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Mathematical induction is required for reasoning about objects or events containing repe-
tition, e.g. computer programs with recursion or iteration, electronic circuits with feedback
loops or parameterized components. Thus mathematical induction is a key enabling technol-
ogy for the use of formal methods in information technology. Failure to automate inductive
reasoning is one of the major obstacles to the widespread use of formal methods in industrial
hardware and software development.

Recent developments in automatic theorem proving promise significant improvements in
our ability to automate mathematical induction. As a result of these developments, the
functionality of inductive theorem provers has begun to improve. Moreover, there are some
promising signs that even more significant improvements are possible. This enlarges the
applicability of automated induction for “real world” problems and research topics for ap-
plication have been discussed on the seminar.

Automated induction is a relatively small subfield of automated reasoning. Research is
based on two competing paradigms each having its merits but also its shortcomings as
compared with the other:

• Implicit induction evolved from Knuth-Bendix-Completion and most of the work based
on this paradigm was performed by researchers concerned with term rewriting systems
in general.

• Explicit induction has its roots in traditional automated theorem proving. It resembles
the more familiar idea of theorem proving by induction where induction axioms are
explicitly given and specific inference techniques are tailored for proving base and step
formulas.

This seminar brought together leading scientists from both areas to discuss recent ad-
vancements within both paradigms, to evaluate and compare the state of the art and to
work for a synthesis of both approaches. It summarized the results of a series of workshops
held on automated induction in conjunction with the CADE conferences 1992 (Saratoga
Springs) and 1994 (Nancy) and the AAAI conference 1993 (Washington DC).

The success of this meeting was due in no small part to the Dagstuhl Seminar Center
and its staff for creating such a friendly and productive environment. The organizers and
participants greatly appreciate their effort. The organizers also thank Jürgen Giesl and
Martin Protzen for their support in many organizational details.
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Dagstuhl Seminar 9530

Automation of Proof by Mathematical Induction

24. 7. – 28. 7. 1995

Monday, July 24, 1995

Time Speaker/Chair Title
9:00 – 9:10 The Organizers Welcome to Dagstuhl

David Musser
9:10 – 9:35 Mahadevan Subramania Reasoning about Hardware Descriptions in

RRL

9:40 – 10:05 Wolfgang Küchlin Hardware-Verification by Term-Rewriting
Induction

10:10 – 10:20 Discussion
10:20 – 10:50 Break

Christoph Walther
10:50 – 11:15 Dieter Hutter Using C-Terms in Automating Induction

11:20 – 11:45 Alan Bundy &
Vincent Lombart

Relational Rippling: A General Approach

11:50 – 12:00 Discussion

12:00 – 14:30 Lunch

Deepak Kapur
14:30 – 14:55 David Musser Automated Verification of Generic Algo-

rithms in the C++ Standard Template Li-
brary using Subgoal Induction

15:00 – 15:25 Leo Bertossi Proving Database Integrity Constraints by
Mathematical Induction

15:30 – 15:40 Discussion
15:40 – 16:10 Break

David Basin
16:10 – 16:35 Jürgen Giesl Proving Termination of Algorithms Auto-

matically

16:40 – 17:05 Jürgen Brauburger Conditional Termination

17:10 – 17:20 Discussion

18:00 Dinner
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Dagstuhl Seminar 9530

Automation of Proof by Mathematical Induction

24. 7. – 28. 7. 1995

Tuesday, July 25, 1995

Time Speaker/Chair Title
Robert S. Boyer

9:10 – 9:35 Peter Dybjer Type Theory for Dummies

9:40 – 10:05 Herman Geuvers Calculus of Constructions with Congruence
Types

10:10 – 10:20 Discussion
10:20 – 10:50 Break

Andrew Ireland
10:50 – 11:15 Martin Protzen Synthesis and Manipulation of Proof Predi-

cates

11:20 – 11:45 Claus Sengler Induction on Non-Freely Generated Data
Types

11:50 – 12:00 Discussion

12:00 – 14:30 Lunch

Michaël Rusinowitch
14:30 – 14:55 Deepak Kapur Failure Analysis of Induction Schemes and

their Role in Generalization

15:00 – 15:25 Andrew Ireland The Problem of Generalization in the Con-
text of Mathematical Induction

15:30 – 15:40 Discussion
15:40 – 16:10 Break

Dieter Hutter
16:10 – 16:35 Francisco J. Cantu The Use of Inductive Proof Plans for Hard-

ware Verification

16:40 – 17:05 Laurence Pierre Application of Mathematical Induction to
the Formal Proof of Hardware and Embed-
ding in a CAD Framework

17:10 – 17:20 Discussion

18:00 Dinner

20:00 Panel “When (if ever) will Inductive Theorem
Proving be of Economic Significance?”
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Dagstuhl Seminar 9530

Automation of Proof by Mathematical Induction

24. 7. – 28. 7. 1995

Wednesday, July 26, 1995

Time Speaker/Chair Title
Alan Bundy

9:10 – 9:35 Natarajan Shankar High-Level Strategies for Induction Proofs in
PVS

9:40 – 10:05 Stefan Gerberding Incremental Tactical Theorem Proving

10:10 – 10:20 Discussion
10:20 – 10:50 Break

David McAllester
10:50 – 11:15 Sentot Kromodimoeljo Certifying Induction in the Never Theorem

Prover

11:20 – 11:45 Bernhard Gramlich On Evaluation Criteria for Inductive Theo-
rem Proving Systems

11:50 – 12:00 Discussion

12:00 – 13:45 Lunch

14:00 – 23.00 Excursion

18:00 Dinner
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Dagstuhl Seminar 9530

