
Hans-Dieter Ehrich, Joseph A. Goguen,
Amilcar Sernadas (editors):

Foundations of Information Systems
Specification and Design

Dagstuhl-Seminar-Report; 35
16.-19.3.9 (9212)

Hans-Dieter Ehrich, Joseph A. Goguen,
Amilcar Sernadas (editors):

Foundations of Information Systems
Specification and Design

Dagstuhl-Seminar-Report; 35
16.-19.3.9 (9212)

ISSN 0940-1121

Copyright © 1992 by IBFI GmbH, Schloß Dagstuhl, W-6648 Wadern, Germany
' Tel.: +49�6871 - 2458

Fax: +49-6871 - 5942

Das Internationales Begegnungs- und Forschungszentrum für Informatik (IBFI) ist eine gemein-
nützige GmbH. Sie veranstaltet regelmäßig wissenschaftliche Seminare, welche nach Antrag
der Tagungsleiter und Begutachtung durch das wissenschaftliche Direktorium mit persönlich
eingeladenen Gästen durchgeführt werden. l

Verantwortlich für das Programm:
Prof. Dr.�lng. José Encarnagao,
Prof. Dr. Winfried Görke,
Prof. Dr. Theo Härder,
Dr. Michael Laska,
Prof. Dr. Thomas Lengauer,

V Prof. Ph. D. Walter Tichy, ..
Prof. Dr. Reinhard Wilhelm (wissenschaftlicher Direktor).

Gesellschafter: Universität des Saarlandes,
Universität Kaiserslautern,
Universität Karlsruhe,
Gesellschaft für Informatik e.V., Bonn

Träger: Die Bundesländer Saarland und Rheinland Pfalz.

Bezugsadresse: Geschäftsstelle Schloß Dagstuhl
Informatik, Bau 36
Universität des Saarlandes
W - 6600 Saarbrücken

Germany
Tel.: +49 �681 - 302 - 4396
Fax: +49 -681 - 302 - 4397

e-maiI: office@dag.uni-sb.de

ISSN 0940-1121

Copyright © 1992 by IBFI GmbH, SchloB Dagstuhl, W-6648 Wadern, Germany
. Tel.: +49-6871 - 2458

Fax: +49-6871 - 5942

Das lnternationales Begeg11ungs- und Forschungszentrum rur lnformatik (IBFI) 1st eine gemein
nutzige GmbH. Sie veranstaltet regelma.Big wissenschaftliche Seminare, welche nach Antrag
der Tagungsleiter und Begutachtung durch das wissenschaftliche Direktorium mit pers6nllch
eingeladenen Gasten durchgefuhrt warden.

Verantwortlich fur das Programm:
Prof. Dr.-lng. Jose Encarnayao,
Prof. Dr. Winfried Gorka,
Prof. Dr. Theo Harder,
Dr. Michael Laska,
Prof. Dr. Thomas Lengauer,
Prof. Ph. D. Walter Tichy,
Prof. Dr. Reinhard Wilhelm (wissenschaftlicher Direktor).

Gesellschafter: Universitat des Saarlandes,
Universitat Kaiserslautern,
Universitat Karlsruhe,
Gesellschaft fur lnformatik e.V., Bonn

Trager: Die Bundeslander Saarland und Rheinland Pfalz.

Bezugsadresse: Geschaftsstelle SchloB Dagstuhl
lnformatik, Bau 36
Universitat des Saarlandes
W - 6600 Saarbrucken
Germany
Tel.: +49 -681 - 302 - 4396
Fax: +49 -681 - 302 - 4397
e-mail: office@dag.uni-sb.de

Dagstuhl Seminar 9212

Foundations of Information Systems
Speci�cation and Design

16-19 March 1992

organized by

Hans-Dieter Ehrich

Abteilung Datenbanken, Technische Universität, Postfach 3329

W�33OO Braunschweig, GERMANY

Amilcar Sernadas

Computer Science Group, INESC, Apartado 10105

1017 Lisbon Codex, PORTUGAL

Joseph A. Goguen
Computing Laboratory, Programming Research Group
11 Keble Road, Oxford OX1 3QD, GREAT BRITAIN

Dagstuhl Seminar 9212

Foundations of Information Systems
Specification and Design

16-19 March 1992

organized by

Hans-Dieter Ehrich
Abteilung Datenbanken, Technische Universitat, Postfach 3329

W- 3300 Braunschweig, GERMANY

Amilcar Sernadas
Computer Science Group, INESC, Apartado 10105

1017 Lisbon Codex, PORTUGAL

Joseph A. Goguen
Computing Laboratory, Programming Research Group

11 Keble Road, Oxford OXl 3QD, GREAT BRITAIN

1

About the Workshop

Information systems are reactive systems with a (typically large) data or knowl-
edge base. Thus, information systems speci�cation and design brings areas together
which have developed separately so far: reactive systems design emphasizing pro-
cesses and concurrency, database design emphasizing conceptual and �logical� data
modeling, and knowledge base design emphasizing knowledge representation and rea-
soning.

Whereas single aspects in these areas are well understood, there is no coherent
conceptual basis for the entire spectrum of information systems design. A better
understanding of fundamental issues, however, is essential for progress in this �eld.

The purpose of the workshop was to bring together experts who have made sub-
stantial contributions to foundations in one or more of these areas, covering semantics,
logics and proof theory, language features and methodological issues. Unifying ap-
proaches addressing aspects of several areas were especially looked for. Among these,
the object-oriented paradigm and its theoretical foundation was a major focus of the

r Workshop, but alternative approaches were also well represented.

About the Workshop

Information systems are reactive systems with a (typically large) data or knowl
edge base. Thus, information systems specification and design brings areas together
which have developed separately so far: reactive systems design emphasizing pro
cesses and concurrency, database design emphasizing conceptual and "logical" data
modeling, and knowledge base design emphasizing knowledge representation and rea
soning.

Whereas single aspects in these areas are well understood, there is no coherent
conceptual basis for the entire spectrum of information systems design. A better
understanding of fundamental issues, however, is essential for progress in this field.

The purpose of the workshop was to bring together experts who have made sub
stantial contributions to foundations in one or more of these areas, covering semantics,
logics and proof theory, language features and methodological issues. Unifying a~
proaches addressing aspects of several areas were especially looked for. Among these,
the object-oriented paradigm and its theoretical foundation was a major focus of the
workshop, but alternative approaches were also well represented.

2

Participants

Egidio Astesiano, University of Genova
Catriel Beeri, The Hebrew University of Jerusalem

Joachim Biskup� Universität Hildesheim
Rod M. Burstall, University of Edinburgh
Jun-Hee Cho, ETRI Daejon, Republic of Korea

Felix Costa, INESC Lisbon
Rolf A. de By, University of Twente
Robert Demolombe, CERT / DERI Toulouse

Hans-Dieter Ehrich, Technische Universität Braunschweig
Gregor Engels, Leiden University
Jose L. Fiadeiro, IST Lisbon

Joseph A. Goguen, University of Oxford
Ralf J ungclaus, Technische Universität Braunschweig

Georg Lausen, Universität Mannheim
Udo W. Lipeck, Universität Hannover

Tom S. E. Maibaum, Imperial College London
Grant Malcolm, University of Oxford

Rainer Manthey, ECRC München
Gunter Saake, Technische Universität Braunschweig

Isidro Ramos Salavert, Universidad Politecnica de Valencia
Amilcar Sernadas, INESC Lisbon

Arne Solvberg, University of Trondheim
T. H. Tse, The University of Hong Kong
Reind Van de Riet, Vrije Universiteit Amsterdam

Roel Wieringa, Vrije Universiteit Amsterdam
Jeannette Wing, MIT Cambridge MA
David A. Wolfram, University of Oxford

Participants

Egidio Astesiano, University of Genova
Catriel Beeri, The Hebrew University of Jerusalem

Joachim Biskup, Universitit Hildesheim
Rod M. Burstall, University of Edinburgh

Jun-Hee Cho, ETRI Daejon,, Republic of Korea
Felix Costa, INESC Lisbon

Rolf A. de By, University of Twente
Robert Demolombe, CERT /DERI Toulouse

Hans-Dieter Ehrich, Technische Universitit Braunachweig
Gregor Engels, Leiden University
Jose L. Fiadeiro, 1ST Lisbon

Joseph A. Goguen, University of Oxford
Ralf Jungclaus, Technische Universitit Braunschweig

Georg Lausen, Universitat Mannheim
Udo W. Lipeck, Universitit Hannover

Tom S. E. Ma.ibaum, Imperial College London
Grant Malcolm, University of Oxford

Rainer Manthey, ECRC M iinchen
Gunter Saake, Technische Universitit Braunechweig

Isidro Ramos Salavert, Universidad Politecnica de Valencia
Amilcar Semadas, INESC Lisbon

Arne S~lvberg, University of Trondheim
T. H. Tse, The University of Hong Kong
Reind Van de Riet, Vrije Universiteit Amsterdam

Roel Wieringa, Vrije Universiteit ADUJterdam
Jeannette Wing, MIT Cambridge MA
David A. Wolfram, University of Oxford

