
Dagstuhl Seminar
on

Object Orientation with Parallelism and
Persistence

Organized by

Burkhard Freitag (Universität Passau)

Clifford B. Jones (University of Manchester)

Christian Lengauer (Universität Passau)

Hans-Jörg Schek (ETH Zürich)

Schloß Dagstuhl 3. – 7.4.1995

Contents

1 Preface 1

2 Abstracts 3

There’s Nothing Like Shared Nothing
Peter Thanisch . 3

A Composition Language for Open Applications
Oscar Nierstrasz . 3

Generating Application-Specific Database Systems
Don Batory . 4

Exception-Handling with Future Evaluators
Trevor Hopkins . 4

Query Optimization in Parallel Databases
Johann-Christoph Freytag . 5

Concurrent Object-Oriented Programming in Oz
Christian Schulte . 5

Concurrent Objects in Rewriting Logic
José Meseguer . 6

Coordination Abstractions for Concurrent Object-Oriented Program-
ming
Gul Agha . 7

Advanced Models of Database Transactions
Gottfried Vossen . 7

Unified Theory for Classical and Advanced Transaction Models
Haiyan Hasse, Y. Breitbart, H.-J. Schek, R. Vingralek, G.

Weikum . 9
Concurrency Control and Recoverability in Active Database Man-

agement Systems
Andreas Geppert . 9

Concurrent Transaction Logic
Michael Kifer . 10

A Programmer’s Introduction to the π-Calculus
Benjamin C. Pierce . 11

Concurrent Objects in a Process Calculus
Benjamin C. Pierce and David Turner 11

Behavioural Equivalences: From Testing to Bisimulation
Davide Sangiorgi . 11

A Model of Concurrent Objects and its Semantics
Matthias Radestock . 12

Two Ways of Defining the Semantics of an Object-Based Language
Clifford B. Jones . 13

i

Concurrent Object-Oriented Design Specification in SPECTRUM
Friederike Nickl, Martin Wirsing and Ulrike Lechner 13

From Actions to Transactions – Refinement in Object-Oriented
Specification
Grit Denker and Hans-Dieter Ehrich 14

Behavioral Refinement of Object-Oriented Specifications Using the
Modal µ-Calculus
Ulrike Lechner . 16

Agent Based Coordination
J. M. Andreoli . 16

Modelling General Relationships in Object-Oriented Databases
Jürgen Schlegelmilch . 16

Type Inference with Subtyping: State of the Art
Jens Palsberg . 17

Verifying Substitutability of Collaborating Objects
Else K. Nordhagen . 17

Confluent Processes for Transformation Correctness
Uwe Nestmann and Martin Steffen 18

3 List of Participants 19

ii

1 Preface

The seminar was devoted to the study of the object-oriented programming
paradigm with a focus on parallelism. This topic is located in the intersection
of two research areas: programming languages and databases. The next
paragraphs sketch the rôle of object-orientation in both areas.

In programming languages, object orientation extends the concept of abstract

datatypes as in the class concept of Simula. An abstract datatype joins a value
domain with a set of operations that can be applied (exclusively) to values of
the domain. Abstract data objects are declared statically and are protected
from direct access by other program parts (encapsulation). The principle
of object orientation is rooted in the desire to modify datatypes (through
restriction or extension), or to construct new datatypes from existing ones.
It suggests concepts like inheritance of properties (attributes) or operations
(methods) and dynamic management, i.e., creation and destruction of objects
at run time.

In databases, the persistence of objects (i.e., their existence across program
runs) and the concurrent access of objects are of prime importance. Also in
databases, entities of the real world are often modelled directly as objects.
Since the identifiability of fixed objects by means of their state cannot be
guaranteed for long time intervals, the concepts of object identity and object

evolution play a more central rôle than in programming languages.

Inter- and intra-object parallelism have received an increasing amount of at-
tention in the last years by researchers in the area of object-oriented program-
ming; concurrency is also of great relevance to databases. At first glance, an
object is very similar to a process which offers services to other processes and
demands services from them. It has turned out, though, that object-oriented
concepts cause problems when combined with parallelism. In databases, the
combination of object orientation and parallelism requires a generalization
of the transaction model.

