Contents

Introduction 4
Specification problem 7
Solutions 16
Egon Borger, Igor Burdanovi¢, Uwe Glasser, Yuri Gurevich, Elvinia Riccobene:
Evolving Algebra Solution for the Steam Boiler Problem 17
Jan Vitt, Jozef Hooman: Designing the Steam Boiler Control Using an Asser-
tional Method supported by the Interactive Proof Checker PVS 17
Anders P. Ravn: Varieties of Steam Boilers. 19
Wang JuAn, Li XiaoShan: A Duration Calculus Approach to Specifying a Steam-
boiler Control System 20
Jean-Raymond Abrial: Specification and Development of the Steam Boiler Con-
trol Program e 20
Burghard v. Karger: Calculi for Reactive Systems 21

Michel Bidoit: An Algebraic Specification of the Steam-Boiler Control System . 21
Gunter Leeb, Nancy Lynch: Using Timed Automata for the Steam Boiler Controller 21

Michael Butler, Emil Sekerinski, Kaisa Sere: Specification and Refinement of

Steam Boiler Using Refinement Calculus and Action Systems 21
Manfred Broy, Franz Regensburger, Bernhard Schatz: A functional modelling of

the steam boiler 22
Simon Mgrk, Anders P. Ravn, Hans Rischel: A Modular Approach to the Steam

Boiler Problem using Duration Calculus 23
Michael Schenke: The Steam Boiler: From Duration Calculus to OCCAM . . . 23
Jorge Cuellar, Isolde Wildgruber: The Dagstuhl Steam Boiler Controller Problem

— The TLT Solution 25
Peter Péappinghaus: DCSL solution of the steam boiler problem 25
Pascal Bernard: A Z specification of the boiler 25

Dan Craigen: A Canadian Approach to the Specification and Implementation of
the Boiler System 26

Matthias Weber: A Steam-Boiler Control Specification with Statecharts and Z . 26

Mattin Addibpour, Enn Tyugu: Structural synthesis of programs from refined
user requirements (Programming boiler control in NUT) 27

Peter D. Mosses: On the Formalization of Requirements — using Action Semantics 28

Thomas Lindner: Case Study “Production Cell” 28

3

Introduction

The goal of the workshop was to bring together

a) researchers representing the major formal methods and

b) representative potential users of such methods in industry

for a critical comparison of the advantages and drawbacks of such methods for practical
applications.

In order to have a concrete basis for such an evaluation we have asked the participants to
prepare a solution to a problem which was on the one side large enough to exhibit features
of a real-life problem and on the other side small enough to be doable in a reasonable
amount of time. Since we intend to contribute to an evaluation from the point of view
of the use of formal methods for practical applications we have chosen a problem which
comes from a non-computer-science application domain and in a form which is typical
for industrial informal requirement specifications. The steam-boiler-control specification
problem which has been sent out to the participants nine months before the workshop is
reprinted below.

We have deliberately abstained from imposing any specific constraints on the expected so-
lution. The idea was not to exclude any approach and to permit each participant to exhibit
his favourite method by showing it at its best, be it by providing a formal requirement spec-
ification, an architectural design, a running program, a sequence of stepwise refinements
or an analysis and proof of behavioural properties one wants to establish for the system.
This decision to keep the specific task as free as possible allowed us also to neutralize the
otherwise not acceptable circumstance that there was no possibility of interaction with the
virtual customer. This freedom is reflected in the great variety of contributions which have
been presented at the workshop.

Four months before the workshop some additional requirements for the physical behaviour
of the physical components of the steam-boiler have been sent to the participants for
possible inclusion into the formal model and as a possible test for the adaptability of the
used method to requirement modifications. One month before the workshop A. Lotzbeyer
from the FZI in Karlsruhe provided the participants also with an environment in which to
run the implementations of proposed solutions.

The week in Dagstuhl was characterized by a fruitful, vivid, frank and critical discussion
of a wide spectrum of different (also partial) solutions presented by researchers from the
major approaches to formal methods in program development. The abstracts of these pre-
sentations are included below. Not only many new contacts have been established among
the participating research groups. Above all a great number of specific comparisons of the
different methods have become possible through the focus on the steam-boiler problem.

Through an evening session stimulated by some provocative statements by G. Goos and
through a critical review and evaluation on Friday morning by T. Lindner, J. Loeckx,

4

P.Y.A. Ryan and M. Sintzoff which was followed by a final discussion among the partic-
ipants we arrived at formulating some specific criteria and parameters which can help to
evaluate the various solutions and to compare the specific merits and drawbacks of the
employed formal methods. We want to stress that this is not to be understood in the
sense of grading but in the perspective of a contribution to the development of evaluation
criteria by which various features of specification methods can be compared on objective
grounds. We enclose below the list of parameters which we suggest to the participants as
a guide for evaluating the final version of their (full or partial) solution to the steam-boiler
problem with respect to the others.

The success of the workshop encouraged us to prepare a Case Study Book ”Formal Methods
for Industrial Applications: The Steam-Boiler Case Study”. The participants and other
interested researchers are asked to complete their solution of the steam-boiler problem in
the light of the discussion in Dagstuhl and to submit it for a regular reviewing process until
December 1995. We hope to get the reviews within three months after the submission.
The final versions of the accepted papers are due two months after the reports (hopefully
early Summer of 1996) so that the book can be out in the Fall of 1996. In order to promote
the interaction among the different approaches a WWW page has been established at the
University of Kiel through which every group can access the material made available by
the other groups for comparison. The page can be accessed by:

http://www.informatik.uni-kiel.de/"procos/dag9523/dag9523.html

We hope to further contribute with this Case Study Book to the definition of useful evalu-
ation criteria which can help to identify where we are and to establish the practical value
of formal methods for industrial software engineering applications. We thank Schloss
Dagstuhl for the excellent environment which helped a lot to turn our experiment into a
fruitful experience.

