
B. Courcelle, H. Ehrig, G. Rozenberg,
H.J. Schneider (editors):

Graph-Transformations in Computer Science

Dagstuhl-Seminar-Report; 53
04.01 .-O8.01 .93 (9301)

B. Courcelle, H. Ehrig, G. Rozenberg,
H.J. Schneider (editors) :

Graph-Transformations in Computer Science

Dagstuhl-Seminar-Report; 53
04.01 .-08.01 .93 (9301)

ISSN 0940-1121

Copyright © 1993 by IBFI GmbH, Schloß Dagstuhl, W-6648 Wadern, Germany
TeI.: +49�6871 - 2458
Fax: +49-6871 - 5942

Das Internationale Begegnungs- und Forschungszentrum für Informatik (IBFI) ist eine gemein-
nützige GmbH. Sie veranstaltet regelmäßig wissenschaftliche Seminare, welche nach Antrag
der Tagungsleiter und Begutachtung durch das wissenschaftliche Direktorium mit persönlich
eingeladenen Gästen durchgeführt werden.

Verantwortlich für das Programm:
Prof. Dr.-Ing. Jose Encarnagao,
Prof. Dr. Winfried Görke,
Prof. Dr. Theo Härder,
Dr. Michael Laska,
Prof. Dr. Thomas Lengauer,
Prof. Walter Tichy Ph. D.,
Prof. Dr. Reinhard Wilhelm (wissenschaftlicher Direktor)

Gesellschafter: Universität des Saarlandes,
Universität Kaiserslautern,
Universität Karlsruhe,
Gesellschaft für Informatik e.V., Bonn

Träger: Die Bundesländer Saarland und Rheinland-Pfalz

Bezugsadresse: Geschäftsstelle Schloß Dagstuhl
Informatik, Bau 36
Universität des Saarlandes
W - 6600 Saarbrücken

Germany
Tel.: +49 -681 - 302 - 4396
Fax: +49 -681 - 302 - 4397

e-mail: olfice@dag.uni�sb.de

ISSN 0940-1121

Copyright © 1993 by IBFI GmbH, SchloB Dagstuhl, W-6648 Wadern, Germany
Tel.: +49-6871 - 2458
Fax: +49-6871 - 5942

Das lntemationale Begegnungs- und Forschungszentrum fur lnformatik (IBFI) ist eine gemein
nutzige GmbH. Sie veranstaltet regelmaBig wissenschaftliche Seminare, welche nach Antrag
der Tagungsleiter und Begutachtung durch das wissenschaftliche Direktorium mit personlich
eingeladenen Gasten durchgefuhrt warden.

Verantwortlich fur das Programm:
Prof. Dr.-lng. Jose Encama9ao,
Prof. Dr. Winfried Gorka,
Prof. Dr. Theo Harder,
Dr. Michael Laska,
Prof. Dr. Thomas Lengauer,
Prof. Walter Tichy Ph. D.,
Prof. Dr. Reinhard Wilhelm (wissenschaftlicher Direktor)

Gesell~chafter: Universitat des Saarlandes,
Universitat Kaiserslautern,
Universitat Karlsruhe,
Gesellschaft fur lnformatik e.V., Bonn

Trager: Die Bundeslander Saarland und Rheinland-Pfalz

Bezugsadresse: Geschaftsstelle SchloB Dagstuhl
lnformatik, Bau 36
Universitat des Saarlandes
W - 6600 Saarbrucken
Germany
Tel.: +49 -681 - 302 - 4396
Fax: +49 -681 - 302 - 4397
e-mail: office@dag.uni-sb.de

Report on the Dagstuhl-Seminar 9301

Graph Transformations in
Computer Science

January 4 � 8, 1993

Organizers:
Bruno Courcelle (Bordeaux)

Hartmut Ehrig (Berlin)
Grzegorz Rozenberg (Leiden) .

Hans Jürgen Schneider (Erlangen)

The research area of graph grammars resp. graph transformations is a relatively
young discipline of computer science. Its origins date back to the early seventies.
Nevertheless methods, techniques, and results from the area of graph transforma-
tion have already been studied and appiied in many �elds of computer science such
as formal language theory, pattern recognition and generation, compiler construc-
tion, software engineering, concurrent and distributed systems modelling, database
design and theory, etc.

This wide applicability is due to the fact that graphs are a very natural way to
explain complex situations on an intuitive level. Hence they are used in computer
science almost everywhere, e.g. as data- and control �ow diagrams, entity relati-
onship diagrams, Petri-nets, visualization of soft- and hardware architectures, evo-
lution diagrams of non-deterministic processes, SADT-diagrams, and many more.
Like the �token game� for Petri-nets, graph transformation brings dynamics to all
these descriptions, since it can describe the evolution of graphical structures. The-
refore graph transformation becomes attractive as a �programming paradigm� for
complex structured software and graphical interfaces. In particular graph rewrit-
ing is promising as a comprehensive framework in which the transformation of all
these very different structures can be modelled and studied in a uniform way.

During this Dagstuhl-Seminar 33 lectures and 3 system demonstrations where
presented by the participants from 8 European countries, U.S.A. and Japan in the
following areas:

0 Foundations of Graph Grammars and Transformations

Report on the Dagstuhl-Seminar 9301

Graph Transformations
Computer Science

January 4 - 8, 1993

Organizers:

Bruno Courcelle (Bordeaux)
Hartmut Ehrig (Berlin)

Grzegorz Rozenberg (Leiden)
Hans Jurgen Schneider (Erlangen)

•
Ill

The research area of graph grammars resp. graph transformations is a relatively
young discipline of computer science. Its origins date back to the early seventies.
Nevertheless methods, techniques, and results from the area of graph transforma
t ion have already been studied and app1ied in many fields of computer science such
as formal language theory, pattern recognition and generation, compiler construc
tion, software engineering, concurrent and distributed systems modelling, database
design and theory, etc.

This wide applicability is due to the fact that graphs ar_e a very natural way to
explain complex situat ions on an intuitive level. Hence they are used in computer
science almost everywhere, e.g. as data- and control flow diagrams, entity relati
onship diagrams, Petri-nets, visualization of soft- and hardware architectures, evo
lution diagrams of non-deterministic processes, SADT-diagrams, and many more.
Like the "token game" for Petri-nets, graph transformation brings dynamics to all
these descriptions, since it can describe the evolution of graphical structures. The
refore graph transformation becomes attractive as a. "programming paradigm" for
complex structured software and graphical interfaces. In particular graph rewrit
ing is promising as a comprehensive framework in which the transformation of a:l
these very different structures can be modelled and studied in a uniform way.

During this Dagstuhl-Seminar 33 lectures and 3 system demonstrations where
presented by the participants from 8 European countries, U.S.A. and Japan in the
following areas:

• Foundations of Graph Grammars and Transformations

I

0 Applications of Graph Transformations to

� Concurrent Computing

� Speci�cation and Programming

� Pattern Generation and Recognition

The system demonstrations in the evening showed efficient implementations
of the algebraic approach to graph transformations (AGG-System), of a software
speci�cation language based on graph rewriting (PROGRESS) and of a functional
programming language (Concurrent Clean) based on term graph rewriting. In each
case the theoretical techniques of the underlying approach and typical applications
have been demonstrated in corresponding lectures during the day. In addition,
interesting new applications of graph transformations were presented in several
lectures in the following areas: Concurrent constraint programming, actor systems,
speci�cation of languages for distributed systems, of hybrid database languages
and of an efficient narrowing machine, and � last but not least �� to pretty
pattern generation and recognition ranging from graphical modelling for CAD to
abstractions of modern art including Escher and Picasso.

In the lectures concerning foundations on one hand new results concerning
graph languages and graph automata and their connections to decision problems
were presented. On the other hand new concepts and results for the algebraic ap-
proach to graph transformations based on double and single pushouts were shown.
Notions for abstraction and semantical constructions were given leading to canoni-
cal derivation sequences, true concurrency and event structures and also extensions
of results from graph grammars to HLR (High Level Replacement)-systems. The
HLR-approach is a categorical uni�cation of different approaches with several inte-
resting new applications including those to rule based modular system design and
transformation andire�nement of Petri-nets.

Altogether it was a very fruitful interaction between theory, applications and
practical demonstrations.

This Dagstuhl workshop was coorganized by the ESPRIT Basic Research WG
COMPUGRAPH and will be followed by a series of related workshops in Leiden
(Fall 1993), Williamsburg, U.S.A. (1994), Pisa (1995) and hopefully again in Dag-
stuhl in 1996. A

All participants appreciated the stimulating atmosphere in Schloß Dagstuhl and
expressed their thanks to the IBF I (Internationales Begegnungs- und Forschungs-
zentrum fiir Informatik) and the ESPRIT WG COMPUGRAPH for organization
and support of this successful seminar.

January 1993 Hartmut Ehrig
Hans Jürgen Schneider

• Applications of Graph Transformations to

Concurrent Computing

Specification and Programming

Pattern Generation and Recognition

The system demonstrations in the evening showed efficient implementations
of the algebraic approach to graph transformations (AGG-System), of a software
specification language based on graph rewriting (PROGRESS) and of a functional
programming language (Concurrent Clean) based on term graph rewriting. In each
case the theoretical techniques of the underlying approach and typical applications
have been demonstrated in corresponding lectures during the day. In addition,
interesting new applications of graph transformations were presented in several
lectures in the following areas: Concurrent constraint programming, actor systems,
specification of languages for distributed systems, of hybrid database languages
and of an efficient narrowing machine, and - last but not least - to pretty
pattern generation an<l recognition ranging from graphical modelling for CAD to
abstractions of modern art including Escher and Picasso.

In the lectures concerning foundations on one hand new results concerning
graph languages and graph automata and their connections to decision problems
were presented. On the other hand new concepts and results for the algebraic ap
proach to graph transfonnations based on double and single pushouts were shown.
Notions for abstraction and semantical constructions were given leading to canoni
cal derivation sequences, true concurrency and event structures and also extensions
of results from graph grammars to HLR (High Level Replacement)-systems. The
HLR-approach is a categorical unification of different approaches with several inte
resting new applications including those to rule based modular system design and
transformation and ·refinement of Petri-nets.

Altogether it was a very fruitful interaction between theory, applications and
practical demonstrations.

This Dagstuhl workshop was coorganized by the ESPRIT Basic Research WG
COMPUGRAPH and will be followed by a series of related workshops in Leiden
(Fall 1993), Williamsburg, U.S.A. (1994), Pisa (1995) and hopefully again in Dag
stuhl in 1996.

All participants appreciated the stimulating atmosphere in Schlo6 Dagstuhl and
expressed their thanks to the IBFI (lnternationales Begegnungs- und Forschungs
zentrum fiir Informatik) and the ESPRIT WG COMPUGRAPH for organization
and support of this successful seminar.

January 1993

2

Hartmut Ehrig
Hans Ji.irgen Schneider

Contents

K. Aizawa, A. Nakamura
Path-Controlled Graph Grammars for Multiresolution Image Processing and Image
Analysis .22

S. Arnborg
Decomposability helps for deciding logics of knowledge and belief23

E. Barendsen, S. Smetsers
Graph Rewriting and Copying ..9

K. Barthclmann, G. Schicd
A Programming Language for Distributed Systems ..15

M. Beyer, G. Tacntzcr
AGG �� An Algebraic Graph Grammar System and its Specification with Exten-
ded Parallel Graph Grammars .7

F. J. Brandenburg
Con�uent graph grammars with embeddings of depth k . �.24

A. Cor-radini, H. Ehrig, M. Löwe, U. Montanari, F. Rossi
True Concurrency in Graph Grammars . 12

A. Corradini, U. Montanari, F. Rossi
Graph Rewriting Systems for Concurrent Constraint Programming12

A. Corradini, D. Wolz
Jungle Rewriting as a Speci�cation Tool for an Abstract Narrowing Machine . 16

B. Courcelle

Context-Free Vertex Replacement Sets of Graphs that are not Hyperedge Repla-
cement: Characterization and Decidability ..22

H. Ehrig
Review and New Aspects of Algebraic Graph Transformations and High-Level-
Replacement Systems . 6

G. Engels, M. Andries __
Syntax and Semantics of Hybrid Database Languages . 18

M. Gemis, J. Paredaens, P. Peelman, J. Van den Bussche
A Computational Model for Generic Graph Transformations 15

Contents

I<. Aizawa, A. Nakamura
Path-Controlled Graph Grammars for Multiresolution Image Processing and Image
Analysis 22

S. Arnborg
Decomposability helps for deciding logics of knowledge and belief 23

E. Barendsen, S. Smetsers
Graph Rewriting and Copying 9

I<. Barthelmann, G. Schied
A Programming Language for Distributed Systems 15

M. Beyer, G. Taentzer
AGG - An Algebraic Graph Grammar System and its Specification with Exten-
ded Parallel Graph Grammars 7

F. J. Brandenburg
Confluent graph grammars with embeddings of depth k 24

A. Corradini, H. Ehrig, M. Lowe, U. Montanari, F. Rossi
True Concurrency in Graph Grammars 12

A. Corradini, U. Montanari, F. Rossi
Graph Rewriting Systems for Concurrent Constraint Programming 12

A. Corradini, D. Wolz
Jungle Rewriting as a Specification Tool for an Abstract Narrowing Machine . 16

B. Courcelle
Context-Free Vertex Replacement Sets of Graphs that are not Hyperedge Repla-
cement: Characterization and Decidability 22

H. Ehrig
Review and New Aspects of Algebraic Graph Transformations and High-Level-
Replacement Systems 6

G. Engels, M. Andries
. ~

Syntax and Semantics of Hybrid Database Languages 18

M. Gemis, J. Paredaens, P. Peelman, J. Van den Bussche
A Computational Model for Generic Graph Transformations 15

3

H. Gättler, B. Himmelreich
Combining Programmed Attributed Graph Grammars and Two-level Graph Gram-
mars for the Design of an Object Oriented Database for Picasso Pictures25

W. Grabska

Graphs & Designing . 0?�21

A. Habel

Annotated Collage Grammars ..2l

D. Janssens

Equivalence and Composition of ESM systems (Actor grammars)11

Y. Kawahara

Transformations of Relational Structures .. 8

J.R. Kennaway, J. W. Klop, M.R. Sleep, F.J. de Vries
Event Structures and Orthogonal Term Graph Rewriting13

M. Kor�
Single Pushout Approach for Equationally De�ned Graph Structures with Appli-
cations to Concurrent Systems .. 14

H.�J. Kreowski

Canonical Derivations . 6

J. Lagergreen
On Recognizable Sets of Graphs of Bounded Tree-Width .23

M. Löwe, J. Dingl
Canonical Derivations in Single-Pushout Graph Transformation 7

A. Maggiolo-Schettini, A. Peron
Semantics of Full Statecharts Based on Graph Rewriting .. 19

M. Nagl
Uniform Modelling Using Graph Grammar Specs . 19

F. Parisi-Presicce

Restricting Derivation Sequences: Single or Double Pushout 10

A. Proskurowski -

Combinatorial Generation of Ic-Paths . 25

J.�C'. Raoult, F. Voisin
Set-Theoretic Graph Rewritings .. 9

H. Gott/er, B . Himmelreich
Combining Programmed Attributed Graph Grammars and Two-level Graph Gram
mars for the Design of an Object Oriented Data.base for Picasso Pictures 25

