
Dagstuhl-Seminar 9529

Role of Logic in Information Systems

17–21 July 1995

organized by

Jan Chomicki (Kansas State University)

Gunter Saake (University of Magdeburg)

Christina Sernadas (Instituto Superior Tecnico Lisboa)

Contents

1 Preface ii

2 Final Program iii

3 Abstracts of Presentations 1
K. Böhm: Real-Time Object Specification Logic 1
S. Brass: Query Evaluation for Modular Specifications 2
J. Chomicki: Logical Semantics and Database Interoperability 3
S. Conrad: Logical Support for Active Databases 4
H. Decker: The Role of Logic Programming in Knowledge-Based Information

Systems . 5
J. Dix: The Role of Partial Evaluation for Disjunctive Logic Programs 6
E. Dubois, P. Du Bois: The Role of Logic in Requirement Engineering 7
H.-D. Ehrich: Granularity in Specifying Information Systems 8
R. Feenstra: Constraint-based Reachability Analysis of Information Systems . . 9
B. Freitag: Using a Modal Logic for Component Library Management 10
M. Gogolla: Identifying Objects by Declarative Queries 11
P. Ladkin: Airbus A320 Braking as Predicate-Action Diagrams 12
B. Ludäscher: Towards Logical Foundations of Active Rules 13
R. Marti: Constraint Propagation and Intensional Answers in Deductive Databases 14
J.-J. Meyer: The Role of Deontic Logic in the Specification of Information Systems 15
B. Paech: The Role of Formal Description Techniques in Requirements Engineering 16
M. Ryan: The Lexicographic Combination of Preference Relations 17
G. Saake: From Object Specifications towards Logic-based Agent Modelling . . 18
P.-Y. Schobbens: Multi-Preferential Logics for Information Systems 19
M. Schrefl: Inheritance of Business Rules . 20
P. A. Sistla: Temporal Triggers in Active Database Systems 21
B. Thalheim: Constraints in Database Models 22
B. Thalheim: Fundamentals of Object-Oriented Database Systems 23
Y. Venema: A Modal Predicate Calculus . 24
R. Wieringa: A Comparison of the Notations Used in the Shlaer-Mellor Method

and in TCM . 25
B. Freitag: Working Group – Logic as a Query Language 26

4 List of Participants 27

i

1 Preface

There is a long tradition of using formal logics in the design and realization of information
systems. Logics are for example used as frameworks for describing the relevant information
managed by information systems and to give formal background to data models and query
languages.

The workshop is intended to bring together researchers working in different aspects
of the use of logics in information systems such as specification of information systems
with logic frameworks (namely dynamic or temporal logic), logics for temporal databases,
logic-based queries and updates, consistency checking and verification, etc. The list of
participants covers people working on different aspects of logical frameworks as well as
people using logics in practical information system technology. The aim of this workshop
is to bring together researchers in logics and people who actually build IS applications
or IS tools. This combination may foster interaction between people that do not usually
meet at conferences.

Since the topic “Logics in Information Systems” is very broad, we will concentrate on
three aspects and their relation.

• Design of Dynamic Information Systems

Logics for information system behavior, provable correct information systems, con-
ceptual modelling, specification and verification

• Temporal Databases

Data models for temporal data bases, temporal query languages, temporal integrity,
time models, real time applications

• Logics for Querying and Integrity Constraints

Deductive databases, query optimization, integrity checking, logics for updates,
query language semantics

Presentations combining aspects of these three topics are of special interest, e.g. using
one logical framework (eg, temporal or dynamic logic) for designing and querying a tem-
poral database. Bringing together researchers of the three mentioned disciplines seems to
be promising because they start to use similar formalisms (for example, non-standard log-
ics) and techniques (for example, automated reasoning) in different areas having different
research traditions.

The three topics are seen under the main theme “Practical Impact of Logics for Infor-
mation System Applications”. We are specially interested in contributions showing the
applicability of logic techniques to information system applications.

ii

2 Final Program

Monday, July 17, 1995

Morning Session (09.00-12.15)
Chair: Gunter Saake

1. E. Dubois, P. Du Bois : The Role of Logic in Requirement Engineering
2. J.-J. Meyer : Deontic Logic in Information Systems

Afternoon Session (13.30–18.00)
Chair: Jan Chomicki

3. H.-D. Ehrich: Granularity for Specifying Information Systems
4. P.-Y. Schobbens : Multi-Preferential Logics for Information Systems
5. B. Thalheim: Fundamentals of Object-Oriented Database Models

Tuesday, July 18, 1995

Morning Session (09.00–12.15)
Chair: Bernhard Thalheim

6. M. Gogolla: Identifying Objects by Declarative Queries
7. S. Brass : Query Evaluation for Modular Specifications
8. R. Marti : Constraint Propagation and Intensional Answers in Deductive Databases

Afternoon Session (13.30–18.00)
Chair: Hans-Dieter Ehrich

9. B. Freitag : Using a Modal Logic for Component Library Management
10. B. Paech: Formal Description Techniques in Requirements Engineering
11. K. Böhm: Real-Time Object Specification Logic
12. R. Wieringa: A Comparison of the Notations Used in the Shlaer-Mellor Method

and in TCM

Wednesday, July 19, 1995

Morning Session (09.00–12.15)
Chair: Udo Lipeck

13. H. Decker : The Role of Logic Programming for Knowledged Information Systems
14. J. Dix : The Role of Partial Evaluation for Disjunctive Deductive Databases
15. M. Ryan: Defaults in Logic and the Lexicographic Order

iii

Thursday, July 20, 1995

Morning Session (09.00–12.15)
Chair: Gunter Saake

17. S. Conrad : Logical Support for Active Databases
18. B. Ludäscher : Logical Foundations of Active Rules
19. P. Ladkin: Airbus A320 Braking as Predicate-Action Diagrams
20. J. Chomicki : Logical Semantics and Database Interoperability