The organizers

Jean-Raymond Abrial (Paris) ~ Egon Boerger (Pisa) Hans Langmaack (Kiel)

Evaluation criteria

1. Does the solution comprise a requirements specification?

a. for the system components?
b. for the safety of the system?
c. for the liveness of the system?

d. for the performance of the system?

bt

1. Is the requirements specification of the solution:

e formal?
e rigorous?

e verbal?
2. Does the solution comprise a functional design?

for the control program specification?

ISR

for the water level specification?

for the steam sensor specification?

/o

for the pump actuator specification?
e. for the pumps specification?
f. for the drain specification?
g. for the operator input/output?
2’. Has the functional design of the solution been verified against the requirements spec-
ification?
e formally?
e rigorously?

e verbally?
3. Does the solution comprise an architectural design?

for the control program specification?

ISR

for the message passing specification?

for the steam sensor specification?

/o

for the water level sensor specification?
for the pump actuator specification?
for the pumps sepcification?

for the drain specification?

B 0R - o

for the operator input/output?

3’. Has the architectural design of the solution been verified against the requirements
specification?

e formally?
e rigorously?
e verbally?

4. a. Does the solution comprise an implementation of a control program?

6

b. Has the control program been linked to the FZI simulator?

c. Has some experimentation been done with the control program?
5. What are the comparable other solutions?
6. What other solutions complement the given solution?
7. a. How much time has been spent on producing the solution? Give the number of

person months, if possible for the various parts of the solution.

b. How much preparation is needed to become sufficiently expert of the used spec-
ification framework in order to be able to produce a solution to such a problem
in that framework? Indicate the number of weeks of training which you believe
is needed for an average programmer to learn the method.

8. What are the premises for a good understanding of the proposed solution?

a. Is a detailed knowledge of the used formalism needed?
b. Can an everage programmer understand the solution?

¢. How much time do you believe is necessary for the average programmer whithout
knowledge of the used specification method to learn what is needed to be able
to understand the solution?

Specification problem

Introduction

This section constitutes an informal specification of a program which serves to control
the level of water in a steam-boiler. It is important that the program works correctly
because the quantity of water present when the steam-boiler is working has to be neither
too low nor to high; otherwise the steam-boiler or the turbine sitting in front of it might
be seriously affected.

The proposed specification is derived from an original text that has been written by Lt-
Col. J.C. Bauer for the Institute for Risk Research of the University of Waterloo, Ontario,
Canada. The original text has been submitted as a competition problem to be solved by
the participants of the International Software Safety Symposium organized by the Insti-
tute for Risk Research. It has been given to us by the Institut de Protection et de Sureté
Nucléaire, Fontenay-aux-Roses, France. We would like to thank the author, the Institute
for Risk Research and the Institut de Protection et de Sureté Nucléaire for their kind
permission to use their text.

The text to follow is severely biased to a particular implementation. This is very often
the case with industrial specifications that are rarely independent from a certain imple-
mentation people have in mind. In that sense, this specification is realistic. Your first
formalization steps could be much more abstract if that seems important to you (in par-
ticular if your formalism allows you to do so). In other words, you are encouraged to
structure your specification in a way that is not necessarily the same as the one proposed
in what follows. But in any case, you are asked to demonstrate that your specification can
be refined to an implementation that is close enough to the functional requirements of the
“specification” proposed below.

You might also judge that the specification contains some loose ends and inconsistencies.
Do not hesitate to point them out and to take yourself some appropriate decisions. The
idea, however, is that such inconsistencies should be solely within the organization of the
system and not within its physical properties.

We are aware of the fact that the text to follow does not propose any precise model of the
physical evolution of the system, only elementary suggestions. As a consequence, you may
have to take some simple, even simplistic, abstract decisions concerning such a physical
model.

Physical environment

The system comprises the following units

e the steam-boiler

The

a device to measure the quantity of water in the steam-boiler

four pumps to provide the steam-boiler with water

four devices to supervise the pumps (one controller for each pump)

a device to measure the quantity of steam which comes out of the steam-boiler
an operator desk

a message transmission system

steam-boiler

The steam-boiler is characterized by the following elements:

The

A valve for evacuation of water. It serves only to empty the steam-boiler in its initial
phase.

Its total capacity C (indicated in litres).

The minimal limit quantity M ; of water (in litres). Below M; the steam-boiler would
be in danger after five seconds, if the steam continued to come out at its maximum
quantity without supply of water from the pumps.

The maximal limit quantity M, of waters (in litres). Above My the steam-boiler
would be in danger after five seconds, if the pumps continued to supply the steam-
boiler with water without possibility to evacuate the steam.

The minimal normal quantity /NV; of water in litres to be maintained in the steam-
boiler during regular operation (M; < N;).

The maximal normal quantity N, of water (in litres) to be maintained in the steam-
boiler during regular operation (Ng < My).

The maximum quantity W of steam (in litres/sec) at the exit of the steam-boiler.
The maximum gradient U, of increase of the quantity of steam (in litres/sec/sec).

The maximum gradient Ug of decrease of the quantity of steam (in litres/sec/sec).

water level measurement device

The device to measure the level of water in the steam-boiler provides the following infor-
mation

the quantity ¢ (in litres) of water in the steam-boiler.

9

The pumps
Each pump is characterized by the following elements
e Its capacity P (in litres/sec)

e [ts functioning mode: on or off

e it’s being started: after having been switched on the pump needs five seconds to
start pouring water into the boiler (this is due to the fact that the pump does not
balance instantaneously the pressure of the steam-boiler).

e it’s being stopped: with instantaneous effect

The pump control device

Each pump controller provides the following information:

e the water circulates from the pump to the steam-boiler or, in the contrary, it does
not circulate.

The steam measurement device

The device to measure the quantity of steam which comes out of the steam-boiler provides
the following information:

e a quantity of steam v (in litres/sec).

