl
Universitetet i Oslo

Oslo, Norway

The concept of function definition by Terminating Generator Induction (TGI) over an
identified generator basis was explained. Case constructs with respect to generators give
rise to convergent sets of rewrite rules. Termination can be ensured by simple syntactic

14

checks which permit the definition of a large class of total functions. Partial functions are
needed and may be defined using typed, ill-de�ned constants LT for each type T. Alter-
natively, ..LT may be seen as a generator extending the generator basis of T, giving an ex-
tended type TL. Strictness can now be explicitly controlled, e.g. for de�ning symmetrical,
non-strict Boolean L connectives. For user convenience it is better to have the treatment
of ill-de�ned arguments behind the scenes, e.g. according to �case-semantics�, where case
constructs are strict in the discriminand and generators are strict, g(...,_L,...) == .L.
Problem: Generator strictness implies that T; is not freely generated, even if T is, in the
case that T has non-constant generators; and the added rewrite rules in general cause the
loss of con�uence. It is shown that naive term rewriting is nevertheless strongly correct
w.r.t. case semantics when applied to well-de�ned terms. A general construction is shown
providing a convergent set of rewrite rules implementing case semantics, as well as any
stronger strictness requirement.

Transformational Development of Digital Circuits

Walter Dosch

Universität Augsburg
Augsburg, Germany

A computer program is the implementation of an algorithm in terms of the constructs
provided by a programming language. We view a digital circuit as the implementation of
an algorithm where the primitive elements are electronic devices.

With this analogy in mind, we derive circuit descriptions for a family of binary adders
(ripple-carry adder, serial adder, carry look-ahead adder, completion recognition adder)
from the common specification of their functional behaviour. The design follows the
methodology of transformational programming. The circuit descriptions are stepwise
deduced from the speci�cation by applying correctness preserving transformation rules.
The formal derivation of trustworthy hardware gives insight into the algorithmic princi-
ples underlying digital circuits. It also disentangles the design decisions concerning the
representation of numbers by digit sequences, the use of fixed word length, and the effects
of binary coding.

Recursion turns out to be a fundamental concept in designing regularly structured
combinational circuits by cascading some elementary circuitry. In the special case of tail
recursion, the repetition can be transformed from space to time. Then the electronic
devices are reused in different incarnations while keeping the entire network static.

SADT-Diagrams as Interface for Reuseable Software

Components

Peter Forbrig
Universität Rostock

Rostock, Germany

15

checks which permit the definition of a large class of total functions. Partial functions are
needed and may be defined using typed, ill-defined constants 1-r for each type T. Alter
natively, .LT may be seen as a generator extending the generator basis of T, giving an ex
tended type Ti., Strictness can now be explicitly controlled, e.g. for defining symmetrical,
non-strict Booleani. connectives. For user convenience it is better to have the treatment
of ill-defined arguments behind the scenes, e.g. according to "case-semantics", where case
constructs are strict in the discriminand and generators are strict, g(... , 1-, ...) == 1..
Problem: Generator strictness implies that T1. is not freely generated, even if T is, in the
case that T has non-constant generators; and the added rewrite rules in general cause the
loss of confluence. It is shown that naive term rewriting is nevertheless strongly correct
w.r.t. case semantics when applied to well-defined terms. A general construction is shown
providing a convergent set of rewrite rules implementing case semantics, as well as any
stronger strictness requirement.

Transformational Development of Digital Circuits

Walter Dosch
Universitat Augsburg
Augsburg, Germany

A computer program is the implementation of an algorithm in terms of the constructs
provided by a programming language. We view a digital circuit as the implementation of
an algorithm where the primitive elements are electronic devices.

With this analogy in mind, we derive circuit descriptions for a family of binary adders
(ripple-carry adder, serial adder, carry look-ahead adder, completion recognition adder)
from the common specification of their functional behaviour. The design follows the
methodology of transformational programming. The circuit descriptions are stepwise
deduced from the specification by applying correctness preserving transformation rules.
The formal derivation of trustworthy hardware gives insight into the algorithmic princi
ples underlying digital circuits. It also disentangles the design decisions concerning the
representation of numbers by digit sequences, the use of fixed word length, and the effects
of binary coding.

Recursion turns out to be a fundamental concept in designing regularly structured
combinational circuits by cascading some elementary circuitry. In the special case of tail
recursion, the repetition can be transformed from space to time. Then the electronic
devices are reused in different incarnations while keeping the entire network static.

SADT-Diagrams as Interface for Reuseable Software
Components

Peter Forbrig
U niversita.t Rostock
Rostock, Germany

15

The diagrams of the Structured Analysis and Design Technique (SADT) became accepted
documents in software engineering. The development of such� diagrams is up to now
a very time consuming task. Often there is a gap between SADT-diagrams and their
implementation. I

A transformation of SADT-diagrams into attributed grammar rules is described. These
rules allow the incorporation of comments and semantics into the speci�cation. It is also
shown how this internal representation can be used to check a software speci�cation, to
get a prototype, to generate code and to reuse already speci�ed software components.
Especially the reuse of already developed projects increases the productivity of software
engineering very much.

What is lost in Program Proving due to Clarke�s
Theorem?

Michal Grabowski

University of Warsaw
Warsaw, Poland

We brie�y list the achievements of program veri�cation theory, originated by Clarke�s the-
orem. On the other hand, this theorem has diminished interest in a deep proof-theoretical
study of programming languages with the halting problem of programs undecidable in �-
nite interpretations. This is natural, since we have no completeness concept for partial
correctness logics of programs of such languages. (The relative completeness principle is A
not applicable in such cases, as Clarke�s theorem says.) We propose another completeness
concept capable of handling programming languages with the halting problem undecid-
able in �nite interpretations. The proposal is rather unsatisfactory, but we want to point
out the need for completeness concepts for such languages.

Normal Form Approach to FPGA Implementation of
occam

He J ifeng4
Oxford University Computing Laboratory

Oxford, UK

This paper shows how to compile a program written in a subset of occam into Field-
Programmable Gate Arrays (FPGA), which has recently enabled the possibility of digital
circuits to be directly reprogrammable almost as easily as programs are changed rou-
tinely today. A simple state-machine model is adopted for specifying the behaviour of a

�This is joint work with Ian Page and Jonathan Bowen of Oxford University. The work was undertaken
as part of the European ESPRIT Basic Research Action ProCoS (�Provably Correct Systems�) project
(BRA 3104) and the UK Information Engineering Directorate safemos project (IED3/ 1/ 1036). Their
financial support is gratefully acknowledged.

16

The diagrams of the Structured Analysis and Design Technique (SADT) became accepted
documents in software engineering. The development of .such· diagrams is up to now
a very time consuming task. Often there is a gap between SADT-diagrams and their
implementation.

A transformation of SADT-diagrams into attributed grammar rules is described. These
rules allow the incorporation of comments and semantics into the specification. It is also
shown how this internal representation can be used to check a software specification, to
get a prototype, to generate code and to reuse already specified software components.
Especially the reuse of already developed projects increases the productivity of software
engineering very much.

What is lost in Program Proving due to Clarke's
Theorem?

Michal Grabowski
University of Warsaw

Warsaw, Poland

We briefly list the achievements of program verification theory, originated by Clarke's the
orem. On the other hand, this theorem has diminished interest in a deep proof-theoretical
study of programming languages with the halting problem of programs undecidable in fi
nite interpretations. This is natural, since we have no completeness concept for partial
correctness logics of programs of such languages. (The relative completeness principle is
not applicable in such cases, as Clarke's theorem says.) We propose another completeness
concept capable of handling programming languages wit h the halting problem undecid
able in finite interpretations. The proposal is rather unsatisfactory, but we want to point
out the need for completeness concepts for such languages.

Normal Form Approach to FPGA Implementation of
occam

He Jifeng4

Oxford University Computing Laboratory
Oxford, UK

This paper shows how to compile a program written in a subset of occa m into Field
Programmable Gate Arrays (FPGA), which has recently enabled the possibility of digital
circuits to be directly reprogrammable almost as easily as programs are changed rou
tinely today. A simple state-machine model is adopted for specifying the behaviour of a

4This is joint work with Ian Page and Jonathan Bowen of Oxford University. The work was undertaken
as part of the European ESPRIT Basic Research Action ProCoS ("Provably Correct Systems") project
(BRA 3104) and the UK Information Engineering Directorate safemos project (IED3/1/1036). Their
financial support is gratefully acknowledged.

16

synchronous circuit where it is assumed that the longest time delay in the combinatorial
circuitry is shorter than the length of a clock cycle, and the observable includes the state
of the control path and the data path of the circuit. We identify the behaviour of a
circuit with a program consisting of a very restricted subset of occam, which is called
normal form. The algebraic laws of occam are used to facilitate the transformation from
a program into a normal form. The paper also suggests that the simulation technique
used in data refinement can be used to implement the synchronised communication on
the shared-state concurrency.

Speci�cation based on Type Theory

Friedrich W. VOI1 Henke

Universität Ulm

Ulm, Germany

We consider a simple functional language with a type system providing abstract (recursive)
data types, higher-order, polymorphic and dependent types, and constrained types, i.e.
semantic subtypes. In a sequence of simple examples we show how typical speci�cation
constructs, including speci�cations of parameterized modules, can be modelled in this
framework. The role of subtypes as a unifying concept is elaborated.

The Complexity of Verifying Functional Programs

Hardi Hungar
Universität Oldenburg
Oldenburg, Germany

Since long Hoare-style proof systems are known as tools to prove the correctness of pro-
grams. One property every proof system should have is soundness. Another one which is
not that easy to achieve is relative completeness [Cook]. This means completeness relative
to the �rst-order theory of the data domain provided that in the given domain, �rst-order
formulas can define all relations resp. functions which are program definable.

If a proof system is sound and relatively complete, it gives rise to a complete proof
procedure for finite domains. I.e.: Given a correctness formula f and the representation
of a �nite domain D, a derivation of f (a formal proof) from the theory of D can be
constructed if f is valid in D.

This observation leads to another criterion measuring the quality of proof systems:
How hard is it (in terms of computational complexity) to construct the derivation? Is it
much harder than to prove the validity of the formula in some other way or is it of the
same degree of complexity?

Here, a positive answer is given for some instances of this problem: In many cases,
proof construction can be done efficiently. As a model for functional programming lan-
guages, we considered the �nitely typed lambda calculus with recursion over some data

17

synchronous circuit where it is assumed that the longest time delay in the combinatorial
circuitry is shorter than the length of a clock cycle, and the observable includes the state
of the control path and the data path of the circuit. We identify the behaviour of a
circuit with a program consisting of a very restricted subset of occam, which is called
normal form. The algebraic laws of occa m are used to facilitate the transformation from
a program into a normal form. The paper also suggests that the simulation technique
used in data refinement can be used to implement the synchronised communication on
the shared-state concurrency.

Specification based on Type Theory

Friedrich W. von Henke
Universitat Ulm
Ulm, Germany

We consider a simple functional language with a type system providing abstract (recursive)
data types, higher-order, polymorphic and dependent types, and constrained types, i.e.
semantic subtypes. In a sequence of simple examples we show how typical specification
constructs, including specifications of parameterized modules, can be modelled in this
framework. The role of subtypes as a unifying concept is elaborated.