3

Contents

E. Astesiano: D-oids and semantics of method expressions 6

C. Beeri: Algebraic Speci�cations for OODB�s � Are They Useful? . .. 7

J. Biskup: On The Design Theory for Database Schemes 8

R. M. Burstall: Proofs in Constructive Logic .. 9

F. Costa: Algebraic Theory of Transition Systems Implementation... 10

R. A. de By: A Functional Database Speci�cation Language with Sub-
typing .. 11

R. Demolombe: New Deduction Techniques to Retrieve Information in
Data and Knowledge Bases .. 12

H.-D. Ehrich: Fundamental Object Concepts and Constructions 13

G. Engels: Visual Speci�cations of Conceptual Database Schemata. .. 14

J. L. Fiadeiro: Process Semantics of Object Speci�cations 15

J. A. Goguen: Algebraic Semantics for the Object Paradigm 16

G. Lausen, H. Uphoff: Aspects of Inheritance in a Rule-Language . `
k� 17

U. W. Lipeck: Semantics and Usage of Defaults in Speci�cations 18

T. S. E. Maibaum: Logical Aspects of Object-Oriented Systems Spec-
i�cation .. 19

G. Malcolm, J. A. Goguen: Order Sorted, Hidden Sorted Re�nement 20

R. Manthey: A Meta-rule Approach to the Speci�cation of Inference
Methods in Rule-based Information Systems .. 21

G. Saake, R. J ungclaus: Language Features for Object-Oriented Spec-
i�cation of Information Systems .. 22

A. Sernadas: Object Template Institution .. 23

Contents

E . Astesiano: D-oids and semantics of method expressions 6

C . Beeri: Algebraic Specifications for OODB's - Are They Useful? . . . 7

J. Biskup: On The Design Theory for Database Schemes 8

R. M . Burstall: Proofs in Constructive Logic 9

F. Costa: Algebraic Theory of Transition Systems Implementation . . . 10

R . A. de By: A Functional Database Specification Language with Sub-
typing 11

R. Demolombe: New Deduction Techniques to Retrieve Information in
Data and Knowledge Bases . 12

H .-D. Ehrich: Fundamental Object Concepts and Constructions. 13

G. Engels: Visual Specifications of Conceptual Database Schemata ... 14

J. L. Fiadeiro: Process Semantics of Object Specifications 15

J . A . Goguen: Algebraic Semantics for the Object Paradigm 16

G . Lausen, H. Uphoff: Aspects of Inheritance in a Rule-Language. . . . 17

U. W. Lipeck: Semantics and Usage of Defaults in Specifications 18

T. S. E . Maibaum: Logical Aspects of Object- Oriented Systems Spec-
ification . 19

G. Malcolm, J. A . Goguen: Order Sorted, Hidden Sorted Refinement 20

R. Manthey: A Meta-rule Approach to the Specification of Inference
Methods in Rule-based Information Systems. 21

G . Saake, R . Jungclaus: Language Features for Object-Oriented Spec
ification of Information Systems . 22

A. Sernadas: Object Template Institution. 23

4

A. S¢lvberg: Graphical speci�cation languages and speci�cational com-
plexity .. 24

T. H. Tse: Functional Object-Oriented Design (FOOD) 25

R. Van de Riet: I LIKE MOKUM1 . 26

R. Wieringa, W. de Jonge: The identi�cation of objects and roles 27

J. Wing: Persistance + Undoability = 'I1'ansactions 28

D. A. Wolfram: A Sheaf Semantics for an Object-Oriented Language 29

A. SJitlvberg: Graphical specification languages and specificational com-
plexity . 24

T . H. Tse: Functional Object-Oriented Design (FOOD) 25

R . Van de Riet: I LIKE MOKUM 26

R . Wieringa, W. de Jonge: The identification of objects and roles 27

J. Wing: Persistance + Undoability = Transactions.. 28

D. A. Wolfram: A Sheaf Semantics for an Object-Oriented Language 29

5

D-oids and semantics of method expressions

Egidio Astesiano
DISI-Dipartimento di Informatica e Scienze del1�Informazione

University of Geneva, Viale Benedetto XV 3, I�16l32 Genova, ITALY

astes0igecuniv.bitnet

(Joint work with Elena Zucca)

Abstract

We introduce a formal model, dynamic structures (also called d-oids), which can
play for systems of dynamic objects the role played by algebras for modelling static
data types. D-oids may model classes of objects as universes of dynamic systems. An
instant con�guration of a system is formalized as an instant algebra, which describes,
together with the auxiliary static values, the current states of the objects existing at
that time. Passing from an instant algebra to another is the e�ect of a method. D-oids
form a category and it is shown how some intuitive equivalences between classes can
be modelled by isomorphisms. We have recently added two features to the approach,
namely the de�nition of a reduct operation, which can model instantiated inheritance,
and the construction of a free d-oid over a set of generators. It is shown how the free
d-oid is the kernel of a language of method expressions, whose semantics is given
easily in a compositional way. Also recursive method de�nitions are allowed and thus
also the use of self is semantically formalized. In the above semantics a central role is
played by a notion which is most distinguishing our approach: a method applied to
an instant algebra and a tuple of arguments gives not only a target instant algebra
(the new state) and possibly a value, but also a tracking map which shows how every
element is transformed, thus also keeping track of the identities of the objects in a
rather abstract way.

D-oids and semantics of method expressions

Egidio Astesiano
D1S1-Dipartimento di Informatica e Scienze dell'lnformazione

University of Genova, Viale Benedetto XV 3, 1-16132 Genova, ITALY

aateaGigecuniv.bitnet

(Joint work with Elena Zucca)

Abstract

We introduce a formal model, dynamic structures (also called d-oids), which can
play for systems of dynamic objects the role played by algebras for modelling static
data types. D-oids may model classes of objects as universes of dynamic systems. An
instant configuration of a system is formalized as an instant algebra, which describes,
together with the auxiliary static values, the current states of the objects existing at
that time. Passing from an instant algebra to another is the effect of a method. D-oids
form a category and it is shown how some intuitive equivalences between classes can
be modelled by isomorphisms. We have recently added two features to the approach,
namely the definition of a reduct operation, which can model instantiated inheritance,
and the construction of a free d-oid over a set of generators. It is shown how the free
d-oid is the kernel of a language of method expressions, whose semantics is given
easily in a compositional way. Also recursive method definitions are allowed and thus
also the use of self is semantically formalized. In the above semantics a central role is
played by a notion which is most distinguishing our approach: a method applied to
an instant algebra and a tuple of arguments gives not only a target instant algebra
(the new state) and possibly a value, but also a tracking map which shows how every
element is transformed, thus also keeping track of the identities of the objects in a
rather abstract way.

6

Algebraic Speci�cations for OODB�s - Are They Useful?

Catriel Beeri

Department of Computer Science, The Hebrew University of Jerusalem
Givat RAM, 91904 Jerusalem, ISRAEL

beeri0cs.huji.ac.i1
Abstract

The last decade has seen a succession of database models and languages. Natu-
rally, one wonders whether a general framework for treating these exists. The talk
presents the idea that a database has several (actually two) components. The do-

�mains and operations constitute an underlying data algebra, or type system. Collec-
tions of elements from it are the database contents. Both the data algebra and the
database contents can be speci�ed by algebraic speci�cations, using initial model se-
mantics. In particular, the initial model semantics includes the CWA and the minimal
model in the Herbrand universe semantics used in relational and deductive databases

as special cases.
Now, it turns out that one can have predicate-based and algebraic query lan-

guage paradigms that can work with any type system. The semantics of expres-
sions/ programs in such langauges can be speci�ed using the same approach. The

talk presents some results about the relationships between these paradigms. The talk
concludes with observing that

o although initial model semantics was the starting point, it seems that a full
tretament of these language paradigms necessitate going beyond initial model
semantics;

0 although the ideas of algebraic speci�cation guided the research, speci�cations
are not really used, except to provide existence and uniqueness theorems for the
semantics of the languages;

o it does not seem that the approach will be useful for update languages.

Algebraic Specifications for OODB's - Are They Useful?

Catriel Beeri
Department of Computer Science, The Hebrew University of Jerusalem

Givat RAM, 91904 Jerusalem, ISRAEL

beeritcs.huji.ac . il

Abstract

The last decade has seen a succession of database models and languages. Natu
rally, one wonders whether a general framework for treating these exists. The talk
presents the idea that a database has several (actually two) components. The der

' mains and operations constitute an underlying data algebra, or type system. Collec
tions of elements from it are the database contents. Both the data algebra and the
database contents can be specified by algebraic specifications, using initial model se

mantics. In particular, the initial model semantics includes the CWA and the minimal
model in the Herbrand universe semantics used in relational and deductive databases
as special cases.

Now, it turns out that one can have predicate-based and algebraic query lan
guage paradigms that can work with any type system. The semantics of expres
sions/ programs in such langauges can be specified using the same approach. The
talk presents some results about the relationships between these paradigms. The talk
concludes with observing that

• although initial model semantics was the starting point, it seems that a full
tretament of these language paradigms necessitate going beyond initial model
semantics;

• although the ideas of algebraic specification guided the research, specifications
are not really used, except to provide existence and uniqueness theorems for the
semantics of the languages;

• it does not seem that the approach will be useful for update languages.

7

On The Design Theory for Database Schemes
Joachim Biskup

Institut fiir Informatik, Universität Hildesheim
Postfach 130, W-3200 Hildesheim, GERMANY

biskup�informatik.uni-hi1desheim.de
Abstract

Design theory should help to understand how the (static) structural aspects, as
declared in a database schema, determine the (dynamic) operational aspects (mostly
not explicitly dealt with in traditional data models). This rough idea is made more
precise for a speci�c example: relational database schemes with functional, inclusion,
and exclusion dependencies. These dependencies allow to express keys and unique re-
lationships, hierarchies and references (foreign keys), and partitions, respectively, and
thus their expressiveness should be available for any advanced data model. We for-
mally de�ne the notion of an attribute set X being an object by requiring (informally)
that 1) X-values should be unique, 2) new X-values can be inserted without violat-
ing dependencies 3) existing X-values can be deleted without affecting other objects.
Thus the notion of an object deals with an operational aspect. We can relate this op-
erational aspect with a series of properties of dependencies that are purely structural.
For instance we have a theorem stating that attribute set XQR, R a relation scheme,
is an object iff (informally) R is not referencing, R is not involved in partitioning, R
is a Boyce/Codd Normal Form, and X is a unique minimal key of R. Finally we de�ne
a notion of Object Normal Form, characterize it in terms of dependencies, show its
undecidabily in general, and point out an interesting though decidable special case.
As a perspective, future work on using results of the presented kind for concretely
coding constructors and deconstructor for object class speci�cations is mentioned.

On The Design Theory for Database Schemes

Joachim Biskup
Institut fiir lnformatik, Universitit Hildesheim
Postfach 130, W-3200 Hildesheim, GERMANY

biskupGinforaatik.uni-hildesheia.de

Abstrnct

Design theory should help to understand how the (static) structural aspects, as
declared in a database schema, determine the (dynamic) operational aspects (mostly
not explicitly dealt with in traditional data models). This rough idea is made more
precise for a specific example: relational database schemes with functional, inclusion,
and exclusion dependencies. These dependencies allow to express keys and unique re
lationshi ps, hierarchies and references (foreign keys) , and partitions, respectively, and
thus their expressiveness should be available for any advanced data model. We for
mally define the notion of an attribute set X being an object by requiring (informally)
that 1) X-values should be unique, 2) new X-values can be inserted without violat
ing dependencies 3) existing X-values can· be deleted without affecting other objects.
Thus the notion of an object deals with an operational aspect. We can relate this op
erational aspect with a series of properties of dependencies that are purely structural.
For instance we have a theorem stating that attribute set X~R, Ra relation scheme,
is an object iff (informally) R is not referencing, R is not involved in partitioning, R
is a Boyce/Codd Normal Form, and X is a unique minimal key of R. Finally we define
a notion of Object Normal Form, characterize it in terms of dependencies, show its
undecidabily in general, and point out an interesting though decidable special case.
As a perspective, future work on using results of the presented kind for concretely
coding constructors and deconstructor for object class specifications is mentioned.

