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Introduction

Software is increasingly being used in safety-critical applications where failure
could cause loss of human life, personal injury, or significant material damage.
High integrity programmable systems denote a class of software controled
applications that are characterized by a sensible interplay of heterogeneous
technologies (software and various forms of hardware), high requirements on
the dependability of all system components, including the safety, security,
adequacy and correctness of the embedded software, and — depending on
national regulations — the need to undergo extensive certification procedures.
Examples of high integrity applications occur in process control (e.g., in
chemical industry or nuclear power generation), traffic control, or in medical
systems.

High integrity programmable electronic systems for safety critical control and
regulation applications form a new field that stands at the very beginning
of its treatment in research, development, and teaching. The significance
of this subject arises from a growing awareness for safety in our society, on
the one hand, and from the technological trend towards more flexible, i.e.,
program controlled, technical devices, on the other hand. A major objective
is to reach the state that such systems can be constructed with a sufficient
degree of confidence in their dependability that enables their licensing for
safety critical control and regulation tasks by the pertaining authorities on
the basis of formal approvals. But authorities are currently still very reluctant
in approving safety related systems whose behaviour is exclusively program
controled, leading to the unsatisfactory situation that safety licensing, in
general, is still denied for highly safety critical systems relying on software
with non-trivial complexity. The reasons lie mainly in a lack of confidence
in complex software systems and in the high effort needed for their safety
validation following current practices. Although formal specification and
verification techniques are increasingly accepted as an important approach
to achieve high integrity software, their use in practice is still limited due to
the lack of effective tools and the need for special expertise.

In this context, the seminar aimed at the evaluation and comparison, of ex-
isting, more or less, formal methods with respect to their use in practice and
indicating directions for future development. The seminar thereby spanned
several dimensions of computer and computing science including safety and
fault tolerance strategies, formal methods, languages with high integrity fea-
tures, human factors in risk reduction and program understanding, software
verification, safety-oriented software architectures and operating system ker-
nels, and hardware correctness. These dimensions were supplemented with
application experiences of licensing authorities and were confronted with par-
ticular requirements and characteristics of the application domain such as



fuzzy-ness, distribution, or predictability and timeliness of behaviour.
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Abstracts of Presentation

Decision Rules Supporting the Design of
Fault-Tolerant Software

Francesca Saglietti, Institute for Safety Technology (1STec) GmbH,
Garching

Approaches to improve and evaluate software reliability are still among the
most crucial topics in today’s software engineering. One of the strategies to
prevent critical failures in spite of unavoidable faults aims at tolerating them
using built-in redundancy of information and data processing. Such a fault-
handling policy is generally known as software diversity. Software diversity
essentially consists in developing more program variants intended to fulfill the
same (or an equivalent task); their results are subjected to an adjudication
mechanism, which determines the acceptable one(s) on the basis of a (rela-
tive or absolute) testing procedure. The application of diversity to achieve
software fault tolerance has proved to be an efficient way to increase software
reliability. Experimental evidence has shown it to partly complement (but in
general not replace) the more conventional constructive strategies for fault
avoidance and analytical techniques for fault detection. This makes software
diversity particu

larly suitable for safety-related applications requiring an ultrahigh reliability
degree.

Evidently, the achievement of fault tolerance strongly depends on the level of
dissimilarity among the alternative variants. Theoretical studies conducted
in this area and supported by experimental observations confirm the effective-
ness of increasing dissimilarity among diverse variants by intentional inter-
vention in the development process, in other words, by “enforcing” diversity
in a deterministic way. As any forced degree of diversity requires additional
effort to define the necessary design parameters, one of the most essential
decisions to be taken in this context concerns the most promising diversity
level(s) to be enforced: this leads to a trade-off between the cost required to
introduce and enforce diversity at a given development level and the expected
fault tolerance capability.

The intention of this contribution is to provide a systematic method to sup-
port rational decision-making during the design of fault-tolerant software.
It concerns both qualitative and quantitative considerations on software di-
versity, and assists in deciding whether to apply diversity and which fault
tolerance technique to select. This is done by analysing software diversity in
terms of fault types tolerated and of cost efficiency.
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The first part of the work presents a distinction of faults in terms of several
attributes: a.o. their origin, manifestation continuity, multiple occurrence,
effect and environment. For each fault type identified the dissimilarity policy
most promising for its tolerance is proposed; examples or references on par-
ticular dissimilar methodologies are meant to provide support for the method
practicality. The second part analyses cost efficiency of two-fold diverse soft-
ware systems when compared with non-redundant ones. This is done by
modelling the underlying V&V process in terms of required target, available
effort and expected fault tolerance achievement. The study is concluded with
an optimizing strategy supporting decision-making in favour of, or against
diversity during the earlier development phases.

Unforseen Hazard Conditions and Software Cliches

Alfs T. Berztiss, University of Pittsburgh, University of Stockholm

Earlier a research agenda was proposed on issues that relate to safety-critical
software. This discussion of safety was based on the following topics: com-
pleteness of requirements, readable representation languages for specifica-
tions, tools for the validation of specifications, validation of the responsive-
ness of a system, verification of an implementation, robustness of control
software, effect of common-cause failures, reuse of reliable software, the de-
velopment process for safety-critical software, and ethical issues. Here safety-
critical software is looked at from a different perspective — how is software
to cope with an unforeseen condition that constitutes a hazard? An un-
foreseen or unusual condition (UC) arises when the software requirements
fail to consider some system states, particularly states into which the sys-
tem finds itself on account of malfunctioning of the environment in which
the software is embedded, or the malfunctioning of the hardware-software
interface. After a review of the research agenda, we outline a two-level ar-
chitecture for safety-critical software. Under this, a primary software system
performs the control functions normally required of safety-critical software.
A secondary system independently monitors the total controlled-controlling
system. This secondary system is developed using design cliches selected
from a safety library. Each design cliche is to cope with a specific kind of un-
foreseen or unusual condition, e.g., a meter reading that remains unchanged
over a period of time. The use of the specification language SF is advocated
for defining the design cliches. In this a UC is dealt with by means of a
three-stage process: recognition, analysis, and correction. Examples of this

11



process are given for several types of UCs. We suggest that a study group
be formed that is to assemble a library of safety cliches.