Summary of constants and variables

The following tables summarize the various constants or physical variables of the system:

‘ H Unit ‘ Comment ‘
Quantity of water in the steam-boiler
C litre Maximal capacity
M; litre Minimal limit
Mo litre Maximal limit
Ny litre Minimal normal
Ny litre Maximal normal

10

‘ H Unit ‘ Comment ‘

Outcome of steam at the exit of the steam-boiler
W litre/sec | Maximal quantity

U; | litre/sec/sec | Maximum gradient of increase

Us | litre/sec/sec | Maximum gradient of decrease

Capacity of each pump

P litre/sec | Nominal capacity
Current measures
q litre Quantity of water in the steam-boiler
P litre/sec Throughput of the pumps
v litre/sec Quantity of steam exiting the steam-boiler

The overall operation of the program

The program communicates with the physical units through messages which are transmit-
ted over a number of dedicated lines connecting each physical unit with the control unit.
In first approximation, the time for transmission can be neglected.

The program follows a cycle and a priori does not terminate. This cycle takes place each
five seconds and consists of the following actions:

e Reception of messages coming from the physical units.

e Analysis of informations which have been received.

e Transmission of messages to the physical units.
To simplify matters, and in first approximation, all messages coming from (or going to)

the physical units are supposed to be received (emitted) simultaneously by the program at
each cycle.

Operation modes of the program

The program operates in different modes, namely: initialization, normal, degraded, rescue,
emergency stop.

Initialization mode

The initialization mode is the mode to start with. The program enters a state in which
it waits for the message STEAM-BOILER_-WAITING to come from the physical units.
As soon as this message has been received the program checks whether the quantity of
steam coming out of the steam-boiler is really zero. If the unit for detection of the level

11

of steam is defective—that is, when v is not equal to zero—the program enters the emer-
gency stop mode. If the quantity of water in the steam-boiler is above N, the program
activates the valve of the steam-boiler in order to empty it. If the quantity of water in
the steam-boiler is below N; then the program activates a pump to fill the steam-boiler.
If the program realizes a failure of the water level detection unit it enters the emergency
stop mode. As soon as a level of water between N; and N, has been reached the pro-
gram can send continuously the signal PROGRAM_READY to the physical units until
it receives the signal PHYSICAL_UNITS_READY which must necessarily be emitted by
the physical units. As soon as this signal has been received, the program enters either the
mode normal if all the physical units operate correctly or the mode degraded if any physical
unit is defective. A transmission failure puts the program into the mode emergency stop.

Normal mode

The normal mode is the standard operating mode in which the program tries to maintain
the water level in the steam-boiler between N; and N, with all physical units operating
correctly. As soon as the water level is below N; or above N, the level can be adjusted by
the program by switching the pumps on or off. The corresponding decision is taken on the
basis of the information which has been received from the physical units. As soon as the
program recognizes a failure of the water level measuring unit it goes into rescue mode.
Failure of any other physical unit puts the program into degraded mode. If the water level
is risking to reach one of the limit values M; or M, the program enters the mode emergency
stop. This risk is evaluated on the basis of a maximal behaviour of the physical units. A
transmission failure puts the program into emergency stop mode.

Degraded mode

The degraded mode is the mode in which the program tries to maintain a satisfactory water
level despite of the presence of failure of some physical unit. It is assumed however that
the water level measuring unit in the steam-boiler is working correctly. The functionality
is the same as in the preceding case. Once all the units which were defective have been
repaired, the program comes back to normal mode. As soon as the program sees that the
water level measuring unit has a failure, the program goes into mode rescue. If the water
level is risking to reach one of the limit values M; or M, the program enters the mode
emergency stop. A transmission failure puts the program into emergency stop mode.

Rescue mode

The rescue mode is the mode in which the program tries to maintain a satisfactory water
level despite of the failure of the water level measuring unit. The water level is then
estimated by a computation which is done taking into account the maximum dynamics
of the quantity of steam coming out of the steam-boiler. For the sake of simplicity, this
calculation can suppose that exactly n liters of water, supplied by the pumps, do account

12

for exactly the same amount of boiler contents (no thermal expansion). This calculation
can however be done only if the unit which measures the quantity of steam is itself working
and if one can rely upon the information which comes from the units for controlling the
pumps. As soon as the water measuring unit is repaired, the program returns into mode
degraded or into mode normal. The program goes into emergency stop mode if it realizes
that one of the following cases holds: the unit which measures the outcome of steam has
a failure, or the units which control the pumps have a failure, or the water level risks to
reach one of the two limit values. A transmission failure puts the program into emergency
stop mode.

Emergency stop mode

The emergency stop mode is the mode into which the program has to go, as we have
seen already, when either the vital units have a failure or when the water level risks to
reach one of its two limit values. This mode can also be reached after detection of an
erroneous transmission between the program and the physical units. This mode can also
be set directly from outside. Once the program has reached the Emergency stop mode,
the physical environment is then responsible to take appropriate actions, and the program
stops.

Messages sent by the program

The following messages can be sent by the program:

e MODE(m): The program sends, at each cycle, its current mode of operation to the
physical units.

¢ PROGRAM_READY: In initialization mode, as soon as the program assumes to be
ready, this message is continuously sent until message PHYSICAL_UNITS READY
coming from the physical units has been received.

e VALVE: In initialization mode this message is sent to the physical units to request
opening and then closure of the valve for evacuation of water from the steam-boiler.

e OPEN_PUMP(n): This message is sent to the physical units to activate a pump.
e CLOSE_PUMP(n): This message is sent to the physical units to stop a pump.

e PUMP_FAILURE_DETECTION(n): This message is sent (until receipt of the cor-
responding acknowledgement) to indicate to the physical units that the program has
detected a pump failure.

e PUMP_CONTROL_FAILURE_DETECTION(n): This message is sent (until receipt
of the corresponding acknowledgement) to indicate to the physical units that the
program has detected a failure of the physical unit which controls a pump.

