
Reinhard Keil-Slawik (Ed.)

Position Papers for Dagstuhl Seminar 9348 on

Interdisciplinary Foundations of
System Design and Evaluation

September 19 - 23, 1994

organized by

Liam Bannon, Reinhard Keil-Slawik and Ina Wagner

Preface
In systems development, interdisciplinary cooperation among scientists coming from various
disciplines has been proposed for a long time now, but still seems to be rarely accomplished or
succesfully exercised in real world projects. There are, of course, outstanding examples, but so
far interdisciplinarity has not become a matter of everyday practice. Sometimes, quite the
opposite seems to be true, especially if we look at the curricula at our universities or if we
examine the everyday situation of software developers.

On the other hand, a wealth of knowledge and experience has been gathered within diverse
scientific communities, knowledge that is largely tacit, but nevertheless provides a rich
background for mutual understanding. Besides the pleasant atmosphere and the excellent
organisational framework provided by the people from Dagstuhl Castle this tacit knowledge
and common experience contributed largely to the success of this seminar.

However, there is no way to capture the spirit and condense atmoshere of the discussions or
cover the many constructive ideas and insights by assembling a number of abstracts, especially
since many of the sessions were re-organized according to the interest of the participants and
the situation at hand. Thus, what is normally regarded as a hindrance to interdisciplinary
collaboration, namely, the variety and diversity of individual perspectives and professional
backgrounds, became a source for an enlightening and stimulating discourse. Consequently, it
was not the exchange of ideas, results, or position statements which made this seminar an
outstanding accomplishment in the view of most participants, but the fact that mutual
understanding and cooperative learning took place.

This learning process can hardly be conveyed to others by means of written documentation.
Hence, the participants were asked to provide any material for this booklet which would help
others to understand the individual work accomplished and its background, and which might
provide a piece to the overall mosaic of interdisciplinary foundations of systems design and
evaluation in general. As a result the nature, length and style of the individual contributions
reflect the diversity we have also experienced during the seminar.

The report starts with documenting the original invitation that was sent to the participants to
highlight our starting point. All other contributions then follow in alphabetical order.

Finally, I would like to thank Nina Graf for her enormous effort to help me with the technical
side of the editing process. She did a wonderful job in administering the contributions,
converting different formats on different technical platforms and putting it all together in a
readable form.

Paderborn, September 1995

Reinhard Keil-Slawik

i

Contents

Invitation to a Dagstuhl Seminar.. 1
Liam Bannon, Reinhard Keil-Slawik, Ina Wagner

Some Remarks about the Validation of Information Systems Development 3
Urs Andelfinger

Problems of Interdisciplinarity ... 8
Liam J. Bannon

Multi-Disciplinarity and Inter-Disciplinarity in System Design.. 9
Tone Bratteteig

On the Importance of Everyday Design... 11
Andrew Clement

Computers & Society: An Emerging New Discipline ... 12
Reinhard Keil-Slawik

An Emerging Design Approach .. 15
Finn Kensing

Interdisciplinarity and System Design for Post-Fordist Work .. 23
Kari Kuutti

Software-Ergonomics – An Interdisciplinary Subfield of Informatics 29
Susanne Maass

Metaphorical Design .. 30
Kim Halskov Madsen

The Technical = the Non-Technical.. 32
Eric Monteiro

Traditions for Information Systems Development 34
Torbjørn Naslund

Dialogical Software Design.. 36
Jürgen Pasch

A Technique to Help Overcome Communication Barriers.. 39
G. Blain, N. Revault, J-F. Perrot, H. Sahraoui

Living the Gap .. 41
Jörg Pflüger

Some Remarks about Formal and Informal Specification Methods
in the Context of Software Development.. 42
Matthias Rauterberg

ii

Social Dimensions... 46
Mike Robinson

Empirical Analysis of Software Design Processes:
One Approach to Interdisciplinarity .. 48
Sabine Sonnentag

Evaluation of Computerized Work
Recent Problems in Cognitive Ergonomics.. 49
Chris Stary

Design Methods and their Use – A Question of Rationality Resonance?" 50
Erik Stolterman

Position Statement for the Dagstuhl Seminar on Multidisciplinary Design 50
Lucy Suchman

Position Paper for the Dagstuhl Seminar on
"Interdisciplinary Foundations of Systems Design and Evaluation" 51
Ina Wagner

iii

1

Invitation to the Dagstuhl Seminar on:
"Interdisciplinary Foundations

of Systems Design & Evaluation"

Liam Bannon
Reinhard Keil-Slawik

Ina Wagner

At the end of the 1960's, a new discipline began to emerge within the computer science
community, namely software engineering, which had as its focus the conceptual and empirical
study of software and thesoftware design process and how it could be supported by methods
andtools. Much of the work in this field has tended to focus on thestructural and technical
properties of programs and associated documents rather than on process aspects.

However, from the very beginning, notions such as "computing as a social activity", "the
psychology of programming", "programming as theory building", "collective resource
approach" or "process-oriented approach to software development" gave notice of research
attempts that took the embedding of tools, methods and techniques into human activities as
their starting point. Today, we are confronted with a wealth of theoretical reflections on the
design process and there is a growing number of empirical studies and observations trying to
unveil the idiosyncrasies underlying the processes of development and use of computer-related
artifacts such as software systems, programming languages, development tools and
methodologies.

Since software embodies a variety of claims and assumptions about the context and the
nature of the problems to be solved by intro duction of the system at the workplace, the
properties describing the relations between software and the usage context cannot be simply
expressed in terms of formalisms. Too many mutually influential factors have to be taken into
account. The nature of the problem as it is perceived by the designers changes with every new
insight, and very often incompatible requirements lead to "design conflicts" that have to be
resolved.

Generally, it can be said that in any practical design process the designers encounter design
conflicts, i.e. they have to decide to what degree should/can certain requirements and demands
be fulfilled at the expense of others? Such conflicts can be expressed in a variety of forms, such
as: rigidity vs. flexibility, completeness vs. openness, controllability vs. individual autonomy,
formality vs. understandability, etc.

Design conflicts stem from the fact that universality always competes with the
`appropriateness of the specific'. The crucial point is that design conflicts are empirical
problems. They cannot be resolved with reference to the mathematical or technical properties
of the artifact to be designed. And as such, they may require an interdisciplinary approach.

Surprisingly often, research within computer science is still conducted in a non-
interdisciplinary fashion and interdisciplinary work is not very well integrated into computer
science curricula. Thus, scientific relations across disciplinary boundaries as well as across the
various scientific communities of a discipline still need to be improved and intensified.

This issue of interdisciplinarity becomes more acute as the range of disciplines seen to be
relevant to an understanding of the software engineering process becomes larger. Recently

2

disciplines such as work psychology and ethnomethodology, for instance, have entered the field
with different research strategies and theoretical frameworks. In addition, different scientific
schools have emerged over a period of years within specific research traditions. Finally, with
the creation of new scientific communities such as HCI (Human-Computer Interaction) or
CSCW (Computer Supported Cooperative Work), which take an inherently interdisciplinary
approach towards the design of interactive systems, the need for a broader interdisciplinary
understanding of the design process became widely acknowledged.

The aim of the seminar is to bring together outstanding researchers and young scholars to

• assess the state of the art, esp. the degree of interdisciplinarity accomplished,

• reflect on design practice with special emphasis on what has been learnt in the past,

• discuss theoretical foundations, i.e., whether or to what extent specific frameworks may
provide an adequate platform to integrate knowledge about design,

• evaluate methods, tools, and guidelines,

• propose future research strategies and curricular changes.

Since the above mentioned topics comprise a vast variety of different aspects ranging from the
social organisation of system development processes to the effective utilisation of tools and
techniques for software development it may be advisable to identify certain topics or problems
on which to focus. A tentative list may include:

• Where are the boundaries between different disciplines to be drawn (limits of
competencies, interdisciplinary division of labour)?

• Do we need a special educational programme or what should be changed in the
traditional computer science curricula?

• How can the division between engineers (constructing) and social scientists (evaluating)
be bridged on a methodological level?

• Are there theoretical frameworks which can serve as a common frame of reference for
productive interdisciplinary cooperation?

• What are the key issues for interdisciplinary research for the next decade?

The long term goal of the seminar is to further interdisciplinary cooperation. Interdisciplinary
work provides a key stimulus for new and innovative approaches to systems development and
it may help to create the multitude of perspectives and approaches which is needed to cope with
the complexity of the problems at hand.

3

Some Remarks about the Validation of Information
Systems Development

Urs Andelfinger

Introduction

Validation of information systems development can be understood as a communicative process
of assessing an information system with respect to the needs and requirements of the real-world
situation it is supposed to interact with. In my opinion, validation therefore plays a central role
in legitimatizing information systems development. In the following I will draw in outline some
remarks about conceptual and methodological foundations of validating information systems.
In my opinion, it is important to keep in mind that validation requires an interdisciplinary
approach which could well be one reason why concepts of validation still are not equally well
developed in computer science as for example formal approaches of program verification.

Validation and Verification

As starting point, I will use validation and verification in the almost classical sense of Boehm's
definition that he gave in his paper on the verification and validation of software requirements
and design specifications (Boehm:84). Boehm defines and distinguishes these two activities
informally as follows:

•Verification is concerned with the question: Am I building theproduct right? This means,
that verification essentially determines whether or not the product under construction
meets some already known or otherwise given requirements. On the other hand, the
relevance of these requirements for the underlying problem or situation is not the main
issue of verification. So, verification is essentially a formal activity.

•Validation is concerned with the question: Am I building the right product? This means,
that validation essentially determines whether or not the product under construction
meets the requirements of the underlying problem or situation. The main issue of
validation is therefore to determine and to evaluate the links between the situation at
hand and the product that is supposed to offer a solution to some problematic aspects of
this situation. So, validation is essentially a human activity that involves assessment
with respect to some concrete situation.

In this sense, validation of information systems is concerned with their evaluation with respect
to the given (real-world) situation. Validation therefore implies human assessment that cannot
completely be formalized or made explicit, but instead always relies on some implicit
constituent and some practical real-world background.

A Classification Scheme of Information Systems and their Evaluation

In response to the increasing need for effective software development in the sense of being
adequate, reliable and valid for the problems to be tackled, Lehman proposes a classification
scheme for computer programs, that increasingly takes into account the embedding of programs
into the surrounding real-world situation (Lehman:80). From his classification scheme Lehman

4

then derives some important consequences for the verification and validation of computer
programs. In my opinion this approach seems useful to further clarify the scope and the claim
of the validation of information systems development.

Lehman calls the first category of computer programs S-Programs. Their function is formally
defined by and derivable from a specification. The relationship of both the specification and the
program to the external world "is a casual, noncausal relationship" (Lehman:80, p. 1061).
Correctness is the appropriate criterion to judge S-Programs, the proof of the correctness is
called verification. Verification is fundamentally limited to the proof, that there is a
mathematically sound correspondence between the specification and the program.

The second category of computer programs is called P-Programs. The problem statement
underlying P-Programs must be understood as "an abstraction of a real-world situation,
containing uncertainties, unknown, arbitrary criteria, continuous variables. ... Both the problem
statement and its solution approximate the real-world situation" (Lehman:80, p. 1062). The
problem statements of P-Programs are thus definable only partly with respect to the real-world
situation they are supposed to interact with.

The third category of computer programs is called E-Programs. E-Programs are supposed to
"mechanize a human or societal activity ... The program has become a part of the world it
models, it is embedded in it" (Lehman:80, p. 1062). E-Programs are thus continually subject to
evolution and change: "The pressure for change is built in" (Lehman:80, p. 1063).

To judge P- and E-Progams as a whole, it is not appropriate to demonstrate the
mathematically sound equivalence between problem statement or specification and the
program:

1. The problem statement itself is an abstraction and hence a reduction of the real-world
situation at hand. The basis for any attempt to verify P- and E-Programs as a whole
therefore has to be considered as being inherently fuzzy, which fundamentally restricts
the practical relevance of the result of such an attempt: "a program may be formally
correct but useless" (Lehman:80, p. 1064).

2. The relationship between the program and the real-world problemd is or should be at
least a systematic or causal one. Therefore, the problem statement itself is subject to
continous change or evolution because of the intrinsic dynamic of the underlying real-
world problem as opposed to the static nature of formal specification and verification.

Absolute correctness as a whole is thus not the issue with P- and E-Programs, even if parts of
them can and should be proved to be correct. Instead, the appropriate criteria to judge those
programs is their "value and validity of the solution obtained in its real-world context"
(Lehman:80, p. 1062). Therefore, "validity depends on human assessment of their effectiveness
in the intended application" (Lehman:80, p. 1062). For example, Lehman categorizes operating
systems as a whole as E-Programs, even if they are still on a level quite close to formal
definability. This does not exclude, that some parts of operating systems can and have to be
verified formally in order to get them reliable and safe. But the evaluation of an operating
system as a whole necessarily involves the validation of its usability and its relevance with
respect to the situation at hand. In my opinion, Lehman's categorization amounts to
the consequence, that for most information systems developments as a whole the appropriate
means of evaluation is validation instead of verification (see also e.g. Colburn:93).

5

Validation as Process and Product of Human Assessment

Information systems development can be seen at least under two perspectives, as suggested for
example by Floyd and Andersen et al. (Floyd:87, Andersen:90). In the product-oriented
perspective, which is predominant in classical software engineering, information systems
development is mainly seen as a production process with the information system "as a product
standing on its own, consisting of a set of programs" (Floyd:87, p. 194). The context of usage
is considered as given and in a certain sense as static throughout the Development Process. This
attitude is e.g. reflected in the widespread belief in software engineering that software
requirements can be fixed in a consistent way in the very beginning of program development.

In the process-oriented perspective, information systems development is mainly seen "in
connection with human learning, work and communication, taking place in an evolving world
with changing needs" (Floyd:87, p. 194, ref. also Nygaard:86). Floyd and Anderesen et al.
therefore suggest, that information systems development has to be seen simultaneously as an
ongoing process of social interaction and negotiation and as a product-oriented activity. The two
perspectives are mutually complementary in order to "find ways to a more human-oriented
technology" (Floyd:87, p. 207).

Validation of information systems development can take advantage of this dualistic
perspective on program development. On the one hand, validation has to evaluate an
Information System as a product and will itself produce such a finding as its result. But these
results can only be understood adquately if the process that led to the results is also included in
the conception of validation. Thus, validation of information systems development is best
conceptualized as being both, a product and a process of human judgement and assessment.

The Political Content of Validation

Validation as sketched in the paragraphs above can be seen essentially as a process of social
interaction, negotiation and assessment. This means, that validation has intrinsically a political
content in the sense that a.) it has to cope with individual perspectives on real-world situations,
b.) it has to identify and to consider potentially diverging social interests and c.) it raises ethical
values. Validation hence implies "dealing with conflicts and contradictions" (Floyd:87, p. 208)
because it deals with real-world situations.

Politically relevant are for example the choices and decisions defining

a) the kind and range of topics that are taken into consideration by the validation, i.e. the
definition of the relevant frame of reference and

b) the individuals or social (interest) groups who will be participating in the validation.

As an important consequence of the choices made in a.) and b.), these decisions also determine
what aspects and whose interests of the real-world situation will be neglected or excluded by
the validation.

Another political aspect is the choice of the means or procedures that are admissible in the
validation process. For example, this can be a discourse among selected representatives of the
information systems development process or it can be the use of some prototyping techniques.
In my opinion, validation is necessarily dependent on some discursive elements, because the
task to evaluate an information system always requires some reflection on e.g. how well are the
requirements and social interests met, which and whose are not or to what degree and why. This
does not mean, that validation can abstract completely from practice, it is rather meant as a

6

mutually complementary relation. So, discursive elements are in my opinion a necessary
constituent for validation, even if they solely can never be a sufficient condition of validation.

