
Report

on the Second Dagstuhl Seminar on

Algorithms and Number Theory

October 10 – 14, 1994

Algorithms in number theory play an important role in computer science as
well as in mathematics. The main purpose of this Dagstuhl seminar was to
bring together experts in both fields to exchange ideas and discuss open prob-
lems concerning all aspects of the theory and practice of number theoretic
algorithms. The topics treated comprised factoring integers and polynomi-
als, computing discrete logarithms, constructions in finite fields, procedures
in lattice theory, algorithms on number fields and computations with ellip-
tic curves and other diophantine equations. An emphasis was laid on the
computer scientific point of view.

The 47 participants of the seminar came from 12 countries. Aside from
the official program of lectures there was ample opportunity for discussions
of topics of joint interest concerning algorithms and number theory. The
special atmosphere of Schloss Dagstuhl contributed a lot to a stimulating
and productive workshop.

The organizers would like to thank all participants for their contributions to
a successful seminar.
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Schedule of the Dagstuhl-Seminar

“Algorithms and Number Theory”

Monday, October 10, 1994

Morning session. Chairman: Claus P. Schnorr

900- 910 Johannes Buchmann: Opening

910- 955 Henri Cohen: Computing in Relative Extensions of Num-
ber Fields

1000-1020 Francisco Diaz y Diaz: Tables of Number Fields

1040-1110 Victor S. Miller: A Problem of Harvey Cohn

1115-1200 George Havas: Extended GCD Algorithms: Old and New

Afternoon session. Chairman: Jacques Martinet

1500-1545 Claus P. Schnorr: Pruned Enumeration in Lattice Reduction

1550-1635 Brigitte Vallee: An Analysis of the Gaussian Algorithm for
Lattice Reduction

1650-1720 Istvan Gaàl: Application of Thue Equations to Comput-
ing Power Integral Bases in Algebraic Num-
ber Fields

1725-1755 Attila Pethoe: Quadratic Polynomial Values in Second Or-
der Linear Recurrence Sequences

Tuesday, October 11, 1994

Morning session. Chairman: Michael Pohst

900- 945 John Cremona: Computation of Modular Elliptic Curves, a
Progress Report

950-1020 Josef Gebel: On Mordell’s Equation

1040-1125 Jean M. Couveignes: Elliptic Curves in Small Characteristic

1130-1200 Volker Müller: Finding the Eigenvalue in Elkies’
Algorithm
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Afternoon session. Chairman: Nikos Tzanakis

1500-1530 Christian Batut: Construction of Cyclotomic Lattices

1535-1615 Jacques Martinet: Eutactic Lattices

1630-1715 Francois Morain: On Character Sums

1720-1755 Renate Scheidler: Computation of Residuosity Symbols

Wednesday, October 12, 1994

Morning session. Chairman: Arien K. Lenstra

900- 920 Ken Nakamula: Certain Quartic Fields with Explicite Fun-
damental Units

925- 955 Alf van der Poorten: Families of Special Quadratic Number
Fields

1000-1020 Franz Lemmermeyer: Computation of Ideal Class Groups of Bi-
cyclic Biquadratic Number Fields

1040-1100 Michael Jacobson: Some Numerical Experiments Concerning
Quadratic Fields

1105-1135 Roel Stroeker: Consecutive Cubes Summing up to a Per-
fect Square

1140-1200 Johannes Buchmann: LiDIA – A Library for Computational
Number Theory

Afternoon: Excursion
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Thursday, October 13, 1994

Morning session. Chairman: Henri Cohen

900- 930 Arjen K. Lenstra: Factoring

935-1005 Dan Bernstein: The Number Field Sieve

1010-1040 Oliver Schirokauer: Using Number Fields to Compute General
Discrete Logarithms NFS

1100-1130 Victor Shoup: Distributed Polynomial Factorization

1135-1205 Harald Niederreiter: Factoring Polynomials Using Differential
Equations: an Update

Afternoon session. Chairman: John Cremona

1500-1530 Mario Daberkow: On Computing Bases in Relative Radical
Extensions

1535-1555 Michael Pohst: On Solving Relative Norm Equations

1600-1620 Nigel P. Smart: Sieving an S-unit Equation

1635-1705 Nikos Tzanakis: Finding Explicitly all Integral Solutions of
a Quartic Elliptic Equation

1710-1730 Chris Smyth: Bezout’s Theorem and Euclid’s Algorithm

1735-1800 Wolfgang Schwarz: On Class Numbers of Abelian Number
Fields

Friday, October 14, 1994

Morning session. Chairman: Alf van der Poorten

900- 920 Michel Olivier: Galois Groups for Polynomials of Degree 11

920- 955 Herman Te Riele: Amicable Number Tripels

1000-1030 Igor Shparlinski: Approximate Constructions in Finite
Fields

1050-1120 Valeri I. Korjik: The Progress in Iterative Decoding
Algorithms
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Henri Cohen

Computing in Relative Extensions of Number Fields
We show how the usual algorithms valid over Z can be extended to the ring
of integers ZK of an algebraic number field. We give an extended Euclidean
algorithm, a canonical Smith and Hermite normal form, algorithms to find
them, and applications to the usual problems of algebraic number theory:
a relative round 2 algorithm for computing integral (pseudo) bases and rel-
ative discriminants, prime ideal factorization, relative class group and unit
computations, etc.
The basic idea is the following (trivial) proposition: If a, b ∈ Z K and D =
aZK + bZK is the ideal generated by a and b, then we can in polynomial time
find u, v ∈ D−1 such that au + bv = 1.

Fransisco Diaz y Diaz

Tables of Number Fields
This is the announcement that the Computational Group in Number Theory
of Bordeaux has decided to regroup all the tables of number fields, insofar
as complete tables of reasonable length are available to us.
These tables will be completed, if necessary, by adding whatever arithmetic
data we are able to compute. The correctness of class group and fundamental
unit data is guaranteed only under the GRH.
For the number fields that we know the following data will be available:

1 A monic polynomial generating the field; a root α of this polynomial
is one of the smallest primitive elements in the ring of integers for the
L2 norm.

2 The signature of the field.

3 The Galois group of the Galois closure of the field.

4 The discriminant of the number field and the index of K[α] in the ring
of integers.

5 An integral basis.

6 The class number. The structure of the class group as a product of
cyclic groups. An ideal a in a class generating these cyclic groups. A
generator of a raised to the power of the order of the corresponding
cyclic group.
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7 The regulator.