Automation of Proof by Mathematical Induction

24. 7. – 28. 7. 1995

Thursday, July 27, 1995

Time Speaker/Chair Title
Toby Walsh

9:10 – 9:35 David McAllester Grammar Rewriting in Inductive Proofs

9:40 – 10:05 Deborah Weber–Wulff Problems with Parsing Proofs in nqthm

10:10 – 10:20 Discussion
10:20 – 10:50 Break

Natarajan Shankar
10:50 – 11:15 Toby Walsh A Calculus for Rippling

11:20 – 11:45 Thomas Kolbe &
Christoph Walther

Reusing Proofs

11:50 – 12:00 Discussion

12:00 – 14:30 Lunch

Wolfgang Küchlin
14:30 – 14:55 Jürgen Avenhaus Theorem Proving in Hierarchical Conditional

Specifications

15:00 – 15:25 Ulrich Kühler Inference Rules for Induction Theorem Prov-
ing in Hierarchical Specifications

15:30 – 15:40 Discussion
15:40 – 16:10 Break

Jürgen Avenhaus
16:10 – 16:35 David Basin (Avoiding) Induction using Monadic Second-

Order Logic

16:40 – 17:05 Narjes Berregeb Extending Test Set Induction Proofs in AC
Theories

17:10 – 17:20 Discussion

18:00 Dinner
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Dagstuhl Seminar 9530

Automation of Proof by Mathematical Induction

24. 7. – 28. 7. 1995

Friday, July 28, 1995

Time Speaker/Chair Title
Robert S. Boyer

9:10 – 10:20 — Open Session

10:20 – 10:50 Break
Alan Bundy

10:50 – 12:00 — Challenge Problems for Automated Induc-
tion and Evaluation Criteria for Inductive
Theorem Proving Systems

12:00 – 14:30 Lunch
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Theorem Proving in Hierarchical Specifications

Jürgen Avenhaus Klaus Madlener
FB Informatik, Universität Kaiserslautern

In the talk we consider clausal specifications for describing programs on the level of func-
tional design. The axioms of such a specification spec = (sig, E,A) are positive/negative
conditional equations, they define new operators on top of a fixed built-in algebra A. The
new operators may only be partially defined by E. We define the semantics of spec to be the
quotient algebra Aspec of the free term algebra according to the congruence relation given
by E and A. In this approach partiality is modelled by using order sorted specifications and
order sorted algebras: For each sort we introduce a super sort for the junk terms. We prove
Aspec to be initial in the class of all models of spec, provided spec is a consistent extension
of A. So, a clause is called an inductive theorem of spec iff it holds in Aspec. We present an
inference system to prove inductive validity of a set of clauses. This inference system may
also be used to disprove the inductive validity of a clause.

(Avoiding) Induction using Monadic Second Order Logics

David Basin
MPI-Saarbrücken

We show how the second-order monadic theory of strings can be used to specify hardware
components and their behavior. This logic admits a decision procedure and counter-model
generator based on canonical automata for formulas. We have used a system implementing
these concepts to verify, or find errors in, a number of circuits proposed in the literature.
The techniques we use make it easier to identify regularity in circuits, including those that
are parameterized or have parameterized behavioral specifications. Our proofs are semantic
and do not require lemmas or induction as would be needed when employing a conventional
theory of strings as a recursive data type.
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Extending SPIKE to associative and commutative theories

Narjes Berregeb
(joint work with Michaël Rusinowitch and Adel Bouhoula)

INRIA & CRIN Lorraine

Many mathematical theories like groups, unitary rings or boolean algebra, involve associa-
tive and commutative (AC) functions. These operators are hard to handle for automatic
deduction and generate complex proofs.

So, in order to perform more efficient proofs, we extended the prover by test set induction,
SPIKE [Bou95], to AC conditional theories. An important advantage of such extension is
that we only need AC matching, and we do not use AC unification like in other inductive
completion methods [JK89] [Bün91]. We also improved and integrated some simplification
techniques. The system obtained is correct and refutationally complete under some reason-
able hypotheses. Experiments have shown the gain in efficiency we obtain: proofs are more
natural and require less human interaction. In particular, we proved the correctness of two
digital circuits, a rippled carry adder (in one run) and an iterated additions multiplier (with
one lemma).
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Proving Database Integrity Constraints by Automated Induction

Leo Bertossi (Catholic Univ. Chile), Deepak Kapur (SUNY, Albany)
Javier Pinto (Catholic Univ. Chile), Pablo Saez (Catholic Univ. Chile)

Mahadevan Subramaniam (SUNY, Albany)

We are concerned with incorporating automation of proofs of integrity constraints into
SCDBR, a reasoner on database updates specifications that is under construction at the
Catholic University of Chile.

The specifications handled by the system are given according to Ray Reiter’s formalism for
specifying dynamic structures that change by the effects of executed actions. That formalism
gives a simple solution to the frame problem in the situation calculus.

Integrity constraints are properties that must hold at every legal state in the evolution of
a (relational) database. The “legality” property of states is defined by induction.

In this paper, we show how to use RRL (Kapur & Zhang), a mechanical theorem prover
based on conditional term rewriting, for proving integrity constraints by induction. RRL’s
cover set method for generating appropriate induction schemas has turned out to be very
powerful for that purpose.

We show how to specify first–order quantifiers in RRL by means of the so–called “bounded
quantification”, and also how to generate and prove lemmas that have to do with “the logic
of bounded quantification”.