8

Proofs in Constructive Logic

Rod M. Burstall

Dept. of Computer Science, University of Edinburgh
May�eld Road, Edinburgh EH9 3JZ, UK

rbOdcs.ed.ac.uk
Abstract

Lego is a proof assistent written by Randy Pollack, implementing an extension of
the Calculus of Constructions with E-types, i.e., dependent part types. The language
is very small (few constructs) and can represent speci�cations, (functional) programs
and proofs directly. It provides Higher Order Intuitionistic Logic with Natural De-
duction proofs which are developed interactively top down. The only search is in the
uni�cation algorithm which is able to expand de�nitions to achieve uni�cation.

Luo has used the E-types to develop a machine checked theory in Lego for con-
cepts including speci�cations, models, re�nements, parameterized speci�cations and
operations on speci�cations.

Claire Jones has developed the de�nition of reals from rationals and also comple-
tion of a metric space.

The Lego system is available from Edinburgh freely by FTP.

Proofs in Constructive Logic

Rod M. Burstall
Dept. of Computer Science, University of Edinburgh

Mayfield Roa.d, Edinburgh EH9 3JZ, UK

rbGdcs .ed.ac .uk

Abstract

Lego is a proof assistent written by Randy Pollack, implementing an extension of
the Calculus of Constructions with E-types, i.e., dependent part types. The language
is very sma.11 {few constructs) and ca.n represent specifications, {functional) programs
and proofs directly. It provides Higher Order lntuitionistic Logic with Natural De
duction proofs which a.re developed interactively top down. The only search is in the
unification algorithm which is a.ble to expand definitions to achieve unification.

Luo has used the E-types to develop a. machine checked theory in Lego for con
cepts including specifications, models, refinements, pa.ra.meterized specifications a.nd
operations on specifications.

Claire Jones has developed the definition of rea.ls from rationa.ls a.nd also comple
tion of a metric space.

The Lego system is available from Edinburgh freely by FTP.

9

Algebraic Theory of Transition Systems Implementation

Felix Costa

INE;-50, Apartado 10 105, Rua Alvez Redol 9, 7a.
P-1017 Lisboa Codex, PORTUGAL

fgc0inesc.pt
Abstract

A semantic dOIIl8.lu based on labelled transition systems is proposed for object-
oriented concepts suppc rting implemen tations of objects over objects.The implemen-
tation of the abstract object is introduced via a derivation/implementa tion of the
attributes and the events of the abstract object on top of the attributes and events
of the ground object.

The theory of implementation of labelled transition systems is such that: (a) im-
plementation morphisms compose, and (b) the implementation of a composite tran-
sition system is the composition of the implementations of its parts.

10

Algebraic Th--;ory of Transition Systems Implementation

Felix Costa
INE,-,C, Apartado 10 105, Rua Alvez Redol 9, 7a

P-1017 Lisboa Codex, PORTUGAL

fgctineac.pt

Abstract

A semantic domaiJ, l,ased on labelled transition systems is proposed for object
oriented concepts suppl..rting implementations of objects over objects.The implemen
tation of the abstract object is introduced via a derivation/implementa tion of the
attributes and the events of the abstract object on top of the attributes and events
of the ground object.

The theory of impl~anentation of labelled transition systems is such that: (a) im
plementation morphisn,s compose, and (b) the implementation of a composite tran
sition system is the composition of the implementations of its parts.

10

A Functional Database Speci�cation Language with
Subtyping

Rolf A. de By
_ Dept. of Computer Science, University of Twente

Postbus 217, NL-7500 AE Enschede, THE NETHERLANDS

deby0cs.utwente.n1

Abstract

An overview is presented of the TM/FM-project currently running in our research
group. TM is a conceptual database speci�cation language that is based on a formal
model FM. TM is a functional language with a strict typing and subtyping disci-
pline, which is given a formal semantics by the typed lambda calculus nature of its
underlying model FM.

In the �rst part of the presentation, notions like types, expressions, subtypes,
classes and methods are discussed. A rather general approach is shortly discussed as
how to obtain a formal semantics of types and expressions that obeys the intuitive
requirement that, in the semantics, subtyping leads to set inclusion, and the typing
relation leads to set membership. A notion of �minimal type� and its usefulness is
then discussed. These results are due to Balsters & Fokkinga, Theoretical Computer
Science 87: 81-96.

In the middle part of the talk, focus shifts towards a speci�cation methodology for
object-oriented databases, and the main interest here is the de�nition of a database
universe. It is shown that, by going from object (types) via table (types) to the
database (type) a natural speci�cation sequence is de�ned, that gives rise to the
identi�cation of objects at different levels of granularity. For each of these levels
constraints and methods can be de�ned. The issue of inheritance of method bodies
is raised.

In the last part of the presentation, these lessons are applied for transaction spec-
i�cation, in which the database is viewed as a single, albeit complex, object. The
advantages and disadvantages of a functional approach are then discussed, and spe-
ci�c so-called �generalizing primitives� are de�ned that enable the language user to
bridge the gaps between the different levels of granularity ft -1� method speci�cation.
It turns out that issues like object generation can, in a functl approach, only be de-
scribed at the database level, and this gives more insight in the complexity of such
operations.

11

A Functional Database Specification Language with
Subtyping

Rolf A. de By
Dept. of Computer Science, University of Twente

Postbus 217, NL-7500 AE Enschede, THE NETHERLANDS

debyGcs.utvente .nl

Abstract

An overview is presented of the TM/FM-project currently running in our research
group. TM is a conceptual database specification language that is based on a formal
model FM. TM is a functional language with a strict typing and subtyping disci
pline, which is given a formal semantics by the typed lambda calculus nature of its
underlying model FM.

In the first part of the presentation, notions like types, expressions, subtypes,
classes and methods are discussed. A rather general approach is shortly discussed as
how to obtain a formal semantics of types and expressions that obeys the intuitive
requirement that, in the semantics, subtyping leads to set inclusion, and the typing
relation leads to set membership. A notion of 'minimal typP.i and its usefulness is
then discussed. These results are due to Balsters & Fokkinga, Theornticl'.l Comp11ter
Science 87: 81- 96.

In the middle part of the talk, focus shifts towards a specification methodology for
object-oriented databases, and the main interest here is the definition of a databaae
universe. It is shown that, by going from object (types) via table {types) to the
database (type) a natural specification sequence is defined, that gives rise to the
identification of objects at different levels of granularity. FQr each of these levels
constraints and methods can be defined. The issue of inheritance of method bodies
is raised.

In the last part of the presentation, these lessons are appli"Xl for trall88Ction spec
ification, in which the database is viewed as a single, albeit. complex, object. The
advantages and disadvantages of a functional approach are then discussed, and spe
cific so-called 'generalizing primitives' are defined that enable the language user to
bridge the gaps between the different levels of granularity f, •r method specification.
It turns out that issues like object generation can, in a functl approach, only be de
scribed at the database level, and this gives more insight in the complexity of such
operations.

11

New Deduction Techniques to Retrieve Information in
Data and Knowledge Bases

Robert Demolombe

CERT/DERI, Av. Edouard Belin 2, F-31055 Toulouse, FRANCE

demolombdtls-cs.cert.fr

Abstract

At the very beginning deduction techniques have been developped in the Theorem
Proving �eld to answer the following question: given a theory T and a formula Q,
does Q logically follow from T?

Then these techniques were extended in the �eld of Logic Programming to answer
the question: what is the set of substitutions s such that Q.s logically follows from
T?

We have developped new deduction techniques to answer a new kind of question:
what are the logical consequences of T satisfying a given property P? The answer to
such kind of query is neither a truth value nor a set of substitutions, but a set of
formulas.

We have presented deduction strategies, called GASP and GALP, to retrieve all
the consequences, in clausal form, that contain an instance of a given literal Q. These
consequences are of the form QVX and can be understood as conditional answers when
they are written in the form : Q<� �X. We have shown that GASP is always more
e�icicent than GALP, but it may not terminate when T contains recursive de�nitions.
For this reason a combination of GASP and GALP, called GRASP, has been designed
that combines positive features of both strategies. GRASP allows to retrieve only
ground conditional answers, and it was proven that GRASP always terminates. All
these strategies are formally de�ned using meta-predicates and meta-rules.

Finally, a speci�c inference rule called P-inference, has been de�ned to derive all,
and only all, T consequences satisfying a given property P, and it has been proved
that if P is a �backward� property, and if property P is preserved through resolution
commutativity, then the P-inference is sound and complete.

An example of application of this result is to retrieve all the consequences about a
given individual �a�. Others are to retrieve the consequences related to a given topic
of interest.

12

New Deduction Techniques to Retrieve Information in
Data and Knowledge Bases

Robert Demolombe
CERT/DER1, Av. Edouard Belin 2, F-31055 Toulouse, FRANCE

demoloabGtls-cs.cert.fr

Abstract

At the very beginning deduction techniques have been developped in the Theorem
Proving field to answer the following question: given a theory T and a formula Q,
does Q logically follow from T?

Then these techniques were extended in the field of Logic Programming to answer
the question: what is the set of substitutions s such that Q.s logically follows from
T?

We have developped new deduction techniques to answer a new kind of question:
what are the logical consequences of T satisfying a given property P? The answer to
such kind of query is neither a truth value nor a set of substitutions, but a set of
formulas.

We have presented deduction strategies, called GASP and GALP, to retrieve all
the consequences, in clausal form, that contain an instance of a given literal Q. These
consequences are of the form QvX and can be understood as conditional answers when
they are written in the form : Q~ -iX. We have shown that GASP is always more
efficicent than GALP, but it may not terminate when T contains recursive definitions.
For this reason a combination of GASP and GALP, called GRASP, has been designed
that combines positive features of both strategies. GRASP allows to retrieve only
ground conditional answers, and it was proven that GRASP always terminates. All
these strategies are formally defined using meta-predicates and meta-rules.

Finally, a specific inference rule called P-inference, has been defined to derive all,
and only all, T consequences satisfying a given property P, and it has been proved
that if P is a "backward" property, and if property P is preserved through resolution
commutativity, then the P-inference is sound and complete.

An example of application of this result is to retrieve all the consequences about a
given individual "a". Others are to retrieve the consequences related to a given topic
of interest.

