Workshop on
Functional Programming in the Real World

Organizers:
Robert Giegerich, Universitat Bielefeld
John Hughes, Chalmers University of Technology

May 16-20, 1994

Compiler technology for functional languages has reached the point where it is
feasible to program some medium to large applications in a purely functional
language, and indeed efforts are already underway in many areas. There is much
to be learned from using functional languages in real situations — on the one
hand, how large functional programs should be designed, and on the other, how
existing languages, implementations and tools need to be improved.

Before this background, the workshop brought together users of functional lan-
guages in ambitious software projects, and a small group of language designers
and implementors. The workshop demonstrated the scope of applications of
functional programming to date. Users exchanged their experiences and pro-
vided feedback to language designers and implementors. Discussions evaluated
the state of the art and outlined central problem areas for the further development
of functional programming. The workshop focussed on the following topics:

e Hardware Description and Simulation,
e Real-Time Systems,

e Bioinformatics,

e Communication Protocols,

e Scientific Computing,

e Programming Languages and Systems,
e Software Tools,

e Prototyping,

e User Interfaces.

Besides the presentation of applications, there were reports on recent develop-
ments in functional language implementations (SML, Haskell, Clean). An evening
discussion on “Functional Programming in Education” revealed that functional

languages are about to become an important vehicle for teaching computer sci-
ence — no longer restricted to introductory programming courses, or functional
programming per se. A more comprehensive summary of this workshop is planned
to appear in the Journal of Functional Programming,.

The workshop was generally perceived by the participants as an outstanding
opportunity for exchange of ideas and experiences. A number of spontaneous ex-
periments were performed cooperatively, using the Dagstuhl computing facilities.
We are especially grateful to the Dagstuhl team for their professional support for
planning and conducting the workshop.

Monday, May 16

Session 1: Hardware Description and Simulation
Simon Finn The LAMBDA FExperience
John O’Donnell Hydra: Haskell as a Computer Hardware Description Language

Werner Pohlmann Discrete Fvent Simulation via Functional Programming

Session 2: Real-Time Systems

Markus Freericks Developing a Language for Real-Time Numeric Applications
Staffan Truve Declarative Real-Time Systems
Mike Williams Erlang - A Functional Programming Language

for Developing Real-Time Products

Hugh Glaser and The Resource Constrained Shortest Path Problem
Pieter H. Hartel implemented in a Lazy Functional Language

Tuesday, May 17

Session 3: Programming Languages and Systems

Martin Alt Practical Experience using a Nondeterministic
Functional Language

Jasper Kamperman GFEL, a Graph Ezchange Language

Richard Frost W/AGE: The Windsor Attribute Grammar
Programming Environment

Session 4: Biological Sciences

Marc Feeley and A Parallel Functional Program for Searching a
Marcel Turcotte Discrete Space of Nucleic Acid 3D Structures

Robert Giegerich Towards a Declarative Pattern Matching
System for Biosequence Analysis

Stefan Kurtz Fundamental Algorithms for Comparing Biosequences
Patrick J. Miller Rational Drug Design in Sisal *90

Peter Thiemann
Peter Baumann
H.R. Walters

Einar Wolfgang
Karlsen

Hugh Glaser
Pieter H. Hartel

Cordelia Hall

Rex Page

David Goblirsch
Rick Morgan

Magnus Carlsson

Marko van Eekelen

Wednesday, May 18

Session 5: Tools
Towards Software Tools in Haskell
Building Software Maintenance Tools in Standard ML
Implementing Tools by Algebraic Specification

Tool Integration in a Persistent and
Concurrent Functional Setting

Thursday, May 19

Session 6: Prototyping
Prototype Development in a Lazy Functional Language

Prototyping a Smart Card Operating System in a
Lazy Functional Language

Natural Expert: A Commercial Functional
Programming Environment

Fortran for Functional Programming: Is that absurd or what?

Session 7: User Interfaces
Training Hidden Markov Models using Haskell
The LOLITA System
Client/Server Programming with Fudgets

A Lazy Functional Spreadsheet written in a
Lazy Functional Language

Friday, May 20

Session 8: Communication Protocols and Scientific Computing

Edoardo Biagioni
Peter Lee

J.A. Sharp

Hugh Glaser

Theory and Practice: the Fox Net
Advanced Development of Systems Software
Functional Programming Applied To Numerical Problems

Some Lattice-based Scientific Problems, Expressed in Haskell

Practical Experience using a Nondeterministic Functional Language

Martin Alt, Universitdt des Saarlandes

Trafola is an advanced functional programming language and system. Originally
designed and developed as a tool for the specification and execution of complex
tree transformations, it possesses sophisticated search and replacement mecha-
nisms. It includes higher order functions, nondeterministic pattern constructs
and second order predicates but is strict. For some practical relevant problems,
the language has been shown as very useful. We show the benefits using such an
expressive language for real programming a parser generator.