Incremental Experimentaton: A Methodology for
Designing and Analyzing Distributed Safety-Critical
Systems

Horst F. Wedde, Jon A. Lind, Andreas Fiss, Universitat Dortmund

Safety-critical systems are distributed hard real-time systems, i.e. tasks may
become critical in the sense that at such a point of time its deadline has to
be met, otherwise disastrous consequences for the whole system have to be
confronted. In our own research we have pioneered concepts and directions
for a comprehensive treatment of this matter. In addition to hard real-time
requirements, safety-critical systems have to satisfy dependability, reliability,
and fault tolerance requirements, and they typically operate in environments
with a considerable amount of unpredicatable events. (One form of unpre-
dictability results from the autonomy of the subsystems, i.e. from their lack
of information about the next actions of the other subsystems.)

Measures to meet dependability or safety requirements are mostly in con-
flict with those for achieving hard real-time responsiveness: Whatever policy
would be chosen to improve the system performance with respect to the one
class of requirements, would have to be paid for by a performance decrease re-
garding the other class of criteria. As a consequence a comprehensive formal
design (or a closed-form solution) which covers both classes of requirements is
not conceivable and a comprehensive design of distributed safety-critical sys-
tems can in principle be done only through heuristic approaches. Moreover,
both the design strategies and the system behavior have to be adaptive.

A heuristic methodology for systematically dealing with this problem, termed
Incremental Experimentation, is described. Roughly speaking a system
design would start from a “simple” model of the final system to be built.
This model would undergo a systematic validation and evaluation resulting
in an educated model refinement and extension. Further iterations would
eventually allow us to come up with a realistic system prototype. The tech-
nical details of Incremental Experimentation are developed in the context
of the MELODY project which has gone through five distinctive stages of
development which lead us very close to a target prototype.
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Establishing a Single Market for Safety Critical
Software

B.A. Wichmann, National Physical Laboratory, Teddington

Currently, the market for safety critical software within the European Union
is divided by industrial sector and country. If a single standard for such
software could be agreed to which objective assessments could be made, then
the sector and country boundaries could be removed or reduced.

The paper surveys some existing standards and concludes that objective as-
sessment would be possible to the civil avionics standard DO-178B. However,
this standard does not have consensus support in other sectors and hence it
seems unlikely that the existing barriers to a single market will be reduced
in the short term.

A Formal Approach to the Development of High
Integrity Programmable Electronic Systems

Mauro Pezze, Politecnico di Milano

Human lives and large economic interests rely on the correct behavior of
high integrity programmable electronic systems. The high costs of failures
of such systems require sophisticated techniques for validating correctness
properties. Development techniques successfully used in other application
areas do not always adapt to the concurrent and real-time characteristics of
such systems and do not support adequate validation techniques. Formal
methods have been frequently advocated as providing a potential solution to
meeting the high reliability standards required in this application domain,
preventing ambiguities in specifications, and supporting powerful semantic
checks non applicable to informal and semiformal specifications. Despite
their advantages, formal techniques are seldom applied in practice due to
the lack of powerful composition and decomposition mechanisms, the lack of
flexibility, the complexity of the analysis techniques, the gap between formal
specifications and final implementation, the absence of adequate tool support.
The recent solutions proposed to overcome the main limitations of formal
techniques did not succeed yet in assessing the use of formal techniques in
significant industrial sectors. Although part of the insuccess of introducing
formal techniques in industry is due to non-technical reasons (e.g., trade-off
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between advantages and costs and reluctance to face the risks of introducing
new techniques in the development process) part of the insuccess is still due
to incompleteness of the results and limited integration of different studies
in a common framework.

In the last years we studied solutions to all the above mentioned problems
in a coherent framework and we experimented their validity with industrial
case-studies using a prototype of an integrated environment for the develop-
ment of safety critical real-time software. The proposed solution is based on
high-level timed Petri nets, and comprises techniques for time reachability
analysis, hierarchical decomposition rule that preserve safety and temporal
properties, a formal framework for adapting Petri nets to the preferred end-
user operational notation, and design notations compatible with the specifi-
cation framework.

Methods Used for Inspecting Safety Relevant
Software

Ekkehard Pofahl, TUV Rheinland, Kdln

The technical supervisory agencies TUV (Technische Uberwachungs Vereine)
in Germany inspect software in many different applications. Typical applica-
tions range from software controlling railway switches and operating systems
for PLCs (Programmable Logic Controllers) to software in microcontrollers
for furnaces and lightgrids. Also commercially used software, where the focus
is more in the field of user friendlyness than safety, is inspected by TUV.
There are a few methodologies for inspecting software in safety relevant areas.
One of the most work intensive in the method of “diverse backtranslation”.
This method uses the binary code of a software to reconstruct from it the
specification. The several steps from binary code to the final specification
are supported by a set of tools (editors, compilers, discompilers, etc.).
Another typical method for validation and verification of software is analysis
and test. The first step of this method is to proof the validity of the software
specification. After this step static analysis tools are used to proof that the
specification is indeed implemented in the software. The results from the
analysis of the specification and the results from the static analysis of the
source code are used to dynamically check the software by means of white,
or gray box testing. Special attention it put to diagnostic and fault handling
routines. Some tests are also derived solely from the specification (black box
test).
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The inspections are done according to several national and international stan-
dards. The most important standard is the DIN V 19250, Fundamental
Safety Aspects To Be Considered For Measurement And Control Protective
Equipment (Grundlegende Sicherheitsbetrachtungen fur MSR~Schutzeinrich-
tungen) and DIN V VDE 0801 Principles For Computers In Safety Related
Systems (Grundsatze fur Rechner in Systemen mit Sicherheitsaufgaben).

An Approach to Develop Provably Safe Software

Maritta Heisel, Technische Universitdt Berlin

Overview. A procedure to develop provably safe software is presented. It
is based on well-established tools and techniques to set up formal specifica-
tions in the specification language Z and the program synthesis system I0SS
(Integrated Open Synthesis System) designed by the author. 10SS allows de-
velopers to implement Z specifications in a provably correct way. Each step
is described in detail and complemented by some proof obligations that have
to be met if safety is to be guaranteed. As an example, a microwave oven is
considered. Carrying out the procedure for this example gives rise to discuss
the relation of software safety vs. correctness and availability. We discuss
how the formal part of the development can be confined to safety-critical
requirements, in order to make the approach applicable to larger systems.

Steps and Proof Obligations. The steps to be performed and the cor-
responding proof obligations are shown in the following table.