Afternoon Session (13.30–18.00)
Chair: Jan Chomicki

21. P. A. Sistla: Temporal Triggers in Active Database Systems
22. R. Feenstra: Constraint-based Reachability Analysis of Information Systems
23. Y. Venema: A Modal Predicate Calculus
24. M. Schrefl : Inheritance of Business Rules

Friday, July 21, 1995

Morning Session (09.00–12.15)
Chair: Jan Chomicki

25. G. Saake: From Object Specification towards Logic-based Agent Modelling
26. B. Thalheim: Constraints in Database Models (Overview)
27. Discussion & Report of the Working Group

iv

3 Abstracts of Presentations

The following abstracts of presentations appear in alphabetical order of the speakers.

Real-Time Object Specification Logic

Klemens Böhm (GMD Darmstadt)

Abstract

A general formalism to describe processes in an organization should allow for the
expression of real-time constraints. A real-time object specification logic (RTOSL) is
motivated and presented. The logic is a linear-time point-based formalism with real-
numbered time and a (syntactic) variant of the explicit-clock-variable approach. The main
difference to previous real-time extensions of temporal logic is that this one is embedded
in a logic for the specification of object behavior. The object paradigm has turned out
to be advantageous to model arbitrary facets of organizations. On the one hand, RTOSL
is an extension of the Object Specification Logic developed by A. Sernadas and others,
on the other hand, it is an application of approaches from the field of real-time temporal
logic.

1

Query Evaluation for Modular Specifications

Stefan Brass (University of Hannover)

Abstract

We proposed a modular approach to knowledge representation and especially consid-
ered the case where the modules are supernormal default theories. In general, a module
simply defines a set of intended models and an equivalence relation: Two interpretations
are equivalent iff they differ only locally (e.g., in the truth values of the predicates de-
fined by this module). Assuming for simplicity a global signature, a model of a modular
specification is an interpretation which is a locally intended model of every module in the
specification.

Since our approach is able to distinguish between defining and using predicate oc-
currences, it solves a number of problems in nonmonotonic reasoning originating from
unwanted contrapositions, e.g. the Yale shooting problem. The approach can be seen as
a generalization of logic programming and has some relation to prioritized defaults.

Query evaluation for modular specifications can possibly profit from the module infor-
mation by looking only at the relevant modules: This is possible if every module is tolerant
(i.e., for every interpretation, there is an equivalent locally intended model) and there is
a well-founded and acyclic dependency relation between the modules. Furthermore, it is
possible to use specialized query-evaluation algorithms, if some module happens to be,
e.g., a relational database or a logic program.

In order to evaluate a query modularly, each module partially evaluates the query
with the given local information. Formally, an interpretation should satisfy the resulting
reduct iff all equivalent locally intended models satisfy the query. Then the query holds in
all globally intended models iff repeated partial evaluation (respecting the dependencies
between the modules) results in a tautology.

2

Logical Semantics and Database Interoperability

Jan Chomicki (Kansas State University)

Abstract

In various important application areas, e.g., temporal and spatial databases, there is
an abundance of different, usually incompatible, data model proposals. It is essential that
those data models can be used together. This is database interoperability.

We present here a formal model of database interoperability, distinguishing between
data interoperability (mapping between database instances) and query interoperability
(mapping between queries). We propose constraint databases as a layer that mediates
between data models. Our approach is schema-independent, which means that not only
stored database relations but also views and query results can be interoperated.

3

Logical Support for Active Databases

Stefan Conrad (University of Magdeburg)
joint work with Can Türker (University of Magdeburg)

Abstract

In this talk we present first ideas on using logic for active databases. One possibility
is to employ a logic for giving active rules (ECA rules) a logical semantics. Then certain
properties like termination or confluence may be proved. Another way of employing logic
for active databases is using an specification language (based on logic) as a design language
for active database systems. In the talk we concentrate on this aspect and show by means
of an example how to derive ECA rules from a given object specification. As specification
language we use the object-oriented language TROLL which is based on temporal logic.
For this language we present and discuss a first, rather naive translation to ECA rules.
The resulting active rules can be used as a basis for implementing or for prototyping the
object specification using an active object-oriented database system. Of course, there are
certain limitations for a general translation of TROLL concepts to ECA rules of an active
object-oriented database system. For instance, it is possible to specify liveness conditions
for objects in TROLL which cannot be represented by ECA rules.

4

The Role of Logic Programming in Knowledge-Based

Information Systems

Hendrik Decker (Siemens München)

Abstract

We first recapitulate the use of horn clause logic, and extensions thereof, as a language
for knowledge representation, query evaluation, integrity specification and consistency
checking. Then, we sketch a scenario of knowledge engineering in information systems,
distinguishing knowledge acquisition, knowledge assimilation and problem solving (query
answering). These tasks are supported by the logic programming techniques of induc-
tion, abduction and deduction. As an illustration of the role of abduction in knowledge
engineering, we discuss some features of abductive logic programming procedures for in-
tegrity checking, view updating and hypothetical reasoning with default and non-default
abducibles.

5

The Role of Partial Evaluation for Disjunctive Logic

Programs

Jürgen Dix (University of Koblenz-Landau)

Abstract

Last year it has been shown independently by Brass/Dix and Sakama/Seki that the
stable semantics satisfies a strong Generalized Partial Evaluation Principle (GPPE) for
Disjunctive logic programs.