The main goal of the seminar was to put the new research area “object
orientation with parallelism” on an interdisciplinary basis from the outset.
One prerequisite for a precise exchange of ideas is the use of formal models
and methods.

The seminar provided a forum for the discussion of questions like:

• How can the concepts of object in programming languages and databases
be unified? In what cases is a unification desirable?

• Several new models of dynamic parallelism have emerged in the area of
programming languages (actors, concurrent rewriting, π-calculus, etc.).
What is their relevance for relational and object-oriented databases?

1

• What is the relevance of newly developed correctness criteria in databases,
like semantic or abstract serializability, for parallel programming and
which logical concepts used in object bases can be incorporated into
object-oriented programming languages?

• What transaction model is suitable for object-orientation with paral-
lelism? How can the properties of a transaction be adapted flexibly to
the semantics of the object types involved?

• What kind of technical problems arise when combining object orienta-
tion and parallelism and how can they be solved?

• What requirements do applications have on both areas?

The 32 participants of the workshop came from 8 countries: 13 from Ger-
many, 15 from other European countries and 4 from the United States. The
organizers would like to thank everyone who has helped to make this work-
shop a success.

Burkhard Freitag Clifford B. Jones Christian Lengauer Hans-Jörg Schek

2

2 Abstracts

There’s Nothing Like Shared Nothing

Peter Thanisch
Edinburgh University, UK

An unholy alliance of DBMS vendors’ marketing departments has given un-
due prominence to a parallel database architecture called ”shared nothing”.
In this architecture, each processor has its own memory and its own disks;
interprocessor communication is via message passing in the interconnect.
Although originally intended for parallel relational databases, shared noth-
ing has already started to impact on parallel object-oriented DBMSs. To
make matters worse, the dominance of relational DBMS in the market place
means that parallel OODBMS projects might have to adapt to this architec-
ture. Fortunately, hardware vendors are realising that many of the claimed
benefits of shared nothing are illusory. Some recent products have shifted
away from this idea. Perhaps the academics and DBMS vendors will come
to this realisation before long.

A Composition Language for Open
Applications

Oscar Nierstrasz
University of Berne, Switzerland

A composition language supports the development of open, evolving ap-
plications from standard, generic software architectures and open, plug-
compatible software components. By making application architectures ex-
plicit and manipulable, disciplined evolution according to the composition
model of a generic software architecture is facilitated. A software entity is
a component if it is designed to be used in multiple contexts according to a
particular composition model. Although objects may be components, in gen-
eral components may be of either coarser or finer granularity than objects.
Whereas objects can be viewed as message-passing processes, components are
abstractions over the object space that can be composed using a variety of
different composition mechanisms as defined by a generic software architec-
ture. We are developing a general framework and a corresponding language

3

for specifying composition models, generic components and software compo-
sitions.

Generating Application-Specific Database
Systems

Don Batory
The University of Texas at Austin, USA

Years from now, the subjects of object-oriented software design, persistence,
concurrency, parallelism, and their relationships to programming languages
will be so well understood that it will be possible to automate the construc-
tion of software with these features for families of applications. This will be
accomplished through the use of software system generators.
¿From our experience, such understandings require paradigm shifts. For ex-
ample, units of software larger than that of classes are the preferred system
building blocks, generators rely on a minimal use of inheritance and make
extensive use of parameterization, and the programming paradigm of gener-
ators is based on program transformations, not object-orientation.
We discuss the role and importance of generating lightweight database sys-
tems, and present experimental results illustrating the potentials of software
generators. Unifying the themes of this seminar may require a similar shift
in paradigms. We offer our work on generators as an example.