W. Grabska
Graphs & Designing 21

A. Habel
Annotated Collage Grammars 21

D. Janssens
Equivalence and Composition of ESM systems (Actor grammars) 11

Y. Kawahara
Transformations of Relational Structures 8

J .R . Kennaway, J. W. /(/op, M.R. Sleep, F.J. de Vries
Event Structures and Orthogonal Term Graph Rewriting : 13

M. Korff
Single Pushout Approach for Equationa.lly Defined Graph Structures with Appli-
cations to Concurrent Systems 14

H.-J. Kreowski
Canonical Derivations 6

J. Lagergreen
On Recognizable Sets of Graphs of Bounded Tree-Width 23

M. Lowe, J. Dingl
Canonical Derivations in Single-Pushout Graph Transformation 7

A. Maggiolo-Schettini, A . Peron
Semantics of Full Statecharts Based on Graph Rewriting 19

M. Nagl
Uniform Modelling Using Graph Grammar S.pecs 19

F. Parisi-Presicce
Rest£icting Derivation Sequences: Single or Double Pushout 10

A. Proskurowski
Combinatorial Generation of k-Paths 25

J.-C. Raoult, F. Voisin
Set-Theoretic Graph Rewritings 9

4

G. Schied

On Graph Grammars, Distributed Rewriting Systems, and Event Structures ..11

A. Schiirr

lst Order Logic Based Graph Rewriting Systems with Application Conditions and
Embedding Rules . 17

K. Skodinis
Graph automata for connected L-eNCE graph grammars .24

S. Smetscrs, E. Barendsen, M. van Eekelcn, R. Plasmeijer
Guaranteeing destructive updatability through a type system with uniqueness in-
formation for graphs . 17

P. van den Broek, J. Kuper
Graph rewriting using a single pushout; a comparison . 10

G. Schied
On Graph Grammars, Distributed Rewriting Systems, and Eveut Structures . . 11

A. Schurr
1st Order Logic Based Graph Rewriting Systems with Application Conditions and
Embedding Rules 17

/(. Skodinis
Graph automata for connected L-eNCE graph grammars 24

S. Smetsers, E. Barendsen, M. van Eekelen, R. Plasmeijer
Guaranteeing destructive updatability t hrough a type system with uniqueness in-
formation for graphs 17

P. van den Broek, J. Kuper
Graph rewriting using a single pushout; a comparison 10

5

1 Foundations

Review and New Aspects of Algebraic Graph
Transformations and High-Level-Replacement Systems

Hartmut Ehrig
Technische Universität Berlin

Algebraic Graph Transformations are based on a gluing construction in the cate-
gory of graphs. In the classical case we have two gluing constructions which are
pushouts in the category of graphs. This double pushout approach for graphs has
been generalized to objects in quite general categories leading to the notion of high
level replacement systems. Using partial instead of total graph morphisms was the
main idea to develop the single pushout approach for graph transformations which
was recently also generalized to a suitable categorical setting. This is now called
single pushout approach for high level replacement systems.

An overview of main constructions and results in both approaches has been
presented in the lecture together with some new specific results. Moreover problems
of abstraction of graphs and graph derivations (up to isomorphism) can be solved
using the notion of standard representation of graphs.

Canonical Derivations
H ans-J6rg K reowski
Universität Bremen

Imagine a concurrent system. An observer would see a derivation, i.e. a sequence
of actions where each action may be the parallel composition of component ac-
tions. Unfortunately, independent actions may be observed to happen one after
the other or�from another point of view�in parallel. Therefore, a process may
be observable through many (e.g. exponentially many) equivalent derivations. If
one is interested in the processes, one faces the problem to represent them in an
adequate and efficient way.

Canonical derivations are candidates to solve the problem. The idea is to look
for derivations where each component action appears as early as possible. For
this purpose, a shift is introduced that moves a component action to the prece-
ding derivation step (if equivalence is preserved). Obviously, shifting-as-long-as-
possible yields a canonical derivation whenever the procedure terminates. There is

1 Foundations

Review and New Aspects of Algebraic Graph
Transformations and High-Level-Replacement Systems

Hartmut Ehrig
Technische Universita.t Berlin

Algebraic Graph Transformations are based on a gluing construction in the cate
gory of graphs. In the classical case we have two gluing constructions which are
pushouts in the category of graphs. This double pushout approach for graphs has
been generalized to objects in quite general categories leading to the notion of high
level replacement systems. Using partial instead of total graph morphisms was the
main idea to develop the single pushout approach for graph transformations which
was recently also generalized to a suitable categorical setting. This is now called
single pushout approach for high level replacement systems.

An overview of main constructions and results in both approaches has been
presented in the lecture together with some new specific results. Moreover problems
of abstraction of graphs and graph derivations (up to isomorphism) can be solved
using the notion of standard representation of graphs.

Canonical Derivations
Hans-Jorg Kreowski
Universita.t Bremen

Imagine a concurrent system. An observer would see a derivation, i.e. a sequence
of actions where each action may be the parallel composition of component ac
tions. Unfortunately, independent actions may be observed to happen one after
the other or- from another point of view- in parallel. Therefore, a process may
be observable through many (e.g. exponentially many) equivalent derivations. If
one is interested in the processes, one faces the problem to represent them in an
adequate and efficient way.

Canonical derivations are candidates to solve the problem. The idea is to look
for derivations where each component action appears as early as possible. For
this purpose, a shift is introduced that moves a component action to the prece
ding derivation step (if equivalence is preserved). Obviously, shifting-as-long-as
possible yields a canonical derivation whenever the procedure terminates. There is

6

a straightforward way to guarantee termination, but uniqueness is more trouble-
some to get. The main result states that equivalent canonical derivations are equal
if the analysis relation between parallel actions and their corresponding sequential
views behaves �nicely�.

It is known that several graph grammar approaches and Petri nets, for example,
are �nice� enough. A more recent result (by Ehrig, Taentzer & myself) reveals
that high-level replacement systems meet the conditions under certain assumptions
(that are ful�lled in many cases).

Canonical Derivations in Single-Pushout Graph
Transformation

Michael Löwe and Jürgen Ding]
Technische Universität Berlin

The single-pushout approach to graph transformation comes equipped with an in-
teresting parallel composition of rules and rule applications: some parallel steps
cannot be decomposed into sequences with the component rules. And the possibi-
lity of one sequentialization does not imply that all sequentializations are realizable.
This makes up a significant difference to the classical algebraic approach based on
double pushout derivations which guarantees the existence of all sequentializations
for all parallel steps.

We show that the equivalence which arises from different sequentializations
of the same sequence is efficiently decidable for the single-pushout approach as
well. Furthermore, there is for each sequence an unique equivalent one which
realizes maximal parallelism in the sense that each atomic step in this sequence is
performed �earlier� than in any other equivalent sequence. This so-called canonical
sequence can be effectively computed for each given sequence using the decision
algorithm mentioned above. The amount of parallelism, however, which we �nd
in the canonical derivation sequences for the single-pushout approach considerably
exceeds the parallelism obtained in the double pushout framework for the �same�
input sequence.

AGG � An Algebraic Graph Grammar System and its
Speci�cation with Extended Parallel Graph Grammars

Martin Beyer, Gabriele Taentzer
Technische Universität Berlin

The AGG-system is a prototype implementation of the algebraic approach to
graph transformation. It has been programmed in EIF F EL and runs on SUN4-
workstations under X windows 11.5. It consists of a �exible graph editor and a

7

a straightforward way to guarantee termination, but uniqueness is more trouble
some to get. The main result states t hat equivalent canonical derivations are equal
if the analysis relation between parallel actions and their corresponding sequential
views behaves "nicely".

It is known that several graph grammar approaches and Petri nets, for example,
are "nice" enough. A more recent result (by Ehrig, Taentzer & myself) reveals
that high-level replacement systems meet the conditions under certain assumptions
(that are fulfilled in many cases).

Canonical Derivations in Single-Pushout Graph
Transformation

Michael Lowe and J iirgen Ding]
Technische Universitii.t Berlin

The single-pushout approach to graph tran~format.ion mmes equipped with an in
teresting parallel composition of rules and rule applications: some parallel steps
cannot be decomposed into sequences with the component rules. And the possibi
lity of one sequentialization does not imply that all sequentializations are realizable.
This makes up a signjficant difference to the classical algebraic approach based on
double pushout derivations whjch guarantees the existence of all sequentializations
for all parallel steps.

We show that the equivalence which arises from different sequentializations
of the same sequence is efficiently decidable for the single-pushout approach as
well. Furthermore, there is for each sequence an unique equivalent one which
realizes maxjmal parallelism in the sense that each atomic step in this sequence is
performed "earlier" than in any other equivalent sequence. This so-called canonical
sequence can be effectively computed for each given sequence using the decision
algorithm mentioned above. The amount of parallelism, however , which we find
in the canomcal derivation sequences for the single-pushout approach considerably
exceeds the parallelism obtained in the double pushout framework for the "same"
input sequence.

AGG - An Algebraic Graph Grammar System and its
Specification with Extended Parallel Graph Grammars

Martin Beyer, Gabriele Taentzer
Technische Universitiit Berlin

The AGG-system is a prototype implementation of the algebraic approach to
graph transformation. It has been programmed in EIFFEL and runs on SUN4-
workstations under X windows 11 .5. It consists of a flexible graph editor and a

7

derivation component. The I/ O is mouse/menue driven. A comprehensive set of
operations facilitates the efficient manipulation and clear visualization of graphs.
The editor allows the graphical manipulation of production rules, redices and de-
rivation results. The derivation component performs direct transformation steps
for user-selected production rules and redices using the so-called single pushout
approach to graph rewriting. x

First steps towards a graph speci�cation of the AGG-system can be made by
using extended parallel graph grammars. By now, an abstract version of an AGG-
state is modelled by a graph and AGG-operations are modelled by graph deriva-
tions, which are performed in two steps. First a new production rule is generated
from a set of elementary production rules by amalgamating them and then this new
production rule is applied to the actual graph by a direct derivation. Using this
kind of amalgamated two-level derivations the extended parallel graph grammars
allow dynamic interfaces, partial coverings of the mother graph and operational
production sets which are tables of sets describing one operation.

Transformations of Relational Structures

Yasuo Kawahara

Kyushu University, Fukuoka, Japan

This talk presented an attempt to propose a fundamental framework for graph
transformations from the viewpoint of relational calculus, i.e., theory of binary
relations. To this end notions of relational structures and their morphisms are in-
troduced over a frame consisting of a pair of natural transformations between set-
valued functors. The relational structures include relational algebra, simple graphs,
labeled graphs, hypergraphs and so on. The category of relational structures and
their morphisms are complete and co-complete under weak conditions. Given an
admissible class of monomorphisms, partial morphisms of relational structures are
de�ned. Then the categories of relational structures and their partial morphisms
has pushouts if some continuity conditions hold. In this case transformations of re-
lational structures with single pushouts can be freely achieved, and some properties
on commutativity of rewritings and con�uency (Church-Rosser) of derivations are
shown by the similar idea due to Raoult.

derivation component. The 1/0 is mouse/menue driven. A comprehensive set of
operations facilitates the efficient manipulation and clear visualization of graphs.
The editor allows the graphical manipulation of production rules, redices and de
rivation results. The derivation component performs direct transformation steps
for user-selected production rules and redices using the so-called single pushout
approach to graph rewriting.

First steps towards a graph specification of the AGG-system can be made by
using extended parallel graph grammars. By now, an abstract version of an AGG
state is modelled by a graph and AGG-operations are mode1led by graph deriva
tions, which are performed in two steps. First a new production rule is generated
from a set of elementary production rules by amalgamating them and then this new
production rule is applied to the actual graph by a direct derivation. Using this
kind of amalgamated two-level derivations the extended parallel graph grammars
allow dynamic interfaces, partial coverings of the mother graph and operational
production sets which are tables of sets describing one operation.

Transformations of Relational St ructures
Yasuo Kawahara

Kyushu University, Fukuoka, Japan

This talk presented an attempt to propose a fundamental framework for graph
transformations from the viewpoint of relational calculus, i.e. , theory of binary
relations. To this end notions of relational structures and their morphisms are in
troduced over a frame consisting of a pair of natural transformations between set
valued functors. The relational structures include relational algebra, simple graphs,
labeled graphs, hypergraphs and so on. The category of relational structures and
their morphisms are complete and co-complete under weak conditions. Given an
admissible class of monomorphisms, partial morphisms of relational structures are
defined. Then the categories of relational structures and their partial morphisms
has pushouts if some continuity conditions hold. In this case transformations of re
lational structures with single pushouts can be freely achieved, and some properties
on commutativity of rewritings and confluency (Church-Rosser) of derivations are
shown by the similar idea due to Raoult.

8

Set-Theoretic Graph Rewritings
Jean-Claude Raoult, Frédéric Voisin

IRISA Rennes, LRI Orsay

We consider graphs as sets of labelled hyperarcs like fzvyz, where f is the label of
the arc, and ac, y, z are the vertices to which this arc is attached, in this order.
A rewrite relation is de�ned to be a binary relation G �+ G� preserved by adding
contexts:

G�+G� implies G+C�.->G"+C

Some care must be taken regarding vertices. We have three options: 1) admit all
contexts, 2) vertices appearing new in g� should also appear new in G� + C, 3) new
vertices in G� remain new in G� + G. The applications envisioned rule out the first
alternative. The third is called a reversible rewriting, and is a particular case of
the second.

For instance,

:1: �-a��> y �T :1: -;�+ y x 3/

51 > Je generates bl 1,, > 1'0 in
Z I z u z u � .

These rewritings can represent the single pushout approach in the case when the
partial morphisms are injective. No gluing condition is needed. '

The composition of two reversible rewritings is a reversible rewriting and an
algorithm gives a systems generating the composition. The composition of two ge-
neral rewritings is not a rewriting in general, but the induced rewriting is generated
by a system which can be obtained by the same algorithm. '

This stability under composition is false for parallel rewritings of graphs and
of terms, and for single step rewritings of terms.