The Complexity of Verifying Functional Programs

Hardi H ungar
Universitat Oldenburg
Oldenburg, Germany

Since long Hoare-style proof systems are known as tools to prove t he correctness of pro
grams. One property every proof system should have is soundness. Another one which is
not that easy to achieve is relative completeness [Cook]. This means completeness relative
to the first-order theory of the data domain provided that in the given domain, first-order
formulas can define all relations resp. functions which are program definable.

If a proof system is sound and relatively complete, it gives rise to a complete proof
procedure for finite domains. I.e.: Given a correctness formula f and the representation
of a finite domain D, a derivation of f (a formal proof) from the theory of D can be
constructed if f is valid in D.

This observation leads to another criterion measuring the quality of proof systems:
How hard is it (in terms of computational complexity) to construct the derivation? Is it
much harder than to prove the validity of the formula in some other way or is it of the
same degree of complexity?

Here, a positive answer is given for some instances of this problem: In many cases,
proof construction can be done efficiently. As a model for functional programming lan
guages, we considered the finitely typed lambda calculus with recursion over some data

17

domain. We take Goerdt�s assertion language and his proof system. If k is a bound on
the level of the types occuring in the program, the set of finite domains where a formula
about the program is valid can be decided in (k � 1)�exponential time in the size of the
data domain. In general, one can not do better. We show that formal proofs in Goerdt�s
system can be constructed in (k �1)�exponential time, too. This extends previous results
on efficient proof construction (for imperative programs).

A Generator for Formulae Manipulating Editors

Stefan J éihnichen5
Technische Universität Berlin

Berlin, Germany

The talk describes a tool GZF to support the use of mathematics based methods on
modern computers. Such methods use two-dimensional notations frequently which are
hard to edit and to manipulate on a screen if not supported by graphical means. In
order to adopt the proposed style of formula manipulation to various applications, a
generator was developed which takes grammars and prototype drawings of the symbols as
input and produces specific editors and layout procedures as output. Besides the uniform
manipulation style, the main advantage is the uniform appearance of formulas even if
produced by other tools and the uniform interaction mechanism. As an extension, GZF
produces the layout descriptions as attribute grammar skeletons or logic speci�cations.
This could be viewed as a prototype specification for graphical structures to be further
refined textually.

Distinguishing Divergence from Chaos � The
Semantics of Failing Computations in CSP

Burghard von Karger6
Christian-Albrechts-Universitéit zu Kiel

Kiel, Germany .

A speci�cation-oriented model for state-based CSP is presented that does not identify
internal divergence with chaotic behaviour. Consistency with operational semantics is
proved even in the case where unbounded nondeterminism is present. Recursion is handled
by a new �xpoint construction.

5This is joint work with R. Gabriel.
�Werk conducted within the frame of the ESPRIT-BRA-Project 3104 ProCoS �Provably Correct

Systems�.

18

domain. We take Goerdt's assertion language and his proof system. If k is a bound on
the level of the types occuring in the program, the set of finite domains where a. formula
a.bout the program is valid can be decided in (k - 1)-exponential time in the size of the
data. domain. In genera.I, one ca.n not do better. We show that formal proofs in Goerdt's
system can be constructed in (k - 1)-exponential time, too. This extends previous results
on efficient proof construction (for imperative programs).

A Generator for Formulae Manipulating Editors

Stefan Jahnichen5

Technische U niversita.t Berlin
Berlin, Germany

The talk describes a tool G2 F to support the use of mathematics based methods on
modern computers. Such methods use two-dimensional notations frequently which are
hard to edit and to manipulate on a screen if not supported by graphical means. In
order to adopt the proposed style of formula. manipulation to various applications, a
genera.tor was developed which takes grammars and prototype drawings of the symbols as
input and produces specific editors a.nd layout procedures as output. Besides the uniform
manipulation style, the main advantage is the uniform appearance of formulas even if
produced by other tools and the uniform interaction mechanism. As an extension, G2 F
produces the layout descriptions as attribute grammar skeletons or logic specifications.
This could be viewed as a prototype specification for graphical structures to be further
refined textually.

Distinguishing Divergence from Chaos - The
Semantics of Failing Computations in CSP

Burghard von Karger6

Christian-Albrechts-Universitat zu Kiel
Kiel, Germany .

A specification-oriented model for state-based CSP is presented that does not identify
internal divergence with chaotic behaviour. Consistency with operational semantics is
proved even in the case where unbounded nondeterminism is present. Recursion is handled
by a new fixpoint construction.

5This is joint work with R. Gabriel.
6Work conducted within the frame of the ESPRIT-BRA-Project 3104 ProCoS "Provably Correct

Systems".

18

Optimal Interprocedural Data Flow Analysis

Jens Knoop7
Christian-Albrechts-Universitat zu Kiel

Kiel, Germany

Data �ow analysis is the basis of program transformations that are performed by �op-
timizing� compilers in order to generate efficient object code. In this talk a new stack-
based framework for interprocedural data �ow analysis is introduced. The key point of
this approach is the introduction of data �ow analysis stacks, whose components directly
correspond to the activation records representing entries of a run-time stack.

The central result of the talk is the Interprocedural Coincidence Theorem, which allows
a characterization of optimal interprocedural data flow analysis algorithms. Here, optimal
means the coincidence of the specifying meet over all paths solution of a data �ow analysis
problem with its algorithmical maximal �xed point solution. The variant of the coincidence
theorem introduced here is exceptional in that it for the first time covers programs with
(mutually) recursive procedures, global and local variables, and formal (value) parameters.

On-line Garbage Collection ,Algorithms

Antoni Kreczmarg

University of Warsaw
Warsaw, Poland

We investigate the problem of garbage collection for object-oriented programming lan-
guages. The aim is to solve that problem in an incremental way, i.e. allowing the execution
of user actions interleaved with the process of garbage collection & space compaction. The
main idea of our approach comes from Baker�s algorithm which uses two semi-spaces and
copies incrementally from old semi-space to a new semi-space all accessible objects, hence
the memory is simultaneously compacti�ed. The most important variant of that method
called generation scavenging algorithm divides the world of objects into two generations.
The world of new objects is permanently copied by Baker�s algorithm while the world of
old objects is compacti�ed in emergency by a traditional mark-sweep method. We propose
a new uniform method which eliminates the necessity of dividing the space. Objects are
marked and rotated according to some strategy such that when a phase of that algorithm
is finished all garbage is collected at one end of the space while all accessible objects are
compacted at the other end of the space.

7Joint work with Bernhard Steffen, RWTH Aachen, supported by the DFG-project La 426/9-2
�Vollständige interprozedurale Programmlaufzeitoptimierung�.

8Joint work with Marek Warpechowski, University of Warsaw.

19

Optimal Interprocedural Data Flow Analysis

Jens Knoop7

Christian-Albrechts-Universita.t zu Kiel
Kiel, Germany

Data flow analysis is the basis of program transformations that are performed by "op
timizing" compilers in order to generate efficient object code. In this talk a new stack
based framework for interprocedural data flow analysis is introduced. The key point of
this approach is the introduction of data flow analysis stacks, whose components directly
correspond to the activation records representing entries of a run-time stack.

The central result of the talk is the lnterprocedural Coincidence Theorem, which allows
a characterization of optimal interprocedural data flow analysis algorithms. Here, optimal
means the coincidence of the specifying meet over all paths solution of a data flow analysis
problem with its algorithmical maximal fixed point solution. The variant of the coincidence
theorem introduced here is exceptional in that it for the first time covers programs with
(mutually) recursive procedures, global and local variables, and formal (value) parameters.

On-line Garbage Collection Algorithms

Antoni Kreczmar8

University of Warsaw
Warsaw, Poland

We investigate the problem of garbage collection for object-oriented programming lan
guages. The aim is to solve that problem in an incremental way, i.e. allowing the execution
of user actions interleaved with the process of garbage collection & space compaction. The
ma.in idea of our approach comes from Baker's algorithm which uses two semi-spaces and
copies incrementally from old semi-space to a new semi-space all accessible objects, hence
the memory is simultaneously compactified. The most important variant of that method
called generation scavenging algorithm divides the world of objects into two generations.
The world of new objects is permanently copied by Baker's algorithm while the world of
old objects is compactified in emergency by a traditional mark-sweep method. We propose
a new uniform method which eliminates the necessity of dividing the space. Objects are
marked and rotated according to some strategy such that when a phase of that algorithm
is finished all garbage is collected at one end of the space while all accessible objects are
compacted at the other end of the space.

7Joint work with Bernhard Steffen, RWTH Aachen, supported by the DFG-project La 426/9-2
"Vollstandige interprozedurale Programmlaufzeitoptimierung".

8Joint work with Marek Warpechowski, University of Warsaw.

19

On Programming Languages� Interpreters � Total
Correctness

Hans Langmaack9
Christian-Albrechts-Universitat zu Kiel

Kiel, Germany

Programming languages interpreters correctness proofs in the literature seem to show
mainly partial correctness

|[Int]](1r,d) .|_:_ [1r]]d,

in words: if an interpreter for language L is applied to an L-program A 7r and data d
and terminates then L-semantics of 1r applied to d is de�ned and both results coincide.
Total correctness proofs for

|[1ntl(7nd) = Il�lld,

seem that they have seldom been achieved up to now, maybe because partial correctness
is sufficient in most practical applications. But not only interpreters Int formulated in
a high level language L must be partially correct, realizations Int� of Int in machine
language ML should be so too.

C. A. R. Hoare�s, He Jifeng�s and J. Bowen�s L to ML translation correctness proof
(the underlying algebraic laws technique has been articulated in He J ifeng�s lecture of this
seminar) requires that any source L-program 7:� applied to data d has to terminate, only
then the translated program 7r� in ML applied to d will show a result which coincides
with [[7r I] d ; if |[7r I] d is unde�ned it might happen that 7r� applied d terminates regularly
with a good looking result 1'; Oxford�s proof gives no guarantee about the nature of r
in case |I7r]] d is unde�ned.

A severe situation arises when we use Int� in order to generate compilers. Let Com
be an L to ML compiler written in L

Com:

In order to be sure that Int� applied to L-program Cam and datum Com yields really
a correct compiler

Com�

we must know that [[Int]|(C0m,Com) is de�ned. Only total correctness of Int can
conclude this from de�nedness of [Com]] Com which is clear because decent compilers
terminate always.

9Joint work with Markus Miiller-Olm, Christian-Albrechts-Universitéit, Kiel, in the frame of the
ESPRIT-BRA-Project 3104 ProCoS �Provably Correct Systems�.

20

On Programming Languages· Interpreters - Total
Correctness

Hans Langmaack9

Christia.n-Albrechts-Universitat zu Kiel
Kiel, Germany

Programming la.ngua.ges interpreters correctness proofs m the literature seem to show
ma.inly partial correctness

[lnt](1r , d) ~ [1r] d,

in words: if an interpreter for language L is applied to an L-progr~m 1r and data d
and terminates then L-semantics of 1r applied to d is defined and both results coincide.
Total correctness proofs for

[Jnt] (1r, d) = [1r] d ,

seem that they have seldom been achieved up to now, maybe because partial correctness
is sufficient in most practical applications. But not only interpreters lnt formulated in
a high level language L must be partially correct , realizations Int' of lnt in machine
language ML should be so too.