13

e LEVEL_FAILURE_DETECTION: This message is sent (until receipt of the corre-
sponding acknowledgement) to indicate to the physical units that the program has
detected a failure of the water level measuring unit.

e STEAM_FAILURE_DETECTION: This message is sent (until receipt of the corre-
sponding acknowledgement) to indicate to the physical units that the program has
detected a failure of the physical unit which measures the outcome of steam.

e PUMP_REPAIRED_ACKNOWLEDGEMENT(n): This message is sent by the pro-
gram to acknowledge a message coming from the physical units and indicating that
the corresponding pump has been repaired.

e PUMP_CONTROL_REPAIRED_ACKNOWLEDGEMENT (n): This message is sent
by the program to acknowledge a message coming from the physical units and indi-
cating that the corresponding physical control unit has been repaired.

e LEVEL_REPAIRED_ACKNOWLEDGEMENT: This message is sent by the program
to acknowledge a message coming from the physical units and indicating that the
water level measuring unit has been repaired.

e STEAM _REPAIRED_ACKNOWLEDGEMENT: This message is sent by the pro-
gram to acknowledge a message coming from the physical units and indicating that
the unit which measures the outcome of steam has been repaired.

Messages received by the program

The following messages can be received by the program:

e STOP: When the message has been received three times in a row by the program,
the program must go into emergency stop.

e STEAM _BOILER_WAITING: When this message is received in initialization mode
it triggers the effective start of the program.

e PHYSICAL_UNITS_READY: This message when received in initialization mode ac-
knowledges the message PROGRAM_READY which has been sent previously by the
program.

e PUMP_STATE(n,b): This message indicates the state of pump n (open or closed).
This message must be present during each transmission.

e PUMP_CONTROL_STATE(n, b): This message gives the information which comes
from the control unit of pump n (there is flow of water or there is no flow of water).
This message must be present during each transmission.

e LEVEL(v): This message contains the information which comes from the water level
measuring unit. This message must be present during each transmission.

14

e STEAM(v): This message contains the information which comes from the unit which
measures the outcome of steam. This message must be present during each trans-
mission.

e PUMP_REPAIRED(n): This message indicates that the corresponding pump has
been repaired. It is sent by the physical units until a corresponding acknowledgement
message has been sent by the program and received by the physical units.

e PUMP_CONTROL_REPAIRED(n): This message indicates that the corresponding
control unit has been repaired. It is sent by the physical units until a corresponding
acknowledgement message has been sent by the program and received by the physical
units.

e LEVEL_REPAIRED: This message indicates that the water level measuring unit has
been repaired. It is sent by the physical units until a corresponding acknowledgement
message has been sent by the program and received by the physical units.

e STEAM_REPAIRED: This message indicates that the unit which measures the out-
come of steam has been repaired. It is sent by the physical units until a corresponding
acknowledgement message has been sent by the program and received by the physical
units.

e PUMP_FAILURE_.ACKNOWLEDGEMENT(n): By this message the physical units
acknowledge the receipt of the corresponding failure detection message which has
been emitted previously by the program.

e PUMP_CONTROL_FAILURE_.ACKNOWLEDGEMENT (n): By this message the
physical units acknowledge the receipt of the corresponding failure detection message
which has been emitted previously by the program.

e LEVEL_FAILURE_ACKNOWLEDGEMENT: By this message the physical units ac-
knowledge the receipt of the corresponding failure detection message which has been
emitted previously by the program.

e STEAM_OUTCOME_FAILURE_ACKNOWLEDGEMENT: Through this message
the physical units acknowledge the receipt of the corresponding failure detection
message which has been emitted previously by the program.

Detection of equipment failures

The following erroneous kinds of behaviour are distinguished to decide whether certain
physical units have a failure:

e PUMP: (1) Assume that the program has sent a start or stop message to a pump.
The program detects that during the following transmission that pump does not
indicate its having effectively been started or stopped. (2) The program detects that
the pump changes its state spontaneously.

15

PUMP_CONTROLLER: (1) Assume that the program has sent a start or stop mes-
sage to a pump. The program detects that during the second transmission after the
start or stop message the pump does not indicate that the water is flowing or is not
flowing; this despite of the fact that the program knows from elsewhere that the
pump is working correctly. (2) The program detects that the unit changes its state
spontaneously.

WATER_LEVEL_MEASURING_UNIT: (1) The program detects that the unit in-
dicates a value which is out of the valid static limits-i.e. between 0 and C. (2)
The program detects that the unit indicates a value which is incompatible with the
dynamics of the system.

STEAM_LEVEL_MEASURING_UNIT: (1) The program detects that the unit in-
dicates a value which is out of the valid static limits—i.e. between 0 and W. (2)
The program detects that the unit indicates a value which is incompatible with the
dynamics of the system.

TRANSMISSION: (1) The program receives a message whose presence is aberrant.
(2) The program does not receive a message whose presence is indispensable.

16

Solutions

Evolving Algebra Solution for the Steam Boiler Problem

Egon Borger
Universita di Pisa, Italy

Igor Purdanovié
Universitat-GH Paderborn, Germany

Uwe Glasser
Universitat-GH Paderborn, Germany

Yuri Gurevich
University of Michigan, Ann Arbor, USA

Elvinia Riccobene
Citta Universitaria, Catania, Italy

Computation models and commercial specification methods seem to be worlds apart. The
evolving algebra project started as an attempt to bridge the gap by improving on Turing’s
thesis. We sought more versatile abstract machines able to simulate arbitrary algorithms in
a direct and coding-free way on their natural abstraction level (rather than implementing
algorithms on lower abstraction levels).

The EA thesis asserts that evolving algebras are such versatile machines, and ealgebras are
used to model discrete dynamic systems. They are executable when appropriate. (There
are tools for running evolving algebras.) The use of the successive refinement method is
facilitated by the ability to reflect arbitrary abstraction levels.