Graph Rewriting and Copying
Erik Barendsen, Sjaak Smetsers

University of Nijmegen

This work focuses on the theoretical aspects of (term) graph rewriting.
Graph reduction is described in terms of general operations on graphs, leading

to a substitution-like mechanism called graph replacement. Some basic theory on
the interaction of these operations is developed. Equipped with the ordering indu-
ced by graph homomorphisms, various sets of graphs have nice domain theoretical

9

Set-Theoretic Graph Rewritings
Jean-Claude Raoult, Frederic Voisin

IRTSA Rennes, LRI Orsay

We consider graphs as sets of labelled hyperarcs like f xyz, where J is the label of
the arc, and x, y, z are the vertices to which this arc is attached, in this order.
A rewrite relation is defined to be a binary relation G -+ G' preserved by adding
contexts:

G -+ G' implies G + C -+ G' + C

Some care must be taken regarding vertices. We have three options: 1) admit all
contexts, 2) vertices appearing new in 91 should also appear new in G' + C, 3) new
vertices in G' remain new in G' + C. The applications envisioned rule out the first
alternative. The third is called a reversible rewriting, and is a particular case of
the second.

For instance,

a
X

a
X y

X---+ y x--+ y

bl > l e generates bl la > le la

z z z 1l
z tl

These rewritings can represent the single pushout approach in the ca.se when the
partial morphisms are injective. No gluing condition is needed. ·

The composition of two reversible rewritings is a reversible rewriting and an
algorithm gives a systems generating the composition. The composition of two ge
neral rewritings is not a rewriting in general, but the induced rewriting is generated
by a system which can be obtained by the same algorithm. ·

This stability under composition is false for parallel rewritings of graphs and
of terms, and for single step rewritings of terms.

Graph Rewriting and Copying
Erik B a.rendsen, Sjaak Smetsers

University of Nijmegen

This work focuses on the theoretical aspects of (term) graph rewriting.
Graph reduction is described in terms of general operations on graphs, leadjng

to a substitution-like mechanism called graph replacement. Some basic theory on
the interaction of these operations is developed. Equipped with the ordering indu
ced by graph homomorphisms, various sets of graphs have nice domain theoretical

9

properties. A Church�Rosser result for so-called interference-free orthogonal graph
rewrite systems is obtained. Con�uence is preserved if reduction is mixed with
partial unraveling of graphs.

The notion of term graph rewrite system (TGRS) is extended with a lazy co-
pying mechanism. By analyzing this mechanism, a con�uence result for copy term
graph rewrite systems (C-TGRS�s) is obtained. Some ideas on the use of lazy
copying combined with a node-selecting reduction strategy are presented.

C-TGRS�s can be used to model parallel computations on loosely coupled ma-
chine architectures, see •
[1] M.C.J.D. van Eekelen, M.J. Plasmeijer and J.E.W. Smetsers, 1991: Paral-
lel graph rewriting on loosely coupled machine architectures, in: Proceedings
CTRS�90, LNCS 516, Springer-Verlag, Berlin, pp. 354-369.

Graph rewriting using a single pushout; a comparison
Pim van den Broek, Jan Kuper

Uni versi tei t Twente

Recently two algebraic approaches to graph rewriting have been given which use
single pushouts. Here we compare both approaches. The rewrite results in both
approaches are similar, while the approaches differ in the applicability of a rule
when an occurence of its left hand side is given.

Restricting Derivation Sequences: Single or Double
- Pushout

Francesco Parisi-Presicce

Universität degli Studi L�AquiIa

Motivated by applications to Software System Design, where productions repre-
sent interfaces and derivations using these productions can be translated into in-
terconnections of the corresponding software components, the classical double pus-
hout approach to the algebraic theory of graph grammars is modified by allowing
�restricting� steps to precede and follow each direct derivation. Graph Gram-
mars with restricting derivation sequences based on double pushouts are strictly
more expressive than those using standard derivations based on single pushouts.
Allowing restricting steps, the single pushout approach and the double pushout
approach have the same expressive power. By allowing the set of productions to
change, standard double pushout derivations can simulate restricting derivation
sequences.

10

properties. A Church-Rosser result for so-called interference-free orthogonal graph
rewrite systems is obtained. Confluence is preserved if reduction is mixed with
partial unraveling of graphs.

The notion of term graph rewrite system (TGRS) is extended with a lazy co
pying mechanism. By analyzing this mechanism, a confluence result for copy term
graph rewrite systems (C-TGRS's) is obtained. Some ideas on the use of lazy
copying combined with a node-selecting reduction strategy are presented.

C-TGRS's can be used to model parallel computations on loosely coupled ma
chine architectures, see [1).
[1] M.C.J.D. van Eekelen, M.J. Plasmeijer and J.E.W. Smetsers, 1991: Paral
lel graph rewriting on loosely coupled machine architectures, in: Proceedings
CTRS'90, LNCS 516, Springer-Verlag, Berlin, pp. 354- 369.

Graph rewriting using a single pushout; a comparison
Pim van den Broek, Jan Kuper

Universiteit Twente

Recently two algebraic approaches to graph rewriting have been given which use
single pushouts. Here we compare both approaches. The rewrite results in both
approaches are similar, while the approaches differ in the applicability of a rule
when an occurence of its left hand side is given.

Restricting Derivation Sequences: Single or Double
Pushout

Francesco Parisi-Presicce
Universita. degli Studi L'Aquila

Motivated by applications to Software System Design, where productions repre
sent interfaces and derivations using these productions can be translated into in
terconnections of the corresponding software components, the classical double pus
bout approach to the algebraic theory of graph grammars is modified by allowing
"restricting" steps to precede and follow each direct derivation. Graph Gram
mars with restricting derivation sequences based on double pushouts a.re strictly
more expressive than those using standard derivations based on single pushouts.
Allowing restricting steps, the single pushout approach and the double pushout
approach have the same expressive power. By allowing the set of productions to
change, standard double pushout derivations can simulate restricting derivation
sequences.

10

2 Concurrent Computing

On Graph Grammars, Distributed Rewriting Systems, and
Event Structures

Georg Schied
Universität Erlangen-Niirn berg

Rewriting systems constitute an operational model for distributed systems that is
based upon the notion of states and state transitions. Event structures, on the
other side, are a more abstract description of the behaviour of distributed systems
that is based on events, causality, and con�icts.

We introduce distributed rewriting systems as a unifying approach for diffe-.
rent kinds of rewriting systems, like string or graph grammars. Contexts and an
appropriate operator for inserting structures into the holes of a context are the fo-
undation of this model. The double pushout approach for graph grammars nicely
�ts into this general framework. By the way, we obtain some simpli�ed proofs for
the Church-Rosser and parallelism theorems of graph grammars.

Derivation processes of rewriting systems intuitively can be described with event
structures. We present an outline of the construction that relates the derivations
of a rewriting system to its corresponding event structure.

Equivalence and Composition of ESM systems
(Actor grammars)

Dirk J anssens

VUB Brussels

ESM systems are graph rewriting systems in which a step is obtained by a single
pushout construction in a category of graph structures where morphisms are a
variant of the usual structure morphisms, called ESM morphisms. This type of
systems generalize a graph grammar model of actor systems, called actor grammars,
that was introduced and investigated in the last 6 years.

Starting from the idea that a system (program) is a set of ESM morphisms
(productions), a compositional semantics is developed; composition of systems is
set union. The basic objects considered are concrete representations of rewriting
processes, which are composed using a gluing operation. The corresponding se-
mantics is made compositional by adding to a process some information about the

11

2 Concurrent Computing

On Graph Grammars, Distributed Rewriting Systems, and
Event Structures

Georg Schied
Universitiit Erla.ngen-Niirnberg

Rewriting systems constitute a.n operational model for distributed systems that is
based upon t he notion of states and state transitions. Event structures, on the
other side, are a more abstract description of the behaviour of distributed systems
that is based on events, causality, and conflicts.

We introduce distributed rewriting systems as a unifying approach for diffe- .
rent kinds of rewriting systems, like string or graph grammars. Contexts and an
appropriate operator for inserting structures into the holes of a context are the fo
undation of this model. The double pushout approach for graph grammars nicely
fits into this general framework. By the way, we obtain some simplified proofs for
the Church-Rosser and parallelism theorems of graph grammars.

Derivation processes of rewriting systems intuitively can be described with event
structures. We present an outline of the construction that relates the derivations
of a rewriting system to its corresponding event structure.

Equivalence a~d Composition of ESM systems
(Actor grammars)

Dirk Janssens
VUB Brussels

ESM systems are graph rewriting systems in which a step is obtained by a single
pushout construction in a category of graph structures where morphisms are a
variant of the usual structure morphisms, called ESM morphisn'ls. This type of
systems generalize a graph grammar model of actor systems, called actor grammars,
that was introduced and investigated in the last 6 years.

Starting from the idea t hat a system (program) is a set of ESM morphisms
(productions), a compositional semantics is developed; composition of systems is
set union. The basic objects considered are concrete representations of rewriting
processes, which are composed using a gluing operation. The corresponding se
mantics is made compositional by adding to a. process some information a.bout the

11

contexts in which it may occur, and then the desired semantics is obtained by
abstracting from the internal structure of the processes.

As a special case one gets a simple compositional semantics for P / T nets in
which nets are composed by gluing over places.

Graph Rewriting Systems for Concurrent Constraint
Programming

Andrea Corradini, Ugo Montanari, Francesca Rossi
Dipartimento di Informatica, University of Pisa

The concurrent constraint programming framework extends both constraint logic
programming and concurrent logic programming in that a program consists of
the concurrent execution of agents which add (i.e. �tell�) and check (i.e. �ask�)
constraints on a shared set of variables, and whose behaviour is described by a set
of clauses. This formulation is very general and can be seen as a concurrent logic
programming shell which is parametrized w.r.t. the underlying constraint systems.

A model called CHARM (for Concurrency and Hiding in an Abstract Rewriting
Machine) is proposed as the abstract machine of concurrent constraint program-
ming. CHARM is equipped with a clean operational semantics based on term
rewriting over a suitable algebra, and it exhibits a sophisticated treatment of con-
currency and modularity, which is obtained through the partition of each state into
a global and a local part.

It is shown that a rewriting step of CHARM faithfully models the direct deri-
vation of graphs described by a double pushout construction in the style of Ehrig
and Schneider. A straightforward implementation of the concurrent constraint
language on the CHARM is �nally presented.

True Concurrency in Graph Grammars
Andrea C'orradini"', Hartmut Ehrig"', Michael Lc°>°we"�, Ugo Montanari"�, Francesca

Rossi"'

� University of Pisa, + TU Berlin

We first propose a partial order semantics for graph grammars, based on the notion
of graph processes. Such graph processes are natural extensions of the notion of
process for Petri nets, where the set of places is replaced by a graph and the �ow
relation is split into two to be able to represent in a correct way the interface graph
in a graph production. Graph processes are shown to be in bijective correspondence
.with canonical derivations up to isomorphism, i.e., they represent the same class
of derivations.

12

contexts in which it may occur, and then the desired semantics is obtained by
abstracting from the internal structure of the processes.

As a special case one gets a simple compositional semantics for P /T nets in
which nets are composed by gluing over places.

Graph Rewriting Systems for Concurrent Constraint
Programming

Andrea Corradini, Ugo Montanari, Francesca. Rossi
Dipa.rtimento di Informa.tica, University of Pisa

The concurrent constraint programming framework extends both constraint logic
programming and concurrent logic programming in that a program consists of
the concurrent execution of agents which add (i.e. "tell") and check (i.e. "ask")
constraints on a shared set of variables, and whose behaviour is described by a set
of clauses. This formulation is very general and can .be seen as a concurrent logic
programming shell which is parametrized w.r.t. the underlying constraint systems.

A model called CHARM (for Concurrency and Hiding in an Abstract Rewriting
Machine) is proposed as the abstract machine of concurrent constraint program
ming. CHARM is equipped with a clean operational semantics based on term
rewriting over a suitable algebra, and it exhibits a sophisticated treatment of con
currency a.nd modularity, which is obtained through the partition of each state into
a global and a local part.

It is shown that a rewriting step of CHARM faithfully models the direct deri
vation of graphs described by a double pushout construction in the style of Ehrig
and Schneider. A straightforward implementation of the concurrent constraint
language on the CHARM is finally presented.

True Concurrency in Graph Grammars
Andrea Corradini*, Hartmut Ehrig+, Michael Lowe+, Ugo Montanari*, Francesca

Rossi*
• University of Pisa, + TU Berlin

We first propose a partial order semantics for graph grammars, based on the notion
of graph processes. Such graph processes are natural extensions of the notion of
process for Petri nets, where the set of places is replaced by a graph and the flow
relation is split into two to be able to represent in a correct way the interface graph
in a graph production. Graph processes are shown to be in bijective correspondence
.with canonical derivations up to isomorphism, i.e., they represent the same class
of derivations.

12

However, previous work of the same authors [1] showed that this notion of ab-
straction (up to isomorphism) is not adequate for concatenating derivations, since
it allows the identi�cation of too many derivations. To put a suitable restriction,
the notion of standard isomorphism and standard graph representatives has been
introduced in that work.

Therefore we examine the role of the notion of standard representation in de�-
ning a new and more adequate concept of abstraction (of graphs and graph deriva-
tions). Through various attempts and counterexamples, where abstract derivations
and processes are always in bijective correspondence but the level of concurrency
shown is not the desired one, we �nally are able to de�ne abstract derivations
correctly: as derivations up to standard isomorphism on the initial and �nal graph
and on the graphs of the used productions (and isomorphism on the other graphs).
Then we pass from the category of such abstract derivations to an event struc-
ture semantics for graph grammars by using an extension of a technique already
used for P/T l�etri nets: �rst we add new arrows in the category, representing
all automorphisms among abstract graphs; then we compute the comma category
w.r.t. the initial graph of the given grammar; then we identify all objects of such
comma category which are involved in cycles, and all arrows between two objects.
We claim that in this way we always obtain a prime algebraic domain, which it is
known to correspond to a prime event structure.
[1] Corradini et al., �Note on Standard Representation of Graphs�, TR 92/25, TU
Berlin, 1992.

Event Structures and Orthogonal Term Graph Rewriting
J.R. Kennaway, J. W. Klop, M.R. Sleep, and F.J. de Vries

Several authors have hinted at a connection between transition systems such as
are used to describe concurrency, and the reduction sequences that arise in term
rewriting and lambda calculus. We make such a connection precise for orthogonal
term graph rewriting systems. We do this by associating with every normalizable
term graph in such a system a con�ict-free elementary event structure. The events
of this structure represent the different reduction steps which must be performed
to reduce the term graph to normal form. Their partial ordering represents an
intuitive notion of dependency of one reduction step on another. The elements of
the associated con�guration domain are the Lévy-equivalence classes of reduction
sequences which perform no unnecessary work, and their partial ordering is iden-
tical to the Lévy ordering. The size of the set of events is the number of reduction
steps which must be performed in any reduction of the term graph to normal form.
This number is independent of the order in which the reductions are performed.
The bottom element of the con�guration domain represents the empty sequence,

13

However, previous work of the same authors [l] showed that this notion of ab
straction (up to isomorphism) is not adequate for concatenating derivations, since
it allows the identification of too many derivations. To put a suitable restriction,
the notion of standard isomorphism and standard graph representatives has been
introduced in that work.