12

Fundamental Object Concepts and Constructions

Hans-Dieter Ehrich

Abteilung Datenbanken, Technische Universität, Postfach 3329
W�3300 Braunschweig, GERMANY

ehrichOidb.cs.tu-bs.de

(Joint work with Amilcar Sernadas)

Abstract

We provide a systematic framework where the concepts object and class and the
constructs inheritance and interaction are clari�ed. Our object notion is based on
that of a process, but the framework is independent of a particular process model.
For illustration purposes, however, we outline two which emphasize the importance of
process morphisms. There are categorial process models where limits re�ect parallel
composition and colimits re�ect internal choice. Classes are shown to be special
objects representing dynamic � and possibly polymorphic � collections of objects.
Inheritance constructs are introduced as steps for building an inheritance schema:
specialization, multiple specialization, abstraction, and generalization. Interaction
constructs are introduced as steps for building an object community: incorporation,
aggregation, interfacing, and synchronization. By using the same mathematics for
both, a remarkable symmetry between inheritance and interaction constructs comes
to light.

13

Fundamental Object Concepts and Constructions

Hans-Dieter Ehrich
Abteilung Datenbanken, Technische Universitat, Postfach 3329

W-3300 Braunschweig, GERMANY

ehrichGidb.cs.tu-bs.de

(Joint work with Amilcar Sernadas)

Abstract

We provide a systematic framework where the concepts object and class and the
constructs inheritance and interaction are clarified. Our object notion is based on
that of a process, but the framework is independent of a particular process model.
For illustration purposes, however, we outline two which emphasize the importance of
process morphisms. There are categorial process models where limits reflect parallel
composition and colimits reflect internal choice. Classes are shown to be special
objects representing dynamic - and possibly polymorphic - collections of objects.
Inheritance constructs are introduced as steps for building an inheritance schema:
specialization, multiple specialization, abstraction, and generalization. Interaction
constructs are introduced as steps for building an object community: incorporation,
aggregation, interfacing, and synchronization. By using the same mathematics for
both, a remarkable symmetry between inheritance and interaction constructs comes
to light.

13

Visual Speci�cations of Conceptual Database Schemata

Gregor Engels
Leiden University� Dept. of Computer Science

P.O. Box 9512, NL�2300 RA Leiden, THE NETHERLANDS

engelsdrulwi.LeidenUniv.n1

Abstract

Visual speci�cations are used in several disciplines, as, e.g., electrical engineering,
and construction of houses. Their advantage is that they often have an intuitive
semantics, which eases the understanding of those speci�cations. Visual descriptions
are also used in different areas of computer science. Examples are control flow graphs,
program dependency graphs, Entity-Relationship diagrams, Petri nets, or data flow
diagrams.

The �rst part of the talk presents an approach to specify graphically the static
structure of a system by extended Entity-Relationship diagrams. The local behaviour
of objects is described by state transition diagrams. Some problems are discussed
which occur if different views on the local behaviour of an object are combined within
a complete state transition diagram.

In the second part, a graphical language is presented to specify complex actions
on a set of objects. Complex actions are composed by the designer by using ele-
mentary actions. These descriptions are called � object �ow graphs�. Elementary
actions are derived automatically from the description of the static structure of a
system. They guarantee all inherent integrity constraints. This means that they do
"update propagation�, if this is necessary to yield a consistent global state after a
local modi�cation.

Within the CADDY environment, which has been developed at TU Braunschweig
(Germany) during the last four years, tools have been realized to support the speci�-
cation and interpretation of those complex actions. These tools are integrated within
a set of tools which support the design and rapid prototyping of conceptual database
schemata.

14

Visual SpeciflcationP of Conceptual Database Schemata

Gregor Engels
Leiden University, Dept. of Computer Science

P.O. Box 9512, NL-2300 RA Leiden, THE NETHERLANDS

engelsGrulvi .LeidenUniv .nl

Abstract

Visual specifications are used in several disciplines, as, e.g., electrical engineering,
and construction of houses. Their advantage is that they often have an intuitive
semantics, which eases the understanding of those specifications. Visual descriptions
are also used in different areas of computer science. Examples are control flow graphs,
program dependency graphs, Entity-Relationship diagrams, Petri nets, or data flow
diagrams.

The first part of the talk presents an approach to specify graphically the static
structure of a system by extended Entity-Relationship diagrams. The local behaviour
of objects is des,~ribed by state transition diagrams. Some problems are discussed
which occur if different views on the local behaviour of an object are combined within
a complete state transition diagram.

In the second part, a graphical language is presented to specify complex actions
on a set of objects. Complex actions are composed by the designer by using ele
mentary actions. These descriptions are called "object flow graphs". Elementary
actions are derived automatically from the description of the static structure of a
system. They guarantee all inherent integrity constraints. This means that they do
"update propagation" , if this is necessary to yield a consistent global state after a
local modification.

Within the CADDY environment, which has been developed at TU Braunschweig
{Germany) during the last four years, tools have been realized to support the specifi
cation and interpretation of those complex actions. These tools are integrated within
a set of tools which support the design and rapid prototyping of conceptual database
schemata.

14

Process Semantics of Object Speci�cations
Jose Luiz Fiadeiro

Departmento de Matematica, IST
Av. Rovisco Pais, P-1096 Lisboa Codex, PORTUGAL

11f0inesc.pt

Abstract

A process semantics for temporal logic speci�cation is provided by relating a
category of temporal theories and interpretations between theories where speci�cation
con�guration and interconnection is achieved via colimits of diagrams, and a category
of algebraic models of processes where parallel composition is explained in terms of
limits of diagrams. Given a diagram in the categories of theories and a model of it as
a diagram in the category of processes, we prove that the limit of the process diagram
is a model of the colimit of the theory diagram. That is to say, any denotation
of a system of interconnected speci�cations corresponds to a con�guration of their
denotations as a system of interconnected processes.

15

Process Semantics of Object Specifications

Jose Luiz Fiadeiro
Departmento de Matematica, 1ST

Av. Rovisco Pa.is, P-1096 Lisboa Codex, PORTUGAL

llfGinesc.pt

Abstract

A process semantics for temporal logic specification is provided by relating a
category of temporal theories and interpretations between theories where specification
configuration and interconnection is achieved via colimits of diagrams, and a category
of algebraic models of processes where parallel composition is explained in terms of
limits of diagrams. Given a diagram in the categories of theories and a model of it as
a diagram in the category of processes, we prove that the limit of the process diagram
is a model of the colimit of the theory diagram. That is to say, any denotation
of a system of interconnected specifications corresponds to a configuration of their
denotations as a system of interconnected processes.

15

Algebraic Semantics for the Object Paradigm

Joseph A. Goguen
Programming Research Group, University of Oxford

11 Keble Road, Oxford OX1 3QD, UK

Joseph.GoguenOprg.oxford.ac.uk

Abstract

Our goal is to extend the techniques of algebraic speci�cation to the object para-
digm in a way that integrates both the data and the process aspects, and that also
handles concurrency, sharing, hiding and non-determinism in natural ways.

We �rst use object encapsulation to motivate some restrictions on order sorted
signatures and morphisms, and then show that the result is an institution, in which
satisfaction is behavioural satisfaction. Next, we show how theories and models in this
institution formalise speci�cations and objects. Then, using the alternating bit proto-
col as an example, we show how sort constraints and a �wedge product� construction
model forms of inheritance. We also use gluons, limits, and an op-Grothendieck
�attening construction to handle the interconnection and behaviour of objects in
complex systems. (�Gluons� are interface objects, limits give behaviour, and the
op-Grothendieck construction allows limits of diagrams of models with varying sig-
natures.)

We �nd that algebras of traces occur as initial models, and that arbitrary im-
plementation algebras can be handled as well. We model processes with recursive
equations on modadic operations.

16

Algebraic Semantics for the Object Paradigm

Joseph A. Goguen
Programming Research Group, University of Oxford

11 Keble Road, Oxford OXl 3QD, UK

Joseph.GoguenOprg.oxford.ac.uk

Abstract

Our goal is to extend the techniques of algebraic specification to the object para
digm in a way that integrates both the data and the process aspects, and that also
handles concurrency, sharing, hiding and non-determinism in natural ways.

We first use object encapsulation to motivate some restrictions on order sorted
signatures and morphisms, and then show that the result is an institution, in which
satisfaction is behavioural satisfaction. Next, we show how theories and models in this
institution formalise specifications and objects. Then, using the alternating bit proto
col as an example, we show how sort constraints and a "wedge product'' construction
model forms of inheritance. We also use gluons, limits, and an op-Grothendieck
flattening construction to handle the interconnection and behaviour of objects in
complex systems. ("Gluons" are interface objects, limits give behaviour, and the
op-Grothendieck construction allows limits of diagrams of models with varying sig
natures.)

We find that algebras of traces occur as initial models, and that arbitrary im
plementation algebras can be handled as well. We model processes with recursive
equations on modadic operations.

16

Aspects of Inheritance in a Rule-Language

Georg Lausen and Heinz Uphoff
Fakultät für Mathematik und Informatik

Universität Mannheim, W-6800 Mannheim, GERMANY

{lausen | uphoff }0pi3 . infornatik . uni-nannhe in . dbp . de

Abstract

The topic of the talk is the interaction of inheritance and deduction as it might
occur in a rule-language. Problems arise if a rule becomes applicable due to inher-
itance of a certain value such that from the corresponding rule application it can
be deduced that a different value should hold for the class from which inheritance

took place. To be more speci�c consider the situation where there are three classes
called upper, middle and lower; lower is a subclass of middle and middle is a sub-
class of upper. Now assume that a method meth gives the result a when applied
on upper and further, that there exists a rule of the form middle.meth�> b <=
lower.meth-+ a meaning that whenever meth applied on lower gives the result a,
then the result of meth applied on middle is b. We can see that once we inherit
meth -�> a from upper to middle and then from middle to lower, by application of
the rule we get middle.meth -�> b, which invalidates the inheritance from upper to
middle and consequently from middle to lower and �nally removes the applicability
of the rule.

We present model-theoretic semantics which treats such cases in an intuitive way
[1]; in the above example inheritance is only done from upper to middle - inheritance
from middle to lower is blocked. We further discuss algorithms to compute the
corresponding models. We implement the intuition of the suggested semantics by
certain meta�rules and corresponding rewritings he original rules. Finally we discuss
the relationship to well-founded semantics.

[1] M. Kifer, G. Lausen, J. Wu: Logical Foundations of Object-Oriented and Frame-
Based Languages. Universität Mannheim, Reihe Informatik, 3/1990.

