Specification Problem

Manfred Broy’ and Leslie Lamport?®
nstitut fir Informatik, Technische Universitat Miinchen
“Systems Research Center, Digital Equipment Corporation
Email: broy@informatik.tu-muenchen.de, lamport@src.dec.com

1 The Procedure Interface

The problem calls for the specification and verification of a series of com-
ponents. Components interact with one another using a procedure-calling
interface. One component issues a call to another, and the second compo-
nent responds by issuing a return. A call is an indivisible (atomic) action
that communicates a procedure name and a list of arguments to the called
component. A return is an atomic action issued in response to a call. There
are two kinds of returns, normal and exceptional. A normal call returns a
value (which could be a list). An exceptional return also returns a value,
usually indicating some error condition. An exceptional return of a value e
is called raising exception e. A return is issued only in response to a call.
There may be “syntactic” restrictions on the types of arguments and return
values.

A component may contain multiple processes that can concurrently issue
procedure calls. More precisely, after one process issues a call, other processes
can issue calls to the same component before the component issues a return
from the first call. A return action communicates to the calling component
the identity of the process that issued the corresponding call.

2 A Memory Component

The component to be specified is a memory that maintains the contents of
a set MemLocs of locations. The contents of a location is an element of
a set MemVals. This component has two procedures, described informally
below. Note that being an element of MemLocs or MemVals is a “semantic”
restriction, and cannot be imposed solely by syntactic restrictions on the
types of arguments.

Name Read

Arguments loc : an element of MemLocs

Return Value an element of MemVals

Exceptions BadArg : argument loc is not an element of MemLocs.

MemFailure : the memory cannot be read.

Description Returns the value stored in address loc.

Name Write
Arguments loc : an element of MemLocs
val : an element of MemVals
Return Value some fixed value
Exceptions BadArg : argument loc is not an element of MemLocs, or
argument val is not an element of MemVals.
MemFailure : the write might not have succeeded.
Description Stores the value val in address loc.

The memory must eventually issue a return for every Read and Write call.

Define an operation to consist of a procedure call and the corresponding
return. The operation is said to be successful iff it has a normal (nonexcep-
tional) return. The memory behaves as if it maintains an array of atomically
read and written locations that initially all contain the value InitVal, such
that:

e An operation that raises a BadArg exception has no effect on the mem-
ory.

e Each successful Read(l) operation performs a single atomic read to
location [at some time between the call and return.

e Each successful Write(l, v) operation performs a sequence of one or
more atomic writes of value v to location [at some time between the
call and return.

e Each unsuccessful Write(l, v) operation performs a sequence of zero or
more atomic writes of value v to location [at some time between the
call and return.

A variant of the Memory Component is the Reliable Memory Component, in
which no MemPFailure exceptions can be raised.

Problem 1 (a) Write a formal specification of the Memory component and
of the Reliable Memory component.

(b) Either prove that a Reliable Memory component is a correct implemen-
tation of a Memory component, or explain why it should not be.

(c) If your specification of the Memory component allows an implementa-
tion that does nothing but raise MemkFailure exceptions, explain why this is
reasonable.

3 Implementing the Memory

3.1 The RPC Component

The RPC component interfaces with two environment components, a sender
and a receiwer. It relays procedure calls from the sender to the receiver, and
relays the return values back to the sender. Parameters of the component are
a set Procs of procedure names and a mapping ArgNum, where ArgNum(p) is
the number of arguments of each procedure p. The RPC component contains
a single procedure:

Name RemoteCall
Arguments proc : name of a procedure
args : list of arguments
Return Value any value that can be returned by a call to proc
Exceptions RPCFailure : the call failed
BadCall : proc is not a valid name or args is not a
syntactically correct list of arguments for proc.
Raises any exception raised by a call to proc
Description Calls procedure proc with arguments args

A call of RemoteCall(proc, args) causes the RPC component to do one of the
following;:

e Raise a BadCall exception if args is not a list of ArgNum(proc) argu-
ments.

e [ssue one call to procedure proc with arguments args, wait for the cor-
responding return (which the RPC component assumes will occur) and
either (a) return the value (normal or exceptional) returned by that
call, or (b) raise the RPCFailure exception.

e Issue no procedure call, and raise the RPCFailure exception.