Therefore we examine the role of t he notion of standard representation in defi
ning a new and more adequate concept of abstraction (of graphs and graph deriva
tions). Th rough various attempts and counterexamples, where abstract derivations
and processes are a lways in bijective correspondence but the level of concurrency
shown is not the desired one, we finally are able to define abstract derivations
correct ly: as derivations up to standard isomorphism on the initial and final graph
and on the graphs of the used productions (and isomorphism on the other graphs).
Then we pass from the category of such abstract derivations to an event struc
ture semantics for graph grammars by using an extension of a technique already
used for P /T P<?t.ri nets: first we add new arrows in the category, representing
all automorphisms among abstract graphs; then we compute the comma category
w.r.t. the initial graph of the given grammar; then we identify all objects of such
comma category which are involved in cycles, and all arrows between two objects.
We claim that in this way we always obtain a prime algebraic domain, which it is
known to correspond to a pri me event structure.
[l] Corradini et al., "Note on Standard Representation of Graphs", TR 92/25, TU
Berlin, 1992. ,

Event Structures and Orthogonal Term Graph Rewriting
J.R. Kenna.way, J. W. J(Jop, M.R. Sleep, and F.J. de Vries

Several authors have hinted at a connection between transition systems such as
are used to describe concurrency, and the reduction sequences that arise in term
rewriting and lambda calculus. We make such a connect ion precise for orthogonal
term graph rewriting systems. We do this by associating with every normalizable
term graph in such a system a conflict-free elementary event structure. The events
of t his structure represent the different reduction steps which must be performed
to red uce the term graph to normal form. Their partial ordering represen:s an
intu itive notion of dependency of one reduction step on another. T he elements of
the associated confignration domain are the Levy-equivalence classes of reduction
sequences which perform no unnecessary work, and their partial ordering is iden
tical to the Levy ordering. The size of the set of events is the number of reduction
steps which must be performed in any reduction of the term graph to normal form.
This number is independent of the order in which t he reductions are performed.
The bottom e lement of the configuration domain represents t he empty sequence,

13

and the top element represents reduction of the term to normal form. The height
of the domain places a lower bound on the time required to reduce the term graph
to normal form, even when parallelism is employed. The width of the con�guration
domain (i.e. the size of the largest antichain) places an upper bound on the amount
of parallelism that may be usefully employed in the reduction.

(To appear in �Term Graph Rewriting: Theory and Practice�, eds. M.R. Sleep,
M.J. Plasmeijer, and M.C.J.D. van Eekelen. John Wiley and Sons, 1993.)

Single Pushout Approach for Equationally De�ned Graph
Structures with Applications to Concurrent Systems

Martin Korff

Technische Universität Berlin

In the single pushout approach transformations are de�ned as simple pushouts
within a category of graph structures and partial morphisms. Graph structures
are simply algebras w.r.t. an appropriate algebraic signature. Adding conditional
equations to such signatures induces a subcategory of equationally defined graph
structures and partial morphisms. Again, transformations are single pushouts.

As the main result we show that each pushout in the equational category is
characterized by the corresponding pushout in the supercategory without equations
if and only if the pushout object already satisfies the given equations. Thus in
general theoretical results become much weaker compared to the case without
equations. However for a restricted class of so-called local equations some of the
classical results can be reobtained. In the labelled case the situation becomes much

complexer but for a suitable restriction of labelled equations we get analogous
results.

From a speci�cation point of view conditional equations appear as application
conditions: the application of a rule is constrained to those graph structures where
the derived structure is consistent again. A number of examples (Communication
Network, Actor System, Filesystem) demonstrate that the underlying concept of
consistent graph transformation is of considerable practical interest.

14

and the top element represents reduction of the term to normal form. T he height
of the domain places a lower bound on the time required to reduce the term graph
to normal form , even when parallelism is employed. T he width of the configuration
domain (i .e . the size of the largest antichain) places an upper bound on the amount
of parallelism that may be usefully employed in the reduction.

(To appear in "Term Graph Rewriting: Theory and P ractice,,, eds. M.R. Sleep,
M.J. Plasmeijer, and M.C.J.D. van Eekelen. John Wiley and Sons, 1993.)

Single Pushout Approach for Equationa lly D efined Graph
Structures with Applications to Concurrent Systems

Martin Korff
Technische Universitiit Berlin

In the single pushout approach transformations are defined as simple pushouts
within a category of graph structures and partial morphisms. Graph structures
are simply a lgebras w.r.t. an appropriate algebraic signature. Adding conditional
equations to such signatures induces a subcategory of equationally defined graph
structures and partial morphisms. Again, t ransformations are single pushouts.

As the main result we show that each pushout in the equational category is
characterized by the corresponding pushout in the supercategory without equat ions
if and only if the pushout object already satisfies the given equations. Thus in
general theoretical results become much weaker compared to the case without
equations. However for a restricted class of so-called local equations some of the
classical results can be reobtained. In the labelled case t he situation becomes much
complexer but for a suitable restriction of labelled equations we get analogous
results.

From a specification point of view conditional equations appear as application
conditions: the application of a rule is constraine<l to those graph structures where
the derived structure is consistent again. A number of examples (Communication
Network, Actor System, F ilesystem) demonstrate that the underlying concept of
consistent graph transformation is of considerable p ractical interest .

14

3 Speci�cation and Programming

A Programming Language for Distributed Systems
Klaus Barthelmann, Georg Schied

Universität Mainz, Universität Erlangen-Niirnberg

A distributed system can be depicted as a graph in a natural way. Graph rewrite
rules precisely model the local changes in such a system. Therefore, we designed
and presented a small programming language with a formal semantics based on
graph rewriting.

DHOP (Distributed Higher Order Processes) is an applicative language with
parameterized process de�nitions as the basic building blocks. Processes and chan-
nels between them are created at runtime. Furthermore, processes and channels
can be exchanged in messages. A process selects a synchronous communication
among several possible ones.

The speci�cation of the semantics is based on the double pushout approach to
graph rewriting. We use an appropriate kind of labelled graphs de�ned as a comma
category of graphs and algebras. This is a good trade-off between hierarchical gra-
phs and equational term rewriting, to both of which it is equivalent in the present
case. The advantage lies in a strict separation of interprocess communication from
local computations.

This language, however small, is already powerful enough to specify complex ab-
stract data types. On the other hand, a complete semantic speci�cation comprises
only a few simple rewrite rules. It is also easy to derive an efficient implementation
from this description: Context-sensitive rules should be split and amalgamated,
and the associated event structure gives the control component.

A Computational Model for Generic Graph
Transformations

Marc Gemis, Jan Paredaens, Peter Peelmanl, Jan Van den Busschel
University of Antwerp (UIA), Belgium

The generic graph machine, a Turing machine-like computational model for generic
graph transformations, is introduced. A con�guration of this machine consists of a

�Supported by the impulsprogram �informatietechnologie� of the �Diensten voor Program-
matie van het Wetenscliapsbeleid�, nr. IT/IF/13.

15

3 Specification and Programming

A Programming Language for Distributed Systems
Klaus Barthelmann, Georg Schied

Universitiit Mainz, Universitiit Erlangen-Niirnberg

A distributed system can be depicted as a graph in a natural way. Graph rewrite
rules precisely model the local changes in such a system. Therefore, we designed
and presented a small programming language with a formal semant ics based on
graph rewriting.

DHOP (Distributed Higher Order P rocesses) is an applicative language with
parameterized process definitions as the ha.sic building blocks. Processes and chan
nels between them are created at runtime. Furthermore, processes and channels
can be exchanged in messages. A process selects a synchronous communication
among several possible ones.

The specification of the semantics is based on the double pushout approach to
graph rewriting. We use an appropriate kind of labelled graphs defined a.s a comma
category of graphs and algebras. This is a good trade-off between hierarchical gra
phs and equational term rt>writ.ing, to both of which it is equivalent in the present
case. The advantage lies in a strict separation of interprocess communication from
local computations .

This language, however small, is already powerful enough to specify complex ab
stract d,ita types. On the other hand, a complete semantic specification comprises
only a few simple rewrite rules. It is also easy to derive an efficient implementation
from this description: Context-sensitive rules should be split and amalgamated,
and the associated event structure gives the control component.

A Computational Model for Generic Graph
Transformations

Marc Gemis, J an Paredaens, Peter Peelman1
, Jan Van den Bussche1

University of A ntwerp (VIA), Belgium

The generic graph machine, a Turing machine-like computational model for generic
graph transformations, is introduced. A configuration of this machine consists of a

1Supported by the impulsprogram "informatieteclinologie" of the "Diensten voor Program
matie van bet Wetenschapsbe/eid" , nr. IT/IF/13.

15

number of machine instances that each are in a state and point to two nodes of the
graph. During the execution of a step, in parallel the machine instances perform a
local transformation on the graph and are replaced by zero or more other machine
instances. It is proved that the generic graph machines have the same expressive
power as a large class of natural object-creating database languages. Finally, we
prove that a generic graph machine is polynomially reducible to a Turing machine.

Jungle Rewriting as a Speci�cation Tool for an Abstract
Narrowing Machine

Andrea Corradini, Dietmar .WoIz
Universita di Pisa, Technische Universität Berlin

The Narrowing Calculus is a powerful rewriting formalism which subsumes both
Conditional Term Rewriting and Logic Programming: it consists essentially of
term rewriting with uni�cation. The LANAM (Lazy Abstract Narrowing Machine
[Wo91]) is an efficient implementation of narrowing developed by the second author,
which exploits compilation techniques borrowed from the implementations of both
lazy functional and logic programming languages.

We present a top-down speci�cation of the operational behaviour of the LA-
NAM using a graph rewriting formalism called Jungle Rewriting. Jungles are
directed hypergraphs that are suitable to represent collections of terms with possi-
bly shared subterms (they are equivalent to DAG-s), and jungle rewriting is de�ned
as the double pushout approach in the category of jungles.

For each narrowing program P we de�ne three jungle rewrite systems .7 (P),
.�F(P), and S(P), which model P at different. levels of abstractions. .7(P) is a
(pure) hyperedge-replacement jungle rewrite system, including one rule for each
clause of P: a theorem which extends a similar result for term rewriting systems
and logic programming [CR93] states that the computations of J (P) correspond
one-to�o11e with narrowing derivations. .77 (P) is a jungle rewriting system with
applicability conditions, and consists of many rules for each clause of P. These
rules have to satisfy a strong injectivity requirement which, together with the
applicability condition, make explicit the uni�cation steps which were hidden in
the application of rules of J(P). Finally, S(P) is obtained from .�F(P) by marking
the rules in a suitable way. Markings are used, like in DACTL [GKSS88], to specify
a control strategy, needed to constrain the nondeterminism of the system. In this
way, we are able to specify the lazy evaluation strategy of the LANAM. As a result,
the behaviour of system 5 (P) models in a faithful way the actual behaviour of
the LANAM.

[CR93] A. Corradini, F. Rossi, Hyperedge Replacement Jungle Rewriting for Term
Rewriting Systems and Logic Programming, to appear in Theoretical Computer

16

number of machine instances that each are in a state and point to two nodes of the
graph. During the execution of a step, in parallel the machine instances perform a
local transformation on t he graph and are replaced by zero or more other machine
instances. It is proved t hat the generic graph machines have the same expressive
power as a large class of natural object-creating database languages. Finally, we
prove that a generic graph machine is polynomially reducible to a Turing machine.

Jungle R ewriting as a Specification Tool for an Abstract
Narrowing Machine

Andrea Corradini, Dietmar Wolz
Universita di Pisa, Technische Universitii.t Berlin

The Narrowing Calculus is a powerful rewriting formalism which subsumes both
Conditional Term Rewriting and Logic Programming: it consists essentially of
term rewriting with unification. The LANAM (Lazy Abst ract Narrowing Machine
[Wo91]) is an efficient implementation of narrowing developed by the second author,
which exploits compilation techniques borrowed from the implementations of both
lazy functional and logic programming languages.

We present a top-down specification of the operational behaviour of the LA
N AM using a graph rewriting formalism called Jungle Rewriting. J ungles are
directed bypergraphs that are suitable to represent collections of terms with possi
bly shared subterms (they are equivalent to DAGs), and jungle rewriting is defined
as the double pushout approach in the category of jungles.

For each narrowing program P we define three jungle rewrite systems :T(P),
:F(P) , and S (P) , which model P at different levels of abstractions. :T(P) is a
(pure) hyperedge-replacement jungle rewrite system , including one rule for each
clause of P : a theorem which extends a similar result for term rewriting systems
and logic programming [CR93] states that the computations of :T(P) correspond
one-to-one wi th narrowing derivations. :F(P) is a jungle rewriting system with
applicability conditions, and consists of many rules for each clause of P . These
rules have to satisfy a strong inject ivity requirement which, together with the
applicability cond ition, make explicit the unification steps which were hidden in
the application of rules of :T(P). Finally, S (P) is obtained from :F(P) by marking
the rules in a suitable way. Markings are used, like in DACTL [GKSS88], to specify
a control strategy, needed to constrain t he nondeterminism of the system. In this
way, we are able to specify the lazy evaluation strategy of the LAN AM. As a result,
the behaviour of system S(P) models in a faithful way the actual behaviour of
the LANAM.

[CR93] A. Corradjni, F. Rossi, Hyperedge Replacement Jungle R ewriting for Term
Rewriting Systems and Logic Programming, to appear in Theoretical Computer

16

Science, 1993.
[GKSS88] J.R.W. Glauert, J .R. Kennaway, M.R. Sleep, G.W. Sommer, Final Speci-
�cation of DA CTL, Report SYS-C88-11, School of Information Systems, University
of East Anglia, Norwich, UK.
[W091] D. Wolz, Design of a Compiler for Lazy Pattern Driven Narrowing, Proc.
of the 7th Int. Workshop on the Speci�cation of Abstract Data Types, Springer
LNCS 534, 1991.

Guaranteeing destructive updatability through a type
system with uniqueness information for graphs

Sjaak Smetsers, Erik Barendsen, Marko van Eekelen, Rinus Plasmeijer
Univ. of Nijmegen, NL

We have presented a type system related to linear typing: �uniqueness typing�.
The uniqueness type system is defined for graph rewrite systems. It employs usage
information to deduce whether an object is �unique� at a certain moment, i. e. it is
only locally accessible. In a type of a function it can be speci�ed that the function
requires a unique argument object. The correctness of type assignment guarantees
that no external access on the object will take place in the future. This information
can be used in the implementation to use the unique object destructively. The
presented type system is proven to be correct. It can be used in coexistence with
the standard type systems for functional languages such as the Hindley-Milner-
Damas approach. The system is implemented in the functional graph rewriting
language Concurrent Clean and is used for the efficient implementation of 1/ O and
Arrays. The system can also be used to increase the efficiency of algorithms. We
illustrate the power of the system by defining an elegant quicksort algorithm that
performs the sorting in situ on the data structure.