There is an active and growing evolving algebra community. Evolving algebras have been
used to specify languages (e.g. C++, Prolog and VHDL), to specify real and virtual
architectures (e.g. APE, PVM and Transputer), to validate standard language implemen-
tations (e.g. of Prolog, Occam), to verify numerous distributed and/or real-time protocols,
to prove complexity results, etc.. Some examples may be found in the Proceedings of IFIP
1994 World Computer Congress.

In the talk, we quickly explain evolving algebras and the EA thesis but the bulk of the talk
is devoted to the solution of the steam boiler problem. The given informal specification
has been very faithfully reflected in the ground model of the steam boiler system. It is
not that we were so happy with the informal specification. In a real situation we could
negotiate with the designer but this was impossible in this case, and thus we reflected
the given description very faithfully (the customer is always right). The presentation was
supposed to convince one that the formalization is faithful indeed. In the paper, we discuss
also a more abstract presentation of the system as well as a number of refinements of the
ground model all the way to a running program presented during the demo session. The
final version of the paper will contain also proofs of various properties of the system.

17

Designing the Steam Boiler Control Using an Assertional
Method supported by the Interactive Proof Checker PVS

Jan Vitt
Chr.-Albrechts-Universitat Kiel, Germany

Jozef Hooman
Eindhoven University of Technology, The Netherlands

We aim at a formal derivation of an implementation of the steam boiler control system.
Using a mixed formalism in which programs and assertional specifications are combined
within a single framework, the top-level specification is refined in a top-down manner.
Having the formalism defined in the specification language of PVS (Prototype Verification
System), the interactive proof checker of PVS is used to check the correctness of each
refinement step, thereby guaranteeing the correctness of the resulting program.

As a start, we consider a real-time version of the steam boiler control system which contains
only one pump and one pump controller. Further we assume absence of failures and
consider the initialization phase as terminated, i.e., we focus on the normal mode. To
design the control system we follow a standard approach that has been applied successfully
to similar examples. In the first step a formal description of the top-level specification of
the complete system, i.e., control system plus continuous processes (such as inflow of water
and outflow of steam) is given. Next, relevant properties of the physical processes to be
controlled are formalized and a control strategy in terms of a continuous interface is given.
Then we prove that this strategy and the assumptions about the physical properties lead to
the top-level specification. To implement the control strategy we introduce a water sensor
and a pump system to transform the continuous interface into discrete events. The pump
system is refined further into a pump and a pump controller. Next the control program is
specified and we show that it implies the control strategy, using specifications of actuators
and sensors. This reduces the problem to a conventional programming problem where we
have to implement a program according to its (real-time) specification.

In a second version, communication channels can fail, i.e., they can loose messages. By
a slight adaptation of the previous design, we obtain a control component which switches
into emergency stop mode after detection of a failure on a channel. Finally, failures of
physical components are considered. As an example we have chosen a failing water sensor.
Then, a steam sensor and a sensor control which receives values from the steam sensor are
added to the system. Compared to the original description of the steam boiler system, we
have designed the steam boiler control system only partially. However, the correctness of
all design steps has been verified by means of PVS.

18

Varieties of Steam Boilers
Anders P. Ravn

Technical University of Denmark

The Steam Boiler problem is a challenge to formal methods because it involves issues
ranging from the interface to control theory and control engineering over fault-tolerant
and reactive real-time systems to implementation and simulation. In the presentation, I
suggest to document a development using a layered approach:

1. requirements specification for the overall dynamical system,

2. functional design in terms of real-time state machines interacting with and thus
controlling the dynamical system.

3. architectural design defining a collection of cooperating sequential processes,
4. programming in hardware or software of these processes and their interfaces,

5. integration of the completed system.

A significant point is that layers have to be linked by interface documents, preferably based
on transformations between the specialized notations and theories used to develop each
layer. Development of such links may be the major technical challenge to formal methods
supporting a single layer.

The presentation illustrates requirements specification using Duration Calculus and Z-
schemas, while later presentations by Wang and Rischel illustrate a corresponding func-
tional design, and a presentation by Schenke illustrates transformations to an architectural
level with occam-like processes.

A previous survey is found in: Jifeng He, C. A. R. Hoare, M. Franzle, M. Miiller-Olm, E.-R.
Olderog, M. Schenke, M. R. Hansen, A. P. Ravn, and H. Rischel. Provably correct systems.
In H. Langmaack, W.-P. de Roever, and J. Vytopil, editors, Formal Techniques in Real-Time
and Fault-Tolerant Systems, volume 863 of Lecture Notes in Computer Science, pages 288-335.
Springer-Verlag, 1994.

19

A Duration Calculus Approach to Specifying a Steam-boiler
Control System

Wang JuAn
University of Macau

Li XiaoShan
UNU/IIST, Macau

This report presents a general method to cope with hybrid control system specification and veri-
fication by making full use of both the simplicity of finite automata and the excessive expressing
power of Mean Value Duration Calculus. The method consists of four steps: First, specify the
requirements of the whole system through Mean Value Duration Calculus formulas. Second,
use two real-time communicating automata to characterize the design decisions, which describe
the plant and control subsystems respectively. Third, translate the automata into Mean Value
Duration Calculus formulas. Finally prove the design decisions conforming to the requirements
specification. Taking the steam-boiler problem raised by J.-R. Abrial[l] as a running example,
we demonstrate the above method in three versions of abstractions. Each version represents an
abstract level for capturing the original problem requirements and provides a complete procedure
of applying the above method. In addition to specifying safety property, emphasis is put on
capturing non-functional requirements such as performance, reliability, and optimization. Some
formal design techniques about finding an optimal implementation conforming to the system
specification are also discussed.

Keywords: Specification, Verification, Mean Value Duration Calculus, Steam-boiler control,
Hybrid systems.

Specification and Development of the Steam Boiler Control
Program

Jean-Raymond Abrial
Paris, France

We presented a partial version of the formal specification and development of the Boiler Case
Study. We insisted on the necessity of a “pre-specification” where some equations relating dy-
namically the variables of the system are established. Then, these equations are sorted and the
architecture of the system is constructed little by little by taking account of the equations in
turn — the architecture is thus constructed by working against the future flow of control in the
system.