17

Aspects of Inheritance in a Rule-Language

Georg Lausen and Heinz Uphoff
Fakulta.t fiir Mathematik und l.nformatik

Universita.t Mannheim, W-6800 Mannheim, GERMANY

{lausen I uphoff}Gpi3.inforaatik.uni-aannheia.dbp.de

Abstract

The topic of the talk is the interaction of inheritance and deduction as it might
occur in a rule-language. Problems arise if a rule becomes applicable due to inher
itance of a certain value such that from the corresponding rule application it can
be deduced that a different value should hold for the class from which inheritance
took place. To be more specific consider the situation where there are three classes
called upper, middle and lower; lower is a subclass of middle and middle is a sub
class of upper. Now assume that a method meth gives the result a when applied
on upper and further, that there exists a rule of the form middle.meth-+ b <==
lower.meth-+ a meaning that whenever meth applied on lower gives the result a,
then the result of meth applied on middle is b. We can see that once we inherit
meth -+ a from upper to middle and then from middle to lower, by application of
the rule we get middle. meth -+ b, which invalidates the inheritance from upper to
middle and consequently from middle to lower and finally removes the applicability
of the rule.

We present model-theoretic semantics which treats such cases in an intuitive way
[1]; in the above example inheritance is only done from upper to middle - inheritance
from middle to lower is blocked. We further discuss algorithms to compute the
corresponding models. We implement the intuition of the suggested semantics by
certain meta-rules and corresponding rewritings he original rules. Finally we discuss
the relationship to well-founded semantics.

[1] M. Kifer, G. Lausen, J. Wu: Logical Foundations of Object-Oriented and Frame
Based Languages. Universita.t Mannheim, Reihe 1.nformatik, 3/1990.

17

Semantics and Usage of Defaults in Speci�cations

Udo W. Lipeck
Institut fiir Informatik, Universität Hannover

Lange Laube 22, W-3000 Hannover 1, GERMANY

u10infornatik.uni-hannover.de

(Joint work with Stefan Brass, Miguel Dionisio (both Hannover)
and Mark Ryan (Imperial College London))

Abstract

The goal of this talk is to explain the application of hierarchical defaults, i.e. de-
faults with priorities, in logic-based speci�cations of information systems. We discuss
the usefulness of defaults for di�"erent speci�cation scenarios like specialization, ag-
gregation, explanation, revision, etc. To understand defaults formally, we introduce
a general framework which is parameterized on the underlying logical institution,
provided that institutions are extended by an instantiation mechanism for formulae
and by an appropriate choice of prede�ned interpretation parts. It is shown that
hierarchical defaults have intended models if the extended institution is compact.
As an example for a non-standard logic, we give the semantics of defaults in the
multi�modal object calculus of the IS-CORE project. To structure and compose
speci�cations with defaults, default-preserving speci�cation morphisms are de�ned
and corresponding colimit constructions are sketched.

18

Semantics and Usage of Defaults in Specifications

Udo W. Lipeck
Institut fiir Informatik, Universiti.t Hannover

Lange Laube 22, W-3000 Hannover 1, GERMANY

ullinfor11atit.uni-hannover.de

(Joint work with Stefan Brass, Miguel Dionisio (both Hannover)
and Mark Ryan (Imperial College London))

Abstract

The goal of this talk is to explain the application of hierarchical defaults, i.e. de
faults with priorities, in logic-based specifications of information systems. We discuss
the usefulness of defaults for different specification scenarios like specialization, ag
gregation, explanation, revision, etc. To understand defaults formally, we introduce
a general framework which is parameterized on the underlying logical institution,
provided that institutions are extended by an instantiation mechanism for formulae
and by an appropriate choice of predefined interpretation parts. It is shown that
hierarchical defaults have intended models if the extended institution is compact.
As an example for a non-standard logic, we give the semantics of defaults in the
multi-modal object calculus of the IS-CORE project. To structure and compose
specifications with defaults, default-preserving specification morphisms are defined
and corresponding colimit constructions are sketched.

18

Logical Aspects of Object�Oriented Systems Specification

Tom S. E. Maibaum

Department of Computing, Imperial College of Science
- 180 Queens Gate, GB-London SW7 2BZ, UK

tsemOdoc.ic.ac.uk
Abstract

We bring together the use of temporal logic for specifying concurrent systems, in
the tradition initiated by A.Pnueli, and the use of tools from category theory as a
means for structuring speci�cations as combinations of theories in the style developed
by R.Burstal1 and J .Goguen. As a result, we obtain a framework in which systems
of interconnected components can be described by assembling the speci�cations of
their components around a diagram, using theory morphisms to specify how the
components interact. This view of temporal theories as speci�cation units naturally
brings modularity to the description and analysis of systems. Moreover, it becomes
possible to import into the area of formal development of reactive systems the wide
body of speci�cation techniques that have been de�ned for structuring speci�cations
independently of the underlying logic, and that have been applied with great success in
the area of Abstract Data Types. Finally, as a discipline of design, we use the object-
oriented paradigm according to which components keep private data and interact by
sharing actions, with a view towards providing formal tools for the speci�cation of
concurrent objects.

19

Logical Aspects of Object-Oriented Systems Specification

Tom S. E. Maibaum
Department of Computing, Imperial College of Science

180 Queens Gate, GB-London SW7 2BZ, UK

tseaGdoc . ic.ac .uk

Abstract

We bring together the use of temporal logic for specifying concurrent systems, in
the tradition initiated by A.Pnueli, and the use of tools from category theory 88 a
means for structuring specifications 88 combinations of theories in the style developed
by R.Burstall and J.Goguen. As a result, we obtain a framework in which systems
of interconnected components can be described by assembling the specifications of
their components a.round a diagram, using theory morphisms to specify how the
components interact. This view of temporal theories 88 specification units naturally
brings modularity to the description and analysis of systems. Moreover, it becomes
possible to import into the area of formal development of reactive systems the wide
body of specification techniques that have been defined for structuring specifications
independently of the underlying logic, and that have been applied with great success in
the area of Abstract Data Types. Finally, 88 a discipline of design, we use the object
oriented paradigm according to which components keep private data and interact by
sharing actions, with a view towards providing formal tools for the specification of
concurrent objects.

19

Order Sorted, Hidden Sorted Re�nement

Grant Malcolm and Joseph A. Goguen
Programming Research Group, University of Oxford

l1 Keble Road, Oxford OX1 3QD, UK

{Grant Jlalcoln | Joseph . Goguen}Oprg . oxford . ac .uk

Abstract

Order sorted speci�cations allow the description of algebras with partial opera-
tions; hidden sorted speci�cations introduce the notion of observational equivalence,
as in the equivalence of black box automata. We present a de�nition of re�nement
for order- and hidden sorted speci�cations, and discuss a technique for proving that
one speci�cation is re�ned by another. Two examples of re�nement are given, one of
which suggests that the proof technique is particularly pertinent to object orientation.

20

Order Sorted, Hidden Sorted Refinement

Grant Malcolm and Joseph A. Goguen
Programming Research Group, University of Oxford

11 Keble Road, Oxford OXl 3QD, UK

{Grant .Malcolm I Joseph .Goguen}Gprg .oxford .ac .uk

Abstract

Order sorted specifications allow the description of algebras with partial opera
tions; hidden sorted specifications introduce the notion of observational equivalence,
as in the equivalence of black box automata. We present a definition of refinement
for order- and hidden sorted specifications, and discuss a technique for proving that
one specification is refined by another. Two examples of refinement are given, one of
which suggests that the proof technique is particularly pertinent to object orientation.

20

A Meta-rule Approach to the Speci�cation of Inference
Methods in Rule-based Information Systems

Rainer Manthey
ECRC, Arabellastr. 17, W-8000 München 81, GERMANY

rainerQecrc.de

(Joint work with Francois Bry)

Abstract

Rules, in the spirit of deductive database terminology, can be viewed as speci�ca-
tions of sets of data. They can even be considered executable speci�cations, as there
are efficient standard procedures (such as differential �xpoint iteration) which mate-
rialize (i.e., compute and store) rule-de�ned data by successively applying rules to an
initial database of stored facts. Meta-rules are rules specifying sets of meta-data.

The main message of this contribution is that meta-rules constitute a very elegant
and powerful tool for specifying sophisticated inference methods. This is possible be-
cause inference processes are conveniently characterized by means of the meta-data
they produce and manipulate. If performing inference in order to answer queries, one
aims at reducing the search space by generating subqueries in a top-down manner be-
fore generating relevant intermediate results and answers bottom-up. Subqueries and
answers constitute meta-data. The analogous observation holds for update-driven in-
ference where the task is to determine the consequences of an update of a stored data
set on the extension of rule-de�ned data sets. The motivation for doing so is the need
etect changes of monitored conditions (such as integrity constraints or alerters). Again
� blind� bottom-up propagation of updates can be avoided by prior top-down analysis
of conditions to be monitored. Here induced updates and monitored conditions are
the relevant meta-data. Both inference modes are very conveniently expressable us-
ing meta-rules. Applying �xpoint iteration to these meta-level speci�cations leads to
ef�cient implementations, particularly if the need to access object-level rules is elim-
inated by partial evaluation. A well-known method for query-driven inference, the
� magic sets� approach, can thus be easily explained by means of systematic partial
evaluation of a meta-rule speci�cation of query-driven inference. A similar approach
can be obtained for update-driven inference as well.

21

A Meta-rule Approach to the Specification of Inference
Methods in Rule-based Information Systems

Rainer Manthey
ECRC, Arabellastr. 17, W-8000 Miinchen 81, GERMANY

rainertecrc.de

(Joint work with Franc;ois Bry)

Abstract

Rules, in the spirit of deductive database terminology, can be viewed 88 specifica
tions of sets of data. They can even be considered executable specifications, 88 there
are efficient standard procedures (such as differential fixpoint iteration) which mate
rialize (i.e., compute and store) rule-defined data by successively applying rules to an
initial database of stored facts. Meta-rules are rules specifying sets of meta-data.