Finally, we present some techniques for proving the logical lemmas, and discuss the role
of “generalization” in their proofs.
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Conditional Termination

Jürgen Brauburger
TH Darmstadt

We introduce termination predicates which are sufficient for the termination of partial recur-
sively defined algorithms and we develop an automated synthesis procedure for termination
predicates. Termination predicates – which are totally defined by algorithms – enable us
to control the use of partial functions, since non-termination can be recognized in advance.
In induction theorem proving we can use termination predicates to formulate and to verify
statements containing partial functions. Furthermore, termination predicates can be used
to show termination of imperative programs according to the following approach: An im-
perative program is transformed into a functional one, where loops often result in partial
functions. Then for each partial function a termination predicate is synthesized which can
be used for the termination proof of the functional program.
Starting from termination proofs for total functions we collect requirements which must be
satisfied by termination predicates: A termination predicate of a recursively defined algo-
rithm f must imply, that (1) for each recursive call in f the parameters are decreasing wrt.
a well-founded order, and (2) that each function call occuring in the algorithm terminates.
Based on this characterization we develop a procedure which synthesizes a termination pred-
icate for a given recursively defined algorithm fully automatically. Our generation method
needs no search and it is independent of any particular well-founded order.

Relational Rippling: A General Approach

Alan Bundy Vincent Lombart
University of Edinburgh University of Edinburgh

We propose a new version of rippling, called relational rippling. Rippling is a heuristic for
guiding proof search, especially in the step cases of inductive proofs. Relational rippling
is designed for representations in which value passing is by shared existential variables, as
opposed to function nesting. Thus relational rippling can be used to guide reasoning about
logic programs or circuits represented as relations.

In rippling, annotations are placed on formulae to indicate which bits must remain un-
changed during rewriting (the skeleton) and which bits must be moved (the wave-fronts) and
in what direction. Relational rippling requires additional annotations in order to define the
skeleton and to impose a direction for the wave-fronts to move in. With these annotations
it is possible to prove termination of relational rippling.
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Inductive Proof Plans for Hardware Verification

Francisco J. Cantú
University of Edinburgh AI Department

We describe the use of inductive proof plans for verifying combinational and sequential
hardware. In verifying combinational hardware typically we show that the specification
equals the implementation. If either the specification or the implementation contain recursive
components then the proof goes by induction.

In verifying sequential synchronous hardware we assume that if the specification at time t
equals the implementation at time l, then the specification at t+1 equals the implementation
at time l′ where t is a abstract time scale corresponding to the specification, l is more detailed
time scale corresponding to the implementation and l ′ corresponds to t + 1 in this scale.

In verifying both types of hardware the Rippling heuristic plays an important role in guid-
ing proofs by induction and in doing proofs where difference match/unification is required.

We have been able to verify a set of combinational devices which include n-bit adders, sub-
tracters, dividers, multipliers, exponentiators, factorials, arithmetic logic units, and shifter
units, and sequential units such as an n-bit counter and a small microprocessor (the Gordon
computer, in progress).

The development time for these verifications range between 3 days to 3 weeks, depending
upon the complexity of the device and the run time typically varies between 30 seconds to
6 minutes.
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Type Theory for Dummies

or
Type Theory for Functional Programmers

Peter Dybjer
Chalmers Technical University, Göteborg

In this talk I give a brief description of Martin-Löf’s Intuitionistic Type Theory (ITT) as a
modification of an idealized standard functional programming language. The core of such an
idealized functional language is the simply typed lambda calculus. The user can then extend
this core with new recursive datatypes and new functions defined by general recursion. The
core of ITT is instead the dependent type lambda calculus. Similarly, this core can be
extended by the user with new (possibly dependent) recursive datatypes and new recursive
functions. In order that all (typable) programs in the language terminate one only allows
datatypes the elements of which can be viewed as well-founded trees and that functions are
defined by primitive (structural) recursion on the inductive generation of the elements of a
datatype.

Using different words one can also say that ITT is an intuitionistic theory of iterated
inductive definitions in a framework of dependent types, which integrates an intuitionistic
logic via the Curry-Howard identification of propositions and types (and proofs and pro-
grams). This theory is very expressive and even intended to serve as a full-scale framework
for predicative constructive mathematics.

Incremental Tactical Theorem Proving

Stefan Gerberding
TH Darmstadt

We propose a new approach to fully automated tactical theorem proving — incremental tac-
tical theorem proving — which is superior to the conventional proof planning or heuristics
driven approach to automated tactical theorem proving. Incremental tactical theorem prov-
ing enhances the capabilities of proof planning, because more information about the proof
and the proof plan is available. Domain knowledge about proof planing (strategy informa-
tion) is encoded declaratively in the meta-rules, therefore the proof planning process is no
longer executed by an uninformed planner. This leads to more powerful proof plans.

The meta-rule interpreter interleaves proof planning (strategy) steps with plan “executing”
(tactic) steps. Thereby many problems concerning the failure of tactics to achieve the desired
results become obsolete. Thus we avoid replanning. Because our meta-rule interpreter knows
about the history of the (partial) proof and the (partial) proof plan by being able to access
the (partial) proof-tree the system is able to synthesize more successful proof plans.
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The declarative representation of strategy knowledge in the meta-rules eases the main-
tenance and development of the meta-reasoning component, since the information about
proof planning resp. proof strategy is no longer implicitly contained in the proof planner.
Furthermore, because knowledge about tactics and about strategy is stored together in the
system of meta-rules tuning the tactics wrt. the strategy or vice versa is easier.