C. A. R. Hoare's, He Jifeng's and J . Bowen's L to ML translation correctness proof
(the underlying algebraic laws technique has been articulated in He Jifeng's lecture of this
seminar) requires that any source L-program 1r applied to data d has to terminate, only
then the t ranslated program rr' in ML applied to d will show a resul t which coincides
with [1r] di if [1r D d is undefined it might happen that rr' applied d terminates regularly
with a good looking result r; Oxford's proof gives no guarantee about the nature of r
in case [1r] d is undefined.

A severe situation arises when we use Int' in order to generate compilers. Let Com
be an L to ML compiler written in L

Com =

LJ
In order to be sure that lnt' applied to £-program Com and datum Com y ields really
a correct compiler

Com'

ld
we must know that [lnt](Com, Com) is defined. Only total correctness of lnt ca.n
conclude this from definedness of [Com] Com which is clear because decent compilers
terminate always.

9Joint work with Markus Miiller-Olm, Christian-Albrechts-Universitat, Kiel, in the frame of the
ESPRIT-BRA-Project 3104 ProCoS "Provably Correct Systems".

20

We have succeeded to prove total correctness of Int by using �xpoint induction in
both directions. L and L are both languages of so called recursive functions, i.e. systems
of recursive function de�nitions.

ll�ld E ll1ntl(7r,d)

is more difficult to show than partial correctness of Int because nested induction is
required. It is claimed that �true� wellfounded set methods seem not to be well applicable
or implicitly force us to introduce equivalent operational semantics for L and Z and to
do tedious bisimulations.

Bridging Existing Gaps between Theory Based
Software Development and Practice

Peter E. Lauer

Mc Master University
Ontario, Canada

We propose that we must systematize our approaches to closing a number of existing gaps
between theory based systems, actual systems and real world problems, to achieve ulti-
mate success. Such systematization must precisely identify the existing gaps and discover
the specific nature of each gap, so that one can initiate well-reasoned and cooperative
participation of users, theoreticians and programmers aimed at closing the gap as a result
of the evolution of the system and our knowledge about it.

It is suggested that success in this endeavour depends on the development of adequate
theory-based abstraction tools which allow one to start from conventional embedded and
heterogeneous systems, and to turn them into evolutionary systems which are described
and controlled by means of systematized knowledge about the system, cooperatively by
the user community, on line, and over the lifetime of the system.

We also suggest that our notion of Requirements for an Evolutionary Computer-based
Information Processing Environment (RECIPE, see [l]); our notion of On the Fly Oper-
ational Semantics based on Environment Enquiry (OFOSEE, see [2]); and our notion of
Computer-based Multi Media Learning (CMML); as well as our partial implementation of
these notions can be seen as modest successes to construct tools for systematically closing
some of the gaps indicated.

[1] Lauer, P. E., and Campbell, R.H. RECIPE: Requirements for an Evolutionary
Computer-based Information Processing Environment. Software Process Workshop,
Egham, UK, IEE 1984.

[2] Lauer, P. E. Computer System Dossier. In: Distributed Computing Systems, Aca-
demic Press, 1983.

21

We have succeeded to prove total correctness of Int by using fixpoint induction in
both directions. L and l are both languages of so called recursive functions, i.e. systems
of recursive function definitions.

is more difficult to show than partial correctness of lnt because nested induction js
required. It is claimed that "true" wellfounded set methods seem not to be well applicable
or implicitly force us to introduce equivalent operational semantics for L and l and to
do tedious bisimulations.

Bridging Existing Gaps between Theory B ased
Software D evelopment and Practice

Peter E. Lauer
Mc Master University

Ontario, Canada

We propose that we must systematize our approaches to closing a number of existing gaps
between theory based systems, actual systems and real world problems, to achieve ulti
mate success. Such systematization must precisely identify the existing gaps and discover
the specific nature of ea.eh gap, so that one can initiate well-reasoned and cooperative
participation of users, theoreticians and programmers aimed at closing the gap as a result
of the evolution of the system and our knowledge about it.

It is suggested that success in this endeavour depends on the development of adequate
theory-based abstraction tools which allow one to start from conventional embedded and
heterogeneous systems, and to turn them into evolutionary systems which are described
and controlled by means of systematized knowledge about the system, cooperatively by
the user community, on line, and over the lifetime of the system.

We also suggest that our notion of Requirements for an Evolutionary Computer-based
Information Processing Environment (RECIPE, see [1]); our notion of On the Fly Oper
ational Semantics based on Environment Enquiry (OFOSEE, see [2]); and our notion of
Computer-based Multi Media Learning (CMML); as well as our partial implementation of
these notions can be seen as modest successes to construct tools for systematically closing
some of the gaps indicated.

[l] Lauer, P. E., and Campbell, R.H. RECIPE: Requirements for an Evolutionary
Computer-based Information Processing Environment. Software Process Workshop,
Egham, UK, IEE 1984.

[2] Lauer, P. E. Computer System Dossier. In: Distributed Computing Systems, Aca
demic Press, 1983.

21

Speci�cations Using the Data Type Syntactic Nodes

Vladimir Levin

Keldysh Institute of Applied Mathematics
Moscow, Russia

Syntactic nodes are introduced as some formalization of occurrences. They may be used
to describe text interfaces, in particular, well-formed programs and text transformations,
in particular, compiler functions. The complete compiler function includes two mappings:
A Code-generating one and a Diagnostics one.

Syntactic nodes is a pair of a label and a number. They appear as nodes of a tree-like
graph. The last is called a tree. Labels of non-terminal nodes may be used in syntax rules
as syntactic sorts. Labels of terminal nodes are quoted words. _

Calculations over nodes are localized within an embracing tree. So, the last is used as
the Environment. Basic node operations are: IabeI(x), te:ct(a:), a: ~ y (�x is textually
congruous to y�), :z:.selector, :c.indea:, 1c 5 y (�a3 is subordinated to y�), x < y (�at
is subordinated to y in the proper way�), L/:1: (�the node with label L above m�), a:
without A (�the set of nodes which are subordinated to a: and are not subordinated to
any nodes from the set A; the reduction rule: nodes, which are not subordinated to x,
are deleted from A in advance�).

By using these node operations, one can de�ne, for example, the scope function:

scope : #DefI �+ S'et(#Comp)

scope(a:) = (Block/:r) without {b : #BIock; ac isRedeclaredIn y}
So, formal speci�cation of well-formed programs may be like an intuitive description.

On the Speci�cation of Files and Coroutines

Grazyna Mirkowska & Andrzej Salwicki
Universite de Pan and Warsaw University

Pan, France

We present the examples of algorithmic speci�cations of two different elements of pro-
gramming languages: �les and coroutines. We consider them as algebraic structures with
corresponding operations and relations. E.g. for the system of �les we consider the op-
erations open, create, close etc., and for the system of coroutines - attach, new, kill etc.
More precisely, for �les we consider the hierarchy of types - sequential �les, direct access
�les, text �les - and we construct the corresponding tower of structures.

In both cases, the speci�cation is a list of algorithmic formulas (axioms) which de-
scribes the properties of the operations and relations. Both sets of axioms are proved
to be consistent. The main result is a theorem on representation, which states that any
model of the system of �les (the system of coroutines respectively) is isomorphic to some
standard model. This proves that the axioms capture all the properties valid in any rea-
sonable implementation. Moreover, the class of implementations which is correct with
respect to the given axiomatization does not contain any pathological examples.

22

Specifications Using the Data Type Syntactic Nodes

Vladimir Levin
Keldysh Institute of Applied Mathematics

Moscow, Russia

Syntactic nodes are introduced as some formalization of occurrences. They may be used
to describe text interfaces, in particular, well-formed programs and text transformations,
in particular, compiler functions. The complete compiler function includes two mappings:
A Code-generating one and a Diagnostics one.

Syntactic nodes is a pair of a label and a number. They appear as nodes of a tree-like
graph. The last is called a tree. Labels of non-terminal nodes may be used in syntax rules
as syntactic sorts. Labels of terminal nodes are quoted words.

Calculations over nodes are localized within an embracing tree. So, the last is used as
the Environment. Basic node operations are: label(x), text(x), x ~ y ("x is textually
congruous to y"), x.selector, x.index, x ~ y ("x is subordinated to y"), x < y ("x
is subordinated to y in t he proper way"), L/x ("the node with label L above x") , x
without A ("the set of nodes which are subordinated to x and are not subordinated to
any nodes from the set A; the reduction rule: nodes, which are not subordinated to x ,
are deleted from A in advance").

By using these node operations, one can define, for example, the scope function:

scope: #Def I-+ Set(#Comp)

scope(x) = (Block/x) without {b: #Block; x isRedeclaredln y}

So, formal specification of well-formed programs may be like an intuitive description.

On the Specification of Files and Coroutines

Grazyna Mirkowska & Andrzej Salwicki
Universite de Pau and Warsaw University

Pau, France

We present the examples of algorithmic specificat ions of two different elements of pro
gramming languages: files and coroutines. We consider them as algebraic structures with
corresponding operations and relations. E.g. for the system of files we consider the op
erations open, create, close etc., and for the system of coroutines - attach, new, kill etc.
More precisely, for files we consider the hierarchy of types - sequential files, direct access
files, text files - and we construct the corresponding tower of structures.

In both cases, the specification is a list of algorithmic formulas (axioms) which de
scribes the properties of the operations and relations. Both sets of axioms are proved
to be consistent. The main result is a t heorem on representation, which states that any
model of t he system of files (the system of coroutines respectively) is isomorphic to some
standard model. This proves that the axioms capture all the properties valid in any rea
sonable implementation. Moreover, the class of implementations which is correct with
respect to the given axiomatization does not contain any pathological examples.

22

Computational Completeness of Speci�cation and
Programming Languages over Various Data

Structures

Nikolai S. Nikitchenko

Kiev State University
Kiev, Ukraine

It is usually believed that speci�cation and programming languages are universal, which
means that any computable function may be de�ned in these languages. This common
opinion may not be valid if computability over structures other than just natural numbers
is considered. To justify this statement we present a more general� notion of computability
� abstract computability � applicable to an arbitrary data structure.

We start by presenting a general concept of a �nite data structure de�ned via �natural�
data structures built over a basic set B. This computability may be considered as gener-
alized enumeration computability relative to B. This concept is used then to generalize
the standard notion of computability to arbitrary �nite structures. Weinstantiate the
presented notions to speci�c �nite data structures, such as sequences, lists, bags, sets,
maps, trees, etc.

We construct simple algebraic representations of complete classes of multi-valued and
single-valued computable functions over these structures as closures of sets of basic func-
tions under speci�c operators over functions. For example, the complete class of multi-
valued computable functions over sets and lists (hierarchically built over B) precisely
coincides with the class of functions obtained by algebraic closure of the set of basic func-
tions { �rst, tail, apndl, is-atom, choice, is-set, is-emptyset, U, \, x, singleton, element}
under operators of the set {functional composition, iteration, construction, apply to all}.