We show in this talk that
1. STABLE not only satisfies GPPE (as do many other semantics as well) but is

already uniquely determined by it, as a semantics based on two-valued models,
2. there exists a nice framework (whose main ingredient is GPPE) to define the

disjunctive counterpart of WFS, we call it D-WFS, by purely abstract properties. In
addition, this approach gives us for free a bottom-up query evaluation algorithm. The
main notion is that of a normal form, the residual program, which is sound for many
semantics (so it is a precomputation step) and complete for D-WFS.

6

The Role of Logic in Requirement Engineering

Eric Dubois & Philippe Du Bois (University of Namur)

Abstract

Requirements Engineering (RE), the early phase of the software life cycle, is recognized
as an important activity. It deals with the modelling of composite systems (i.e. systems
composed of interacting entities of different nature e.g. people, software components,
hardware devices). The Albert II language was designed for that purpose. It is formal
since this is an important characteristic for being able to build interesting support tools.
Another crucial feature of the language is its naturalness (i.e. the closeness between
languages constructs and the real-world concepts).

Albert II is an agent-oriented language: a specification is organized as a hierarchy of
interacting agents. An agent is characterized by its time-varying state and the actions
it may perform. An Albert II specification defines the set of admissible lives (i.e. be-
haviours). This is done using templates of constraints. Templates have been isolated to
record usual constraints met in practice. The semantics of Albert II has been defined as a
mapping between Albert II constructs and a set of axioms in a real-time temporal logic.

We plan to build tools around Albert II in order to make its use possible for real
application. These tools should support both verification (prove that the specification
is logically consistent) and validation (show that the specification reflects faithfully the
customers’ needs).

7

Granularity in Specifying Information Systems

Hans-Dieter Ehrich (Technical University of Braunschweig)

Abstract

Information systems are open, reactive, and often distributed systems that maintain
persistent data. The Oblog family of languages developed in cooperation with A. and C.
Sernadas (Lisbon) aims at specifying information systems on a high level of abstraction.
The development is rooted in conceptual modeling, abstract data type theory, concurrency
theory, and temporal logic. The approach taken is object-oriented.

As in other object-oriented languages, the basic specification granules are objects and
classes. Objects are granules of autonomy, while classes are granules of community. Types
are specified in combination with classes, they are granules of uniformity.

This talk puts forward the idea of introducing explicitly two further granules of spec-
ification: modules as granules of reusability, and nodes as granules of locality.

Modules are reusable entries in software catalogues. They are generic and offer two
kinds of interfaces: an internal interface for the services used, and one or more external
interfaces for the services offered. These interfaces are internally related by reification.
System components are produced by instantiation.

Nodes are units of distribution. Operations in different nodes are fully concurrent.
Nodes and modules are orthogonal concepts, i.e., there may be several modules at a node,
and a module may be distributed over several nodes.

For coping with distribution, an extension of temporal logic called DTL (distributed
temporal logic) is being developed. Troll2, the most recent offspring of the Oblog

family, and the TBench, a Case tool developed for using Troll2, will be extended to
incorporate language features for modularization and distribution.

8

Constraint-based Reachability Analysis of

Information Systems

Remco Feenstra (Free University of Amsterdam)

Abstract

When validating a formal specification of an information system, an analyst needs to
communicate the meaning of the specification to domain specialists to enable them to
judge the contents of the specification. Because they cannot be expected to understand
the formal specification, the analyst will often use concrete examples of system behavior,
also known as scenarios. Animation tools can be used to check whether a scenario is
possible according to the formal specification. They also can aid in creating graphical
presentations of the scenario. Typically, these tools present the current system state
graphically, and can show the effect of a user-selected transaction on it.

We propose extending animation tools with a capability to perform automatic reason-
ing in order to solve reachability queries. A reachability query asks for a scenario that
satisfies constraints on the states and transactions occurring in it, while being possible
according to the formal specification. The analyst may then use reachability queries to
characterize the scenarios of interest for a specific validation discussion, having the ani-
mation tool search for an example scenario that satisfies the query. Thus, he no longer
needs to specify a starting state in detail and select the appropriate transaction instances.
Moreover, the animation system may use the reachability query and information gained
during the process of finding a scenario to improve the understandability of the presenta-
tion of the scenario by automatically leaving out details that are less relevant for showing
this reachability property.

Although solving reachability queries is an undecidable problem for most logic-based
specification languages suitable for specifying information system behavior, we might still
try to solve them for simple cases. This could be very useful in validation practice. We
currently are developing a prototype system that attempts to do this. We will sketch
how this system uses various techniques, including planning by goal regression and model
generation theorem proving, to solve reachability queries.

9

Using a Modal Logic for Component Library

Management

Burkhard Freitag (University of Passau)
joint work with Bernhard Steffen, Tiziana Margaria-Steffen, Ulrich Zukowski

Abstract

Logic is ubiquitous in information systems and appears in many different shapes and at
many different levels, e.g. as a query language, as a specification and verification language,
or as an implementation language. The DaCapo system presented in this talk uses a modal
logic as a query language and a deductive database language as both the data description
and the implementation language.

The DaCapo system aims at the automatic construction of sequences of components
from a repository of existing components according to a (possibly incomplete) specifi-
cation. A wide range of application domains can be accommodated. Components can
belong to as different domains as (descriptions of) software modules, pieces of course ma-
terial, or direct flights, just to name a few. Correspondingly, the answers to a query may
denote sequences of software modules linked together via input/output channels, relevant
paths through a network of text documents, or a sequence of direct flights forming an
allowable flight route.