Another advantage of incremental tactical theorem proving is the simplification of failure
recovery for tactics and replanning. Due to the incremental planning the divergence of the
plan execution and the expected results is avoided, since the differences between expected
results and the results of actually executing a tactic cannot accumulate. Thereby also the
quality of the proof plan is increased, because the next step is planned on the basis of
more reliable information about the current goal. In conventional tactical theorem proving
this information is extrapolated by the proof planner using the postcondition-slots of the
methods.

We argue that incremental tactical theorem proving is more intuitive wrt. human problem
solving capabilities. When a human mathematician proves a theorem, he starts working from
an idea how to proceed. These ideas are not as specific as proof plans but they represent
more general knowledge about the domain. The ideas are represented by our meta-rule.
Using his idea the human applies his methods (tactics) step-by-step. The human uses the
intermediate results to decide the next step. In other words, the human mathematician is
also interleaving object-level reasoning and meta-reasoning.

We are currently working on the implementation of a prototype incremental tactical the-
orem prover which is based on the ITPS inka. Future plans include the development of an
explanation component to support the maintenance of the system of meta-rules, the imple-
mentation of an optimizer for the evaluation of preconditions, and we plan to investigate
mixed forward / backward reasoning.

The Calculus of Constructions with Congruence Types

Herman Geuvers Gilles Barthe
Technological University Eindhoven, NL University of Nijmegen, NL

The combination of type systems with algebraic rewriting systems has given rise to alge-
braico-functional languages, a class of very powerful programming languages. Yet these
frameworks only allow for a limited interaction between the algebraic rewriting systems and
the type theory. For example, if ZZ is defined as an algebraic type, one cannot define the
absolute value or prove that every integer is either positive or negative. This serious objec-
tion to algebraico-functional languages is in fact due to the absence of induction principles
for algebraic types and so one might be tempted to formulate such principles. However, the
task is not so easy if confluence of the system has to be preserved. Indeed, the computa-
tions attached to induction principles and those attached to algebraic types do not interact
satisfactorily.
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To solve these complications we opt for a two-level approach, in which every algebraic
type is accompanied with the inductive type of its signature and related to it by suitable
axioms for quotients. For the case of ZZ, this amounts to having an inductive type Z with
constructors 0, s and p (the type of terms of the signature of ZZ) and an algebraic type Z
with constants 0 : Z, s : Z→Z and p : Z→Z and rewrite rules p(sx)→ρx and s(px)→ρx. A
‘class’ map [−] and a ‘representant’ map rep take care of the interaction between the types
Z and Z: if t : Z, then [t] : Z and if t : Z, then rep t : Z. To ensure that Z and Z behave
satisfactorily one must add equalities between terms. This is done by adding rewrite rules
(the χ-rules), which are, for the case of ZZ, as follows.

• [0] →χ 0, [sx] →χ s[x] and [px] →χ p[x], stating that [−] is the unique map from the
(initial) algebra Z to the algebra Z.

• rep 0 →χ 0, rep (st) →χ s (rep t) and rep (pt) →χ p (rep t), for t a closed term in
normal form. Together with the previous rules this states that Z is universal as a
quotient of Z and the rewrite relation. (We think of rep as a map which assigns to
every equivalence class a canonical representative.)

• [rep x] →χ x, stating that [−] is a surjective map from Z to Z.

Furthermore, we have to ensure that for q and t of type Z, [q] and [t] are equal iff (q, t)
is in the smallest equivalence relation on Z that contains the rewrite rules. This is done
axiomatically, where we take for the equality the Leibiniz-equality.

In this set-up, one can transfer the induction principle (on Z) to the algebraic type (Z)
without affecting the confluence of the system. We claim that such a formalism, which we
call congruence types, is suited for giving a faithful representation of canonical term-rewriting
systems both from the logical and the computational point of view.

We see three important uses of congruence types.

1 Represent types (such as ZZ) that can not be defined as inductive types, because they
arise as a quotient of an inductive type.

2 Obtain a better computational behavior of a definable function on an inductive type.
This is achieved by defining an inductive type with ‘extra’ constructors and adding
rewrite rules to ensure that the extra constructor represents the function we have in
mind.

3 Use the algebra of terms Σ (the inductive type) to prove properties of the quotient
structure S(= Σ/R). In this case one really uses the inductive reasoning (about the
algebra of terms Σ) to derive a statement about the quotient type S. An example is
the case where one has defined an interpretation [[−]]A from the term-algebra Σ to a
structure A, such that [[−]]A is compatible with the rewrite rules R. In the formalism
of congruence types, one can then prove that ∀x, y:Σ.[x] =S [y] → [[x]]A =A [[y]]A. The
gain here is that if t and t′ are terms of Σ such that [t] and [t′] are convertible, then
the premise [t] =S [t′] is immediate, and hence the conclusion [[t]]

A
=A [[t′]]

A
follows.
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Proving Termination of Algorithms Automatically

Jürgen Giesl
TH Darmstadt

When proving statements about algorithmically specified functions by induction, termination
of the algorithms has to be verified because of two reasons.

• The algorithms are translated into axioms for subsequent deductions. Termination
(and determinism) of the algorithms is sufficient for the consistency of these axioms.

• Every terminating algorithm suggests an induction scheme. Termination of the algo-
rithm guarantees the soundness of the resulting induction axioms.

We have developed a method for automated termination proofs of recursively defined
algorithms [Gie95b], [Gie95c]. For every algorithm a well-founded ordering relating inputs
and corresponding arguments of recursive calls has to be generated.