Conclusion

Validation of information systems development inevitably involves political aspects. In my
opinion, this amounts to the central challenge for the validation of information systems
development: On the one hand we know that reality and the development of Information
Systems can be perceived and assessed in many mutually conflicting or competing ways. On
the other hand, information systems development and its subsequent use in organizations
require that we have to come to judgements, to decisions and to action, at least in a preliminary
sense. There are propositions, approaches and techniques in computer science that attack
specific aspects of this situation:

Some approaches explicitly take their starting point in the inherently ambiguous real-world
setting. Instead of seeking to come to an artificially purified uniform world-view they
acknowledge the existence of multiple perspectives and interests and try to exploit this situation.
Bratteteig et al. for example propose a dialectical approach in Systems Development, that tries
to turn the underlying competing socio-political interests and conflicts which are inherent in
information systems development into a driving force in the development process
(Bratteteig:94).

Other approaches try to come to a settlement of conflicting social interests and social groups
by explicit means of discourse. Lyytinen and Klein for example propose the application of the
critical theory of Juergen Habermas to arrive at a mutually shared consensus on the planned
information systems development (Lyytinen:85). In my opinion, this approach is especially
important with respect to the claim of validation because it offers four criteria of validity that
have to be observed if legitimate information systems development shall be arrived at. The four
claims of validity postulated by Habermas are: "Comprehensibility (clarity), truthfulness
(veracity), sincerity (correctness vis-a-vis a speaker's intentions), and rightness with respect to
norms. ... If an IS scores well on all four criteria, it would be considered legitimate by the
potential users" (Lyytinen:88, pp. 22, 28) The problem with this approach is, that Habermas
"provides no systematic procedure to assist this reflection" (Lyytinen:85, p. 230).

In my opinion, validation of information systems development therefore is best conceived of
as a combination of dialectical and of consensus-oriented approaches. The combination would
consist on the one hand of enriching Habermas' notion of Communicative Action with a sort of
allowing some dissens among the participants, in order to allow for the practical need to act,
even if there are still disputes to be settled. On the other hand the dialectical attitude would allow
for explicitly keeping in mind these conflicting assumptions and interests. Finally, in order to
really exploit the dynamic potential of dialectics and the legitimatizing potential of discursive
validation, validation as a whole should be understood in an evolutionary and iterative way that
remains equally susceptible to Habermas' four claims of validity, to the unsettled disputes of
above and to new emerging practical experiences or requirements.

Comprehensive concepts of validation are still beyond widespread practical use. Currently,
we are investigating conceptual and methodological foundations as sketched above. There still
remain some complicated questions to be solved, e.g. how far do we have to go towards a shared
understanding before taking action, or e.g. how strong must be the violation of one of the four
claims before the system has to be modified. Finally, what is the relationship between
reflection-orientied constituents of validation such as discursive elements and its

7

complementary practical constituents and experiences. We hope that our research eventually
contributes to a better understanding of how valid and legitimate information systems
development can be best assisted.

References

Andersen:90: Niels E. Andersen, Finn Kensing et al.:Professional Systems Development -
Experience, Ideas and Action.Prentice Hall, New York, London, Toronto, 1990.

Boehm:84: Barry W. Boehm: Verifying and Validating Software Requirements and Design
Specifications.IEEE-Software, Vol. 1, No. 1, January 1984, pp. 75-88.

Bratteteig:94: Tone Bratteteig, Leikny Agrim: Dialectics-Structured Handling of Problem
Situations in System Development. In: W. R. J. Baets (eds.):Proc. of the Second
European Conference on Information Systems, Nijenrode University, Breukelen, 1994.

Colburn:93: Timothy R. Colburn, James H. Fetzer, Terry L. Rankin (eds.):Program
Verification - Fundamental Issues in Computer Science. Kluwer Academic Publishers,
Dordrecht, Boston, London, 1993.

Floyd:87: Christiane Floyd: Outline of a Paradigm Change in Software Engineering. In: Gro
Bjerknes, Pelle Ehn, Morten Kyng (eds.):Computers and Democracy - A Scandinavian
Challenge. Avebury, Aldershot, 1987, pp. 191-212.

Lehman:80: Meir M. Lehman: Programs, Life Cycles, and Laws of Software Evolution. Proc.
IEEE, Vol. 68, No. 9, September 1980, pp. 1060-1076.

Lyytinen:85: Kalle Lyytinen, Heinz Klein: The Critical Theory of Juergen Habermas as a Basis
for a Theory of Information Systems. In: Enid Mumford et al. (eds.):Research Methods
in Information Systems, Proc. of the IFIP-WG 8.2. Colloquium, 1-3 September 1984,
North Holland, Amsterdam, 1985, pp. 219-236.

Lyytinen:88: Kalle Lyytinen, Rudy Hirschheim: Information Systems as Rational Discourse:
An Application of Habermas' Theory of Communicative Action. Scand. J. Mgmt., Vol. 4,
No. 1/2, 1988, pp. 19-30.

Nygaard:86: Kristen Nygaard: Program Development as a Social Activity. In: Hans-Juergen
Kugler (ed.):Information Processing '86. Proceedings of the IFIP 10th World Computer
Congress, North-Holland, Amsterdam, 1986, pp. 189-198.

8

Problems of Interdisciplinarity

Liam J. Bannon

For a number of years, I have been concerned with the relation between theory and practice in
computer systems design, and with the adequacy of the conceptual frameworks that we bring to
bear on issues in this field. Starting from a base in cognitive science-inspired HCI work, I have
been gradually expanding my focus of concern, going beyond the human-computer dyad to
larger ensembles of people working together, and investigating their needs for support in the
area of production and communication. What artifacts, tools, methods and media are needed to
support people in their work activities and in their communications? How do we ”scientifically”
investigate the work? It is apparent that the traditional disciplinary division of labour evident in
research investigations does not necessarily provide the the most useful set of questions, from
the point of view of practitioners. The complexity of the actual work processes is often ”tuned
out” as particular research approaches narrow their focus in order to define what is an
appropriate unit of analysis e.g. ”task”, ”act”, ”activity”, etc.

Likewise there is some confusion over what kinds of research methods are appropriate for
this domain. The classical formal experimental manipulation has been shown to be of limited
utility, as what matters in the real world is often not whether some factor makes a difference or
not, but what size of difference does it make? Also, the attempt to control conditions often
results in an experimental situation that bears little resemblance to real work settings. This has
lead to a rush towards various kinds of field studies, in an attempt to hold in the richness of the
work setting, but this also has lead to many studies where the observations are presented as a
fait accompli, with little or no conceptual underpinning.

In the area of requirements engineering and other aspects of systems analysis and design, we
have recently seen an increased interest in ”alternative” approaches to gathering information
from users, such as various forms of participatory practices, and the use of ethnographers to
describe the work practices of people. The number of research papers addressing how sociology
might contribute to systems design is at this stage, legion, yet the effect of this work on actual
practice seems limited. Indeed, perhaps all that is happening is the replacement of one research
group (cognitive psychologists) with another (sociologists), neither of whom seem to have
much to say to system designers!

Critiquing traditional narrow disciplinary approaches to the study of design does not
however address what should be done. The call for ”interdisciplinarity” may not achieve much,
unless the implications are spelled out in some detail. Undoubtedly design is a complex human
activity, often involving a number of people, and extending over long periods. The need for
multiple skills and frameworks for analysing and supporting the design process should be
obvious. To what extent true interdisciplinarity can be achieved is an open question, i.e., the
attempt to "wed" different disciplines together - for instance, by constructing common
dictionaries of terms and concepts which the different disciplines are supposed to utilise, or
making mappings across conceptual frameworks, thus attempting to ensure some "shared
understanding" among researchers. I have yet to see any exemplary projects that have both
argued for this approach and - more importantly - have produced worthwhile results, when
viewed from each of the participating disciplines.

At times, it appears that discussions of the need for interdisciplinarity revolves around the
utility of a variety of different instruments or methods for gathering data, but it is important to

9

note that a disciplinary perspective is not defined simply by the methods used. The recent
interest in ethnographic field studies in CSCW is a case in point. While anyone can rather
quickly become proficient at interviewing or taking notes, the essence of this approach lies in
the perspective one adopts in framing the research, the way one chooses to interpret the
findings, the authorities one invokes to support a particular interpretation, etc. - in sum, the
whole conceptual framework within which one's approach to the world is framed. Note that
the argument here is not that different disciplines are unable to contribute to a joint project, but
that the aim of building some form of theoretical base to subsume a variety of conceptual
frameworks from different disciplines implies a fundamental misunderstanding of different
disciplinary perspectives. These different positions emerge out of different backgrounds,
research traditions, perspectives, etc. which are not commensurable. For example, attempting
to build some form of hybrid unified framework to encompass an empirical functionalist
systems approach with an interpretivist constructivist approach seems doomed to failure, as the
issue is not simply over different meanings to terms, but relates to fundamentally different
World views. Certainly, theories can be broadened to include factors or circumstances
previously omitted but such extensions do not thereby subsume other theoretical frameworks.
That the quest for an interdisciplinary theory may be misguided does not therefore mean
however that various forms of interdisciplinarity cannot work. Certainly, the possibility of a
loose form of triangulation of research results through a variety of methods and techniques can
be a very promising approach. This does not entail any strict one-to-one mapping between
terms, but can allow for substantial overlap between ideas and frames of reference.

In the context of systems design and evaluation, it should be clear that there is plenty of scope
for interdisciplinary studies, and indeed over the past few years such studies are emerging. It is
my hope that at the Workshop we will discuss the problems and possibilities of such
approaches.

Multi-Disciplinarity and Inter-Disciplinarity
in System Design

Tone Bratteteig

System development includes continuous and planned development of computer based systems
within an organisational setting, involving both technical and social processes. System
development points to both construction and understanding: in order to construct a computer
system we need to understand the technology and its application area, and in order to make the
system useful we also need to construct parts of its social environment (eg, work tasks, user
training). The knowledge and skills—the disciplines—involved in system development should
be chosen with reference to what we construct and understand. Understanding technical matters
is different from understanding somebody's work or organisational culture. Constructing a
program is different from constructing a work procedure or a particular division of labour and
responsibilities—a power structure. A number of different disciplines are needed during all
stages of a system development process. The process can not be fully understood or evaluated
without relating the different stages, activities, and disciplines to each other.

10

System development involves several disciplines, disciplines that have their own histories,
theories, values and perspectives, methods, and languages. In discussions about multi-
disciplinarity several levels of disciplinary integration can be identified1:

• uni-disciplinarity: representatives of individual disciplines meet, but the meeting does
not affect their disciplinary identity at all.

• multi-disciplinarity: connects to team work in which cooperation with other team
members (disciplines) may result in insight that transcends the traditional disciplinary
border. This insight does not necessarily affect the original discipline.

• inter-disciplinarity: holds the perspective that the result can only be accomplished by a
truly interactive effort that includes contributions from all disciplines involved. Inter-
disciplinarity characterises the team and how the team develops a common foundation
by applying multiple disciplines to a common problem area over some time.

•trans-disciplinarity: assumes a team composed by representatives from several
disciplines. The process must be carried out as a joint effort, and roles and
responsibilities are shared by the team members. The expertise of individual team
members is recognised and used to train the other team members. Some view trans-
disciplinarity as an objective for inter-disciplinarity in science.

I see system development as a common terrain that can be (should be) interpreted and handled
by many disciplines, in different ways. This inter-disciplinary view emphasises the
interconnectedness of activities in system development, still appreciating the differences from
uni-disciplinary perspectives. Inter-disciplinarity presupposes the existence of individual
disciplines that have their own kernel of knowledge, values, perspectives, methods etc.
preserving their own foundation. In order to benefit from inter-disciplinarity, some degree of
difference between the disciplines is needed. This is particularly true for creative processes like
design2. Differences are the basis for creativity and action.

Trans-disciplinarity emphasises the conformity at the expense of the differences, and
presupposes equal rights and resources for all members of a team—which is not always the case
in system development. The complexity of system development suggests that both detailed,
specialised knowledge and a general overview are needed. Roles and responsibilities need to be
connected with the knowledge needed in order to understand the process. Responsibility
connects with power, and I think that several bases for power is needed in system development3.
Participants in system development do not only represent different knowledge bases, they also
represent particular sets of interests in the process and its outcome: the computer scientists
interests being different from the interests of management or any user group4.

The inter-disciplinarity of system development does not imply that the "discipline" of system
development should be inter-disciplinary. Inter-disciplinarity characterises the terrain of system
development rather than some fixed set of knowledge needed to move in the terrain. The terrain

1. Cf. eg, Bailey, D.B. jr. (1984): A Triaxial Model of Interdisciplinary Team and Group Process.
Exceptional Children, 51(1), pp. 17.25; Jantsch, E. (1980): Interdisciplinarity: dreams and reality.
Prospects, 10(3), pp. 304-312; Lauvås, K. & Lauvås, P. (1994):Interdisciplinary cooperation (in Nor-
wegian), TANO, Oslo

2.Buchanan, R. (1992): Wicked problems in design thinking,Design Issues, VIII(2), pp. 5-21
3. Cf. eg, Bjerknes, G. & Bratteteig, T. (1988): The Memoirs of Two Survivors: or the Evaluationof a

Computer System for Cooperative Work,Proceedings of the CSCW'88, ACM, pp. 167-177; Hales, M.
and O'Hara, P. (1993): Strengths and Weaknesses of Participation: Learning by Doing in Local
Government, in Green, E. et al, (eds):Gendered by Design?Taylor & Francis, London, pp. 153-172

11

may change—every system development process is unique in some ways. I would argue for a
multi-disciplinary approach to system development as an inter-disciplinary area of concern.

The need for a multi-disciplinary approach includes having roots in one discipline when
professionally addressing complex phenomena transcending the borders of any discipline (ie,
system development) in addition to having an openness to other perspectives grounded in other
disciplines. The uni-disciplinary root gives a basis for evaluation of the phenomenon (standards,
qualities, values etc), and for action (methods, tools). The multi-disciplinary approach includes
an openness to other ways of acting and evaluating, eg, when computer scientists meet their
users' professional standards for evaluating a particular computer system, as supplements to the
technical standards of the discipline of computer science. Multi-disciplinarity therefore
involves appreciation of other disciplines as a basis for mutual respect and for taking and giving
responsibility in a concrete collaborative effort.

On the Importance of Everyday Design

Andrew Clement

I propose exploring the notion that systems design and evaluation are endemic to everyday
(computerized) work. If we relax our preoccupation with design being principally concerned
with readily demonstrable artifacts produced by specialized designers or design processes, then
we may better see that design is going on all around us in many subtle and vital ways. The stable,
but shifting patterns of work life often arise from reflective and engaged activity of
practitioners. In overcoming obstacles and exploiting opportunities they creatively maintain
and change the world. This can be observed in the development of rhythms, sequences and
social connections within work practices, the rearrangement of tools, work objects and working
environments, and the customization of tools that are malleable or open to manipulation.
However, full achievement is hampered as much by the lack of legitimacy as by the
unsophistication of technique. Reclaiming the authority for everyone, individually and
collectively, to adapt the world to their needs, is a worthy interdisciplinary challenge.

4. Cf. eg, Bjerknes, G., Ehn, P., & Kyng, M. (eds) (1987):Computers and Democracy—a Scandinavian
Challenge Avebury, Aldershot; Schuler, D. & Namioka, A. (eds) (1993):Participatory Design. Prin-
ciples and Practices Lawrence Erlbaum Ass., Hillsdale, New Jersey

12

Computers & Society:
An Emerging New Discipline

Reinhard Keil-Slawik

Most scientists and computer professionals would probably view computer science as an
engineering discipline. This characterization or classification can also be found in many
computer science textbooks. But if we examine the material computer professionals basically
have to deal with, i.e. software, we quickly come to recognize that this material has a dual
nature. On the one hand, software is written text, i.e. the physical embodiment of operation
sequences to control a machine. In this respect, designing a computing system, implementing
and installing it such that it works appropriately, can be viewed as the typical task of an engineer
who has to build technical artefacts which perform specific functions.

On the other hand, the ability to create, modify and exchange physical symbols is a
prerequisite for human thinking, communication and the social organization of coordinated
activities. The written media is also the means to develop a cultural identity between a large
number of people dispersed in time and space, and it allows for the cooperative design of large
or complex systems which could not be accomplished otherwise.1 In this respect dealing with
texts is much closer to the social sciences and the humanities. However, my point is not to ask
whether or not computer science is an engineering discipline, but to ponder over this dual nature
of software and the consequences for computer science as a discipline.