We have shown how such a structure can “resist” some modifications of the original specification.

20

Calculi for Reactive Systems

Burghard v. Karger
Chr.-Albrechts-Universitat Kiel, Germany

The relational calculus has been remarkably successful in reasoning about possibly non-determi-
nistic systems, provided that their behaviour can be fully characterised by observation of just
their initial and final states. Many alternative models have been proposed for reactive systems,
whose behaviour between initiation and termination is also of significance. A common feature of
these calculi is that past observations cannot be cancelled or undone by what comes after. As
a consequence, the converse operation of the relational algebra must be restricted. Doing this
we obtain the Sequential Calculus, which provides a common framework of laws applicable to
many of these alternative models. The absence of a converse operation also endows time with a
direction and enables us to treat temporal logic within the sequential calculus.

An Algebraic Specification of the Steam-Boiler Control System

Michel Bidoit
LIENS, C.N.R.S. & Ecole Normale Supérieure, Paris, France

joint work with C. Chevenier, C. Pellen, and J. Ryckbosch
Direction des Etudes et Recherches, Electricité de France

We describe how to derive an algebraic specification of the steam-boiler control system from
the informal requirements provided by J.R. Abrial. The aim of this formalization process is
to analyze the informal requirements, to detect inconsistencies and loose ends, and to translate
the requirements into a formal, algebraic, specification. During this process we have to provide
interpretations for the unclear or missing parts. We explain how we can keep track of these
additional interpretations by localizing very precisely in the formal specification where they lead
to specific axioms. Hence we take care of the traceability issues. We explain as well how the
formal specification is obtained in a stepwise way. Emphasis is put on how to specify the failures
of the steam-boiler. Finally we will briefly discuss validation and verification issues. For this case
study we use the Pluss algebraic specification language and the Larch Prover.

Using Timed Automata for the Steam Boiler Controller

Gunter Leeb, Nancy Lynch
Massachusetts Institute of Technology, USA

In this paper we model a steam boiler and its controller as a hybrid system. We apply the
Timed Automata method to the steam boiler controller problem as defined for the Methods and
Semantics Seminar. Our method allows us to describe different parts of the system independently
and to prove formally that our steam boiler controller model guarantees the required safety and
performance properties. We present a sufficient model for the boiler environment and another for
the controller behavior. In addition this method provides efficient means for proving incrementally
increasingly complex model abstractions. We show this in proving that a particular 4-Point
Controller preserves the properties proved for the general controller.

21

Specification and Refinement of Steam Boiler Using Refinement
Calculus and Action Systems

Michael Butler, Emil Sekerinski, Kaisa Sere
Abo Akademi, Turku, Finland

We give an abstract high-level specification of the steam boiler control program together with its
physical environment within the action systems framework.

The abstract specification is refined to an implementation within the refinement calculus by
carrying out a number of data refinement steps. The application of data refinement guarantees
that the correctness of the specification is preserved by the implementation.

The idea of partitioning the state space of an action system is used as a way of splitting the system
into an open system modelling the controller and an open system modelling the environment.

The approach relies on finding appropriate abstractions for modelling the controller and the
physical environment in a simpler way than with a concrete implementation. Abstraction in the
initial specification is achieved by:

1. unifying the different ways of system failure into one notion of failure,
2. reducing the number of modes by unifying the Normal, Degraded, and Rescue modes,

3. modelling all actuators, sensors, and controller variables as part of a state space, thus
abstracting from their distribution and the message passing protocol.

In later steps these abstractions are refined by applying data refinement to both the controller and
the physical system, resulting in an action system specification which is close to an implementation
in an imperative programming language.

A functional modelling of the steam boiler

Manfred Broy, Franz Regensburger, Bernhard Schatz
Technische Universitat Minchen, Germany

The main goal of our approach is to give a formal requirement specification of the steam boiler
problem that specifies WHAT to do and does not already start to formalize HOW the controlling
has to be done. This is a crucial point since the problem solving strategy should not be part of
the very first formal specification of a problem to leave more freedom for later implementation.

In order to give such a (pure) requirement specification we adopted a technique from control
theory and modeled the steam boiler as a closed loop control system including noise channels,
noise composers, and the physical environment itself.

The explicit introduction of noise allows us to specify the intended behavior of the controller in
certain failure situations without formulating a strategy how the controller could recognize this
failure.

For the formal specification of the steam boiler as a closed loop control system we use the
framework of stream processing functions. The formal language that is used for the specification

22

is HOLCF (Higher Order Logic of Computable Functions) which itself is implemented in the
logical framework Isabelle.

At the moment our requirement specification is still on a generic level. In future work we will
refine it to obtain a more concrete requirement specification of the steam boiler problem.

A Modular Approach to the Steam Boiler Problem using
Duration Calculus

Simon Mgrk, Anders P. Ravn, Hans Rischel
Technical University of Denmark

This talk presents a formalization of requirements to the steam-bolier system and of a top-level
functional design. It is proved that the design implements the requirements. As encouraged by
Abrial, we have approached the problem with an open mind, and we therefore present out own
formalization of the steam-boiler system. Our goal is to replace the monolithic system description
of the problem statement with a modular description of a distributed system with “intelligent”
sensors and actuators.

The modular description of the steam-boiler system is obtained by subdividing the state space into
parts, localized in separate components. The computations related to the states for a component
is then described in a separate specification. This specification includes handling of errors for
the associated equipment. In this way we get a simpler and more abstract set of interfaces for
the central control program, and the computations described in the problem are divided between
the sensors, actuators, and the program. The specification of the central control program can
therefore concentrate on the core of the control problem: the interplay between data from different
components.

We also get a modular subdivision of the operation mode for the system: The global operation
mode in the original problem statement is replaced by local modes in each component. This gives
a reduction of the number of modes and a simplification of the mode handling for the central
control program, as part of the system mode can be handled locally in the intelligent sensor and
actuator components.