For termination proofs of term rewriting systems several approaches to synthesize suited
well-founded term orderings have been suggested. But unfortunately term orderings cannot
be directly used for termination proofs of algorithms, because term orderings may conflict
with the algorithmic definitions of defined function symbols.

A straightforward solution is the restriction to term orderings which respect the semantics
of the called algorithms. Another obvious solution is to transform the algorithms into a term
rewriting system and to prove the system’s termination instead. But with both of these
solutions most termination proofs will not succeed with any of the commonly used term
orderings, i.e. these solutions result in a too weak termination criterion.

Therefore we have developed a calculus to transform inequalities between inputs and
arguments of recursive calls into inequalities without defined function symbols. This trans-
formation is an abduction, i.e. the resulting inequalities define a relation which contains the
relation defined by the original inequalities as a subset. Consequently well-foundedness of
this new relation is sufficient for the termination of the algorithm.

As the resulting inequalities contain no algorithmically defined function symbols, they
define a relation whose well-foundedness can be directly proved with term orderings. For
this purpose we use a procedure for the generation of polynomial orderings [Gie95a].

Hence our transformation enables the application of term orderings for termination proofs
of algorithms. This results in a more powerful technique than previous procedures for au-
tomated termination proofs of algorithms. Our method has been implemented within the
induction theorem proving system inka.
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On Evaluation Criteria for Inductive Theorem Proving Systems

Bernhard Gramlich
Universität Kaiserslautern

We discuss the problem of how to define and how to measure progress in inductive theorem
proving (ITP) technology. To this end we first identify some crucial ingredients and aspects of
ITP systems that have to be taken into account when trying to develop reasonable evaluation
criteria for such systems. In particular, we elaborate on essential aspects of the underlying
design philosophy of ITP systems and on (the need of) a conceptual model of the entire proof
engineering process which is of great importance when tackling non-trivial proof tasks. Then
we exhibit various reasons why defining and measuring progress in ITP technology seems to
be rather difficult. In fact, we do not provide a fully worked out approach for systematic
evaluation criteria, but rather give an outline of what should be taken into account when
doing so, and why. Finally, we discuss the related problem of constructing in a systematic
way collections of interesting examples for ITP systems.

23



Using Colored Terms Everywhere

Dieter Hutter
German Research Center for Artificial Intelligence, Saarbrücken

Heuristics for judging similarities between formulas and subsequently reducing differences
have been applied to automated deduction since the 1950s, when Newell, Shaw, and Simon
built their first “logic machine”. Since the later 60s, a similar theme of difference identifica-
tion and reduction appears in the field of resolution theorem proving.

In the field of inductive theorem proving syntactical differences between the induction
hypothesis and induction conclusion are used in order to guide the proof [Bundy93], or
[Hutter90, Hutter91]. This method to guide induction proofs is called rippling / colouring
terms. First, the syntactical differences between induction hypothesis and induction con-
clusion are shaded. A shaded area is called a wave-front while the other parts belong to
the skeleton. Analogously, syntactical differences between both sides of equations or impli-
cations given in the database are shaded. These formulas are classified depending on the
locations of the wave-fronts inside the unshaded expressions (e.g. wave-fronts on both sides,
wave-fronts only on the right-hand side, or wave-fronts only on the left-hand side). Using
these annotated equations we are able to move, insert, or delete wave-fronts within the con-
clusion. This rippling of wave-fronts allows to reduce the differences between conclusion and
hypothesis in a goal directed way. Rippling involves very little search and always terminates
since wave-fronts are only moved in some well-founded way.

Based on the success of rippling in the field of inductive theorem proving, several attempts
have been made to extend the scope of rippling to general equational reasoning. In [BaWa93]
procedures are presented to determine the syntactical differences of arbitrary terms in the
notion of skeletons and wave-fronts. Based on this method, in [ClHu94] heuristics are devel-
oped to guide the proof process with the help of syntactical differences.

This talks presents an extension of the colouring method to higher-order logics. Thus
our work provides a formal basis to the implementation of rippling in a higher-order setting
which is required e.g. in case of middle-out reasoning. But the set of possible applications
of our method is not limited to automated deduction. From an abstract point of view, the
colouring technique allows adding annotations to symbol occurrences in λ-terms. Thus in
contrast to other semantic annotation techniques like sorts, it is possible to encode syn-
tactic information and use that to guide inferencing processes. This makes it plausible to
expect applications (of generalizations) of our technique in computational linguistics and
natural language semantics, where the use of higher-order unification is used in the context
of Montegovian semantics.
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On Guiding the Generalization of Conjectures

Andrew Ireland and Alan Bundy
Department of Artificial Intelligence

University of Edinburgh
80 South Bridge, Edinburgh

Scotland, UK
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It is known that the cut-elimination theorem does not hold for inductive theories. General-
ization is underpinned by the cut-rule of inference and consequently introduces an infinite
branching point into the search space for inductive proofs. For this reason generalization is a
major obstacle to the automation of proof by mathematical induction. A technique, or proof
critic, for guiding generalization is presented. Our proof critic builds upon rippling, a heuris-
tic based proof method for guiding inductive proof. The critic enables us to exploit failed
proof attempts in the search for generalizations. In particular we focus upon generalization
through the introduction of accumulator variables.
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Failure Analysis of induction schemes and role of generalization