There are at least three problem domains where the dual nature of software plays a crucial
role:

• On theepistemological level, the processes of using symbols to create meaning and
foster understanding are confused with the respective results of these processes, such as
formulas, textbooks and computer programs. The transformation of physical symbols is
an indispensable part of all mental work. Computers allow us to perform such symbolic
operations more effectively. But they can only do so as long as the transformation
processes need not be revised due to new demands or insights of the system developers.
We may say that computers embody the actual knowledge of the designers, but they do
not create new knowledge on their own nor do they process meaning. The attempt to
built machines smarter than their creators is an attempt to built cognitive perpetual
motion machines.2

• On thepractical level, we have to distinguish between programming as discourse, which
is a meaning-creating activity, and programs as text. As designers of interactive systems
we have learnt that users do not understand systems by reading bulky user manuals. It is
the combination of reading manuals, using the system, and talking to fellow colleagues
in which the meaning is created. The same holds for the development process.
Documents have to be complemented by prototypes (executable programs) and the
development of both of them requires extensive communication. More and more studies
and observations of software development processes reveal that the meaning created in
the communicative processes among programmers, designers, users, and managers,

1.Cf. Alexander (1964)
2.Cf. Keil-Slawik (1992 and 1994)

13

cannot be captured in documents.1 Programming languages and tools have to reflect the
control structures of the machine. But to a large extent they have to be designed to foster
mutual understanding among developers.2

• On thesocietal level, we must acknowledge that the processing, exchange and
interpretation of person–related data is an essential part of our social life. Especially
when we deal with computers, almost any activity yields personal data which can be
recorded, evaluated and processed further on. The automatic processing of personal data
gives rise to a number of social conflicts, because it allows people to a certain extent to
exert power and control over other people‘s life. Another problem is, of course, that the
interpretation of such data is problematic insofar as it can only be done on the
background of some socially or culturally stable pattern of behaviour. If this pattern
changes the interpretation of the respective data becomes invalid, but this may not be
noticed immediately.
Due to the enormous potential of automatically processing such data the Federal
Constitutional Court of Germany has defined the civil right of "informational self–
determination". Its scope goes well beyond traditional ideas of privacy, and it has a lot
of impact on the use of computers.

The three problem domains mentioned here have some characteristic in common, namely the
inseparable intertwinement of technical, cognitive and social aspects.3 This leads to a typical
problem in computer science. Normally, a problem statement in a certain scientific or
engineering context embodies the criteria which allow us to assess whether a proposed solution
actually meets the problem statement, i.e. to decide whether it is an acceptable solution of the
problem or not. Positioning eight queens on a chess board such that no queen can hit the other,
is such an example. Most problems in practical and applied computer science, however, are of
a different nature, because the specification of the problem is refined and revised as part of the
overall design process.4 In such a situation we may speak of anopen problem specification.
Open problem specification implies that the system design process has be generally
characterized as a collaborative learning process, rather than a technical construction process.

The notion of softwareversioning is a strong indicator for the crucial role of open problem
specifications in computer science. By talking about versionm.nof a program we indicate that
we view the different versions not as different programs but as one and the same program which
is a solution to one and the same problem. The identity of these different artefacts is maintained
by the fact that we view them as being the outcome of one and the same design or learning
process.

Of course, design is a cooperative learning process in any discipline. But, due to the dual
nature of software, the extent to which computer science has to deal with open problem
specifications is significantly greater than in traditional engineering disciplines.

This is not only true for single development projects but also for the evolution of the
discipline in general. The impact of computers on society as well as the strong demands to
develop innovative technologies put forward by the society are strongly intertwined. Again, the
dual nature of software plays a crucial role: Today we talk about theinformation society to
indicate that the extensive use of information technology may lead to dramatic societal changes

1.Cf. Naur (1992) and Floyd (1995)
2.A wonderful example is the WEB system; see Knuth (1984)
3.Cf. also Parnas (1985), Nygaard (1986 and 1992), and Keil-Slawik (1989)
4.Cf. the contribution of Urs Andelfinger in this report, and the references given there.

14

in the long run. Although the notion of an information society is to a certain extent questionable
it shows the strong relation between computer science and society.

So far, computer science has largely ignored the dual nature of software by either
concentrating on the structural properties of the material (mathematics) or by assuming that
there is essentially no difference between humans and machines. Consequently, building ever
smarter machines would be the ultimate technological fix to all problems. However, the need to
learn more about the particular relation of technology and its respective development and usage
context has become more and more appparent not only to the society in general, but also to the
scientific community. More than eight research groups on computers and society have been
established in Germany and Austria during the last couple of years.

The task is to develop an epistemological and methodical framework that allows us to study
the relation between computers and society in general, and man and machine in particular, such
that the specific consequences for computer science become apparent. Wherever there are
design options computer professionals need to know the consequences associated with either
choice. Conversely, they need to know the specific societal demands and how they affect the
design process. Finally, the shorter innovative cycles are and the more society changes due to
changes in the technological infrastructure, the more experts are needed who are able to separate
technical problems from political, aesthetical and psychological ones in order to clarify their
relation and mutual dependance.

In this respect it can be said that computers and society as a discipline is the organizational
means for computer science to better understand how computer artefacts have do be designed
as to suit the needs for tomorrow‘s society.

References

Alexander, C.: Notes on the Synthesis of Form. Cambridge: Harvard University Press, 1964

Floyd, C., Züllighoven, H., Budde, R., Keil–Slawik, R. (eds.): Software Development and
Reality Construction. Berlin: Springer 1992

Keil-Slawik, R.: An Ecological Approach to Resposnible Systems Development. In: Jacky, J.P.,
Schuler, D. (eds): Directions and Implications of Advanced Computing (DIAC 87).
Norwood NJ: Ablex Publishing, 1989

Keil–Slawik, R.: Artefacts in Software Design. In: Floyd et al (1992)

Keil-Slawik, R.: Cognitive Imperialism. In: Güzeldere, G., Franchi, S.: Bridging the Gap.
Stanford Humanities Review, Supplement to Vol. 1, No. 1, 1994.

Knuth, D.E.: Literate Programming. The Computer Journal, 27 (2), 1984

Naur, P.: Computing: A Human Activity. ACM Press, Reading (MA): Addison-Wesley, 1992

Nygaard, K.: Program development as social activity. In: Kugler, H.G. (ed.): Information
Processing ‘86 – Proceedings of the IFIP 10th World Computer Congress. Amsterdam:
North-Holland, 1986

Nygaard, K.: How many choices do we make? How many are difficult? In: Floyd et al (1992)

Parnas, D.: Software aspects of strategic defense systems. American Scientist, 73, 1985

15

An Emerging Design Approach

Finn Kensing

Introduction

With Keld Bødker and Jesper Simonsen I am working on an approach for designing CSCW
systems. This paper is based on an earlier draft by the three of us. We advocate the importance
of generalizing from own work practice as designers and from studies of designers working
under industrial conditions. We use the term approach as something in between commodified
methods and isolated techniques supporting one or a few activities.

Our main interest lies in designing for a specific organization's needs rather than generic
products for a larger market. We use the term design in the same way as architects do - focusing
on the analysis of needs and opportunities, and the preliminary design of functionality and form,
ending up with representations for (others') construction and implementation. Therefor we see
results of a design project to include a conceptual design in terms of a written document,
sketches, mock ups and/or prototypes. We consider an evaluation of individual and
organizational consequences of implementing the design as well as a plan for the
implementation to be part of the result too. Based upon a design proposal it should be possible
for the organization to say "go", "no go", or "more design is needed". Eventually the project may
proceed to construction and implementation, but we consider this latter part of systems
development to be outside the scope of our emerging approach which focus on the initial part
of systems development.

What is reported on here is part of an research program, the purpose of which is to develop
theories of and approaches to systems design. The research program comprises design projects
carried out by us, as well as by others using our approach, and studies of designers working
under industrial conditions.

A design approach

In order to make our own design approach explicit we have reflected upon nine projects we have
been engaged in during the last six years [4, 5, 13, 17]. Starting from our own experience as
designers, we present a first attempt to generalize in terms of an approach, specifying thewhat,
thehow and thewhy, as well as thewho and thewhere when in projects we strive to get from
an understanding of cooperative work to designing computer support. The point is not to
promote what we have done asthe CSCW approach, nor to start an inquiry to find such an
approach. Rather the point is to facilitate one type of learning among practitioners, researchers,
and students: learning from guidelines.

Application Area

We developed our approach, and hence our experience in projects, the aim of which has been
to investigate opportunities for computer support for a specific organization. In all but one we
were brought in because somebody, employees or managers, thought that computers might be
part of solutions to problems they had encountered. The initial problem definitions have been
quite open. We have carried out detailed studies of the organization's needs and opportunities

16

and designed tailored applications in combination with (modified) standard products found
feasible.

Most of the people we have worked with saw the main part of their jobs as problem solving
and problem definition rather than routine work, and cooperation was considered a substantial
part of the jobs. The list of jobs comprises: radio journalists; university secretaries; operations
people in an airport; managers, consultants, and secretaries in a multinational medical
company; managers, editors, secretaries, and store-clerks in a film board; scientists in a R/D lab;
and senior managers within the administration at a university.

A common objective of the projects has been to support the existing work force, which was
considered overworked. Another has been that the existing work force or management wanted
to automate some of the routine tasks. In some projects there was a request for computer support
of activities which had really never been done before in the organization. Sometimes the
purpose was stated explicitly to improve quality of working life and the product and service
delivered by the organization. None had the (explicitly stated) purpose of head count reduction,
down-sizing or "right-sizing" (sic!).

Seven projects we have been action-research, one has been a case study and one has been a
pilot study. Our experience relates to more "office-like" settings compared to the many detailed
"control room studies" within the CSCW community [1, 8, 9]. We find that the same level of
attention is critical for design in these settings, and so do others [2].

In the action-research projects we worked closely with those to be affected by the design. The
aim of two of these projects [5] was to clarify the employees own needs in terms of computer
support in order to prepare for management plans for implementing standard systems. In the
other five [17, 18] management and employees had agreed upon the need for a design project.
In the pilot study [13] the aim was to develop and test forms of representataion for design. In
the case study the aim was to study designers in action. The projects lasted from 3 to 12 calender
months and comprised from 2 to 6 person months.

Perspective

We agree with Suchman [19] that categories do have politics. Guidelines may be used in rather
different ways according to how you perceive what you are doing, and who is doing it to/for
whom. Therefor we need to specify explicitly our basic assumptions and principles and how we
as designers, working in participatory projects, perceive organizations; their members and their
role in design, as well as our own role; and how we perceive design processes and their products.

Organizations do of course have structural properties, however organizations are notthere to
be studied, rather we perceive them as constantly being enacted through members' interaction
and activities. Stable structures - understood as enacted social order - as well as procedural
aspects need to be understood as part of a design project. Since organizations are constantly
changing, a design might need a review if say it has "simmered" for eighteen months, as one of
our designs did in the Film Board.

We see organizations as frameworks for cooperation as well as for conflicts. Therefore
groups and individuals participating in design should be expected to have common, as well as
conflicting goals. The role of designers is neither to cover up nor to solve political conflicts in
design. Rather they should help the parties to formulate their visions, and leave it to them to
solve conflicts in relevant fora.

We expect users, given the right opportunities, to be able to make their own decisions
concerning what kind of computer support and work re-organization they might need and what

17

kind they might want to get rid of, cf. [14]. As addressed above "they" however, is seldom
experienced to be a homogenous entity. In the Film Board we ran into a conflict between the
production manager and the editors [17]. When we realized the conflict we arranged a meeting
and explained the consequences as to each of the parties of various design decisions. The
production manager then gave in, but subsequently tried - unsuccessfully - to persuade the
president to make an end to the project in the department. Whether and how designers might
approach conflicts that evolve in a project depends on how the conflict is related to the design
project [17].

Working with users and from ethnographic studies of organizational life we have learned that
often there is quite a difference between what people say they do and what they observably do.
This is not necessarily because people play games (though they do), sometimes they are truly
surprised when confronted with the difference. With the journalists in the Radio project our
observations told us that there was a contradiction between their initial request for technology
to support cooperation and their enacted values showing a desire for working solo. Our detailed
study of their work practice aimed at making it discussible in which parts of their work they
wanted to cooperate and in which they preferred to work alone with. The final design reflected
a joint decision of this aspect [5].

We are in favour of participatory design as a democratic ideal. Also we are in favour of
having users at all levels from the organisation participating in managing the project: it as a
human right to be able to influence one's own working situation. Also we have pragmatic
reasons: as designers we need direct interaction with users' knowledge in order to propose
feasible designs, and there is a need for anchoring a design vision with those who are going to
create the change.

Though we advocate a participatory approach we have not always succeeded in establishing
areal working group consisting of users and designers taking joint responsibility for the process
as well as the product of the design project. Sometimes we have had to accept that users would
just show up at meetings arranged by us, being willing to be observed, test a prototype, decide
upon what to do next, or what ever kind of activities we ask them to participate in. This is
however not the ideal form of cooperation, either in terms of democratic principles or in terms
of anchoring design visions in the organization.

A good product of a design process most often is a mix of tradition and transcendence [16].
One reason for bringing in designers is to transcend the tradition. At least someone in the
organization has considered some of the old ways of doing things have lost their rationale, or
found that new technological opportunities are worthwhile investigating. We have experienced
managers as well as employees in that role. However, designers need to respect traditions in an
organization, both as a way of maintaining (or establishing!) credibility but also because there
often is a rationale behind phenomena perceived odd by a newcomer. Designers thus have to be
careful in reading the meaning attached to mundane activities, modes of cooperation, or
artefacts used in the work processes.

Overall approach

We apply a combination of intervention and ethnographic techniques in our overall iterative
approach to design. In earlier work [26] we advocate that it is the responsibility of designers to
set up activities applying tools and techniques that will allow themselves and users to develop
knowledge at two levels, abstract and concrete, within three areas: users' present work, new

18

systems1, and technological options2. A combination of intervention and ethnographic
techniques in an iterative approach has turned out to be a good learning strategy for this purpose.

Figure 1. Six areas of knowledge in user-designer communication.
(Kensing & Munk-Madsen, 1993).

During a project we use the model in figure 1 as a point of reference. We are responsible for
using tools and techniques that support communication with and among users within the areas
indicated in the model.

It is crucial for designers to develop a thorough understanding of users' present work (work
practice, organization of work, products/services, relations to customers, clients, suppliers,
history of recent major changes, management strategies and style, etc.) This in order for the
design to reflect - in a realistic way - the traditions of the organization. Realistic in the sense that
the design reflects an appreciation of the rationale given by members of the organization, and
in the sense that the organization is geared to meet the challenge of the envisioned design. Thus,
by detailed studies of the present situation we try to "measure" the organizations needs and
readiness for change. What we are trying to avoid is a too futuristic design or a design, the
greater proportion of which will never be used. We have found that ethnographic techniques are
helpful in accomplishing this.

Ethnographic techniques vs. intervention
Ethnographic techniques come out of a tradition where the basic idea was to develop and
present to other scholars an understanding of a foreign culture. In its original form this implied
that ethnographers tried not to change what they were studying. Current ethnographers
however, reconceptualize this practice and try to establish an encounter between different
cultures, for the purpose of informing those involved [1,10]. Also Blomberg, Suchman and
Trigg report from a project "linking ethnography with design" in an organizational setting: "We
orient to the details of people's practices, recognizing the importance of members' own
articulation of what they do [....] we are accountable to the people who are or may become users
of our technology" [2].

1.By new systems we mean new (or changed) computer systems and changes in the content and the orga-
nization of the users' work.

2.Here technology incorporates not only hardware and software, but also work organization. This may
seem strange but in this context we find it useful and acceptable to group these matters. Various orga-
nizational options, as well as several hardware and software options, should be considered and coordi-
nated in order to fit together as well as possible.