Building Software Maintenance Tools in Standard ML

Peter Baumann, Uniwversitat Zirich

The aim of the project AEMES (An Extensible Maintenance Engineering Sys-
tem) is the design and the implementation of a prototype of an extensible reverse
engineering environment for real world COBOL-74 applications. Software main-
tenance is an important and costly part of the software life-cycle, but it is difficult
and time-consuming. Our approach is to use modern techniques such as func-
tional programming in order to build a flexible and powerful environment.

The two major design principles are:

e to keep the architecture and the tools of the environment generic and adapt-
able to other dialects of COBOL or even to other programming languages

e to build an extensible environment such that new tools can be integrated
without having to redefine and re-implement the existing system

We conducted a feasibility study in order to decide whether we can use Standard
ML as implementation language. During this study, in which we used Poly /ML,
we were able to build a scanner/parser, a program browser and a cross refer-
encer for COBOL-74. There are many different variants of COBOL dialects and
therefore there exists no universally valid grammar. The sheer size of the syntax
complicates the parsing of the language even more. To cope with this problem,
we developed a two-step approach for parsing programs. In the first step, we
split a program into coherent program parts, such as divisions, sections, and
paragraphs. In the second step, single statements are scanned. The browser and
the cross referencer combine the information of the decomposition step with the
information gained in the scanning process. The browser allows fast navigation
in programs. The cross referencer generates a table which contains each token of

'Poly/ML is a trademark of Abstract Hardware Limited

a program together with the information about all positions where the symbol
occurs. Because the browser and the cross referencer can be used interactively,
we put graphical user interfaces on top of them.

This study showed that it is indeed possible to implement software analysis tools
with acceptable performance for real-world programs in Standard ML. Especially,
the power of higher-order functions and the polymorphic type system made it
possible to implement the tools in comparably short time. It is worth noting
that only one team member knew Standard ML before we started the study.
Nevertheless, we were able to realize full functional tools within only four months.
The main problem we encountered in using Standard ML was the lack of adequate
connections to state-of-the-art user interface technologies and the missing support
for persistent objects. But the overall results were encouraging, so we decided to
continue to work with Standard ML.

Theory and Practice: the Fox Net

Edoardo Biagioni, Carnegie Mellon University

We have used an extension of SML/NJ to build a complete implementation of
the TCP/IP standard suite of network protocols.

The implementation is structured according to well-understood principles from
the networking field, but we have been able to use SML’s modules to give these
principles concrete expression. The implementation of TCP sequentially inter-
prets commands placed asynchronously onto a per-connection queue; this quasi-
synchronous structure gives an implementation that is simpler than its fully-
asynchronous counterparts.

We use the callce extension to SML to implement coroutines, byte arrays to
represent network packets, and 8, 16, and 32-bit integers to compute and store
header fields and checksums. Except for the direct device access routines, all of
the code is safe in the sense that bounds are checked on all array accesses and
type casting operations are not used.

The performance of the implementation is within a factor of two of a comparable
C implementation for most protocols; the TCP protocol is complex and the C
implementation is highly optimized, so the relative performance is not as good.
We find that our implementation is highly maintainable, with few of the common
problems that plague systems programs such as memory misallocation and illegal
pointer references.

Client/Server Programming with Fudgets

Magnus Carlsson, Chalmers University of Technology

The Fudget library, which is based on parallel stream processors, has been used
to write Haskell /LML programs with graphical user interfaces. In collaboration
with Thomas Hallgren, it has now been enhanced with capabilities for UNIX
socket communication, making it possible to write both client and server appli-
cations with Fudgets. Writing servers which are capable of handling many clients
simultaneously seems to be a new application area for Fudgets.

I'll describe the small client /server application Chat, where the server broadcasts
messages from connected clients to all clients.

A Functional Spreadsheet
Marko van FEekelen with Walter de Hoon, University of Nijmegen

Recent developments in research on efficiency of code generation and on graphical
input/output interfacing have made it possible to use a pure, lazy functional
language to write efficient programs that can compete with industrial applications
written in a traditional language.

Ongoing work is described concerning the development of a spreadsheet writ-
ten in the pure lazy functional language Clean which offers facilities to achieve
state-of-the-art performance using uniqueness typing. The design was geared to-
wards combining existing programs as much as possible (e.g. a theorem prover
as spreadsheet language interpreter and an editor for the definition of new func-
tions).

An interesting aspect of the developed spreadsheet-prototype is that the language
with which the user specifies the relations between the cells of the spreadsheet
is not one of the standard spreadsheet languages but also a pure lazy functional
language. Another interesting aspect of this spreadsheet is that expressions in
the spreadsheet language are evaluated not by a standard interpreter but by a
theorem prover which gives the possibility to incorporate cells with expressions
proving properties of certain expressions within the spreadsheet. Spreadsheets
made in such a way are highly reliable and relatively easy to understand and to
reason about.