In the case of infinite data structures we represent their elements as special functions
and obtain computability, which is relative to such functions.

The obtained results may be used to show computational completeness of speci�cation
and programming languages.

About Timed and Hybrid Systems

Amir Pnuelilo
Weizmann Institute of Science

Rehovot, Israel

We consider a framework for the formal speci�cation and veri�cation of timed and hybrid
systems. This framework extends the temporal framework recommended for reactive
untimed systems.

For timed systems we propose the computational model of timed transition system
which extends conventional transition systems by the assignment of lower and upper

1°Joint work with T. Henzinger, Y. Kesten, O. Maler, and Z. Manna.

23

Computational Completeness of Specification and
Programming Languages over Various Data

Structures

Nikolai S. Nikitchenko
Kiev State University

Kiev, Ukraine

It is usually believed that specification and programming languages are universal, which
means that any computable function may be defined in these languages. This common
opinion may not be valid if computability over structures other than just natural numbers
is considered. To justify this statement we present a more general notion of computability
- abstract computability - applicabl~ to an arbitrary data structure.

We start by presenting a general concept of a finite data structure defined via 'natural '
data structures built over a basic set B. This computability may be considered as gener
alized enumeration computability relative to B. This concept is used then to generalize
the standard notion of computability to arbitrary finite structures. We instantiate the
presented notions to specific finite data structures, such as sequences, lists, bags, sets,
maps, trees, etc.

We construct simple algebraic representations of complete classes of multi-valued and
single-valued computable functions over these structures as closures of sets of basic func
tions under specific operators over functions. For example, the complete class of multi
valued computable functions over sets and lists (hierarchically built over B) precisely
coincides with the class of functions obtained by algebraic closure of the set of basic func
tions { first, tail, apndl, is-atom, choice, is-set, is-emptyset, U, \, x, singleton, element}
under operators of the set { functional composition, iteration, construction, apply to all}.

In the case of infinite data structures we represent their elements as special functions
and obtain computability, which is relative to such functions.

The obtained results may be used to show computational completeness of specification
and programming languages.

About Timed and Hybrid Systems

Amir Pnueli 10

Weizmann Institute of Science
Rehovot, Israel

We consider a framework for the formal specification and verification of timed and hybrid
systems. This framework extends the temporal framework recommended for reactive
untimed systems.

For t imed systems we propose the computational model of timed transition system
which extends conventional transition systems by the assignment of lower and upper

10Joint work with T . Henzinger, Y. Kesten, 0. Maler, and Z. Manna.

23

bounds to each transition. In a computation of a timed transition system, each transition
must be continuously enabled for at least its lower bound before it can be taken, and
cannot be continuously enabled more than its upper bound without being taken. As
speci�cation language for timed system we consider two extended versions of temporal
logic. One uses bounded versions of the operators in the style of metric temporal logic.
The other allows reference to time through tenure functions which measure the length of
the most recent time interval in which a given formula has been continuously true.

We also review timed statecharts for the detailed description of timed systems.
We then consider hybrid systems, which are systems consisting of a non-trivial mix-

ture of discrete and continuous components, such as a digital controller that controls a
continuous environment. The proposed framework extends the temporal logic approach
which has proven useful for the formal analysis of discrete systems such as reactive pro-
grams. The new framework consists of a semantic model for hybrid time, the notion of
phase transition systems, which extends the formalism of discrete transition systems, an
extended version of Statecharts for the speci�cation of hybrid behaviors, and an extended
version of temporal logic that enables reasoning about continuous change.

Tools and Methods to create Simulators /
C++�Prototypes for the Speci�cation Languages

SDL/OSDL and LOTOS

Andreas Prinz

Humboldt-Universität Berlin

Berlin, Germany

In the talk the approach of Humboldt-University to (protocol) specification is shown.
» Furthermore the use of tools for several parts of the speci�cation process is recommended.

There are three parts of our work on specifications:

a) Graphics
I

1) Work on graphic versions of specification languages like GLOTOS and SDL/ gr.

2) Work on a yacc-like tool for construction of graphic editors for the languages
mentioned in (al).

3) Work on animation of simulation results for these languages.

b) Transformation and compilation

1) Building tools for transforming graphic versions into programming language
versions of speci�cation languages and vice versa.

2) Constructing a kernel library for processes using C++.

3) Compiling OSDL by means of yacc into C++ -Prototypes (using (b2)

4) Providing means for modularization of OSDL.

24

bounds to each transition. In a computation of a timed transition system, each transition
must be continuously enabled for at least its lower bound before it can be taken, and
cannot be continuously enabled more than its upper bound without being taken. As
specification language for timed system we consider two extended versions of temporal
logic. One uses bounded versions of the operators in the style of metric temporal logic.
The other allows reference to time through tenure functions which measure the length of
the most recent time interval in which a given formula. has been continuously true.

We a.lso review timed statecharts for the detailed description of timed systems.
We then consider hybrid systems, which are systems consisting of a non-trivial mix

ture of discrete and continuous components, such as a. digital controller tha.t controls a
continuous environment. The proposed framework extends the temporal logic approach
which has proven useful for the forma.l analysis of discrete systems such as reactive pro
grams. The new framework consists of a semantic model for hybrid time, the notion of
phase transition systems, which extends the formalism of discrete transition systems, an
extended version of Statecharts for the specification of hybrid behaviors, and an extended
version of temporal logic that enables reasoning about continuous change.

Tools and Methods to create Simulators /
c++ - Prototypes for the Specification Languages

SDL/OSDL and LOTOS

Andreas Prinz
Humboldt-Universitat Berlin

Berlin, Germany

In the ta.lk the approach of Humboldt-University to (protocol) specification is shown.
Furthermore the use of tools for several parts of the specification process is recommended.
There are three parts of our ~ork on specifications:

a) Graphics .,
I) Work on graphic versions of specification languages like GLOTOS and SOL/gr.

2) Work on a. yacc-like tool for construction of graphic editors for the languages
mentioned in (al).

3) Work on animation of simulation results for these languages.

b) Transformation and compilation

1) Building tools for transforming graphic versions into programming language
versions of specification languages and vice versa.

2) Constructing a kernel library for processes using C++.

3) Compiling OSOL by means of yacc into c++ - Prototypes (using (b2)).

4) Providing means for modularization of OSOL.

24

c) Simulation and analysing

1) Transforming speci�cations (e.g. OSDL) into appropriate (guarded) Petri nets
in order to use Petri net analysing tools.

2) Parallelizing of the simulation.

3) Usage of data bases for simulation results.

Specifying and Verifying Requirements of Real-Time
Systems

Anders P. Ravn�

Technical University of Denmark

Lyngby, Denmark

An approach to speci�cation of requirements and veri�cation of designs for real-time,
embedded computer systems is presented. A system is modelled by a conventional math-
ematical model for a dynamic system where application speci�c state variables denote
total functions of real time. Speci�cations are formulas in the Duration Calculus, which
is a real-time, interval temporal logic; atomic predicates are de�ned as relations between
durations of states within an interval. Requirements are speci�ed by formulas on the
continuous or discrete global state of the system, and they re�ect safety and functional-
ity constraints on the system. A top level design for such a hybrid system is given by
a conjunction of formulas that specify sensor, actuator and program components. Pro-
grams are speci�ed by timed, �nite state machines, which ultimately are de�ned by a
state variable recording a trace of transition events. Actuator and sensor speci�cations
are hybrid, relating the event trace to global system states. Veri�cation is a proof that
a design implies a more abstract design or ultimately the requirements. The approach is
illustrated by the case of a Gas Burner control unit.

Keywords: Requirements engineering, formal methods, speci�cation, veri�cation, real-
time systems, hybrid systems.

Concurrent Temporal Logic

Wolfgang Reisig
Technische Universität München

München, Germany

Concurrent Temporal Logic (CoTL) is a temporal logic, designed as a technique for prov-
ing the correctness of concurrent systems, as well as for specifying such systems. CoTL

�Joint work with K.M. Hausen, M.R. Hansen, H. Rischel, J. U. Skakkebaek, and Zhou Chaochen,
within the ProCoS project, ESPRIT BRA 3104.

25

c) Simulation a.nd analysing

1) Transforming specifications (e.g. OSDL) into appropriate (guarded) Petri nets
in order to use Petri net analysing tools.

2) Parallelizing of the simulation.

3) Usage of data bases for simulation results.

Specifying and Verifying Requirements of Real-Time
Systems

Anders P. Ravn 11

Technical University of Denmark
Lyngby, Denmark

An approach to specification of requirements and verification of designs for real-time,
embedded computer systems is presented. A system is modelled by a conventional math
ematical model for a dynamic system where application specific state variables denote
total functions of real time. Specifications are formulas in t he Duration Calculus, which
is a real-time, interval temporal logic; atomic predicates are defined as relations between
durations of states within an interval. Requirements are specified by formulas on the
continuous or discrete global state of the system, and they reflect safety and functional
ity constraints on the system. A top level design for such a hybrid system is given by
a conjunction of formulas that specify sensor, actuator and program components. Pro
grams are specified by timed, finite state machines, which ultimately are defined by a
state variable recording a trace of transition events. Actuator and sensor specifications
are hybrid, relating the event trace to global system states. Verification is a proof that
a design implies a more abstract design or ultimately the requirements. The approach is
illustrated by the case of a Gas Burner control unit.

Keywords: Requirements engineering, formal methods, specification, verification, real
time systems, hybrid systems.

Concurrent Temporal Logic

Wolfgang Reisig
Technische Universita.t Miinchen

Miinchen, Germany

Concurrent Temporal Logic (CoTL) is a temporal logic, designed as a technique for prov
ing the correctness of concurrent systems, as well as for specifying such systems. CoTL

11Joint work with K. M. Hansen , M. R. Hansen, H. Rische!, J. U. Skakkebaek, and Zhou Chaochen,
within the ProCoS project, ESPRIT BRA 3104.

25

exploits the nature of concurrent systems by employing causality based runs as models,
and by arguing on local states. This leads to distinguished rules and to an expressive
power that differs from conventional temporal logics.

A particularly important rule concerns parallel composition of liveness:

P1�V*<11,P2~*�12

P1/\P1~*<11/W12

A rule of this form is not valid in any other known temporal logic.
rWe apply CoTL to elementary net systems, i.e. a standard modelling technique of

concurrent systems. Elementary CoTL-formulae can directly be picked of such systems,
and can be used as axioms in correctness proofs.

A Note on Compositional Re�nement

Willem-Paul de Roever�
Christian-Albrechts-Universitéit zu Kiel

Kiel, Germany

Implementing a (concurrent) program P often requires changing the syntactic structure of
P at various levels. We argue and illustrate that in such a situation a natural framework
for implementation correctness requires a more general notion of re�nement than that of
[Hoare, He Jifeng & Saunders �87], a notion which involves the introduction of separate
re�nement relations for ~P�s various abstract components. An outline is given of a formal
framework for proving implementation correctness which involves these notions inside a
uni�ed mixed term framework in which relations and predicate transformers are combined.
The resulting formalism is applied to deriving the correctness of (1) an implementation
of a synchronous message passing algorithm involving action re�nement of messages by
sequences of packages using a sliding window protocol, (2) a self-stabilizing algorithm due
to Katz & Peled for computing a global snapshot of a distributed computation.