The main message of this contribution is that meta-rules constitute a very elegant
and powerful tool for specifying sophisticated inference methods. This is possible be
cause inference processes are conveniently characterized by means of the meta-data
they proc;luce and manipulate. If performing inference in order to answer queries, one
aims at reducing the search space by generating subqueries in a top-down manner be
fore generating relevant intermediate results and answers bottom-up. Subqueries and
answers constitute meta-data. The analogous observation holds for update-driven in
ference where the task is to determine the consequences of an update of a stored data
set on the extension of rule-defined data sets. The motivation for doing so is the need
etect changes of monitored conditions (such as integrity constraints or alerters). Again
"blind" bottom-up propagation of updates can be avoided by prior top-down analysis
of conditions to be monitored. Here induced updates and monitored conditions are
the relevant meta-data. Both inference modes are very conveniently expressable us
ing meta-rules. Applying fixpoint iteration to these meta-level specifications leads to
efficient implementations, particularly if the need to access object-level rules is elim
inated by partial evaluation. A well-known method for query-driven inference, the
"magic sets" approach, can thus be easily explained by means of systematic partial
evaluation of a meta-rule specification of query-driven inference. A similar approach
can be obtained for update-driven inference as well.

21

Language Features for Object-Oriented Speci�cation of
Information Systems

Gunter Saake and Ralf Jungclaus
Abteilung Datenbanken, Technische Universität, Postfach 3329

W-3300 Braunschweig, GERMANY I

{saake|jungc1au}0idb . cs . tn-bs . de

(Joint work with T. Hartmann and C. Sernadas)

Abstract

In this talk we sketch the motivations for the development of the ob ject-oriented
conceptual modeling language man, and brie�y introduce its basic features.

�man, is particularly suited to be used in the early stages of information systems
development. In those stages, we have to concentrate on abstract, implementation-
independent descriptions of static and dynamic concepts that are relevant. Moreover,
conceptual speci�cations must be formal because they act as �contracts� that are
the basis for implementation. Finally, conceptual speci�cation languages should offer
a wide variety of language features that support structuring of speci�cations and
�natural� (whatever this may mean) description of concepts (which also includes
redundant language features).

The language �man, tries to integrate ob ject-oriented ideas with concepts of se-
mantic data models and approaches to the speci�cation of data types and concurrent
systems. �man, is based on sublanes for data terms, linear temporal logic and process
speci�cation. In man� the description of static and dynamic aspects of objects is
integrated in object descriptions.

The basic building blocks of �man speci�cations are templates that are descrip-
tions of object prototypes. Object descriptions can be related in many ways. The
abstraction mechanisms provided by �man, are classi�cation, specialization, roles, ag-
gregation and interfacing. Abstraction mechanisms along with the basic structuring
in object descriptions help in organizing the system speci�cation.

In order to support the composition of system speci�cations from component de-
scriptions �man, provides language features to describe interactions and dependencies
between components when put into the system context.

A complete language description can be found in 0�4

[1] R. Jungclaus, G. Saake, T. Hartmann, C. Sernadas: Object-Oriented Spec-
i�cation of Information Systems: The man, Language. TU Braunschweig,
Informatik-Bericht 91-04, 1991.

22

Language Features for Object-Oriented Specification of
Information Systems

Gunter Saa.ke and Ralf Jungclaus
Abteilung Datenbanken, Technische Universitit, Postfach 3329

W-3300 Braunschweig, GERMANY

{saakeljungclau}Gidb . cs .tu-bs .de

(Joint work with T . Hartmann and C. Sernadas)

Abstract

In this talk we sketch the motivations for the development of the object-oriented.
conceptual modeling language 'l'JulLL and briefly introduce its basic features.

'I'RoLL is particularly suited to be used in the early stages of information systems
development. In those stages, we have to concentrate on abstract, implementation
independent descriptions of static and dynamic concepts that are relevant. Moreover,
conceptual specifications must be formal because they act as "contracts" that are
the basis for implementation. Finally, conceptual specification languages should offer
a wide variety of language features that support structuring of specifications and
"natural" (whatever this may mean) description of concepts (which also includes
redundant language features).

The language 'l'JulLL tries to integrate object-oriented. ideas with concepts of se

mantic data models and approaches to the specification of data types and concurrent
systems. TaoLL is based on sublanes for data terms, linear temporal logic and process
specification. In 'l'RoLL, the description of static and dynamic aspects of objects is
integrated. in object descriptions.

The basic building blocks of 'l'JulLL specifications are template., that are descri~
tions of object prototypes. Object descriptio~ can be related in many ways. The
abstraction mechanisms provided. by 'l'JulLL are classification, specialization, roles, ag
gregation and interfacing. Abstraction mechanisms along with the basic structuring
in object descriptions help in organizing the system specification.

In order to support the composition of system specifications from component de
scriptions 'I'RoLL provides language features to describe interactions and dependencies
between components when put into the system context.

A complete language description can be found in [1].

[1] R. Jungclaus, G. Saa.ke, T. Hartmann, C. Sernadas: Object-Oriented Spec
ification of /nfonnation Systems: The TROLL Language. TU Braunschweig,
Informatik-Bericht 91--04, 1991.

22

Object Template Institution

Amilcar Sernadas

INESC, Apartado 10 105, Rua Alvez Redol 9, 7a
P-1017 Lisboa Codex, PORTUGAL

acsOinesc.inesc.pt

(Joint work with J .F.Costa, J .L.Fiadeiro and H.-D.Ehrich)

Abstract

Given a category of object templates and morphisms between them, as well as an
envisaged temporal logic of object template speci�cation and veri�cation, one faces
the problem of setting-up the resulting institution if possible at all. A speci�c cate-
gory of object templates (based upon sets of traces of sets of event symbols) and a
speci�c logic (linear temporal propositional logic) are considered in order to illustrate
the difficulties in the procedure of setting-up the institution. Basic requirements are:
(1) the existence of a �bration from the category of templates to the category of al-
phabets of symbols; (2) the possibility of extracting a suitable Kripke structure from
each template (in this case a multi-linear one); (3) the existence of a null event in
the event-space of each template. If requirement (1) is ful�lled then the semantic
functor of the institution appears as the pulling-back functor of the �bration. Re-
quirement (3) is essential for the satisfaction condition (because of the special nature
of the X temporal operator). Furthermore, one expects the category of templates to
be complete (for parallel composition) and cocomplete (for choice). An additional
requirement is needed to ensure that there is a canonical (terminal) template satis-
fying each object speci�cation: it is su�cient to require that satisfaction is preserved
by choice between templates over the same signature. This seems to be equivalent to
ask for the existence of a satisfaction �ltration. In these conditions, the colimit of a
diagram of template speci�cations is satis�ed by the limit (parallel composition) of a
diagram of template models.

23

Object Template Institution

Amilcar Semad88
INESC, Apartado 10 105, Rua Alvez Redol 9, 7a

P-1017 Lisboa Codex, PORTUGAL

acaGineac.ineac.pt

(Joint work with J.F.Costa, J.L.Fiadeiro and H.-D.Ehrich)

Abstract

Given a category of object templates and morphisms between them, 88 well 88 an
envisaged temporal logic of object template specification and verification, one faces
the problem of setting-up the resulting institution if possible at all. A specific cate
gory of object templates (based upon sets of traces of sets of event symbols) and a
specific logic (linear temporal propositional logic) are considered in order to illuRtrate
the difficulties in the procedure of setting-up the institution. Basic requirements are:
(1) the existence of a fibration from the category of templates to the category of al
phabets of symbols; (2) the possibility of extracting a suitable Kripke structure from
each template (in this case a. multi-linear one); (3) the existence of a null event in
the event-space of each template. If requirement (1) is fulfilled then the semantic
functor of the institution appears 88 the pulling-back functor of the fibration. Re
quirement (3) is essential for the satisfaction condition (because of the special nature
of the X temporal operator). Furthermore, one expects the category of templates to
he complete (for parallel composition) and cocomplete (for choice). An additional
requirement is needed to ensure that there is a canonical (terminal) template satis
fying each object specification: it is sufficient to require that satisfaction is presP-rved
by choice between templates over the same signature. This seems to be equivalent to
ask for the existence of a. satisfaction filtration. In these conditions, the colimit of a
diagram of template specifications is satisfied by the limit (rarallel composition) of a
diagram of template models.

23

Graphical speci�cation languages and speci�cational
complexity

Arne S¢lvberg
Dept. of Electrical Engineering and Computer Science

NTH, University of Trondheim, N-7034 'IH'ondheim, NORWAY

aso1vberOidt.unit.no

Abstract

Systems speci�cations serve the dual purpose of being the basis for

* exchanging systems knowledge among the system�s designers, and

* creating an operational software system.

These two purposes may be con�icting, in particular when developing large systems.
Because systems speci�cations must be both understandable and complete, the usual
approach is to employ several sets of modelling constructs, which are �tted for the
different purposes.

A proposal for a uni�ed modelling language is presented. The language combines
well-known systems development graphical speci�cation methods e.g. ER-model,
DFD-model, and extends those methods with modelling constructs which makes it
possible to generate executable code. The automatic generation of industrial code,
e.g. Ada, 'is shown to be possible, as well as the generation of (rapid) prototypes
based on a combination of Prolog and C-code. It is argued that the proposal, which
is mostly a graphical language, constitutes an example of an executable speci�cation
language. '

When systems complexity increases one may experience some di�culties concern-
ing the understandability of systems speci�cations in the proposed language. These
problems may be solved by de�ning suitable abstractions of the detailed speci�ca-
tions. Speci�cations may then become enough simpli�ed, so that they can be used
as a basis for knowledge exchange among systems designers.

24

Graphical specification languages and speciflcational
complexity

Arne Sf/Jlvberg
Dept. of Electrical Engineering and Computer Science

NTH, University of Trondheim, N-7034 Trondheim, NORWAY

asolvberGidt.unit.no

Abstract

Systems specifications serve the dual purpose of being the basis for

* exchanging systems knowledge among the system's designers, and

* creating an operational software system.

These two purposes may be conflicting, in particular when developing large systems.
Because systems specifications must be both understandable and complete, the usual
approach is to employ several sets of modelling constructs, which are fitted for the
different purposes.

A proposal for a unified modelling language is presented. The language combines
well-known systems development graphical specification methods e.g. ER-model,
DFD-model, and extends those methods with modelling constructs which makes it
possible to generate executable code. The automatic generation of industrial code,
e.g. Ada, ·is shown to be possible, as well as the generation of (rapid) prototypes
based on a combination of Prolog and C-code. It is argued that the proposal, which
is mostly a graphical language, constitutes an example of an executable specification
language. ·

When systems complexity increases one may experience some difficulties concern
ing the understandability of systems specifications in the proposed language. These
problems may be solved by defining suitable abstractions of the detailed specifica
tions. Specifications may then become enough simplified, so that they can be used
as a basis for knowledge exchange among systems designers.