1st Order Logic Based Graph Rewriting Systems with
Application Conditions and Embedding Rules

Andy Sch iirr
RWTH Aachen

This talk presented the theoretical background of a project which is concerned with
the development of an integrated set of tools for editing, analysing, and executing
programmed graph rewriting systems (also presented here at Schloß Dagstuhl).
Before realizing such a set of tools one has to de�ne precisely the (concrete) syn-
tax as well as the static and dynamic semantics of an appropriate notation for

17

Science, 1993.
[GKSS88] J.R.W. Glauert, J .R . Kennaway, M.R. Sleep, G.W. Sommer, Final Speci
fication of DACTL, Report SYS-C88-11, School of Information Systems, University
of East Anglia, Norwich, UK.
[Wo91] D. Wolz, Design of a Compiler for Lazy Pattern Driven Narrowing, Proc.
of the 7th lnt. Workshop on the Specification of Abstract Data Types, Springer
LNCS 534, 1991.

Guaranteeing d estructive updatability through a type
system with uniqueness information for g raphs

Sjaak Smetsers, Erik Barendsen, Marko van Eekelen, Rinus Plasmeijer
Univ. of Nijmegen, NL

We have presented a type system related to linear typing: "uniqueness typing".
T he uniqueness type system is defined for graph rewrite systems. It employs usage
information to deduce whether an object is "unique" at a certain moment , i. e. it is
only locally accessible. In a type of a function it can be specified that the function
requires a unique argument object. The correctness of type assignment guarantees
that no external access on the object will take place in the future. This information
can be used in the implementation to use the unique object destructively. The
presented type system is proven to be correct. It can be used in coexistence with
the standard type systems for functional languages such as the Hindley-Milner
Damas approach. The system is implemented in the functional graph rewriting
language Concurrent Clean and is used for the efficient implementation of 1/ 0 and
Arrays. The system can also be used to increase the efficiency of algorithms. We
illustrate the power of the system by defining an elegant quicksort algorithm that
performs the sorting in situ on the data structure.

1st Order Logic Based Graph R ewriting Systems with
Application Conditions and Embedding Rules

Andy Schiirr
RWTH Aachen

T his talk p resented the theoretical background of a project which is concerned with
the development of an integrated set of tools for editing, analysing, and executing
programmed graph rewriting systems (also presented here at SchloB Dagstuhl).
Before realizing such a set of tools one has to define precisely the (concrete) syn
tax as well as the static and dynamic semantics of an appropriate notation for

17

PROgrammed Qraph B_ewriting Systems. This notation, termed PROGRES, is a
kind of �very high level� programming language for modelling graphs and for spe-
cifying graph transformations. It contains features like complex embedding rules,
application conditions, attribute equations etc. which are very useful within many
application areas.

In order to be able to specify the semantics of all language constructs, it was
necessary to develop a new type of graph rewriting system which

1. represents graphs and graph properties by sets of 1st order logic formulas,

2. uses relations as (sub-)graph morphisms,

3. veri�es pre- and postconditions of rewrite rules by means of nonmonotonic

reasoning,

4. and reduces the application of rewrite rules to the well-known construction
of commuting diagrams.

Syntax and Semantics of Hybrid Database Languages

Gregor Engels, Marc Andries
Leiden University

We present the hybrid query language HQL/EER. It is a database query language
for an Extended l_3_ntity-_Relationship (BER) model, where a user can freely choose
between graphical and textual speci�cation of a part of a query. HQL/EER is an
extension of the purely textual query language SQL/EER, the syntax and semantics
of which has been de�ned in `!

�
Syntax and semantics of this partially graphical query language HQL/EER are

de�ned by the usage of PROGRES (see the talk of Andy Schürr at this seminar),
which is a speci�cation language based on programmed graph rewritings. We
illustrate that a PROGRES speci�cation is a well-suited means to de�ne the syntax
of such a language. In order to de�ne the semantics of HQL/EER, the attribute
evaluation mechanism of PROGRES is used to translate a HQL/EER query into
a textual SQL/EER query.
[1] U. Hohenstein, G. Engels: SQL/EER�Syntax and Semantics of an Entity-
Relationship-Based Query Language. Information Systems, 17(3):209-242, 1992

18

PROgrammed Graph Rewriting Systems. This notation, termed PROGRES, is a
kind of "very high level" programming language for modelling graphs and for spe
cifying graph transformations. It contains features like complex embedding rules,
application conditions, attribute equations etc. which are very useful within many
application areas.

In order to be able to specify the semantics of all language constructs, it was
necessary to develop a new type of graph rewriting system which

1. represents graphs and graph properties by sets of 1st order logic formulas,

2. uses relations as (sub-)graph morphisms,

3. verifies pre- and postconditions of rewrite rules by means of nonmonotonic
reasoning,

4. and reduces the application of rewrite rules to the well-known constructio'n
of commuting diagrams.

Syntax and Semantics of Hybrid Database Languages
Gregor Engels, Marc Andries

Leiden University

We present the hybrid query language HQL/EER. It is a database query language
for an Extended Entity-Relationship (EER) model, where a user can freely choose
between graphical and textual specification of a part of a query. HQL/EER is an
extension of the purely textual query language SQL/EER, the syntax and semantics
of which has been defined in [1].

Syntax and semantics of this partially graphical query language HQL/EER are
defined by the usage of PROGRES (see the talk of Andy Schurr at this seminar),
which is a specification language based on programmed graph rewritings. We
illustrate that a PROGRES specification is a well-suited means to define the syntax
of such a language. In order to define the semantics of HQL/EER, the attribute
evaluation mechanism of PROGRES is used to translate a HQL/EER query into
a textual SQL/EER query.
[1] U. Hohenstein, G. Engels: SQL/EER- Syntax and Semantics of an Entity
Relationship-Based Query Language. Information Systems, 17(3):209- 2421 1992

18

Semantics of Full Statecharts Based on Graph Rewriting
A. Maggiolo-Schettini and A. Peron

Dipartimento di Informatica, Universität di Pisa, Italy

The formalism of Statecharts, proposed by Harel, offers interesting description faci-
lities for reactive systems such as hardware components, communication networks,
computer operating systems. Statecharts have the visual appeal of formalisms such
as state diagrams and Petri nets, but, with respect to them, they offer also faci-
lities of hierarchical structuring of states and modularity which allow high level
description and stepwise development. Harel, Pnueli, Schmidt and Sherman have
proposed a semantics of Statecharts in terms of steps, where a step is a set of con-
sistent transitions from a given system con�guration, which are enabled under a
given external stimulus. Huizing, Gerth and de Roever l1ave proposed a denotatio-
nal semantics. In the present talk an operational semantics using graph rewriting
is proposed. It is shown how to translate a statechart into a set of graph pro-
ductions and how to describe the step from a con�guration of the statechart to
another in terms of a derivation from a graph describing the start configuration to
a graph describing the reached configuration. Steps can be expressed in terms of
sequences of derivations equivalently w.r.t. the semantics of Harel, Pnueli, Schmidt
and Shermn. The sequential behaviour of the represented statechart is described
by the graph of derivations. The non-sequential behaviour of Statecharts, descri-
bed by graph rewriting, can be investigated by considering computations which
are analogues of processes in the sense of Kreowski and Wilharm. Computations
give a manner of mapping a partial order of transitions of the statechart onto the
derivation graph. This offers a partial order semantics for Statecharts.

Uniform Modelling Using Graph Grammar Specs
Manfred N agl

RWTH Aachen

The talk sketches the experience in conceptual modelling we got so far by building
complex, integrated, interactive systems. These systems are built on top of data
types for various graphs, as we regard all internal information to be a graph.

The first approach called AST graph modelling is to compose graphs from a
tree (AST) with additional edges (e.g. for context sensitive relations). A big part
of the structure and of the handling of these graphs can be described declaratively
by a scheme. Further more, common patterns of tree and non-tree handling can
be extracted to build up a basic spec.

19

Semantics of Full Statecharts Based on Graph Rewriting
A. Maggiolo-Schettini and A. Peron

Dipartimento di Jnformatica, Universita. di Pisa, Italy

The formalism of Statecharts, proposed by Harel, offers interesting description faci
lities for reactive systems such as hardware components, communication networks,
computer operating systems. Statecharts have the visual appeal of formalisms such
as state diagrams and Petri nets, but, with respect to them, they offer also faci
lities of hierarchical structuring of states and modularity which allow high level
description and stepwise development. Harel, Pnueli , Schmidt and Sherman have
proposed a. semant ics of Statecha.rts in terms of steps, where a step is a set of con
sistent transitions from a given system configuration, which are enabled under a
given external stimulus. Huizing, Gerth and de Roever have proposed a denotatio
nal semantics. In the present talk an operational semantics using graph rewriting
is proposed. It is shown how to translate a statechart into a set of graph pro
ductions and how to describe the step from a configuration of t he statechart to
another in terms of a derivation from a graph describing the start configuration to
a graph describing the reached configuration. Steps can be expressed in terms of
sequences of derivations equivalent!)! w.r.t. the semantics of Harel, Pnueli , Schmidt
and Shermn. The sequential behaviour of the represented statechart is described
by the graph of derivations. The non-sequential behaviour of Statecharts, descri
bed by graph rewriting, can be investigated by considering computations which
are analogues of processes in the sense of Kreowski and Wilharm. Computations
give a manner of mapping a partial order of transitions of the statechart onto the
derivation graph. This offers a partial order semantics for Statecharts.

Uniform Modelling Using Graph Grammar Spees
Manfred Na.gl

RWTH Aachen

The talk sketches the experience in conceptual modelling we got so far by bui;ding
complex, integrated, interactive systems. These systems are built on top of data
types for various graphs, as we regard all internal information to be a graph.

The first approach called AST graph modelling is to compose graphs from a
tree (AST) with additional edges (e.g. for context sensitive relations). A big part
of the structure and of the handling of these graphs can be described declaratively
by a scheme. Further more, common patterns of tree and non-tree handling can
be extracted to build up a basic spec.

19

Whereas AST graphs are �at, we regarded in recent times hierachical graph
modelling. As the main idea is to think about general concepts of modelling their
similarities and their relations, wecalled this approach metamodelling. A clean
hierarchy for modelling entities was build up. The third idea is to compose a
speci�cation by layers where on each level a submodel is �xed. This has been
successfully used for integration tools in the software engineering area.

In all cases reuse on speci�cation level is our main concern. Reuse can take place -
on product level (using given specs) or on process level (knowledge how to build
up specs). Specs are used in our group as a basis for efficient implementations.

20

Whereas AST graphs are flat, we regarded in recent times hierachical graph
modelling. As the main idea is to think about general concepts of modelling their
similarities and their relations, we called this approach metamodelling. A clean
hierarchy for modelling entities was build up. The third idea is to compose a
specification by layers where on each level a submodel is fixed. This has been
successfully used for integration tools in the software engineering area.

In all cases reuse on specification level is our main concern. Reuse can take place ·
on product level (using given specs) or on process level (knowledge how to build
up specs). Spees are used in our group as a basis for efficient implementations.

20

4 Generation & Recognition of Graph Languages

Annotated Collage Grammars
Annegret H abel

Universität Bremen

Collage Grammars are a graph-grammatical device for generating classes of pat-
terns. The key structures are collages consisting of

o a set of parts being geometric objects,

o a set of hyperedges (attached to some points) being subjects of replacement,

o pin points in�uencing the replacement.

Replacement of a hyperedge e by a collage R may be done if there is a transfor-
mation t from a given group of transformations which maps the pin points of the
collage R to the attachment points of the hyperedge e. For avoiding the search of
a suitable transformation, each hyperedge in a collage may be equipped with some
transformation information. This yields to the concept of an annotated collage
being the key structure of annotated collage grammars.

It is shown that given a collage grammar generating the collage language L,
we can effectively construct an annotated collage grammar generating the same
language.

Graphs 8: Designing
Ewa Grabska

Institute of Computer Science, Jagiellonian University, Cracow, Poland

This talk presented an attempt to build up a systematical theory for graphical
modeling. The work should be seen as a part of a thorough study of theory for
understanding design, which is necessary for building of intelligent CAD tools.

In my opinion the graph methods of processing, representation and generation
of pictures and patterns applied today allow for introduction of certain innovation.

The innovation introduced by me is de�ned for graphs of the so called realization
scheme. It is a kind of mapping which assigns a graphical model of an object to the
graph representing the structure of this object. Thanks to this notion one graph

21

4 Generation & Recognition of Graph Languages

Annotated Collage Grammars
Annegret Habel

Universitii.t Bremen

Collage Grammars are a graph-grammatical device for generating classes of pat
terns. The key structures are collages consisting of

• a set of parts being geometric objects,

• a set of hyperedges (attached to some points) being subjects of replacement,

• pin points influencing the replacement.

Replacement of a hyperedge e by a collage R may be done if there is a transfor
mation t from a given group of transformations which maps the pin points of the
collage R to the attachment points of the hyperedge e. For avoiding the search of
a suitable transformation, each hyperedge in a collage may be equipped with some
transformation information. This yields to the concept of an annotated collage
being the key structure of annotated collage grammars.

It is shown that given a collage grammar generating the collage language L,
we can effectively construct an annotated collage grammar generating the same
language.

Graphs & Designing
Ewa Grabska

Institute of Computer Science, Jagiellonian University, Cracow, Pola.nd

This talk presented an attempt to build up a systematical theory for graphical
modeling. The work should be seen as a part of a thorough study of theory for
understanding design, which is necessary for building of intelligent CAD tools.

In my opinion the graph methods of processing, representation and generation
of pictures and patterns applied today allow for introduction of certain innovation.

The innovation introduced by me is defined for graphs of the so called realization
scheme. It is a kind of mapping which assigns a graphical model of an object to the
graph representing the structure of this object. Thanks to this notion one graph

21

can have several different graphical models associated with it through different
realization schemes.

The fact that the structure of the object is independent of its realization may
be useful in the process of designing.

Path-Controlled Graph Grammars for Multiresolution
Image Processing and Image Analysis

K unio Aizawa, Akira Nakamura
Hiroshima Univ., Meiji Univ., Japan

The graph structure is a strong formalism for representing pictures in syntactic
pattern recognition. In this talk, we de�ne a subclass of nPCE graph grammars
(L(1)-nPCE4 graph grammars) and present a parsing algorithm of O(n), where n is
the number of nodes of the input graph. The algorithm is a deterministic topdown
syntax analyzer applied to one-dimensional descriptions of input graphs.

Then we treat a graph construction technique on the graphs generated by the
grammars. It enables multiresolutional image processing on graphs. A multiresolu-
tion graph is a maximal block representation in which the blocks have standard size
(power of two). But unlike with the quadtrees, the blocks need not have standard
positions. So it has more �exibility on image compression than quadtrees. Most of
the basic image processing algorithm on such graphs require time proportional to
the number of nodes or edges in the compressed graphs rather than that of original
graphs.