While most repository management systems concentrate on the retrieval of single
components, the DaCapo system is an attempt towards the integration of component
retrieval and component composition. Sequences of components are described by a single
specification formula along three “dimensions”: a module constraint restricts the set of
candidate components by semantic properties whereas an interface constraint defines
the compatibility of adjacent components, e.g. type compatibility. Both are applied to
guide the retrieval of single components. The third kind of constraints are ordering
constraints expressed by modal operators, that specify a relative order between (groups
of) components.

One of the interesting properties of this approach is its flexibility: The atomic propo-
sitions of the modal query language are the answers to conventional deductive database
queries. Therefore, that part of the specification language that serves to specify the
local properties of components, i.e. the interface and module constraints, is completely
adaptable to a specific application domain.

10

Identifying Objects by Declarative Queries

Martin Gogolla (University of Bremen)

Abstract

One of the central issues in object-orientation is object identity. In object models with
identity, objects can exist independent of the values of their attributes. Advantages of such
identities are object sharing and object updates. The importance of the identity concept
with different perspectives from programming and database languages and philosophy has
also been emphasized.

In this talk we study object identification in data models, especially in semantic,
Entity-Relationship, and Object-Oriented data models. Various known approaches to
object identification are shown, and an alternative proposal to the topic is put forward.
The main new idea is to attach to each object type an arbitrary query in order to observe
a unique, identifying property of objects of the corresponding type. This proposal seems
to be more general than the well-known “deep equality” approach.

The talk is organized as follows. First we introduce an example schema which will be
used throughout the paper, and sketch the interpretation of object schemas in an informal
way. Several known and our new proposal (the so-called observation term approach) to
object identification are studied afterwards. The advantages of our new proposal are
discussed, and its formal definition is mentioned. The talk ends with some concluding
remarks.

11

Airbus A320 Braking as Predicate-Action Diagrams

Peter Ladkin (University of Bielefeld)

Abstract

In September 1993, a Lufthansa Airbus A320 landed in a rainstorm in Warsaw. It
landed faster than normal, but the spoilers didn’t deploy until 9 seconds after landing
and the brakes were not effective until 4 seconds after that. The aircraft ran off the end
of the runway, surmounted an earth bank, and finally burned. Luckily, only two people
died.

It turns out that some of this behavior was predictable from the design, and from
the Flight Crew Operating Manual. It was not immediately clear following the accident
that the operator, Lufthansa, the manufacturer, Airbus, and the Luftfahrtbundesamt had
the same view concerning how the aircraft should be flown and how it should behave in
certain circumstances.

Could we improve the way in which the aircraft behavior is specified to the opera-
tors? We use the Predicate-Action Diagrams of Lamport to express the description of the
operation of the Airbus A320 braking systems contained in the Flight Crew Operating
Manual. This helps identify ambiguities and incompleteness. Furthermore, we argue that
the information present in the predicate-action diagrams is easier to read and understand
than its textual counterpart.

12

Towards Logical Foundations of Active Rules

Bertram Ludäscher (University of Freiburg)
joint work with U. Hamann and G. Lausen

Abstract

We present a state-oriented extension to Datalog called Statelog which comprises two
kinds of rules within a simple, yet flexible unified framework, i.e. (i) passive query rules
used to express queries and static integrity constraints, and (ii) active transition rules
for defining state-changing operations. We show that Statelog is powerful enough to
capture many typical active rule applications (including complex updates, integrity en-
forcement and incremental view maintenance strategies) while retaining a declarative,
set-oriented, and deterministic semantics thus reconciling active and deductive databases.
Using the Statelog framework, formal results on termination, expressiveness and com-
plexity of active rules are established which carry over to related state-oriented languages
like XY-stratified Datalog. We prove that it is undecidable for general Statelog programs
whether a program terminates on all databases. We then develop syntactic criteria which
guarantee program termination and investigate the impact of these restrictions on expres-
sive power. The class of ∆-monotone programs extends previous results on Statelog and
is of practical importance since it includes self-triggering active rules and expresses all
Fixpoint transformations. In addition, our syntactic conditions yield an alternative static
analysis technique based on the logical notion of monotony whereas previous approaches
use execution and triggering graphs.

13

Constraint Propagation and Intensional Answers in

Deductive Databases

Robert Marti (ETH Zürich)

Abstract

The solving of constraint satisfaction problems is based on the ability to represent
and manipulate partial information, i.e., constraints such as equalities and inequalities.
Some practical applications in which constraint handling is a natural requirement include
configuration tasks, circuit design, and temporal reasoning. In this project, we apply
ideas from Constraint Logic Programming (CLP) to deductive database systems. Partial
information is represented by non-ground facts and rules which are not range- restricted.
Such facts and rules are rewritten at compile-time, using a combination of constraint
propagation and simplification techniques. As a consequence, the system may not able to
find concrete values for some of the variables occurring in the query. In this case, it will
return answers which consist of an extensional part, i.e., bindings of concrete values to
variables, and an intensional part, i.e., formulas which constrain the unbound variables.
An interesting application of this technology is the representation of temporal knowledge,
in particular of periodically recurring events.

14

The Role of Deontic Logic in the Specification of

Information Systems

John-Jules Meyer (University of Utrecht)

Abstract

Deontic logic is a logic to reason about ideal versus actual behaviour. [It does so
by means of operators for prohibition, permission and obligation.] As such it is very
useful for the specification of ”soft” integrity constraints which may be violated, since in
deontic logic one can express that ideally these constraints are complied to, but actually
violations may occur. Moreover, one has the ability to specify what should happen in
case of a violation (in order to restore integrity or take some other compensating action,
for instance).

