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Preface

Since the basic work of J. von Neumann who introduced cellular automata to study
the notion of self reproduction cellular automata have been investigated as theoretical
models for

• the study of (one sort of) parallel processing systems

• the physical world

• for the study of behaviour of complex systems

• for the study of “artificial life”.

During the last decade an increasing interest on this topic can be observed starting
with the investigations of Wolfram.

The talks and the discussions during the seminar contributed to the state of the
art mainly concerning the following aspects:

• Cellular automata as information processing systems

• Cellular automata as dynamical systems

• The phenomenological and algorithmic complexity of cellular automata

• Generalizations and modifications of cellular automata

• Cellular automata as models in Physics

During the meeting also talks about the further work of the IFIP Working Group
14.5 on Cellular Automata took place. It was the common conviction that similar
seminars and workshops should be organized in a somewhat regular manner.

The stimulating atmosphere combined with a perfect organization by the staff of
Schloß Dagstuhl was appreciated very much by the participants.

The seminar report at hand has been put together by Th. Worsch.

R. Vollmar
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Program

Monday, March 6:

Klaus Sutner: De Bruijn Automata and the edge of chaos
Shinji Takesue: Thermodynamic Behaviour of One-Dimensional Reversible

Cellular Automata
Erich Prisner: Parallel Chip Firing on Digraphs
Ivan Korec: Directions of reconstructability of one-dimensional cellular automata
Fritz von Haeseler: Selfsimilarity structure and automaticity of orbits of cellular

automata
Guentcho Skordev: Self-similarity and automaticity of orbits of a class of cellular

automata
Satoshi Takahashi: Multifractal Formalism for Sofic Measures

Tuesday, March 7:

Max Garzon: Observability in Cellular Automata and Neural Nets
Veronique Terrier: Real Time One Way Cellular Automata
Martin Kutrib: Real-Time One-Way Pushdown Cellular Automata
Burton Voorhees: Surjectivity of Cellular Automata Rules
Bruno Durand: Reversibility and dimension-sensitive properties of cellular

automata
Howard Gutowitz: Criticality and complexity in cellular automata
Jean-Baptiste Yunès: Fault tolerant solutions to the firing squad synchronization

problem
Frédéric Geurts: Compositional Approach of Cellular Automata

Wednesday, March 8:

Eric Goles: Sand Piles and chip firing games
Max Garzon: Real-valued Computation Using Local Computation
Thomas Worsch: On classes of transition functions satisfying a Frobenius law
Jacqueline Signorini: A programming environment for cellular computers
Umberto Pesavento: Von Neumann’s Universal Constructor

Thursday, March 9:

Jacques Mazoyer: Computations on 1-dimensional Cellular Automata
Iwo Bialynicki-Birula: Relativistic wave equations as unitary cellular automata
André Barbé: Coarse-growing invariant orbits of one-dimensional Zp-linear

cellular automata
Maurice Margenstern: The halting problem for Turing machines: decidability

versus undecidability, a survey
Bruno Martin: An intrinsic universal cellular automaton
Burton Voorhees: Three remarks on Additive Cellular Automata
Patrizia Mentrasti: Cryptography with Cellular Automata
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Ginaluca Tempesti: Self-reproduction in cellular automata: software and
hardware realizations

Wild cat session: contributions by B. Durand, M. Garzon, I. Korec, J. Mazoyer,
L. Priese, K. Sutner, R. Vollmar, Th. Worsch

Friday, March 10:

Giancarlo Mauri: Cellular automata in the fuzzy background
Gianpiero Cattaneo: Some tools to classify one dimensional Cellular Automata

on the basis of their dynamical behavior
Jacques Mazoyer: Synchronization
Ivan Korec: Elementary theories of generalized Pascal triangles
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Coarse-graining invariant orbits of one-dimensional Zp-linear
cellular automata.

André M. Barbé
Katholieke Universiteit Leuven, Dept. of Electrical Engineering-ESAT, Kard.

Mercierlaan 94, B–3001 Leuven, Belgium, tel: 32/16/321053, fax: 32/16/321986,
email: Andre.Barbe@esat.kuleuven.ac.be

(joint work with F.v. Haeseler, H.O. Peitgen, G. Skordev - Univ. Bremen)

We first introduced the notion of coarse-graining of the orbit of a one-dimensional
CA over Z2: the two-dimensional binary state-time orbit is partitioned in square tiles
of 2×2 cells, and each tile is replaced by one new cell whose state-value is the sum mod
2 of the states of the four cells covered by that tile. By this coarse-graining operation,
a new orbit is obtained which satisfies the original local CA-rule. Question: are there
orbits which are invariant under the two possible different 2×2 square tiles? Answer:
yes. Their number is finite. Examples for two different CA-rules were presented.
The initial configurations that generate coarse-graining invariant (CGI) orbits are 2-
automatic, and have correlation-functions and Fourier-transforms resembling those of
the paperfolding sequence. The two-dimensional CGI-orbit patterns themselves are
of a particular nature: apart from the trivial null-solution and some Sierpinsky-gasket
like structure, they are all quasiperiodic. These solutions have an underlying structure
which becomes visible by ‘EXOR-ing’ the orbit pattern with a shifted version of itself.

Then we presented a 4-point generalization, by considering: (1) CA over Zp with
pn × pn tiling-size (p prime); (2) arbitrary tile-shapes; (3) arbitrary Zp-weighting of
all cells in a tiling; (4) orbit invariance modulo a shift. This leads to a CGI-problem
with many control parameters. Possible solutions are of the following type: periodic,
quasiperiodic, self-similar, quasirandom, randomlike.

References:

1. A. Barbé, F.v. Haeseler, H.O. Peitgen, G. Skordev: ‘Coarse-graining invariant
patterns of one-dimensional two-state linear cellular automata’, Report nr. 319,
Institut für dynamische Systeme, Universität Bremen, September 1994. (to
appear in Int. J. Bifurcation & Chaos, Vol. 5, 1995).