The component accepts concurrent calls of RemoteCall from the sender, and
can have multiple outstanding calls to the receiver.

Problem 2 Write a formal specification of the RPC component.

3.2 The Implementation

A Memory component is implemented by combining an RPC component with
a Reliable Memory component as follows. A Read or Write call is forwarded to
the Reliable Memory by issuing the appropriate call to the RPC component.

If this call returns without raising an RPCFailure exception, the value returned
is returned to the caller. (An exceptional return causes an exception to be
raised.) If the call raises an RPCFailure exception, then the implementation
may either reissue the call to the RPC component or raise a MemFailure
exception. The RPC call can be retried arbitrarily many times because
of RPCFailure exceptions, but a return from the Read or Write call must
eventually be issued.

Problem 3 Write a formal specification of the implementation, and prove
that it correctly implements the specification of the Memory component of
Problem 1.

4 Implementing the RPC Component

4.1 A Lossy RPC

The Lossy RPC component is the same as the RPC component except for
the following differences, where ¢ is a parameter.

e The RPCFailure exception is never raised. Instead of raising this excep-
tion, the RemoteCall procedure never returns.

e If a call to RemoteCall raises a BadCall exception, then that exception
will be raised within ¢ seconds of the call.

e If a RemoteCall(p, a) call results in a call of procedure p, then that call
of p will occur within § seconds of the call of RemoteCall.

e If a RemoteCall(p, a) call returns other than by raising a BadCall ex-
ception, then that return will occur within ¢ seconds of the return from
the call to procedure p.

Problem 4 Write a formal specification of the Lossy RPC component.

4.2 The RPC Implementation

The RPC component is implemented with a Lossy RPC component by pass-
ing the RemoteCall call through to the Lossy RPC, passing the return back
to the caller, and raising an exception if the corresponding return has not
been issued after 26 + € seconds.

Problem 5 (a) Write a formal specification of this implementation.

(b) Prove that, if every call to a procedure in Procs returns within € seconds,
then the implementation satisfies the specification of the RPC component in
Problem 2.

Solutions

A TLA+ Solution to the “Dagstuhl Problem”

Martin Abadi’, Leslie Lamport?, and Stephan Merz*
I Systems Research Center, Digital Equipment Corporation
“ Institut fiir Informatik, Technische Universitat Miinchen
Email: {ma,lamport}@src.dec.com, merzQinformatik.tu-muenchen.de

We give specifications for the unreliable and reliable memory components,
the RPC component, and of clerks that connect these components in TLA+,
as well as rigorous proofs of refinement between systems built from these
components.

Our specifications are written as open system (“assumption/guarantee”)
specifications, using an interleaving style with synchronous communication.
Component behaviors are specified in terms of hidden (existentially quanti-
fied) internal state components. We reuse previously established specifica-
tions for the data part and the real-time aspects.

The refinement proof illustrates that a standard composition rule proved by
the first two authors can be applied to a practical example of moderate size.
Our proofs are rigorous rather than formal. We give a short discussion on
what parts could be mechanized.

The Dagstuhl Problem by Broy and Lamport
A Solution Based on Composing High Level Nets at
Transition Interfaces

Eike Best
Institut fiir Informatik, Universitat Hildesheim
Email: e.best@informatik.uni-hildesheim.de

A framework is presented in which the transitions (and the places, but this
is of no importance for this problem) of a High Level Petri Net can have
two kinds of annotations: one kind governs their vertical unfolding into ele-
mentary nets as usual, the other kind governs their horizontal composition.
A reliable memory RelMem can be specified essentially in the following way
(interface transitions are represented by double squares):

Read Call

Loc

read

Loc x Val

Read Return

[] Write Call
B
Loc x Val
Loc x Val
> S
— Lj write
2 }@/A\ A < 2
€N Loc

write retry |>

Write Return

The picture is parametrised by p, the identity of the calling process. An
unreliable memory Mem can be specified in a similar way by adding exception
transitions to all places except the middle one which models the memory.
Mem can be realised as [Clerk||RPC|| RelMem| synchronising at transitions in
the following way (only for Read):

B
Retry -
< r== =
|
|
I X >
| Ko
! X
: M >
[|
< |
Mem Fail Lk
|
| |
|
|
L _ _
RPC Fail [|= <
L
———
Clerk
RPC

Remote Call

RelMem

Remote Return

By a set of contractions (replacing a sequence of transitions by a sin-
gle one) and other simple net transformations that preserve behaviour,
[Clerk|| RPC||RelMem] can be shown to implement Mem as required.