Future work is directed not only towards finishing the implementation and im-
proving the efficiency of the theorem prover to the level of efficiency of standard
functional language interpreters but also towards extensions to a multi-user dis-
tributed version.

A Parallel Functional Program for Searching a Discrete Space of
Nucleic Acid 3D Structures

Marc Feeley and Marcel Turcotte, Université de Montréal

We will present the Nucleic Acid 3D structure problem(NA3D) and a constraint
satisfaction algorithm used to search a discrete space of molecular conforma-
tions. Most approaches to this problem are based on numerical methods; we
have adopted a more symbolic approach. For this reason and to ease experimen-
tation, we have implemented our system (MC-SYM) using the Miranda functional
programming language.

As the size of the problems processed by MC-SYM increased (several days to
solve on a high-performance workstation) it became clear that we needed to
increase its speed. We report here our experience in improving the system’s
performance, especially regarding its parallelization with the Multilisp language.
Using two realistic data sets, we compare the original sequential version of the
program written in Miranda to the new sequential and parallel versions written
in C, Scheme, and Multilisp, and explain how these new versions were designed
to attain good absolute performance. Critical issues were: the performance of
floating-point operations, garbage collection, load balancing, and contention for
shared data. We found that speedup was dependent on the data set. For the first
data set, nearly linear speedup was observed for up to 64 processors whereas for
the second the speedup was limited to a factor of 16.

The LAMBDA Experience

Sitmon Finn, Abstract Hardware Limited

Abstract Hardware Limited (AHL) was formed to produce and sell formally-
based tools for digital hardware design. We chose to construct these tools —
the LAMBDA system — in Standard ML using (mostly) functional programming
techniques. The LAMBDA system is now 7 years old and contains more than
170K lines of code, making it one of the world’s largest functional programs.

This talk will discuss the consequences of the decision to use SML:

e Do the well-publicised features of functional programming (polymorphism,
higher-order functions, :::) actually produce real-world benefits?

e Do these benefits out-weigh the real penalties (lack of mature implemen-
tations, problems interfacing to C-based system, :::) of using functional
programming?

e What effects do the non-functional parts of LAMBDA have on the efficiency,
reliability and maintainability of the total system?

e Why did AHL become an SML vendor?

In short, I shall address the question ‘if functional programming is so good, why
does (almost) nobody use it?’.

Developing a Language for Real-Time Numeric Applications
Markus Freericks, TU Berlin

The language Aldisp is presented, and the special problems encountered both
in its design and implementation described. Aldisp is targetted at the design
and implementation of digital signal processing (DSP) applications with control
components. Besides the synchronous data-flow model, Aldisp supports concepts
of asynchronous communication, real-time, and I/O. A wide range of numerical
behaviour can be specified.

Aldisp is a quasi-functional language: it supports higher- order functions, dy-
namic typing, and a garbage-collected heap; and no ”obvious” imperative fea-
tures are included. On the other side, I/O and time have to be modelled. This
is done by introducing a two-level concept of computation: scheduling and 1/0
are dependent on global state and side-effects, but the ”computational” part of
the language is purely functional.

The design of Aldisp was done without access to a running implementation,
and without much regard to problems of efficiency. In that respect, Aldisp is a
specification language that enables the succinct and precise description of real-
time numeric algorithms.

In the last years, a compiler for Aldisp has been written. During its development,
many thousand lines of code have been written and discarded, the implementation
language has changed (from Scheme to SML/NJ), and many of the basic ideas of
how the compiler should work have changed. At the moment, its centerpiece is an
on-line partial evaluator developed from an abstract interpreter and an abstract
scheduler.

The talk will center on the unique aspects of Aldisp and their domain-specific
motivation. Some of these language features have been shown to create more
problems than they solve; others fulfill their tasks, but are overly complex to
implement.

W /AGE: The Windsor Attribute Grammar Programming
Environment

Richard Frost, University of Windsor

W/AGE is a programming environment that enables language processors to be
constructed as executable specifications of attribute grammars. W/AGE has been
under development since 1988 and has been used in a number of projects including
the development of natural language interfaces, SQL processors, theorem provers
and circuit design transformers within a VLSI design package.

The W/AGE programming language consists of a set of higher-order functions
that extend the standard environment of a pure lazy functional programming
language. The notation is similar to textbook notation for attribute grammars.

Each grammar production in a W/AGE program is implemented as a syntax-
directed evaluator using a functional variation of classical top-down parsing with
full backtracking. Fully general attribute dependencies, including ”inheritance
from the right” are possible owing to the normal-order evaluation strategy em-
ployed by the lazy functional host language. Left-recursive productions are ac-
commodated using a novel technique which involves the use of recognizers that
act as guards. Polynomial complexity for recognition of ambiguous languages is
achieved through memoization at the source-code level.