Users' present work New system Technological
options

Abstract
knowledge

Relevant (2)
structures on

users' present work

Visions (5)
and design propo-

sals

Overview of (4)
technological opti-

ons

Concrete experi-
ence

Concrete (1)
experience with

users' present work

Concrete (6)
experience with the

new system

Concrete (3)
experience with

technological opti-
ons

19

Interventionists deliberately set up activities designed to change the organization or the work
settings of some of its members. The presumption is that it is through change that key factors of
organizations and their members perception become observable. Our interventions address each
of the three areas of discourse in figure 1. The intentions are to facilitate reflections upon current
practice, to generate ideas, and to further develop the "technological fantasy" of users and
designers.

We strive to select carefully the area and the mode of intervention based upon what we have
learned by the ethnographic techniques. This is in contrast to some consultants bringing with
them from site to site a design concept, claiming that what people in the organization know is
irrelevant for their re-engineering project. Using ethnographic techniques - as they were
originally developed - one spends years to develop and present an understanding of the culture
studied. The interventionist is more impatient. Taking into account the time constraints put on
most designers in the context we are talking about, we have found that interventions help make
short cuts feasible. Also we find that ethnographic techniques provide a significantly deeper
understanding than traditional computer science/software engineering techniques. This holds
even when the former are used in "a quick and dirty way" compared to what they were originally
developed for.

When we first tried to become quasi-ethnographers, colleagues and students claimed that
such an approach would take far too much time, so why not start prototyping right away? We
found that spending time on analysis, without going to the extreme of systems analysis of the
70-ties and 80-ties, paid back in relation to single out areas of the work relevant for prototyping
and in relation to generating realistic design proposals. Also we found that detailed knowledge
of users' current work allowed us to discard by 'mental testing' design ideas that turned out not
to be worth prototyping [5, 17].

Ethnography and intervention are contradictory in terms of basic approach and intended
results. However to us at a practical level, the two approaches in combination have been an
effective way to learn about the organization and also a main resource for generating realistic
visions of future use of technology.

We have one main concern though, which is part of the reason we think it is necessary to
reveal and discuss approaches in the CSCW community, part of which develops technologies
with a wide range of impacts on organizations, groups, and individuals. Getting to know people
in an organization as closely as you do when carrying out in-depth analysis for the purpose of
design, you easily get into political/ethical dilemmas [2, 17]. Since organizations are (also)
political battle fields - people are fighting for their jobs, for preserving/getting an interesting job,
for preserving/increasing their power base etc. And since the introduction of new technologies
often affect such issues, designers cannot avoid playing a role and sometimes taking a stand in
these battles. This is true whatever approach designers use, but some approaches allow you to
keep a higher distance from those affected by your designs than others. Choosing an approach
that might get you into close relations with users, you had better be prepared to defend your
observations and design ideas - not all designers may be ready for that, nor may their employers
give them the opportunity.

Iteration
The overall approach is iterative in two ways. First we iterate between analysis of the present
and generating and eventually prototyping design ideas. This is not at all a new idea. What
might be new is our hesitation to start prototyping before developing a thorough understanding
of the organization in question.

20

Second we iterate between the two levels of knowledge indicated in figure 1. This is in
contrast with most methods currently used in systems design, where an understanding is
achieved only by acquiring abstract knowledge documented by formal tools and techniques.
Kensing and Munk-Madsen [12] argue from a theoretical standpoint that designers have to put
themselves in situations where they experience users while they are performing their every day
activities. As illustrated by examples in [5, 17, 18], part of which will be shown below, the
consequences this kind of experience had as to the proposed design.

Techniques

In our design projects we have applied a number of techniques to support the investigation os
users' present work, technological options and the new system, as well as iterations back and
forth between the various areas. Some of the techniques are well-known, such as observation,
interviewing, and prototyping, while others are more specifically developed within various
design traditions, e.g. design workshops from the Participatory Design-tradition [7, 15, 16].
Each technique provides information which might identify a need for further investigation,
either in terms of opening up the search space - when it turns out that the problems are not
properly understood, or not agreed upon - or narrowing down the search space - when it turns
out that it is necessary to understand the problem in greater detail by e.g. using another
technique.

Some techniques rely on users as informants through interviews in situations detached from
their ongoing work, others rely on the designers' ability to observe users while performing their
daily work, yet others establish a situation in between (e.g. interview in-situ). What ever the
situation, we have found it important - even if we do focus on specific issues - to constantly
remind ourselves to be open to what ever might come up. Field notes or audio/video recording
are helpful tools for documenting and for shifting focus [5, 17, 20].

Ethnographers have developed elaborate techniques for analyzing recordings [11, 21]. We
have no experience in this type of analysis, though for some tapes we have done content
logging. Running through the tapes several times may generate hypotheses and design ideas, or
identify issues to look for in greater detail. An example of this was found in an observed and
taped meeting where the production manager and an editor from the Film Board were
negotiating a contract with a producer and a director. Running through the tapes several times
made us aware that in addition to the negotiation with the producer and the director, negotiations
were taking place between the two people from the Film Board. This observation, which we did
not note at the meeting or during the first couple of runs of the tape, turned out to have direct
consequences for our design proposal later on [17].

Representations

In our design projects we have applied a number of representations to document knowledge on
users present work, technological options or the new system. Designers might apply more
formal representations for their internal communication; e.g. in order to develop a prototype a
consistent data model (e.g. an E/R model) has been used. However, we tend to postpone formal
tools and techniques introducing concepts and symbols not common to the users until detailed
analysis and implementation of the visions. At that time designers cannot do without them, but
still when users are involved in this part of design, some kind of translation might be
appropriate. In general, representations are used to develop and represent knowledge with a
particular emphasis, so it is a medium for developing knowledge as well as a medium for later

21

referencing. We judge the relevance of a description on how it facilitate discussions among us
as designers and among us and users and their managers.

Questions

I have presented an emerging approach for designing CSCW-systems. We apply a combination
of ethnographic techniques and intervention in an overall iterative approach. This is in line with
what has been labelled "ethnographically informed design", as represented in e.g. [1, 10]. Their
approach implies that the ethnographic study, performed by social scientists, inform the systems
design, performed by designers, and further that the system design is evaluated and tested
jointly. We take a slightly modified approach. Being computer scientists we have used
ethnographic techniques in design processes. Our research goal is to develop theories and
approaches for design oriented towards practitioners working under industrial conditions. Here
we have not found sociologists available. The crucial question as to whether it is possible for
designers in general - as lay persons - to apply concepts and methods from social science and
the humanities is a very relevant question which we are investigating by studies of this kind.
Another question for us is how to present our approach - what kind of guidelines and at what
level of detail - designers from industry might find useful. These are the question I would like
to discuss at the workshop.

Acknowledgements

Acknowledgements to Liam Bannon, David Bell, Jeanette Blomberg, Steve Harrison, Scott
Minneman, Susan Newman, Lucy Suchman, and Randy Trigg.

References

[1] Blomberg, Jeanette, Lucy Suchman and Randall Trigg: Reflections on Work-Oriented
Design in Three Voices. In: S.L. Star:"Paris workshop", 1994

[2] Boehm, B.:Software Engineering Economics. Prentice-Hall, 1981

[3] Bentley, R., T. Rodden et al.: Ethnographically-Informed Design for Air Traffic Control.
In: Turner, J. & R. Kraut (Eds):CSCW '92 Sharing Perspectives. Proceedings of the
Conference on Computer Supported Cooperative Work, ACM, pp. 123-129

[4] Bødker, Keld, and Jørgen Bansler: A Reappraisal of Structured Analysis: Design in an
Organizational Context. In:ACM Transactions on Information Systems, spring 1993

[5] Bødker, Keld, and Finn Kensing: Designing Computer Support for Editorial and
Administrative Work in an Editorial Section in a Danish Radio Station. In: Proceedings
of the 16th IRIS (Information Systems Research Seminar in Scandinavia),, Department
of Computer Science, University of Copenhagen, Report no. 93/16, 1993, pp. 376-394.

[6] Ehn, Pelle.Work-Oriented Design of ComputerArtifacts. Arbetslivcentrum, Stockholm,
1988.

[7] Greenbaum, Joan, and Morten Kyng (eds).:Design at Work: Cooperative Design of
Computer Systems. Lawrence Erlbaum Associates, Chichester, UK, 1991.

22

[8] Heath, C., and P. Luff: Collaboration and Control. Crisis Management and Multimedia
Technology in London Underground Line Control Rooms. In:Computer Supported
Cooperative Work, Vol. 1, Nos 1-2, 1992, pp. 69-94

[9] Heath, C, M. Jirotka, P. Luff, and J.Hindmarsh: Unpacking Collaboration: the
Interactional Organisation of Trading in a City Dealing Room. In: G. De Michelis, C.
Simone, K. Schmidt (Eds):Proceedings of the Third European Conference on Computer
Supported Cooperative Work. Kluwer, Dordrecht, Holland, 1993

[10] Hughes, J., D. Randall & Dan Shapiro (1992): Faltering from Ethnography to Design.
In: Turner, J. & R. Kraut (Eds):CSCW '92 Sharing Perspectives. Proceedings of the
Conference on Computer Supported Cooperative Work, ACM, pp. 115-122

[11] Jordan, Brigitte, and Austin Henderson: Interaction Analysis: Foundations and Practice.
To appear inJournal of the Learning Sciences.

[12] Kensing, Finn, and Andreas Munk-Madsen: Participatory Design; Structure in the
Toolbox. In:Communications of the ACM, No. 36, Vol. 4, 1993, pp. 78-85.

[13] Kensing, Finn, and Terry Winograd. Operationalizing the Language/Action Approach to
Design of Computer-Support for Cooperative Work. In:Collaborative Work, Social
Communications and Information Systems, R. K. Stamper et al. Eds. North-Holland,
1991, pp. 311-331.

[14] Kyng, Morten: Designing for a dollar a day. Office, Technology and People, 4 (1989),
pp. 157-170.

[15] Muller, M.J., S. Kuhn, and J.A. Meskill (Eds):PDC'92 Proceedings of the Participatory
Design Conference, Cambridge MA US, 6-7 November 1992. Computer Professional
for Social Responsability.

[16] Schuler and Namioka (Eds.):Participatory Design: Perspectives on System Design.
Lawrence Erlbaum, Hillsdale NJ, 1993.

[17] Simonsen, Jesper, and Finn Kensing: Take Users Serious, But Take a Deeper Look: -
Organizational and Technical Effects from Designing with an Intervention and
Ethnographically Inspired Approach. Proceedings from PDC'94, North Carolina,
October 1994.

[18] Simonsen, Jesper:Technological Design in an Organizational Context. Ph.D.
dissertation, Roskilde University, Computer Science Department, 1994 (Forthcoming).

[19] Suchman, Lucy A.: Do Categories Have Politics? The Language/Action Perspective
Reconsidered. In:Proceedings of the Third European Conference on Computer-
Supported Cooperative Work, 13-17 September 1993,Milan, Italy, pp.1-14.

[20] Suchman, Lucy A., and Randall H. Trigg: Understanding Practice: Video as a Medium
for Reflection and Design". In: [18].

[21 Trigg, Randal, Susanne Bødker and Kaj Grønbæk: Open-Ended Interaction in
Cooperative Prototyping. In:Scandinavian Journal of Information Systems,vol. 3, pp.
63-86, 1991.

23

Interdisciplinarity and System Design
for Post-Fordist Work

Kari Kuutti

Introduction

Information system design as a discipline has a relatively long history – about a quarter of a
century. Already very early during this history it was recognized that system design influences
and is influenced by issues outside of the realm of technical systems. Correpondingly, the
question of the interdisciplinary nature of system design was raised already early in the 1970s .

Despite this early start the practical manifestations of interdisciplinarity have been more than
scarce, however: although we have had forceful and visible, programmatic attempts to influence
system design towards more broad disciplinary view, it is difficult to find a case where
frameworks or methods imported from some other disciplines (than that of logico-technical
system design) have had any impact beyond lip service on practical design. Let's look at a
couple of examples, the cases of HCI and "social opposition" in information systems research.

HCI and impact of cognitive psychology

Because of the high visibility of HCI issues the importance of the 'interface' in the design of new
systems and applications seems now been accepted. However, when we look at current IS
design practice, it is still very difficult to see signs of pressure towards any kind of methodical
or even conceptual influence coming from cognitive psychology, for example. The
development of information system design methodologies (ISDMs) has been a programmatic
attempt to collect practical and theoretical knowledge concerning information system design,
they contain elaborate transformation procedures between the design domains, (for example:
how to analyze reality -> produce an information model -> create an actual database, or: how to
analyze information processing needs -> produce a process model -> proceed towards a
structured code). One would expect to find methods for interface design here, too. A closer
examination leads to disappointment, however. J. Iivari has analyzed the content of four
prominent ISDMs (CIAM, ISAC, JSD and NIAM) and found that none of them has any
methodical or conceptual tools for handling interface issues. "Still more strikingly, the total
neglect of the area of user interface is really surprising" (Iivari 1989, p. 346). Apparently there
has not been need enough to incorporate any interdiciplinarity for interface issues into the
ISDMs.

Information Systems research and the question of "social"

Fifteen years ago the Information Systems research field looked rather well-organized: the
necessity to deal in design with the user needs in a systematic fashion was clearly identified, at
least in Scandinavia, and the first methods addressing the issue were already in practical use,
e.g. (Lundeberg, Goldkuhl, & Nilsson, 1978). The number of system design methods was
proliferating, and there was a certain sense of optimism that by comparing the strengths and
weaknesses of different methods a convercenge towards a "standard" type would eventually
occur. But that did not happen: instead, the whole 1980s in IS research has been characterized
by a growing discussion and criticism against the prevailing way to understand the system to be

24

designed and the "normal" ways to study the use of computer applications, and the discussion
is still going on. The discussion is characterized by Klein & Hirschheim in the following way:

“It is possible, therefore, to speak of an IS orthodoxy, one where fundamental tenets are
shared and form a general conception of how information systems can and should be
developed. Recently, however, it is possible to note the emergence of some radically
different approaches to ISD, ones which do not share the same paradigm, which possess
an underlying philosophy that is quite different from the orthodoxy, and which challen-
ge the basic assumptions, values and beliefs of the past.” (Klein & Hirschheim, 1987),
p. 275-276).

The major question, emphasised by several authors (Banville, 1991; Boland & Hirschheim,
1987; Lyytinen, 1986) is that the object of research (and finally design) should be understood
as a social instead of a technical system. The meaning of "social system" is often explicated to
be such as that used in sociological analysis, the main emphasis being thus in the social relations
between people (Klein & Hirschheim, 1987; Lyytinen, 1986). The primacy of the "social
system" aspect means that it should be the determining factor in information system design and,
correspondingly, social concepts and methods should have a visible role in system design.
However, despite the heat of the debate over ten years, practically no concepts or methods of
social science in system design during the 1980s.

Why interdisciplinarity now?

We can now state the question of this paper. The interdisciplinary nature of system design has
been recognized in principle very early, and there has been strong and visible research
programmes in introducing interdisciplinarity in system design. Despite the longlasting effort –
15 years in the case of HCI and more than 10 years in the case of the "social turn" IS research
– the headway made until the end of 1980s has not been significant.

How it is then explicable that interdisciplinarity has during the last few years suddenly
gained much more serious consideration and respect also at practical level , especially in the
form of applying ethnographical methods in design? Because ethnographic methods are not by
any means new inventions, one is tempted to assume that the situation now possess some
essentially different characteristics than ten years ago – something that makes interdisciplinarity
much more necessary than earlier.

This paper studies a hypothesis that one reason for the change in attitude may lie in the way
how the organization of work is changing. It assumes, that although interdisciplinary approach
might have been beneficial also in designing systems for Tayloristically-bureaucratically
oriented work, it was not crucial – but designing systems for emerging post-Tayloristic work
from a technical viewpoint only will lead to serious problems. The paper suggests this a one
reason for the groving popularity of interdisciplinary issues.