Toward Formal Development of Programs from
Algebraic Speci�cations: Parameterisation Revisited

Don Sannella13

University of Edinburgh
Edinburgh, UK

Modular structure is an important tool for managing large and complex systems of inter-
acting units, and its use in organizing algebraic speci�cations is well-known. An impor-
tant structuring mechanism is parameterisation, which allows program and speci�cation

12The paper appears in the Proceedings of the 5"� Re�nement Workshop, Springer�s �Workshops in
Computing� Series, and is co-authored by Job Zwiers, Twente University, and J os Coenen, University of
Eindhoven.

13This is joint work with Andrzej Tarlecki and Stefan Sokolowski of the Polish Academy of Sciences.

26

exploits the nature of concurrent systems by employing causality based runs as models,
and by arguing on local states. This leads to distinguished rules and to an expressive
power that differs from conventional temporal logics.

A particularly important rule concerns parallel composition of liveness:

PI "-t qi , P2 ,...... q2

Pi I\ Pi ,...... q1 I\ q2

A rule of this form is not valid in any other known temporal logic.
We apply CoTL to elementary net systems, i.e. a standard modelling technique of

concurrent systems. Elementary CoTL-formulae can directly be picked of such systems,
and can be used as axioms in correctness proofs.

A Note on Compositional Refinement

Willem-Paul de Roever12

Christian-Albrechts-U niversitiit zu Kiel
Kiel, Germany

Implementing a (concurrent) program P often requires changing the syntactic structure of
P at various levels. We argue and illustrate that in such a situation a natural framework
for implementation correctness requires a more general notion of refinement than that of
[Hoare, He Jifeng & Saunders '87], a notion which involves the introduction of separate
refinement relations for P's various abstract components. An outline is given of a formal
framework for proving implementation correctness which involves these notions inside a
unjfied mixed term framework in which relations and predicate transformers are combined.
The resulting formalism is applied to deriving the correctness of (1) an implementation
of a synchronous message passing algorithm involving action refinement of messages by
sequences of packages using a sliding window protocol, (2) a self-stabilizing algorithm due
to Katz & Peled for computing a global snapshot of a distributed computation.

Toward Formal Development of Programs from
Algebraic Specifications: Parameterisation R evisited

Don Sannella 13

University of Edinburgh
Edinburgh, UK

Modular structure is an important tool for managing large and complex systems of inter
acting units, and its use in organizing algebraic specifications is well-known. An impor
tant structuring mechanism is parameterisation, which allows program and specification

12The paper appears in the Proceedings of the 5th Refinement Workshop, Springer's "Workshops in
Computing" Series, and is c~authored by Job Zwiers, Twente University, and Jos Coenen, University of
Eindhoven.

13This is joint work with Andrzej Tarlecki and Stefan Sokolowski of the Polish Academy of Sciences.

26

modules to be de�ned in a generic fashion and applied in a variety of contexts. Appropri-
ate parameterisation mechanisms give rise to parameterised programs and parameterised
speci�cations. It is possible to specify parameterised programs, just as it is possible to
specify non-parameterised programs. The result is not a parameterised speci�cation; it
is a non-parameterised speci�cation of-a parameterised program. In work on algebraic
speci�cation there has been a tendency to ignore this distinction and use one �avour of
parameterisation for both purposes. This has sometimes led to misunderstanding and
confusion. The distinction is important both for semantical reasons and because the two
kinds of specifications belong to different phases of program development: parameterised
speci�cations are used to structure requirements speci�cations, while speci�cations of pa-
ramcterised programs are used to describe the modules which arise in the design of an
implementation. This part of the talk may be summarized by the following slogan:

parameterised (program speci�cation) 75 (parameterised program) speci�cation

It is natural to consider what happens when parameterisation mechanisms are extended
to the higher-order case in which parameterised objects are permitted as arguments and
as results. This makes sense both for parameterised speci�cations and for speci�cations of
parameterised programs, and has interesting methodological consequences. We have de-
signed a calculus in which it is possible to construct arbitrarily higher-order parameterised
programs, parameterised speci�cations, and mixtures of these such as parameterised spec-
i�cations of parameterised programs.

Exploiting Concurrency for Linear Time Model
Checking of Petri Nets

Bernd-Holger Schlingloff 14 o
Technische Universität München

München, Germany

In this talk a model checking algorithm for linear time temporal logic and one safe Petri
nets was developed, which traverses the state space online: That is, atoms ��consisting of
a state (marking) of the net and a guess for �until� subformulas� are constructed depth
�rst, and upon backtrack from the recursion the strongly connected components of these
atoms are checked for unsatis�ed eventualities. '

Then an improvement of this algorithm was derived, which avoids the usual state
explosion problem by generating only some out of all possible interleaving execution se-
quences. This is done by looking at the dependency of an arbitrary enabled transition
t: t� is in the dependency of t if the �ring of t� could lead to the �ring of a transition
con�icting with t. Special attention has to be paid to those transitions which may alter
the truth value of the given formula as well as to continuously enabled transitions.

Experimental results show that for nets with little or no con�ict it is possible to reduce
the exponential complexity of the problem to a linear complexity.

�Joint work with Tomohiro Yoneda, Tokyo Institute of Technology, and Edmund M. Clarke, Carnegie-
Mellon-University.

27

modules to be defined in a generic fashion and applied in a variety of contexts. Appropri
ate parameterisation mechanisms give rise to parameterised programs and parameterised
specifications. It is possible to specify parameterised programs, just as it is possible to
specify non-parameterised programs. The result is not a parameterised specification; it
is a non-parameterised specification of a parameterised program. In work on algebraic
specification there has been a tendency to ignore this distinction and use one flavour of
parameterisation for both purposes. This has sometimes led to misunderstanding and
cof!fusion. The distinction is important both for semantical reasons and because the two
kinds of specifications belong to different phases of program development: parameterised
specifications are used to structure requirements specifications, while specifications of pa
ramcterised programs are used to describe the modules which arise in the design of an
implementation. This part of the talk may be summarized by the following slogan:

parameterised (program specification) =j; (parameterised program) specification

It is natural to consider what happens when parameterisation mechanisms are extended
to the higher-order case in which parameterised objects are permitted as arguments and
as results. This makes sense both for parameterised specifications and for specifications of
parameterised programs, and has interesting methodological consequences. We have de
signed a calculus in which it is possible to construct arbitrarily higher-order parameterised
programs, parameterised specifications, and mixtures of these such as parameterised spec
ifications of parameterised programs.

Exploiting Concurrency for Linear Time Model
Checking of Petri Nets

Bernd-Holger Schlingloff 14

Technische Universita.t Miinchen
Miinchen, Germany

In this talk a model checking algorithm for Hnear time temporal logic and one safe Petri
nets was developed, which t raverses the state space online: That is, atoms -consisting of
a state (marking) of the net and a guess for "until" subformulas- are constructed depth
first, and upon backtrack from the recursion the strongly connected components of these
atoms are checked for unsatisfied eventualities.

Then an improvement of this algorithm was derived, which avoids the usual state
explosion problem by generating only some out of all possible interleaving execution se
quences. This is done by looking at the dependency of an arbitrary enabled transition
t: t' is in the dependency of t if the firing of t' could lead to the firing of a t ransition
conflicting with t . Special attention has to be paid to those transitions which may alter
the truth value of the given formula as well as to continuously enabled t ransitions.

Experimental results show that for nets with little or no conflict it is possible to reduce
the exponential complexity of the problem to a linear complexity.

14Joint work with Tomohiro Yoneda, Tokyo Institute of Technology, and Edmund M. Clarke, Carnegie-
Mellon-University.

27

Semantic Domains with Congruences

Gunther Schmidt�
Universität der Bundeswehr München

München, Germany

Rigorous software development requires among other concepts higher order functions
and algebraic speci�cations. For the semantical foundation of higher order functions
researchers use constructs like countably algebraic cpo�s. Algebraic speci�cations are in-
terpreted considering the term algebra in which congruences are introduced by laws. If
these aspects are studied together, the orderings and congruences obtained should be
compatible with one another. We de�ne the concept of compatibility of an inductive
ordering with a congruence. As our main result we show how to close a class of algebraic
cpo�s against division by a congruence. To obtain the result some additional require-
ments are necessary which, however, are satisfied when the congruence originates from
the introduction of algebraic laws.

Interactive Programming with Higher Order Objects,
Part I16

Gunther Schmidt

Universität der Bundeswehr München

München, Germany

A report on the system HOPS (Higher Object Programming System) is given. Basically
spoken, the HOPS-System gives a set of LEGO-like bricks or building-blocks that may
be visualized on the screen and manipulated by the mouse under strong system control.
The bricks offered resemble generic constructs to be obtained in connection with the
universal characterization of domain constructions such as explicit domains, direct sum,
direct product, function space, inverse limit construction, lifting, introduction of new sorts
and function symbols as well as the introduction of new algebraic laws.

The approach taken gives the opportunity of using higher order and algebraic con-
structs together. Furthermore, it is possible to parameterize the constructs obtained on
all levels.

The system is planned to enable type-controlled constructions of directed acyclic
graphs (DAGs) that can afterwards be transformed using self-de�ned rules by some so-
phisticated rule-automaton. At the end of a development the emission of program text
in the usual programming languages is possible. In prototypes the generation of texts in
ADA, PASCAL, Modula-2 and C has been studied.

The report focussed on several aspects of the system: DAG-manipulation, layered
DAG-language, rule-formalization, relational semantics of the DAG-language and issues
raised in programming methodology.

�This is joint work with Peter Kempf, Universität der Bundeswehr München.
168cc also �Interactive Programming with Higher Order Objects, Part II � by Rudolf Berghammer.

28

Semantic Domains with Congruences

Gunther Schmidt 15

Universitat der Bundeswehr Miinchen
Miinchen, Germany

Rigorous software development requires among other concepts higher order functions
and algebraic specifications. For the semantical foundation of higher order functions
researchers use constructs like countably algebraic cpo's. Algebraic specifications are in
terpreted considering the term algebra in which congruences are introduced by laws. If
these aspects are studied together, the orderings and congruences obtained should be
compatible with one another. We define the concept of compatibility of an inductive
ordering with a congruence. As our main result we show how to close a class of algebraic
cpo's against division by a congruence. To obtain the result some additional require
ments are necessary which, however, are satisfied when the congruence originates from
the introduction of algebraic laws.

Interactive Programming with Higher Order Objects,
Part 116

Gunther Schmidt
Universitat der Bundeswehr Miinchen

Miinchen, Germany

A report on the system HOPS (Higher Object Programming System) is given. Basically
spoken, the HOPS-System gives a set of LEGO-like bricks or building-blocks that may
be visualized on the screen and manipulated by the mouse under strong system control.
The bricks offered resemble generic constructs to be obtained in connection with the
universal characterization of domain constructions such as explicit domains, direct sum,
direct product, function space, inverse limit construction, lifting, introduction of new sorts
and function symbols as well as the introduction of new algebraic laws.