Deepak Kapur M. Subramaniam
SUNY at Albany SUNY at Albany

An approach for predicting failure of induction schemes used in an inductive proof of a
conjecture is developed. The approach is based both on local analysis as well as global analysis
of definitions and lemmas. In local analysis, unchangeable positions of a function definition,
an idea due to Boyer and Moore, is exploited. Rules preserving unchangeable positions are
defined and used to predict failure. Local analysis serves as a basis for classifying induction
schemes as flawed and unflawed. The notion of flawed schemes a la Boyer and Moore is
extended by taking into account, the context provided by the conjecture to the schemes. We
are thus able to classify as flawed, schemes which result in unsuccessful proof attempts but
which would be declared unflawed by Boyer and Moore’s heuristics and hence considered
for proof attempts. In global analysis, right sides of definitions are examined to analyze
functions that could possibly appear as an argument to another function. This information
is used to determine whether the use of a particular induction scheme for an induction proof
could lead to a new function f not in the conjecture, appearing as an argument to another
function g such that no rule can eliminate an occurrence of f . Local and global analyses
are used to develop conditions under which it is not possible to generate an induction proof
based on a particular induction scheme, and in avoiding proof attempts which would surely
lead to failure. In case all induction schemes possible in a conjecture are declared flawed
by local and global analyses, the generalization heuristic can be used to get a more general
version of the conjecture which leads to at least one unflawed scheme. Such a controlled use
of generalization also avoids unsuccessful proof attempts. Additional lemmas that are not
preserving unchangeable positions can be used as a dynamic context to propose new cover
sets leading to different unchangeable positions of functions which may result in unflawed
schemes. Examples of properties of functions on numbers and lists are used to illustrate
various concepts.

27



Reusing Proofs

Thomas Kolbe Christoph Walther
TH Darmstadt TH Darmstadt

We investigate the improvement of induction theorem provers by reusing previously com-
puted proofs. Our approach for reuse is based on generalizing computed proofs by replacing
function symbols with function variables. This yields a schematic proof which is instantiated
subsequently for obtaining proofs of new, similar conjectures. We present techniques for an-
alyzing, generalizing and managing proofs, yielding a proof dictionary of reusable schematic
proofs [1, 3]. We also develop techniques for retrieving, solving and patching schematic
proofs from a proof dictionary for proving new conjectures by reuse, and show how our reuse
proposal supports the discovery of useful lemmata [2, 4].
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Certifying Inductive Proofs in NEVER

Sentot Kromodimoeljo Bill Pase
ORA Canada ORA Canada

NEVER is the theorem proving component of the verification system EVES. (The language
of EVES is called Verdi.) It is an interactive theorem prover with automatic capabilities
for inductive, equality and arithmetic reasoning. Since the theorem prover is a complex
program with over 10,000 lines of Lisp code, one is justified in questioning the validity of
proofs performed.

We address this issue by making NEVER log a proof in terms of simple inferences. A
proof log is a sequence of log entries; each entry consisting of an inference rule name, an
index to into the subexpression on which the inference rule is to be applied, and parameters
for the inference rule. A proof checker can then check the proof by applying the sequence
of inferences to the conjecture. (An inference is an equivalence-preserving transformation to
the conjecture.) If the result of the sequence of transformations is the expression (TRUE),
then the proof is considered to be checked.

Since one of the goals of our proof logging effort was to make proofs be logged in terms
of very simple inferences, we did not want induction in NEVER, which is essentially Boyer-
Moore induction, to be logged in terms of a complicated induction inference rule. Instead,
induction is logged in terms of the application of the strong induction principle, use of
termination lemma for a recursive function, and propositional and quantifier reasoning.
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Approaches to Hardware Verification by Term-Rewriting

Wolfgang Küchlin Reinhard Bündgen
U. Tübingen U. Tübingen

We give an overview of how term-rewriting techniques can be used for the specification and
verification of hardware.

First, following [1], we consider a form of term-rewriting based induction called inductive
completion. We show how inductive assertions about circuit correctness may be formulated
in our language and how they would be proved. We also show the usefulness of algorithms
for testing ground reducibility in order to check the completeness of circuit specifications.

Second, following [2], we report on experiences with the actual verification of the Sparrow
microprocessor which is used in a hardware design course in Tübingen. The circuit design
in BLIF (Berkeley Logic Interchange Format), as produced by a standard hardware design
tool, was mechanically translated into a term-rewriting system to assure that the axioms
closely correspond to the actual hardware.

For each instruction of the processor, the specification leads to equations asserting its
correct execution. Further assertions concern correct instruction and argument fetches and
the problem that each instruction ends in an instruction fetch state. Most resulting equations
are unconditional; the remaining ones are skolemized and transformed into unconditional
problems. Our ReDuX prover is then able to prove all theorems using term-rewriting modulo
AC. The verification exhibited a few marginal problems with the given implementation of
the Sparrow design.
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Inference Rules for Inductive Theorem Proving in Hierarchical
Specifications

Ulrich Kühler Claus-Peter Wirth
Universität Kaiserslautern Universität Kaiserslautern

Given a hierarchical conditional specification spec = (sig, R) such that the rewrite relation
induced by R is ground confluent, we can associate with spec its rewrite semantics I, namely
the quotient of the ground term algebra and the congruence relation induced by R. I implies
a natural notion of inductive validity: A clause C is inductively valid with respect to spec
iff every ground instance of C contains at least one literal valid in I.

We present a system of relatively powerful inference rules which can be used to prove
inductive validity of clauses as defined in our specification framework. The inference system
adheres to the problem reduction paradigm: Each inference rule reduces one goal to zero or
more subgoals whose proof is sufficient for that of the goal. In principal, each goal can be
used as a possibly open (i. e. unproven) lemma or as an induction hypothesis. Thus, mutual
induction is possible. To enable the formulation of the “inductive constraints” (that arise
when induction hypotheses are applied to (sub-) goals) we require that each goal is equipped
with a weight that measures the “size” of the goal. Weights are compared with respect to a
well-founded and stable induction ordering.