A process algebraic approach to the Dagstuhl
problem

Ed Brinksma
Faculteit der Informatica, Universiteit Twente
Email: brinksma@cs.utwente.nl

In our presentation we present the outline of a process algebraic solution of
the workshop problem. In our approach we use process algebraic equivalences
(laws) as design transformation principles to derive the desired implementa-
tion from the specification in a stepwise manner. In our proof we exploit the
syntactic appearance (intension) of our expression as an important heuristic
tool to guide this refinement.

A solution using stream processing functions

Manfred Broy
Institut fiir Informatik, Technische Universitat Miinchen
Email: broy@informatik.tu-muenchen.de

We give a functional specification of the reliable and the unreliable memory
component, of the rpc component and of the driver of the rpc component.
The components are modeled by functions that map communication histories
for the input channels onto communication histories for the output channels.
A communication history for n channels is given by n streams of messages.
Each stream contains an infinite number of time ticks. This allows to refer
to the relative timing of messages on different channels.

We write the specification of the memory in an assumption/commitment
style. The assumption is that every processor issues its next procedure call
only after the previous one had returned. In the specification of the commit-
ments the memory component we use a formula that specifies the relationship
between the input stream and the output stream with the help of a inter-
nal access stream. It is required that every call returns and that the access
stream and the calls and returns are in the correct relationship. Also for the
RPC component an assumption/commitment style specification is given.

The three components can be composed. The composed system can be
proved to fulfill the specification of the memory component again. In an
analogous way the timed rpc component and the timed driver are defined
and composed with the memory again. It can be proved that, if the memory
responds fast enough, the component obtained by the composition fulfills the
memory specification again.

The Dagstuhl problem — A Solution using TLT

Jorge Cuellar, Martin Huber, and Isolde Wildgruber
Siemens Corporate Research and Developement, ZFE BT SE11
Email: {jorge,mar,isolde}@zfe.siemens.de

TLT is a new language for writing specifications, abstract programs, imple-
mentations and their properties. Actually, all of them are just global TLT
formulas. A program F satisfies a property @ is thus expressed as F = . A
program F;, is an implementation of the abstract program F, is just F; = F,.
The local properties (on states or predicates) are defined, as in p-calculus, as
(possibly) alternating fixed-points. TLT may be seen as a generalization of
UNITY or as a branching time version of TLA. Compared to UNITY, TLT
programs have more structure (for instance, local variables, local states and
invisible internal actions). Programs are connected using link-constraints,
interfaces and connectors. This enables communication through variables
as well as transitions (actions). In TLT we have a fairness section in each
program where instruction can be designated as WEAK or STRONG fair.
Due to the guarded-command style of the language these fairness require-
ments can easily be formulated in the TLT logic and realized operationally
in Kripke Structures as acceptance conditions. The Dagstuhl problem was
fully described and proven with TLT.

A Solution with Process Algebra

Rob van Glabbeek
Department of Computer Science, Stanford University
Email: rvg@cs.stanford.edu

The components of the specification problem are represented by expressions
in a CCS/ACP-like language. The real-time syntax is somewhat ad hoc, but
can be translated in various real-time process algebras. All specifications of
the problem together take only 2 slides. The statements about implementa-
tion are formalized by choosing a preorder between process expressions. Here
I take two preorders in consideration: one based on failures/testing with a
form of Kooman’s Fair Abstraction Rule, and one slightly non-interleaving
version of this preorder, based on a weaker concept of fairness developed
with Frits Vaandrager in 1987 in the context of Petri nets. Proofs are not
provided.