Towards a Declarative Pattern Matching System for Biosequence
Analysis

Robert Giegerich, Universitat Bielefeld

A number of approaches have aimed to provide flexible tools for biosequence anal-
ysis. Efficient algorithms are known for isolated standard problems (alignment,
fast similarity search, approximate matching, repeats and palindromes, cloverleaf
structures, ...). Our goal is to embed these into a pattern matching system useful
to the working biologist. One way to achieve this is a pattern matching language
with a declarative semantics. Besides describing complex patterns in a transpar-
ent way, a user must also be able to integrate own functionality with built-in
features. Thus abstractness, flexibility and extensibility are the main require-
ments of such a system. A prototype system was implemented via a combinator
language that closely minimizes the pattern language of Mehldau’s dissertation.
A large number of pattern matching algorithms have since been reviewed with
respect to their suitabilty as the basic machine for a more efficient implementa-
tion. This talk concentrates on the motivation and the language design aspects.

10

Prototype Development in a Lazy Functional Language

Hugh Glaser with Celia Glass, University of Southampton

This presentation reports on the development of an algorithm in a lazy functional
language.

The development takes place as a dialogue between the consultant in the ap-
plications domain (Operational Research), the Consultant, and the applications
programmer, the Programmer. This dialogue required a number of iterations and
prototypes, and many of the facilities peculiar to functional languages were used
in support of this process. In particular, a number of data type transformations
and generalisations were performed which meant that the final program corre-
sponded more closely to the Consultant’s view of the problem than the original
capture.

Some Lattice-based Scientific Problems, Expressed in Haskell

Hugh Glaser with Bryan Carpenter, University of Southampton

This presentation explores the application of a lazy functional language, Haskell,
to a series of grid-based scientific problems—solution of the Poisson equation
and Monte Carlo simulation of two theoretical models from statistical and par-
ticle physics. The implementations introduce certain abstractions of grid topol-
ogy, making extensive use of the polymorphic features of Haskell. Updating is
expressed naturally through use of infinite lists, exploiting the laziness of the
language. Evolution of systems is represented by arrays of interacting streams.

The Resource Constrained Shortest Path Problem implemented in a
Lazy Functional Language

Hugh Glaser, University of Southampton and
Pieter H. Hartel, University of Amsterdam

The resource constrained shortest path problem is an NP-complete problem for
which many ingenious algorithms have been developed. These algorithms are usu-
ally implemented in FORTRAN or another imperative programming language.
We have implemented some of the simpler algorithms in a lazy functional lan-
guage. Benefits accrue in the software engineering of the implementations. Our
implementations have been applied to a standard benchmark of data files, which
is available from the Operational Research library of Imperial College, London.
The performance of the lazy functional implementations, even with the compar-
atively simple algorithms that we have used, is competitive with a sophisticated
FORTRAN implementation.

11

Training Hidden Markov Models using Haskell
David M. Goblirsch, The MITRE Corporation

First I will briefly outline the structure of phonetically based automatic speech
recognition systems. Then I will describe how Hidden Markov Models (HMMs)
are used to link the acoustic signal and the basic sound units, called phones,
that are used to describe word pronunciations. I will describe how the Viterbi
dynamic programming algorithm is used to align the phonetic representation of
an utterance with the acoustic signal, and how the results of this alignment can
be used to reestimate the HMM parameters. Finally, I will give an overview of a
suite of programs used to train HMMs from a corpus of speech training data.

Natural Expert: A Commercial Functional Programming
Environment

Cordelia Hall, University of Glasgow

Natural Expert is a product that allows users to build knowledge based systems.
It uses a lazy functional language, Natural Expert Language, to implement back-
ward chaining and provide a reliable knowledge processing environment in which
development can take place. Customers from all over the world buy the system
and have used it to handle a variety of problems, including applications such as
airplane servicing and bank loan assessment. Some of these are used 10,000 times
or more per month.

Prototyping a Smart Card Operating System in a Lazy Functional
Language

Pieter H. Hartel, University of Amsterdam

The operating system of a smart card is an example of a mission critical sys-
tem. Distributed in millions, smart cards with their small 8-bit CPU support
applications where values are transferred only protected by the strength of a
cryptographic protocol. This strength goes no further than the implementation
of the software in the card and terminal allows. Because of its complexity, to
guarantee absolute reliability of the smart card software is prohibitively expen-
sive. Obtaining a high level of confidence in the implementation of a smart card
application is essential for the widespread acceptance of smart cards. A highly
structured design of the smart card operating system gives the designer control
over the complexity of the system.

A functional language has been used to prototype a smart card operating system.
The prototype has the same structure as the real operating system and it offers
most of the functionality of the real system. The well defined semantics of pure

12

functional languages and their compositionality in particular are instrumental to
the structuring of the prototype. With the functional language implementation
as reference the reliability of implementation can be assessed at detailed level.