2. A. Barbé: ‘Coarse-graining invariant orbits of one-dimensional Zp-linear cel-
lular automata’, ESAT/SISTA report 94-72, Dept. of Electrical Engineering,
K.U. Leuven, March 1995.
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Relativistic wave equations as unitary cellular automata

Iwo Bialynicki-Birula

Centrum Fizyki Teoretycznej, Lotnikow 32/46 02-668 Warsaw, Poland, and
Abteilung fuer Quantenphysik, Universität Ulm, Ulm, Germany

Relativistic wave equations (Weyl, Dirac, and Maxwell) are implemented as cel-
lular automata on a three dimensional lattice. In order to satisfy the requirement of
probability conservation, the automata are assumed to be unitary. That means that
during each update the sum of the squared moduli of the wave functions summed
over the whole lattice is preserved. In addition, the update function is assumed to
satisfy the requirement of locality; the new value at a given lattice site depends only
on the value at the neighboring sites. It turns out that these requirements are diffi-
cult to satisfy. For some lattice structures (for example, for a simple (6 neighbors)
cubic lattice) no solutions exist. An explicit solution is given for the body-centered
(8 nearest neighbors) cubic lattice and it is shown that in the limit of the lattice con-
stant shrinking to zero, the unitary automaton reproduces the continuous relativistic
wave equation. The content of the lecture is based on the paper: Weyl, Dirac, and
Maxwell equations on a lattice as unitary cellular automata, Physical Review D49,
6920 (1994).

Some tools to classify one dimensional Cellular Automata on
the basis of their dynamical behavior

G. Cattaneo and C. Quaranta Vogliotti1

Dipartimento di Scienze dell’Informazione, Via Comelico 39, 20135 Milano, Italy,
e-mail: cattang@ghost.dsi.unimi.it

The study of one dimensional Cellular Automata as dynamical system carried out
by Wolfram, induced him to introduce an empirical classification of these models [4].
Since then, especially when Wolfram classification was shown to be undecidable [3],
many efforts have been spent on trying to give a formal classification based on the
dynamical behavior of the automata and rigorous and effective criteria to establish the
belongings of a given CA to a determinate class, without evolving it. We introduce
a formal classification of quiescent one dimensional CAs, based on the behavior of
finite configurations on a null background. This classification has been shown to be
effective when restricted to quiescent elementary CAs; furthermore we give effective
criteria to determine the qualitative dynamics of CAs belonging to some of the classes
introduced.

Moreover we give some useful tools to classify elementary CAs and characterize
their chaotic dynamics.

This work has been supported by “Progetto Finalizzato Sistemi Informatici e Calcolo Parallelo”

of C.N.R., by CEC ESPRIT BRA “Algebraic and Syntactic Methods in Computer Science 2” and

grant 94.004.52.CT12 of C.N.R.
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A subclass of elementary Cellular Automata, equivalent to a particular class of
Neural Networks (NN) is studied. The NNs are dependent on four parameters; it is
observed which subspace of the Rule Space is obtained varying the parameters and
what are the characteristics of the rules in this subset. In addition, a few of nice and
“magic” regularities in this subset is noted and explained.

Finally we give an algebraic characterization of elementary CAs and study the
relations between algebraic structure and dynamical behavior of a CA.

Bibliography

[1] G.Braga, G.Cattaneo, P.Flocchini, G.Mauri, Complex Chaotic Behavior of a
class of Subshift Cellular Automata, Complex Systems, 7 (1993) 269-296.

[2] G. Braga, G. Cattaneo, P. Flocchini, C. Quaranta Vogliotti, Pattern Growth in
Elementary Cellular Automata, to appear in Theoretical Computer Science A,
vol. 145 July 1995.

[3] K. Culik, S. Yu, Undecidability of CA Classification Schemes Complex Systems
2 (1988) 177-190.

[4] S. Wolfram, Universality and Complexity in Cellular Automata, Physica D 10

(1984) 91-125.

Reversibility and dimension-sensitive properties of cellular
automata
Bruno Durand

LIP Ecole Normale Supérieure de Lyon, 46, Allée d’Italie, F–69364 Lyon Cedex 07

We consider cellular automata (CA) as functions that transform a configuration
into another one. A configuration associates a state to each cell of Z

n. The set of
states is finite. When CA are used as computational devices they are often restricted
to the set of periodic configurations P , or to the set of finite configurations F .

We compare the class of injective (resp. surjective, bijective) CA defined on all
configurations (resp. on F , on P). Some inclusions are proved using topology, others
use combinatorial methods. Some of them are open for 2D CA. G|P bijective ⇒ G

bijective is true in 1D and false in 2D otherwise G bijective would be a decidable
property which is false (Kari 89). This non-inclusion property has never been proved
directly without the use of the recursion theory. Other undecidability results are
known in 2D: the surjectivity problem (Kari 89, Durand 93), the injectivity problem
on periodic configurations (Durand 93). Some others are open such as the surjec-
tivity problem on periodic (finite) configurations or the injectivity problem on finite
configurations.
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Observability in Cellular Automata and Neural Nets

Fernanda Botelho Max Garzon
botelhof@memstvx1.memst.edu garzonm@hermes.msci.memst.edu

Department of Mathematical Sciences Institute for Intelligent Systems

The University of Memphis, Memphis, TN 38152, U.S.A.

It is shown that arbitrary locally finite discrete neural networks of bounded ra-
dius over a state set which is an abelian group are observable (have the shadowing
property) in the sense that pseudo-orbits obtained by small perturbations of an orbit
are approximated by actual orbits. The class includes discretizations of some ana-
log networks, a large class cellular automata, and a large set of linear maps on a
one-dimensional grid. It follows that the true qualitative behavior of these dynam-
ical systems can be observed to infinite precision on computer simulations, despite
unavoidable discretization and approximation errors.

Real-valued Computation Using Local Computation

Max Garzon Fernanda Botelho
garzonm@hermes.msci.memst.edu botelhof@hermes.msci.memst.edu

Institute for Intelligent Systems Department of Mathematical Sciences

The University of Memphis, Memphis, TN 38152, U.S.A.

We examine the problem of evaluating real-valued functions in one or unbound-
edly many iterations with informationally feasible computational models such as those
afforded by cellular automata and discrete neural networks. They allow exact com-
putation of certain functions (unlike Turing computatbility) and of discontinuous
functions in variable finite time. Now, feedforward networks are well known to ap-
proximate any continuous function through any fixed number of iterations to an
arbitrary degree of accuracy. We examine the approximating power of neural net-
works through an unbounded number of iterations. We prove that every continuous
dynamical system can be approximated through all iterations, by both finite analog
and boolean networks, when one requires approximation of arbitrary exact orbits of
the given map.