Exception-Handling with Future Evaluators

Trevor Hopkins
IBM UK Ltd., UK

Many commercial client-server systems use a hybrid approach, using rela-
tional DBMS technology on their server(s) and object technology (using, for
example, Smalltalk as a programming language) on the clients. Such systems
are frequently slow, as perceived by the user, since the round-trip time to
the server may be several seconds.
One approach is to use concurrency on the client, to allow an interactive
request to the server to be overlapped with local operations, such as the
creation of a window to display the results of the request. A convenient way
of expressing this concurrency is to use future evaluation, since the complexity
of resynchonization can be (longly) hidden from the programmer. It is well

4

known how to implement future evaluators in Smalltalk, using the reflective
capabilities of the language.
Unfortunately, client frameworks which support communication frequently
raise exceptions; for example, a network failure. For robot systems, these ex-
ceptions must be handed correctly. Some exceptions can be entirely handled
in the future thread, but others will have to be passed to the original thread,
at the point where the future result is required. This assists in preserving
the illusion that only a serial system is in use, and thus simplifies the client
programming tasks.

Query Optimization in Parallel Databases

Johann-Christoph Freytag
Humboldt-Universität Berlin, Germany

With the increasing use of parallel processors we have to adjust and ex-
tend current database management systems to new requirements. This is
especially true for the query optimizer in a DBMS which must produce an
optimal (or at least a very good) query evaluation plan (QEP) for the parallel
execution environment.
In our presentation we first discuss the traditional approach to query opti-
mization and how it has been extended to the parallel environment by simply
adding two additional processing steps: the first one takes a (sequential) QEP
and divides it up into several (partial) QEPs, thus creating a parallel QEP
(pQEP) which is allocated to a set of processors in the second step. It is
well known that this approach does not produce optimal plans for parallel
execution. We then identify important problems in query optimization that
must also be addressed namely the problems of considering many more QEP
alternatives than before, different plans and more operators for getting finer
granularity for parallel execution and of considering alternative solutions to
static (compile-time) optimization. We describe several possible solutions
to the problems mentioned: dynamic (run-time) optimization, parallel op-
timization, dynamic index selection, and sampling. Finally, we argue that
the approach taken in database systems for taking advantage of parallelism
is preferable to many others. Providing a declarative language is a good
(the best?) way of hiding the complexity of parallel execution environments
from the applicaton programmer. It is the responsibility of the underlying
database system to generate an efficient parallel program.

5

Concurrent Object-Oriented Programming
in Oz

Christian Schulte
DFKI Saarbrücken, Germany

Oz is a higher-order concurrent constraint programming system developed at
DFKI. It combines ideas from logic and concurrent programming in a simple
yet expressive language. From logic programming Oz inherits logic variables
and logic data structures, which provide for a programming style where par-
tial information about the values of variables is imposed concurrently and
incrementally. A novel feature of Oz is the support of higher-order pro-
gramming without sacrificing that denotation and equality of variables are
captured by first-order logic. Another new feature of Oz are cells, a concur-
rent construct providing a minimal form of state fully compatible with logic
data structures. These two features allow to express objects as procedures
with state, avoiding the problems of stream communication, the conventional
communication mechanism employed in concurrent logic programming.
Based on cells and higher-order programming, Oz readily supports concurrent
object-oriented programming including object identity, late method binding,
multiple inheritance, “self”, “super”, batches, synchronous and asynchronous
communication.
A paper on the work reported in the talk appears as: Martin Henz, Gert
Smolka, and Jörg Würtz. Object-oriented concurrent constraint program-
ming in Oz. In Vijay Saraswat and Pascal Van Hentenryck, editors, Princi-

ples and Practice of Constraint Programming, Chapter 2, pages 27–48. The
MIT Press, Cambridge, MA, 1995.

Concurrent Objects in Rewriting Logic

José Meseguer
SRI International, USA

Rewriting logic is a logic of action in which states are axiomatized as elements
of an algebraically specified data type. Therefore, each state can be viewed
as an equivalence class [t]2, where t is a term, and ∈ is a set of equations.
In particular, concurrent object-oriented systems can be so specified and pro-
grammed. Typically the distributed state of such a system has the structure
of a multiset of objects and messages. Therefore ∈ includes in this case
associativity and commutativity of multiset union.
Concurrent computation coincides with logical deduction in rewriting logic.
This led us to:

6

1. design a specification language called Maude, based on rewriting logic,

2. design a subset called Simple Maude that can be efficiently compiled
on MIMD, SIMD and MIMD/SIMD machines.