The first three steps give a guideline how to set up the specification of a sys-
tem. In general it will not be possible to carry out these steps independently
of each other and without iteration. Instead, a process resembling the spiral
model of software development will have to be employed. The last three steps
describe how to perform the transition from a mere specification to a totally
correct program.

Step 3 is specific to the development of safety-critical systems. In this step
the sensors must be modeled that enable the system to detect situations
to which it must react. It must also be specified how the system reacts to
the possible sensor values and/or failures. To prove that the system reacts
in a deterministic way is not strictly necessary. This requirement is only
stated because deterministic behaviors can be better analyzed than non-
deterministic ones.

15



In Step 5, the Z specifications are transformed into so-called programming
problems, the input format for IOSS. A programming problem basically con-
sists of a precondition and a postcondition which is divided into an invariant
and a goal. Moreover, it is specified which part of the state may be changed.
IOSS supports synthesis of imperative programs in a partially automated
way (Step 6). For each developed program, a correctness proof is generated.
IOSS fits well with Z because both explicitly deal with states.

perform.

No.| Step Proof Obligations

1 Define the legal states of the | Show that the initial state is legal.
system.

2 | Define the actions the system can | Analyze the conditions under which

the actions transform legal states
into legal states.

3 | Define the interface of the system
with the outside world.

Show that the internal system oper-
ations are only invoked if their pre-
conditions are satisfied.

Show that for each combination of
sensor values exactly one internal
operation is invoked.

Show that — if the sensors work cor-
rectly — the system faithfully repre-
sents the state of its environment.

4 | Refine the data of the specifica-
tion so that data structures of the
target programming language can
be used.

Show the correctness of the
refinement.

5 | Transform the specification ob-
tained in Step 5 into a form suit-
able for the program synthesis
system.

Show the correctness of the algo-
rithm performing this task.

6 | Use the synthesis system to ob-
tain a proven correct implemen-
tation of the specified system.

Proof obligations are generated by
the synthesis system.

Safety vs. Correctness. One might consider safety a weaker requirement

than correctness. The example of the microwave oven, however, shows a dif-
ferent picture. Its safety requirements are that (i) the microwave is always
switched off when the door is open, and (ii) the light is on when the mi-
crowave is switched on. To ensure safety, there should be an “emergency
shutdown” that switches off the microwave as soon as a failure of the door
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sensor is detected. This situation is not taken into account when only the
correctness of the software is of interest because correctness is a relation
solely between a specification and a program. Hardware failures are of no
interest in correctness considerations. Hence, we think that the development
of safe software has to proceed differently: hardware failures must explicitly
be taken care of by the software.

Safety vs. Availability. The example shows that availability and safety
can be conflicting goals. Of the safety requirements stated above, (i) is cer-
tainly more important than (ii). If the light bulb breaks down, a reasonable
decision might be not to invoke the “emergency shutdown” but to sacrifice
the less important safety requirement to increase availability of the oven.

Reducing Formal Verification Work. For devices like a microwave oven,
a complete formal treatment certainly can be recommended because the con-
trol software is relatively simple. The cost for a formal safety proof should
be much less than potential damages. For larger systems, however, a com-
plete formal treatment might not be feasible. In this case, our approach can
be applied nevertheless. It is possible to formalize and prove only selected
properties of the system and treat the other requirements with traditional
techniques.

Limitations of the Approach. The approach outlined above concen-
trates on the software aspects of safety-critical systems. Nothing can be
guaranteed about the correct functioning of the hardware. For instance, if
the sensors yield false values, the system can enter a non-safe state because
the software controls the system according to the sensor values. This limita-
tion cannot be overcome by means concerning the software alone.
Moreover, it is not possible to deal with absolute time measures in the for-
malisms we have chosen. If it is, e.g., necessary that a component reacts
within 2 ms, then this cannot be guaranteed with our approach. The maxi-
mum execution time of the specified operations cannot be specified in Z, and
we are not aware of any formal methods that allow one to prove maximum
execution time of programs=.

As aresult, the kind of safety our approach can guarantee is relative. Since we
can only guarantee that the states before and after execution of an operation
are safe, this execution must be sufficiently fast, because in the intermediate
states that occur during execution, safety cannot be guaranteed. It is up to

=This is true even for formalisms designed to deal with time, like temporal logic or the
duration calculus; again, these limitations come from the fact that the formalisms do not
consider the hardware on which the programs are executed.
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the system designers and implementors to judge if this is the case. Here,
traditional methods like testing are indispensable.

Application of Formal Methods: an Architectural
Approach

Leonor Barroca, The Open Unwversity, Milton Keynes

The application of formal methods to safety-critical systems is still in its first
steps. Some cases have been recently reported but there is recognition that
some major obstacles have to be overcome. We believe that one of these
obstacles is that no single notation exists that can cover the different stages
of development and different views of the system. In this talk we discussed
the principles behind our approach and proposed a set of formal techniques
to represent different aspects of systems and provide the basis for resoning
about safety properties.

This set of techniques, proposed under the name of Architectural Specification
Method, has been put together with the aim of combining the use of accessible
techniques with the possibility of formulating rigorous arguments about de-
sign decisions and tracing these decisions against requirements. These points
are particularly important for the production of safety arguments in the as-
sessment process. The ArchSM uses a graphical notation based on Timed
Statecharts and Real Time Logic (RTL) for describing the system’s temporal
properties, and Z for describing functionality. The system structure is repre-
sented by a subset of DORIS Real Time Networks. From as early as possible
in the requirements definition the time critical properties are formally stated;
a model of the required behaviour (including timing behaviour) is built, and
the consistency of the model with the critical timing properties is checked.
The principles that have driven this work are based on supplementing existing
good practices with the use of formal specification and concentrating on well
understood pieces of the whole system that are critical. We believe that this
is the way for an effective use of formal methods in industry.