However, this result no longer holds when the orbital behavior of approximant
neural networks is not observable exactly due to the presence of random noise in ana-
log activations or digital implementations. Neural nets can nonetheless approximate
large families of both continuous (including chaotic maps) and discontinuous maps
(including baker maps and maps with dense periodic points). A precise characteri-
zation is an open problem.
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Compositional Approach of Cellular Automata

Frédéric Geurts

Université catholique de Louvain

We propose to study complex dynamical systems by a compositional approach.
Given a system, we decompose it to obtain individual subsystems; for each of them,
we study invariance and attraction properties; finally, we deduce the global properties
by composition of the individual analyzes.

Composition operators are defined: sequential composition (� ), free product (×,
without interaction), sum (⊕, nondeterministic choice), union (∪, set-theoretic union
of all possibilities), and connected product (⊗, explicit interaction between compo-
nents).

Since CA are massively parallel systems with interaction between cells, the con-
nected product seems a natural operator. Our concern is the study of local com-
position composed with this connected product: f and g being two local transition
functions, ⋆ (resp. ⋄) being a local (resp. global) operator, we search for an alge-
braic expression of the form ⊗(f ⋆ g) = ⊗(f) ⋄ ⊗(g) such that the dynamics of the
⋄-composition is analytically characterized.

Up to now, we have a chacterization of invariants and attractors of � -, ×-, ⊕-,
and ∪-compositions under some assumptions. We are working on the extension of
these results to ⊗-compositions.

Conjectures have been proposed linking ∨-local and ⊗-global operations. In par-
ticular, the ∨-composition of symmetric rules (e.g. left and right shifts) generates
complex orbits. Since the sum shows the same kind of behavior in classical dynam-
ical systems, we weaken the local disjunction to obtain a local sum. With the help
of different tools (entropy, boolean derivative, probabilistic CA), we show that this
system has complex dynamics.

In conclusion, our compositional approach shows that very simple systems com-
posed together can generate very rich dynamics. We propose theoretical results but
the approach has to be developed to include more systems. Indeed, some specific cases
can be analyzed in a straightforward way, but the inherent distributed interaction of
CA entails some difficulties that probabilities or algrebra could solve.

Sand Piles and chip firing games

Eric Goles

Universidad de Chile, Santiago, Chile

Given a one-dimensional lattice N we define a sand-pile as a non-increasing con-
figuration of integers; for instance:
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•
•
• •
• • • •
• • • • •
0 1 2 3 4 · · ·

= 5 3 2 2 1

So, a sand pile is a word w0w1 · · ·wi such that
∑

i≥0 wi = n, wi ≥ wi+1, wi ∈ N.
We define a local rule at site i:

τi(w) = w0 · · ·wi−1, wi − 1, wi+1 + 1, wi+2 · · · iff wi − wi+1 ≥ 2

We prove that for all w the local dynamic converges to a fixed point (w∗ which can
be characterized). Further, if the number of grains of

n =
k(k + 1)

2
+ k′ where k′ ≤ k

the number of steps from the sand pile w0 = (n, 0, 0, . . . ) to the fixed point is

(

k + 3

3

)

+ kk′ −

(

k′

2

)

On the other hand, previous model is equivalent to the following game: given a
configuration x = · · · xi · · · a legal move is x′

i = xi − 2, x′
i±1 = xi±1 + 1 when xi ≥ 2.

In a general undirected graph G = (V, E) the local rule is x′
i = xi − di and

x′
j = xj + 1 for all j ∈ Vi (Vi neighborhood of vertex i). When this rule is applied in

parallel we prove that for trees any initial configuration converges to fixed points or
two periodic configurations. For general graphs may appear non-polynomial cycles.

Criticality and complexity in cellular automata

Howard Gutowitz

ESPCI, Laboratoire d’Electronique, 10 rue Vauquelin, 75005 Paris, France

Is there an Edge of Chaos, and if so, can evolution take us to it? Many issues
have to be settled before any definitive answer can be given. For quantitative work,
we need a good measure of complexity. We suggest that convergence time is an ap-
propriate and useful measure. In the case of cellular automata, one of the advantages
of the convergence-time measure is that it can be analytically approximated using a
generalized mean field theory.

In this paper we demonstrate that the mean field theory for cellular automata
can 1) reduce the variablity of behavior inherent in the λ-parameter approach, 2)
approximate convergence time, and 3) drive an evolutionary process toward increasing
complexity.
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Selfsimilarity structure and automaticity of orbits of cellular
automata

Fritz von Haeseler

Universität Bremen

Let V = {v0, . . . , vN}, n ≥ 1, be a finite set of symbols, where v0 is a distinguished
element. Let Σ(V ) = {a : Z → V } be equipped with the product topology induced
by the discrete topology on V . A cellular automaton is a continuous map A : Σ(V ) →
Σ(V ) which commutes with the shift map σ : Σ(V ) :→ Σ(v), σ(a)(i) = a(i + 1).
A theorem of Hedlund (1969) states: Let A be a cellular automaton, then there exist
natural numbers d1, d2 and a map φ : V d1+d2+1 → V such that

A(a)(i) = φ(a(i− d1), . . . , a(i), . . . , a(i + d2))

holds for all a and i ∈ Z. The mapping φ is called generating function. On the
other hand, any φ : V d → V , where d is a natural number, defines via A(a)(i) =
φ(a(i − d + 1), . . . , a(i)) a cellular automaton A.

In the following, we consider cellular automata with generating function φ : V d →
V such that φ(v0, . . . , v0) = v0.

Let (H(R2), h) denote the metric space of all non-empty compact subsets of the
euclidian plane, where h denotes the Hausdorff distance induced by the euclidian
metric. Furthermore, let I = [0, 1]2 denote the unit square and I(s, t) = {(x + s, y +
t) | (x, y) ∈ I}.
The set

X(A, a, n) =
⋃

s ∈ Z

0 ≤ t ≤ n − 1
At(a)(s) 6= v0

I(s, t)

is called the n-th orbit representation of a w.r.t. the cellular automaton A. is called
the n-th orbit representation of a w.r.t. the cellular automaton A.
Let p ≥ 2 be a natural number and define the map πp : Σ(v) → Σ(V ) by

πp(a)(i) =

{

a(j) if i = pj

v0 otherwise.

