Dagstuhl-Seminar

on Abstract Interpretation

Organized by:
Patrick Cousot (Ecole Normale Supérieure, Paris)
Radhia Cousot (Ecole Polytechnique, Palaiseau)

Alan Mycroft (Cambridge University)

28 August—1 September 1995

Overview

Abstract interpretation is a mathematical framework for specifying program
analyzers which conservatively approximate program behaviours by abstraction
of the language semantics. As can be seen from the abstracts of the talks,
the seminar succeeded in bringing together researchers from different areas of
application of abstract interpretation to focus discussion on various:

e program analysis methods;

e programming paradigms;

e program runtime properties;

e composable abstract domain designs;

e fixpoint computation methods leading to efficient implementations;

e designs of generic program analyzers and compilers using powerful analysis
methods, four of them being demonstrated; and

e applications.

The numerous and lively discussions which occurred during the formal sessions,
the discussion session on compositionality, and above all the informal meetings
confirmed the need for such exchange between the different communities and
demonstrated the benefits of this seminar.

The organizers September 1995

Acknowledgements

Thanks are due to Reinhard Wilhelm for inviting us to organize this Dagstuhl
seminar on abstract interpretation; to Angelika Miiller and Annette Bayer in
the Dagstuhl office in Saarbriicken and the staff at Schlo§ Dagstuhl for ensur-
ing that everything ran perfectly; to the participants for making the seminar
lively, fruitful and of very high quality; and to Chris Colby for coordinating the
production of this report.

Programme of the Workshop

Monday 28 August 1995

09h00-09h10
09h10-09h45
09h45-10h30

10h30-11h00
11h00-12h00
12h15-14h00
14h00-14h45
14h45-15h15

15h15-16h00

16h00-16h30
16h30-17h30

17h30-18h00

18h00-19R00
19h00-20R00

R. Wilhelm
P. Cousot

‘W.L. Harrison III

Coffee break
B. Ryder

Lunch

F. Martin
P. Cousot

C. Fecht

Coffee break
G. Filé

P. Cousot

Dinner
U. Loebens

Organizational remarks

Introduction to Abstract Interpretation
Abstract Interpretation in a Production
C/C++ Compiler

Flow Sensitive Data Flow Analyses

Program Analyzer Generator
Compositional Design of Galois
Connections

A Tool for Generating Efficient Prolog
Analyzers

Cut, Complement and Paste with Ab-
stract Domains

Fixpoint Approximation with
Widening/Narrowing

Opening of U. Loebens Art Exhibition

Tuesday 29 August 1995

09h00-09h45
09h45-10h45

10h45-11h45
11h45-12h00
12h00-12h15

12h15-14h00
14h00-14h30

14h30-15h30
15h30-16h15

16h15-16h45
16h45-17h45

18h00-19n00
20h00-21h00

G. Levi
M. Codish

Coffee break
M. Hanus
M. Sagiv

Lunch
C. Hankin

F. Nielson
J. Palsberg

Coffee break

M. Bruynooghe

Dinner
F. Martin
C. Fecht

Wednesday 30 August 1995

09h00-09h45
09h45-10h30

10h30-11h00
11h00-11h45
11h45-12h15
12h15-14h30
1/h30-18h00
18h00-19h00
20h00-21h00

N. Jones

F. Bourdoncle

Coffee break

D. Boulanger

P. Granger
Lunch

Dinner

F. Bourdoncle

Abstract Debugging

Bottom-Up Abstract
Interpretation of Logic Programs—from
Theory to Practice

Abstract Interpretation of Functional
Logic Languages

A Few Words on Interprocedural
Analysis

Analysis of Value-Passing Process
Calculi

Inference Based Analysis

A Type System Equivalent to Flow
Analysis

A Framework for Abstract Interpre-
tation of Logic Programs Based on
Preinterpretations