The approach taken gives the opportunity of using higher order and algebraic con
structs together. Furthermore, it is possible to parameterize the constructs obtained on
all levels.

The system is planned to enable type-controlled constructions of directed acyclic
graphs (DAGs) that can afterwards be transformed using self-defined rules by some so
phisticated rule-automaton. At the end of a development the emission of program text
in the usual programming languages is possible. In prototypes the generation of texts in
ADA, PASCAL, Modula-2 and Chas been studied.

The report focussed on several aspects of the system: DAG-manipulation, layered
DAG-language, rule-formalization, relational semantics of the DAG-language and issues
raised in programming methodology.

15This is joint work with Peter Kempf, Universitat der Bundeswehr Miinchen.
16See also "Interactive Programming with Higher Order Objects, Part II" by Rudolf Berghammer.

28

Logic Based Program Development and Tactical
Theorem Proving

Werner Stephan
Universität Karlsruhe

Karlsruhe, Germany

Tactical Theorem Proving is proposed as a promising architecture for deduction systems
to be used in formal program development. By an example, the derivation of an algorithm
that computes equivalence classes, it is shown how entirely different deduction problems
occur as proof obligations. The presentation is based on Dynamic Logic that forms the
logical basis of the Karlsruhe Interactive Veri�er. Problems mentioned are the synthesis
and a posteriori veri�cation of program fragments satisfying certain correctness assertions,
the proof of veri�cation conditions, and the logical treatment of program transformations
and data-re�nements. It is argued that Tactical Theorem Proving can be used to integrate
the various derived calculi and special purpose systems appropriate for these classes of
deduction problems into a common framework.

29

Logic Based Program Development and Tactical
Theorem Proving

Werner Stephan
Universitat Karlsruhe
Karlsruhe, Germany

Tactical Theorem Proving is proposed as a promising architecture for deduction systems
to be used in formal program development. By an example, the derivation of an algorithm
that computes equivalence classes, it is shown how entirely different deduction problems
occur as proof obligations. The presentation is based on Dynamic Logic that forms the
logical basis of the Karlsruhe Interactive Verifier. Problems mentioned are the synthesis
and a posteriori verification of program fragments satisfying certain correctness assertions,
the proof of verification conditions, and the logical t reatment of program transformations
and data-refinements. It is argued that Tactical Theorem Proving can be used to integrate
the various derived calculi and special purpose systems appropriate for these classes of
deduction problems into a common framework.

29

Dagstuhl-Seminar 9203 List of Participants (update: 4. 8. 92)

Jaco W. de Bakker Peter Forbrig
CWI � Mathematisch Centrum Universität Rostock
Kruislaan 413 Fachbereich Informatik
NL-1098 SJ Amsterdam Albert-Einstein-Str. 21
The Netherlands O-2500 Rostock
mieke@cwi.nI Germany
teI.: +31 20 592 4136/ 4058 forbrig@informatik.uni-rostock.dbp.de

teI.: +37 81 44424 162

Rudolf Berghammer
Universität der Bundeswehr München Gerhard Goos
Fakultät für Informatik Universität Karlsruhe
Institut fuer Programmiersprachen Fakultät für Informatik
Werner-Heisenberg-Weg 39 Vincenz-Prie ßnitz-Str. 1
W-8014 Neubiberg W-7500 Karlsruhe
Germany Germany
rudolf@informatik.unibw-muenchen.de ggoos@ira.uka.da
teI.: +49-89 6004 2261 teI.: +49-721 66 22 66

Jonathan Bowen Michal Grabowski
Oxford University University of Warsaw
Computing Laboratory Institute of Informatics
Programming Research Group UI. Banacha 2
11 Keble Road 02-097 Warszawa
Oxford OX1 3QD Poland
Great Britain mich@mimuw.edu.pI
Jonathan.Bowen@comlab.ox.ac.uk teI.: +48 22 658 31 65 �
teI.: +44 865 27 25 74/ 27 38 40 (Secr.)

Jifeng He
Manfred Broy Oxford University
TU München Computing Laboratory
Institut für Informatik Programming Research Group
Arcisstral3e 21 11 Keble Road
W-8000 München 2 Oxford OX1 3QD
Germany Great Britain
broy@lan.informatik.tu-muenchen.dbp.de jifeng@prg.oxford.ac.uk
teI.: +49-89 2105 8161 teI.: +44 865 27 25 75

Ole-Johan Dahl Friedrich Wilhelm v. Henke
Universitetet i Oslo Universität Ulm
Institutt for lnformatikk Fakultät für Informatik
Postboks 1080 Blindern James-Franck-Ring
0316 Oslo W-7900 Ulm
Norway German
olejohan@ifi.uio.no vhenke informatik.uni-ulm.de
teI.: +47 2 45 34 48 tel.: +49-731 502 4120

Walter Dosch Hardi Hungar
Universität Augsburg Universität Oldenburg
Institut für Mathematik FB 10 - Informatik
Universitätsstraße Ammerländer Herrstr. 114
W� 8900 Augsburg W-2900 Oldenburg
Germany Germany
dosch@uni-augsburg.de hardi.hungar@arbi.informatik.uni-oIdenburg.de
teI.: +49-821 598 2170 teI.: 449-441 798 3046

Dagstuhl-Seminar 9203

Jaco W. de Bakker
CWI - Mathematisch Centrum
Kruislaan 413
NL-1098 SJ Amsterdam
The Netherlands
mieke@cwi.nl
tel.: +31 20 592 4136 / 4058

Rudolf Berghammer
Universitat der Bundeswehr Munchen
Fakultat fur lnformatik
lnstitut fuer Programmiersprachen
Werner-Heisenberg-Wag 39
W-8014 Neubiberg
Germany
rudolf@informatik.unibw-muenchen.de
tel. : +49-89 6004 2261

Jonathan Bowen
Oxford University
Computing Laboratory
Programming Research Group
11 Keble Road
Oxford OX1 3OD
Great Britain
Jonathan.Bowen@comlab.ox.ac.uk
tel. : +44 865 27 25 7 4 I 27 38 40 (Seer.)

Manfred Broy
TU Munchen
lnstitut fur lnformatik
ArcisstraBe 21
W-8000 Munchen 2
Germany
broy@lan.informatik.tu-muenchen.dbp.de
tel.: +49-89 2105 8161

Ole-Johan Dahl
Universitetet i Oslo
lnstitutt for lnformatikk
Postboks 1080 Blindern
0316 Oslo
Norway
olejohan@ifi.uio.no
tel.: +47 2 45 34 48

Walter Dosch
Universitat Augsburg
lnstitut fur Mathematik
Universitatsstra Be
W- 8900 Augsburg
Germany
dosch@uni-augsburg.de
tel. : +49-821 598 2170

List of Participants (update: 4. 8. 92)

Peter Forbrtg
Universitat Restock
Fachbereich lnformatik
Albert-Einstein-Str. 21
0-2500 Restock
Germany
forbrig@i nformatik.u n i-rostock. dbp. de
tel.: +37 81 44424 162

Gerhard Goos
Universitat Karlsruhe
Fakultat fur lnformatik
Vincenz-PrieBnitz-Str. 1
W-7500 Karlsruhe
Germany
ggoos@ira.uka.da
tel. : +49-721 66 22 66

Michal Grabowski
University of Warsaw
Institute of Informatics
UI. Banacha 2
02-097 Warszawa
Poland
mich@mimuw.edu.pl
tel. : +48 22 658 31 65

Jifeng He
Oxford University
Computing Laboratory
Programming Research Group
11 Keble Road
Oxford OX1 3OD
Great Britain
jifeng@prg.oxford.ac.uk
tel. : +44 865 27 25 75

Friedrich Wilhelm v. Henke
Universitat Ulm
Fakultat fur lnformatik
James-Franck-Ring
W-7900 Ulm
Germany
vhenke@informatik.uni-ulm.de
tel. : +49-731 502 4120

Hardi Hungar
Universitat Oldenburg
FB 10 - lnformatik
Ammerlander Herrstr. 114
W-2900 Oldenburg
Germany
hardi.hungar@arbi.informatik.uni-oldenburg.de
tel.: +49-441 798 3046

Stefan Jähnichen Vladimir Levin
TU Berlin - GMD-FIRST Keldysh Institute of Applied Mathematics
Forschungszentrum Innovative Miusskaya sg.4
Rechnersysteme und Softwaretechnik Moskau 125047
Hardenbergplatz 2 Russia
W-1000 Berlin 12 VLGAL@KELDYSH.MSK.SU
Germany tel.: +7 095 333 80 45
jaehn@cs.tu-berlln.de
teI.: +49-30 254 99 104 Claus Lewerentz

FZI Karlsruhe
Burghard von Karger Haid-und-Neu-Straße 10-14
Universität Kiel W-7500 Karlsruhe 1
Inst. für Informatik und Prakt. Mathematik Germany
Haus II � lewerentz@fzi.de
Preusserstrasse 1-9 teI.: +49-721 9654 602
W-2300 Kiel 1

Germany Grazyna Mirkowska
bvk@causun.uucp Université de Pau
teI.: +49-431 56 O4 37 Departement d�lnformatique

Avenue de l�Université
Jens Knoop F-64000 Pau
Universität Kiel France
Inst. für Informatik und Prakt. Mathematik mirkowska@fruppa51.bitnet
Haus II teI.: +33 59 92 31 54
Preusserstrasse 1-9
W-2300 Kiel 1 Nikolai Nikitchenko
Germany Kiew State University
jk@informatik.uni-kiel.dbp.de Departement of Cybernetics
teI.: +49-431 56 O4 34 Vladimizskaja Street 64

Kiew-17
Antoni Kreczmar Ukraine
University of Warsaw teI.: +7 044 513 34 O4 (home)
Institute of I nformatics
UI. Banacha 2 Manfred Paul
02-097 Warszawa TU München
Poland Institut für Informatik
antek@plearn.bitnet Arcisstraße 21
teI.: +48 22 658 31 64 W-8000 München 2

Germany
Hans Langmaack pauI@informatik.tu-muenchen.de
Universität Kiel teI.: +49-89 48095 161
Inst. für Informatik und Prakt. Mathematik
Haus ll Amir Pnueli
Preusserstrasse 1-9 Weizmann Institute
W-2300 Kiel 1 Departement of Appl. Mathematics
Germany P.O. Box 26
hl@causun.uucp 76100 Rehovot
teI.: +49-431 56 04 28/27 (Sekr.) Israel

amir@wisdom.weizmann.ac.iI
Peter Lauer teI.: +972-8-343434
McMaster University
Dept. of Comp. Soience & Systems Andreas Prinz
1280 Main Street West Humboldt Universität
Hamilton Ontario L8S 4K1 Fachbereich lnformatik
Canada Unter den Linden 6
Iauer@mcmaster.oa O-1086 Berlin
teI.: +1 416 648 1525 Germany

prinz@hubinf.uucp
teI.: +37 2 2093 2348

Stefan Jlhnlchen
TU Berlin - GMO-FIRST
Forschungszentrum Innovative
Rechnersysteme und Softwaretechnik
Hardenbergplatz 2
W-1000 Berlin 12
Germany
jaehn@cs.tu-berlin.de
tel. : +49-30 254 99 104

Burghard von Karger
Universitat Kiel
Inst. fur lnformatik und Prakt Mathematik
Haus II
Preusserstrasse 1-9
W-2300 Kiel 1
Germany
bvk@causun.uucp
tel.: +49-431 56 04 37

Jens Knoop
Universitat Kiel
Inst. fur lnformatik und Prakt. Mathematik
Haus II
Preusserstrasse 1-9
W-2300 Kiel 1
Germany
jk@informatik.uni-kiel.dbp.de
tel. : +49-431 56 04 34

Antoni Kreczmar
University of Warsaw
Institute of Informatics
UI. Banacha 2
02-097 Warszawa
Poland
antek@plearn. bit net
tel.: +48 22 658 31 64

Hans Langmaack
Universitat Kiel
Inst. fur lnformatik und Prakt. Mathematik
Haus II
Preusserstrasse 1-9
W-2300 Kiel 1
Germany
h l@causun. uucp
tel.: +49-431 56 04 28 / 27 (Sekr.)