Change in the work

Systems for Tayloristic work

The core of the object of design and research in the Information Systems tradition has always
been a system representing and delivering prespecified information about clearly-defined
"Universe of Discourse" and automating well-defined information processing routines. Routine
automation can be seen as a direct continuation of Tayloristic work organization, where the

25

worker has no need to understand the nature of the work but just follow given directions. The
efficient use of a system in that case is simply the error-free execution of predetermined action
sequences. No matter how clumsy the system or how bad the interface may be, the user sooner
or later memorizes the actions needed and the error rate will eventually fall to an acceptable
level.

Post-Fordist work organisation

There exists an extensive discussion on emerging new work organization forms in the work
sociology, management and organizational literature. Organizational forms where workers
possess more actorship and take the initiative and responsibility in cooperative settings, are
presented as the major alternative to recent dominating practices.

It still seems to be difficult to evaluate on which conditions the new forms can be successful
and it is perhaps too early to make any final judgement if there is a fundamental change going
on - like some researchers suggest - or if the new work organization forms are but one more
choice among several alternatives.

In any way it seems clear that there are situations where the new ways of organising work
offer promising potential and we can expect that they will increase - either in the form of a
radical redesign or a more subtle partial change in the existing way of work. In both cases the
need of computer support also for the new features in work will be increasing:

“Moreover, in a post-industrial society, adaptability is the characteristic of the mordern
enterprise (private or public). Mass production with economy of scale is giving way to
flexible adaptation to the market or community’s needs, as the guiding principle of or-
ganizational strategy. Organizations are becoming flatter, project groups tending to re-
place permanent departemental structures; information systems must keep pace with
these and other new organizational demends” (Stamper, Kerola, Lee, & Lyytinen,
1991), Introduction p. xi).

According to the literature, which are the characteristic features of the post-fordist work
organization?

One of them is obviously the active, innovative and responsible role of workers: people have
to take initiative, detect and solve problems, deal with unforeseen contingencies and work
around breakdowns (Drucker, 1991; Seely Brown, 1991; Watson, 1980).

Another distinguishing feature is the strong emphasis on active cooperation in teams, groups,
networks and like: (Drucker, 1992; Hughes, Randall, & Shapiro, 1991; Savage, 1990).

Also the changing environment of organizations and their dynamical and emergent features
have been emphasised by many writers talking on the new forms of work organization, like
(Hedberg, 1991; Schmidt, 1991; Stamper, et al., 1991)1

The direction towards "design oriented operation" is shared by many writers,(Drucker, 1992)

wants that workers should see themselves as "executives", (Scott Morton, 1991) sees that they
are changing from "doers" to "analyzers", (Howard, 1987) talks about "organizational
refexivity" as an overall term pointing to learning about an organization and its possibilities and
to knowing how to influence them.

The role of information technology in the new work organisation

The emergence of the new organization forms is largely connected in one way or another with
information technology. Especially the networking capability, but also the information
producing facilities are seen as crucial enablers for the new organization forms – altough

26

attempts to explicate this aspect further are rare. A picture is outlined where the new work
organisation, multiskilled and active workers and advanced information technology become
unseparably involved together.

The picture painted this far looks neat - too neat to be accurate. In reality nothing is so
straightforward. Many of the issues and relationships are complicated and debated within their
home disciplines. It is very plausible that there is no automatical development towards the new
forms of work described above. Instead, they is one potential development path among many
alternatives in an area where different forces and pressures are present and change dynamically.
This is clearly expressed by e.g. (Hughes, et al., 1991) and (Orlikowski & Robey, 1991)

Anyway, information technology has an important role to fulfill and it's connection with the
work itsekf is much more intime than before. Routine automation is hopelessly inadequate to
deal with this kind of work. Hence the new work organization will need new kinds of
applications, where the support for tool-like operation, understanding and communication can
be realized, in the direction characterized by Ciborra & Schneider (1992)

“New systems for information creation rather than information management should possess
the following properties:

1) They should facilitate the process of reinvention that any complex technological
artifact undergoes when put to use.

2) They should not conceal the relations between routines embedded in systems and
formative contexts. On the contrary, they should make those relations explicit and
available for questioning.

3) They should function as media for enhancing coordination and communication within
and across the teams. Problems and solutions shift all the time, and because systems
are open and pasted together by nature, they should support loosely coupled forms of
organization.

4) They should provide real-time feedback to users on their current organization of work
and the emerging coordination and communication patterns

5) They should function as “systems for experts”, but not in the way implied by current
conceptions of “expert systems”. That is, in addition to supporting or replacing the

1. Taken together, this sounds amazingly similar to the recommedations of the sociotechnical theory,
formulated as early as the 1950s and 1960s. Julkunen argues that sociotechnics were in fact ahead of
their time and the development of reality has only recently been catching up with their theories. She
identifies five sociotechnical arguments which she believes being in fact now more actual and crucial
for efficient operation of organizations than they were during the time when they were formulated
(Julkunen, 1987), p. 251 : 1) The organisation of work is important and there exists a possibility for
alternative organisational forms. 2) Managing "stochastic" technology needs self-steering at the basic
level of the production organisation. 3) Coping with a "turbulent" environment has the same demand.
4) Self-steering needs internal integration. 5) The question of workplace democracy is not about
power but about the maximisation of the steerability of an organisation.

It looks like the sociotechnical humanisation movement has earlier been more like experiments whose
major aim has been to counteract the social prolems of production, like high absenteeism and worker's
resistance, and the legitimation of the experiments has been based on the needs and motivation of a
worker and on increasing democracy in the workplace. The postfordist work organisation is applied
under different conditions and grounded in production economics. The rhetoric on humanisation and
democracy has then been stripped away as unnecessary. Although the new work organisation forms
approach the "humanisation" ideals, the personal experience of workers is not necessarily that of a
humane and interesting work but a more demanding and stressing labouring.

27

knowledge-based routines of professionals and managers in specific domains of
expertise, they should support people’s capabilities for reflection and inquiry within
the contexts in which they are embedded. They should help people build up, question,
and modify practical knowledge according to the emergence and the shift of
problematic situations and contexts” (Ciborra, 1993)(p. 286).

Implications in system design

What has to be taken into account in designing this kind of systems?In addition to the technical
issues – and heavily influencing the way they can be applied – several important areas can be
recognized:

Because of the situational character of the work and the necessity to make sense of them,
and because workers belong to particular communities of practice, it is necessary to pay
attention to issues of personal interpretation and cultural factors.

Because situations emerge in the course of a work process in an unforeseen way and it is
thus impossible to plan and organize everything beforehand, it is necessary to pay
attention to articulation aspects.

Because work is done by several active subjects who have to share viewpoints, negotiate,
make decisions and coordinate their actions, it is necessary to pay attention to
communication aspects.

Because work has to be continuously adapted to the changing environment, it is necessary
to pay attention to aspects of learning, construction and reconstruction.

Because in the new work organization forms the scope of worker's actions is broadened,
new skills needed and his or her responsibility increased, it is necessary to pay attention
to the aspects of power, control, conflicts and emancipation.

These areas fall clearly outside the technical point of view but are nevertheless crucial in design.
Hence the risen interest in interdisciplinarity – that seems to be the only way to go...

References

Banville, C. (1991): A Study of Legitimacy as a Social Dimension of Organizational
Information Systems. In: H.-E. Nissen, H. K. Klein, & R. Hirschheim (Eds.):Information
System Research: Contemporary Approaches & Emergent Traditions. Proceedings of the
IFIP TC8 Conference ISRA'90(pp. 107-129). Amsterdam: North-Holland.

Boland, R. J., & Hirschheim, R. A. (Ed.). (1987):Critical Issues in Information Systems
Research. Chichester, John Wiley & Sons.

Ciborra, C. (1993):Teams, Markets and Systems. Business Innovation and Information
Technology. Cambridge, Cambridge Univ. Press.

Drucker, P. F. (1991): The New Productivity Challenge. Harvard Business Review, 69(6),
69-79.

Drucker, P. F. (1992): The New Society of Organizations. Harvard Business Review, 70(5),
95-104.

-

28

Hedberg, B. (1991): Imaginary Organizations. In: R. Stamper, P. Kerola, R. Lee, & K. Lyytinen
(Eds.),Collaborative Work, Social Communications and Information Systems.
Proceedings of the IFIP TC 8 Working Conference COSCIS’91,Amsterdam: Elsevier/
North-Holland.

Howard, R. (1987): Systems design and social responsibility: the political implications of
"computer-supported cooperative work". Office, Technology and People, 3(2), 175-187.

Hughes, J., Randall, D., & Shapiro, D. (1991): CSCW: Discipline or Paradigm? A sociological
perspective. In: L. J. Bannon, M. Robinson, & K. Schmidt (Eds.),Proceedings of the 2nd
ECSCW. (pp. 309-323). Amsterdam: Kluwer.

Julkunen, R. (1987):Työprosessi ja pitkät aallot. Tampere: Vastapaino.

Klein, H., & Hirschheim, R. (1987): Social Change and the Future of Information Systems
Development. In: R. Boland & R. Hirschheim (Eds.),Critical Issues in Information
Systems Research (pp. 275-305). Chichester: John Wiley & Sons.

Lundeberg, M., Goldkuhl, G., & Nilsson, A. (1978):Systemering. Lund: Studentlitteratur.

Lyytinen, K. (1986):Information Systems Development as Social Action: Framework and
Critical Implications. (Dissertation). Jyväskylä: University of Jyväskylä.

Orlikowski, W., & Robey, D. (1991): Information Technology and the Structuring of
Organizations.Information Systems Research, 2(2), 143-169.

Savage, C. M. (1990):Fifth Generation Management. Integrating Enterprises through Human
Networking.Digital Press.

Schmidt, K. (1991): Computer Support for Cooperative Work in Advanced Manufacturing. Intl.
Jrnl. Human Factors in Manufacturing, 1(4, (October)), 303-320.

Scott Morton, M. (Ed.). (1991):The Corporation of the 1990s: Information Technology and
Organizational Transformation.New York: Oxford Univ. Press.

Seely Brown, J. (1991): Research that reinvents the Corporation. Harvard Business Review,
69(1), 102-111.

Stamper, R., Kerola, P., Lee, R., & Lyytinen, K. (Ed.). (1991):Collaborative Work, Social
Communications and Information Systems. Proceedings of the IFIP TC 8 Working
Conference COSCIS’91. Amsterdam: North-Holland.

Watson, T. J. (1980):Sociology, work and industry. London: Routledge & Kegan Paul.

29

Software-Ergonomics –
An Interdisciplinary Subfield of Informatics

Susanne Maass

What will informatics students do in their future jobs? What should we teach them in order to
prepare them for their professional lives?

Technical systems are meant to enhance human life. They change our lives in many respects.
As computer scientists we should not limit ourselves to the technical aspects of the artifacts we
are creating and restrain our responsibilities to those aspects. We must see the whole picture,
even if we cannot understand and control all of it.

In my view the education we provide at informatics departments of universities should not
be technology only. We also need elements from the social sciences. The field of user interface
design clearly shows the need for and the value of interdisciplinary work and education. For the
design of usable and useful systems expertise in at least three areas is required:

1. Designers need to know the technical options they have. As their home discipline in
most cases is informatics, they are rather well equipped with this kind of knowledge.

2. They must be aware of general human cognitive skills and their limitations. This is the
field of cognitive psychology.

3. They must be able to assess people's work in its organisational context with respect to
criteria for humane work. Occupational psychology deals with these aspects.

Of course we cannot expect every designer to be an expert in all of these areas, but they should
at least have a basic understanding for them. In the best of all worlds, informaticians would
work in design teams with experts for psychology and work design. In most cases, however,
they will have to introduce these non-technical aspects in the design process themselves. In
addition, designers will have to cooperate with prospective users of their systems. In order to be
able to successfully communicate and negotiate standpoints with these users and with experts
of other fields, designers must possess very good communicative skills: They must ask and
listen carefully and they must present their own ideas clearly. (By the way - to me this seems to
be the essence of interdisciplinary work in general.)

In Germany we recently developed a curriculum for the interdisciplinary area of human
centered system design, called software-ergonomics (Software-Ergonomie). It is meant to be
taught to students of informatics. In addition to the relevant technical subjects we propose to
teach them the basics of cognitive and occupational psychology.

Students have to get an understanding for software development as a part of work and
organisational design. They must learn to recognise work conditions and requirements and to
design the functional division of labour between humans and computers accordingly. Task
adequacy is one of the main criteria for the design of system functionality as seen at the user
interface and system handling. So the users' work must be well understood in the first place.

In our curriculum the process of system development and introduction is explicitly addressed
as something that has to be carefully organised in consideration of various interests and
technical as well as non-technical requirements.

Of course informatics faculty will need some support from other disciplines in order to
provide their students with software-ergonomics education. Joint seminars between computer

30

scientists and psychologists or social scientists, for example, can have an educational effect on
both, students and teachers. On top of that, practical projects with outside partners, preferably
with experienced design specialists from industry as mentors, are most motivating and
instructive. In such projects students will learn that in real world system design there are many
individual or organisational, social and non-technical factors that influence final design
decisions, at times even more than technical considerations.

References

Maaß, S. (1993): Software-Ergonomie. Benutzer- und aufgabenorientierte Systemgestaltung.
Informatik-Spektrum 16, 4, 1993, S. 191-205

Maaß, S., Ackermann, D., Dzida, W., Gorny, P., Oberquelle, H., Rödiger, K.-H., Rupietta, W.,
Streitz, N.A. (1993): Software-Ergonomie-Ausbildung in Informatik-Studiengängen
bundesdeutscher Universitäten.Informatik-Spektrum, 16, 1, 1993, S. 25-30

Metaphorical Design

Kim Halskov Madsen

Most of the earlier research on computers and metaphors emphasized ease of learnability and
ease of use. But currently there is a growing interest in addressing the role of metaphor in the
design process.

A perspective on Metaphor

Pragmatic approaches acknowledge that in the context of real-world situations, metaphor
inevitably involves incompleteness and mismatches and that the power of metaphor may be
attributed to such disparities between the source and the target domain. Rather than using a
structural or formal mapping definition of metaphor, a pragmatic approach emphasizes the use
of metaphor as a particular kind of"seeing as"governed by previous situations and examples
rather than by rules and fixed categories

A collection of cases

Case 1: A small command language
Although a metaphor may not be explicitly supported by the computer system, users often
understand the system in metaphorical terms. An investigation of the language usage of
employees at a Danish library reveals that they understand the structure of their computer
system in terms of at least three different metaphors: the physical space metaphor, the
conversation partner metaphor, and the organism metaphor.

Investigation of language usage was based on tape recordings of conversations with three
employees who were asked to describe how they used the various computer applications at the
library.

31

For instance identification of the physical space metaphor was based on the criterion that a
logical or functional part of the system was referred to in terms of concepts normally used about
a physical space: "then I could goin and make back-up copies"

Case 2: Links between documents
Erickson presents a design task where users can define links between parts of different

computer documents so that when changes are made in one part the other parts are automatically
changed. Candidate metaphors include the 'TV broadcasting metaphor", the link metaphor, and
the pointer metaphor.

Case 3: An Automated Teller Machine
MacLean tell a story about how metaphor played an important role in the design of a bank
Automated Teller Machine. In one case".. the designers had personal experience of a bagel store
which handled its lengthy queues by having an employee work along the queue, explaining the
choices available and helping fill out their order on a form. The customers would hand over their
forms when they reached the counter, enabling their requests to be processed more speedily".
The familiarity with the bagel store arrangement lead the designers to the innovative idea of
having bank cards which the customers could pre-program while waiting in line.

Case 4: Production planning
A major Danish corporation's production planning was discussed in a workshop by using a
metaphorical design approach. The participants in the workshop suggested many metaphors.
Among other things, it was suggested to see production planning as: house cleaning, cooking,
a soccer match, transportation, a power plant, cattle raising,

Case 5: Service at libraries
In a technology assessment project at the Danish research libraries, the impact of the use of
computers on the service provided by the libraries was one of the key issues . In order to
stimulate discussion about the impact of computers, the staff was challenged by three different
metaphorical views of what a library is or could be. The three metaphors were "the warehouse",
"the store" and "the meeting place". Each of the three metaphors provide a different account of
what a library is, leading to different computer applications and eventually different kinds of
service.