10

Applying a Temporal Logic
to the “Specification Problem”

Reinhard Gotzhein
University of Kaiserslautern
Email: gotzhein@informatik.uni-kl.de

The unreliable and the reliable memory component are specified and veri-
fied using a formalism that is based on a temporal logic. In that formalism,
a system (open and/or distributed) consists of the system architecture and
the system behaviour. The architecture is specified by defining the sets of
its agents (i.e., active components) and interaction points (i.e., conceptual
locations of interactions), and by associating with each agent a set of in-
teraction points. The behaviour is built from external actions and defined
by the conjunction of all component behaviours. A component behaviour
is specified by the conjunction of logical safety and liveness properties. For
the memory component, a many-sorted first-order branching time temporal
logic with operators to refer to the future, the past, actions, the number of
actions, and intervals constructed in the (linear) past are used. It is proven
that the reliable memory is a correct implementation of the unreliable mem-
ory. The proof obligation takes both the system architecture and the system
behaviour into account.

Assertional Specification using PVS

Jozef Hooman
Eindhoven University of Technology
Email: wsinjh@win.tue.nl

The ”Specification Problem” is specified and verified in an assertional for-
malism, where properties of components are expressed by logical formulas.
Design steps are verified in a compositional framework which allows reasoning
with the specifications of components without knowing their implementation.
Verification is supported by the interactive proof checker PVS (Prototype
Verification System).

In the “Specification Problem” first properties of the memory component are
specified in an untimed formalism, using ordered events. Next we show that
the memory component is implemented by a reliable memory, an RPC, and
a link component. To specify the lossy RPC component, the framework is
extended with primitives to express the timing of events. This leads to an
implementation of the RPC component. The tool PVS has been used to
construct the correctness proofs of these implementations.

11

The Memory Component: Specification and
Verification Using an MCTL-Based Method

Hardi Hungar
Kuratorium OFFIS, Oldenburg
Email: hungar@informatik.uni-oldenburg.de

The specification is done in Josko’s branching time temporal logic MCTL.
This logic extends CTL by allowing assumption/commitment formulas,
which are very useful for the specification and verification of open systems,
i.e. systems designed to work in a specific environment. Some of the speci-
fications are given in a graphical formalism (as Symbolic Timing Diagrams)
which often allows a concise representation of otherwise lengthy formulas.

The specification does not refer to the internals of the memory (its loca-
tions). Instead, the memory is specified directly in terms of its observable
input/output behavior. Therefore, it allows a wide spectrum of implementa-
tions. Special care is taken also to specify in such a way that there is a finite
state implementation of the control part of the memory, i.e. to guarantee the
existence of an implementation.

Another important point is verifiability of an implementation against the
specification. For MCTL, a verification methodology is available which com-
bines model checking, compositional reasoning and abstraction techniques.
The methodology relies to a large extent on automatic procedures and is sup-
ported in a prototype tool. An implementation of the memory component
has been partially verified with the help of that tool. Note that restrictions in
the expressive power of MCTL (i.e. no existentially quantified state variables)
are important for a high degree of automation in the verification process.

Process structure and linear-time temporal logic

Bengt Jonsson
Department of Computer Systems, University Uppsala
Email: bengt@Qdocs.uu.se

We present a specification of the memory interface, proposed by Broy and
Lamport as a common case study for the Dagstuhl workshop in September
1994. The specification is carried out in first-order linear-time temporal logic,
essentially in the restricted version of TLA (Temporal Logic of Actions) by
Lamport. The main contribution of our specification is to demonstrate dif-
ferent structuring mechanisms that can be attained in LTL. For instance,
we show how to emulate process-algebraic structuring techniques in LTL.
Different parts of the specification represent different processes, which com-
municate through synchronizing actions. In this particular specification, the

12

different main components of the interface — the inner memory component,
the remote procedure component, and the component that calls the remote
procedure interface — are specified separately and combined using logical
conjunction. Within a component — e.g., the inner memory interface —
each call is represented as an “object”. Specifications of the different objects
are combined using universal quantification over object identifiers. We briefly
outline how the structure of a verification could be achieved, although we do
not carry out the actual verification.