Peter Lauer
McMaster University
Dept. of Comp. Science & Systems
1280 Main Street West
Hamilton Ontario L8S 4K1
Canada
lauer@mcmaster.ca
tel. : + 1 416 648 1 525

Vladimir Levin
Keldysh Institute of Applied Mathematics
Miusskaya sg.4
Moskau 12504 7
Russia
VLGAL@KELDYSH.MSK.SU
tel. : + 7 095 333 80 45

Claus Lewerentz
FZI Karlsruhe
Haid-und-Neu-StraBe 10-14
W-7500 Karlsruhe 1
Germany
lewerentz@fzi.de
tel. : +49-721 9654 602

Grazyna Mlrkowska
Universite de Pau
Departement d'lnformatique
Avenue de l'Universite
F-64000 Pau
France
mirkowska@fruppa51 .bitnet
tel. : +33 59 92 31 54

Nikolai Nikltchenko
Kiew State University
Departement of Cybernetics
Vladimizskaja Street 64
Kiew-17
Ukraine
tel.: +7 044 513 34 04 (home)

Manfred Paul
TU Munchen
lnstitut fur lnformatik
Arcisstra Be 21
W-8000 Munchen 2
Germany
paul@informatik.tu-muenchen.de
tel. : +49-89 48095 161

Amir Pnuell
Weizmann Institute
Departement of Appl. Mathematics
P.O. Box 26
76100 Rehovot
Israel
amir@wisdom.weizmann.ac.il
tel. : +972-8-343434

Andreas Prinz
Humboldt Universitat
Fachbereich lnformatik
Unter den Linden 6
0 -1086 Berlin
Germany
prinz@hubinf .uucp
tel. : +37 2 2093 2348

Anders P. Ravn Holger Schlingloff
Danmarks Teknikske Hojskole TU München
Instituttet for Datateknik Institut für Informatik
Build. 344 Arcisstraße 21
DK-2800 Lyngby W-8000 München 2
Danmark Germany
apr@id.dth.dk schIingI@informatik.tu-muenchen�de
teI.: +45-45 93 12 22-37 47 teI.: +49-89 48095 140

Wolfgang Reisig Gunther Schmidt
TU München Universität der Bundeswehr München
Institut für Informatik Fakultät für Informatik
Arcisstraße 21 Werner-Heisenberg-Weg 39
W-8000 München 2 W-8014 Neubiberg
Germany . Germany
reisig@Ian.informatik.tu-muenchen.dbp.de schmidt@informatik.unibw-muenchen.de
teI.: +49-89 2105 2405 teI.: +49-89 6004 24 49/ 22 63

Günter Riedewald Werner Stephan
Universität Rostock Universität Karlsruhe
Fachbereich Informatik Fakultät für Informatik
Albert-Einstein-Str. 21 Postfach 6980
0-2500 Rostock W-7500 Karlsruhe
Germany Germany
riedewaId@uni-rostock.informatik.dbp.de stephan@ira.uka.de
teI.: +37 81 44 4 24 App. 117 teI.: +49-721 608 39 77

Willem P. de Roever
Universität Kiel
Inst. für Informatik und Prakt. Mathematik
Haus II
Preusserstrasse 1-9
W-2300 Kiel 1

Germany
wpr@informatik.uni-kieI.dbp.de
teI.: +49-431 56 04 71 /74

Andrzej Salwicki
Universite de Pau
Departement d�lnformatique
Avenue de I'Universite
64000 Pau
France
sa|wicki@fruppa51 .bitnet
teI.: +33 59 92 31 54

Donald Sannella
Universit of Edinburgh
Dept. of omputer Science
Mayfield Road
Edinburgh EH9 3.JZ
Great Britain
dts@dcs.ed.ac.uk
teI.: +44 31 650 51 84

Anders P. Ravn
Danmarks Teknikske Hojskole
lnstituttet for Datateknik
Build. 344
DK-2800 Lyngby
Danmark
apr@id.dth.dk
tel. : +45-45 93 12 22-37 47

Wolfgang Reisig
TU Munchen
lnstitut fur lnformatik
ArcisstraBe 21
W-8000 Munchen 2
Germany
reisig@lan.informatik.tu-muenchen.dbp.de
tel.: +49-89 2105 2405

Gunter Riedewald
Universitat Restock
Fachbereich lnformatik
Albert-Einstein-Str. 21
0 -2500 Restock
Germany
riedewald@uni-rostock.informatik.dbp.de
tel.: +37 81 44 4 24 App. 117

Willem P. de Roever
Universitat Kiel
Inst. fur lnformatik und Prakt. Mathematik
Haus II
Preusserstrasse 1-9
W-2300 Kiel 1
Germany
wpr@informatik.uni-kiel.dbp.de
tel.: +49-431 56 04 71 I 7 4

Andrzej Salwlcki
Universite de Pau
Departement d'lnformatique
Avenue de l'Universite
64000 Pau
France
salwicki@fruppa51 .bitnet
tel. : +33 59 92 31 54

Donald Sannella
University of Edinburgh
Dept. of Computer Science
Mayfield Road
Edinburgh EH9 3JZ
Great Britain
dts@dcs.ed.ac.uk
tel. : +44 31 650 51 84

Holger Schllngloff
TU Munchen
lnstitut fur lnformatik
ArcisstraBe 21
W-8000 Munchen 2
Germany
schlingl@informatik.tu-muenchen.de
tel. : +49-89 48095 140

Gunther Schmidt
Universitat der Bundeswehr Munchen
Fakultat fur lnformatik
Werner-Heisenberg-Weg 39
W-8014 Neubiberg
Germany
schmidt@informatik.unibw-muenchen.de
tel. : +49-89 6004 24 49 / 22 63

Werner Stephan
Universitat Karlsruhe
Fakultat fur lnformatik
Postfach 6980
W-7500 Karlsruhe
Germany
stephan@ira.uka.de
tel.: +49-721 608 39 77

Zuletzt erschienene und geplante Titel:
G. Farin� H. Hagen, H. Noltemeier (editors):

Geometric Modelling, Dagstuhl-Seminar-Fleport; 17, 1.-5.7.1991 (9127)

A. Karshmer, J. Nehmer (editors):
Operating Systems of the 90s and Beyond, Dagstuhl-Seminar-Fieport; 18, 8.-12.7.1991 (9128)

H. Hagen, H. Müller, G.M. Nielscn (editors):
Scientific Visualization, Dagstuhl-Seminar-Report; 19, 26.8.-30.8.91 (9135)

T. Lengauer, Ft. Mohring, B. Preas (editors):
Theory and Practice of Physical Design of VLSI Systems, Dagstuhl-Seminar-Report; 20. 2.9.-
6.9.91 (9136)

F. Bancilhon, P. Lockemann, D. Tsichritzis (editors):
Directions of Future Database Research, Dagstuhl-Seminar-Report; 21, 9.9.-12.9.91 (9137)

H. Alt , B. Chazelle, E. Welzl (editors):
Computational Geometry, Dagstuhl-Seminar-Report; 22, 07.10.-1 1.10.91 (9141)

F.J. Brandenburg ,J. Berstel, D. Wotschke (editors):
Trends and Applications in Formal Language Theory, Dagstuhl-Seminar-Fleport; 23, 14.10.-
18.10.91 (9142)

H. Comon , H. Ganzinger, C. Kirchner, H. Kirchner, J.-L. Lassez , G. Smolka (editors):
Theorem Proving and Logic Programming with Constraints, Dagstuhl-Seminar-Report; 24,
21.10.-25.10.91 (9143)

H. Noltemeier, T. Ottmann, D. Wood (editors): A
Data Structures, Dagstuhl-Seminar-Fleport; 25, 4.11.-8.11.91 (9145)

A. Dress, M. Karpinski, M. Singer(editors):
Efficient Interpolation Algorithms, Dagstuhl-Seminar-Report; 26, 2.-6.12.91 (9149) .

B. Buchberger, J. Davenport, F. Schwarz (editors):
Algorithms of Computeralgebra, Dagstuhl-Seminar-Fieport; 27, 16.-20.12.91 (9151)

K. Compton, J.E. Pin , W. Thomas (editors):
Automata Theory: Infinite Computations, Dagstuhl-Seminar-Fieport; 28, 6.-10.1.92 (9202)

H. Langmaack, E. Neuhold, M. Paul (editors):
Software Construction - Foundation and Application, Dagstuhl-Seminar-Report; 29, 13..-17.1.92
(9203)

K. Ambos-Spies, S. Homer, U. Schöning (editors):
Structure and Complexity Theory, Dagstuhl-Seminar-Report; 30, 3.-7.02.92 (9206)

B. Booß, W. Coy, J.-M. Pfliiger (editors):
Limits of Modelling with Programmed Machines, Dagstuhl-Seminar-Report; 31, 10.-14.2.92
(9207)

K. Compton, J.E. Pin , W. Thomas (editors):
Automata Theory: Infinite Computations, Dagstuhl-Seminar-Report; 28, 6.-10.1.92 (9202)

H. Langmaack, E. Neuhold, M. Paul (editors):
Software Construction - Foundation and Application, Dagstuhl-Seminar-Report; 29, 13.-17.1.92
(9203)

K. Ambos-Spies, S. Homer, U. Schöning (editors):
Structure and Complexity Theory, Dagstuhl-Seminar-Report; 30, 3.-7.2.92 (9206)

B. Booß, W. Coy, J.�M. Pflüger (editors):
Limits of Information-technological Models, Dagstuhl-Seminar-Report; 31 , 10.-14.2.92 (9207)

N. Habermann, W.F. Tichy (editors):
Future Directions in Software Engineering, Dagstuhl-Seminar-Report; 32; 17.2.-21.2.92 (9208)

Zuletzt erschlenene und geplante Titel:

G. Farin, H. Hagen, H. Noltemeier (editors):
Geometric Modelling, Dagstuhl-Seminar-Report: 17, 1.-5.7.1991 (9127)

A. Karshmer, J. Nehmer (editors):
Operating Systems of the 90s and Beyond, Dagstuhl-Seminar-Report; 18, 8.-12.7.1991 (9128)

H. Hagen, H. MOiier, G .M. Nielson (editors):
Scientific Visualization, Dagstuhl-Seminar-Report: 19, 26.8.-30.8.91 (9135)

T. Lengauer, A. Mohring, B. Preas (editors) :
Theory and Practice of Physical Design of VLSI Systems, Dagstuhl-Seminar-Report : 20, 2.9.·
6.9.91 (9136) .