Coordination Abstractions for Concurrent
Object-Oriented Programming

Gul Agha
University of Illinois at Urbana-Champaign, USA

The problem of coordination collections of objects is fundamental to concur-
rent systems. Current generations of concurrent programming languages are
very low level in their ability to abstract over interaction patterns. This limits
reusability, makes reasoning unnecessarily complex and puts an unreasonable
burden for optimizing code on the programmer.
We define a primitive model of concurrency based on Actors. We then dis-
cuss local synchronization constraints. Synchronization constraints separate
“how/what” from “when”. When some activity happens is expressed in
terms of what but is not part of the representation. We then describe multi-
object synchronisation abstraction in terms of synchronizers which encapsu-
late declarative constraints. We also discuss ways of defining groups of actors
abstractly. Finally, we discuss how explicit manipulation of a meta-level ar-
chitecture allows reusability of fault-tolerant protocols which otherwise need
reimplementation.

Advanced Models of Database Transactions

Gottfried Vossen
Universität Münster, Germany

Transactions are a central paradigm for the synchronization and fault tol-
erance of activities in database systems. In this area, theory and practice
influence each other a lot. The program (or methodology) for designing a
transaction model and correctness criteria for concurrent transaction execu-
tion (schedules) is vastly uniform even in distinct contexts. We descibe this
methodology and illustrate it using various concrete examples, ranging from
simple reads and writes on pages to semantically rich operations. We also
survey recent transaction models and their correctness criteria, whose goal is

7

to adequately support a variety of requirements arising in modern database
applications. We conclude with a brief discussion of the emerging issue of
workflow management.

8

Unified Theory for Classical and Advanced
Transaction Models

Haiyan Hasse, Y. Breitbart, H.-J. Schek, R. Vingralek, G.
Weikum

ETH Zürich, Switzerland

The classical theory of transaction management is based on two different
and independent criteria for the correct execution of transactions. The first
criterion, serializability, ensures correct execution of parallel transactions un-
der the assumption that no failures occur. The second criterion, strictness,
ensures correct recovery from failures.
In this talk we present a unified model that allows reasoning about the cor-
rectness of concurrency control and recovery within the same framework.
We introduce the correctness criteria of (prefix-)reducibility and (prefix-
)expanded serializability and show their relationship to the classical crite-
ria. We investigate further the exact characterization of the class of prefix
reducible schedules and show that the exact characterization of the class
of prefix reducible schedules for the simple read/write model is serializable
with ordered termination (SOT). However, SOT is not feasible anymore if
we consider schedules with semantically rich operations. Thus, we study
this problem by following the two approaches: restricting the class of prefix
reducible schedules and imposing some restrictions on a commutativity rela-
tion. We investigate the first approach and propose here two subclasses of
prefix reducible schedules, forward safe and backward safe schedules, and ar-
gue that serializability and atomicity can be unified by considering schedules
from these classes. We introduce further special properties of commutativity
relations by following the second approach.

Concurrency Control and Recoverability in
Active Database Management Systems

Andreas Geppert
Universität Zürich, Switzerland

Active database management systems (ADBMSs) support reactive behavior
in the form of event-condition-action rules (ECA-rules). If an event occurs