GEL, a Graph Exchange Language
Jasper Kamperman, CWI, Amsterdam

Graph-structured data types play a role in a large variety of complex software
systems. Especially software performing symbolic manipulation, such as a com-
piler or a symbolic algebra system (graph rewriting), makes use of this kind of
data types. Several trends, e.g. the growth of distributed computing and the
integration of software developed for different purposes, cause a demand for the
efficient, language-independent, exchange of graph-structured data.

GEL can be characterized by observing how it extends the capabilities of other
formalisms for external data representation:

e GEL contains a dynamic abbreviation mechanism, which allows the use of
very short identifiers for types and attribute names.

e Instead of labels to identify shared subgraphs or circularities, GEL has
relative indices. This is comparable in advantages to the use of de Bruijn
indices in the lambda calculus.

e The semantics of GEL assumes the existence of a stack of subgraphs. This
leads to an efficient implementation for the important class of DAGs (Di-
rected Acyclic Graphs).

e GEL is compositional: if a graph is composed of several subgraphs, its GEL
text can be composed of the GEL texts of its subgraphs.

As a result, typical GEL representations of large tree-like graph structures asymp-
totically require an average of one byte storage for representing a node in the
graph.

We claim that in many cases, GEL removes the need to implement a more effi-
cient exchange protocol for production versions of a system. Thus, components
in the prototype phase can be mixed freely with production versions of other
components.

An experimental implementation of GEL has been used satisfyingly for the inter-
facing between software components generated from algebraic specifications and
components built in a more traditional way.

13

Tool Integration in a Persistent and Concurrent Functional Setting

Einar Wolfgang Karlsen, Universitat Bremen

Integration of individual CASE tools into a complete SDE require control and
data integration. We present a framework for a common tool environment in a
persistent and concurrent functional setting. The persistency features ensure type
safe access to the persistent store for first order as well as higher order values. The
concurrency model is related to the higher order pi-Calculus and offer features in
support of process creation, selective communication, distributed programming
and dynamic connectivity.

We then present the framework for control integration. It is demonstrated how
a persistent setting offers the combined advantages of the tightly and loosely
coupled integration paradigms in terms of type-safety of the former and flexibility
of the latter. We then present the framework for tool encapsulation, and show
how it offers significant improvements over existing technologies. We round off
the discussion on control integration techniques by presenting a higher order
message broadcast server. Also in this context, several important improvements
over traditional imperative frameworks can be demonstrated.

We briefly discuss the architecture of the functional DBMS based on a paradigm
where processes are used to encapsulate state. The DBMS is here viewed as a
stream processing agent taking transaction functions as parameters and delivering
answers as result. We present the approach to transaction development based on
the state transformer monad, and discuss the modelling of a few transaction
schemes. Future research topics are finally presented.

Fundamental Algorithms for Comparing Biosequences
Stefan Kurtz, Universitat Bielefeld

Molecular biologists frequently compare biosequences to see if any similarities
can be found in the hope that what is true of one sequence either physically
or functionally is true of its analogue. Such comparisons are made in a variety
of ways, some via rigorous algorithms, other by manual means, and other by a
combination of these two extremes. The most established technique for sequence
comparison is dynamic programming. It is useful for the basic problems as well
as for their variations, where it is often used together with suffix trees, a kind of
inverted index of a sequence. In our talk we review dynamic programming and
suffix trees from the viewpoint of functional programming. Using programming
with unknowns we describe an implementation of dynamic programming in a
lazy functional language. Using higher order functions we show how to unify the
concept of suffix trees, which come in various flavours — with different degrees of
compactness, auxiliary information to help with their construction, and specific

14

annotation according to their intended use. We describe a new, "lazy” suffix
tree construction, which is much simpler and even faster than the well-known
constructions. A main goal of the talk is to show that our functional implemen-
tation of dynamic programming and the lazy suffix tree construction can serve
as the building blocks of a system, that solves a variety of sequence comparison
problems.

Advanced Development of Systems Software

Peter Lee with Robert Harper, Carnegie Mellon University

The long-term objectives of the Carnegie Mellon Fox Project are to improve
the design and construction of systems software and to further the development
of advanced programming languages. We have been using an extension of the
Standard ML programming language in the design and construction of systems
software, in particular a suite of network communications protocols. Many of
the key aspects of the design of the implementation are taken from the x-kernel
system, which find natural expression in the functional-programming paradigm,
especially in the types and the use of higher-order functions and continuations.
The modules system is especially useful for structuring the layering of protocols
and providing a useful framework for conditional compilation and testing. Cur-
rent performance figures, while not yet competitive with implementations in C,
are quite encouraging and are expected to improve dramatically. This Project
involves several faculty members and spans a wide range of research areas, from
experimental development of systems software to advanced compiler development
to language design.

Rational Drug Design in Sisal '90

Patrick J. Miller, University of California, Lawrence Livermore National Lab.