8 The number of roots of unity in the field and a generator of the torsion
part of the unit group.

9 A system of fundamental units.

The tables under consideration are tables of degrees 3,4,5 and 6 for all pos-
sible signatures and tables of totally real fields of degree 7. All these tables
will be available by anonymous ftp.
This presentation is a first step towards more extensive computations con-
cerning these number fields.

Victor S. Miller

A Problem of Harvey Cohn
Harvey Cohn posed the problem

If f : Z/pZ −→ R, (p odd prime)

f(0) = 0, f(1) = 1, |f(k) = 1| for k 6= 0,

and
p−1
∑

y=0

f(y)f(y + k) = −1 for k 6= 0,

then is f(k) =

(

k

p

)

.

A proof (due to H.W. Lenstra) is given. The problem is generalized:

If f : F −→ C , (F finite field)

f(0) = 0, f(1) = 1, |f(k) = 1| for k 6= 0,

and
p−1
∑

y=0

f(y)f(y + k) = −1 for k 6= 0,

then is f a character of F
∗

If F is not the prime field this must be modified to

then is f = χ ◦ ρ, where ρ is an additive automorphism.

When degF is even this is not true by a construction of H.W. Lenstra and
V. Miller. When F is a prime field calculations are determined for p = 3, 5, 7
(the latter took ∼ 52000 seconds) which shows the conjecture is true.
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George Havas

Extended gcd Algorithms: Old and New
(Joint work with Bohdan S. Majewski; partially supported by the Australian
Research Council)
We consider the complexity of expressing the greatest common divisor of
n numbers as a linear combination of the numbers. Our interest in this
problem arises from a study of Smith and Hermite normal form computations
for integer matrices. To improve the efficiency of such computations, we
concentrate our efforts on the phase where the first entry of the first row (or
column) is made the greatest common divisor of the first entry of all rows (or
columns). If we have n rows then this is the problem of computing the gcd
of a set of n integers in a good way for our application. This means finding
a good set of multipliers in an extended gcd calculation.
On the one hand we prove the NP-completeness of finding optimal sets of
multipliers with respect to both the L0 metric and L∞ norm. On the other
side we present and analyze a new method for expressing the gcd of n numbers
as their linear combination and give an upper bound on the size of the largest
multiplier produced by this method, which is optimal. In an appropriate
model of computation the algorithm is both time and space optimal. However
this algorithm is only of theoretical interest.
We also present some well-performing practical algorithms. A relatively fast
algorithm is based on sorting the numbers whose gcd is being computed
and performing quotient/remainder steps on close pairs of numbers. Better
multipliers can be obtained using lattice basis reduction algorithms at the
expense of increased execution time. We compare the performance of these
algorithms with previous methods which may be exponentially worse in terms
of multiplier size.

Claus P. Schnorr

Pruned Enumeration in Lattice Reduction
We propose a pruned depth first enumeration of short lattice vectors which
is based on the fact that the expected number of vectors of an arbitrary
lattice L in a sphere S of fixed radius and random center is vol S/ det L.
If a random lattice basis b1, . . . , bm is given so that the reduced vector of
Gram-Schmidt coefficients ({µi,j} 1 ≤ j < i ≤ m) is uniformly distributed in

[0, 1)(
mΓ1

2
) then the pruned enumeration finds with fixed positive probability

a shortest lattice vector. The combination of pruned enumeration with block
reduction yields the most powerful lattice reduction algorithms to date. We
demonstrate the power of these algorithms by solving random subset sum
problems of arbitrary density in dimension 82.
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Brigitte Vallee

Average-case analysis af the Gaussian Algorithm for
lattice reduction
The Gaussian algorithm is a lattice analogue of the classical Euclidean al-
gorithm. It is based on a lifting of the real shift operator U of continued
fractions

U(x) = (
1

x
) − [

1

x
] (where [x] denotes the integer part of real x)

into a complex operator

U(z) = (
1

z
) − [Re(

1

z
)],

which is formed with an inversion-symmetry followed by an integral trans-
lation. When applied to a complex z that belongs to disk D with diameter
I = [0, 1], the inversion brings z outside of the disk then the translation
brings it inside the strip B = {z | 0 ≤ Re(z) ≤ 1}. The Gaussian algorithm
is then a sequence of iterations of the operator U .

Input: z ∈ D
Output: z ∈ B\D.
While z ∈ D do z := U(z).

The average-case analyses of the Gaussian algorithm and of the Euclidean
algorithm are quite different. We study here the random variable L repre-
senting the number of iterations, when the inputs z are distributed inside D
with an initial density f . We obtain two main results:
(1) The random variable L is asymptotically geometrically decreasing. More
precisely, if ρ(ℓ) denotes the probability of the event [L ≥ ℓ + 1], the ratio
ρ(ℓ + 1)/ρ(ℓ) admits a limit ρ when ℓ tends to infinity.
(2) The distribution of the inputs inside disk D during the execution of the
algorithm admits a limit form : if F 0 = f denotes the initial density of the
inputs z inside D and Fℓ is the density inside D after ℓ iterations, then there
exists a limit density F∞ of the Fℓ.
Our proofs make use of a family of operators Hs that generalize the Ruelle-
Mayer operators Gs. For complex s with ℜ(s) > 1, the two families are
defined by

Gsf(t) =
∑

m≥1

(
1

(m + t)s
f(

1

m + t
), Hsf(t) =

∑

m≥1

(
1

|m + t|sf(
1

m + t
).