A cellular automaton is called p-Fermat in a if Apn(πp(a)) = πp(A
n(a)) holds for all

n ∈ N.
Theorem. Let A be p-Fermat in a. Then

lim
n→∞

1

pn
X(A, a, P n) = X∞ (A, a)

and the limit object, X∞ (A, a), is described as a geometrical substitution.
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Associated with a cellular automaton is a formal Laurent series defined by

G(A, a) = (X, Y ) =
∑

s ∈ Z

t ∈ N0

At(a)(s)XsY t.

Theorem.Let A be p-Fermat in v = (. . . , v0, v0, v, v0, v0, . . . ), where v ∈ V . Then
G(A, v)(X, Y ) is p-automatic.

Directions of reconstructibility
of one-dimensional cellular automata

Ivan Korec

Mathematical Institute, Slovak Academy of Sciences, Bratislava, Slovak Republic

Reconstructibility will be a generalization of reversibility in one-dimensional cel-
lular automata (1dCA) and generalized Pascal triangles. (The later are defined in
the abstract “Elementary theory of generalized Pascal triangles”, and correspond to
computations of 1dCA from finite initial configurations.)

Computations of 1dCA can be imagined in the discrete (1+1)-dimensional space-
time; there will be one coordinate axis for space and another one for the time. This
is an analogy of (3 + 1)-dimensional space-time in physics.

We shall deal with the oriented (euclidean) plane. The directions in the plane will
be determined either by vectors or by the angles (in degrees) between the direction
“upwards” and the considered direction; so 0◦ or 360◦ will be the North (upward)
direction, 90◦ the East direction, 180◦ the South direction and 270◦ the West direction.
A direction α will be called rational if tan(α) is rational or undefined.

Directions of reconstructibility will be defined for arbitrary set F of partial func-
tions on the set Z

2 of the lattice points of the plane. However, we shall consider them
mainly in the case when F is the set of computations of a 1dCA. In the definition
the following notation will be used:

HP(A, b) =
{

(x1, x2) ∈ Z
2
∣

∣ a1x1 + a2x2 + b < 0
}

is the set of lattice points of the open half-plane associated to the nonzero vector
A = (a1, a2) and a real b. (If A is considered as the direction of time then HP(A, 0)
represents “the past”.)

Definition 1 Let F be a set functions whose domains are subsets of Z
2, let A be a

nonzero vector and let X ⊆ Z
2.

(i) We shall say that F is X-reconstructible if for all f, g ∈ F and U, V ∈ Z
2 the

following implication holds:

(∀Y ∈ X)
(

U + Y ∈ Dom(f) ∧ V + Y ∈ Dom(g) ∧ f(U+Y ) = g(V + Y )
)

=⇒ f(U) = g(V ).
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(ii) We shall say that F is /finitely/ reconstructible in the direction A if there
is a positive real ε and a /finite/ subset X of HP(A, ε) such that F is X-
reconstructible.

Roughly speaking, computations of one-dimensional CA are usually displayed so
that they are finitely reconstructible in the direction 180◦. Then reversibility is finite
reconstructibility in the direction 0◦.

As an application, a new construction of reversible 1dCA is given: To every
two opposite rational directions of finite reconstructibility α, α + 180◦ of (the set of
computations of) a 1dCA (not necessarily reversible one) a reversible 1dCA can be
constructed. The construction can be applied also to Pascal’s triangle modulo n and
the directions 90◦ , 270◦.

Elementary theories of generalized Pascal triangles

Ivan Korec

Mathematical Institute, Slovak Academy of Sciences, Bratislava, Slovak Republic

To every finite algebra A = 〈A; ∗, o〉 (with A ⊆ N to avoid some technical prob-
lems) such that o∗o = o and every word w ∈ A+ we shall construct G = GPT(A, w)
as follows. The initial word w is written down into the initial row (with spaces be-
tween its letters). Every further row is formed from the previous one by the operation
∗ analogously as + (and at the margins o analogously as 0) is used in the classical
Pascal triangle. More formally, if w = w0 . . . w|w|−1 then the function G = GPT(A, w)
will be defined by the following formula:

G(x, y) =































undefined if x + y < |w| − 1,

wx if x + y = |w| − 1,

o ∗ G(0, y − 1) if x = 0, y ≥ |w|,

G(x − 1, 0) ∗ o if y = 0, x ≥ |w|,

G(x − 1, y) ∗ G(x, y − 1) if x + y ≥ |w|, x > 0, y > 0.

The system of coordinates is chosen so that the whole GPT lies in the first (i.e., ”pos-
itive”) quadrant of the plane. For example, if Zn is the additive group modulo n then
Bn = GPT(Zn, 1) is the Pascal triangle modulo n; we have Bn(x, y) =

(

x+y

x

)

MODn

for all x, y ∈ N.
The simplest mathematical structure associated to a GPT G is the partial groupoid

〈N; G〉. We can also consider the relational structure 〈N; EqG〉, where EqG corre-
sponds to the equivalence relation induced by G, i.e.

EqG =
{

(x, y, z, w) ∈ Dom(G) × Dom(G)
∣

∣ G(x, y) = G(z, w)
}

.

Another possibility is to consider many-sorted structures 〈Nx, Ny, {0, 1, 2}; G〉 or 〈Nx,

N
y; EqG〉 where N

x = N
y = N, G is considered as a mapping of N

x × N
y into A and
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EqG is considered as a subset of N
x ×N

y ×N
x ×N

y. In every case above we can add
some operations or relations, e.g. the successor, ≤ or +. Results about elementary
theories of such structures are presented. For example:

Theorem 1 Let B = ({2, 0, 1}; ∗, 2), where 2∗0 = 0, 0∗0 = 1, 1∗0 = 2 and x∗y = x

otherwise (i.e., if y 6= 0), and let G = GPT(B, 0). Then:

(i) The operations +, × on N are first order definable in the structure 〈N; G〉.

(ii) The elementary theory of 〈N; G〉 is undecidable.

(iii) The elementary theory of 〈Nx, Ny, {0, 1, 2}; G〉 is decidable.

The same hold if we replace G by EqG.

Theorem 2 Let n > 1 and Bn be the Pascal triangle modulo n. Then:

(i) The elementary theory of 〈N; Bn, +〉 is decidable if and only if n is a prime
power.

(ii) The operations +, × are definable in 〈N; Bn〉 if and only if n is divisible by two
distinct primes.