The ProCoS-Way Towards Correct Systems

Hans Langmaack, Christian-Albrechts-Universitdat, Kiel
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ProCoS is the EU-ESPRIT-BRA-project “Provably Correct Systems”. Par-
ticipants are U. Oxford (C.A.R. Hoare, coordinator), DTU Lyngby (A.P.
Ravn), U. Oldenburg (E.-R. Olderog) and U. Kiel (H. Langmaack). A system
as investigated by ProCoS is a technical system with embedded controlling
processors, sensors, actuators, channels, timers and physical environment,
especially a real time automating system (hybrid system) with explicit par-
allelism and lower and upper time bounds. Correctness is closely related
to safety, security and dependability; if requirement specifications are com-
plete enough the latter properties can be logically implied from correctness.
ProCoS goal is to contribute to mathematical foundation for analysis and
synthesis and to mathematical principles, techniques and tools for system-
atic and correct design and construction especially of safety critical systems.
For the ProCoS-idea R. Boyer’s and J.S. Moore’s CLInc-stack has been start-
ing model: a translator for Micro Gypsy, an assembler for PITON, a hardware
design for the FM8502-processor and an operating system kernel. ProCoS
for its own tower has put two more levels onto the stack, requirements and
specifications:

1. Requirement Language RL, which is the time interval Duration Logic
DL with its Duration Calculus DC.

2. Specification Language SL, bridging the state based RL and the event
oriented PL by specifications, each consisting of

e regular event trace expressions (from CSP)
e communication specifications (action systems)

e time constraints.

3. Higher Programming Language PL with parallel processes and lower
time bounds as in occam, and newly added upper time bounds and
alternatives with combined timer/input guards.

4. Machine Language ML is the code of the transputer, a RISC-processor
from INMOS with eight in/out channels connected to other transputers,
sensors or actuators.

5. Hardware Description Language HDL, programs of which are netlists
for field programmable gate arrays.

As a case study, a gas burner is discussed with capture of both functional
and safety requirements R in DL, with natural laws or guaranteed engineers’
experiences (assumptions) A in DL, with architectural design D in DL and
implementation

D= (A= R)
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derived by DC-rules (Lyngby) and with specification in SL and program in
PL refining D by inference rules

(m=X)AN (X = D)

(Oldenburg). Software and hardware compilers have been constructed which
translate into machine code m in ML with

m = T
(Kiel) and netlists n in HDL with
n =

(Oxford). We identify programs and their semantic predicates, so semantic
brackets are left away from m and n. Compiling specifications have been
proved correct; common semantic basis of all correctness proofs for inference
rules and compilers is DL.

The Suitability of Various Notational Forms and
Languages for Specifications

Robert L. Baber
VDI CEng FBCS, Bad Homburg, Germany

The purposes of a specification in engineering practice are to facilitate com-
munication and reaching agreement as well as to provide the technical basis
for a contract or order and for verifying the adequacy of the delivered system,
i.e. the fulfillment of the contract. Parties to the discussion and negotiation
of a specification include technical and business representatives of the poten-
tial supplier, the purchaser and possibly other interested parties.

In this short, provocative group experiment three different forms of a spec-
ification for a safety function in a nuclear reactor control application are
presented. The lack of agreement among the participants regarding which
form for the specification best fulfills the purposes of a specification as out-
lined above leads to the conclusion that no one form is adequate or sufficient.
Different participants in the discussion and negotiation of the specification,
because of their different backgrounds, needs, orientation and goals, require
different languages and forms of communication.
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Reasoning about Simple Reactive Programs

Norbert Volker, FernUniversitit Hagen

Machine supported verification and transformation of programs is an impor-
tant means to increase the reliability of programmable systems. In this talk,
we present an approach which is based on the use of higher order logic (HOL)
and aims at reactive systems. For the specification of such systems we use
HOL extended by linear time operators. Programs are expressed in the syn-
chronous data flow language Lustre. As theorem proving assistant we employ
the HOL instantiation of the Isabelle system, a general logical framework.
Both the syntax and semantics of Lustre are implemented in Isabelle/HOL.
This is made relatively easy by using the Isabelle/HOL facilities for defining
datatypes and primitive recursive functions. As an example development, we
give a sketch of the correctness proof of a timer element.

Formal Methods between Research and Practice

Friedrich W. von Henke, Universitat Ulm

Formal methods have an important potential of playing a crucial role in
developing safety-critical systems (both software and hardware). We briefly
summarize salient features of the specification and proof systems EHDM and
PVS, highlight some major applications of those systems in the field of safety-
relevant system designs, and discuss some observations concerning areas in
which further research is needed to advance the use of formal methods in
realistic contexts. These include in particular aspects of constructing realistic
system models, composability and reusability of models, and integration of
formal and semi-formal methods.

Correct by Design: Simple, Practical, Mathematically
Rigorous Program Development, an Example

Robert L. Baber, VDI CEng FBCS, Bad Homburg

21



Today’s software design errors can be attributed to the same cause as design
errors in other technical fields in earlier centuries: the lack of suitable support
for practical engineering work based upon scientific principles.

In this paper it is argued that such a scientific foundation exists for the
software field and that it can and should be used more widely in practical
software development work. Some of the implications of that foundation for
designing correct software are described. An example, in which a routine
for a generic class written in the object oriented language Eiffel is designed,
illustrates one of the many possible ways these concepts can be profitably
used to guide the program design process. In particular, the hypotheses of the
relevant proof rules are employed as design requirements for the individual
parts of the program to be designed. By satisfying these requirements at
each step in the design process, the designer ensures that the program will
be provably correct by design.

Human Understanding and Program Complexity

Wolfgang D.Ehrenberger, Fachhochschule Fulda

Up to now, the human mind is the main productivity factor for making
software. It is also the dominating factor for the verification of software and
for its maintenance. Our mind is limited in various regards. Due to this we
can understand some types of software easier than others. For maintenance
and licensing of software knowing its understandability in a quantitative
way would be helpful. The standard IEC 880 for software in nulear reactor
protection systems e.g. requires software parts of high safety relevance to be
simpler than normal ones.

This leads to the question of how to measure simplicity of software. In the
literature several measures exist. Among the oldest ones are those of Akiama,
McCabe and Halstead. More recently McCall, Rechenberg and many others
have suggested new metrics. Zuse has assembled most of the suggested re-
sults. Kitchenham has investigated software development in connection with
metrics. All these metrics, however, commonly neglect the human way of
thinking and understanding.

This contribution tries to fill this gap. It is believed that understanding
software is closely related to abstracting meanings from the code. It is the
human mind that does this abstraction during the process of understanding.
A certain model of the human mind is assumed. It postulates that specific ba-
sic mental actions are used during the abstraction process in understanding
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programs. These actions are: reading, matching certain aspects with as-
pects that are already known, combining aspects, loading and storing them,
searching and finding something from the long term memory. Psychologically
speaking this model is based on the chuncking theory of understanding.