However, (standard) deontic logic (SDL) itself is not without problems: it has been
plagued by many paradoxes since its inception. When (proposing to) using deontic logic
for specification, these should be dealt with one way or another, either by resolving the
paradoxes or by explaining why they are harmless in the context of application. Our claim
is that all paradoxes are harmless except for the ones concerning the so-called contrary-
to-duty imperatives, such as the Chisholm paradox. An instance of this comprises the
following assertions:

• there should be no error.

• if there is an error, there should be a warning.

• if there is no error, there should be no warning.

• there is an error.

In SDL this set cannot be represented consistently (without one of the assertions
being redundant). Furthermore, we claim that because of the conceptual difference
one should distinguish between the notions of ought-to-do (’Tunsollen’) and ought-to-be
(’Seinsollen’), to the extent of using different logics for these two notions. We present a
multi-modal extension S5O(n) of SDL to represent the ought-to-be version of the Chisholm
set properly. For the ought-to-do variant we employ a reduction to dynamic logic, and
show how the Chisholm set can be treated adequately in this setting. Finally we propose
a way of integrating both ought-to-be and ought-to-do reasoning, enabling one to draw
conclusions from ought-to-be constraints to ought-to-do ones.

15

The Role of Formal Description Techniques in

Requirements Engineering

Barbara Paech (Technical University of München)

Abstract

We introduce the SYSLAB-Project which aims at bridging the gap between formal
and pragmatic software development methods. The notations of formal methods have a
fixed syntax and a mathematical semantics, but the specifications are difficult to read
and work with. On the other hand the graphical description techniques of pragmatic
methods are easier to understand and offer structural operations for working with these
notations, but lack precise semantics (and often even precise syntax). The SYSLAB-
project develops a new software development method offering mathematically founded
description techniques for various system aspects. In our approach a system is viewed as
a set of communicating actors carrying out certain activities using data which is internally
stored or communicated from other actors.

In the talk we introduce by way of example the framework of stream processing func-
tions (FOCUS) which serves as the mathematical basis. Then we give an overview on the
process model (which emphasizes business process modeling, (user) interface design and
architectural design) and on the description techniques of the SYSLAB-method.

16

The Lexicographic Combination of Preference

Relations

Mark Ryan (University of Birmingham)
joint work with Pierre-Yves Schobbens (University of Namur) and

Hajnal Andréka (University of Budapest)

Abstract

The preferential approach to the semantics of defaults assigns to each default formula
φ a preference relation ⊑φ on interpretation structures: m ⊑φ n says that m satisfies φ at
least as well as n does. The motivation for this is that, since in general defaults are not
fully satisfied, we must examine cases in which they are satisfied only as much as possible
subject to other constraints.

We can present a prioritised bag of defaults by (I, <, v) where (I, <) is a poset and v
maps I to formulas. Thus, i < j means that the formula v(i) has greater priority over the
formula v(j). To give a semantics to such a prioritised bag of defaults involves combining
the relations ⊑v(i) (i ∈ I) into a single ‘consensus’ relation ⊑ according to the priority <.
This is done by the following lexicographic rule:

m ⊑ n ⇔ ∀i ∈ I.(m ⊑v(i) n ∨ ∃j ∈ I.(j < i ∧ m < n))

In words: m must be better than n at each formula (v(i)) except possibly those at which
there is another formula (v(j)) with greater priority at which m is strictly better.

We give several results about this definition, including the following.

1. Propagation of properties. If all the ⊑φ have a certain property P and another
condition holds, then the resulting relation ⊑ also has P . Example: P = transitivity,
C = < is well-founded. Other examples of P considered are well-founded, Zorn,
reflexive, symmetric, etc.

2. Proof rules. View (I, <, v) as a graph denoting a v(I)-ary operator which takes
relations to a relation. We show that certain syntactic conditions on the respective
graphs are necessary and sufficient to prove equality (or inclusion) between two
operators.

3. Algebraic theory. Consider two such graphs, given by I = {1, 2} with 1 < 2 and
I = {1, 2} with 1 # 2. Applying the lexicographic definition we see that these
denote the binary operators on relations:

x/y = (x ∩ y) ∪ (y ∩ y−1)
x‖y = x ∩ y

A preferential algebra is a set of relations closed order these operations. Certain
equations hold in all preferential algebras, such as x/(y/z) = (x/y)/z and x‖y =
y‖x. We present 7 equations which are sound and complete for all preferential
algebras.

17

--

From Object Specifications towards Logic-based

Agent Modelling

Gunter Saake (University of Magdeburg)

Abstract

Object-oriented specification languages specify the behaviour of objects by a set of
behaviour-restricting formulae, for example behaviour axioms in temporal logic. Examples
for such languages are Troll, LCM or Albert (all presented in some detail on this
workshop). An object specification restricts the whole life of an object and cannot be
modified during object lifetime. This restriction to a fixed behaviour description motivates
the search for a more flexible specification formalism allowing behaviour evolution during
object existence.

The concept of agent as actor in an information system has several similarities to the
object concept, for example the notion of internal state and behaviour driven by events.
Agent behaviour, however, should be adaptable to changing situations, depending on
former interactions with other agents. We propose to extend a temporal logic designed
to specify objects towards an agent modelling logic. This extended logic allows to modify
behaviour axioms during the lifetime of an object in a controlled way. This extension
does not capture all facets of agent modelling but may be a first step towards a temporal
logic based agent description.