Demo: Program Analyzer Generator
Demo: Prolog Analyzer Generator

Optimizing Run-Time Data and
Operations
Implicit Higher-Order Polymorphism

with Primitive Typing

Decoding Models of Logic Programs
Local Iterations

Visit to Trier/Hiking/Cycling

Demo: syYNTOX: A Pascal Abstract
Interpreter

Thursday 31 August 1995

09h00-09h45

09h45-10h30
10h30-11h00
11h00-11h45

11h45-12h15

12h15-14h30
14h30-15h15

15h15-16h00

16h00-16R30
16h30-17h15

17h15-18h00
18h00-19R00
19h00-19h30
19h30-21h00

H. Sgndergaard

R. Shyamasundar
Coffee break
M. Rosendahl

T. Jensen

Lunch
M. Sagiv

A. Deutsch

Coffee break
K. Marriott

H. Seidl

Dinner

‘W.L. Harrison III
All participants

Friday 1 September 1995

09h00-09h30
09h30-10h00
10h00-10h30

10h30-11R00
11h00-11h30

11h30-12h00
12h15-14h30

U. Assmann

A. Poetzsch-Heffter

O. Riithing

Coffee break
J. Knoop

C. Colby
Lunch

Dependency
Programs
Termination Analysis of Logic Programs

Analysis for Logic

On Fixpoint Iteration in Abstract
Interpretation
Flow Analysis in the

Interaction

Geometry of

Graph-based Pointer Analysis via Ab-
stract Interpretation

Semantic Models of Dynamic Storage
and their Abstractions

Practical Experience in Using Abstract
Interpretation in a Highly Optimizing
Compiler for CLP(R)

Set Constraints to Stop Deforestation

Demo: C/C++ Abstract Interpretor
Discussion

Abstract Interpretation and Data Flow
Analysis with Graph Rewrite Systems
Interprocedural Data Flow Analysis
Based on Temporal Specifications

The Complexity of Exhaustive Motion-
Elimination Frameworks

Analyzing and Optimizing Parallel
Programs
Trace-Based Program Analysis

Abstracts of the talks

Abstract Interpretation and Data Flow Analysis with Graph Rewrite
Systems
Uwe Assmann

In the talk we defined a special class of graph rewrite systems for program analy-
sis: edge addition rewrite systems (EARS). EARS can be applied to distributive
data-flow frameworks over finite power domains, as well as many other program
analysis problems, which are normally not related to data-flow analysis.

We also presented some techniques for optimized evaluation of EARS. The
main technique is a generic algorithm which evaluates non-recursive EARS in
O(nke!?), where n the maximal number of nodes in a node domain with an
arbitrary label, e the maximum out-degree of a node concerning an arbitrary
edge label, [the length of the longest path of a path cover over all left hand
sides, p the maximum number of paths in a path cover, and k is the order
of an EARS (the number of source node labels in left hand sides). With this
algorithms and some other evaluation techniques in practice often linear and
quadratic algorithms result. This shows that EARS are very well suited for
generating efficient program analyzers.

[1] Uwe Assmann. On Edge Addition Rewrite Systems and Their Relevance to
Program Analysis. In J. Cuny, editor, 5th Workshop on Graph Grammars
and Their Application To Computer Science, to appear in Lecture Notes in
Computer Science. Springer, 1995.

[2] Uwe Assmann. Generierung von Programmoptimierungen mit Grapherset-
zungssystemen. PhD thesis, Universitt Karlsruhe, Kaiserstr. 12, 76128 Karl-
sruhe, Germany, July 1995.

Decoding Models of Definite Logic Programs
Dmitri Boulanger

Model theory is the basis of an elegant approach for static analysis. It is based on
the standard logical notions of interpretation, model and logical consequence.
The directness of this method contrasts with the need, in most abstract in-
terpretation frameworks, to define abstract and concrete domains with Galois
connection, abstract and concrete semantics, and prove their safety.

A program has a model with respect to any pre-interpretation of a language.
Properties of a program are encoded by its model. A procedure, which derives
declarative properties of a program only using its model, is called a decoding of
a model. Once a pre-interpretation is chosen, the complete decoding of a model
or a superset of a model is implied. It exploits a direct connection between

the pre-interpretation and derivable properties. This enables an automation of
construction of analysis algorithms for definite logic programs.

Implicit Higher-Order Polymorphism with Primitive Typing
Francois Bourdoncle

We present a generalization of the Hindley-Milner type system handling fi-
nite and partially ordered sets of base types and type constructors. We show
how this type system can be used to design programming languages retaining
much of the ML spirit while integrating in a seamless fashion higher-order and
object-oriented programming, dynamic dispatch on several arguments, paramet-
ric polymorphism, and overloading. The semantics of our type system is not
based on extensible records with methods attached to them. Rather, we use an
intensional framework with two categories of objects: data objects, implemented
as tagged tuples, and functional objects, with two possible implementations:
lambda-abstractions and sets of functional objects, called methods, dispatching
on the type of their arguments in pretty much the same way as ML functions
perform pattern matching. The idea of the system is to introduce universally
quantified constrained types like: Vo : o < real. « — «, whose intuitive mean-
ing is a type transformer with domain “real” mapping any run-time type to
itself, that is, the identity function over reals. Finally, we propose extensions
such as overloading and recursive types.