Furthermore it is assumed that the mentioned actions can be connected with
a probability of being performed correctly and that they can be counted. In
case of remembering things over a certain number of lines of code this number
influences the probability of correctness of the action. In practical cases
it is recommendable to draw graphs that illustrate the way understanding
works (cf., e.g., Fig. 1). The introduced measure takes the form of real
numbers between of {0..1}. 0 reflects the event of incorrect action, 1 reflects
correct action. This approach can also be used to quantify the mental effort
connected with program proofs. It turns out that understanding a proof
may be more demanding than understanding the underlying software itself,
because of the large number of mental comparisons needed. Understanding
proofs, however, may not put such high demands on the long term memory
or the knowledge of the reader than understanding programs; because the
proof contains the intended computation result in their logical form already.

Designing for Risk Mangement — The Human
Operator as an Imponderable Risk Factor in
Safety-Critical Systems?

Wolfgang Dzida, Claus Hoffmann, Gesellschaft fir Mathematik und
Datenverarbeitung mbH, St. Augustin

From our review of our accidents we conclude that there is an increasing
tendency in the design of safety-critical systems to substitute human control
by mechanisms of process control engineering, the software of which should be
licensed for its integrity. The rationale for diminshing the operator’s control
is based on the prejudice that the human operator is an imponderable risk
factor.

The technology of interactive software systems may, however, enable the
human operator to coordinate his control with technical control mechanisms
more effectively — particularly in risky situations. The rationale for this
approach is based on the requirements that technical control mechanisms
shall not incline the operator to learn helplessness in risk situations. It is
essential to respect the principle that responsibility cannot be delegated to
machines.
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The focus of this approach is not on the design of user-centered control panels
or devices, because there is no doubt about the feasibility of such means.
Nevertheless, lack of knowledge of the operator’s potential of interventions
into a safety-critical process may make the designer reluctant to implement
them. Hence, this approach provides an analysis of risk situations as well
as the operator’s means to master the process by risk management. For
familiarity the analysis deals with the risk management when driving a car.
Means of risk management in a high-tech car are described and generalized
to serve as paradigms of risk managements in various areas of the process
industry and airplanes as well.

Safety Critical Application of Fuzzy Control

Gerhard-H. Schildt, TU Wien

After an introduction into safety terms a description of fuzzy logic was given.
Especially, for safety critical applications of fuzzy controllers a certain fuzzy
controller structure was described. Following items were discussed: Configu-
ration of fuzzy controllers, design aspects like fuzzification, inference engine
strategies, defuzzification, and types of membership funcions. As an exam-
ple a typical fuzzy rule set was presented. Especially, real-time behaviour of
fuzzy controllers was mentioned. An example of a fuzzy controller for tem-
perature control in a reactor together with membership functions, inference
engine strategy, and rule base was presented.

Application of Fuzzy-Control in Safety Related
Systems for Process- and Energy-Technology

R. Hampel, N. Chaker, Hochschule fir Technik und Wirtschaft
Zittau/Géorlitz

For improvement the safety and reliability it is necessary to use more and
better information about the state of the process. Currently we have three
components of technical activities:

e Control-Systems
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e Limitation-Systems

e Safety-Systems

For Control and Safety Systems we use simple and robust technical design
and control-algorithm with a small number of input and output signals. That
is not enough for limitation systems. So we need also informations about
changing rates, process history, non measurable values and so on.

The paper shows, that we can use for such a system with success the Fuzzy-
Logic. The main problems are to generate the knowledge basis and the rule
basis. For demonstration the way of development a Fuzzy-Limitation-System
we use a very simple heating-system-model. For this case the aim is to limit
the cover temperature after a fast decreasing of the cooling mass flow rate.
One of the main results of the investigation is, that the same structure and
the same algorithm is applicable for the normal controller and the limitation
system.

With the help of the Fuzzy Shell, which is included in the Simulation-System
DynStar we investigated the influence of the membership function of the
controller output area (two dimensional controller). So we could show, that
we can reduce the number of the free parameters for optimation the Fuzzy-
Controller. It is very important for the application. In the same way it is
possible to complete the rule basis, if we have a partly unknown knowledge
basis. In each case we use the information about the form of the controller
output area.

Verification Support Environment (VSE)

Dieter Hutter, Bruno Langenstein, Claus Sengler, Jorg H. Siekmann,
Werner Stephan, Andreas Wolpers, DFKI GmbH, Saarbriicken

We give an overview of the VSE system that was developed for the German
Information Security Agency (BSI). This tool supports the formal develop-
ment of provably correct software components. VSE is based on a method for
programming in the large that provides means for structuring specifications
as well as the implementation process. Formal developments following this
method are stored and maintained in an administration system that guides
the user and maintains a consistent state. Integrated deduction systems pro-
vide proof support for the various deduction problems arising during the
development. In parallel to the development of the system itself two large
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case studies were conducted in collaboration with one of the industrial part-
ners.
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Exceptions and (Real-Time) Control Systems

Coenraad Bron, Groningen University

Exceptions in Sequential Processes. Let us consider the specification
of a component in a sequential program: {P}S{Q} which states that a com-
ponent S has to terminate in a state satisfying the predicate Q when it is exe-
cuted, starting in a state satisfying the predicate P. An implementation of S is
called correct if it (can be proved that it) meets this specification. Using Di-
jkstra’s weakest preconditions, the relation between P, Q and S is expressed
by: P = wp(S,Q). The latter relation also implies {not P}S{not Q} i.e. S
can not satisfy its post condition whenever its precondition is not satisfied.
This is popularly expressed as “Garbage in, garbage out!”, but preferably
we would have an implementation of S that is robust, which can formally
be expressed by the additional specification: {not P}S{false}. A correct
implementation of this specification (surprisingly) satisfies: {true}S{Q}.
The importance of robustness is immediately clear if we consider software
components that are developed independent from their application, as is
the case for libraries. Such components cannot produce “garbage”. As
an example, consider a function for the calculation of a square root of a
real number. The only sensible specification for such a component can
be: {true}sqrt(x:real){sqr(sqrt)=x}, where = stands for approximately
equal.

Any implementation of robustness must see to it that that a robust compo-
nent does not terminate (in the normal sense) if it cannot satisfy its post-
condition. A proper, but not very practical way to accomplish this is to have
in the implementation of sqrt before the actual calculation starts, a loop
like: WHILE x < O DO;

The concept of robustness is closely related to IF-statements in Dijkstra’s
guarded command language. It is explicitly stated that a statement of the
form: IF bl -> s1 [] b2 -> s2 [] ... FI is aborted when it is started
in a state for which NOT b1 AND NOT b2 AND NOT ... holds.