These operators can be viewed as the inverses of the shift operator U with
the G family being the holomorphic version of the H family.
The properties of the G family are well-known: for s real and s > 1, the
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operator Gs satisfies a Perron-Frobenius theorem. It has a unique dominant
eigenvalue, denoted by λ(s) and a unique associate eigenvector gs, under the
normalization gs(0) = 1. The average-case analysis of the Euclidean algo-
rithm relies on the “dominant” eigenvalue properties of Gs in a neighbourhood
of s = 2; the limit density is then proportional to dominant eigenvector g 2

defined by g2(t) = 1/(1 + t), and it does not depend on the initial density
inside I.
The average-case analysis for the Gaussian algorithm uses the family Hs.
When defined on a “natural” set of functions which are simultaneously ana-
lytic with respect to real variables x and y, the operators Hs have the same
“dominant” behaviour as their holomorphic analogues Gs. The two limit
quantities, the ratio ρ of the probability distribution and the limit density
F∞, depend on the initial density. More precisely, they depend on the val-
uation of the initial density near the real axis. (One says that a positive
function f defined on D\I has valuation t near the real axis if there ex-
ists a continuous function g on D, strictly positive on I, for which one has
f(x, y) = |y|t g(x, y).)
For an initial density with valuation t (t > −1), the limit objects exactly
correspond to dominant spectral objects of the operator H4+2t: the limit ρ
of ratio ρ(ℓ + 1)/ρ(ℓ) is equal to the dominant eigenvalue λ(4 + 2t) of H4+2t,
while the limit density F∞ has valuation t and is proportional to the domi-
nant eigenvector g1(4 + 2t) of H4+2t.
For an initial density that is uniform, the limit ratio ρ equals λ(4) ≡ 0.1993.
For an initial density f whose valuation t tends to −1, the inputs tend to
concentrate in I and the behaviour of the Gaussian algorithm tends to be
the same as the Euclidean algorithm. In that case, the limit ratio ρ tends to
λ(2) = 1.
As a final conclusion, the family of operators Hs provides a unified framework
for the the average-case analysis of both algorithms.

Istv án Gaál

Application of Thue Equations to Computing Power
Integral Bases in Algebraic Number Fields
Let K be an algebraic number field of degree n. It is an old problem in
algebraic number theory to decide if K has a power integral basis, that is an
integral basis of the form {1, α, . . . , αn−1}. This problem is equivalent to
the resolution of index form equations

(∗) I(x1, . . . , xn) = ±1 in x1, . . . , xn ∈ Z

where I(x1, . . . , xn) is a form of degree n(n−1)
2

. The resolution of these equa-
tions seems to be a hard problem, especially for higher degree number fields.
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It turns out, however, that these equations can often be reduced to certain
types of Thue equations.
For cubic number fields (∗) is itself a cubic Thue equation.
For quartic number fields (∗) can be reduced to a cubic Thue equation and
to some corresponding quartic Thue equations.
For n > 4 the resolution of (∗) is only hopeful if K admits some proper sub-
fields which implies that I(x1, . . . , xn) is reducible. For this reason as a next
step we considered the resolution of (∗) in totally real sextic number fields.
In this case (∗) has already 5 variables and degree 15. It turns out that for
such fields (∗) can be reduced to a relative Thue equation of degree 3 over
the quadratic subfield of K and to some corresponding equations having the
same structure as an inhomogeneous Thue equation of degree 3.

Attila Peth ö

Quadratic Polynomial Values in Second Order Linear
Recurrence Sequences
We present a direct method, which results from the dipohantine equation

Gn = a ∗ x2 + b ∗ x + c,

where Gn denotes the n-th term of a second order linear recurrence sequence,
a linear form in logarithms of algebraic numbers. As application we prove
the following two theorems:
Theorem:Let a ≥ 4 be an integer, ∆ = a2 − 4, α = (a +

√
∆)/2 and β =

(a −
√

∆)/2. Then the diophantine equations

αn − βn

α − β
= 2, 22, 32, 62

have no solutions in n for n > 3 except when a = 338 and n = 4.

Theorem:The system of diophantine equations

x2 − 6y2 = −5, x = 2z2 − 1

has only the following solutions

(x,±y,±z) = (−1, 1, 0), (1, 1, 1), (7, 3, 2), (17, 7, 3), (71, 29, 6), (16561, 6761, 91).

The results were proved jointly with M. Mignotte, Strasbourg.

John Cremona
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Computation of Modular Elliptic Curves, a Progress
Report
Since the tables of all modular elliptic curves of conductors up to 1000 were
published in 1992, substantial progress has been made in this project, both
of a quantitative and of a qualitative nature. The programs have been com-
pletely rewritten (in C++ from ALGOL68) and now incorporate numerous
improvements. For example, structured Gaussian elimination techniques re-
sult in a large saving in running time when solving the modular symbol
relations. To date, all (isogeny classes of) curves of conductors up to 4000
have been found (with a very few exceptions), numbering 13351 classes, and
it is expected to pass 5000 by the end of this year. This should settle the
question of whether 5077 is the minimal conductor of a curve of rank 3.
A partially experimental new method was also described for computing a
curve attached to each newform: this method is very much faster than an
exact determination of the full period lattice, but is not guaranteed to find
the strong Weil curve. Also, it does not deliver other data of interest such as
the degree of the modular parameterization.

Josef Gebel

On Mordell’s Equation
By the theorem of Mordell, the Mordell–Weil group E(Q) of an elliptic curve
over the rational numbers Q is finitely generated, i.e. any point P ∈ E(Q )
can be represented as

(∗) P =
r
∑

i=1

niPi + T (ni ∈ Z)

where {P1, . . . , Pr} denotes a basis of the free part of E(Q ) and T is a torsion
point. Our goal was to determine all integral points P = (x, y), x, y ∈ Z,
on a series of elliptic curves, the Mordell curves

Ek : y2 = x3 + k (k ∈ Z)

for all k in absolute value smaller than some bound K.
Together with H.G. Zimmer (Saarbrücken) and A. Pethö (Debrecen), the
author developed a method that computes an upper bound N such that

P is integral =⇒ |ni| ≤ N ∀ 1 ≤ i ≤ r

in the representation (∗) of P .
Using this method, we determined all integral points on Ek for |k| <= 2500
and listed the results like the rank, a basis, the torsion group, the regulator,
the Tate–Shafarevič group, all integral points etc. in a table.

11



Jean-Marc Couveignes

Elliptic Curves in Small Characteristic
The computation of the cardinality of some elliptic curve E over a finite field
Fq where q = pk can be achieved using Schoof’s algorithm and the improve-
ments proposed by Atkin, Elkies and Atkin again. Elkies idea involves the
computation of some isogeny of degree l from E when it exists, i.e. when l
is a small auxiliary good prime. To achieve this goal, Elkies uses recurrence
formulae between modular forms which happen to become trivial as soon as
the degree l of the isogeny becomes greater than the characteristic p.
We explained how to solve this problem using the formal groups associated
to both the elliptic curve and its isogeneous curve.
We took this opportunity to recall a few quite basic facts about formal groups
of height one in finite characteristic, such as their isomorphism classification,
their endomorphism ring, the Hasse invariant and Lazard’s polynomials. We
briefly presented the lines of our algorithm and the experimental preliminary
results obtained at the École Polytechnique by Reynald Lercier and François
Morain. Those results, concerning finite fields with characteristic 2, already
improve on previous ones obtained by Vanstone and alii using Schoof and
Atkin’s ideas.