Real-Time One-Way Pushdown Cellular Automata

Martin Kutrib

AG Informatik, University of Gießen, Arndtstr. 2, 35392 Gießen, Germany

Since the historical precedent for a fixed amount of memory per cell (unbounded)
cellular automata (CA) have to be defined over an infinite space to obtain compu-
tational universality. Therefore, the number of required processors depends on the
length of input data and, additionally, may increase during the computation.

From a more practical point of view an infinite number of processors seems to be
fairly unrealistic. On the other hand Turing acceptors are computationally univer-
sal devices which have one processor only and additionally an infinite storage tape.
For this reason and due to the possible speed-up gained in parallelism we introduce
the pushdown cellular automata (PDCA), in which each cell is now a deterministic
pushdown automaton.

Here we restrict ourself to one-way information flow (OPDCAs) and, especially,
to real-time computations.

OPDCAs and related notations are formally defined. Some results concerning
the language recognition capabilities of one-way pushdown cellular automata are pre-
sented. Real-time acceptors for several languages are given and the relationship to
other types of acceptors is studied. In particular, we compare real-time OPDCAs
to finite state machines, linear bounded automata, Turing machines and classical
one-way cellular automata without pushdown memory.
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The halting problem for Turing machines: decidability
versus undecidability, a survey

Maurice Margenstern

L.I.T.P.-I.B.P., Université Paris 7 & Université Paris 11, France

We remind Turing’s original proof of the undecidability of the halting problem
which does not involve a universal machine. We draw a sketchy picture of results
about decidability versus undecidability in various settings: diophantine equations,
word problem, PCP, tag-systems, tilings, cellular automata and planar Turing ma-
chines.

We focuse our attention on ”classical” Turing machines, i.e. deterministic ones
with a single bi-infinite tape and a single head. We mention Rogozhin’s results on
universality of very small (in program size) Turing machines.

We define a general notion of decidability criterion on a given set of Turing ma-
chines with a frontier value: under the frontier value, the halting problem is decidable
and starting from this value, there are always universal Turing machines with greater
or equal criterion value.

We detail the technique used for establishing two frontier results on Turing ma-
chines on {0, 1}, first for all machines on this alphabet and afterwards on non-erasing
machines. The results are:

Defining the colour of instruction ixMyj (current state, input letter, move to per-
form, output letter, next state) as triple xMy, and the colour number of a machine as
the number of distinct instruction colours occuring in its program, the colour num-
ber is a decidability criterion with 3 as a frontier value for all machines on {0, 1}
(Pavlotskaya) and with 5 as a frontier value for non-erasing machines on {0, 1} (Mar-
genstern).

Defining the laterality number as the least number of instructions with the same
move, this number provides also a decidability criterion with 2 as a frontier value for
all Turing machines on {0, 1} (Pavlotskaya and Margenstern) and with 3 as a frontier
value for all non-erasing ones (Margenstern).

For the laterality number, it is also a criterion on richer alphabet with 1 as a
frontier value for all machines on an alphabet having at least 3 letters (Margenstern-
Pavlotskaya) and with 2 as a frontier value for non-erasing machines on an alphabet
containing 3 letters (Margenstern), whatever way we should extend the notion of non-
erasing on an alphabet with more than 2 letters (in fact by an order, not necessarily
total, on the letters of the alphabet with blank symbol as a minimum).
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An intrinsic universal cellular automaton

Bruno Martin

Université de Nice Sophia Antipolis

Cellular automata are a model of parallel computation capable of universal com-
putation since their introduction by J. von Neumann. Their computational power
is well known in two dimensions and A.R. Smith proved first that one dimensional
cellular automata were capable of simulating any Turing machine.

This is sufficient to prove that, with the formalism introduced by H. Rogers,
cellular automata form a universal programming system. But it was an open problem
whether there exists a unidimensional cellular automaton capable of simulating the
behavior of any given cellular automaton on any given -finite- initial configuration as
some universal Turing machine do. This problem was first solved in 1987 by J. Albert
and K. Culik. They designed a universal unidimensional cellular automaton which
is slower than A the cellular automaton to be simulated of a factor quadratic in the
number of the states of A. They also require A to be a one-way and totalistic cellular
automaton.

We propose here an enumeration -or Gödel numbering- of totalistic cellular au-
tomata and a universal cellular automaton. This one can simulate any given two-ways
totalistic cellular automaton on any -finite- initial configuration. It works in quasi-
linear time instead of quadratic time.

This, together with a composition function and the definition of a computation
allows us to prove that cellular automata form an acceptable programming system. As
a consequence, we get all the classical results in computability theory. We also observe
that it is possible to define Kolmogorov complexity by means of cellular automata.
This observation is not surprising as Kolmogorov complexity is independent with
respect to the numbering and thanks to the Roger’s isomorphism between cellular
automata and Turing machines.

Cellular automata in fuzzy backgrounds

G. Cattaneo, P. Flocchini, G. Mauri, C. Quaranta Vogliotti, N. Santoro

Dipartimento di Scienze dell’Informazione, Via Comelico 39, 20135 Milano, Italy

The main purpose of this work is to understand some limitations introduced by
the classical definitions of CA. To this end, we have defined a new model of CA
(Fuzzy CA) which allows the observation of interesting “chaotic” properties of ele-
mentary CA. To date neither a formal nor a precise definition of “chaos” in Cellular
Automata (CA) exists; we believe that the proposed model provides a “sharper” tool
to detect which properties can be associated to a “chaotic” behavior. We also define
a measure (Rule Entropy) which gives information about the CA’s dynamics solely
on the basis of the rule table and provides theoretical explanations to some of the
empirical observations.
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Computations on 1-dimensional Cellular Automata

Marianne Delorme and Jacques Mazoyer

LIP Ecole Normale Supérieure de Lyon, 46, Allée d’Italie, F–69364 Lyon Cedex 07

Designing cellular automata in order to achieve a dedicated task is an old problem.
This engineer point of view may concern specific parallel questions (French flag,
Firing squad, . . . ) or, more generally, computational tasks. In this last case, one-
dimensional automata (1DCA for short) appear as a ‘synchronous’ model of massively
parallel computation.