Aborting a program and providing a (hopefully) illuminating error message
is in effect a form of control, with the additional effect that the original
specification of the program which dealt with ‘normal’ cases only is now
relaxed in the sense that an alternative result, viz. the error message, is an
accepted alternative.

Here we are at the heart of both the concept of exceptions and exception
handling. Exceptions can be viewed as (named) violations of preconditions
that are vital for operations to produce their required results. They are
indispensable in the creation of robust software. Any form of abnormal
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termination that takes place when an exception is detected can be viewed
as the handling of that exception. In languages that provide an exception
handling mechanism, it is recognized that —as long as exceptions exist— the
handling might as well be brought under program control, than left to some
magical mechanism which is supplied at the interface of operating system
and application program. Note that this interface cannot be defined sharply.
Any application may act as a subsystem of a cyclical nature, just like the
operating system itself.

Exceptions in Control Systems. The behaviour of the controlled system
is viewed as a set of co-operating and mutually synchronised processes. Each
process consists of two parts: a0 the controlled process, which is a sequence of
events and activities that takes place in the real world, and b) the controlling
process. This is a —computer embedded— process which proceeds in synchrony
with the external process, as enforced by the sensors and actuators by means
of which it communicates with its contolled process.

The correctness of a controlling process depends essentially on three aspects:
1) the internal correctness of the sequential part of the process, 2) the proper
synchronisation among the controlling processes, and 3) the validity of as-
sumptions made about the behaviour of the external world. The last point is
where controlling processes really differ from sequential processes. Whereas
for the latter the correct behaviour depends solely on the validity of a pre-
condition, the assumptions on which controlling processes are based must
be permanently checked. This concept has been worked out in detail and
the terms constraint and constraint monitoring have been introduced. Con-
straints become active as soon as a process enters a region (of code) for which
the validity of that constraint is essential, and they must —in principle— be
checked permanently. Due to the properties of our model, however, we may
always assume that a process for which a constraint is violated has already
proceeded up to its next interaction point, and therefore constraints need
only be checked at interaction points. An additional benefit of this conclu-
sion is, that wherever constraint violations are detected, the internal state of
the processes affected is always consistent.

Essentially different from positions discussed in lieterature is the idea that
constraints can be shared, i.e. all processes which are dependent on a partic-
ular constraint will be simultaneously in that constrained region, and upon
violation, each process will make its own contribution to resetting the (rel-
evant part of the) system into an acceptable state. Note that, although
exception handling (and constraint violation handling) are forms of forward
error recovery, in the case of cyclic control systems forward error recovery at
the same time constitutes backward error recovery, so it should be possible
to program recovery of a subsystem in such a way that a local constraint
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violation has no serious effect on the overall operation of the system.
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Mechanical Verification with the Boyer-Moore
Prover: Usage and Problems

Debora Weber-Wulff, Technische Fachhochschule Berlin

In this presentation I first gave an overview of the Boyer-Moore theorem
prover NQTHM and the computational logic is uses. The Boyer-Moore logic
is a collection of recursive, side-effect free functions stated as s-expressions in
the LISP-like language of the prover. Lemmata, usually stating the equality
of two terms or the implication of one term from another, are also represented
as s-expressions.

A publically available copy of Bob Boyer and J Moore’s theorem prover
NQTHM or Matt Kaufmann’s interactive proof checker version PC-NQTHM
can be obtained from Internet host ftp.cli.com (192.31.85.129) by anonymous
ftp. A World Wide Web home page is offered by Computational Logic at
http://www.cli.com.

A short example proof, the associativity of times, was printed in a handout
and discussed in detail, examing the different transformations used in at-
tempting to prove a lemma: decision procedures for propositional calculus,
equality, and linear arithmetic; term rewriting based on axioms, definitions
and previously proved lemmata; application of verified user-supplied sim-
plifiers called “metafunctions”; variable renaming to eliminate “destructive”
functions in favor of “constructive” ones; heuristic use of equality hypotheses;
generalization by the replacement of terms by type-restricted variables; elim-
ination of apparently irrelevant hypotheses; and mathematical induction. A
list of theorems that have been proven was discussed, they include

e Mathematics

— Prime factorization uniqueness

— Unsolvability of the halting problem

— RSA public key encryption algorithm is invertable
— Gaufy’s Law of Quadratic Reciprocity

— Chruch-Rosser Theorem

— Godel’s incompleteness theorem

— Irrationality of the square root of 2

— Exponent two version of Ramsey’s Theorem

— Schroeder-Bernstein Theorem

— Koening’s Tree Lemma
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— Group Theory lemmata

— Wilson’s Theorem
e Hardware

— Hypothetical processor FM8501
— Motorola MC 68020

— Processor FM 9001

— Railroad gate controller

— Fuzzy logic controller

— Parameterized hardware modules
— Synchronous circuits

— VHDL formalization

e Theorem proving

— Ground resolution prover

— Theorem about generalization
e Various

— Short Stack (Compiler for Gypsy to FM8501 machine code)
— Towers of Hanoi

— MACH Kernel specification

— Scheduling theorem for real-time operating system

— Implementation of an applicative language with Dynamic Storage
Allocation

Problems associated with the prover tend to be found in the large effort
in learning how to use the system, in a proper statement of the proof, in
“seein” how to conduct the proof, and in the rather crude interface. But it
is a very powerful prover and there are a number of libraries available which
facilitate the usage. It is a stable system and has often been used outside of
Austin, something which cannot be said for every verification system. It is,
however, more of a proof checker than a proof discoverer. It is quite useful
for hardware proofs, as it is possible to do induction over time or over the
structure of a machine.