Volker M üller

Finding the Eigenvalue in Elkies’ Algorithm
(joint work with Frank Lehmann, Markus Maurer, Victor Shoup)
The algorithm of Atkin/Elkies is the best known algorithm for counting the
number of points on an elliptic curve over a large finite prime field. One
important part of this algorithm includes the search for an eigenvalue of the
Frobenius endomorphism of an elliptic curve. I discuss several algorithms for
doing this search, especially I present a new variant of a baby-step giant-step
algorithm, which proved in practice quite efficient. One important step of
this algorithm is a fast method for finding in a table of rational functions
one special function which is equivalent modulo a polynomial to some given
rational function. This method is based on ideas of Victor Shoup.
I report on the use of these ideas in our implementation of the Atkin/Elkies
algorithm to count the number of points on a curve over the prime field F p,
where p is a 425-digit prime.

Christian Batut

Computations of Cyclotomic Lattices
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Following ideas of Thomson, Feit, Craig, E. Bayer, Quebbemann, we study
even modular lattices of level l and study then properties of extremality in
the sense of Sloane (modular forms). We describe a family B

(m)
n,l of lattices

constructed on the quadratic field Q (
√
−l) and the cyclotomic field Q (ζp).

This family includes B
(1)
8,1 = E8, B

(1)
12,3 = K12, B

(2)
24,1 = Λ24 and other interest-

ing modular lattices.

Jacques Martinet

Classification of Eutactic Lattices
(joint work with Anne-Marie Bergé)
Let E a Euclidean space of dimension n. For a lattice Λ in E, let S be its
set of minimal vectors, and, for x ∈ S, let px be the orthogonal projection
on the line Rx. We say that Λ is eutactic if there exists a linear combination
IdE =

∑

x∈S ρxpx with strictly positive coefficients ρx, and that it is perfect
if the px’s span Ends(E).
Voronoi characterized in 1907 the extreme lattices (the lattices for which the
density is a local maximum) as those which are both perfect and eutactic, and
proved the finiteness of the set of perfect lattices (up to similarity). Avner
Ash proved in 1977 that the same result holds for eutactic lattices.
Our contribution to the subject is:
1. We introduce the notion of weak eutaxy, for which we drop the sign
condition on the ρx’s. Thus, whereas convexity is involved in eutaxy, weak
eutaxy is a linear notion.
2. We define a partition of the set of all lattices in finitely many “minimal
classes”.
3. We prove that each class contains at most one weakly eutactic lattice.
4. We prove that the weakly eutactic lattice of a given class (if any) is the
less dense in this class.
5. We prove that any weakly eutactic lattice can be scaled to an algebraic
one.
6. We classify eutactic lattices up to dimension 4.
In a paper of 1980, Avner Ash gave a “mass formula with signs” for the
eutactic lattices in a given dimension. Here is the formula for dimensions
2, 3, 4. (The denominators are the orders of the group of automorphisms of
determinant +1.)

−1

4
+

1

6
= − 1

12
(= ζ(−1)) .

− 1

24
+

1

24
+

1

12
− 1

8
+

1

24
= 0 ;

1

192
− 1

120
− 1

48
− 1

48
+

1

12
+

1

16
+

1

144
−1

8
−1

8
− 1

48
+

1

8
+

1

8
− 1

72
− 1

12
+

1

120
+

1

576
= 0 .
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François Morain

On Character Sums
(Joint work with A. Joux, to appear in J. Number Theory.)
Let d be an odd prime ≡ 3 mod 4 such that the quadratic field K = Q (

√
−d)

has class number 1. Let Ed : y2 = x3 + adx + bd with rational integer
coefficients have complex multiplication by the ring of integers of K. We
note ω1 and ω2 the periods of Ed. Let p be a prime. We are interested in the
computation of

Sd(p) =
p−1
∑

x=0

(

x3 + adx + bd

p

)

(where (a/p) denotes the Legendre symbol). By complex multiplication, we
know that if (−d/p) = −1, then Sd(p) = 0 and that if (−d/p) = +1, then
4p = u2 + dv2 with u and v rational integers and Sd(p) = ±u.
The correct determination of the sign is difficult. It is known for d ∈
{7, 11, 19}. For computing this sign, we use Rajwade’s method that we sim-
plify and express in a suitable way using the notion of

√
−d-division points.

If ℘ is the Weierstrass function of Ed, these values are xr = ℘(rω2/
√
−d) for

1 ≤ r ≤ (d − 1)/2. We show that the xr’s are integers in Q(cos(2π/d)) and
we compute the decomposition of xr as

xr =
(d−1)/2
∑

k=0

ar,k cos(2πr/d)

with the ar’s rational integers using LLL. The corresponding ordinates yr

(such that y2
r = x3

r + adxr + bd) are shown to be in Q(
√

2, cos(2π/d)) and
their exact value determined in the same way with LLL. Using this, we can
compute the correct sign of Sd(p) for all values of d in {43, 67, 163}.
We show that our method can be used when the class number of K is greater
than 1, in some cases, including d = 15. For d = 5, we refer to some other
work of the author and F. Leprévost.

Renate Scheidler

Computation of Residuacity Symbols
Residuacity symbols are an extension of Jacobi symbols to cyclotomic fields
of odd prime order. A higher order law of reciprocity plus complementaries,
analogous to the quadratic law of reciprocity and its complementaries for -1
and 2, were first given by Kummer. These can be used to compute residuacity
symbols quickly. As in the quadratic case, this technique relies heavily on
Euclidean division. A very fast Euclidean division method based on ideas
of Lenstra can be used to evaluate residuacity symbols of order up to 11.
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Due to McKenzie, it is known that the fields of order 13, 17, and 19 are
norm-Euclidean, but here the division algorithms are slower and much more
cumbersome. In fact, no fast such technique is currently known for these
cases. Furthermore, cyclotomic fields of prime order at least 23 do not even
have unique prime factorization. The question of how to possibly replace
Euclidean division in order to compute residuacity symbols in these fields
rapidly remains open.