Sisal ’90 is a general purpose, applicative language targeted at developers of large,
scientific codes. Its semantics are completely functional so determinate behavior
is guarantied. The language is built around features common to many scientific
codes: arrays, if-then-else’s, and loops. We have successfully implemented many
scientific kernels in Sisal. Their runtime performance is often better than paral-
lelized, vectorized FORTRAN. The efficiency develops from the careful choice of
Sisal language features, aggressive optimizations, and copy eliminations. We will
discuss our experiences developing a rational drug design code (RDD) in Sisal
’90. The RDD’s kernel iterates over a force computation. The force computations
can be done in parallel, but the forces must then be accumulated in a histogram
— a traditionally tricky problem for functional languages. Sisal '90 offers new
features that help solve this and other problems for scientific code developers.

15

LOLITA: A natural language processing system written in Haskell
Rick Morgan, Computer Science Labs. (SECS), Durham

The LOLITA system is a state of the art natural language engineering sys-
tem, able to grammatically parse, semantically and pragmatically analyse, reason
about and answer queries on normal complex English texts such as articles from
the financial pages of quality newspapers.

It is written in Haskell and currently stands at over 35,000 lines of source code
(excluding comments). The semantic network, which is the systems central data
structure, contains over 30,000 nodes (soon to be increased to over 120,000),
allowing more than 100,000 inflected word forms. It presently runs on a Sparc
workstation with a minimum of 40MB of real memory.

The system is especially intersting from a software engineering point of view, since
its specification and design are continually evolving as new ideas and algorithms
from the natural language field are added to the system. This process has been
greatly assisted by the use of a lazy functional language, sometimes in rather
surprising ways.

One example of this is in the implementation of the semantic network. Its func-
tional implementation and the need to refer to it explicitly rather than as an
implicit part of the state was initially seen as a serious disadvantage. Much to
our surprise, these have turned out to be very useful when dealing with multiple
interpretations of text, since we can produce a different version of the seman-
tic network for each interpretation. The functional implementation ensures that
very little of the structure is duplicated and the explicit references to the seman-
tic network ensure that there is no difficulty in deciding which version to use at
any point.

Another interesting feature of our implementation is its use of lazy evaluation.
Although some of the major analysis phases of the system are contained in quite
separate modules, some of the later phases effectively control the amount of work
done by the earlier phases. For example the parser produces a data structure
which contains many possible parses. The semantic analysis will pick the first
of these and if this is successful the parser will not have to do any of the work
associated with producing the other parses. Alternatively, some later analysis
phase may reject the output of the semantic analysis and this may have no
alternative but to look for another acceptable parse, in which case the parser
will then have to do more work to produce the details of other alternatives.
In this way lazy evaluation has allowed us to separate the generation of data
structures such as parse tree alternatives from the decision of how much of the
data structure is actually required. This separation has been achieved without
any need for explicit passing of control back and fourth between analysis phases.

16

Hydra: Haskell as a Computer Hardware Description Language

John O’Donnell, University of Glasgow

Traditional circuit designers used schematic diagrams as their computer hardware
description language (CHDL). Most modern design uses the industry-standard
language VHDL, and some academic research is based on formal systems like
HOL and Ruby.

Hydra is an alternative approach: it uses Haskell as a CHDL, augmenting it
with a library of functions and types. This approach is sensible because a prac-
tical, full-blown programming language is required to support the wide ranging
requirements of circuit design, while a clean semantics, good type system and
equational reasoning make it much easier to design reliable circuits. Specific
benefits of Hydra include:

1. Readable specifications. Circuit specifications can be written using concisely
using notation close to ordinary boolean logic equations. A complete CPU
design requires only 2 or 3 pages, instead of the 200 or 300 required by
conventional methods.

2. Executable specifications. A circuit specification is a function from inputs
to outputs; it is executed by applying it to suitable inputs.

3. Equational reasoning. It is quite feasible to derive difficult circuits from
simple specifications, providing both a correctness proof and an explanation
of how the circuit works.

4. Circuit patterns. Higher order functions provide a way to express common
patterns of circuits. Two families of functions (the linear combining forms
and the tree combining forms) suffice for processor architecture design.

5. Signal representations. Several different kinds of circuit simulation are re-
quired from time to time, as well as various analyses. These can be achieved
by using Haskell type classes to provide a class of Signal representations.

The constraints of working in a pure functional language cause several interesting
technical problems, including:

1. Running clock signals through combinational logic. Although poor style,
this trick was common in the 1960s, so it’s still taught by many engineers.
It is possible but ugly to express it with Haskell.

2. Asynchronous circuits. Hydra operates at a higher level of abstraction,
making it awkward to deal with multiple clocks.

3. Graph traversal for netlist generation. Traversing circular graphs is tricky
in a pure language, but there are several approaches for doing it.

17

High Performance Fortran: an opportunity for functional
programming?

Rex Page, University of Oklahoma

Organizations that do scientific computation have invested heavily in Fortran
software and training. Advocates of functional programming can take advantage
of the inertia that this investment engenders by building compilers that generate
efficient code for programs written with a functional subset of the ISO standard
for Fortran (Fortran 90) and by writing, in Fortran 90, kernels and library com-
ponents for important applications that demonstrate how to use the functional
subset effectively.