Context-Free Vertex Replacement Sets of Graphs that are
not Hyperedge Replacement: Characterization and

Decidability
Bruno Courcellez

Bordeaux � I University, France

We establish that a VR (�Vertex Replacement�) set of graphs, i.e., a set of graphs
generated by a C-edNCE or, equivalently, by a separated handle rewriting graph
grammar is HR (�Hyperedge Replacement�), i.e., is generated by a hyperedge
replacement graph grammar, iff its graphs do not contain arbitrary large complete
bipartite graphs K �m as subgraphs. Another equivalent condition is that its graphs

2Supported by the ESPRIT Basic Research Working Group �COMPUGRAPH II� (�Com-
puting by graph transformation�) and by the �Programme de Recherches Coordonnées:
Mathématiques et Informatique�.

22

can have several different graphical models associated with it through different
realization schemes.

The fact that the structure of the object is independent of its realization may
be useful in the process of designing.

Path-Controlled Graph Grammars for Multiresolution
Image Processing and Image Analysis

Kunio Aizawa, Akira Nakamura
Hiroshima Univ., Meiji Univ., Japan

The graph structure is a strong formalism for representing pictures in syntactic
pattern recognition. In this talk, we define a subclass of nPCE graph grammars
(L(l)-nPCE4 graph grammars) and present a parsing algorithm of O(n), where n is
the number of nodes of the input graph. The algorithm is a deterministic topdown
syntax analyzer applied to one-dimensional descriptions of input graphs.

Then we treat a graph construction technique on the graphs generated by the
grammars. It enables mult iresolutional image processing on graphs. A multiresolu
tion graph is a maximal block representation in which the blocks have standard size
(power of two). But unlike with the quad trees, the blocks need not have standard
positions. So it has more flexibility on image compression than quadtrees. Most of
the basic image processing algorithm on such graphs require time proportional to
the number of nodes or edges in the compressed graphs rather than that of original
graphs.

Context-Free Vertex Replacement Sets of Graphs that are
not Hyperedge Replacement: Characterization and

Decidability
Bruno Courcelle2

Bordeaux - I University, France

We establish that a VR ("Vertex Replacement") set of graphs, i.e., a set of graphs
gene.rated by a C-edNCE or, equivalently, by a separated handle rewriting graph
grammar is HR ("Hyperedge Replacement"), i.e., is generated by a hyperedge
replacement graph grammar, iff its graphs do not contain arbitrary large complete
bipartite graphs Kn,n as subgraphs. Another equivalent condition is that its graphs

2Supported by the ESPRlT Basic Research Working Group "COMPUGRAPH II" ("Com
puting by graph transformation") and by the "Programme de Recherches Coordonnees:
Mathematiques et Informatique".

22

have a number of edges that is linearly bounded in terms of the number of vertices.
These properties are decidable by means of an appropriate extension of the theorem
by Parikh that characterizes the commutative images of context-free languages. We
extend these results to hypergraphs.

This work has been accepted for publication in Information and Computation
(under the title: �Structural properties of context-free sets of graphs generated by
vertex replacement�), and is scheduled to appear in 1994.

Decomposability helps for deciding logics of knowledge and
belief

Stefan Arnborg�
The Royal Institute of Technology, Stockholm, Sweden

We show that decision problems in modal logics (logics of knowledge and belief)
are easy for decomposable formulas. Satisfiability of a formula of size n and tree-
width k can be decided in time O(n f (/c)), where f is a double exponential function.
This result holds not only for the logics S5 and KD45 with N P-complete decision
problems, but also for extensions to multiple agents and arbitrary characterizations
of Kripke semantics by any combination of the properties serial, symmetric, refle-
xive, transitive and Euclidean for the possibility relation between possible worlds
(i.e., in particular for the standard logics Kn, Tn, S4�, S5,, and KD45,,, whose
decision problems are PSPACE complete for arbitrary formulas). Moreover, the
method works for these logics extended with operators for distributed and common
knowledge, which otherwise cause a complexity increase to exponential time for the
satis�ability problem.

On Recognizable Sets of Graphs of Bounded Tree-Width
Jens Lagergreen

The Royal Institut of Technology, Stockholm, Sweden

We establish a set of �nite graphs of tree-width at most k is recognizable (with
respect to the algebra of graphs with an unbounded number of sources) if and only
if it is recognizable with respect to the algebra of graphs with at most k sources.
We obtain a somewhat stronger result for sets of simple �nite graphs of tree-width
at most k.

3Supported by TFR and N l 7 TEK.

23

have a number of edges that is linearly bounded in terms of the number of vertices.
These properties are decidable by means of an appropriate extension of the theorem
by Parikh that characterizes the commutative images of context-free languages. We
extend these results to hypergraphs.

This work has been accepted for publication in lnf ormation and Computation
(under the title: "Structural properties of context-free sets of graphs generated by
vertex replacement"), and is scheduled to appear in 1994.

Decomposability helps for deciding logics of knowledge and
belief

Stefan Arnborg3
The Royal Institute of Technology, Stockholm, Sweden

We show that decision problems in modal logics (logics of knowledge and belief)
are easy for decomposable formulas. Satisfiability of a. formula of size n and tree
width k can be decided in time O(nf(k)), where f is a double exponential function.
This result holds not only for the logics S5 and KD45 with NP-complete decision
problems, but also for extensions to multiple agents and arbitrary characterizations
of Kripke semantics by any combination of the properties serial , symmetric, refle
xive, transitive and Euclidean for the possibility relation between possible worlds
(i.e., in particular for the standard logics Kn, T n, S4n, S5n and KD45n, whose
decision problems are PSPACE complete for arbitrary formulas). Moreover, the
method works for these logics extended with operators for distributed and common
knowledge, which otherwise cause a complexity increase to exponential time for the
satisfiability problem.

On Recognizable Sets of Graphs of Bounded Tree-Width
Jens Lagergreen

The Royal Institut of Technology, Stockholm, Sweden

We establish a set of fiuite graphs of tree-width at most k is recognizable (with
respect to the algebra. of graphs with an unbounded number of sources) if and only
if it is recognizable with respect to the algebra of graphs with at most k sources.
We obtain a somewhat stronger result for sets of simple finite graphs of tree-width
at most k.

3 Supported by TFR and NUTEK.

23

Con�uent graph grammars with embeddings of depth k
Franz J. Brandenburg

Universität Passau

We investigate linear and con�uent graph grammars with embeddings of depth k,
LIN-edNCEk and C-edNCE;.. These are specializations of types of graph grammars
introduced by M. Nagl and are a generalization of the class of �context-free� graph
grammars, C-edN CE, which have depth 1.

While usual C-edNCE graph grammars operate purely top down, depth k graph
grammars with k Z 2 permit a top down and a bottom up construction of graphs.
E.g., they are capable to generate the (partial) transitive closure. Thus, C-edNCE;,
graph grammars introduce new features for the generation of graphs, which makes
them entirely different from usual C-edNCE graph grammars.

As our first results, we can show that depth two is sufficient and that linearity
and con�uence are decidable. Moreover, linear depth two graph grammars can
generate the sets of all trees and of all graphs, and they can even generate the set
of all square grid graphs, if blocking edges are used. This sharply contrasts the
generative capacity of usual C-edNCE graph grammars and demonstrates the gain
in power by embeddings of depth 2. The limits are not yet clear.

Graph automata for connected L-eNCE graph grammars
Konstantin Skodinis

Universität Passau

We de�ne marking automata (EMA), which generate the same languages as connec-
ted linear e-NCE graph grammars. The automaton consists of a �nite control and
of marking pairs. Each marking pair consists of a right part, a left part and a
boundary set, where the edge-labels may be encoded. Given a connected input
graph H the EMA reconstructs the derivation process of H. It places H �s marking
pairs on the edges between the already visited and the not yet visited part of the
input graph.

In state p the automaton reads a node v of H, tests the compatibility between v
and the local environment of .H, which is de�ned by the marking pairs, updates its
marking pairs and enters a new state q. The EMA stops, if the transition function
cannot be applied by a step. It accepts, if it has reached the �nal stop state.

The following theorems hold:

1. If G is a connected L-eNCE graph grammar, then there exists an edge mar-
king automaton EMA, such that L(G) = L(EMA), and

24

Confluent graph grammars with embeddings of depth k
Franz J. Brandenburg

Universitiit Passau

We investigate linear and confluent graph grammars wit h embeddings of depth k,
LIN-edNCEk and C-edNCEk. These are specializations of types of graph grammars
introduced by M. Nagl and are a generalization of the class of 'context-free' graph
grammars, C-edNCE, which have depth 1.

While usual C-edNCE graph grammars operate purely top down, depth k graph
grammars with k ~ 2 permit a top down and a bottom up construction of graphs.
E.g. , they a.re capable to generate the (partial) transitive closure. Thus, C-edNCEk
graph grammars introduce new features for the generation of graphs, which makes
them entirely different from usual C-edNCE graph grammars.

As our first results, we can show that depth two is sufficient and that linearity
and confluence a.re decidable. Moreover, linear depth two graph grammars can
generate the sets of all trees and of all graphs, and they can even generate the set
of all square grid graphs, if blocking edges are used. This sharply contrasts the
generative capacity of usual C-edNCE graph grammars and demonstrates the gain
in power by embeddings of depth 2. The limits are not yet clear.

Graph automata for connected L-eNCE graph grammars
I<onsta.ntin Skodinis
Universitiit Passa.u

We define marking automata (EMA), which generate the same languages as connec
ted linear e-NCE graph grammars. The automaton consists of a finite control and
of marking pairs. Each marking pair consists of a right part, a left part and a
boundary set, where the edge-labels may be encoded. Given a connected input
graph H the EMA reconstructs the derivation process of H . It places H's marking
pairs on the edges between the already visited and the not yet visited part of the
input graph.

In state p the automaton reads a. node v of H, tests the compatibility between v
and the local environment of H, which is defined by the marking pairs, updates its
marking pairs and enters a new state q. The EMA stops, if the transition function
cannot be applied by a step. It accepts, if it has reached the final stop state.

The following theorems hold:

1. If G is a. connected L-eN CE graph grammar, then there exists an edge mar
king automaton EMA, such that L(G) = L(EMA), and

24

2. if EMA is a edge marking automaton, then there exists a connected L-eNCE
graph grammar G, such that L(E'MA) = L(G).

Combining Programmed Attributed Graph Grammars and
Two-level Graph Grammars for the Design of an Object

Oriented Database for Picasso Pictures

Herbert Göttler, Bernd Himmelreich
Universität Mainz

Inspired by the questions why Picasso was such a productive artist and what ma-
kes up the typical style of cubistic art, G. König, professor of art at the University
of Mainz, extracted a formal picture language (which is a relatively small set of
pictorial operations) for a subset of Picasso�s oevre by analizing hundreds of exam-
ples. The lecture reports on the design of an ob ject-oriented database to aid these
activities and to implement the pictorial operations. A further goal is an expert
system for Picasso, and a slightly utopic one is a tool for creating pictures in a
�true Picasso style�.

For the design of the structure of the database and for its operations a model
based on graphs and graph grammars seems to be well-suited. Since we want to
exploit the advantages of the object oriented approach�especially the concept of
inheritance��we think we have to combine programmed attributed graph grammars
with two-level graph grammars.

Combinatorial Generation of k-Paths

Andrzej Proskurowski
University of Oregon

A generalization of paths, /c-paths are maximal graphs of proper pathwidth k. We
present methods of listing all non-isomorphic k-paths as k-strings inequivalent with
respect to string reversal and permutation of symbols. The resulting algorithms
use time proportional to the number of generated strings. (Joint work with F.
Ruskey and M. Smith)

25

2. if EMA is a edge marking automaton, then there exists a connected L-eNCE
graph grammar G, such that L(EMA) = L(G).

Combining Programmed Attributed Graph Grammars and
Two-level Graph Grammars for the Design of an Object

Oriented Database for Picasso Pictures
Herbert Gott/er, Bernd Himmelreich

Universitiit. Mainz

Inspired by the questions why Picasso was such a productive artist and what ma
kes up the typical style of cubistic art, G. Konig, professor of art at the University
of Mainz, extracted a formal picture language (which is a relatively small set of
pictorial operations) for a subset of Picasso's revre by analizing hundreds of exam
ples. The lecture reports on the design of an object-oriented database to aid these
activities and to implement the pictorial operations. A further goal is an expert
system for Picasso, and a slight.ly utopic one is a tool for creating pictures in a
' true Picasso style'.

For the design of the structure of the database and for its operations a model
based on graphs and graph gra1amars seems to be well-suited. Since we want to
exploit the advantages of the object oriented approach-especially the concept of
inheritance-we think we have to combine programmed attributed graph grammars
with two-level graph grammars.