Ken Nakamula

Certain Quartic Fields with explicit Fundamental Units
For

(s, t, u) ∈ N × Z× {±1} with (s, t, u) 6= (1, −1, 1),

define a polynomial f ∈ Z[X] by

f = X4 − sX3 + (t + 2u)X2 − usX + 1.

Put
D1 := s2 − 4t, D2 := (t + 4u)2 − 4us2

and let

K = Q(ε), K2 = Q

(

√

D1

)

, L2 = Q

(

√

D1D2

)

.

Here ε is a zero of f .
We assume that

D1 and D2 are both discriminants of quadratic fields.

Then K is a non-CM quartic field with a quadratic subfield K2, non-Galois
over Q , and the composite KL2 is dihedral over Q cyclic over L2. Moreover
the unit rank r(K) of K is given by

r(K) =























1 if D1 < 0,

2 if D2 < 0,

3 otherwise.

For each rank r(K) = 1, 2, 3, we construct infinitely many K which satisfy
the assumption and have explicit fundamental units in terms of ε.

Alf van der Poorten

Families of special Quadratic Number Fields
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It remains an interesting problem to detect infinite families of positive in-
tegers D for which one can readily describe the fundamental unit of the
quadratic number field Q(

√
D ). I (and Hugh Williams - this is joint work)

deal with a class of cases D = F (X), where F is a polynomial of even de-
gree and with leading coefficient a square, for which one obtains particularly
small units, because the period length is essentially independent of the in-
teger parameter X. That of course means a particularly large class number
for the fields Q(

√
D ). We rediscover all quadratic polynomials F with the

said property and provide recipes permitting one to detail the period of the
continued fraction for the various cases.
The context is a theorem of Schinzel who shows that if F is an integer valued
polynomial, either of odd degree, or of even degree with its leading coefficient

not a square, then as the integer X varies one has lim ℓ(
√

F (X) ) = ∞; here

ℓ(δ) denotes the length of the period of the continued fraction expansion of
the quadratic irrational δ. On the other hand, in the quadratic case Schinzel

shows that lim ℓ(
√

F (X) ) < ∞ if and only if F (X) = A2X2 +BX +C with

discriminant ∆ = B2 − 4A2C 6= 0 and ∆ | 4 · gcd(2A2, B)2. Well known ex-
amples of such F include the Richaud-Degert types: A2X2 ±A, A2X2 ± 2A,
and A2X2 ± 4A, which provide periods of length at most 12. Subsequently,
Stender had determined the fundamental unit of Q (

√
D ) when D = F (X)

with F quadratic as above, provided that gcd(A2, B, C) = 1.
We show that in the quadratic case Schinzel’s condition, together with gcd
(A2, B, C) squarefree, in effect entails that the approximation |AX|+ B/2A

to
√

F (X) provides the first half of a period of
√

F (X). Thus, aside from

some possibly degenerate cases with |X| small, the period of
√

F (X) is not
just of bounded, but is in fact of constant length. This is not quite so. If
F (X) ≡ 1 mod 4 and both numerator and denominator of the approxima-
tion |AX|+B/2A are odd then the expansion of that approximation provides
just the first sixth of the period. The other sixths are its ‘twists’ in a sense
readily explained. Plainly, in this case the length of the period depends on
the parity of X. More generally, if G2 ÷ gcd(A2, B, C) then again the period
is some multiple of that evident first part, with the other parts twisted by
multiplication by G; again the length depends on the parity of |X| mod G.

Franz Lemmermeyer

Computation of Ideal Class Groups of Bicyclic Biquadratic
Number Fields
It is well known that the identity

2 = 1 + σ + 1 + τ + 1 + στ − (1 + σ + τ + στ)
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in the group ring Z[G] (where G =< σ, τ > is Klein’s 4-group) can be
used to compute the unit group of an extensions K/F , where Gal(K/F ) =
G, from the unit groups of its subfields. If the class number of F is odd,
class field theory gives a formula for the index (Cl(K) : C), where C is
the subgroup of ideal classes in K which are generated by ideals from the
subfields. If there are only a few ramified primes in K/F , this index is small,
and the identity above may be used to compute the structure of the ideal
class group Cl(K) from the class groups of the subfields of K/F (for details,
see http://www.math.uiuc.edu).

Michael J. Jacobson, Jr.

Some Numerical Experiments Concerning Quadratic
Fields
(Joint work with R.F. Lukes and H.C. Williams)
It is well known that the non-torsion part of the unit group of a real quadratic
field K is cyclic. With no loss of generality we may assume that it has a
generator εo > 1, called the fundamental unit of K . The natural logarithm
of εo is called the regulator R of K . In this paper the following problems are
considered:

1. How big (small) can R get?

2. How often does this occur?

The answers to these questions are simple when considering the problem of
how small R can be, but seem to be extremely difficult when we are dealing
with the problem of how large R can get. In order to investigate this, several
large-scale numerical experiments, involving the Extended Riemann Hypoth-
esis and the Cohen-Lenstra class number heuristics, were conducted. These
experiments provide numerical confirmation to what is currently believed
about the magnitude R.

Roel Stroeker

Consecutive Cubes Summing up to a Perfect Square
In this talk, I considered the problem of determining all integral solutions to
the Diophantine equation

n
∑

i=1

(x + i − 1)3 = y2, (1)
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for n = 2, 3, . . ., apart from the trivial ones given by x = 0 and x = 1.
J.W.S. Cassels [A Diophantine Equation, Glasgow Math. J. 27 (1985), 11–
18] considered the case n = 3. The method he uses is rather ad hoc and
hence not suitable for generalization. A more general approach is to make
use of the structure of the elliptic curve En(Q) given by (1). This elliptic
curve may be put into short Weierstraß form

Y 2 = X3 +
1

4
n2(n2 − 1)X, (2)

by means of the transformation

(x, y) 7−→ (X, Y ) =
(

nx + 1
2
n(n − 1), ny

)

.

These elliptic curves have the following properties:

• En(Q) has torsion group Z/2Z,

• rn := rank(En(Q)) ≥ 1, and also an upper bound for the rank can be
given in terms of n.