Convenient Executions and Loosening:
the Specification Problem

Shmuel Katz
Computer Science Department
The Technion, Haifa
Email: katz@cs.technion.ac.il

A version of the temporal logic I ST L" is used to demonstrate a two-stage ap-
proach to specification and refinement of the specification problem presented
by M. Broy and L. Lamport. In our approach, a partial order of events that
correspond to a single execution is identified with the set of all linearizations
of global states that are consistent with the partial order. Such a set is called
an interleaving set, and each linearization is called an execution sequence.

In refinements, first convenient lower level executions are shown to implement
execution sequences of upper level operations. The convenient executions
at the lower level are precisely those where the lower level operations that
implement a higher level one are all done sequentially, with no other lower
level operations interspersed. These are legal lower level executions, even if
they are unlikely to occur in practice because the operations are distributed
in a collection of asynchronously executing processors. A mapping function
from each convenient execution to some abstract one is generally simple and
iterative.

Then in the second stage, all other computations are shown to be equivalent
to one of the convenient ones. The equivalence maintains the ordering of all
causally dependent events, but allows independent events to occur in different
orders. This stage could be considered as a ‘loosening’ of the ordering im-
posed by the convenient executions. The advantage of this separation is that
different kinds of reasoning and induction can be used for the two aspects.
The convenient executions, the general computations, and the independence
conditions are all expressed as assertions in the logic IST L.

In order to be faithful to the informal statement of the specification problem,
the first part of the problem is expressed directly as convenient sequences.
That is, the specification itself is that every computation is equivalent to one

13

of the convenient ones, as seen also in database serializability and sequential
consistency of caching algorithms.

14

Specification and Refinement with Joint Actions:
The Dagstuhl Example

Reino Kurki-Suonio
Tampere University of Technology
Email: rks@cs.tut.fi

Specifications for the ”Dagstuhl Problem” are derived incrementally, us-
ing ideas of the DisCo language. The approach can be characterized by
superposition-based transformations, object-oriented inheritance, and spe-
cialization of multi-object actions. Timing properties are introduced by two
special-purpose variables (clock and current deadlines), one additional pa-
rameter in each action (moment of execution), and some strengthening of
actions.

Formality: Joint actions can easily be mapped into TLA actions, and TLA
is used for proofs. Derivation steps preserve safety properties, but liveness
properties need separate proofs. However, implementations cannot always
be derived directly from specifications, in which case correctness proofs are
based on constructing ”synchronized combinations” of specifications and im-
plementations.

Informality: Tools for visualizing and animating (instances of) specifica-
tions encourage their informal inspection and validation, as well as formula-
tion of properties that need to be proved.

Formally-Driven Semi-Formal Specifications

Egidio Astesiano and Gianna Reggio
Dipartimento di Informatica e Scienze dell’Informazione
Universita di Genova
Email: reggio@disi.unige.it

We present how an established formal specification technique for concurrent
systems could be complemented by a method for developing specifications
based on simple basic concepts, which may be also introduced in an informal
way.

Thus following that method it is possible to develop specifications which are
informal (natural language and graphical notations) and have associated a
corresponding isomorphic formal specification.

This method is then applied to the proposed problem, giving two isomorphic
specifications, one informal and one formal.

15

The Memory Component: Specifying Properties of
Synchronized Causal Chains

Wolfgang Reisig
Institut fur Informatik, Humboldt-Universitat Berlin
Email: reisig@informatik.hu-berlin.de

A most elementary framework is employed, with dynamic predicates (sets)
and actions that change membership (extension) of those predicates.

This approach, likewise taken in the Chemical Abstract Machine, the I'-
language and the evolving algebra concept, is equipped with a specific notion
of runs (executions, computations) in the framework of high-level Petri Nets.
Each action affects a limited set of dynamic predicates, hence several actions
may occur independently. A single run then consists of a partial order of
action occurrences.

A line in such a partial order is a maximal subset of totally ordered elements.
Lines help to specify the memory component: The action occurrences affect-
ing a memory location form a line. Each access of a process to the memory
likewise forms a line. The set of acceptable runs is characterized this way.