In order to keep track of the dependencies among (sub-) goals that result from applications
of (open) lemmas and inductive hypotheses, we propose the use of proof trees (or rather proof
state trees) and a dependency graph. Our criterion for inductive validity of goals is expressed
in terms of these data structures. Moreover, proof state trees form an adequate basis for
user interaction and proof analysis.

Induction of Regular Types

David McAllester
MIT AI Laboratory, Cambridge Mass.

There has been considerable recent interest in inferring regular types for functional pro-
gramming languages and, as a result, considerable interest in set constraints as a modeling
tool in static program analysis. The inference of regular types provides theorems of the
form ∀x1, . . . , xn P1(x1) ∧ . . . ∧ Pn(xn) → Q(f(x1, . . . , xn)) where Pi and Q are regular
predicates. We give a new algorithm for the inference of regular types which is polynomial
time in the case where one bounds the number of free variables in program expressions. This
polynomial time algorithm allows a form of recursion polymorphism and is more accurate
than the Aiken-Wimmers or Heinze systems on broad class of examples.
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Automated Verification of Generic Algorithms in the C++
Standard Template Library Using Subgoal Induction

Changqing Wang and David R. Musser
Rensselaer Polytechnic Institute

We present a new approach to the formal verification of programs, called dynamic verifica-
tion, and its application to C++ template-based generic algorithms. The method employs
Hoare-style pre/post-condition specifications, symbolic execution based on forward assign-
ment axioms (rather than the usual backward substitution) [MuWa95], and a while-loop
inference rule based on subgoal induction [MoWe77]. The symbolic execution mechanism
includes multiple Run-Time Analysis Oracles, each of which consists of a C++ interface and
a rule-based inference engine.

We briefly describe the MELAS system, which supports the dynamic verification method.
MELAS extends a normal debugging system with additional commands for formal verifi-
cation, normal and symbolic testing, and rapid-prototyping using executable specifications.
Since MELAS is an extension of debugging tools many programmers are already familiar
with, and it can be applied selectively to small program segments, it should assist in achieving
more widespread use of symbolic execution and formal verification technology.

MELAS is still under development, but a preliminary version has sufficient capabilities to
formally verify simple generic algorithms taken directly from the ANSI/ISO C++ Standard
Template Library.
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Application of Mathematical Induction to the Formal Proof of
Hardware and Embedding in a CAD Framework

Laurence Pierre
LIM-Université de Provence, Marseille

This talk focuses on the use of inductive theorem proving for verifying hardware devices.
We emphasize the fact that formal proof tools should be embedded in a CAD system and
proposed as an alternative to simulation or test. We give an overview of a prototype proof
environment, called PREVAIL, that we are developing in close cooperation with the team
of Dominique Borrione in Grenoble [1]. This system takes as input descriptions written in
a synchronous subset of VHDL, and verifies the equivalence of (or at least an implication
between) two VHDL “architectures” of the same “entity”, or checks the validity of temporal
properties of an “architecture”. It includes a set of special-purpose or general-purpose proof
tools, and among them the Boyer-Moore theorem prover, Nqthm.

More precisely, the task of our team in this project consists in evaluating various kinds of
general-purpose theorem provers or proof assistants, and in proposing specific modelling and
proof methodologies. We are currently focusing on three systems : Nqthm, LP (the Larch
Prover), and COQ which is based on the Calculus of Constructions.

The main advantages of Nqthm with respect to formal verification of hardware are its high
level of mechanization, its induction and generalization mechanisms, and the possibility of
using different kinds of inductive data types with conversion functions (for instance, bit-
vectors and natural numbers can be used together in the same proof, and this feature allows
one to compare a high-level arithmetic specification with an implementation described at the
bit-vector level). Consequently, such an approach can give better results than BDD-based
techniques for certain categories of problems. Our former and current works in this field
include :

• the definition of recursive functional models for synchronous sequential circuits. We
have proposed and mechanically proved equivalent two different models, and we have
compared them on simple but significant benchmarks [5],

• the definition of recursive functional models for replicated and parallel architectures.
Thus, we have modelled and verified several kinds of one-dimensional or two-dimension-
al structures (adders, multipliers, etc...) [2],

• the development of specialized methods as pre-processing to the proof, in particular
for the generalization of partial specifications [4],

• the proof of the equivalence of two VHDL high-level specifications of the same non-
trivial benchmark proposed by Thomsom [3].
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The integration of our methods in PREVAIL implies in particular :

• the choice of a synchronous VHDL subset and the definition of an associated semantics,

• the definition of a common intermediate form, for a unified translation from VHDL to
the different proof tools,

• the development of a VHDL library of pre-proven standard basic modules.

38



Bibliography

[1] D. Borrione, L. Pierre, and A. Salem. Formal Verification of VHDL Descriptions in
the PREVAIL Environment. IEEE Design and Test Magazine, vol. 9, 2, June 1992.

[2] L. Pierre. VHDL Description and Formal Verification of Systolic Multipliers. In
CHDL and their Applications, D.Agnew and L.Claesen ed., North Holland, 1993.

[3] F. Nicoli and L. Pierre. Formal Verification of Behavioural VHDL Specifications
: a Case Study. In Proceedings of EURO-DAC’94 with EURO-VHDL’94. IEEE
Computer Society Press, September 1994.