Many difficulties arise in order to define inputs and outputs. The input question
may be efficiently solved in deciding to put the data on the first diagonal of the
space-time diagram. The output question is more involved. A way to escape the
difficulty is to limit oneself to language recognition. It has been intensively done, and
an astonishing and probably very difficult open question remains: on a device such
that the number of working cells is the input length (bounded computations), can all
possible computations be achieved in real time? Coming back to 1DCA as functions
computing, it was proved that computations always can occur on a trellis , which
does not need to be regular.

We will call grid any trellis (regular or not). Local computations take place on
the nodes of such a virtual device. This allows to move calculi on the space-time
diagram defining the underlying grid. Thus, composing functions becomes putting
together two grids in such a way that the border of the first one (on which the output
of the first part of the calculus is to be found) is the border of the second one (on
which lays the input of the second part of the calculus, namely the previous output).
Moreover, looking to the methods involved in the Firing Squad, one may construct
infinite families of grids, thus, infinite compositions of functions.

It is proved that any recursive function can be computed using grids. But a com-
plexity analysis shows that using families of grids wastes time. We present a method
which takes in account delays in transmission or computation. To avoid accumula-
tion of data, small areas are frozen, what implies the possibility to dynamically set
up grids as soon as possible. To end we observe that, in this frame, we never need
any global synchronization process.

Synchronization

Jacques Mazoyer

LIP Ecole Normale Supérieure de Lyon, 46, Allée d’Italie, F–69364 Lyon Cedex 07

The firing squad synchronization problem is to construct a cellular automaton
such that any finite configuration with only one active distinguished cell evolves to
synchronization.

In the one dimensional case, the first solutions are due to M. Minsky. A question
of optimality appears: what is the number of states needed to obtain a minimal time
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solution. Results are: 8 states (R. Balzer), then 6 states (J. Mazoyer). We know that
there does not exist any 4 states solution.

We present generalizations to the graphs, and the problematics of what may be
a minimal solution (K. Kobayashi). We also indicate some results of T. Jiang on
synchronization of non uniform graphs, and some of our own results on this topic.

Cryptography with Cellular Automata

Patrizia Mentrasti

Department of Mathematics, University of Rome “La Sapienza”, Italy

We investigate the use of cellular automaton frameworks in designing data encryp-
tion systems. In particular, we focus on the requirements yielding from a standard
cryptography analysis and we thus state the necessity of invariant discovering results
for the class of finite cellular automata. We also recall some relevant results and open
problems dealing with the connections between the theory of finite invertible cellu-
lar automata and cryptography. For instance, we recall the co-RNP-completeness
of the invertibility problem. As central result, we design a new crypto-system with
secret key secret key which uses classes of invertible finite cellular automata and we
then prove that it is possible to construct these classes in order to generate a key
space having sufficiently large size. We discuss the system security under different
attacks. We observe that our approach can be extended to any other invertible au-
tomata generation rule and also that it is independent of the support-space dimension.
Consequently, the system works correctly and efficiently on both 1-dimensional and
multidimensional support spaces.

(Joint work with Andrea Clementi, University of Geneve, Pierluigi Pierini, Uni-
versity of Rome ”La Sapienza” and Mauro Felici, Italian Institute of High Mathe-
matics)

Von Neumann’s Universal Constructor

Umberto Pesavento and Renato Nobili

Department of Physics, Padova, Italy

The universal constructor of John von Neumann is an extension of the logical
concept of universal computing machine. In the cellular environment proposed by
von Neumann both computing and constructive universality can be achieved. Von
Neumann proved that in his cellular lattice both a Turing machine and a machine
capable of producing any other cell assembly, when fed with a suitable program, can
be embedded. He called the latter machine a “universal constructor” and showed
that, when provided with a program containing its own description, this is capable
of self-reproducing. Self-reproduction takes place through two different processes:
during the first the program is interpreted so as to generate a copy of the constructor;
during the second a copy of the program is produced and attached to the copy of the
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constructor. Von Neumann’s conceptual extension is relevant from a bio-theoretical
standpoint as it affords the logical basis necessary to define the conditions under
which a system is capable of self-reproducing. Unfortunately, because of the rigid
determinism governing the automaton evolution and the lack of a minimum of fault-
tolerance, von Neumann’s automata are not good models of livings beings, contrary
to what would be expected.

The structure of a cellular automaton lattice makes it possible to arrange sev-
eral computations in parallel. However, since von Neumann’s proof about computing
universality of his automata consisted of the effective implementation of a Turing ma-
chine, the information processing proposed in his book “Theory of Self-Reproducing
Automata” is not efficient from a computational standpoint. To achieve relative effi-
ciency in parallel computation with cellular automaton lattices, new transition rules
and more extended sets of cell states can be introduced so as to include signal cross-
ing and binary representation in order to perform logical and arithmetical operation
while preserving the universal constructive capability. In a cellular lattice governed
by such a transition rule it is possible to implement algorithms for matrix calculus
(matrix sum, product, inversion), solve linear systems, perform prefix and real numm-
ber arithmetical computations, sort arrays, implement functions by power series and
so on. The efficiency of the computations is relatively low since the average number
of excited cells (or active computing elements) is small compared to the quiescent
cells of the lattice. Interestingly, by exploiting the constructive properties of von
Neumann’s automata, a specific cell assembly for each computation can be built. In
fact, one of the most embarrassing aspects of parallel processing is that the optimal
architecture for solving a given problem depends critically upon the kind of problem.
In the more general model different architectures for parallel computations can be
built by governing the first phase of the lattice evolution. Moreover it is conceivable
that, in a lattice possessing efficient computational and constructive capabilities, the
main process is capable to direct many constructive parallel processes and exploit
these for performing new parallel computations. In this kind of process it is possi-
ble to allocate (through construction) and de-allocate (through destruction) several
parallel sub-processes at the same time.

Parallel Chip Firing on Digraphs

Erich Prisner

Mathematisches Seminar, Universität Hamburg, Germany

Given some multidigraph, a state is any distribution of some chips on its vertices.
Now we transform this initial state step by step. Every vertex checks whether it is
able to send one chip through every outgoing arc. If it can, it does, otherwise it does
not send any chip. All vertices check and send in parallel. Finally, at every vertex all
incoming chips are added to the remaining chips. This transformation on the set of
states is iterated.

If the digraph and the total number of chips are finite, then we finally arrive at
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some periodic configuration. It is investigated how these periodic configurations and
the periods look, depending on the digraph and the total number of chips. There is
a sharp contrast in the behavior for Eulerian digraphs (where the in-degree of each
vertex equals its out-degree) and non-Eulerian digraphs.