Call a high-level Petri Net a memory net if it has two distinguished input
places (inread and inwrite) and two distinguished output places (outread and
outwrite). Likewise, an environment net has outread and outwrite as input
places, and inread and inwrite as output places.

Compositions of a memory net with an environment net are gained by iden-
tifying equally labelled places.

The specification of memcomp is now gained easily: a memory net specifies
memcomyp if its composition with any environment yields a net that has only
acceptable runs.

The RPC component can now be specified in the same style as memcomp
described above, as a special kind of environment nets with new 1/0 places
and with runs that are acceptable if they fulfill further requirements.

A Process Algebraic Approach Using Action
Refinement

Arend Rensink
Institut fiir Informatik, Universitat Hildesheim
Email: rensink@informatik.uni-hildesheim.de

We have tried to formulate a solution of the problem posed by Broy and Lam-
port on the basis of the principle of action refinement. As a basic formalism

we have used process algebra, in particular the LOTOS notation; this forces

16

us to take into account aspects of synchronous communication and refusal
of actions. The fact that we have used the standardised language LOTOS
made it possible to give fully formal descriptions of the data aspects of the
problem.

We started with a high-level specification of the memory cell, in which read
and write actions are given as single, atomic actions. The intention was to
show that the RPC-implementation refines this under a refinement function
that maps the atomic actions onto the required RPC protocols. Unfortu-
nately, this turned our to be problematic: the repetition of writes in the
implementation makes interference patterns possible that do not correspond
to any behaviour of the specification. For the read actions, on the other
hand, the refinement idea carries through without any problems.

Our conclusion is that the concept of atomicity can be stretched to some
degree (atomic read actions could be refined into larger protocols) but not
arbitrarily far (atomic write actions could not be refined into multiple ones,
since the latter generate multiple visible state changes).

Dagstuhl-Seminar Specification Problem —
a Duration Calculus Solution

Marcin Engel’ and Hans Rischel
Department of Computer Science
Technical University of Denmark
DK 2800 Lyngby, Denmark
Email: mengel@id.dtu.dk, rischel@id.dtu.dk

The talk proposes a solution to the Lamport-Broy specification problem for
the Dagstuhl-Seminar 9439 using the Duration Calculus which is real-time
interval temporal logic with a duration concept, and using the specification
language Z as mathematical notation.

The Duration Calculus was originally invented as a notation for specifying re-
quirements and high-level design for hybrid systems. It is a real-time interval
temporal logic based on a dynamical systems model with states as functions
of (real-valued) time. The notation provides a convenient way of expressing
properties about durations of states and their temporal sequencing, and it
has been applied to a number of examples. It is, hovewer, not possible to
express an abstract liveness property (i.e. that something will eventually hap-
pen), so the notation is not appropriate for the Dagstuhl problem — unless
abstract liveness is replaced by explicit time bounds.

The talk reports on an ongoing effort to develop a generalisation of the Du-
ration Calculus, called Signed Duration Calculus (SDC) which allows us to

*On leave from Institute of Informatics, Warsaw University, Poland

17

specify abstract liveness property. The SDC notation was found only very re-
cently and has not yet been throughly investigated. The specification for the
Dagstuhl problem is in fact a part of our experiments with the new notation.

Modal Transition Systems and Abstraction

Kim Larsen, Aalborg University Center,
Bernhard Steffen, University of Passau,
Carsten Weise, Aachen University of Technology
Email: steffen@fmi.uni-passau.de

Our memory specification is based on the framework of (Timed) Modal Tran-
sitions Systems (MTS), which are labelled transition systems with two kinds
of transitions: may and must-transitions. Intuitively, must-transitions pose
requirements, whereas may-transition specify the maximum transition poten-
tial of a possible implementation. An MTS is consistent if all required tran-
sitions are allowed. Satisfaction of a specification is formalized as a (weak)
refinement relation. Intuitively, a refinement of a specification preserves all
requirements, but it may eliminate of require allowed transitions. This notion
of refinement can be extended to capture the nature of internal behaviour in
the usual fashion, and timed behaviour can be modelled using real numbers
as labels.