In the evening a more involved proof was demonstrated, the proof of the
add-assign compiler.
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Formal Methods for Safety Critical Systems

Victoria Stavridou, Royal Holloway and Bedford New College, Egham

The SafeFM project is pursuing research on the practical application of for-
mal methods in the development and assessment of safety critical systems.
The project has been active for over one year and it is the intent of this paper
to report on our interim results. We review the aims and background of the
project and report on work involving a mix of formal methods technology
and existing best practice. In particular, we present a methodology for con-
structing coherent safety critical system specifications and critically evaluate
its application to an avionics case study. We also describe our efforts in pro-
ducing a practical combination of formal and structured techniques as well
as an approach to formal methods tools classification and integrity.
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The Use of Ada for Emulation of Formal
Specifications

W.J. Cullyer, University of Warwick

To satisfy the needs for emulation of the specifications for a range of avion-
ics subsystems, including Ground Proximity Warning and Airborne Collision
Avoidance, a library of reusable software packages has been created in the
high order computer programming language, Ada. Using elements from this
library it it possible to create emulation programs in a relatively short pe-
riod of time, which facilitate the investigation of a wide range of navigation,
aircraft trajectory and Air Traffic Control (ATC) scenarios. Ground based
primary and secondary radars and air/ground data links are not included
explicitly in the library, but each aircraft is assumed to be equipped with a
height transponder which transmits information both to ATC and to other
aircraft in the vicinity. The software runs on a Personal Computer and has
been tested by a number of undergraduate students who have created viable
emulation packages, with comparatively little training.

Approaches to Safety Engineering of PLCs

Ginter Heiner, Daimler Benz AG, Berlin

In the first part of the talk I gave a brief overview of the activities within
Daimler-Benz Information Technology Research concerning dependable com-
puting systems.

Then a new approach for developing and assessing PL.C (Programmable Logic
Controller) applications has been presented. This approach aims at reducing
the cost of assessment and licensing of PLC application software significantly.
It is based on a “Safe PLC Language” which is a well-structured textual
subset of the International Standard ITEC 1131 language, its compiler, and a
library of verified standard components implementing reusable safety func-
tions. The safe language has been formally defined (in contrast to the IEC
language), the compiler has been fully implemented and parts of it have been
formally verified.
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A Safety Licensable PES

Wolfgang A. Halang, FernUniversitit Hagen

The architecture of a special — and necessarily very simple — computer
system was developed to carry out safety-related functions within the frame-
work of distributed process control systems or programmable logic controllers
(PLCs). According to well established and accepted methods, a correctly
working and, due to the provision of dual channels, fault-detecting computer
hardware was designed, and built as a prototype. The recognition of faults
is the responsibility of a number of comparators realised with fail-safe com-
ponents of the HIMA planar system.

The emphasis of the concept, however, lies on the software aspect, since the
dependability of software does not match the one of hardware, yet. The
originality of the pursued approach consists in providing, for the first time,
immediate support for software verification already in the architecture. Es-
sential characteristics of this architecture are complete predictability of time
behaviour, determinism and surveillance of program execution and of all
other activities of the computer system. Diverse back-translation® as the
most powerful and only verification method for larger programs accepted by
the licensing authorities is supported as well as is sequence control, expressed
in the form of sequential function charts, occurring in many automation ap-
plications including those with safety responsibility. A minimum execution
control program was implemented in firmware.

The draft guideline VDI/VDE 3696 of the VDI/VDE-GMA Technical Com-
mittee 5.3 shows, for instance, that less than 70 function modules (“software
ICs”) are sufficient to formulate the great majority of all automation prob-
lems occurring in a certain larger industrial domain (chemical engineering).
The modules are re-usable in many different contexts because of their sim-
plicity and universality. Owing to their limited complexity, their correctness
can be proven with formal methods, e.g., with the help of predicate calcu-
lus or symbolic execution. This is necessary, since their correct operation
is often crucial to fulfill the severe safety and reliability requirements of en-
tire systems. The same observation could also be made for other industrial
application domains, such as emergency shutdown systems, which need as
few as four function modules. For each application domain a specific family
of function modules is to be identified — only once, and not by the user
himself —, to be verified with mathematical rigour and, for safety reasons,
corresponding object code is to be provided in ROMs. The correctness proof
of the elements in a function block library requires great effort and can only

3H. Krebs and U. Haspel: Ein Verfahren zur Software-Verifikation. Regelungstechnische
Prazxis rtp 26, 73 — 78, 1984
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be carried out by experts. Nevertheless, this effort is justified by the safety
requirements and kept within limits for each single application because of
the libraries’ re-usability.

Based on such module libraries, safety-related automation programs can be
formulated graphically with the help of suitable CAD-tools by just linking
module instances, i.e., in the language “Function Block Diagram” (FBD) as
defined in the international standard IEC 1131-3. The formal verification of
a compiler transforming such a graphical software representation into object
code is not possible with the present state of the art. Nevertheless, it can
be circumvented by basing program verifications directly on the generated
object code, as it is required by the licensing authorities anyway. For this
task, the architecturally supported method of diverse back-translation can
be implemented efficiently and in a cost-effective way, since only the module
connections have to be verified on the level of application programs. This
two-step programming paradigm is clearly reflected in the hardware archi-
tecture. The processing of single function block invocations is the task of a
slave processor, whereas a master processor implements the data flow con-
stituting user programs. Thus, the opportunity arises to safety-license the
slave processor with its entire software in a single generic type-approval. The
concept makes sure that application programs are to be found in the master
processor only, to which project-specific verifications of module connections
implementing data flows can be confined: for each single application only the
module connections realised by the master processor need to be verified.
The presented, with regard to hardware, firmware and user software safety-
licensable programmable logic controller solves an urgent problem of indus-
trial practice: now flexible programmable electronic systems can provably
offer the same degree of safety as conventional hardwired controllers.

Specification of Safety and Reliability Requirements
for Control Systems

Leo Motus, Tallinn Technical University

Many systems design methodologies start the development process by con-
centrating on the functional specification and design, and only at later stages
requirements on safety, reliability, fault-tolerance, etc are added. Such ap-
proach has proven useful when developing data processing type applications.
This paper argues that such practice is not appropriate for developing real-
time, safety-critical systems. In the case of real-time systems it is crucial to
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merge functional and non-functional (e.g. safety, reliability, fault-tolerance)
requirements at the earliest possible stages of systems development so as
to be able to assess timing correctness of the system. It is important, for
pragmatic reasons, that quantitative timing correctness of the future system
is, as much as possible, verified before designing and implementation stages
start. If safety and reliability, etc, procedures are added at physical design or
at testing stage, the earlier verified timing correctness is violated in unpre-
dictable way. Subtle timing errors can be introduced which are practically
impossible to detect by testing. On the other hand, attempts to eliminate
such errors may have a snowball effect, requiring massive modifications in al-
ready implemented and tested parts of the system. In this paper a formalism
(the Q-model) for systems specification and methods for analytical and/or
simulational analysis of its timing behaviour are suggested. The same for-
malism enables, with slight additions, explicit study of safety and reliability
properties of the specified system. As another by-product of the proposed
approach, a natural co-operation between control and software engineers be-
comes possible during the systems development.