This presentation discusses a subset of Fortran 90 that supports functional pro-
gramming and compares it to other functional programming languages. It also
explains that now is a crucial period because the High Performance Fortran Fo-
rum, a group that developed in 1993 a collection of extensions to Fortran 90
to deal with data distribution on distributed memory computers, will develop in
1994 further extensions to Fortran 90 to deal with parallel tasks. The Forum seeks
proposals for these extensions and convincing demonstrations that proposed ex-
tensions address the problem of irregular parallel computation (i.e., computation
outside the realm of data parallelism) adequately.

A collection of kernels written in a functional style for a variety of important ap-
plications could demonstrate that the type of hierarchical multitasking available
in functional programs via parallel evaluation of operands/arguments in expres-
sions, possibly augmented by some sort of mechanism for controlling parallelism
in a way that is reasonably compatible with functional programming, provides
adequate expressive power to satisfy the needs of high performance, scientific
computing. Such a demonstration might dissuade the Forum from adding to
HPF less disciplined multitasking facilities, such as message passing primitives.
Success in this endeavor could encourage the emergence of functional style in
Fortran software development for parallel computers.

Discrete Event Simulation via Functional Programming
Werner Pohlmann, TU Minchen

Discrete event simulation is a computational technique for the quasi- empirical
study of systems whose behavior may be characterized by events (state changes
at irregular isolated points in continuous time); one wants to learn what hap-
pens when and ultimately get derived figures like system throughput etc.. In this
field, a program in a procedural language with built-in simulation mechanism (cf
Simula) traditionally is the only formal account of the model in question, and evo-
lution of methods has focussed on userfriendliness, technical support and power

18

rather than model development. We want to define models abstractly, with the
simulation mechanism factored out and with semantics that are easy enough to
encourage and support formal reasoning in model conception, variant formation
etc.. This should be useful in the initial phase of major simulation projects and
especially help to develop models for the new possibilities of distributed simula-
tion.

We use functional programming (through Haskell) in the obvious way. Model
components are described by functions that process streams of what -when data
and are combined into systems of equations that define the behavior of the real
system under study. As an application, we have redefined the simulation-related
parts of the RESQ package in this style. (RESQ is a classic software tool for
queueing network and especially computer system performance studies, which
actually form the context of our present research.)

Such model definitions are fine as specifications, but their use as executable pro-
grams typically requires semantic strengthening. Discrete event simulation mod-
els are concerned with points of time when something happens, but the dynamics
of the real system may rely on non-occurrence of events for some interval (a lcfs
server e.g. may advance a customer only after exclusion of any intervening job).
Our Haskell definitions, therefore, may on execution fail to cover the complete
time axis (viz will give the least fixed point instead of the maximal, which,
under natural assumptions about the modelled system, uniquely exists and can
be computed). This difficulty is related to the deadlock problem in distributed
simulation, and we can borrow from solutions found there. The ”conservative”
strategy relies on additional no-event messages which exploit the lookahead ca-
pacity of some model components. This is basically simple but requires insight
and careful tuning to avoid a deluge of additional data and processing. The
”optimistic” strategy identifies the next due event as the earliest one in a set of
tentative events deduced under the assumption of no further events. This gives
a kind of relaxation algorithm for stream equations. At present we are exploring
this idea. Future plans include the definition of experimental frames or testing
the approach for other application areas.

Functional Programming Applied To Numerical Problems

J.A.Sharp, University of Swansea

As part of the Functional Languages Applied to Realistic Exemplars (FLARE)
Project in the UK the group at Swansea has developed a computational fluid
dynamics (CFD) exemplar in Haskell. A sequential version of a Taylor-Galerkin/
pressure correction algorithm has been recoded in Haskell. This algorithm is
used to solve incompressible fluid flow problems described by the Navier-Stokes
equations. It was originally implemented in Fortran and used extensively by the
CFD research group in the Department of Computer Science at Swansea. It

19

involves solving large sparse systems of linear equations.

The Navier-Stokes equations are first semi-discretised in time, and then subse-
quently solved in space for each such interval. The spatial domain over which the
solution is desired is triangulated in 2D into a finite element mesh. As a result,
the fluid dynamics problems are transformed into a set of four fully-discretised
matrix equations on each time step. These system matrices are large, banded
and symmetric and the equations are solved by employing Jacobi iteration and
Choleski direct methods.

In this project, various implementation issues in a functional environment have
been investigated. They cover data structure issues, such as the implementation
and performance of a generalised envelope storage scheme for Choleski decompo-
sition, code parallelisation on a GRIP MIMD platform and the use of a Quadtree
data structure for Choleski factor storage. We are currently utilising program-
ming tools provided by the University of York as part of their contribution to
the FLARE project. These tools help the development of the parallel code and
further work on code optimisation.