[4] L. Pierre. An automatic generalization method for the inductive proof of repli-
cated and parallel architectures. In Theorem Provers in Circuit Design, LNCS 901,
R.Kumar and T.Kropf ed., pages 72–91, Springer-Verlag, 1995.

[5] L. Pierre. Describing and Verifying Synchronous Circuits with the Boyer-Moore
Theorem Prover. In Proceedings IFIP WG10.5 Conference CHARME’95. To appear
in LNCS, Springer-Verlag, 1995.

39



Synthesis and Manipulation of Proof Predicates

Martin Protzen
Technische Hochschule Darmstadt

Fachbereich Informatik

In many cases induction proofs fail because multiple occurrences of variables block the ap-
plication of induction hypotheses or lemmata necessary to transform the induction conclu-
sion are not available. A solution to this problem is to generalize a conjecture ∀x∗. Ψ to
∀x∗, y∗. Ψ′, i.e. terms from Ψ are replaced by new variables y∗.

However, this approach bears the danger of overgeneralization. Therefore we invent proof
predicates: from the (incomplete) induction proof of ∀x∗, y∗. Ψ′ we synthesize the definition
of a predicate G(x∗, y∗) such that for every instance of G(x∗, y∗) which can be evaluated to
TRUE the corresponding instance of Ψ′ holds.

Since the original conjecture is an instance of the generalized conjecture ∀x∗. Ψ holds
whenever ∀x∗, y∗. G(x∗, σ(y∗)) holds.

In general, the proposed technique is able to compute a formula Φ for any invalid (or
inprovable) formula Ψ such that the implication ∀ . . . Φ → Ψ holds. The converse however,
i.e. the implication ∀ . . . Ψ → Φ, is not true in general.

In some cases the proof of the validity of particular instances of the proof predicate becomes
blocked for the same reasons the original proof was blocked. A certain class of these proofs
can be unblocked by an equivalence preserving transformation of the proof predicate.

Induction on Non-Freely Generated Data Types

Claus Sengler
DFKI, Saarbrücken

Proofs over recursively defined objects are done using the induction principle which is based
on a well-founded order relation.

Non-freely generated data types, that are data types with different syntactical represen-
tations for a single object, are frequently used in formal specifications. However, in the area
of explicit induction there is a lack in the analysis of these data types in order to obtain an
appropriate induction scheme.

We present a method for such a recursion analysis which is based on a very general well-
founded ordering for each data type (minimal size order). This method is an extension
of Walthers estimation calculus with argument-bounded functions. Although we have to
restrict the applicable data types to those with monotonic constructor functions we are able
to handle, for instance, finite sets, arrays, etc. and, of course, all freely generated data types.
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Language and Induction

Natarajan Shankar
SRI International Computer Science Laboratory

The Sapir-Whorf hypothesis states that language influences thought. We claim that language
certainly influences the effectiveness of automated deduction. In particular, several theorems
that are proved by means of difficult induction arguments can be seen as instances of general
theorems with straightforward proofs. A sufficiently expressive language is needed to capture
such general theorems. We show how a fusion theorem (due to Bird) and a continuation-
based transformation (due to Wand) can be stated using the higher-order logic of PVS which
supports predicate subtypes, dependent types, and parameterized theories. The PVS proof
checker exploits the synergistic interaction between language and deduction to support the
construction of elegant proofs of these theorems, as well as those of the binomial theorem
and an N-process mutual exclusion protocol (where model checking is used in the induction
step).
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Reasoning about Hardware Circuits in RRL

Deepak Kapur M. Subramaniam
SUNY at Albany SUNY at Albany

Correctness proofs of different adder and multiplier circuits mechanized on an automated
theorem prover RRL (Rewrite Rule Laboratory) are presented. A main objective has been to
minimize user guidance and intervention in the form of additional lemmas typically needed
to show that computations at the bit representation level indeed realize the intended arith-
metic functions. Two main ideas are exploited. Firstly, different circuits with the same
functionality are described using a data structure suited for the circuit architecture. Sec-
ondly, functional behavior of circuits is abstracted to describe a generic component with
certain behavioral constraints that can be used in other circuits for realizing more complex
behavior. The first idea is illustrated using adder circuits. A concise correctness proof of
carry lookahead adder circuit using powerlists supporting divide and conquer strategy and
parallel prefix computation is described. This circuit is shown to realize addition on numbers
by showing its equivalence to ripple carry circuit described using linear lists. The judicious
choice of appropriate data structures that enable easy reconciliation of representations un-
derlying the computation and the properties turns out to be a major advantage. The second
idea is illustrated by developing a common top level proof for a large class of multiplier cir-
cuits including the linear array, Wallace tree and the 7-3 multiplier. By abstracting various
adder circuits used in multipliers in terms of generic components with behavioral constraints,
we illustrate how the specification and implementation aspects can be decoupled. The use
of such generic components would lead to a hierarchical top-down development of proofs of
complex hardware circuits.

A Calculus for Rippling

David Basin Toby Walsh
Max-Planck-Institut für Informatik IRST, Trento &

Saarbrücken, Germany DIST, University of Genova, Italy

We present a calculus for rippling, a special type of rewriting using annotations. These
annotations guide the derivation towards a particular goal. Although it has been suggested
that rippling can be implemented directly via first-order term rewriting, we demonstrate that
this is not possible. We show how a simple change to subterm replacement and matching
gives a calculus for implementing rippling. This calculus also allows us to combine rippling
with conventional term rewriting. Such a combination offers the flexibility and uniformity
of conventional rewriting with the highly goal-directed nature of rippling. The calculus
we present here is implemented and has been integrated into the Edinburgh CLAM proof-
planning system.
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