Guidelines

Guidelines derived from the cases are organized along the three main activities of metaphorical
design.

Generating
Listen to how users understand their computer systems
Build on already existing metaphors.
Use predecessor artifacts as metaphors.
Note metaphors already implicit in the problem description
Look for real world events exhibiting key aspects .

Evaluating
Choose a metaphor with a rich structure
Evaluate the applicability of the structure
Choose a metaphor suitable to the audience
Choose metaphors with well understood literal meanings. .
Choose metaphors with a conceptual distance between the source and metaphorical meaning.
Do not necessarily explicitly incorporate the metaphor in the final design.

32

Developing
Elaborate the triggering concept..
Look for new meanings for the concept.
Restructure the perception of reality.
Elaborate assumptions.
Tell the metaphor's story.
Identify the unused part of the metaphor.
Generate conflicting accounts..

Characteristics

We can make several theoretical observation about characteristics and the nature of the role of
metaphor in design.
Physical structure plays an important role.
Metaphor is an inherent part of everyday language.
Metaphors often originate from everyday experience.
Abstract concepts are understood in terms of concrete things.
Metaphors provides detailed and specific design options.
Metaphors may provide the basis for justifying design decisions.
A metaphor provides the user with a model of the system.
Seeing something as something else.
Provide a novel view of reality
Provide a shift in focus of attention.
Problem setting

The Technical = the Non-Technical

Eric Monteiro

It is fair to say that SD continues to wrestle with a more fruitful way to approach the question
of interdisciplinarity in SD (ISD). To express this more bluntly: we are today well aware of the
fact THAT IT has a number of non-technical aspects; what we know a lot less about is more
precisely HOW this works.

The basic message, to give it straight away, is that the practice of SD seems to be
depressingly insensitive to the high-flying theories produced by SD. The sophisticated theories
of foundational nature coming out of a large number of disciplines (sociology, anthropology,
psychology, organisational theory and philosophy) seem to be quite independent of the practice
of SD. Developing such theoretical frameworks keeps a whole industry of researchers in SD in
business but does not seem to improve the practice of SD significantly. The major problem, as
I see it, is that the issues which these other disciplines focus on is very difficult to relate to the
practice of SD. Within the practical world of SD these non-technical issues do not show up --
at least not in the form which sociology, philosophy etc. frame them. Two illustrations how ISD
fails in this respect may be summed up by these equations: "Modelling = epistemology" and
"SD = organisational development".

There is no lack of proclamations of the social, political, economical or psychological
aspects of IT. Quite the contrary. To be unbearable blunt once again, the status of ISD by and
large boils down to the following maxim: IT 'enables' certain actions/ patterns of behaviour and

33

it 'constrains' others. And this result seems to be relatively invariant to whether one uses
structuration theory [Orlikowski 92, Walsham 93], hermeneutics [Boland et al. 88] or
constructivism [Bijker 93] (or any of your own personal favourite conceptual framework for the
non-technical) as a basis for the argument.

It thus seems to me to be a huge gap between, on the one hand, the technical computer system
itself, and, on the other hand, this pool of non-technical, aggregated, macro-level concerns. The
problem is not that ISD does not have a sufficiently large base of sociological, philosophical etc.
theories to draw upon -- it has touched upon huge pile of theories. The problem is rather, as I
see it, that there is so few accounts of the MECHANISMS, that is, how these aspects are played
out or operate on a micro scale. If you will bear over with the deterministic language, I would,
instead of settling for 'IT enables certain actions...', like to ask questions closer to this: WHICH
actions were enabled/ constrained by WHAT design issue? Again, this should not be read as a
pledge for technological determinism; it simply indicates in which direction, along the
continuum ranging from social to technological determinism, I would like to see ISD move in.

These mechanisms, these things lying in the middle between the computer system itself and
the aggregated effects, are what I believe should be the true subject matter of ISD. Personally,
I see the field of Science and Technology Studies (STS) as one of the most promising
approaches to ISD (see for instance, [Bijker et al. 92, Law 91]). Programmatically speaking,
these mechanisms are neither technical nor non-technical. They are both. The real challenge to
ISD is to develop the ability for systems developers to recognize and track such mechanisms at
play, how they in one instance are perfectly technical issues but how they are translated into
non-technical ones (and vice versa). There is thus no a priori distinction between the technical
and the non-technical.

References

R. J. Boland Jr. and R. H. Greenberg: Metaphorical structuring of organizational ambiguity. In:
L. R. Pondy and R.J Boland and H. Thomas (eds): Managing ambiguity and change. John
Wiley, 1988

Wanda J. Orlikowski: The duality of technology: rethinking the concept of technology in
organizations. Organizational studies, 3(3):398-427, 1992

Geoff Walsham: Interpreting information systems in organizations. John Wiley, 1993

Wiebe E. Bijker: Do not despair: there is life after constructivism. Science, Technology, &
Human values, 18(1):113-138, 1993

W. E. Bijker and J. Law (eds): Shaping technology/ building society. MIT Press, 1992

J. Law (ed): A sociology of monsters. Essays on power, technology and domination. Routledge,
1991

34

Traditions for Information Systems Development
–a Coward Simplification for Researchers,

a Complication for Systems Developers,
and a Hindrance for Interdisciplinary Work?

Torbjørn Naslund

I am an information systems development researcher. I am worried about the fragmentation of
my research area.

Much research in information systems development is directed towards normative
statements or theories for how to develop good computer artifacts. This is positive - we need
good artifacts, and we need to know how to achieve them.

I see a difficult problem in the way we do this, however. There is a clear tendency for several
isolated traditions. These traditions function as social paradigms, where researchers INSIDE
each of these traditions share basic assumptions and objectives to such a degree that they are
taken for granted, seldom are stated explicitly, and are not discussed. The other way round, very
little debate is going on BETWEEN the different traditions; the traditions tend to isolate
themselves. When discussions really occur, differences in terminology and the fact that
assumptions and objectives are not made explicit may lead to misunderstandings and
misinterpretations. Hence, researchers from other traditions than where oneself is situated may
be seen as naive, ignorant, or difficult to understand.

Each tradition has taken its own foci for research, and claim that the research leads to
gradually better recommendations for systems development. For a practitioner in systems
development, this knowledge is very difficult to make use of. For a practitioner, researchers
may be seen as biased advocates for single ideas which are fragmented and difficult to integrate
with each other. Research results are offered systems developers as a "babble of many voices".

For interdisciplinary work, the situation becomes a hindrance. It is not only a question about
how to bridge different disciplines, but also a question of which traditions inside information
systems development to fraternize with, which are open to cooperation with other disciplines,
and how well the unstated assumptions of each tradition fit assumptions and values of the other
discipline.

The only viable solution I can see for the long run is to try to break the isolation between
traditions, and engage in dialogue also over the borders of the traditions. This does not appear
to be an easy task, however. For a researcher, it is much easier to publish and engage in
dialogues with equals, than with people who behave as if they were naive, who are difficult to
understand, and/or who challenge the researcher's own assumptions. Which different traditions
can be found in information systems development, then - and what are their foci and basic
assumptions? A very sketchy and tentative outline is the following list (where each tradition is
described as an ideal type in order to highlight the differences):

1. The information systems tradition (IS). The main focus is on organisational impact and
achievement of organisational objectives with the help of IT. The artifacts (called
information systems) are assumed to be large and difficult to overview, but technically
simple to construct. As a basis for construction, information flow (data flow),
information structure and/or information use (in particular for decision making) must

35

be determined. Systems development starts from the identification of an organisational
problem, which is investigated in a systematic way by the internal systems
development organisation of the enterprise (sometimes assisted by external
consultants). The IT solution to the problem can be derived from the investigation, if
the investigation has been carefully performed. The technical construction of the
information system will then be straightforward.

2. The software engineering tradition (SE). SE focuses on the technical construction of
the computer artifact (software, software system). The development is performed by
software engineers in order to fulfill the needs of a customer. The customer knows what
is needed, even if he cannot state it in a way which is useful for the software engineer.
Requirements elicitation is thus a difficult but important task, which must be performed
before the software construction starts. The requirements should be specified in detail
in a requirements specification. Important objectives to achieve in software
construction are fulfilment of the stated requirements, as well as high technical quality
and maintainability of the software. The construction process is seen as difficult to
manage and coordinate - mainly since it is assumed that the project is very large, and
requires a large number of programmers/software engineers working in parallel.

3. The participatory design tradition (PD). PD takes a stand against many of the
assumptions made both in the IS and SE traditions. There are no definite needs which
can be elicited in advance, neither is it possible or desirable to determine the qualities
of a future computer artifact through analytical means. Instead, the artifact should be
shaped in a gradual process in which prospective users and systems developers
cooperate closely. Empirical experiments and users' opinions are taken very seriously,
while project management, organisational objectives and the original plan for the
artifact are given less attention.

4. The human computer interaction tradition (HCI). HCI stresses the cognitive fit of
artifacts to the users' abilities - in particular when the users are discretional rather than
regular users of the artifact. The artifact is often assumed to be developed as a product,
to be sold on the market. Consequently, the users are seldom identifiable persons, but
rather hypothetical, abstract descriptions of people. The interface - which determines
the behaviour and appearance of the artifact - should be designed early in development
process, by a special interface design team. The rest of the system should be developed
by others, who should adapt their work to the result of the interface team. Since it is
often assumed that the product is a mass market product, a good interface design is seen
as a good investment, even if it is a cumbersome process to achieve this.

5. The knowledge engineering tradition (KE). In KE, there is a strict focus on the
statements about the usage domain (called knowledge) which are built into the system.
It is seen as a difficult but challenging task to acquire this knowledge trough
investigation of written material and elicitation of knowledge from skilled persons
(called experts). What role the system should have in its use setting is typically not
emphasized.

We can perhaps also talk about an emerging tradition in CSCW, in which communication
between people is particularly focused. Currently, it appears rather to be a situation that CSCW
is a meeting place for researchers from several different traditions, and from several different
disciplines, rather than being a tradition of its own. CSCW may thus function as an important
meeting place between several traditions for systems development. The obvious risk, however,

36

is that CSCW emerge as an arena where different traditions defend their own assumptions rather
than try to understand each other and make use of each others contributions.

I claim, finally, that each of these traditions have important knowledge to provide to
information systems development practice and research, but that incompatibility and
implicitness of assumptions, use of tradition-specific language, and the low degree of exchange
between the traditions effectively block much of the positive impact this knowledge could have.

Dialogical Software Design

Jürgen Pasch

Software developement is not merely a mathematical or technological challenge, but acomplex
social process, in which the kind of communication and cooperative, creative interaction of the
participants determine the quality of the collaboratively developed product. Qualified design is
not primarily tied to given guidelines, but is guided by insights emerging in the design process
and by the quest for quality shared by all participants. Practical experiences in system design,
as well as my systematic field study reveal that thequality of the social process is of primary
importance [1], [2].

Design first and foremost requires experience, intuition, imagination, and common sense.
The designer orients himself by his tried and tested patterns of architecture.

In the design situation the participants carry on anargumentative dialogue. Concepts or
models are suggested, brought into question, assessed and evaluated, and counter proposals are
made. The Norwegian sociologist Stein Bråten demonstrated the role of models in
communication processes [3].

If dialogue partner A possesses a sound model of the domain under consideration he is the
model–strong actor. Themodel–weak partner B has no elements of this domain that are not a
subset of A’s model. With his model, A has pre–defined the domain under consideration. Bråten
calls this situationasymmetric dialogue.

For clarification an example: A work group should design a program system. A group
member brings a prepared design — the model — to the project meeting. The other group
members have not worked out any definite ideas because they expected to draw up the design
collaboratively. The model–weak members of the group find that they must examine the pre–
defined model, which they must first understand. This understanding means the adoption of the
model. All further argumentation for or against the model can only be expressed in terms of the
model with the result that the model becomes more established.

Bråten summarizes this adaption to the model in two theses: If Bwants to maintain the
dialogue he is forced to express himself in terms of A’s model, which he must first understand.
He is therefore dependent on A. Ironically, the more successfull his attempt to strengthen his
weak position through his understanding of A’ s model, the more he comes under A’s control.
A now has ultimate power through his ability to a)simulate and declare his model as sound and
b) tosimulate B’s simulations, which B needs to understand the model.

There is a further dilemma: If the dialogue partners havea number of models, which have
little or nothing in common communication and participation are impossible.

37

When the dialogue partnersintersubjectively cross their perspectives, this is asymmetric
dialogue. By perspective I mean a class of related views on relevant aspects of an area on
concern from a common view–point. In this type of dialogue statements such as „I understand
what you mean“ or „I am not of your opinion“ are possible. Only a division among the actors
of the domain of concern in disjunctive subsets make these statements possible. In symmetric
dialogues the developers gain a shared understanding, which enables them to act collaboratively
or individually as defined by the group. While perspective is always implied in our thinking, we
can attempt to make them explicit, allow them to interact and gain deeper insight from their
interrelation. Thus, I see in multiperspectivity a prerequisite for dialogical design.

The (technical) quality of program systems depends on the quality of their design and on the
accurate realization of this design as an implementation.

A desirable system design is distinguished by straightforward orientation towards the design
achieved at any given time, i.e. the design decisions are characterized by coherence, conceptual
integrity and — finally — by their completeness with respect to the task assigned.

If this standard of quality is to be met even after a module–oriented division of labour, then
all subsequent module–local design decisions and revisions of the system design must satisfy
the conceptual integrity. Ideally, this requiresa holistic understanding of the system design
which is best acquired by participation in the design process itself.

This emerges when the program system is dialogically designed through the intersubjective
crossing of perspectives and when the group comes to an understanding through a common
perspective in respect to the theory of the program system. This common perspective enables
each member of the group to change, expand and reconstruct the program — even after its
completion according to the theory.This quality is impossible without the developers. The
overall understanding obtained during dialogical design cannot be disseminated in documents.
It is therefore clearly preferable that the same people participate in the design and realization
activities.

I collected data on the effect of collaborative work on designing the architecture of software
and its implementation from 25 student groups. The two main findings of my field–study with
respect to „symmetric–dialogue groups“ were: These groups negotiated aconsensual definition
of the situation of the outset. During the design process they developedtechniques of mutual
considerations and contradictions. This is a group–specific ever–recurring dialogue pattern,
which I callostinato. The musical term ostinato means a persistant recurring bass. In dialogical
design it means a persistant recurring dialogue pattern.

The definition of the situation entails intersubjectively valid group consensus on working
practices, group meetings, roles, thought–, speech–, and participating schemata, acceptable and
unacceptable behavior and the ostinato to be developed. I observedthe definition of the situation
is of primary importance for dialogical design.

The rivalry generated by mutual contradiction proved to be a positiv and vital force in the
group dynamic. Suggested ideas are exhaustively discussed, further developed or refuted
according to their usefulness. It is characteristic to these groups that patterns of behaviour
emerged during the process, which ultimetely lead to understanding as long as the definition of
the situation is valid. Vehement situations are considered as „normal“ by the students.

A strong identification and a holistic understanding of the designed system of the group
members is striking.These groups embody their programs.

Groups operating with asymmetric dialogue arrive atpathological types of system design such
as the following:

38

Design by Dominance.A person or a group of persons monopolizes the design process. The
dominant party views the others’ lack of understanding or their passive position as
incompetence. To avoid conflicts between the active and the passive party, a few modules
emerge, which — in the eyes of the dominant side relate to the implementing abilities „of the
rest“. The participants’ roles, and thus the latent group conflict, are frozen until the end of the
project, and theyshape the product structure. Non–participants have a hard time in grasping the
inherent logic of the product structure.

Design by Patchwork.The group members or subgroups try to avoid cooperation. They
disperse the „design“ as soon as possible into as many subsystems as there are parties. These
subsystems, taken by themselves, may be well designed. But the system as a whole is
characterized by redundancy of algorithms and data objects. Moreover the interfaces between
the subssytems are awkward, reflecting the lack of cooperation. Good cooperative work is more
than the total of the work of each member of the group.