A reasonably efficient Haskell sequential implementation has been obtained. Our
application experience confirms many commonly recognised advantages of func-
tional programming including the expressiveness and ease of maintenance. How-
ever, some problems have been encountered as well. For example, in this numer-
ical application, lazy evaluation has not been found to be advantageous. Forced
evaluation has been used in various places to make the solution of larger prob-
lems possible. Also, a time and space efficient implementation of Haskell arrays
is needed. More details about the lessons learned can be found in, and in a
forthcoming book summarising the work of the FLARE project.

Our current interests are in the development of parallel implementations of nu-
merical algorithms in Haskell. Some experiences of using a quasi-parallel compiler
developed at York will be reported. This tool has been found to be very useful.
We demonstrate salient features of the functional approach such as the relative
simplicity for parallelisation and suitability as a prototyping tool. We have also
found lazy evaluation to be necessary in some code sections for efficient parallel
evaluation.

As part of this work we plan to develop a system to execute a Haskell program
in parallel on a network of workstations. We also aim to expand the range of nu-
merical applications we have experience of and to this end we have been awarded
a Science and Engineering Research Council (SERC) grant in conjunction with
the Civil Engineering Department at Swansea to investigate ” Distributed Parallel
Processing for Computational Fluid Dynamics”.

20

Towards Software Tools in Haskell

Peter Thiemann, Universitat Tibingen

In order to increase the acceptance of lazy functional programming languages it is
necessary to present efficient implementations for typical programming problems.
We discuss the design and implementation of several software tools and a medium-
scale real-life application in Haskell: an m4-like macro processor, the grep/fgrep
utility, and a tool to automatically create railroad diagrams from EBNF syntax
descriptions.

Declarative Real-Time Systems
Staffan Truve, Carlstedt Elektronik AB

Carlstedt Elektronik in Sweden are developing a functional language and an ar-
chitecture for embedded real-time systems. The talk gives an overview of the
language, concentrating on the I/O-model, and describes an architecture sup-
porting parallel evaluation of the language.

Implementing Tools by Algebraic Specification
Pum H.R.Walters, CWI, Amsterdam

ASF2C is a compiler which translates algebraic specifications (ASF) into (ANSI)
C. An ASF specification consists of a set of conditional rewrite rules, where
conditions are (in)equalities of terms. The definition of a function consists of the
set of rules pertaining to that function. There is no constructor discipline.

ASF is a sublanguage of ASF+SDF, which allows the definition of arbitrary
(context free) syntax for terms, and supports a module concept. ASF+SDF
specifications are commonly developed using the ASF+SDF meta-environment,
which provides syntax-aware editors, an interpreter and other development tools.

The version of ASF2C described here is the first stable prototype. It has taken
8 man-months to develop, and it is entirely implemented in ASF. The compiler
is self-compiling.

Tools made with ASF2C

e SEAL is a description language for the interface between generic editors and
other computational components. SEAL was developed to describe programming
environments generated with the ASF+SDF meta-environment. Size: 12000 lines
of ASF+SDF code, distributed over three components.

e The pretty-printer generator produces, given an (ASF+)SDF specification, a
pretty printer (implemented in ASF+SDF) for the language described by the
source. Size: 4300 lines.

21

o ASF2C itself was of course also implemented using ASF2C. It was developed
using the ASF+SDF meta environment, and was subsequently bootstrapped.
Size: 3000 lines.

e fSDL is an extensible language for parameterized datastructure descriptions
(which are translated into libraries with C code). A functionally complete proto-
type (size: 4000 lines) was satisfactory, but subsequent upscaling in an industrial
project failed.

Major identified shortcomings

e The output of ASF2C is generally a large piece of C code which needs to
be translated further (by a C compiler) before it can be used. This latter stage
typically requires 90% of the overall time, and often requires more resources (time
and memory) than available.

e Currently, the code generated by ASF2C does not support garbage collection.
For small to medium sized applications this is not an issue, since calculations are
finished before memory is exhausted.

e The recursive, purely functional method of specification in ASF+SDF has a very
influential bad side-effect: recursive construction of a flat list implies quadratic
memory consumption in the listsize.

Erlang - A Functional Programming Language for Developing
Real-Time Products

Mike Williams, Erlang Systems Division, Ericsson Infocom

Software development is by far the largest part of the design costs for Ericsson’s
products. A single AXE-10 telephone exchange, for example, has on average
software corresponding to 62 million lines of source code in C, C++, EriPascal
and PLEX. Reducing the cost of software design, improving quality (fewer bugs)
and cutting time to market are thus of paramount importance.

Using a programming technology which results in smaller and more understand-
able programs would improve the situation. A functional language is an obvious
alternative.

We have designed the functional programming language "Erlang’ for this purpose.
Using Erlang as the implementation language in several real-time system products
has resulted in considerable reduction both in the size of programs and in the
work required for software design.

22