The presented work has ist origins in discussions with Amı́lcar and Cristina Sernadas
on object evolution as well as in the work in the European ModelAge working group
(Modelling of Agents).

Parts of the presented ideas can be found in the following paper:
G. Saake, S. Conrad, and C. Türker. From Object Specification towards Agent De-

sign. In Proc. of the 14th Int. Conf. Object-Oriented & Entity-Relationship Modelling
(OO&ER’95), Gold Coast, Queensland, Australia, Springer-Verlag, December 1995. To
appear.

18

Multi-Preferential Logics for Information Systems

Pierre-Yves Schobbens (University of Namur)

Abstract

A requirement specification language for Information Systems has to rest on a rich on-
tology, since a requirement specification has to be checked against informal requirements.
It is thus important that the natural concepts in which the informal requirements are
expressed, have their formal counterpart in the specification language, so as to avoid an
error-prone “encoding” of these concepts. Concepts such as encapsulation, inheritance,
behaviour, time are now receiving adequate formal counterparts. Yet, a study of informal
requirements shows a large use of (somewhat anthropomorphic) agency concepts, such
as intention, belief, goal, notification, etc. even for automated system parts. The main
characteristics of such concepts is their continuity, or “softness”: a goal isn’t reached or
missed, but rather satisfied as much as possible. It may interact with conflicting goals to
reach a compromise. It is interesting to note that such concepts are also considered as
paradigms for programming. In this talk we attempt at giving them a formal counterpart.

19

Inheritance of Business Rules

Michael Schrefl (University of Linz)

Abstract

Life cycle rules, which define in what order work steps of a business process may be
applied, and decision rules, which define which one of alternative work steps must be
or may be or may not be performed in specific processing stages of a business case, are
important types of business rules. Using an object-oriented modeling approach, business
processes are represented by object classes, where work steps are represented by activities
(methods), life cycle rules by pre- and post-states of activities, and decision rules by
different types of preconditions (prohibitions, obligations, and permissions) associated
with activities.

Decision rules are specialized in class hierarchies by extending (i.e. weakening) inher-
ited prohibitions, obligations, and permissions at subclasses. Probibitions F as well as
permissions P can be extended at subclasses, as contrary to the usual axiom of deontic
logic P ↔ F , we require only P → F , but not F → P . A conflict resolution strategy
is used to decide among conflicting rules. For example, if an activity that is permitted
under some condition at a superclass is prohibited under this condition at a subclass, the
permission of the superclass overrides the prohibition of the subclass. Note, this is con-
trary to the usual approach of overriding in class hierarchies, but corresponds to policies
usually followed in business and administrative organizations.

20

Temporal Triggers in Active Databases Systems

Prasad A. Sistla (University of Illinois, Chicago)
joint work with Ouri Wolfson

Abstract

In this talk, we present a unified formalism, based on Temporal Logic, for specifying
conditions and events in the rules for active database system. We introduce two languages
FTL and PTL based on future and past temporal logics, respectively. These language
permit specification of many time varying properties of database systems. They also
permit specification of temporal aggregates.

We define various semantics for rules and integrity constraints with respect to two
notions of time — valid time and transaction time. We also show that the temporal
conditions can be used for the specification of temporal actions, which are a form of
extended transactions.

In addition to the languages, we present algorithms for processing the trigger condi-
tions specified in these languages, namely, procedures for determining when the trigger
conditions are satisfied. These methods can be added as a ”temporal” component to an
existing database management systems.

Preliminary prototypes of the temporal component that use fragments of FTL and
PTL languages have been built on top of Sybase running on SUN workstations.

21

Constraints in Database Models

Bernhard Thalheim (Technical University of Cottbus)

Abstract

Integrity constraints are one of the main and surely the most difficult parts of database
models. High abstraction capabilities are required by the user and the modeller. Different
database models use different kinds of constraints and are based on different semantics.
The talk gives an overview on different semantics which are used in value-oriented and
object-oriented models, surveys main classes of integrity constraints and develops an ap-
proach how type constructors, semantics and integrity constraints can be defined and used
in a compatible manner. It is shown that based on this approach, the theory of integrity
constraints can be inherited by other models. This approach is based on algebraic prop-
erties of constraints classes and on properties of the type constructors. According to the
type constructors different structural constraints have to be considered. Based on this ap-
proach the third component of the semiotical triangle can be developed. Pragmatics aims
to encorporate syntactical and semantical parts of logical theories by notions of mean-
ing, methodologies of utilization and considerations of implementational complexity. It
is demonstrated how design principles can be extended to design heuristics and complete
methodologies. This leads to database design which considers all three kinds of abstrac-
tion (data abstraction, localization abstraction, implementation abstraction). Therefore,
the approach takes integrity enforcement into consideration. Further, it is demonstrated
by different results on scheme transformation and normalization how constraints can be
applied. Finally, it is discussed how wrong assumptions - like completeness of constraint
sets and normalization - centered approaches - can be corrected and it is demonstrated
how this theory can be encorporated into database design tool boxes.