Social processes cannot be formalized or controlled but influenced. Conventional software
development methods for design have their place, but need to be tailored to the needs of the
communicative processes at hand, so as to show multiperspectivity. Methods do not determine
the quality of software products, but people involved in the design processes allow quality to
emerge. Fundamental prerequisities for being able to carry out cooperative work are human
abilities in dialogue, mutual acceptance and an organizational setting, which enables the
autonomy of the design group.

References

[1] Pasch, J.:Software-Entwicklung im Team. Mehr Qualität durch das dialogische Prinzip
bei der Projektarbeit. Springer-Verlag: Berlin, Heidelberg, New York, 1994.

[2] Pasch, J.: Dialogical Software Design. In: Bullinger, H.J. (Hrsg.):Proceedings of the 4th
International Conference on Human-Computer Interaction.Stuttgart, September 1991.
Elsevier: Amsterdam, London, New York, Tokyo, 1991; S. 556 - 560.

[3] Bråten, S.: Asymmetric Discourse and Cognitive Autonomy: Resolving Model
Monopoly through boundary shifts. In: Pedretti, A. (Hrsg.):Problems of Levels and
Boundaries; Princelet Editions: London Zürich, 1983; S. 7-28.

39

A Technique to Help Overcome Communication Barriers

G. Blain, N. Revault, J-F. Perrot, H. Sahraoui

We feel that one of the research trends that we are pursuing could provide an interesting tool in
cooperative work. The idea is to see the computer as a help toward a better understanding
between people working on a joint project.

Our basic postulate is that having to formulate one's thoughts through a computer-interpreted
medium helps in clarifying them, in removing unexpressed assumptions etc. This is the
cornerstone of the so-called "metamodelization" technique we are developing at LAFORIA,
which I shall briefly outline here.

Specifically, we are exploring a technique for bridging the gap between the user's and the
implementor's points of view in designing a software application. The software tool that
implements this technique relies heavily on OO technology and on rule based programming. It
borrows part of its inspiration from the AI subfield of Knowledge Acquisition. One of its
applications

The basis of our approach is to provide two different models of the application, one on the
user's side (call it UM), the other on the implementor's side (IM), together with a transformation
mechanism (TM) that maps the first onto the second. Model UM is supposed to be easily
understandable by the user - actually, it should be produced by the user herself - whereas model
IM ought to be readily executable by the computer, that is, it should be directly translatable into
some executable formalism. Transformation TM, of course, should operate in a way that
ensures adequacy between the meaning of model UM as intended by the user and that of model
IM as evidenced by the execution mechanism.

A typical example is the design of a Relational Database scheme. UM will be some sort of
semantic network, whereas IM will be expressed in a SQL-like formalism. TM will embody the
expertise of th DB designer.

Now the two models are expressed in different formalisms. The key idea behind our method
is that those formalisms do not need to be fixed, but that instead each one must be defined
specifically for the application at hand. Following standard object-oriented philosophy, such a
formalism is reified into a (Smalltalk) object which we call a metamodel. This name is justified
by the nature of the link between the model and its metamodel, which parallels the link between
an instance and its class, and a class and its meta-class, in OO Programming. Before creating
our two models UM and IM, we must build the two metamodels UMM and IMM. In our
example, UMM will specify the sort of semantic network that we use and IMM will describe
our pre-SQL notation for RDB schemes.

For a UM-to-IM translation between models to be possible, there must be some sort of
relationship between the metamodels UMM and IMM. This very relationship is materialized by
the set of rules that define transformation TM. If the correspondence between UMM and IMM
is close, the rules will be simple, if not they will need the elicitation of a good deal of
knowledge, as is the case with the database example. The complexity of the rule base somehow
measures the distance between UMM and IMM.

One way to use the technique is to define an interpretable IMM that is close enough to the
UMM so as to preserve some of its graphic properties and to endow it with an mechanism that
visualizes the interpretation process. By running the process on several examples the user can
thus "verify" that the behavior of her model actually conforms to her expectations. This is a

40

crude but efficient way of testing specifications. Our team designed such a piece of software
that is now in use in an insurance company.

We propose here to apply this approach to interhuman communication : if two persons P1
and P2 are to communicate at all, there must be some correspondence between the "languages"
they use (i.e. the metamodels UMM1 and UMM2). This correspondence should be exhibited by
one common interpretable IMM and two transformation rules T1 : UMM1 -> IMM and T2 :
UMM2 -> IMM. Suppose that what P1 has in mind is described by a model UM1 (in formalism
UMM1) - resp P2, UM2, UMM2. The transformed models T1(UM1) and T2(UM2) - both in
IMM - are certainly different, but some comparison of their meaning can be obtained by
concurrently visualizing their interpretation.

References

Revault, Sahraoui, Blain, Perrot : A Metamodelling technique : The MetaGen System. In:
TOOLS-Europe '95.

P1 (UMM1)

UM1

T1 (IMM) T2 (UMM2) P2

T1 (UM1) T2 (UM2)T1 T2 UM2------►

-----►

/ '
/ '

/ '

◄-----

/ '
/ '

/ '
/ '

/ '
◄-----

41

Living the Gap

Jörg Pflüger

Those who have no idea that it is possible to err cannot
learn anything else than know-how.

Gregory Bateson

The interdisciplinary problem in computer science represents a modern version of the old
dichotomy of explaining and understanding. Any established piece of software (or software
system) can be considered as an "explanation" of the problem which it undertakes to solve. It
changes and fixes systematically the task in question and there upon people's further experience
- it "constructs reality". The social environment of formal systems has to be understood as a
transcending difference. A "hermeneutic view" is necessary to reconstruct the parts of reality
lost in formal reduction. Therefore, the above mentioned dichotomy addresses essentially a
problem of "languages". One has to deal with the incompatibility of the discrete, unambiguous
language of formal artifacts with the informal concepts of everyday life, social relations,
conflicts, and power structure. That means, interdisciplinarity is not so much a problem inter
disciplines than between different views, concepts, attitudes, approaches, and methods.

In my opinion computer science will only survive as a discipline in its own right if it attempts
to integrate these different languages; that is, we have to educate people who are able to stand
the tension between the irreducible semantic levels of formal representations and their informal
counterparts. Mediating heterogeneous ways of thinking seems to me more important than
bringing together results and theories from different disciplines. This does not lead to a
productive way of "bridging the gap" (in which I don't believe anyway), assigning the social
sciences in connection with computer science an essentially "negative", critical role:

Social scientists should teach software engineers to question what they are doing - not to take
too much for granted, neither with respect to their own concepts nor what they know about the
problem in question. They should be trained to acquire adequate knowledge by participatory
observation and by talking to their clients. They have to understand why the users complain and
what has been lost after the reduction of complicated processes to formal artifacts.

Referring to possible changes of a curriculum in computer science the integration of social
aspects has to concentrate on a confrontation of methods rather than on the additive presentation
of empirical facts. We have to teach a "will to know", how to understand ambivalent relations
which reflect conflicts and antagonisms, and what it means to err. Stretching the argument a
little further I would say: A computer scientist who could interpret poems and judge moral
dilemmata would be a better computer scientist.

42

Some Remarks about Formal and Informal Specification
Methods in the Context of Software Development

Matthias Rauterberg

Starting point for our reflections

Analysis of current software development processes brings to light a series of weaknesses and
problems, the sources of which lie in the theoretical concepts applied, the traditional procedures
followed (especially project management) as well as in the use of inadequate formal design
methodologies. This chapter contains an ample store of proposed solutions based on current
practice in software development. These point to the significance of a domain specific
formalism. Analysis of actual software development processes shows that there are three
essential barriers: the specification barrier, the communication barrier and the optimisation
barrier (Rauterberg & Strohm 1992).

Speaking quite generally, one of the most important problems lies in coming to a shared
understanding by all the affected goups of the component of the worksystem to be automated
(Naur 1985) - that is, to find the answers to the questions of "if", "where" and "how" for the
planned implementation of technology, to which a shared commitment can be reached. This
involves, in particular, determining all the characteristics of the work system that are to be
planned anew (Rauterberg 1993). Every work system comprises a social and a technical
subsystem. An optimal total system must integrate both simultaneously. In order to arrive at the
optimal design for the total working system, it is of paramount importance to regard the social
subsystem as a system in its own right, endowed with its own specific characteristics and
conditions, and a system to be optimised when coupled with the technical subsytem.

Barriers in the framework of traditional software development

The "specification barrier" is an immediate problem even at a cursory glance. How can the
software developer ascertain that the client is able to specify the requirements for the subsystem
to be developed in a complete and accurate way which will not be modified while the project is
being carried out? The more formal and detailed the medium used by the client to formulate
requirements, the easier it is for the software developer to incorporate these into an appropriate
software system. But this presumes that the client has command of a certain measure of
expertise. However, the client is not prepared to acquire this - or perhaps is in part not in a
position to do so - before the beginning of the software development process. It is therefore
necessary to find and implement other ways and means, using from informal through semi-
formal to formal specification methods.

It would be a grave error with dire consequences to assume that clients - usually people from
the middle and upper echelons of management - are able to provide pertinent and adequate
information on all requirements for an interactive software system. As a result, the following
different perspectives must be taken into consideration in the analysis and specification phases.

The "communications barrier" between applier, user and end-user on the one hand and the
software developer on the other is essentially due to the fact that "technical intelligence" is only
inadequately imbedded in the social, historical and political contexts of technological
development. Communication between those involved in the development process can allow

43

non-technical facts to slip through the conceptual net of specialised technical language, which
therefore restricts the social character of the technology to the functional and instrumental.

The application-oriented jargon of the user flounders on the technical jargon of the
developer. This "gap" can only be bridged to a limited extent by purely linguistic means,
because the fact that their respective semantics are conceptually bound make the ideas applied
insufficiently precise. Overcoming this fuzziness requires creating jointly experienced,
perceptually shared contexts. Beyond verbal communication, visual means are the ones best
suited to this purpose. The stronger the perceptual experience one has of the semantic context
of the other, the easier it is to overcome the communications barrier.

At its best, software development is a procedure for optimally designing a product with
interactive properties for supporting the performance of work tasks. Because computer science
has accumulated quite a treasure trove of very broadly applicable algorithms, software
development is increasingly focussing attention on those facets of application-oriented software
which are unamenable to algorithmic treatment. While the purely technical aspects of a software
product are best dealt with by optimisation procedures attuned to a technical context, the non-
technical context of the application environment aimed at requires the implementation of
optimisation procedures of a different nature.

It would be false indeed to expect that at the outset of a larger reorganisation of a work
system any single group of persons could have a complete, exact and comprehensive view of
the ideal for the work system to be set up. Only during the analysis, evaluation and planning
processes are the people involvable to develop an increasingly clear picture of what it is that
they are really striving for. This is basically why the requirements of the applier seem to
"change" - they do not really change but simply become concrete within the anticipated
boundary constraints. This process of crystallisation should be allowed to unfold as completely,
as pertinently and - from a global perspective - as inexpensively as possible. Completeness can
be reached by ensuring that each affected group is involved at least through representatives.
Iterative, interactive progress makes the ideal concept increasingly concrete. There are methods
available for supporting the process of communication which ensure efficient progress (Nielsen
1990) (Nielsen 1993).

First steps to implement technology

The analysis phase is frequently the one most neglected. This is essentially due to the fact that
methods and techniques need to be used primarily the way occupational and organisational
sciences have developed and applied them (e.g., Maculay et al 1990). Inordinately high costs
incur from the troubleshooting required because the analysis was less than optimal (Rauterberg
& Strohm 1992). The time has come to engage occupational and organisational consultants at
the analysis stage who have been especially trained for software development!

Once the analysis of the work system to be optimised has been completed, the next stage is
to mould the results obtained into implementable form. Methods of specification with high
communicative value are recommended here. Sufficient empirical evidence has accumulated by
now to show that task and user oriented procedures in software development not only bring
noticeable savings in costs, but also significantly improve the software produced (Karat 1990).
How then, can the both barriers mentioned above be overcome?

The first thing is to determine "if" and "where" it makes sense to employ technology.
"Although the view is still widely held that it is possible to use technology to eliminate the
deficiencies of an organisation without questioning the structures of the organisation as a whole,

44

the conclusion is nevertheless usually a false one" (Klotz 1991). The intended division of
functions between man and machine is decided during the specification of the tool interface.
The tasks which remain in human hands must have the following characteristics (Volpert 1987)
(Ulich et al 1991):

1. sufficient freedom of action and decision-making; 2. adequate time available; 3. sufficient
physical activity; 4. concrete contact with material and social conditions at the workplace
activities; 5. actual use of a variety of the senses; 6. opportunities for variety when executing
tasks; 7. task related communication and immediate interpersonal contact.

Once those concerned are sufficiently clear about which functions are amenable to
automation, the next step which should be taken is to test the screen layout on the end-users with
hand-drawn sketches (the extremely inexpensive "pen and paper" method). If the range of
templates is very large, then a graphics data bank can be used to manage the templates produced
on a graphics editor. The use of prototyping tools is frequently inadvisable, because tool-
specific presentation offers a too restrictive range of possibilities. The effect of the structuring
measures taken can be assessed with the help of discussion with the end-users, or by means of
checklists.

The use of prototypes to illustrate the dynamical and interactive aspects of the tools being
developed is indispensable for specifying the dialogue interface. However, prototypes should
only be used very purposefully and selectively to clarify special aspects of the specification -
not indiscriminately. Otherwise there looms the inescapable danger of investing too much in the
production and maintenance of "display goods". A very efficient and inexpensive variation is
provided by simulation studies, for example, with the use of hand prepared transparencies,
cards, etc. which appear before the user in response to the action taken (Karat 1990).

Simple and fast techniques for involving users include discussion groups with various
communication aids (metaplan, layout sketches, "screen-dumps", scenarios, etc.),
questionnaires for determining the attitudes, opinions and requirements of the users, the "walk-
through" technique for systematically clarifying all possible work steps, as well as targeted
interviews aimed at a concrete analysis of the work environment (Grudin, Ehrlich & Shriner
1987) (Macaulay et al 1990) (Nielsen 1993). Very sound simulation methods (e.g. scenarios,
"Wizard of Oz" studies) are available for developing completely new systems without requiring
any special hardware or software. Nielsen (1993) presents a summary of techniques for the
analysis and evaluation of interactive computer systems.

Conclusion

One of the principal problems of traditional software development lies in the fact that those who
have been primarily involved in software development to date have not been willing to
recognise that software development is, in most cases, mainly a question of occupational and/
or organisational planning. Were software development to be approached from such a
perspective, it would be planned from the beginning to engage experts in occupational and
organisational planning in the process of software design. This would require interdisciplinary
cooperation between occupational and organisational experts on the one hand and software
development experts on the other. The extensive qualification required in each of these fields
makes it virtually impossible to dispense with such interdisciplinary cooperation. We must start
learning to jointly plan technology, organisation and the application of human qualification.

45

References

Karat C.-M., 1990: Cost-Benefit Analysis of Iterative Usability Testing. In: Diaper, D. et al.
(ed.)Human-Computer Interaction - INTERACT '90. Amsterdam: Elsevier Science. 351-
356DIAPER D

Klotz, U., 1991: Die zweite Ära der Informationstechnik. Harvard Manager 13(2): pp. 101-112

Naur, P., 1985: Programming as Theory Building. Microprocessing and Microprogramming
15: pp. 253-261

Nielsen, J., 1990: Big paybacks from 'discount' usability engineering. IEEE Software 7(3): pp.
107-108

Nielsen, J., 1993:Usability Engineering. London: Academic Press.

Rauterberg, M., 1993: Anforderungen an die Prozessgestaltung der Softwareentwicklung. In:
W. Coy, P. Gorny, I. Kopp & C. Skarpelis (Hrsg.):Menschengerechte Software als
Wettbewerbsfaktor. (German Chapter of the ACM Berichte, Band 40); Stuttgart: Teubner.
pp. 592-599.