24

Functional Object-Oriented Design (FOOD)

T. H. Tse

Department of Computer Science
The University of Hong Kong, Pokfulam Rd, HONG KONG

tseOcsd.hku.hk

(Joint work with Joseph Goguen)

Abstract

Ob ject-oriented analysis and design methodologies are considered as the most pop-
ular software development methods for the 1990s. The informal graphical notations,
mostly based on structured methodologies popular in the 1980s, are widely accept by
practitioners. On the other hand, a number of formal object-oriented speci�cation
languages have been proposed, helping users to verify the correctness of the speci�ca-
tion and implementation. They are, however, far from popular to systems designers
in the industry.

Functional Ob ject-Oriented Design (FOOD) is an attempt to provide a bridge be-
tween the popular object-oriented graphical notations and Functional Object-Orient-
ed Programming System (FOOPS), which is a formal object-oriented programming
language with formal algebraic semantics. We propose a set of graphical notations
and methodology guidelines. The static relationships in a system, such as classes,
data types, methods, attributes, functions, modules and inheritance, are speci�ed in
a notation based on data �ow diagrams and enhanced entity-relationship diagrams.
Behavioral properties of the system are de�ned by state-transition diagrams, multi-
level data flow diagrams and object structure charts. All of these representations
can be mapped directly into the corresponding declaration statements_and axioms in
FOOPS.

25

Functional Object-Oriented Design (FOOD)

T.H. Tse
Department of Computer Science

The University of Hong Kong, Pokfulam Rd, HONG KONG

tseGcsd.hku.hk

(Joint work with Joseph Goguen)

Abstract

Object-oriented analysis and design methodologies are considered 88 the most pop
ular software development methods for the 1990s. The informal graphical notations,
mostly based on structured methodologies popular in the 1980s, are widely accept by
practitioners. On the other hand, a number of formal object-oriented specification
languages have been proposed, helping users to verify the correctness of the specifica
tion and implementation. They are, however, far from popular to systems designers
in the industry.

Functional Object-Oriented Design (FOOD) is an attempt to provide a bridge be
tween the popular object-oriented graphical notations and Functional Object-Orient
ed Programming System (FOOPS), which is a formal object-oriented programming
language with formal algebraic semantics. We propose a set of graphical notations
and methodology guidelines. The static relationships in a system, such 88 classes,
data types, methods, attributes, functions, modules and inheritance, are specified in
a notation based on data flow diagrams and enhanced entity-relationship diagrams.
Behavioral properties of the system are defined by state-transition diagrams, multi
level data flow diagrams and object structure ~harts. All of these representations
can be mapped directly into the corresponding declaration statements_ and axioms in
FOOPS.

25

I LIKE MOKUM

Reind Van de Riet

Dept. of Mathematics and Computer Science
Vrije Universiteit Amsterdam (=Molcum)

De Boelelaan 1081 a, NL-1081 HV Amsterdam, THE NETHERLANDS

vdriet0cs.vu.n1

(LIKE is an acronym for Linguistic Instruments in Knowledge Engineering
MOKUM is an acronym for Manipulating Objects with Knowledge and Understand-
ing in Mokum)

Abstract

In the process of constructing an information (=knowledge) system: (Require-
ments de�nitions� Analysis - Prototyping - Implementation) words are being used on
all levels. Some words are being used as keywords, in which case their meaning is pre-
determined by the tools and structures used. Most words, however, are chosen by the
information analysts, designers and programmers. They are used to denote entities,
ob ject-types, objects, attributes, values, etc. In this paper we will study the structure
and use of a Lexicon in which these words are stored together with their meaning
in an attempt to make reuse of speci�cations possible and to standardize the use of
words. The meaning is laid down in a dictionary or Lexicon. It is shown how the
Lexicon is constructed by taking a set of sentences describing in Natural Language, a
certain Universe of Discourse and translating these sentences in CPL formulas. CPL
is a formal language for specifying a Conceptual Model. It is also shown how from
CPL programs can be generated which can be executed. Furthermore, it turns out
that MOKUM was an appropriate language to de�ne the Lexicon in.

26

I LIKE MOKUM

Reind Van de ruet
Dept. of Mathematic.s and Computer Science

Vrije Universiteit Amsterdam (=Mokum)
De Boelelaan 1081 a, NL-1081 HV Amsterdam, THE NETHERLANDS

vd.riettca .vu .nl

(LIKE is an acronym for Linguistic Instruments in Knowledge Engineering
MOKUM is an acronym for Manipulating Objects with Knowledge and Understand
ing in Mokum)

Abstract

In the process of constructing an information (=knowledge) system: (Require
ments definitions- Analysis - Prototyping - Implementation) words are being used on
all levels. Some words are being used as keywords, in which case their meaning is pre
determined by the tools and structures used. Most words, however, are chosen by the
information analysts, designers and programmers. They are used to denote entities,
object-types, objects, attributes, values, etc. In this paper we will study the structure
and use of a Lexicon hi which these words are stored together with their meaning
in an attempt to make reuse of specifications possible and to standardize the use of
words. The meaning is laid down in a dictionary or Lexicon. It is shown how the
Lexicon is constructed by taking a set of sentences describing in Natural Language, a
certain Universe of Discourse and translating these sentences in CPL formulas. CPL
is a formal language for specifying a Conceptual Model. It is also shown how from
CPL programs can be generated which can be executed. Furthermore, it turns out
that MOKUM was an appropriate language to d~fine the Lexicon in.

26

The identi�cation of objects and roles

Roel Wieringa and Wiebren de J onge
Dept. of Mathematics and Computer Science, Vrije Universiteit Amsterdam

De Boelelaan 1081a, 1081 HV Amsterdam, THE NETHERLANDS

roe1wOcs.vu.n1
Abstract

In order to identify real-world objects, you must classify them. An object may for
example be one PERSON instance but two EMPLOYEE instances, if he or she has a
job at two companies. This is because an EMPLOYEE is really a role of a PERSON
and one PERSON can play several roles, even roles of the same type. What is called
�class migration� is the phenomenon that one object starts or stops playing a role,
such as that one PERSON starts or stops being an EMPLOYEE. Class migration is
often represented by changing an identi�er (as in the Orion system), but this destroys
historical identity information. Class migration always involves making functions or
predicates applicable during the life of an object that were not applicable before (i.e.
delivered no value when applied to the object). Loss of historical identity information
and partial functions or predicates can be avoided if roles get an identi�er that, just
like object identifiers, are globally unique and unchangeable. This leads to a new
inheritance mechanism, from an instance to a role played by the instance. In this
form of inheritance, a role delegates the answering of queries about attribute values
to the instance (an object or another roles) that plays the role.

27

The identification of objects and roles

Roel Wieringa and Wiebren de Jonge
Dept. of Mathematics and Computer Science, Vrije Universiteit Amsterdam

De Boelelaan 1081a, 1081 HV Amsterdam, THE NETHERLANDS

roelvClca .vu.nl

Abstract

In order to identify real-world objects, you must clasaify them. An object may for
example be one PERSON instance but two EMPLOYEE instances, if he or she has a
job at two companies. This is because an EMPLOYEE ui really a role of a PERSON
and one PERSON can play several roles, even roles of the same type. What is called
"class migration" is the phenomenon that one object starts or stops playing a role,
such as that one PERSON starts or stops being an EMPLOYEE. Class migration is
often represented by changing an identifier (as in the Orion system), but this destroys
historical identity information. Class migration always involves making functions or
predicates applicable during the life of an object that were not applicable before (i.e.
delivered no value when applied to the object). Loss of historical identity informaiion
and partial functions or predicates can be avoided if roles get an identifier that, just
like object identifiers, are globally unique and unchangeable. This leads to a new
inheritance mechanism, from an instance to a role played by the instance. In this
form of inheritance, a role delegates the answering of queries about attribute values
to the instance (an object or another roles) that plays the role.

27

Persistance + Undoability = Transactions

Jeannette Wing
Lab. for Computer Science

545 Technology Square, Cambridge MA 02139, USA

jmw01cs.mit.edu
Abstract

Persistence means objects live potentially forever. Undoability means that any
change to a program�s store can potentially be undone. In our design and imple-
mentation of support for single-threaded nested transactions in Standard ML of New
Jersey (SML/ NJ), we provide persistence and undoability as orthogonal features and
combine them in a simple and elegant manner.

We provide support for persistence through an SML interface that lets users ma-
nipulate a set of persistent roots and provides a save function that causes all data
reachable from the persistent roots to be moved into the persistent heap. We imple-
ment the interface through simple extensions to SML�s generational garbage collector
and maintain the persistent heap using CMU�s Recoverable Virtual Memory system.

We provide support for undoability through an SML interface that exports two
functions: checkpoint, which checkpoints the current store, and restore, which undoes
all changes made to the previously checkpointed store. The implementation takes
advantage of the simple runtime representation of data in SML and, as for persistence,
extends the existing garbage collector scheme. SML�s �mostly� functional nature
allows us to implement this abstraction without undue performance penalty.

Finally, we combine these capabilities to support single-threaded nested transac-
tions by de�ning a higher�order function transact that guarantees the permanence of
effects of committed transactions. We succinctly de�ne transact completely in terms
of the interfaces for persistence and undoability. Unlike other transaction-based pro-
gramming languages like Argus or Avalon/C++, we need not add new control struc-
tures; moreover, we handle aborts of nested or top-level transactions using SML�s
exception mechm.

28

Persistance + U ndoability = Transactions

Jeannette Wing
Lab. for Computer Science

545 Technology Square, Cambridge MA 02139, USA

javOlcs.mit.edu

Abstract

Persistence means objects live potentially forever. Undoability means that any
change to a program's store can potentially be undone. In our design and imple
mentation of support for single-threaded nested transactions in Standard ML of New
Jersey (SML/NJ), we provide persistence and undoability as orthogonal features and
combine them in a simple and elegant manner.

We provide support for persistence through an SML interface that lets users ma
nipulate a set of persistent roots and provides a save function that causes all data
reachable from the persistent roots to be moved into the persistent heap. We imple
ment the interface through simple extensions to SML's generational garbage collector
and maintain the persistent heap using CMU's Recoverable Virtual Memory system.

We provide support for undoability through an SML interface that exports two
functions: checkpoint, which checkpoints the current store, and restore, which undoes
all changes ma.de to the previously checkpointed store. The implementation takes
advantage o(the simple runtime representation of data in SML and, as for persistence,
extends the existing garbage collector scheme. SML's "mostly" functional nature
allows us to implement this abstraction without undue performance penalty.