The Steam Boiler: From Duration Calculus to OCCAM

Michael Schenke
Universitat Oldenburg, Germany

The aim of the method presented here is to develop an occam program from an architectural
description in special duration calculus formulae, so-called “implementables” [HH94]|. The devel-
opment is done in order to show the applicability of the approach to the development of provably
correct systems as lined out in [HH94] and described in [Sch94] and [OS95]. In the talk we
give the intermediate forms of the specification at various stages. Most important will be the
change from a state based view like the one from DC to an event based view like the one from
occam. So at some stage we shall introduce events. Events may be names for state changes or for

23

synchronisations. They will be introduced in the syntax of SL, a language designed particularly
for the specification of real time systems in the Esprit BRA ProCoS. The idea of this part is
to successively remove the implementables and replace them by pieces of SL syntax. We shall
exhibit the following steps:

1.) Before the events are introduced, the phase description often is still too abstract. A technique
called phase splitting enables us to describe a phase in terms of newly introduced subphases. In
this article phase splitting will only be used in connection with synchronisation.

2.) Phase changes (events) which change only one observable do not involve internal synchroni-
sation of different components. They normally express a communication with the environment.

3.) Implementables that deal with synchronisation are removed by synchronising communications
which in accordance with the occam paradigm appear in the SL specifications of both components
involved.

4.) Already at this stage it is possible to argue within an SL specification. In general there are
several possible replacements of SL syntax pieces for other such syntax pieces. Here we shall
show only one such transformation, the introduction of so-called trace assertions.

5.) The introduction of time restrictions finally makes the quantitative requirements on timing
dependant on events rather than on phases.

6.) The development of the final program can be done in two steps: the introduction of a recur-
sion construct which is not part of the occam syntax and secondly the resolution of the recursion
by means of standard techniques. Since the latter step does not contain anything new we skip it
and simply show the complete final program.

References

[HH94] Jifeng He, C. A. R. Hoare, M. Frénzle, M. Miiller-Olm, E.-R. Olderog, M. Schenke,
M. R. Hansen, A. P. Ravn, and H. Rischel. Provably correct systems. In H. Langmaack, W.-
P. de Roever, and J. Vytopil, editors, Formal Techniques in Real-Time and Fault-Tolerant

Systems, volume 863 of Lecture Notes in Computer Science, pages 288-335. Springer-Verlag,
1994.

[Sch94] M.Schenke. Specification and Transformation of Reactive Systems. In H. Langmaack,
W.-P. de Roever, and J. Vytopil, editors, Formal Techniques in Real-Time and Fault-Tolerant
Systems, volume 863 of Lecture Notes in Computer Science, pages 288-335. Springer-Verlag,
1994.

[0S95] E.-R.Olderog, M.Schenke. Design of Real-Time Systems: Interface between Duration
Calculus and Program Specifications. STRICT 1995, to appear in Workshops in Computing.

24

The Dagstuhl Steam Boiler Controller Problem — The TLT
Solution

Jorge Cuellar, Isolde Wildgruber
Siemens Corporate Research and Development, Munich, Germany

TLT is a language for writing requirement specifications, abstract programs, implementations,
and their properties. A program consists of several sections (or submodules) which manipulate
shared (or local) variables or communicate through actions with each other and the environment.
In these sections it is possible to formulate assumptions over the most general environment, or
to trigger events (actions or changes in variables) as immediate response to other events, or to
start “spontaneous” instructions (not triggered by external events).

Each TLT section corresponds to a logical module of the program, in the sense that each one
can be translated to a transition relation or transition predicate independently of the others
(since they contain disjount sets of variables), while the global transition relation is exactly the
conjunction of the relations for the individual modules.

In this solution, we distinguish carefully between program variables and physical variables, which
may not be seen directly by the program. To reason about them and to draw conclusions about
the controllability of the system (including the detection of physical failures) we use Lamport’s
TLA. In this logic we express the assumptions about the relation of the physical variables to the
sensor and actuator values and we describe the dynamics of the physical system.

DCSL solution of the steam boiler problem

Peter Pappinghaus
Siemens Corporate Research and Development, Munich, Germany

A solution to the steam boiler problem using DCSL (Distributed Control Specification Lan-
guage) was presented. DCSL is a language for specifying structure and behaviour of (finite) state
systems. DCSL is currently being developed with the aim to support the design of industrial
size distributed control systems using formal methods. A DCSL description specifies a system
of asynchronously communicating FSA’s (finite state automata). It consists of a class library
of generic classes specifying constraints on the controller behaviour in a logical language, and a
structure description of an individual aggregate of components, from which a system of communi-
cating FSA’s is automatically synthesized. Each class is equipped with a set of named interfaces,
and each interface contains declarations of input-, output-, token-, communication- and history-
variables as well as assumptions about the behaviour of its environment and commitments to
this environment. A tool environment to support system development with DCSL is currently
being implemented. This environment will contain a compiler to synthesize FSA’s, a graphical
interface for the design of individual aggregates and to animate a synthesized solution using an
FSA interpreter, and finally interfaces to a model checker and a theorem prover so that properties
of a DCSL design can be formally verified.

25

A 7 specification of the boiler

Pascal Bernard
IUT de Nantes, France

The boiler and its controller are specified together with the Z notation. The purpose of this
specification is to relate the evolution of the physical system with the corresponding actions
of the controller. The faithful formalisation of the informal specification revealed that it was
consistent (in the sense that in no case the controller has to take contradictory decisions) but
very loose. This specification allows to prove that the system is safe when failures are detected as
epected. It provides a framework for stating liveness properties of the whole system. The proof
of some expected liveness properties would require a refinement of the specification.