Combinatorial Generation of k-Paths
Andrzej Proskurowski
University of Oregon

A generalization of paths, k-paths are maximal graphs of proper pathwidth k. We
present methods of listing all non-isomorphic k-paths as k-strings inequivalent with
respect to string reversal and permutation of symbols. The resulting algorithms
use time proportional to the number of generated strings. (Joint work with F.
Ruskey and M. Smith)

25

Dagstuhl-Seminar 9301: List of Participants (update: 28.03.93)

Kunio Aizawa Andrea Corradini
Hiroshima University Universita di Pisa
Department of Applied Mathematics Dpt. Informatica
1-4-1 Kagamiyama Corso Italia 40
Higashi-Hiroshima 724 I-56100 Pisa
Japan Italy
aizawa@huis.hiroshima-u.ac.jp andrea@di.unipi.it
teI.: +81 -824-22-71 11/32 84 tel.: +39-50-510-2 42

Stefan Arnborg Bmno Courcelle
Royal Inst. of Technology Université Bordeaux I
NADA KTH Lab. d�lnformatique
S-10044 Stockholm 351 Cours de la Libération
Sweden F-33405 Talence
stefan@nada.kth.se France
teI.: +46-8-790-71 94 courcell@geocub.greco-prog.fr

teI.: +33.56.84.60.86
Erik Barendsen

University of Nijmegen Jan Cuny
Faculty of Mathematics and University of Massachusets
Computer Science Computer & Information Sciences
Toernooiveld 1 Amherst MA 01003
NL�6525 ED Nijmegen USA
The Netherlands cuny@cs.umass.edv
erikb@cs.kun.nl teI.: +1 -413-545 4228
teI.: +31 -80-65 26 46

Hartmut Ehrig
Klaus Barthelmann TU Berlin
Universität Mainz Inst. f. Software u. Theoret. Informatik
Fakultät Math./Informatik FB 20 FR 6-1
Staudinger Weg 9 Franklinstr. 28/29
W-6500 Mainz W-1000 Berlin 10

Germany Germany
bartheI@informatik.mathematik.uni- ehrig@cs.tu-berlln.de
mainz.de teI.: +49-30-314-7 35 10

teI.: +49-6131�39-36 15
Gregor Engels

Michel Bauderon University of Leiden
Université Bordeaux I Department of Computer Science
De'pt. d�lnformatique Niels Bohrweg 1
351 Cours de la Liberation NL-2300 RA Leiden
F-33405 Talence The Netherlands

France enge|s@rulwi.leidenuniv.nl
bauderon@geocub.greco-prg.fr teI.: +31 -71 -27 70 69
tel.: +33.56.84.69.07

Herbert Göttler
Franz-Josef Brandenburg Universität Mainz
Universität Passau Fakultät Math./Informatik
Lehrstuhl für Informatik Staudinger Weg 9
lnnstr. 33 W-6500 Mainz
W-8390 Passau 1 German
Germany goettler uaimza.mathematik.uni-
brandenb@informatik.uni-passau.de mainz.de
teI.: +49-851-509-3 43 teI.: +49-6131-39 33 36

Dagstuhl-Seminar 9301:

Kunio Aizawa
Hiroshima University
Department of Applied Mathematics
1 -4-1 Kagamiyama
Higashi-Hiroshima 724
Japan
aizawa@huis.hiroshima-u.ac.jp
tel. : +81-824-22-71 11 /32 84

Stefan Arnborg
Royal Inst. of Technology
NADA KTH
S-10044 Stockholm
Sweden
stefan@nada.kth.se
tel. : +46-8-790-71 94

Erik Barendsen
University of Nijmegen
Faculty of Mathematics and
Computer Science
Toernooiveld 1
NL-6525 ED Nijmegen
The Netherlands
erikb@cs.kun.nl
tel.: +31-80-65 26 46

Klaus Barthelmann
Universitat Mainz
Fakultat Math./lnformatik
Staudinger Weg 9
W-6500 Mainz
Germany
barthe l@i nformati k. mathematik. uni
mai nz. de
tel.: +49-6131-39-36 15

Michel Bauderon
Universite Bordeaux I
Dept. d'lnformatique
351 Cours de la Liberation
F-33405 Talence
France
bauderon@geocub.greco-prg.fr
tel.: +33.56.84.69.07

Franz-Josef Brandenburg
Universitat Passau
Lehrstuhl fur lnformatik
lnnstr. 33
W-8390 Passau 1
Germany
brandenb@informatik.uni-passau.de
tel. : +49-851-509-3 43

List of Participants (update: 28.03.93)

Andrea Corradini
Universita di Pisa
Dpt. lnformatica
Corso Italia 40
1-56100 Pisa
Italy
andrea@di.unipi.it
tel. : +39-50-510-2 42

Bruno Courcelle
Universite Bordeaux I
Lab. d'lnformatique
351 Cours de la Liberation
F-33405 Talence
France
courcell@geocub.greco-prog.fr
tel. : +33.56.84.60.86

Jan Cuny
University of Massachusets
Computer & Information Sciences
Amherst MA 01003
USA
cuny@cs.um ass. edv
tel. : + 1-413-545 4228

Hartmut Ehrig
TU Berlin
Inst. f. Software u. Theoret. lnformatik
FB 20 FR 6-1
Franklinstr. 28/29
W-1000 Berlin 10
Germany
ehrig@cs.tu-berlin.de
te I. : +49-30-314-7 35 1 o

Gregor Engels
University of Leiden
Department of Computer Science
Niels Bohrweg 1
NL-2300 RA Leiden
The Netherlands
engels@rulwi.leidenuniv.nl
tel.: +31-71-27 70 69

Herbert G6ttler
Universitat Mainz
Fakultat Math./lnformatik
Staudinger Weg 9
W-6500 Mainz
German}'
goettler@uaimza. mathematik.uni
mainz.de
tel.: +49-6131-39 33 36

Ewa Grabska Michael Löwe
Univ. Jagiellonski TU Berlin
Inst. Informatyki Inst. f. Software u. Theoret. Informatik
ul. Nawojki 11 FB 20 FR 6-1
PL-30-O72 Krakow Franklinstr. 28/29
Poland W-1000 Berlin 10

uigrabsk@plkrcyii Germany
loewe@ cs.tu-berlin.de

Annegret Habel tel.: +49�30-314-2 58 13
Universität Bremen
FB Math./Informatik Jens Lagergreen
Postfach 33 O4 40 Royal Inst. of Technology
W-2800 Bremen 33 NADA KTH V
Germany S-10044 Stockholm
habel@informatik.uni-bremen.de Sweden
teI.: +49-421-218-34 89 jensl@nada.kth.se

Dirk Janssens Andrea Maggiolo-Schettini
Free University of Brussels Universita di Pisa �
Dept. of Computer Science Dipartimento di lnformatica
Pleinlaan 2 Corso ltalia 40
B-1050 Brussels I-56125 Pisa

Belgium Italy
dnjans@tinf1 .vub.ac.be maggiolo@di.unipi.it
teI.: + -2-641-34 87 tel.: +39-50-51 02 59

Yasuo Kawahara Ugo Montanari
Kyushu University 33 Universita di -Pisa
Research Institute of Fund. Dpt. Informatica
Information Science Corso ltalia 40
Fukuoka 812 � l-56100 Pisa

Japan Italy
kawahara@rifis.sci.kyushu-u.ac.jp ugo@di.unipi.it
tel.: +81�92�641-11 01 tel.: +39-50-51 O2 21

J. Richard Kennaway Manfred Nagl
University of East Anglia RWTH Aachen
School of Information Systems Lehrstuhl für Informatik 3 �
Norwich NR4 7TJ Ahornstr. 55
Great Britain W-5100 Aachen

jrk@sys.uea.ac.uk Germany
tel.: +44-603-59 32 12 nagl@nNth3.informatik.rvvth-aachen.de

tel.: +49-241 -80 72 80/80 21 300
Martin Korff
TU Berlin Jan Paredaens
Fachbereich 20 Informatik University of Antwerpen
Franklinstr. 28-29 Dept. of Math. and Computer Science
W-1000 Berlin 10 Universiteitsplein 1
Germany B-2610 Antwerpen
martin@es.tu-berlin.de Belgium
teI.: +49-30 314-2-7787 pareda@ccu.uia.ac.be

teI.: +32-3-820-24 09

Hans-Jörg Kreowski
Universität Bremen Francesco Parisi-Presicce
FB Math./Informatik Universitä degli Studi di l�Aquila
Postfach 330440 Dipt. di Mathematica
W-2800 Bremen 33 Via Vetoio
Germany I-67100 L�AquiIa
kreo@informatik.uni-bremen.de ltaly
tel.: +49�421 -218-29 56 parisi@vxscaq.aquila.infn.it

tel.: +39-862-43 31 27

Ewa Grabska
Univ. Jagiellonski
Inst. lnformatyki
ul. Nawojki 11
PL-30-072 Krakow
Poland
uigrabsk@plkrcyii

Annegret Habel
Universitat Bremen
FB Math./lnformatik
Postfach 33 04 40
W-2800 Bremen 33
Germany
habel@informatik.uni-bremen.de
tel. : +49-421 -218-34 89

Dirk Janssens
Free University of Brussels
Dept. of Computer Science
Pleinlaan 2
B-1050 Brussels
Belgium
dnjans@tinf1 .vub.ac.be
tel. : + -2-641 -34 87

Yasuo Kawahara
Kyushu University 33
Research Institute of Fund.
Information Science
Fukuoka 812
Japan
kawahara@rifis.sci.kyushu-u.ac. jp
tel. : +81-92-641-11 01

J. Richard Kennaway
University of East Anglia
School of Information Systems
Norwich NR4 7T J
Great Britain
jrk@sys.uea.ac.uk
tel. : +44-603-59 32 12

Martin Korff
TU Berlin
Fachbereich 20 lnformatik
Franklinstr. 28-29
W-1000 Berlin 10
Germany
martin@es.tu-berlin.de
tel.: +49-30 314-2-7787

Hans-Jorg Kreowski
Universitat Bremen
FB Math./lnformatik
Postfach 330440
W-2800 Bremen 33
Germany
kreo@informatik.uni-bremen.de
tel. : +49-421-218-29 56

Michael LOwe
TU Berlin
Inst. f. Software u. Theoret. lnformatik
FB 20 FR 6-1
Franklinstr. 28/29
W-1000 Berlin 1 O
Germany
loewe@ cs.tu-berlin.de
tel. : +49-30-314-2 58 13

Jens Lagergreen
Royal Inst. of Technology
NADA KTH
S-10044 Stockholm
Sweden
jensl@nada.kth.se

Andrea Maggiolo-Schettlni
Universita di Pisa ,
Dipartimento di lnformatica
Corso Italia 40
1-56125 Pisa
Italy
maggiolo@di.unipi.it
tel. : +39-50-51 02 59

Ugo Montanari
Universita di -Pisa
Opt. lnformatica
Corso Italia 40
1-56100 Pisa
Italy
ugo@di.unipi.it
tel. : +39-50-51 02 21

Manfred Nagl
RWTH Aachen
Lehrstuhl fur lnformatik 3
Ahornstr. 55
W-5100 Aachen
Germany
nagl@rwth3. informatik. rwth-aachen.de
tel. : +49-241-80 72 80 / 80 21 300

Jan Paredaens
University of Antwerpen
Dept. of Math. and Computer Scier,ce
Universiteitsplein 1
B-2610 Antwerpen
Belgium
pareda@ccu.uia.ac.be
tel. : +32-3-820-24 09

Francesco Parlsi-Presicce
Universita degli Studi di l'Aquila
Dipt. di Mathematica
Via Vetoio
1-67100 L'Aquila
Italy
parisi@vxscaq.aquila.infn.it
tel. : +39-862-43 31 27

M.J. Plasmeijer Hans-Jürgen Schneider
University of Nijmegen Universität Erlangen
Faculty of Mathematics and g Lst. Programmiersprachen
Computer Science I i� Martensstr. 3
Toernooiveld 1 W�8520 Erlangen
NL-6525 ED Nijmegen Germany
The Netherlands schneide@informatik.uni-erlangen.de
rinus@cs.kun.nl teI.: +49-9131-85-76 20
teI.: +31 -80-65 26 44

Konstantin Skodinis
Andrzej Proskurowski Universität Passau
University of Oregon Lehrstuhl für Informatik
Dept. of Computer Science Innstr. 33
Eugene OR 97403-1202 W�8390 Passau
USA Germany
andrzej@cs.uoregon.edu skodinis@triilian.fmi.uni-passau.de
teI.: +1 �503-346-44 08 teI.: +49-851-509-7 79

Jean-Claude Raoult Gabriele Taentzer
Universite de Rennes I TU Berlin
IRISA Inst. f. Software u. Theoret. Informatik
Campus de Beaulieu FB 20 FR 6-1
Avenue du General Leclerc Frankiinstr. 28/29
F-35042 Rennes Cedex W-1000 Berlin 10
France Germany
raouIt@irisa.fr gabi@cs.tu-berlin.de
teI.: +33�99 84 72 78 teI.: +49-30-314-2 77 87

Franoesca Rossi Egon Wanke
Universitä di Pisa Universität-GHS-Paderborn
Dipartimento di Informatica FB Informatik
Corso ltalia 40 Warburger Str. 100
I-56125 Pisa W-4790 Paderborn

Italy Germany
rossi@di.unipI.it egon@uni-paderborn.de
teI.: +39�50-510268 teI.: +49-5251-60-30 74

Andy Schürr P. M. van den Broek
Lehrstuhl für Informatik 3 Universiteit Twente
RWTH Aachen Faculteit der Informatica
Ahornstr. 55 Postbus 217
W�5100 Aachen NL-7500 AE Enschede
Germany The Netherlands
andy@rvvthi3.informatik.rvvth-aachen.de pimvdb@cs.utwente.nI
teI.: +49�241-80 72 29 teI.: +31 -53-89 37 62

Georg Schied
Universität Erlangen
Lst. Programmiersprachen
Martensstr. 3

W-8520 Erlangen

Germany
schied@informatik.uni�erIangen.de
teI.: +49�9131�85 79 33

M.J. Plasmeijer
University of Nijmegen
Faculty of Mathematics and
Computer Science
Toernooiveld 1
NL-6525 ED Nijmegen
The Netherlands
rinus@cs.kun.nl
tel. : +31-80-65 26 44

Andrzej Proskurowski
University of Oregon
Dept. of Computer Science
Eugene OR 97 403-1202
USA
andrzej@cs.uoregon.edu
tel.: + 1-503-346-44 08

Jean-Claude Raoult
Universite de Rennes I
IRISA
Campus de Beaulieu
Avenue du General Leclerc
F-35042 Rennes Cedex
France
raoult@irisa.fr
tel. : +33-99 84 72 78

Francesca Rossi
Universita di Pisa
Dipartimento di lnformatica
Corso Italia 40
1-56125 Pisa
Italy
rossi@di.unipl.it
tel. : +39-50-51 0268

Andy Schurr
Lehrstuhl fur lnformatik 3
RWTH Aachen
Ahornstr. 55
W-5100 Aachen
Germany
andy@rwthi3.informatik.rwth-aachen.de
tel. : +49-241-80 72 29

Georg Schied
Universitat Er1angen
Lst. Programmiersprachen
Martensstr. 3
W-8520 Erlangen
Germany
schied@informatik.uni-erlangen.de
tel. : +49-9131-85 79 33

Hans-Jurgen Schneider
Universitat Erlangen
Lst. Programmiersprachen
Martensstr. 3
W-8520 Erlangen
Germany
sch nei de@i nf ormati k. u ni-erlange n. de
tel. : +49-9131 -85-76 20

Konstantin Skodinis
Universitat Passau
Lehrstuhl fur lnformatik
lnnstr. 33
W-8390 Passau
Germany
skodinis@trillian.fmi.uni-passau.de
tel. : +49-851 -509-7 79

Gabriele Taentzer
TU Berlin
Inst. f. Software u. Theoret. lnformatik
FB 20 FR 6-1
Franklinstr. 28/29
W-1000 Berlin 10
Germany
gabi@cs.tu-berlin.de
te I. : +49-30-314-2 77 8 7

Egan Wanke
Universitat-GHS-Paderborn
FB lnformatik
Warburger Str. 100
W-4790 Paderborn
Germany
egon@uni-paderborn.de
tel. : +49-5251-60-30 7 4

P. M. van den Broek
Universiteit Twente
Faculteit der lnformatica
Postbus 217
NL-7500 AE Enschede
The Netherlands
pimvdb@cs.utwente.nl
tel. : +31-53-89 37 62

Zuletzt erschienene und geplante Titel:
K. Compton, J.E. Pin , W. Thomas (editors):

Automata Theory: Infinite Computations, Dagstuhl-Seminar-Report; 28, 6.-10.1.92 (9202)