9

(in the database or its environment) and the condition (a predicate on the
database state) is true, the corresponding action must be executed. Advanced
ADBMSs such as SAMOS support composite events, which occur when their
component events have occurred within some time interval. Since component
events can span several transactions or even sessions, the history of compo-
nent events must be made persistent. The persistence of the event history
leads to several problems with respect to transaction management. First,
concurrency control for the event history must be provided, since concurrent
transaction may raise events, resulting in possibly conflicting updates of the
event history. Secondly, upon transaction abort, it must be ensured that the
event history is in a consistent state, i.e., does not contain event occurrences
that have been raised by aborted transactions. We give an introduction
of our object-oriented ADBMS SAMOS and illustrate three possible solu-
tions of the aforementioned problems in the talk. The first one is currently
implemented in SAMOS and uses the transaction model of the underlying
(passive) object-oriented DBMS: the strict two-phase locking protocol for
closed nested transactions. It is not yet optimal with respect to the potential
degree of parallelism of triggering transactions. The second solution restricts
the ECA-rule expressiveness; it permits a higher degree of parallelism and
allows a simple recovery algorithm. The final solution exploits the semantics
of the event detectors and proposes semantic concurrency control together
with multi-level transactions. In comparison to the first two approaches, it
allows the highest degree of parallelism, but also requires the most complex
recovery algorithm.

Concurrent Transaction Logic

Michael Kifer
SUNY at Stony Brook, USA

Sequential Transaction Logic provides a framework for tasks ranging from
transaction specification and execution in databases to view updates, to trig-
gers in active databases, to discrete system simulation, to robot planning and
procedural knowledge in AI.
In this talk, we describe Concurrent Transaction Logic, which extends Trans-
action Logic with connectives for modeling the concurrent execution of com-
plex actions. The concurrent actions execute in an interleaved fashion and
can also communicate and synchronize themselves. All this is provided in a
completely logical framework, including a model theory and a proof theory.
Moreover, the framework is flexible in that it can accommodate many dif-
ferent semantics for updates and for databases. For instance, not only can

10

updates insert and delete tuples, they can also insert and delete null val-
ues, or rules, or arbitrary logical formulas. Likewise, not only can databases
have a classical semantics, they can also have a well-founded semantics, a
stable-model semantics, etc. Finally, the proof theory for Concurrent Trans-
action Logic has an efficient SLD-style proof procedure, i.e., a Prolog-style
inference system based on unification. As in the sequential version of the
logic, this proof procedure not only finds proofs, it also executes concurrent
transactions, finds their execution schedules, and updates the database.

A Programmer’s Introduction to the
ß-Calculus

Benjamin C. Pierce
University of Cambridge, UK

Milner, Parrow and Walker’s π-calculus is seeing increasing use of a formal
foundation for high-level concurrent programming idioms such as objects.
We introduce the syntax, operational semantics, and some simple examples
showing how to “program” in this setting.

Concurrent Objects in a Process Calculus

Benjamin C. Pierce and David Turner
University of Cambridge and University of Glasgow, UK

A programming style based on concurrent objects arises almost inevitably in
languages where processes communicate by exchanging messages. Using the
PICT language as an experimental testbed, we introduce a simple object-
bases programming style and compare three techniques for controlling con-
currency between methods in this setting: explicit locking, a standard choice
operator, and a more refined “duplicated choice” operator.

Behavioural Equivalences: From Testing to
Bisimulation

Davide Sangiorgi
INRIA-Sophie Antipolis, France

11

Two forms of behavioural equivalences for concurrent processes have emerged
and become predominant: testing-based equivalences and bisimulation-based
equivalences. We present and compare these two groups, discussing major
advantages and disadvantages.

A Model of Concurrent Objects and its
Semantics

Matthias Radestock
Imperial College of Science, Technology and Medicine, London, UK

The appeal of the object-oriented paradigm lies in its apparent simplicity.
The major motivation for designing concurrent object-oriented languages is
the advantage that is achieved by conceptually unifying the abstraction for
processor and memory. While the object-oriented paradigm essentially is a
model for data abstraction, processes are models for control abstraction. Con-
current object-oriented languages have to be based on object models that deal
with issues of concurrency and distribution in a natural way. Viewing objects
in a very abstract sense, it can be observed that these notions are implicitly
embedded - objects exist simultaneously, are potentially distributed and act
in parallel. However, a refinement of this very abstract model is necessary
in order to actually derive design methods and implementation strategies.
Traditionally object-oriented systems were sequential systems. As a result
aspects of concurrency and distribution were lost during the refinement pro-
cess. Many universally applicable concepts and ideas of designing and im-
plementing sequential object-oriented systems therefore conflict with those
aspects and can no longer be applied in the context of concurrent systems.
The aim of our research was to devise an object model that would become a
basis for the implementation of concurrent object-oriented systems and the
development of design methods. Starting from the abstract object model a
refinement was carried out that preserved the inherent aspects of concurrency
and distribution in the original model. Objects in the model are viewed as
nodes in a decomposition hierarchy. This hierarchy serves as a logical com-