Our approach is characterized by its fine granularity: each ground instance
of an activity, which is characterized by the kind of action, the calling pro-
cessor, the considered location and, if necessary, the value of interest, is spec-
ified by means of its own finite state process. These very simple ‘projective
views’ are then composed via (infinite) conjunction and parallel composition
to the overall specification. This specification format allows modular cor-
rectness proofs on the basis of general algebraic laws, abstract interpretation
and Skolemization. In fact, after algebraic simplification and exploitation
of the limitations of the value dependencies of the memory specification for
abstraction, the whole verification of the untimed case boils down to eight
verification steps considering processes with less than ten states. These have
been automatically performed on the TAV system. Of course, the timed
case additionally needs an abstraction of the, in our case dense, time do-
main. Using the technique of timer region graphs, the timed case could be
autimatically verified on the EPSILON system.

The Dagstuhl Problem — a Relational Approach

Ketil Stglen
Institut fiir Informatik, Technische Universitat Miinchen
Email: stoelen@informatik.tu-muenchen.de

18

The memory component is specified in a relational style, namely by char-
acterizing the allowed relation between the communication histories of the
input and the output channels. The communication history of a channel is
modeled by a stream. A stream is a (possibly infinite) sequence of actions,
where each action models a message sent along the channel.

The memory component is specified in four steps. First a sequential memory
is specified. This specification is then generalized to allow:

e concurrent calls,
e calls that result in several memory accesses,

e calls that fail.

The specification of the memory component is decomposed into a network of
relational specifications characterizing an implementation based on remote
procedure call. The required proof-obligation is stated and its verification is
discussed.

A Fully Automated Logical Analysis of a Problem by
Broy & Lamport

Kim Sunesen, Nils Klarlund, and Mogens Nielsen
Basic Research in Computer Science,
Centre of the Danish National Research Foundation
Department of Computer Science, University of Aarhus
Email: ksunesen@daimi.aau.dk

We use monadic second-order logic (M2L) to solve a specification problem
by Broy and Lamport. M2L is a succinct expression of regularity that so far
has been only litte explored for specification and verification.

We propose M2L as an attractive logic for defining specifications, refinement
mappings, and temporal properties within one framework. In fact, many re-
quirements from the Broy and Lamport document can be translated sentence
by sentence into M2L.

We develop techniques for expressing refinement mappings as temporal pred-
icates. Thus we avoid the introduction of the usual history or prophecy
variables.

Another contribution of this work is a new technique for reducing fairness
properties to logical properties of finite sequences. This enables us to verify
that fairness is preserved by verifying a property in M2L.

Finally, we show that our techniques can in fact be carried out in practice
by an existing decision procedure for M2L. All aspects of the Broy and Lam-
port article have been explored (except real-time) and analysed. Using the

19

counter-model facility of the M2L tool, we have found and corrected several
inconsistencies while developing our specification.

In conclusion, our automated framework shows that for certain problems,
the M2L approach achieves the conciseness of predicate logic but without
the cost of user intervention in terms of lemmas and tactics.

The Dagstuhl Specification Problem
UNITY - Refinement Calculus

Rob T. Udink® and Joost N. Kok
Department of Computer Science, Utrecht University
Email: {rob,joost}@cs.ruu.nl

This presentation deals with the “Problem Specification” of the seminar. The
problem concerns the specification and refinement of a Memory component
that communicates with its environment by a procedure-calling interface. In
this presentation, the problem is solved using an extension of the UNITY
framework of Chandy and Misra. The UNITY framework consists of a pro-
gramming language, for modeling fair transition systems, and a temporal
logic. We combine this framework with methods known for the Refinement
Calculus: we extend UNITY with local variables and use (data) refinement
principles of Back and von Wright, and we add procedures in a similar way
as is done by Back and Sere. In this way we obtain a small set of simple,
compositional program transformation rules that preserve temporal proper-
ties in arbitrary context. These rules are sufficient to prove the refinements
of the specification problem.

*This research has been supported by the Foundation for Computer Science in the
Netherlands SION under project 612-317-107.

20