Now let P be any integral point on (2), let P1, . . . , Prn
be a Mordell-Weil

basis for En(Q), and let P0 = (0, 0) be the non-trivial torsion point. Use is
made of a lower bound of linear forms in elliptic logarithms recently obtained
by S. David to compute an upper bound for maxi |mi| in

P = m1P1 + . . . + mrn
Prn

+ εP0,

where ε ∈ {0, 1}. This upper bound is reduced by de Weger’s implementation
of the LLL-algorithm to manageable proportions. The method is explained in
detail in [R.J. Stroeker and N. Tzanakis, Solving elliptic diophantine equa-

tions by estimating linear forms in elliptic logarithms, Acta Arithm. 67
(1994), 177–196]. Complete sets of solutions were given for all n between 2
and 50, and for n = 98. Of these 50 equations, only 16 have no non-trivial
solutions. In this range 21 rank 1 curves, 22 rank 2 curves and 6 rank 3
curves were found; the first rank 4 curve occurs for n = 98.

Johannes Buchmann

LiDIA – A Library for Computational Number Theory
In early 1994 our research group in computational number theory at the De-
partment of Computer Science of the Universität des Saarlandes, Germany,
was working on implementations of algorithms for factoring integers, deter-
mining discrete logarithms in finite fields, counting points on elliptic curves
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over finite fields, etc. In those implementations three different multiprecision
integer packages were used. The code written for those implementations was
hard to read and hardly documented as well. Therefore, many basic routines
were written over and over again, often not very efficiently.
In this situation we decided to organize the whole software in a library which
we called LiDIA. We agreed on the following design principles:

• Efficiency; we try to provide the user with a very good implementation
of the best algorithms available.

• Modularity; the dependency of parts of the library on each other is
kept to a minimum; interfaces are clearly described so that replacing
modules by more efficient modules is very simple.

• Portability; except for a small kernel which exists for different architec-
tures and which can be easily replaced, LiDIA runs on any machine
with an appropriate CPP compiler.

• Good documentation; all LiDIA programs are described by a man-
ual page similar to the Unix manual pages; online documentation is
available.

• Interactive availability; for learning and experementing, the LiDIA

functions can be accessed interactively.

Although not in the public domain, LiDIA can be used freely for non com-
mercial purposes. A first LiDIA release will be available via ftp@crypt1.cs.uni-
sb.de on November 30 1994.

Arjen K. Lenstra

Factoring
Currently the two most practical general purpose algorithms for the factor-
ization of integers are the Quadratic Sieve Method (QS) and the Number
Field Sieve Method (NFS). In April 1994 a new QS- record was set with the
factorization of the 129-digit number ‘RSA-129’, a challenge number that
was published in 1977 in Martin Gardner’s column in Scientific American.
Back then it was believed that factoring RSA-129 would require more than
40 quadrillion years. Its QS-factorization took 8 months on a world-wide
network of more than 1000 computers (using their idle time only). The to-
tal computing time spent on the factorization is approximately 5000 MIPS
years.
Even though NFS is asymptotically superior to QS, it was long believed
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that the crossover point between QS and NFS is beyond our current range
of interest. Recent improvements in our NFS implementations have shown,
however, that NFS is already faster than QS for relatively small numbers:
the NFS-factorization of a 116-digit general number was completed in about
half the time QS would have spent on it, and other experiments indicate that
NFS can even be further improved. These recent improvements might have
far-reaching consequences for the security of cryptosystems based on widely
used 512-bit RSA technology.

Daniel J. Bernstein

The Number Field Sieve (sort of)
An integer n > 1 is a perfect power if it is of the form mk, k > 1. How
quickly can we tell if n is a perfect power? I have an algorithm which runs
in time essentially

B(n) =
∑

2≤p≤log
2

n

(log2 p)(log2 n − log2(1 + |n − (round n1/p)p|)).

On average, and in the normal case, B(n) is essentially linear in log 2 n. I
hope that the same is true of the worst case. This algorithm has several
variants, all of which seem just as difficult to analyze.

Oliver Schirokauer

Using Number Fields to Compute General Discrete
Logarithms
Let p be a rational prime and let q = pn. We present an algorithm to solve
the discrete logarithm problem in F q. Our method is based on the algorithm
of Gordon ([1]) and the author’s own work on logarithms in prime fields ([3]).
The algorithm we give makes use of many of the techniques of the number
field sieve and has a conjectured expected running time of

Lq[1/3; (64/9)1/3 + o(1)],

where
Lq[s; c] = exp(c(log q)s(log log q)1−s),

and the limit implicit in the o(1) is for n fixed and p → ∞. This is the same
time needed to factor a number the size of q using the number field sieve.
Let

∏

le be the prime factorization of q − 1. The goal of our algorithm is to
compute, for a given prime factor l, an integer xl such that t−xlv is an leth
power. In this case, logtv ≡ xl mod le. The Chinese Remainder Theorem

20



can then be used to compute logtv.
To find xl, we use an approach similar to that of the number field sieve
factoring algorithm. Recall that in this algorithm one first constructs an
extension Q (α) over Q with special properties which I do not discuss here
and then combines smooth elements in both Z(α) and Z to form squares. In
our case, the base field of the field extension is no longer Q but a number
field in which p is a prime of degree n and the multiplicative combinations
of smooth elements in the two fields are not squares but leth powers. In
order to identify such powers we introduce a map λ which can be thought
of as an approximation of the l-adic logarithm and which has the property
that an algebraic integer δ is very likely to be an leth power if the order of
each prime ideal dividing (δ) is a multiple of l e and if λ(δ) = 0. In fact, if
λ is a sufficiently good approximation of the l-adic logarithm, then it is a
consequence of Leopoldt’s conjecture that δ is an leth power. In this way,
Leopoldt’s conjecture arises as one of the assumptions of our algorithm.

References.
[1] D.M. Gordon, Discrete logarithms in GF (p) using the number field sieve,
SIAM J. Discrete Math. 6 (1993), 124-138.
[2] J.P. Buhler, H.W. Lenstra, Jr., Carl Pomerance, Factoring integers with
the number field sieve, The development of the number field sieve (A.K
Lenstra, H.W. Lenstra, Jr., eds.), Lecture Notes in Mathematics 1554 (1993),
Springer-Verlag, Berlin, 50-94.
[3] O. Schirokauer, Discrete logarithms and local units, Theory and appli-
cations of numbers without large prime factors (R.C. Vaughan, ed.), Philo-
sophical Transactions of the Royal Society, Series A, 345 (1993), The Royal
Society, London, 409-423.