munication topology – objects can only communicate with their sub-objects
and container object. Objects act as routers for other objects and forward
their messages. The route to an object uniquely identifies the object and can
thus be used as an object identifier. Absolute object identifiers correspond to
routes from the root of the decomposition hierarchy whereas relative object
identifiers correspond to communication paths between objects. In many ap-
plications most communication between objects is local with respect to the
decomposition hierarchy. In our model this locality is preserved – the routes

12

to such objects are shorter than others. Objects have an associated behaviour

script that can be set, retrieved and evaluated. Evaluation takes place within
the context of an object. Attributes and methods are both viewed as special
subobjects. The local variables of methods and their formal parameters are
all subobjects of the method object. Objects are cloned for evaluation to
enable concurrent method invocations and recursion. Inheritance between
objects can be modelled using the recipe-query scheme in which the script of
a method is fetched from the parent object and evaluated locally.
The semantics of our object model has been described in the π-calculus.
The calculus provides us with means of controlling the fine-grain (i.e., intra-
object) and large-grain (i.e., inter-object) concurrency. Messages to an object
are processed in parallel if this does not change the semantics of in-sequence

processing. Based on the model a small language was designed and its syntax
and semantics were defined. It can be viewed as a kind of object-oriented

assembler language. Features of high-level object-oriented languages can be
translated easily into the basic language.

Two Ways of Defining the Semantics of an
Object-Based Language

Clifford B. Jones
University of Manchester, UK

I argue that concurrent object-based (or object-oriented) languages are a
suitable target for a compositional design method that copes with the in-
terference inherent with concurrency. They are more tractable than full
shared variable languages and more realistic than process algebras. The de-
velopment method that I have proposed elsewhere uses equivalences (and
rely/guarantee-conditions for more complex cases). These equivalences need
to be justified with respect to a semantics for the language used in the de-
sign process (known as πoβλ). An structured operational semantics and a
semantics given by mapping to the π-calculus are both outlined and their
usefulness is discussed.

Concurrent Object-Oriented Design
Specification in SPECTRUM

Friederike Nickl, Martin Wirsing and Ulrike Lechner
Universität München, Germany

13

An algebraic approach to formal object-oriented design specification is pre-
sented where the static and functional part of a software system is described
by classical algebraic specification whereas the dynamic behavior is modeled
by a transition relation. The approach is inspired by Astesiano’s SMoLCS
formalism and is based on Meseguer’s rewriting logic; but it has two addi-
tional features, which are motivated by pragmatic object-oriented software
development techniques: it supports the construction of subsystems, and the
flow of messages can be controlled by use of a simple but powerful concurrent
language. Liveness and safety properties of design specifications are formu-
lated with the help of structured message expressions; methods for proving
such properties are briefly discussed. As underlying specification language
Broy’s SPECTRUM is extended by features for concurrent object-oriented
specification.

From Actions to Transactions – Refinement
in Object-Oriented Specification

Grit Denker and Hans-Dieter Ehrich
TU Braunschweig, Germany

The focus of our work is the stepwise design of information systems, i.e.,
databases with application programs, in the object-oriented framework. Here,
three keywords show up which make our work settled in the intersection of
different fields: object-orientation, design process, and database.
The notion of object comprises structure and behavior. Therefore, applying
refinement techniques during the design process implies that we have to deal
with data refinement and action refinement. Action refinement means that an
action which is atomic from the abstract point of view becomes compound
from the refined point of view. Changing the level of granularity leads to
well-known problems which have been thoroughly investigated in database
concurrency control theory.
We propose a logic which serves as a domain for translating object-oriented
specifications and interpret this logic in a model for families of concurrent
objects. This model is based on the notion of labelled event structures and
provides full concurrency though we use linear temporal logic for describing
object systems. This is achieved by a principle called local sequentiality.
Especially, we introduce the concept of transaction in the logic and give it a
specific semantics in the event-based model. This way, we treat transactions
accordingly to the notion in database theory and leave freedom for possible
interleavings, i.e., a sequence of abstract actions is refined to a interleaving
of the corresponding transactions.