A programming environment for cellular computers

Jacqueline Signorini

University of Paris 8, Dept. of Computer Science, Paris, France

I present a programming environment for very large-scale cellular computers that
I have implemented for the GAPP SIMD processor. It includess programming tools
for the design, graphical visualization, implementation and debugging of cellular pro-
grams within a software architecture similar to that found in VLSI design systems.
My system has four levels of specification and programming language, an interac-
tive editing tool and a shared database that can store various aspects of a cellular
design. I present a description of the four constituent levels, each of which cor-
responds to a particular type of cellular configuration: seed, organ, ”moving” or
dynamic and program configurations. By way of programming examples, I show how
these constrained-based, level-specific languages facilitate the creation and manipu-
lation of cellular configurations. On the basis of the tools developed for and with our
programming environment, significant parts of the von Neumann’s 29-state cellular
automaton and the automaton’s transition rule have been implemented on the GAPP
processor.

Self-similarity and automaticity of orbits of a class of cellular
automata
G. Skordev

Centrum für Complexe Systeme und Visualisierung, Universität Bremen, Germany

Report on a joint work with J.-P. Allouche, F. v. Haeseler, H.-O. Peitgen.
The orbits of finite initial configurations w.r.t. pk-state linear cellular automata

are p-automatic double sequences for a prime number p.
Pascal’s triangle modulo a composite number (not a prime power) is not a k-

automatic double sequence for any k.
The spacial distribution of states and blocks in the orbit of the initial configura-

tion with only one nontrivial state w.r.t. equivariant m-Fermat cellular automata is
described by a self-similar measure on its rescaled evolution set.
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De Bruijn Automata and the edge of chaos

Klaus Sutner

Stevens Institute of Technology, Hoboken NJ, USA

Every linear CA gives rise to a regular language, the set of all finite words that
appear as factors of the infinite patterns occurring after one time step. We discuss
the size of the minimal automata recognizing these languages. As it turns out, there
is an alternative normal form for regular languages associated with CAs, so-called
Fischer automata (transitive, deterministic, reduced semiautomata). We show that
a Fischer automaton is a strongly connected component in the minimal DFA. We
exhibit a fairly large class of binary CAs where the corresponding Fischer automaton
has maximal exponential size. All these automata have Hamming distance 1 to a
permutation automaton.

Multifractal Formalism for Sofic Measures

Satoshi Takahashi

Department of Mathematics, Osaka University, Japan

Space-time pattern of linear cellular automata exhibits fractal pattern. To char-
acterize this fractals, we define dimension spectrum H(δ) by Hausdorff dimension of
the set {y : dimension of space pattern at height y is δ}. H(δ) is calculated through
the Legendre transformation of the free energy,

Φd(β) = lim
n→∞

log
∑

t<pn (#{i : at
i 6= 0})

β

log pn
.

This relation has been generalized to sofic measures. Let A0, . . . , Ap−1 be non-
negative matrices, v be a nonnegative row vector and u be the nonnegative right
eigenvector of A0 + · · · + Ap−1. Sofic measure µ of a cylider set [y1 . . . yn] is given by

µ([y1...yn]) =

vAy1
...Ayn





1
:
1





λnvu
,

where λ is the Frobenius eigenvalue of A0 + · · · + Ap−1.
Let the singularity spectrum f(α) be the Hausdorff dimension of the set

{y : lim
n→∞

log µ([y1...yn])

log r−n
= α},

and the free energy Φ(β) be limn→∞

log
P

y mu([y1...yn])β

logrΓn . We have established the

multifractal formula between the singularity spectrum and the free energy: f(α) =
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infβ≥0 (αβ − Φ(β)), with α between αmin = inf{α : f(α) > 0} and α0 = inf{α′ :
f(α′) = maxα f(α)}.

This multifractal formalism has been applied to obtain the Hausdorff dimension
of self-affine sets as max(δ + H(δ)) = Φ(η), where η is the ratio of the log of vertical
contraction rate to that of horizontal one.

Thermodynamic Behavior of One-Dimensional Reversible
Cellular Automata

Shinji Takesue

Department of Fundamental Sciences, Faculty of Integrated Human Studies, Kyoto
University, Kyoto, 606-01, Japan

In this paper, we consider a family of one-dimensional cellular automata as dy-
namical systems on which statistical mechanics is constructed. To do this, models
need to have reversibility and an additive conserved quantity that can be regarded
as energy. The former property is automatically satisfied by using the following
time-reversal invariant second-order rules,

σt+1
i = f(σt

i−1, σ
t
i, σ

t
i+1) − σt+1

i (mod 2)

where σt
i ∈ {0, 1}. The reversibility of the rules is evident for any function f :

{0, 1}3 → {0, 1} by construction of the rules. For the latter property derived is a
necessary and sufficient condition for a rule in this family to possess an additive
conserved quantity of the form

Φt =
∑

i

F (σt
i, σ

t−1
i , · · · , σt

i+α, σt−1
i+α)

where α is a given positive integer, under the periodic boundary condition. If such
a conserved quantity exists, we can define temperature for the system by regarding
the conserved quantity as a Hamiltonian and applying the standard Gibbs formalism
of statistical mechanics. Moreover, once the temperature is defined, we can simu-
late heat conduction phenomena by attaching heat baths at both ends of the system.
However, if not only the sum Φ but also density F itself is conserved, heat conduction
does not occur. Thus we need rules which possess only the additive conserved quan-
tities with no density conserved by itself. Seven such rules are found in this family in
the case of α = 1. Numerical simulations have been executed for the seven rules and
various properties such as formation of global temperature gradient, Fourier’s law of
heat conduction, the Green-Kubo formula for thermal conductivity, and realization of
local equilibrium have been examined. The results obtained show that some rules ex-
hibit diffusive behavior and others exhibit ballistic behavior. To investigate possible
connection between the number of additive conserved quantities and the thermody-
namic behavior, a Boltzmann-type approximation is introduced and compared with
the simulation results. It is concluded that the diffusive behavior is generic in the sys-
tems with only one additive conserved quantity but is never observed in the systems
with more than one additive conserved quantity.
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Self-reproduction in cellular automata: software and
hardware realizations