In order to make the specification, a method was developed. This method applies for the speci-
fication of systems where the control takes virtually no time and holds again after every period
of a given duration. The method provides a structure of the specification, each part of which
concerning a partial view of the system at a given stage of the life of the system. The combination
of these parts is easy to handle with the schema calculus of Z. In particular, the exceptions are
treated in an easy and elegant way.

This specification shows that it is possible to handle cases of a fair size with Z. This is obtained
by structuring. The method proposed can be reused or generalised to handle other cases.

A Canadian Approach to the Specification and Implementation
of the Boiler System

Dan Craigen
ORA Canada

This presentation is divided into 4 sections:

1. Technology Transfer (Innovation diffusion)
2. History of the boiler problem.
3. A four country comparison of techniques and (nuclear) regulatory assessment.

4. A discussion of the Canadian approach.

In the first section of the talk I present an innovation diffusion model (developed by Everett
Rogers) to assess the likely adoption trajectory by industry of formal methods. The second
and third sections provide historical context for both this workshop and for our own work with
the boiler. Finally, I describe the three phase Canadian approach supported by the Atomic
Energy Board of Canada. Summaries of the work performed by the Canadian company GARD in
developing a formal software requirements specification (SRS) and our own work (in conjunction
with a Canadian software house—CGI) in using EVES and an assurance process to provide an
implementation of the boiler (as specified by the SRS) are presented.

26

A Steam-Boiler Control Specification with Statecharts and Z

Matthias Weber
Technische Universitat Berlin, Germany

joint work with Robert Biissow and Maritta Heisel

This talk sketches an approach that tries to integrate a mathematical specification technique
with a well-known engineering technique to yield a practicable methodology for the specification
of safety-critical control systems. A starting point is the technology of Statecharts, which is
currently being adopted in industry for the specification of embedded systems. To cope with the
growing complexity and the safety requirements of these systems, I propose an integration of the
specification language Z into Statecharts, where Z is used to model the data structures and data
transformations within the system.

A widely used technique of modern software engineering is to model a system by a combination
of different, but semantically compatible, “views” of that system. The primary benefit of such
an approach is to keep very complex systems manageable and to detect misconceptions or in-
consistencies at an early stage. The approach presented in this talk follows this philosophy and
combines three system views, specified with structural diagrams, Statecharts, and Z, respectively,
into a coherent modeling technique.

The talk sketches some key ideas of this combination; after that I present a solution to the steam
boiler control specification problem. Throughout the presentation, I make an effort to stick
faithfully to the specification of this problem as given on pages 8 to 16, especially with respect
to the physical interface of the control software. This solution constitutes a system specification
of the steam-boiler. At some places I will motivate and describe deviations or adaptations.

Structural synthesis of programs from refined user requirements
(Programming boiler control in NUT)

Mattin Addibpour, Enn Tyugu
Royal Institute of Technology, Sweden

The technique of structural synthesis of programs based on automatic proof search in intuitionistic
propositional calculus and implemented in the NUT system is used for solving the boiler problem.
The goal of the experiment is to bridge a gap between the language of requirements and the
implementation. In the NUT system, an appropriate set of concepts (represented as classes) has to
be developed for each kind of problems. The concepts for simulating the boiler and programming
a boiler model are the following: device, boiler, pump, pumpcontroler, levelmeter, flowmeter,
simulator and sysmodel. These concepts are represented as sets of equations taken directly from
requirements specification. The control algorithm is represented as a collection of rules written as
relations in NUT. The rules are triggered by conjuctions of propositions describing a state of the
system at an observable time moment. Also these rules are derived directly from requirements
specification after introducing a proper collection of propositions which are implicitly present in
the text of requirements. Formally, the boiler control system can be considered as an attributed
automaton, whose atribute models are represented as classes and transitions are specified by
rules. This technique has been used earlier, in particular, for protocol simulation in NUT. We

27

could demonstrate with the present experiment that the presentation of requirements given as
an example allowed us to extract rules immediately from the requirements text. We expect to
use the presented technique in combination with a number of formal requirements refinement
techniques, providing a reliable implementation tool for refined requiremets.

On the Formalization of Requirements — using Action
Semantics

Peter D. Mosses
BRICS, Aarhus, Denmark

Action Semantics has been used successfully to improve the pragmatics of semantic descriptions of
programming languages, allowing scaling up to practical languages (e.g., Standard Pascal, ANDF)
as well as providing other desirable features such as reusability, modifiability, and readability. The
actions used as semantic entities are composed using combinators that correspond to fundamental
operational concepts.

Here, we tentatively explore the use of action notation for formally specifying the requirements
for the steam-boiler. The control of the steam-boiler is specified as a single compound action,
exploiting nondeterminism to express looseness of required behaviour, e.g., that in the initializa-
tion phase, the steam-boiler may (apparently) continue to fill or empty the boiler even after the
water-level is in the normal range. It is claimed that the action specification could, with rather
little investment of effort, be understood by those who wrote the original informal specification,
and thus be used as the basis for clarifying the intended requirements — perhaps leading to a ma-
jor rewrite of the informal specification before investing further effort in the problem... However,
it remains to be seen whether the action specification provides an adequate basis for software
development in general, or for reasoning about the consequences of the requirements.

Case Study “Production Cell”

Thomas Lindner
Forschungszentrum Informatik, Karlsruhe, Germany

The case study Production Cell, a comparative study currently featuring 35 contributions, is
summarized and evaluated. The study, taken from an industrial plant near Karlsruhe, served as
a testbed for formal approaches to reactive system design and verification. In order to stimulate
a controversial discussion, the evaluation was presented rather provocative. As a major point we
see the need to establish an engineering discipline for the application of formal methods which
establishes heuristics for system identification, validation, and proof technology.

Furthermore, initial steps towards an evaluation of the case study Steam Boiler were proposed.
We see the need for

e assessing what are the key difficulties in the Steam Boiler problem,
e classifying the contributions according to what has been done,

28

e assessing at least a rough estimate of the effort involved, and

e checking the usefulness of the different mathematical models which were used by the various
formal apporaches.

29