Victor Shoup

Factoring Polynomials over Finite Fields
Two new algorithms are presented for factoring a polynomial over a finite
field.
The first algorithm (joint work with Erich Kaltofen) runs in time O(n1.815 log q)
on input polynomials of degree n over Fq. This result is somewhat theoreti-
cal, as it depends on fast matrix multiplication.
The second algorithm runs in time O(n2.5 + n1+ǫ log q), and has been proven
to be quite effective in practice. Empirical data from experiments comparing
this algorithm with Berlekamp’s algorithm are presented which indicate that
this new algorithm is significantly faster and more space efficient. In partic-
ular, when q is a large prime, we are able to factor much larger polynomials
than was previously possible.
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Harald Niederreiter

Factoring polynomials using differential equations: an
update
New deterministic factorization algorithms for polynomials over fields of pos-
itive characteristic were presented by the speaker at the first Dagstuhl Work-
shop on Algorithms and Number Theory in 1992. These algorithms are based
on new types of linearizations of the factorization problem using differential
equations. Since 1992 a lot of work was done on these algorithms, and the
talk gives a report on the current state of affairs. In the case of finite fields,
the new algorithms are preferable to the deterministic Berlekamp algorithm if
the characteristic is small. A survey on the new algorithms is available in the
speaker’s paper ”New deterministic factorization algorithms for polynomials
over finite fields”, Contemporary Math., Vol. 168, pp. 251-268, American
Math. Society, 1994.

Mario Daberkow

On computing Bases in Relative Radical Extensions
Let E /F be a radical extension of an algebraic number field, e.g E = F( n

√
µ)

with n ∈ N and µ an integral element of F . We present an algorithm for the
computation of an integral basis of E with relative methods.
In the first step we study Kummer extensions E/F of prime degree p. As
a result we explicitly construct a system of ≀F–generators of ≀E, where ≀F
and ≀E are the rings of integers of F and E , respectively. The construction
is based on a theorem of Hecke, which describes the relative discriminant
discEF of such an extension E/F . This theorem can be modified for local
Kummer extensions to derive the generators for associated global extensions.
The result on Kummer extensions of prime degree leads to an algorithm for
the computation of the ring of integers of E for arbitrary Kummer extensions
E/F and then for radical extensions E/F .
We finally present several examples for integral bases of radical extensions
E/F with [E : Q ] up to 1300.

Michael E. Pohst

On solving Relative Norm Equations
We report on joint work with A. Jurk and C. Fieker. Let E ⊂ F be algebraic
number fields of degree m, mn over Q, respectively. Let oE , oF be the rings
of integers of E, F , and let M ⊂ F be a free unital oE-module. For a given
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κ ∈ oE, we discuss the problem of solving

NE/F (x) = κ in x ∈ M . (3)

The solution presented is analogous to the absolute case. It requires bounds
for the conjugates of potential solutions x. If the unit group UF of F satisfies

UF M ⊆ M

, such bounds can be derived for all elements of a complete system of non-
associate solutions. The only prerequisite for this is an appropriate choice
of fundamental units for F . Then all solutions can be computed as lattice
points in a finite number of suitable ellipsoids. A rough estimate of the
number of required arithmetical operations indicates that this number is
exponential in n but polynomial in m. Various numerical examples support
this observation. They also demonstrate the advantage of the new method
over the older (absolute) one of solving the norm equation (1) by exhibiting
the solutions among those of NE/Q(x) = NF/Q(κ).

Nigel Smart

Sieving An S-Unit Equation.
In this talk the author explained one motivation for studying general two term
S-unit equations. Namely the completion of lists of curves of genus two with
bad reduction at two only. These have been computed by Merriman (1970),
Top (1984) and Merriman and Smart (1993, 1994). However all of these
approaches have problems. Sieving S-unit equations was first performed by
Tzanakis and de Weger, the speaker explained his small prime version which
considerably speeds up the computing time.

Nikos Tzanakis

Solving elliptic quartic diophantine equations by esti-
mating linear forms in elliptic logarithms
We extend the method developed in [ST] and [GPZ] to the solution in in-
tegers of diophantine equations of the form V 2 = Q(U), where Q is an
polynomial with integer coefficients,with non-zero discriminant. As in the
above mentioned papers,the method makes use of the arithmetical theory
of elliptic curves, transcendental numbeer theory (a theorem of S. David on
lower bounds of linear forms in elliptic logarithms) and reduction techniques
based on the LLL-algorithm. However, the use of the isomorphism between
the elliptic curve E associated to the given equation and the additive group
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R/Z, defined in [Z],is not now as direct as in the case of the cubic elliptic
equations studied in [ST] and [GPZ] and requires extra technical work. As
an application we solve very easily equations of this type found in the lit-
terature,some of which are well known for their difficult and tricky solution.
It is interesting to note that in all such difficult examples,the rank of the
corresponding elliptic curves is 1 or 2.

References.
[GPZ] J. Gebel, A. Pethoe, H. Zimmer, Computing integer points on elliptic
curves Acta Arithm. 68 (1994),171-192.
[ST] R. Stroeker, N. Tzanakis, Solving elliptic diophantine equations by es-
timating linear forms in elliptic logarithms, Acta Arithm. 67 (1994),177-196.
[Z] D. Zagier, Large integer points on elliptic curves, Math. Comp. 48 (1987),425-
436.

Chris Smyth, Edinburgh University

Bezout’s Theorem and Euclid’s Algorithm
We describe an algorithm for computing the intersection multiplicities of two
curves in C[x, y]. The algorithm is recursive, and based on Euclid’s algorithm
for polynomials in x. It seems to work more efficiently than algorithms using
resultants.
One can also use the same idea to define the intersection of the two curves
(as a multiset of their intersection points) from which most of the properties
of the intersection follow, including Bezout’s theorem.
This algorithm was developed with a view to applications on high degree
highly singular models for elliptic and other curves. The idea is to use such
models to specify a priori rational points on the curve. In the case of genus
1, the group law can then be given using intersections of the original curve
with certain so-called adjoint curves. This is a generalisation of the ”chord
and tangent” process for non-singular cubic models of the curve.