Finally, we combine these capabilities to support single-threaded nested transac
tions by defining a higher-order function transact that guarantees the permanence of
effects of committed transactions. We succinctly define transact completely in terms
of the interfaces for persistence and undoability. Unlike other transaction-based pro
gramming languages like Argus or Avalon/C++, we need not add new control struc
tures; moreover, we handle aborts of nested or top-level transactions using SML's
exception mechm.

28

A Sheaf Semantics for an Ob ject_-Oriented Language

_ David A. Wolfram
Programming Research Group, University of Oxford

11 Keble Road, Oxford OX1 3QD, UK

David.Vo1framOprg.oxford.ac.uk

(Joint work with Joseph A. Goguen)

Abstract

We give a sheaf semantics for most expressions of the object-oriented language
FOOPS (Functional and Object- Oriented Programming System). Expressions can
contain first-order functions, methods, and method combiners such as concurrent
choice ���� or non-deterministic choice (or). There are built-in methods for deleting
and creating objects. Evaluation of expressions can be done concurrently. Each func-
tion, attribute, method, and method combiner symbol has an associated evaluation
strategy, or E-strategy, which specifies the order of evaluation of its arguments. The
sheaves for functions and user-defined methods, built-in methods, method combiners,
and the initial sheaf label the nodes of a directed graph called a diagram whose edges
are labelled by natural transformations called sheaf morphisms. The semantics of
expression evaluation is based on the limit of this diagram. This is a larger-scale
example of a general theory of sheaf semantics.

29

A Sheaf Semantics for an Object-Oriented Language

David A. Wolfram
Programming Research Group, University of Oxford

11 Keble Road, Oxford OXl 3QD, UK

David .WolframOprg.oxford.ac.uk

(Joint work with Joseph A. Goguen)

Abstract

We give a sheaf semantics for most expressions of the object-oriented language
FOOPS (Functional and Object-Oriented Programming System). Expressions can
contain first-order functions, methods, and method combiners such as concurrent
choice (11) or non-deterministic choice (or). There are built-in methods for deleting
and creating objects. Evaluation of expressions can be done concurrently. Each func
tion, attribute, method, and method combiner symbol has an associated evaluation
strategy, or E-strategy, which specifies the order of evaluation of its arguments. The
sheaves for functions and user-defined methods, built-in methods, method combiners,
and the initial sheaf label the nodes of a directed graph called a diagram whose edges
are labelled by natural transformations called sheaf morphisms. The semantics of
expression evaluation is based on the limit of this diagram. This is a larger-scale
example of a general theory of sheaf semantics.

29

Zuletzt erschienene und geplante Titel:
H. Alt , B. Chazelle, E. Welzl (editors):

Computational Geometry, Dagstuhl-Seminar-Ftepon; 22, 07.10.-1 1.10.91 (9141)
F.J. Brandenburg , J. Berstel, D. Wotschke (editors):

Trends and Applications in Formal Language Theory, Dagstuhl-Seminar-Report; 23, 14.10.-
18.10.91 (9142)

H. Comon , H. Ganzinger, C. Kirchner, H. Kirchner, J.-L. Lassez , G. Smolka (editors):
Theorem Proving and Logic Programming with Constraints, Dagstuhl-Seminar-Report; 24,
21.10.-25.10.91 (9143)

H. Noltemeier, T. Ottmann, D. Wood (editors):
Data Stmctures, Dagstuhl-Seminar-Fteport; 25, 4.11.-8.11.91 (9145)

A. Dress, M. Karpinski, M. Singer(editors):
Efficiem Interpolation Algorithms, Dagstuhl-Seminar-Report; 26, 2.-6.12.91 (9149)

B. Buchberger, J. Davenport, F. Schwarz (editors):
Algorithms of Computeralgebra, Dagstuhl-Seminar-Report; 27, 16..-20.12.91 (9151)

K. Compton, J.E. Pin , W. Thomas (editors):
Automata Theory: Infinite Computations, Dagstuhl-Seminar-Report; 28, 6.-10.1.92 (9202)

H. Langmaack, E. Neuhold, M. Paul (editors):
Software Construction - Foundation and Application, Dagstuhl-Seminar-Report; 29, 13..-17.1.92
(9203)

K. Ambos-Spies, S. Homer, U. Schöning (editors):
Structure and Complexity Theory, Dagstuhl-Seminar-Report; 30, 3.-7.02.92 (9206)

B. Booß, W. Coy, J.-M. Pfl�ger (editors):
Limits of Modelling with Programmed Machines, Dagstuhl-Seminar-Report; 31, 10.-14.2.92
(9207)

K. Compton, J.E. Pin , W. Thomas (editors):
Automata Theory: Infinite Computations, Dagstuhl-Seminar-Report; 28, 6.-10.1.92 (9202)

H. Langmaack, E. Neuhold, M. Paul (editors):
Software Construction - Foundation and Application, Dagstuhl-Seminar-Report; 29, 13.-17.1.92
(9203)

K. Ambos-Spies, S. Homer, U. Schöning (editors):
Structure and Complexity Theory, Dagstuhl-Seminar-Report; 30, 3.-7.2.92 (9206)

B. Booß, W. Coy� J.-M. Pflüger (editors):
Limits of Modelling with Programmed Machines, Dagstuhl-Seminar-Report; 31, 10.-14.2.92
(9207)

N. Habermann, W.F. Tichy (editors):
Future Directions in Software Engineering, Dagstuhl-Seminar-Fteport; 32; 17.2.-21.2.92 (9208)

Ft. Cole, E.W. Mayr, F. Meyer auf der Heide (editors):
Parallel and Distributed Algorithms; Dagstuhl-Seminar-Fteport; 33; 2.3.-6.3.92 (9210)

P. Klint, T. Reps (Madison, Wisconsin), G. Snelting (editors):
Programming Environments; Dagstuhl-Seminar-Report; 34; 9.3.-13.3.92 (9211)

H.-D. Ehrich, J.A. Goguen� A. Semadas (editors):
Foundations of Information Systems Specification and Design; Dagstuhl-Seminar-F-leport; 35;
16.3.-19.3.9 (9212)

W. Damm, Ch. Hankin, J. Hughes (editors):
Functional Languages:
Compiler Technology and Parallelism; Dagstuhl-Seminar-Report; 36; 23.3.-27.3.92 (9213)

Th. Beth, W. Diffie, G.J. Simmons (editors):
System Security; Dagstuhl-Seminar-Report; 37; 30.3.-3.4.92 (9214)

c.A. Ellis, M. Jarke (editors):
Distributed Cooperation in Integrated Information Systems; Dagstuhl-Seminar-Report; 38; 6.4.-
8.4.92 (9215)

Zuletzt erschlenene und geplante Tltel:
H. Alt , B. Chazelle, E. Welzl (editors):

Computational Geometry, Dagstuhl-Seminar-Report; 22, 07.10.-11 .10.91 (9141)

F.J. Brandenburg , J. Berstel, D. Wotschke (editors):
Trends and Applications in Formal Language Theory, Dagstuhl-Seminar-Report; 23, 14.10.-
18.10 .91 (9142)

H. Comon , H. Ganzinger, C. Kirchner, H. Kirchner, J .-L. Lassez , G. Smolka (editors) :
Theorem Proving and Logic Programming with Constraints, Dagstuhl-Seminar-Report; 24,
21.10.-25.10.91 (9143)

H. Noltemeier, T. Ottmann, D. Wood (editors):
Data Structures, Dagstuhl-Seminar-Report; 25, 4.11 .-8.11 .91 (9145)

A. Dress, M. Karpinski, M. Singer(editors) :
Efficient Interpolation Algorithms, Dagstuhl-Seminar-Report; 26, 2.-6.12.91 (9149)

B. Buchberger, J. Davenport, F. Schwarz {editors):
Algorithms of Computeralgebra, Dagstuhl-Seminar-Report; 27, 16 .. -20.12.91 (9151)

K. Compton, J.E. Pin , W. Thomas (editors):
Automata Theory: Infinite Computations, Dagstuhl-Seminar-Report; 28, 6.-10.1.92 (9202)

H. Langmaack, E. Neuhold, M. Paul (editors):
Software Construction - Foundation and Application, Dagstuhl-Seminar-Report; 29, 13 .. -17.1.92
(9203)

K. Ambos-Spies, S . Homer, U. SchOning (editors):
Structure and Complexity Theory, Dagstuhl-Seminar-Report; 30, 3 .-7.02.92 (9206)

B. BooB, W. Coy, J .-M. Pfluger (editors):
Limits of Modelling with Programmed Machines, Dagstuhl-Seminar-Report; 31 , 10.-14.2.92
(9207)

K. Compton, J.E . Pin , W. Thomas (editors):
Automata Theory: Infinite Computations, Dagstuhl-Seminar-Report; 28, 6. -10.1.92 (9202)

H. Langmaack, E. Neuhold, M. Paul (editors):
Software Construction - Foundation and Application, Dagstuhl-Seminar-Report; 29, 13.-17.1.92
(9203)

K. Ambos-Spies, S. Homer, U. Sch0ning (editors) :
Structure and Complexity Theory, Dagstuhl-Seminar-Report; 30, 3.-7.2.92 (9206)

B. BooB, W. Coy, J .-M. Pfluger (editors):
Limits of Modelling with Programmed Machines, Dagstuhl-Seminar-Report; 31 , 10.-14.2.92
(9207)

N. Habermann, W.F. Tichy (editors):
Future Directions in Software Engineering, Dagstuhl-Seminar-Report; 32; 17.2.-21 .2.92 (9208)

A. Cole, E.W. Mayr, F. Meyer auf der Heide (editors):
Parallel and Distributed Algorithms; Dagstuhl-Seminar-Report; 33; 2.3.-6.3.92 (9210)

P. Klint, T . Reps (Madison, Wisconsin), G. Snetting (editors):
Programming Environments; Dagstuhl-Seminar-Report; 34; 9.3.-13.3.92 (9211)

H.-D. Ehrich, J.A. Goguen, A. Semadas (editors) :
Foundations of Information Systems Specification and Design; Dagstuhl-Seminar-Report; 35;
16.3 .-19.3 .9 (9212)

W. Damm, Ch. Hankin, J. Hughes (editors) :
Functional Languages:
Compiler Technology and Parallelism; Dagstuhl-Seminar-Report; 36; 23.3.-27.3.92 (9213)

Th. Beth, W. Diffie, G.J. Simmons (editors):
System Security; Dagstuhl-Seminar-Report; 37; 30.3.-3.4.92 (9214)

C.A. Ellis, M. Jarke (editors):
Distributed Cooperation in Integrated Information Systems; Dagstuhl-Seminar-Report; 38; 6.4.-
8.4.92 (9215)