Rauterberg, M., & O. Strohm, 1992: Work Organization and Software Development. In: P.
Elzer & V. Haase (eds.):Proceedings of 4th IFAC/IFIP Workshop on "Experience with
the Management of Software Projects". Annual Review of Automatic Programming 16(2):
pp. 121-128

Ulich, E., M. Rauterberg, T. Moll, T. Greutmann, & O. Strohm, 1991: Task Orientation and
User-Oriented Dialogue Design. International Journal of Human Computer Interaction
3(2): pp. 117-144

Volpert, W., 1987: Kontrastive Analyse des Verhältnisses von Mensch und Rechner als
Grundlage des System-Designs.Zeitschrift fr Arbeitswissenschaft 41: pp. 147-152

46

Social Dimensions

Mike Robinson1

This paper to some extent reflects the dilemmas posed in the Motivation to the Dagstuhl
Seminar — namely that software engineering tends “to focus on structural and technical
properties of programs rather than on process aspects”. There is a ubiquitous tendency for the
software tail to wag the social dog. The process is repeated in exaggerated form with the
appearance of Virtual Reality (VR) and Cyberspace. The possibility of three dimensional
representation was actualised. This was mainly a technical achievement. With helmet and
gloves (or even with a simple “spaceball”) it became possible to climb in with the images, to
push them around like surreal footballs on the moon. The technical achievement was
breathtaking. Quite what moonball has to do with CSCW or with work in general still has to be
explained— although there is no shortage of pundits projecting the transformation of life, the
universe, and everything (Benedikt, 1992). And with a multi- and hyper-media supporting
INTERNET, with computer power, accessibility, and connectivity continuing on a unique and
impossible exponential, there is an intuitive feeling they may be right. Social control, social
specification of the desiderata of cyberspace seem illusory. Social science once again trots along
meekly behind the turbulent frontiersmanship, the revolutionary interventions of the financially
and politically backed visions of the technical. In general, it is left to find a place rather than
specify the space......

The term social dimensions arose as a complement to “spatial dimensions” in VR within the
COMIC Project. Spatial dimensions both describe the nature of the space provided by VR, and
the possibilities of movement within it. Space is uniform: i.e.any point has a position relative
to any other point, andany object has position, height, width, breadth, and may have properties
such as colour, texture, movement, momentum, spin, etc. Measurement is always in the same
units, whatever the nature of the object, wherever it may be. Thus Cyberspace is considered to
be “a place”,one place. It is a place where people can meet. It is a place in the same way that
our planet is a place. Any position on it can be reached and calculated from any other place. The
notions of “virtual rooms”, “virtual cities” etc. re-inforce this notion that cyberspace is a place.
It is a natural metaphor.

Social dimensions was first introduced as a term that mirrored the physical dimensionality
of cyberspace. The idea was to allow different sorts of manipulation and movement that would
be informed by metaphors from work practice rather than from physicalist analogies. For
instance, sometimes it is nice to be open for casual meetings with others, sometimes it is not.
Sometimes it is important to be “peripherally aware” of what colleagues are doing, sometimes
it is not. These possibilities were envisaged in a “see” metaphor on which it was possible to
move between settings with a spaceball. In “infra-red” extreme the user would see only “warm”
objects (people); in “white light” people and most objects are visible; in “ultra violet” only
objects are visible; at the “x-ray” extreme it is possible to “see into” objects (their code, for
instance). All gradations between settings are possible, thus supporting people in achieving their
own most useful visualisations. This first example of a “social dimension” was very close to a

1.With thanks to the ESPRIT COMIC Basic Research Project for supporting this work.

47

physical dimension — but included the notion of “tailoring”, or the person using the system
configuring it personally, differently from others.

A workshop was held earlier this year in Aarhus to discuss “social dimensions”. (Robinson,
1994b). The main conclusions that emerged were: a shifting but ever present division between
structural and environmental features that were/ were not under the control of people using the
system; the importance of uneven infrastructures and their social consequences. The best
example of the latter is the (Star and Ruhleder, 1994) in their study of a distributed,
heterogeneous scientific community. An example directly from VR is provided by (Benford et
al., 1994)who discuss problems of interaction between those with two- and three-dimensional
access to VR systems.

Another spontaneous distinction made by most people is between local and wider contexts,
accompanied by a desire to have the ability to treat them differently in terms of access, privacy,
etc. (Robinson, 1994a). As before, this demands that VR systems are tailorable. To some extent
this is provided in Cyberspace prototypes by the ability to have “meeting rooms”, “conference
tables”, etc. which give a local, private(ish) context.

(Nardi, 1993) advances a more radical thesis on tailorability. She argues that, ultimately, it
is neither a possible competence nor a feasible activity for systems designers to try and provide/
structure applications for “domain experts” — people with a deep knowledge of an activity or
subject who wish to support themselves with computers. Instead designers should content
themselves with providing tools, with accessible technical environments that “domain experts”
can utilise to structure their own environments according to their own needs and aesthetics.
Nardi’s viewpoint seems admirably suited to VR, and can be seen in the work of (Mariani et al.,
1994) on VR-VIBE, MASSIVE, etc. In these systems, users are able to set and manipulate their
own mappings between properties of objects and spatial and other dimensions in Cyberspace.
In effect, “domain experts” are able to create and inhabit their own worlds.

At this point we find that cyberspace has broken its own boundaries. Instead of a single (even
if large) chrysalis of “place”, a universe of many, possibly infinitely many worlds has
butterflied. Different mappings of the properties of objects-in-the-world onto spatial and
coloured dimensions of virtual reality give different worlds. Worlds that reflect orthogonal
comprehensions. Worlds between which movement and communication is extremely
problematic. Indexicality, the root of mutual comprehension and conversation, fails between
such worlds — which not only have their own syntax and semantics, but their own forms of life,
their own physics. Even the taken for granted distinctions between subject and object, between
objectivity and subjectivity fail to hold, fail to have any traction between such worlds.

In this multi-worlded Cyberspace we have achieved something very like normality, like
everyday experience, like the world as we know it. Unbounded; contradictory; largely
unexpected except in small, safe, well-known corners. Comprehending usage is rather like
asking what a continent is for — more a category mistake than a sensible question. Crafting the
world, and cyberspaces that are part of it, is irreductably an interdisciplinary exercise to say the
least! The dominance of the technical is an illusion following from a “waterfall conception” of
design and implementation preceding use. All systems are redesigned in use. And from this
perspective use precedes design. The problem for interdisciplinarity is not the precedence of the
technical, not the absence of some discipline or other, but — like VR, like all other human
efforts — how to live with, and make the best of incommensurables.

48

References

Benedikt, Michael. 1992:Cyberspace, First Steps. Cambridge, MA: MIT Press.

Benford, Steve, Chris Greenhalgh, Lennart Fahlén, and John Bowers. 1994:Embodiment.
COMIC Report. University of Lancaster, 1994.

Mariani, John, Tom Rodden, Andy Colebourne, Steve Benford, Adrian Bullock, and Dave
Snowdon. 1994:Populated Information Terrains. COMIC Report: Lancaster University,
1994.

Nardi, Bonnie, A. 1993.A Small Matter of Programming: Perspectives on End User
Computing. Cambridge, MA: MIT Press.

Robinson, Mike. 1994a:Finger Tips: Summary of an informal survey of uses of UNIX “finger”,
with implications for new “fingers” and related event distribution mechanisms. GMD
(FIT-CSCW), 1994a.

Robinson, Mike. 1994b:Supporting Social Dimensions In Large Information Spaces: Report
On A Joint Comic/Eurocode Workshop, Ärhus, 10 & 11 May, 1994. COMIC SF 4.6,
1994b.

Star, Susan, Leigh and Karen Ruhleder. 1994. Steps towards an Ecology of Infrastructure. In
CSCW ‘94, Chapel Hill, N. Carolina, USA. ACM.

Empirical Analysis of Software Design Processes:
One Approach to Interdisciplinarity

Sabine Sonnentag

At the Dagstuhl seminar various approaches to interdisciplinary design have been discussed.
One possibility and necessity for interdisciplinary work between computer science/informatics
and psychology is the empirical analysis of work processes in software design and software
development. With this research actual work processes in the field can be described. It can be
evaluated to what extent 'new' approaches to design, such as user participation, and methods are
applied and what factors might inhibit their successful use. This research can reveal major
problem areas both at the indicidual and the team level. For a summary of this research cf.
Brodbeck & Frese (1994) and Frese & Hesse (1993).

More cognitive-oriented research at the individual level showed that software design is often
not performed in the way methods developed in computer science prescribe that software design
should be. This can be drawn from the literature on opportunistic vs. top-down behavior (e.g.,
Guindon, 1990) and from our work on planning processes in software design (Sonnentag &
Frese, 1994).

Therefore, the mere recommendation of 'better' design approaches, methods, and tools is
relatively useless unless we can not be sure that the prerequisites of their successful application
- in the cognitive, motivational, social, and organizational area - are given.

49

References

Brodbeck, F.C. & Frese, M. (Eds.)(1994):Produktivität und Qualität in Software-Projekten.
Psychologische Analyse und Optimierung von Arbeitsprozessen in der Software-
Entwicklung.Muenchen: Oldenbourg.

Frese, M. & Hesse, W. (1993): The work situation in software development. Results of an
empirical study.Software Engineering Notes, 18 (3), pp. 65-72.

Guindon, R. (1990): Designing the design process: exploiting opportunistic thoughts. Human-
Computer Interaction, 5, pp. 305-344.

Sonnentag, S. & Frese, M. (1994): Planning Processes in Software Designers. Paper presented
at the Workshop 'Integrating cognitive and organizational approaches to the study of
computer-based systems' of the European Association of Cognitive Ergonomics,
09.09.1994, Bonn.

Evaluation of Computerized Work
Recent Problems in Cognitive Ergonomics

Chris Stary

When it comes to the evaluation of computerized workplaces traditional methodologies of
cognitive ergnonomics are not suitable. The main reason for that difficulty is their orientation
towards software features instead of the orientation towards tasks and users. However, the EC-
Directive for Human-Computer Interaction 1990 requires an evaluation against task and user
appropriateness, transparency, flexibility, and control for each interactive workplace in a
company. Since there exists no proper instrument for checking these criteria, an
interdisciplinary approach for the development of such an instrument involving researchers
from computer science, cognitive psychology, work psychology, and organizational theory has
been started. The crucial issues in development are the clarification of ambiguous terms and
notions, the scientific interpretation of the EC-Directive, and the reliability and validity of the
methodology, integrating knowledge from the mentioned disciplines.

50

Design Methods and their Use –
A Question of Rationality Resonance?

Erik Stolterman

The skepticism and reluctance of practitioners to use system design methods is well-known and
by some considered as a problem. Why is it that practitioners seems to be so unwilling to use
methods which are developed by highly qualified and experienced practitioners and
researchers? Is there anything wrong with the methods or maybe with the practitioners? Or is it
anything wrong with the basic idea of methods?

I am working with the above mentioned phenomena which in this context will be called the
methodological misfit. This misfit is quite well-known and there are some attempts to overcome
the problem. My hypothesis is that there is a common basic assumption behind many of these
attempts. I will use the concept of rationality resonance to label that assumption. Rationality
resonance can be described as the relation between the rationality underlying a certain system
design method and the idea of rationality carried by the practitioner. It is often assumed that
there has to be a resonance between these two, if the method should be understood and used. I
will question the idea that rationality resonance is what designers of methods should strive for.
Some general aspects on the concept of rationality and its relation to methods are presented.
And also some comments upon the relation and difference between rationality and rational
actions.

The idea of rationality resonance can be used to reveal some of our most fundamental
assumptions concerning the whole idea of methods as a way of supporting the design process.
And it will maybe help us to give some new interpretations and some new understanding of the
phenomena of methodological misfit."

Position Statement for the Dagstuhl Seminar on
Multidisciplinary Design

Lucy Suchman

I come to this seminar as an anthropologist who's been working for the past 15 years in an
industrial research center dedicated to the invention of new computer-based technologies.
During the time that I've been involved in this world I've been drawn increasingly into the
activities and concerns of system design. The issues that I'd like to propose for our discussions
are informed by my background and reflections on my current position and experiences within
the terrain of "multidisciplinary design." They include the following considerations and
questions:

•A critical consideration of the various interests pressing for the incorporation of more
disciplines into design. I'm concerned here with how it is that "multidisciplinary design"
might involve on the one hand a kind of voluntary joining together of different

51

perspectives in the interest of creating useful artifacts, and on the other an enrollment of
more and more disciplines into the service of producing and marketing new commercial
products. While I'm not suggesting that there is any inherent conflict between these two
agendas, I do think we need to be clear about the differences.

•Closely tied to this, the question of relative power and resource distribution among the
"disciplines" (or more broadly, knowledges -- see below) engaged in design activities.
Are they in fact equally valued, or do some dominate while others are seen as providing
peripheral, albeit crucial services? What would it mean to move toward a more
genuinely symmetrical multidisciplinarity?

•I take it that a goal of multidisciplinary design is to incorporate a greater range and
diversity of knowledges into the creation of new artifacts. On that premise, I'd like to
question the notion of "disciplines" and the extent to which that term really expresses
the diversity of relevant knowledges. I'm concerned here with extending the scope of
our discussions from a focus on academic training to a focus on institutional locations
of design and their implications for the definition of relevant knowledges and the
structuring of working relations and practices.

•Finally, I think we need to open up the notion of "design" from bounded events
associated exclusively with particular sites of professional practice, to an extended
course of ongoing activities of technology production and use, taking place across sites
and involving diverse (and differentially visible) participants. The sense of
"multidisciplinarity" changes on this latter view of design.

In general I believe that the transformation of design into a multidisciplinary activity in the
fullest sense (that is, as something made up of multiple, equally valued knowledge and
experiences, taking place throughout the production and use of working technical systems)
requires forms of social change that extend well beyond the bounds of the disciplinary
elaboration of professional design practice. How might those of us positioned as academics/
industrial researchers contribute to bringing about that order of "multidisciplinarity"?

Position Paper for the Dagstuhl Seminar
"Interdisciplinary Foundations of Systems Design and

Evaluation"

Ina Wagner

My current research is centered around three major issues:

•the ways in which electronic networks contribute to the redefinition and creation of
terrains/milieus for individual and collective activity, with distinct spatial, temporal, and
cultural properties;

•the political uses made of these emerging potentialities (and the ethical and political
issues involved);

52

•the environment in which systems designers have to manoeuvre and how this shapes and
constrains the kinds of technical choices they develop.

Studying these issues requires to look carefully into observable practices of designing and using
IT systems. At present we are working on a series of case-studies, mostly in an exploratory
mode:

•We look into the work practices of small software teams that develop graphical software
under high time pressure for a large media organization; and of an edp-department
within an hierarchical organization which simultaneously works on large software
development projects and services its diverse clientele (researchers, administrators) on
a daily basis. We are interested in understanding the technological regimes these teams
use (tools, languages, programming styles, standards, methods, testing); in the involved
actor networks; in the design process, its CSCW aspects (shared resources, forms of
cooperation, articulation work, technical support); and in time-management practices
(the timing of project activities, temporal conflicts).

•We are studying how artists are using the technicalities for generating new work
practices, products, and relations to their "public". Based on case-studies of
programmable lighting in the theatre, of architectural practice and of film making, we
look into how artists combine tools and media; how they use computers for de-
stabilising form and content (also in their time-space relatedness) and for re-"writing"
and re-contextualising them. We also try to understand, in how far standardisation
(reducing the space for individual styles) and formalisation (abstract, rule-bound
procedures displace intuition and "bricolage") further the "de-professionalisation" of
specific artistic skills and techniques and their integration into other fields of practice.

•Our third "field" are current practices of remote work in two large computer firms. In
both cases we are involved in a pilot, involving qualified workers who alternatingly
work in their office, at their clients' work site and at home. On one hand we are interested
in observing creative uses of emerging new time-space structures. On the other hand our
task is to help shape technical and organizational support for this type of alternating
work. The political framework - a "high performance" setting in which people are forced
to operate in a "profit-center" mode - provides a special challenge for handling labour-
related issues such as working time regulations, the definition of access to communal
resources, management control.

Interdisciplinary design provides a strong orientation for all three projects. Their aim is to
understand and describe work practices and the (emergent) settings and organizational forms in
which they are embedded in ways which are useful for systems designers.