14

Finally, we come up with correctness criteria for refinement of object-oriented
specification.

15

Behavioral Refinement of Object-Oriented
Specifications Using the Modal ¯-Calculus

Ulrike Lechner
University of Passau, Germany

The specification language Maude provides powerful mechanisms for spec-
ifying synchronization and communication in a collection of objects. The
modal µ-calculus enables us to reason about the properties of the behavior
of a collection of objects in a property-oriented way. We develop ideas of
behavioral refinement and abstraction of object-oriented specifications with
respect to properties formulated in the µ-calculus. Results on the preserva-
tion of properties support certain design decisions made in Maude like the use
of asynchronous message passing, the rewriting calculus and the inheritance
relation.

Agent Based Coordination

J. M. Andreoli
Rank Xerox Research Center, Maylan, France

Coordination is concerned with environments consisting of possibly distributed,
possibly heterogeneous software components. Heterogeneity is dealt with by
the notion of “wrappers”, which are pieces of software which encapsulate het-
erogenous components and present a uniform interface to the outside world.
Coordination is then realized by interactions among these homogenized wrap-
pers. The Linda model provides an interesting model for the interactions re-
quired by coordination (based on a blackboard-style communication). How-
ever, limitations of this model appear in complex coordination behaviours
as found, for example, in transactional workflows. Traditional transaction
systems are unfortunately also inappropriate for these situations, where not
only data but also actions are distributed, both physically and conceptually.
A framework based on the notion of “objects as resource handlers” is pro-
posed as a first step in the direction of realizing transactional workflow co-
ordination. A rule based scripting language is described.

16

Modelling General Relationships in
Object-Oriented Databases

Jürgen Schlegelmilch
Universität Rostock, Germany

I promote the use of a mechanism to model general relationships in object-
oriented systems by extending the approaches found in the literature by de-
rived relationships, additional communication control features and for databases,
a persistency concept based on roles (= attributes of relationships) as op-
posed to reference-based persistence. This persistency concept can, in con-
junction with derived relationships and utilisation of the meta-schema, simu-
late all other persistency concepts found in commercial systems as well as re-
search prototypes, including persistency by reachability, by class-membership
and manually managed persistency. So, for databases, general relationships
are a more powerful drop-in replacement for references.

Type Inference with Subtyping: State of the
Art

Jens Palsberg
Aarhus University, Denmark

Recently, type inference with subtyping has been studied intensively. Many
algorithms have been developed for typing such constructs as functions,
records and objects. Moreover, lower bounds for several of the type inference
problems have been obtained. In this talk, I will survey most known results,
and I will compare them with results for type systems without subtyping.

Verifying Substitutability of Collaborating
Objects

Else K. Nordhagen
University of Oslo, Norway

The talk presented an object-oriented calculus which directly models object-
oriented concepts: object identity, instance variables, methods, object cre-
ation, encapsulation, inheritance and messages sent to objects, as opposed to
functional concepts of values and function applications and process models
of signals on channels and spawning of processes.

17

The talk presented results from applying the calculus to define and reason
about congruence relations between objects and components built from ob-
jects. The results include a study of properties of versions of such relations
in relation to compositionality of objects and components. This defines re-
quirements on component specification and implementation to assure that
component based systems function as anticipated.

Confluent Processes for Transformation
Correctness

Uwe Nestmann and Martin Steffen
Universität Erlangen, Germany

Program transformations are central for the correct development of parallel
object-based programs in the language πoβλ. A π-translation provides a
formal semantics for πoβλ. In order to prove the correctness of program
transformations for the example program of a symbol table, a theory of
confluent mobile processes is established and applied.

18

3 List of Participants

19