Redundant Controller Triggered with a
Communication Channel

L. Trybus, M. Sm'ez’ek, Z. S/wz'der, University of Technology, Rzeszow

Uninterrupted automatic control is necessary for safety critical systems. This
may be provided by multifunction controllers, even DIN-seized instruments.
When one controller fails, the other assumes operation. Redundancy imple-
mented by using a communication channel assures continuity of the outputs.
This is not the case in standard set-up, where watch-dog output is monitored.
In the solution described here, the controllers exchange brief messages every
50 ms, sending values of binary outputs and some other data. If the main
controller has not sent at least one correct message within certain period,
the back-up one immediately sets its outputs to values received recently.
Communication proceeds in master/slave mode. Receiver checks its own
transmitter (RS-485).

Designing Software Systems for High Integrity
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Michael Goedicke, Universitat Fssen

For large software systems with high demands regarding safety it is nec-
essary to explicitly describe system structure in terms of components and
component connections. We present a concept of an independent software
component which requires the description of the provided features and the re-
quirements to other software components without actually referencing other
components. We discuss briefly the II-language which supports the specifi-
cation of such software components. In this approach a software system is
given by identifying the components needed and explicitly defining the con-
nections between them. The resulting component configuration itself forms a
component which can be used in other contexts as well. In contrast to many
other approaches to software specification and design such an explicit de-
scription allows the clear identification of system and subsystem boundaries.
This property is especially important in the case of safety critical systems
where often components with high demands in terms of safety are combined
with components of less criticality. Below we briefly survey the concepts of
the II-language wrt. safety critical systems.

The basic concept of II is an object-oriented structuring of software, where
objects serve as the unit to encapsulate data by operations and where the
underlying data types of objects are given in module specifications. Thus
each modular system consists of a hierarchy of modules, where each module
encapsulates objects of a particular data type. Since the operations on ob-
jects can be executed concurrently, these basic building blocks were called
CEM, which stands for Concurrently FExecutable Module and its associated
objects. According to the underlying component concept each II-component
description consists of four sections: the three interface sections export, im-
port and common parameters section and the body section. The common
parameters section is import and export at the same time thus each datatype
imported via the common parameters section is exported unchanged as well.
The key to independent software components is to describe semantic prop-
erties of a component in its interface formally and the concept of formal
import. The latter means that import defines only necessary properties of
other used components. Functional and concurrency properties are defined
using equational specifications and predicate path expressions respectively.
These properties are defined in partial (overlapping) specifications called
views. Currently there are three views of a component specification in II:
the Type View specifying execution independent properties, the Imperative
View defining execution related properties and the Concurrency view for
specifying permitted execution orderings.

The body of a component defines its implementation in terms of the imported
properties of other components stated in the import or common parameters
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section. The component realization can be defined directly by specifying its
properties using equational specifications in the Type View and alogrithms in
the Imperative View. This direct implementation is referred to as a primitive
component. In contrast to such a direct realization complex components are
defined in the body by connecting components along their export/import
interfaces.

The advantage of using such an approach to design specification in general is
to offer a wide range of formalisms in an integrated way to describe properties
of software components. In addition following the II-approach outlined above
the various relations between specification parts i.e. views, sections and
component connections are made explicit. This structuring can be exploited
for the reasoning process e.g. regarding safety and other critical system
properties.

In addition such an explicit description of software architecture and the strict
notion of encapsulation of II-components allow one also to implement special-
ized measures in case of connecting safety critical with non critical compo-
nents. Such measures would protect the critical components against failures
or malfunctions in the non critical parts. Such measures would materialze
as capsules providing a general scheme which can be used throughout the
system under development.

Formal Design of a Real-Time Operating System
Kernel

Ronald M. Tol, University of Groningen

In the talk we present a formally developed kernel for use in embedded ap-
plications. The kernel is part of a larger Architecture for hard Real-TIme
Environments (ARTIE).

A relatively simple formal method, Hoare-logic extended with a Clock-variable
to denote real time, is used to specify and verify properties of the kernel.
Our kernel is application-oriented. This is based on the fact that the kernel
supports an application-oriented programming language: Hi-PEARL. This
means, among other things, that the kernel implements the tasking model
as defined in (Hi-)PEARL including different types of task schedules. ‘On-
the-fly’, we have defined the semantics of relevant parts of this programming
language.

Also, a feasible scheduling policy has been developed, earliest-critical-deadline-
first (ECDF) scheduling. We have shown how an application programmer

39



can establish that critical tasks of the application program meet their dead-
lines. For communication and synchronization we have introduced so-called
pre-emption points in the code of non-critical tasks. At such a point the
running task gives control to the scheduler. In such a way co-operative mul-
titasking is realized. Based on the scheduling policy, a task-oriented memory
management scheme is proposed. The resulting algorithm is formally derived
and proven correct.

Subsequently, we assessed the timing behaviour both qualitatively and quan-
titatively. The timing behaviour depends on the application and the capacity
of the available resources. It turns out that the size of main memory has a
significant influence on timing behaviour.

Finally, we have implemented the kernel and the architecture in a simulation
environment. We have evaluated the kernel in a simulation of a typical safety-
critical application, a computer controlled railroad crossing. The application
is developed using the CASE-tool EPOS.

Concurrency and Distribution in Safety-Critical
Systems

Bernd Kramer, FernUniversitat Hagen

There is a wide consensus that formal methods for the specification and ver-
ification of software used in safety-critical applications may contribute to
achieving a high level of software integrity. For sequential software these
techniques are relatively mature and they are slowly gaining space in com-
plex practical applications. Examples have been discussed throughout the
seminar.

For distributed systems, which dominate in technical application domains,
the situation looks somewhat different. Difficulties arise due to additional
behavioral issues such as concurrency, nondeterminism, synchronization and
the need for continuous service. Properties such as partial correctness and
termination, which are well-understood in the context of sequential systems,
are replaced by safety and liveness requirements. But these are difficult to
prove for realistic systems by use of existing analysis and proof techniques
including reachability analysis, model checking, bisimulation or inductive
techniques. The purpose of this presentation was to raise these issues and
encourage seminar participants to take them into consideration in their future
work.
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