Wolfgang Schwarz

On the Class Number of a Real Abelian Number Field
Let p be an odd prime and K a real abelian number field of conductor not
divisible by p2. We define K to be p-regular if for every character χ 6= 1 of
K Lp(1χ) is a p-adic unit. This implies that the class number h(K) is not
divisible by p. If the conductor of K is prime to p, p-regularity can be tested
efficiently using the Fermat quotient; this goes back to Leopoldt. We give an
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explicit formula for the coefficients of the Fermat quotient, namely

Qp(1 − ζ) =
∑

i

aiζ
i, with ai =

[ip/m]
∑

j=1

j−1m−1 mod p,

where ζ is a primitive m-th roots of unity. To test whether all conjugates
of a character are p-regular, you just have to test whether the polynomial
∑

(i,m)=1 aiX
λ(i) is coprime to the m-th cyclotomic polynomial mod p; here

λ(i) is defined by χ(i) = ζλ(i). In a few special cases, it can be shown that
the field is p-regular; namely, if q is a prime such that p is a primitive root
mod q: if l = 2q + 1 is prime and l > p, then Q(ζl)

+ is p-regular (this is due
to Jakubec); if l = 4q + 1 is prime and l > 4p, then the subfield of Q(ζl)

+

of degree q is p-regular, and if l > p2 + p, then Q(ζl) is p-regular iff Q(
√

l) is
p-regular.

Michel Olivier

Galois Groups for Polynomials of Degree 11
We present the continuation of a previous work concerned with the computa-
tion of the Galois groups of the polynomials in Z[X] (cf. Dagstuhl-Seminar-
Report;39, 22.06.-26.06.92 (9226), p.7). We determine the Galois group of a
polynomial using the old method of resolvents.
For degree n = 10 or n = 11, for each transitive subgroup G of degree n
in Sn, consider all the transitive subgroups H of degree n of Sn having the
property:
(∗) at least one conjugate of H by element of Sn is included in G.
For all pairs of transitive groups (H, G) where H is maximal among all the
groups possessing the property (∗), we give an invariant polynomial and the
corresponding resolvent which allow us to compute the Galois group of the
polynomials of degree n.
We describe some tables of polynomials of degree 10 and 11 with a given
Galois group.

Herman J.J. te Riele

Amicable Number Triples
Let σ(m) denote the sum of all the divisors of m. Amicable number triples,
introduced by L.E. Dickson, are triples of positive integers (m1, m2, m3),
m1 ≤ m2 ≤ m3, for which:

σ(m1) = σ(m2) = σ(m3) = m1 + m2 + m3.
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An example is the triple

(1980, 2016, 2556) = (22325 · 11, 25327, 223271).

L.E. Dickson (The Amer. Math. Monthly 20 (1913) 84-92) has found ten am-
icable number triples, and P. Poulet (La Chasse aux Nombres, Fasc. I, Par-
faits, amiables et extensions, Bruxelles, 1929) published 145 of such triples.
In this talk a new method is presented to find amicable number triples: a
positive integer s is chosen in a suitable way, and as many as possible so-
lutions of the equation σ(x) = s are computed; next, it is checked whether
among the found solutions there are triples which sum up to s.

Example 1 : for s = 3 · 8! = 120960 = 27335 · 7 we computed 123 solutions of
the equation σ(x) = s and among them there are three triples which sum up
to s. The smallest is

(37380, 41412, 42168) = (223 · 5 · 7 · 89, 223 · 7 · 17 · 29, 233 · 7 · 251).

Example 2 : for s = 13! we found 27561 solutions of the equation σ(x) = s,
and among them there are 689 triples which sum up to s.

The method is also suitable for finding amicable k-tuples, with k > 3, i.e.,
k-tuples (m1, · · · , mk) of positive integers for which

σ(m1) = · · · = σ(mk) = m1 + · · ·+ mk.

With growing k, however, it becomes increasingly time-consuming to find
k-tuples which sum up to s, from a given big list of solutions of the equation
σ(x) = s.
Our method is a generalization of a method to find amicable number pairs

(H.J.J. te Riele, A new method to find amicable pairs, Proceedings of the Van-
couver Conference “Mathematics of Computation 1943-1993”, AMS Proceed-
ings of Symposia in Applied Mathematics, 1994, to appear), but it generates
many more amicable triples than amicable pairs.

Igor Shparlinski

Approximate Constructions in Finite Fields
There are two classical problems in the theory of finite fields: given a prime
p and integer n, construct a finite field Fq of q = pn elements and given a
finite field Fq find a primitive root of Fq.
Unfortunately, no deterministic polynomial time algorithm is known for ei-
ther of these problems. We consider their relaxed “approximate” versions
which are quite enough for many applications and give an outline of known
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fast (polynomial time in a number of cases) “approximate” algorithms. An
incomplete list of applications includes:
FFT over finite fields, Matrix Multiplication Testing, Sparse Polynomial In-
terpolation, Coding Theory, Cryptography, Combinatorial Designs, Pseudo-
Random Number Generation.

Valeri I. Korjik

The Progress in Iterative Decoding Algorithms
We consider the maximal likelihood estimate of key, which has been devel-
oped in the paper (Andelman, Reeds “On the Cryptanalysis of Rotor Ma-
chines and Substitution-Permutation Networks”, IEEE on Inf. Th., 4, 1982.)
The feature of this approach is to embed the deterministic key space in a con-
tinued one. At first the likelihood function as a function of key probabilities
for a stream cipher produced by LFSR and nonlinear combiner is presented.
Then we introduce a modified Andelman-Reeds iterative algorithm to com-
pute extreme values of this function. We can not prove a convergent of this
algorithm in general case and then we use simulation.
For LFSR with length 31 and the nonlinear combiner as Jeffe generator we
obtain correct results after 140 iterations. In the general case the complexity
of this cryptanalysis is about O(N · s · n2), where N is the length of the
cryptogram, s is the number of the output of LFSR, n is the length of the
LFSR.
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Österreichische Akad.
der Wissenschaften
Institut f‘”ur
Informationsverarbeitung
Sonnenfelsgasse 19
A-1010 Wien
Austria
nied@qiinfo.oeaw.ac.at
tel.:+43-1-51581 320

Andrew M. Odlyzko
AT & T Bell Labs.
Room 2C-355
600 Mountain Av.
Murray Hill, NJ 07974
USA
amo@research.att.com
tel.:+1-908-582-7286

Tatsuaki Okamoto
AT & T Bell Labs.
Room 2D-301
600 Mountain Av.
Murray Hill, NJ 07974
USA
okamoto@research.att.com

Michel Olivier
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