22

Fundamentals of Object-Oriented Database Systems

Bernhard Thalheim (Technical University of Cottbus) joint work with Catriel Beeri,
Klaus-Dieter Schewe, Joachim Schmidt, David Stemple and Ingrid Wetzel

Abstract

Although object-oriented database systems have been implemented and object-
oriented technology got a wide acceptance, formal foundations of object-oriented
databases are still missing. The research summarized during this talk tries to propose a
foundation for current and future object-oriented database technology. We shall present
a type system whcih can be used for the definition of the structural aspects of database
applications. Based on the type system classes, integrity constraints, methods, queries,
views etc. can be defined since the type system can be extended in various ways, most of
the known object-oriented database models can be founded in a similar way. The power of
the approach is demonstrated by solutions to three problems: A) It can be shown that the
major property of object-oriented database schemes – the identifiability – can be based on
the properties of the type system. Weak value-responsibility is a necessary and sufficient
property for identification in schemes. For object societies this notion can be accombined
by 5 equivalent other notions (automorphism groups, query identifiability, ...). B) The
existence of generic update operations is based on value-representability in schemes. C)
A generalization of integrity-enforcing methods has been developed. This method – the
generalization of greatest consistent specializations of operations – overcomes the pit-
falls of rule-triggering systems like such proposed for active databases. The semantics of
the presented approach is based on intuitionistic logics. Thus, the corresponding alge-
braic structures are topoi. The object identifier concept is a nice implementation concept
which does not relieve us from unique identification of object. The designer is, therefore,
responsible for defining object societies which are identifiable.

23

A Modal Predicate Calculus

Yde Venema (University of Amsterdam)
joint work with Maarten Marx

Abstract

Treating existential quantifiers as modal diamonds, we study the n-variable fragment
Ln of first-order logic, as if it were a modal formalism. In order to deal with atomic
formulas adequately, to the modal version of the language we add operators corresponding
to variable substitution.

Since every modal language comes with an abstract Kripke-style semantics, this modal
viewpoint on Ln provides an alternative, far more general semantics for the latter. One
may impose conditions on the Kripke models, for instance approximating the standard
Tarskian semantics. In this way one finds that some theorems of first-order logic are ‘more
valid’ than others.

As an example, we define a class of generalized assignment frames called local cubes ;
here the basic idea is that only certain assignments are admissible. We show that the
theory of this class is finitely axiomatizable and decidable.

24

A Comparison of the Notations Used in the

Shlaer-Mellor Method and in TCM

Roel Wieringa (Free University of Amsterdam)
joint work with Gunter Saake (University of Magdeburg)

Abstract

In this talk we compare two notation systems for requirements model, the notations
used in the Shlaer-Mellor method for object-oriented analysis and the notations uses in
TCM (Toolkit for Conceptual Modeling). The notations used in the Shlaer-Mellor method
are semi-formal, i.e. they consist of diagrams annotated by natural language text. The
notations used in TCM are semi-formal, as in the Shlaer-Mellor notation, but there is also
a formal part. The formal part of a TCM specification is written down in LCM (Language
for Conceptual Modeling), a language based on order-sorted dynamic logic. The formal
and semi-formal parts of a TCM specification supplement each other and each can be
used without using the other. Because the semi-formal and formal notations in TCM are
precisely related, the semi-formal notations have unambiguous definitions, and the formal
notations have simple and clear diagram representations.

The report analyzes the notations used for information model, state model, process
model and communication model used in the Shlaer-Mellor method and shows how these
relate to the notations used for the class model, life cycle model and communication model
in TCM. It is shown that the notations of the Shlaer-Mellor method contain ambiguities
and redundancies, that are resolved when we transform these notations into TCM no-
tations. However, some of these redundancies provide useful information and TCM is
extended with a simplified form of some of the Shlaer-Mellor notations.

25

Working Group: Logic as a Query Language

Burkhard Freitag (University of Passau)

Abstract

It is well known that (fragments of) logic can be given an operational semantics and
thus can be used as a query language. In fact, the success of relational database systems
shows that logic as a query language is not merely of theoretical interest to a small
community of researchers but has practical relevance.

On the other hand, however, most practitioners rather rely on conventional impera-
tive programming and embedded SQL than adopting any of the more advanced notions
developed in the field of logic databases such as views and recursion, powerful pattern
matching, and integrity constraints.

Among the questions discussed in the working group have been

• Is SQL with recursive views enough from a practical point of view? Are logic query
languages beyond DATALOG relevant in practice?

• If yes, what must be done to make them a success?

• Do we need a full-fledged declarative (logic) programming language with persis-
tence?

• What higher-order features are necessary?

• Should the logic databases community care about the implementation of future
relational database systems?

26

4 List of Participants

Klemens Böhm
GMD-IPSI-Darmstadt
Dolivostr. 15
D-64293 Darmstadt, Germany

kboehm@darmstadt.gmd.de

Phone: +49-6151-869-963
Fax: +49-6151-869-966

Stefan Brass
Universität Hannover
Institut für Informatik
Lange Laube 22
D-30159 Hannover, Germany

sb@informatik.uni-hannover.de

Phone: +49-511-762-4953
Fax: +49-511-762-4961

Jan Chomicki
Monmouth University
Howard Hall
Dept. of Computer Science
West Long Branch, NI 07764, USA

chomicki@cis.ksu.edu

Stefan Conrad
Universität Magdeburg
Inst. für Technische Informationssysteme
Postfach 4120
D-39016 Magdeburg, Germany

conrad@iti.cs.uni-magdeburg.de

Phone: +49-391-67-18066
Fax: +49-391-67-12020

Hendrik Decker
Siemens - München
Zentralabt. Forschung und Entwicklung
Corporate Research and Development
Otto-Hahn-Ring 6
D-81730 München, Germany

hendrik@zfe.siemens.de

Phone: +49-89-636-47533
Fax: +49-89-636-45111

Jürgen Dix
Universität Koblenz - Landau
Fachbereich Informatik
Rheinau 1
D-56075 Koblenz, Germany

dix@informatik.uni-koblenz.de

Phone: +49-261-9119-420
Fax: +49-261-9119-496

Philippe Du Bois
University of Namur
Facultis Universitaires
Notre Dame de la Paix
CEDITI
Av. Jean Mermoz 30
B-6041 Gosselies, Belgium

pdu@cediti.be

Phone: +32-71-259415
Fax: +32-81-724-967

Eric Dubois
University of Namur
Facultis Universitaires
Notre Dame de la Paix
Institut d’Informatique
Rue Grandgagnage 21
B-5000 Namur, Belgium

edu@info.fundp.ac.be

Phone: +32-81-724-986
Fax: +32-81-724-967

Hans-Dieter Ehrich
Technische Universität Braunschweig
Abteilung Datenbanken
Postfach 3329
D-38023 Braunschweig, Germany