Gianluca Tempesti

EPFL, Lausanne

Our work at the Logic Systems Laboratory at the EPFL in Lausanne, Switzer-
land, involves the study of the possibility of applying rules of biology (such as healing,
reproduction, and evolution) to digital hardware systems. In particular, we use CA to
study the phenomenon of self-reproduction. In the tradition of Von Neumann’s uni-
versal constructor and Langton’s loop, we want to study cellular ”organisms” capable
of (universal) computation and at the same time of self-reproduction. One approach
(Perrier & Zahnd) involves adding a (universal) Turing machine to Langton’s loop,
and thus couple the loop’s capability for self-reproduction and the TM’s capability
for computation. To date, we have been able to add a non-universal TM and achieve
self-reproduction of the machine thus obtained. Another approach (Tempesti) is to
create a new machine, somewhat similar to Langton’s loop in its basic structure,
capable not only of self-reproduction but also of executing a program, stored in the
circulating loop alongside the instructions directing the self-reproduction. Having
achieved this, we are now planning to add a universal TM to the system. The third
approach is to abandon, at least in part, the traditional definition of CA to create a
new cellular structure, whose basic principles are derived in equal parts from biology,
FPGA technology, and CA. This new structure is capable to implement any digital
logic circuit and was especially designed to include self-repair (i.e. healing in biolog-
ical terms) and self-reproduction as intrinsic features. This approach, a collective
pursuit of the LSL, has in fact been implemented in hardware as an array of cells,
presented as a demo at the seminar.

Real Time One Way Cellular Automata

Veronique Terrier

Université de Caen

A one way cellular automata (OCA) is a CA where the communication is restricted
to one way. We are interested in OCA as language recognizer, in particular in the
lowest class of complexity, the class of languages recognized in real time. We present
examples of languages that are not real time OCA languages using two approches
based on counting arguments.
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Surjectivity of Cellular Automata Rules

Burton Voorhees
Faculty of Science, Athabasca University, Box 10,000, Athabasca, AB, Canada T0G

2R0
A number of different properties of cellular automata which are equivalent to

surjectivity are presented and discussed. A matrix technique based on the de Bruijn
diagram is introduced, and it is shown that each CA rule defines a semi-group of
matricies such that the rule is surjective if and only if this semi-group does not contain
the zero matrix. Another approach to surjectivity based on the subset diagram for
a CA is also discussed, and certain replacement diagrams are defined which generate
sequences counting numbers of pre-images of finite strings.

Three Remarks on Additive Cellular Automata

Burton Voorhees
Faculty of Science, Athabasca University, Box 10,000, Athabasca, AB, Canada T0G

2R0

Three aspects of the theory of additive cellular automata are discussed: 1) A
method for computing predecessor states for any additive rule is given; 2) It is shown
that an additive rule is injective if and only if a certain complex integral is zero;
3) The obstruction to additivity for cellular automata is defined as a map from the
cartesian product of the state space to the state space, and some properties of this
map are derived.

On classes of transition functions satisfying a Frobenius law

Thomas Worsch and Heinrich Rust
Lehrstuhl Informatik für Ingenieure und Naturwissenschaftler,

Universität Karlsruhe, Germany

The investigation of powers even only of the 256 elementary cellular automaton
rules is complicated. Therefore we restrict ourselves to a case where in addition some
algebraic structure is imposed upon the set of states and on the set of transition
functions to be considered. More specifically we speak of an algebraic automaton,
if the set of “global states” is a group (G, +) and a transition function has to be a
group homomorphism f ∈ End(G). If A is a subring of End(G) then G is a module
over A with function application (a, g) 7→ a(g) as external multiplication. A is called
Frobenian, if for all a, b ∈ A and all n ∈ N it holds, that (a + b)n = an + bn.

It turns out that this is a strong condition which leads to a lot of structure in
such rings. For example for all a ∈ A : a4 = a5 = a6 = · · · holds. Under the
additional requirement, that all elements of A are idempotent, the following is true:
Finite Frobenian rings are exactly the set rings where the domain is the power set of
an arbitrary set and addition and multiplication are in fact symmetric difference and
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intersection. In the infinite case Frobenian rings can at least always be embedded
into a power set ring. From set rings the concepts of a partial order on the domain
and that of singletons can be carried over to Frobenian rings. If A has the property
that each element a is uniquely determined by the set of singletons s ≤ a, then each
module over A is isomorphic to the subring of all finite subsets of a power set ring.

In order to apply these concepts to cellular automata it is required that the set
of states and hence also the set of all configurations are groups. Unfortunately the
requirement of a ring of (global) transition functions to be Frobenian probably is
too restrictive. If for example G is a finite set of transition functions such that the
generated ring H = 〈G〉 is Frobenian, then H also is finite! Hence only a few non
trivial examples are known.

Fault tolerant solutions to the firing squad synchronization
problem

Jean-Baptiste Yunès

LITP-IBP / Université Paris 7

We are interested in particular instances of the well known Firing Squad Synchro-
nization Problem in which some cells are defective.

We call p-faulty n-line a line of n cells in which there are p “regions”. The i-th
region is made of ni connected non-faulty cells and mi connected defective ones, and
the line is ended with np+1 working automata:

n =

i=p
∑

i=1

(ni + mi) + np+1

Umeo proved that given a p-faulty n-line, where p is an unknown integer and
∀i ∈ [1, p], ni ≥ mi and ni + mi ≥ p − i, it is possible to construct a fault tolerant
(2n − 2 + p)-steps nearly optimum time firing squad algorithm.

We tried to reverse Umeo’s conditions and proved that:

Theorem 3 Given a p-faulty n-line, where p is a fixed integer and ∀i ∈ [1, p], ni ≤
mi, it is possible to construct a fault tolerant algorithm which synchronize in 2n +
∑i=p

i=1(mi − ni) units of time, if:

∀i ∈ [1, p − 1], ni+1 ≥ mi − ni and np+1 ≥ 2mp − np

We are able to construct a mixed solution in which for each region we have (as desired)
more faulty or more non-faulty cells, thus we proved that :

Theorem 4 Given a p-faulty n-line, where p is a fixed integer, it is possible to con-
struct a fault tolerant algorithm which synchronize in 2n +

∑i=p

i=1 |mi − ni| units of
time, if :

∀i ∈ [1, p], ni+1 ≥ |mi − ni| and np+1 ≥ max(np, mp) + |mp − np|

We show how to construct a fault tolerant solution even if we don’t know p the
number of faulty regions.
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