F. Bancilhon, P. Lockemann, D. Tsichritzis (editors):
Directions of Future Database Research, Dagstuhl-Seminar-Report; 21 , 9.9.-12.9 .91 (9137)

H. Alt , B. Chazelle, E. Welzl (editors):
Computational Geometry, Dagstuhl-Seminar-Report: 22, 07.10.-11 .10.91 (91 41)

F.J. Brandenburg , J. Berstel, D. Wotschke (editors) :
Trends and Applications in Formal Language Theory, Dagstuhl-Seminar-Report: 23, 14.10.-
18.10.91 (9142)

H. Camon , H. Ganzinger, C. Kirchner, H. Kirchner, J.-L. Lassez , G. Smolka (editors):
Theorem Proving and Logic Programming with Constraints, Dagstuhl-Seminar-Report: 24,
21 .10.-25.10.91 (9143)

H. Noltemeier, T. Ottmann, D. Wood (editors):
Data Structures, Dagstuhl-Seminar-Report : 25, 4.11.-8.11.91 (9145)

A. Dress, M. Karpinski, M. Singer(editors):
Efficient Interpolation Algorithms, Dagstuhl-Seminar-Report: 26, 2.-6.12.91 (9149)

B. Buchberger, J. Davenport, F. Schwarz (editors) :
Algorithms of Computeralgebra, Dagstuhl-Seminar-Report: 27, 16.-20.12.91 (9151)

K. Compton, J.E. Pin , W. Thomas (editors):
Automata Theory: Infinite Computations, Dagstuhl-Seminar-Report; 28, 6.-10.1.92 (9202)

H. Langmaack, E. Neuhold, M. Paul (editors):
Software Construction - Foundation and Application, Dagstuhl-Seminar-Report: 29, 13 .. -17.1.92
(9203)

K. Ambos-Spies, s. Homer, U. Schoning (editors) :
Structure and Complexity Theory, Oagstuhl-Seminar-Report: 30, 3.-7.02.92 (9206)

B. BooB, W. Coy, J.-M. Pfluger (editors):
Limits of Modelling with Programmed Machines, Dagstuhl-Seminar-Report: 31 , 10.-14.2.92
(9207)

K. Compton, J.E. Pin, W. Thomas (editors):
Automata Theory: Infinite Computations, Dagstuhl-Seminar-Report: 28, 6.-10.1.92 (9202)

H. Langmaack, E. Neuhold, M. Paul (editors):
Software Construction - Foundation and Application, Dagstuhl-Seminar-Report: 29, 13.-17.1.92
(9203)

K. Ambos-Spies, S. Homer, U. SchOning (editors):
Structure and Complexity Theory, Dagstuhl-Seminar-Report; 30, 3.-7.2.92 (9206)

B. Bool3, W . Coy, J .-M. Pfluger (editors) :
Limits of Information-technological Models, Dagstuhl-Seminar-Report; 31, 10.-14.2.92 (9207)

N. Habermann, W.F. Tichy (editors) :
Future Directions in Software Engineering, Oagstuhl-Seminar-Report: 32: 17.2.-21 .2.92 (92u8)

Fl. Cole, E.w. Mayr� F. Meyer auf der Heide (editors):
Parallel and Distributed Algorithms; Dagstuhl-Seminar-Report; 33; 2.3.-6.3.92 (9210)

P. Klint, T. Reps, G. Snelting (editors):
Programming Environments; Dagstuhl-Seminar-Report; 34; 9.3.-13.3.92 (9211)

H.-D. Ehrich, J.A. Goguen, A. Sernadas (editors):
Foundations of Information Systems Specification and Design; Dagstuhl-Seminar-Report; 35;
16.3.�19.3.9 (9212)

W. Damm, Ch. Hankin� J. Hughes (editors):
Functional Languages:
Compiler Technology and Parallelism; Dagstuhl-Seminar-Report; 36; 23.3.-27.3.92 (9213)

Th. Beth, W. Diffie, G.J. Simmons (editors):
System Security; Dagstuhl-Seminar-Report; 37; 30.3.-3.4.92 (9214)

C.A. Ellis, M. Jarke (editors): �
Distributed Cooperation in Integrated Information Systems; DagstuhI-Seminar-Report; 38; 5.4.-
9.4.92 (9215)

J. Buchmann, H. Niederreiter, A.M. Odlyzko. H.G. Zimmer (editors):
Algorithms and Number Theory, Dagstuhl-Seminar-Report; 39; 22.06.-26.06.92 (9226)

E. Börger, Y. Gurevich, H. KIeine-Büning, M.M. Richter (editors):
Computer Science Logic, Dagstuhl-Seminar-Report: 40; 13.07.-17.07.92 (9229)

J. von zur Gathen, M. Karpinski, D. Kozen (editors):
Algebraic Complexity and Parallelism, Dagstuhi-Seminar-Report; 41; 20.07.-24.07.92 (9230)

F. Baader, J. Siekmann, W. Snyder (editors):
6th International Workshop on Unitication� DagstuhI-Seminar-Report; 42; 29.07.�31.07.92 (9231)

J.W. Davenport, F. Krückeberg, R.E. Moore. S. Rump (editors):
Symbolic, algebraic and validated numerical Computation, Dagstuhl-Seminar-Report; 43; 03.08.-
o7.o3.92 (9232)

Ft. Cohen, W. Wahlster (editors):
3rd International Workshop on User Modeling, DagstuhI-Seminar-Fleport; 44; 10.-14.8.92 (9233)

R. Fieischuk, D. Uhlig (editors):
Complexity and Realization of Boolean Functions, Dagstuhl-Seminar-Report; 45; 24.08.-
28.08.92 (9235)

Th. Lengauer, D. Schomburg, M.S. Waterman (editors):
Molecular Bioinformatics, Dagstuhl-Seminar-Report; 46; 07.09.-11.09.92 (9237)

V.Fl. Basili, H.D. Flombach, R.W. Selby (editors):
Experimental Software Engineering Issues, DagstuhI-Seminar-Report; 47; 14.-18.09.92 (9238)

Y. Dittrich, H. Hastedt, P. Schefe (editors):
_ Computer Science and Philosophy, Dagstuhl-Seminar-Report; 48; 21 .09.-25.09.92 (9239)

R.P. Daley, U. Purbach, K.P. Jantke (editors):
Analogical and Inductive Interence 1992 . Dagstuhl-Seminar-Report; 49; 05.10.-09.10.92 (9241)

E. Novak, St. Smale, J.F. Traub (editors):
Algorithms and Complexity of Continuous Problems, Dagstuhl-Seminar-Report; 50; 12.10.-
16.10.92 (9242)

J. Encarnacao. J. Foley (editors):
Multimedia - System Architectures and Applications, Dagstuhl-Seminar-Report; 51; 02.11.-
06.1 1.92 (9245)

F.J. Flammig, J. Staunstrup� G. Zimmermann (editors):
Self-Timed Design, Dagstuhl-Seminar-Report; 52; 30.11.-04.12.92 (9249)

A. Cole, E.W. Mayr, F. Meyer auf der Heide (editors):
Parallel and Distributed Algorithms; Dagstuhl-Seminar-Report; 33; 2.3.-6.3.92 (9210)

P. Klint, T. Reps, G. Snelting (editors) :
Programming Environments; Dagstuhl-Seminar-Report; 34; 9.3.-13.3.92 (921 1)

H.-O. Ehrich, J.A. Goguen, A. Sernadas (editors):
Foundations of Information Systems Specification and Design; Dagstuhl-Seminar-Report; 35;
16.3.-19.3.9 (9212)

W. Damm. Ch. Hankin, J. Hughes (editors):
Functional Languages:
Compiler Technology and Parallelism; Dagstuhl-Seminar-Report; 36; 23.3.-27.3.92 (9213)

Th. Beth, W. Diffie, G.J. Simmons (editors):
System Security; Dagstuhl-Seminar-Report; 37; 30.3.-3.4.92 (9214)

C.A. Ellis, M. Jarke (editors):
Distributed Cooperation in Integrated Information Systems; Dagstuhl-Seminar-Report; 38; 5 .4.-
9 .4.92 (9215)

J. Buchmann, H. Niederreiter, A.M. Odlyzko, H.G. Zimmer (editors):
Algorithms and Number Theory, Dagstuhl-Seminar-Report; 39; 22.06.-26.06.92 (9226)

E. B6rger, Y. Gurevich, H. Kleine-Boning, M.M. Richter (editors):
Computer Science Logic, Dagstuhl-Seminar-Report: 40; 13.07.-17.07.92 (9229)

J. von zur Gathen, M. Karpinski, D. Kozen (editors):
Algebraic Complexity and Parallelism, Dagstuhi-Seminar-Report; 41 : 20.07.-24.07.92 (9230)

F. Baader, J . Siekmann, W. Snyder (editors):
6th International Workshop on Unification, Dagstuhl-Seminar-Report; 42; 29.07.-31 .07.92 (9231)

J.W. Davenport, F. Kruckebe,g, R.E. Moore. S. Rump (editors):
Symbolic, algebraic and validated numerical Computation, Dagstuhl-Seminar-Report; 43: 03.08.-
07.08.92 (9232)

R. Cohen, W. Wahlster (editors):
3rd International Workshop on User Modeling, Dagstuhl-Seminar-Report; 44; 10.-1 4.8.92 (9233)

A. Reischuk, D. Uhlig (editors):
Complexity and Realization of Boolean Functions. Dagstuhl-Seminar-Report; 45; 24.08.-
28.08.92 (9235)

Th. Lengauer, D. Schomburg, M.S. Waterman (editors):
Molecular Bioinformatics, Dagstuhl-Seminar-Report; 46; 07.09.-11 .09.92 (9237)

V.R. Basili , H.D. Rombach, R.W. Selby (editors):
Experimental Software Engineering Issues, Dagstuhl-Seminar-Report; 47; 14.-18.09.92 (9238)

Y. Dittrich. H. Hastedt, P. Schefe (editors):
Computer Science and Philosophy, Dagstuhl-Seminar-Report; 48; 21 .09.-25.09.92 (9239)

R.P. Daley, U. Furbach, K.P. Jantke (editors):
Analogical and Inductive Inference 1992. Dagstuhl-Seminar-Report : 49; 05.10.-09.10.92 (9241)

E. Novak. St. Smale, J.F. Traub (editors) :
Algorithms and Complexity of Continuous Problems, Dagstuhl-Seminar-Report: 50; 12.10.-
16.10.92 (9242)

J. Encarna"ao. J. Foley (editors):
Multimedia - System Architectures and Applications, Dagstuhl-Seminar-Report; 51 ; 02.11 .-
06.11 .92 (9245)

F.J. Rammig, J. Staunstrup, G. Zimmermann (editors):
Self-Timed Design, Dagstuhl-Seminar-Report; 52; 30.11.-04.12.92 (9249)