H. Langmaack, E. Neuhold, M. Paul (editors):
Software Construction - Foundation and Application, Dagstuhl-Seminar-Report; 29, 13..-17.1.92
(9203)

K. Ambos-Spies, S. Homer, U. Schöning (editors):
Structure and Complexity Theory, Dagstuhl-Seminar-Report; 30, 3.-7.02.92 (9206)

B. Booß, W. Coy, J.-M. P�üger (editors):
Limits of Modelling with Programmed Machines, Dagstuhl-Seminar-Report; 31, 10.-14.2.92
(9207)

K. Compton, J.E. Pin , W. Thomas (editors):
Automata Theory: Infinite Computations, Dagstuhl-Seminar-Report; 28, 6.-10.1.92 (9202)

H. Langmaack, E. Neuhold, M. Paul (editors):
Software Construction - Foundation and Application, Dagstuhl-Seminar-Report; 29, 13.-17.1.92
(9203)

K. Ambos-Spies, S. Homer, U. Schöning (editors):
Structure and Complexity Theory, Dagstuhl-Seminar-Report; 30, 3.-7.2.92 (9206)

B. Booß, W. Coy, J.-M. Pflüger (editors):
Limits of Information-technological Models, Dagstuhl-Seminar-Report; 31, 10.-14.2.92 (9207)

N. Habermann, W.F. Tichy (editors):
Future Directions in Software Engineering, Dagstuhl-Seminar-Report; 32; 17.2.-21.2.92 (9208)

R. Cole, E.W. Mayr� F. Meyer auf der Heide (editors):
Parallel and Distributed Algorithms; Dagstuhl-Seminar-Report; 33; 2.3.-6.3.92 (9210)

P. Klint, T. Reps, G. Snelting (editors):
Programming Environments; Dagstuhl-Seminar-Report; 34; 9.3.-13.3.92 (9211)

H.-D. Ehrich, J.A. Goguen, A. Sernadas (editors):
Foundations of Information Systems Specification and Design; Dagstuhl-Seminar-Report; 35;
16.3.-19.3.9 (9212)

W. Damm, Ch. Hankin, J. Hughes (editors):
Functional Languages:
Compiler Technology and Parallelism; Dagstuhl-Seminar-Report; 36; 23.3.-27.3.92 (9213)

Th. Beth, W. Ditfie, G.J. Simmons (editors):
System Security; Dagstuhl-Seminar-Report; 37; 30.3.-3.4.92 (9214)

C.A. Ellis, M. Jarke (editors):
Distributed Cooperation in Integrated information Systems; Dagstuhl-Seminar-Report; 38; 5.4.-
9.4.92 (9215)

J. Buchmann, H. Niederreiter, A.M. Odlyzko, H.G. Zimmer (editors):
Algorithms and Number Theory, Dagstuhl-Seminar-Report; 39; 22.06.-26.06.92 (9226)

E. Börger, Y. Gurevich, H. KIeine-Büning, M.M. Richter (editors):
Computer Science Logic, Dagstuhl-Seminar-Report; 40; 13.07.-17.07.92 (9229)

J. von zur Gathen, M. Karpinski, D. Kozen (editors):
Algebraic Complexity and Parallelism, Dagstuhl-Seminar-Fleport; 41; 20.07.-24.07.92 (9230)

F. Baader, J. Siekmann, W. Snyder (editors):
6th lntemational Workshop on Unification, Dagstuhl-Seminar-Report; 42; 29.07.-31.07.92 (9231)

J.W. Davenport, F. Krückeberg, RE. Moore, S. Rump (editors):
Symbolic, algebraic and validated numerical Computation, Dagstuhl-Seminar-Report; 43; 03.08.-
07.08.92 (9232)

Zuletzt erschienene und geplante Titel:

K. Compton, J.E. Pin , W. Thomas (editors):
Automata Theory: Infinite Computations, Dagstuhl-Seminar-Report; 28, 6.-10.1.92 (9202)

H. Langmaack, E. Neuhold, M. Paul (editors):
Software Construction - Foundation and Application, Dagstuhl-Seminar-Report; 29, 13 .. -17.1.92
(9203)

K. Ambos-Spies, S. Homer, U. Schoning (editors):
Structure and Complexity Theory, Dagstuhl-Seminar-Report ; 30, 3.-7.02.92 (9206)

B. B0013, W . Coy, J.-M. Pfluger (editors):
Limits of Modelling with Programmed Machines, Dagstuhl-Seminar-Report; 31 , 1 0. -1 4.2.92
(9207)

K. Compton, J.E. Pin , W. Thomas (editors):
Automata Theory: Infinite Computations, Dagstuhl-Seminar-Report; 28, 6.-10.1.92 (9202)

H. Langmaack, E. Neuhold, M. Paul (editors):
Software Construction - Foundation and Application, Dagstuhl-Seminar-Report; 29, 13.-17.1.92
(9203)

K. Ambos-Spies , S. Homer, U. Schoning (editors):
Structure and Complexity Theory, Dagstuhl-Seminar-Report: 30, 3.-7.2.92 (9206)

B. 80013, W. Coy, J.-M . Pfluger (editors):
Limits of Information-technological Models, Dagstuhl-Seminar-Report; 31, 10.-14.2.92 (9207)

N. Habermann, W.F. Tichy (editors):
Future Directions in Software Engineering, Dagstuhl-Seminar-Report; 32; 17.2.-21 .2.92 (9208)

R. Cole, E.W. Mayr, F. Meyer auf der Heide (editors):
Parallel and Distributed Algorithms; Dagstuhl-Seminar-Report; 33; 2.3.-6.3.92 (9210)

P. Klint, T. Reps , G. Snelting (editors):
Programming Environments: Dagstuhl-Seminar-Report; 34; 9.3.-13.3.92 (9211)

H.-D. Ehrich, J.A. Goguen, A. Sernadas (editors):
Foundations of Information Systems Specification and Design; Dagstuhl-Seminar-Report; 35;
16.3.-19.3.9 (9212)

W. Damm, Ch. Hankin, J. Hughes (editors):
Functional Languages:
Compiler Technology and Parallelism; Dagstuhl-Seminar-Report; 36: 23.3.-27.3.92 (9213)

Th. Beth, W. Diffie, G.J. Simmons (editors):
System Security; Dagstuhl-Seminar-Report; 37; 30.3.-3.4.92 (9214)

C.A. Ellis, M. Jar1<e (editors):
Distributed Cooperation in Integrated Information Systems; Dagstuhl-Seminar-Report; 38; 5 .4.-
9.4.92 (9215)

J. Buchmann, H. Niederreiter, A.M. Odlyzko, H.G. Zimmer ('editors):
Algorithms and Number Theory, Dagstuhl-Seminar-Report; 39; 22.06.-26.06.92 (9226)

E. BOrger, Y . Gurevich, H. Kleine-Suning, M.M. Richter (editors):
Computer Science Logic, Dagstuhl-Seminar-Report; 40; 13.07.-17.07.92 (9229)

J. von zur Gathen, M. Karpinski, D. Kozen (editors):
Algebraic Complexity and Parallelism, Dagstuhl-Seminar-Report; 41 ; 20.07 .-24.07.92 (9230)

F. Baader, J . Siekmann, W. Snyder (editors):
6th International Wor1<shop on Unification, Dagstuhl-Seminar-Report; 42; 29.07.-31.07.92 (9231)

J.W. Davenport, F. Kruckeberg, R.E. Moore, S. Rump (editors) :
Symbolic, algebraic and validated numerical Computation, Dagstuhl-Seminar-Report; 43; 03.08.-
07.08.92 (9232)

R. Cohen, R. Kass, C. Paris, W. Wahlster (editors):
Third International Workshop on User Modeling (UM'92)� Dagstuhl-Seminar-Report; 44; 10.-
13.8.92 (9233)

R. Reischuk, D. Uhlig (editors):
Complexity and Realization of Boolean Functions, Dagstuhl-Seminar-Report; 45; 24.08.�28.08.92
(9235)

Th. Lengauer, D. Schomburg, M.S. Waterman (editors):
Molecular Bioinlormatics, Dagstuhl-Seminar-Report; 46; 07.09.-11.09.92 (9237)

V.R. Basili, H.D. Rombach, R.W. Selby (editors):
Experimental Software Engineering Issues, Dagstuhl-Seminar-Report; 47; 14.-18.09.92 (9238)

Y. Dittrich, H. Hastedt, P. Schete (editors):
Computer Science and Philosophy, Dagstuhl-Seminar-Report; 48; 21 .09.-25.09.92 (9239)

HP. Daley, U. Furbach, K.P. Jantke (editors):
Analogical and Inductive Inference 1992 , Dagstuhl-Seminar-Report; 49; 05.10.-09.10.92 (9241)

E. Novak, St. Smale, J.F. Traub (editors):
Algorithms and Complexity for Continuous Problems, Dagstuhl-Seminar-Report; 50; 12.10.-
16.10.92 (9242)

J. Encarnacao, J. Foley (editors):
Multimedia - System Architectures and Applications, Dagstuhl-Seminar-Report; 51; 02.11.-
06.1 1.92 (9245)

F.J. Rammig, J. Staunstrup, G. Zimmermann (editors):
Sell-Timed Design, Dagstuhl-Seminar-Report; 52; 30.11 .-04.12.92 (9249)

B. Courcelle, H. Ehrig, G. Flozenberg, H.J. Schneider (editors):
Graph-Transformations in Computer Science, Dagstuhl-Seminar-Report; 53; 04.01.-08.01.93
(9301)

A. Arnold, L. Priese, R. Vollmar (editors):
Automata Theory: Distributed Models, Dagstuhl-Seminar-Report; 54; 11.01 .-15.01 .93 (9302)

W.S. Cellary, K. Vidyasankar , G. Vossen (editors):
Versioning in Data Base Management Systems, Dagstuhl-Seminar-Report; 55; 01.02.-O5.02.93
(9305)

B. Becker, Fl. Bryant, Ch. Meinel (editors):
Computer Aided Design and Test , Dagstuhl-Seminar-Report; 56; 15.02.-19.02.93 (9307)

M. Pinkal, R. Scha, L. Schubert (editors):
Semantic Formalisms in Natural Language Processing, Dagstuhl-Seminar-Report; 57; 23.02.-
26.02.93 (9308)

H. Bibel, K. Furukawa� M. Stickel (editors):
Deduction , Dagstuhl-Seminar-Report; 58; 08.03.-12.03.93 (9310)

H. Alt; B. Chazelle, E. Welzl (editors):
Computational Geometry, Dagstuhl-Seminar-Report; 59; 22.03.-26.03.93 (9312)

J. Pustejovsky, H. Kamp (editors): ,
Universals in the Lexicon: At the Intersection of Lexical Semantic Theories, Dagstuhl-Seminar-
Report; 60; 29.03.-02.04.93 (9313)

W. Stralier, F. Wahl (editors):
Graphics & Robotics, Dagstuhl-Seminar-Report; 61; 19.04.-22.04.93 (9316)

C. Beeri, A. Heuer, G. Saake,.S.D. Urban (editors):
Formal Aspects of Object Base Dynamics , Dagstuhl-Seminar-Report; 62; 26.04.-30.04.93 (9317)

A. Cohen, R. Kass. C. Paris, W. Wahlster (editors):
Third International Workshop on User Modeling (UM'92), Dagstuhl-Seminar-Report; 44; 10.-
13.8.92 (9233)

R. Reischuk, D. Uhlig (editors):
Complexity and Realization of Boolean Functions, Dagstuhl-Seminar-Report; 45; 24.08.-28.08.92
(9235)

Th. Lengauer, D. Schomburg, M.S. Waterman (editors):
Molecular Bioinformatics, Dagstuhl-Seminar-Report; 46; 07.09.-11 .09.92 (9237)

V.R. Basili, H.D. Rombach, R.W. Selby (editors):
Experimental Software Engineering Issues, Dagstuhl-Seminar-Report; 47; 14.-18.09.92 (9238)

Y. Dittrich, H. Hastedt, P. Schefe (editors):
Computer Science and Philosophy, Dagstuhl-Seminar-Report; 48; 21 .09.-25.09.92 (9239)

R.P. Daley, U. Furbach, K.P. Jantke (editors):
Analogical and Inductive Inference 1992, Dagstuhl-Seminar-Report; 49; 05.10.-09.10.92 (9241)

E. Novak, St. Smale, J.F. Traub (editors) :
Algorithms and Complexity for Continuous Problems, Dagstuhl-Seminar-Report; 50; 12.10.-
16.10.92 (9242)

J. Encarnac;ao, J . Foley (editors):
Multimedia - System Architectures and Applications, Dagstuhl-Seminar-Report; 51 ; 02.11 .-
06.11.92 (9245)

F.J. Rammig, J. Staunstrup, G. Zimmermann (editors):
Sett-Timed Design, Dagstuhl-Seminar-Report; 52; 30.11 .-04.12.92 (9249)

B. Courcelle, H. Ehrig, G. Rozenberg, H.J. Schneider (editors):
Graph-Transformations in Computer Science, Dagstuhl-Seminar-Report; 53; 04.01 .-08.01.93
(9301)

A. Arnold, L. Priese, A. Vollmar (editors):
Automata Theory: Distributed Models, Dagstuhl-Seminar-Report; 54; 11 .01 .-15.01 .93 (9302)

W.S. Cellary, K. Vidyasankar . G. Vossen (editors):
Versioning in Data Base Management Systems, Dagstuhl-Seminar-Report; 55; 01.02.-05.02.93
(9305)

B. Becker, R. Bryant, Ch. Meinel (editors) :
Computer Aided Design and Test . Dagstuhl-Seminar-Report; 56; 15.02.-19.02.93 (9307)

M. Pinkal, A. Scha, L. Schubert (editors):
Semantic Formalisms in Natural Language Processing, Dagstuhl-Seminar-Report; 57; 23.02.-
26.02.93 (9308)

H. Bibel, K. Furukawa, M. Stickel (editors) :
Deduction , Dagstuhl-Seminar-Report; 58; 08.03.-12.03.93 (9310)

H. Alt; B. Chazelle, E. Welzl (editors):
Corfl)utational Geometry, Dagstuhl-Seminar-Report; 59; 22.03.-26.03.93 (9312)

J. Pustejovsky, H. Kamp (editors):
Universals in the Lexicon: At the Intersection of Lexical Semantic Theories, Dagstuhl-Seminar
Report; 60; 29.03.-02.04.93 (9313)

W. StraBer, F. Wahl (editors):
Graphics & Robotics, Dagstuhl-Seminar-Report; 61 ; 19.04.-22.04.93 (9316)

C. Beeri, A. Heuer. G. Saake, S.D. Urban (editors):
Formal Aspects of Object Base Dynamics. Dagstuhl-Seminar-Report; 62; 26.04.-30.04.93 (9317)