HD.Ehrich@tu-bs.de

Phone: +49-531-391-7442
Fax: +49-531-391-3298

27

Remco Feenstra
Vrije Universiteit Amsterdam
Faculteit Wiskunde en Informatica
De Boelelaan 1081a
NL-1081 Amsterdam, The Netherlands

rbfeens@cs.vu.nl

Phone: +31-20-444-7742
Fax: +31-20-444-7653

Burkhard Freitag
Universität Passau
Fakultät für Mathematik u. Informatik
D-94030 Passau, Germany

freitag@fmi.uni-passau.de

Phone: +49-851 509-3130

Fax: +49-851 509-3092

Martin Gogolla
Universität Bremen
Fachbereich 3
AG Datenbanksysteme
Postfach 330440
D-28359 Bremen, Germany

gogolla@informatik.uni-bremen.de

Phone: +49-421-218-7469
Fax: +49-421-218-4269

Peter Ladkin
Universität Bielefeld
Technische Fakultät
Postfach 100131
D-33501 Bielefeld, Germany

ladkin@techfak.uni-bielefeld.de

Phone: +49-521-106-2951
Fax: +49-521-106-2962

Udo Lipeck
Universität Hannover
Institut für Informatik
Lange Laube 22
D-30159 Hannover, Germany

ul@informatik.uni-hannover.de

Phone: +49-511-762-4950
Fax: +49-511-762-4961

Bertram Ludäscher
Universität Freiburg
Institut für Informatik
Am Flughafen 17
D-79110 Freiburg, Germany

ludaesch@informatik.uni-freiburg.de

Phone: +49-761-203-8124
Fax: +49-761-203-8122

Robert Marti
ETH Zürich
Department of Computer Science
CH-8092 Zürich, Switzerland

marti@inf.ethz.ch

Phone: +41-1-632-7260
Fax: +41-1-632-1172

John-Jules Meyer
University of Utrecht
Department of Computer Science
De Uithof
Padualaan 14, Postbus 80.089
NL-3508 TB, Utrecht, The Netherlands

jj@cs.ruu.nl

Phone: +31-30-534117
Fax: +31-30-513791

Barbara Paech
Technische Universität München
Institut für Informatik
Arcisstr. 21
D-80290 München, Germany

paech@informatik.tu-muenchen.de

Phone: +49-89-2105-8186
Fax: +49-89-2105-8183

Mark Ryan
University of Birmingham
School of Computer Science
Edgbaston, Birmingham, B15 2TT, UK

M.D.Ryan@cs.bham.ac.uk

Phone: +44-121-414-73 61

Fax: +44-121-414-42 81

28

Gunter Saake
Universität - Magdeburg
Inst. für Technische Informationssysteme
Postfach 4120
D-39016 Magdeburg, Germany

saake@iti.cs.uni-magdeburg.de

Phone: +49-391-67-18800
Fax: +49-391-67-12020

Pierre-Yves Schobbens
University of Namur
Facultis Universitaires
Notre Dame de la Paix
Institut d’Informatique
Rue Grandgagnage 21
B-5000 Namur, Belgium

pys@info.fundp.ac.be

Phone: +32-81-724-990
Fax: +32-81-724-967

Michael Schrefl
Universität Linz
Institut für Wirtschaftsinformatik
Abt. Data and Knowledge Engineering
Altenbergerstr. 69
A-4040 Linz, Austria

schrefl@dke.uni-linz.ac.at

Phone: +43-732-2468-9490
Fax: +43-732-2468-9471

Prasad A. Sistla
University of Illinois at Chicago
Dept. of Electrical Engineering &
Computer Science
851 South Morgan Street
Chicago, IL 60607, USA

sistla@surya.eecs.uic.edu

Fax: +1-312-413-0024
Phone: +1-312-996-8779

Bernhard Thalheim
Technische Universität Cottbus
Institut für Informatik
Postfach 101344
D-03013 Cottbus, Germany

thalheim@informatik.tu-cottbus.de

Phone: +49-355-692700

Can Türker
Universität - Magdeburg
Inst. für Technische Informationssysteme
Postfach 4120
D-39016 Magdeburg, Germany

tuerker@iti.cs.uni-madgeburg.de

Phone: +49-391-67-12994
Fax: +49-391-67-12020

Yde Venema
Vrije Universiteit Amsterdam
Faculteit Wiskunde en Informatica
De Boelelaan 1081a
NL-1081 Amsterdam, The Netherlands

yde@cs.vu.nl

Phone: +31-20-444-7735
Fax: +31-20-444-7653

Roel Wieringa
Vrije Universiteit Amsterdam
Faculteit Wiskunde en Informatica
De Boelelaan 1081a,
NL-1081 Amsterdam, The Netherlands

roelw@cs.vu.nl

Phone: +31-20-444-7771
Fax: +31-20-444-7653

29