Framework for Abstract Interpretation of Logic Programs Based on
Preinterpretations
Maurice Bruynooghe

For every preinterpretation, we define two domains for abstract substitutions
and their corresponding Galois connection and establish a correct abstraction
of unification. The first abstraction uses domain relations (relations over the
domain of the preinterpretation) and was known before for some preinterpreta-
tions, though not formalised as is done here. The second abstraction uses sets
of domain relations. Surprisingly, this domain can express properties such as
definite freeness which hold for sets of terms but not for all instances of those
terms. Whereas conventional abstractions are developed in an ad-hoc way, our
approach is more systematic and based on changing the logic of equality through
the selection of a preinterpretation. Until now it was unclear whether and how
such an approach allows the derivation of properties that hold for sets of terms
but not necessarily for all instances of those terms. We report also on a prelim-
inary comparison with conventional approaches.

Analyzing Logic Programs for Real: A Persistent Type Analysis
Michael Codish

This paper describes a practical approach in which simple and efficient analyses
for logic programs can be obtained. The main contribution is the application
of this approach for polymorphic type analysis. Analyses are obtained by ab-
stracting programs replacing concrete terms by abstract terms and evaluating
the minimal models of the corresponding abstract programs. For type analysis,
abstract terms are type expressions constructed from type descriptors and a sin-
gle binary function symbol @ which is associative, commutative and idempotent.
The unification of type expressions is based on an extension of ACI-unification.

Efficiency is maintained by designing the analysis so that the type of a
program is in many cases independent of its context and hence persistent to
changes in the underlying type domain. Persistence is obtained by considering
a non-ground semantics for abstract programs much the same as in the case of
non-ground semantics for logic programs. The advantages for program analysis
are comparable to the concrete case: computational efficiency, domain indepen-
dence, and the persistence of analyses to changes in the underlying alphabet of
the type language.

Trace-Based Program Analysis
Christopher Colby

We present trace-based program analysis, a semantics-based framework for stati-
cally analyzing and transforming programs with loops, assignments, and nested
record structures. Trace-based analyses are based on transfer transition sys-
tems, which define the small-step operational semantics of programming lan-
guages. Intuitively, transfer transition systems provide direct support for rea-
soning about the possible execution traces of a program, instead of just indi-
vidual program states. The traces in a transfer transition system have many
uses, including the finite representation of all possible terminating executions
of a loop. Also, traces may be systematically “pieced together”, thus allowing
the composition of separately analyzed program fragments. The utility of the
approach is demonstrated by showing three applications: software pipelining,
loop-invariant removal, and data alias detection. We conclude by commenting
on how trace-based analysis can provide a general framework for the analysis of
concurrent programs.

Abstract Interpretation: Foundations and New Trends in Application
Patrick Cousot

Introduction to Abstract Interpretation

We recall the objectives of abstract interpretation, its main uses in designing
proof methods, semantics and analysis methods for a wide variety of program
properties and programming languages. We discuss a few applications to pro-

gram testing and manipulation. The methodology for approximating a seman-
tics by abstract interpretation is shortly presented and illustrated in detail by
grammar analysis.

Compositional Design of Galois Connections

We discuss the compositional design of fixpoint inducing/approximation us-
ing Galois connections/surjections defined by induction on the mathematical
structure of the semantic domains. The lattice of abstractions allows for partial
comparison of approximations. A few examples are given both in numerical and
symbolic domains.

Fizpoint Approzimation with Widening/Narrowing

We discuss the use of widening/narrowing operations for space reduction
and convergence acceleration in iterative fixpoint approximation. We show that
some precise analyses would be impossible to obtain with an abstract domain
without infinite chains whence justifying the necessary use of widenings.

GENA — A Tool for Generating Efficient Prolog Analyzers
Christian Fecht

GENA is a tool that allows to generate Prolog analyzers from specifications.
An analyzer is specified by an abstract domain which defines a lattice of ab-
stract substitutions and functions for performing abstract unification, abstract
procedure entry, and abstract procedure exit. GENA takes a set of abstract
domains as input and generates an executable analyzer which contains all the
specified abstract domains. The actual analyzer is obtained by plugging an ab-
stract domain into an analysis engine. An analysis engine is an implementation
of a particular generic abstract interpreter for Prolog. GENA contains analysis
engines for goal dependent and goal independent analyses. Furthermore, nor-
malization is supported. We implemented several different fixpoint algorithms:
three working list algorithms and four recursive top-down interpreters. Abstract
domains are specified in SML. GENA comes with a large set of data structures
which are useful for the analysis of logic programs, such as sets of variables, sets
of sets of variables, and binary decision diagrams. So far, we have specified the
abstract domains POS for groundness analysis and the domains JL and SUND
for sharing analysis. Our implementation of POS is about four times faster than
the implementation by Van Hentenryck using the GATA system.

Cut, Complement and Paste of Abstract Domains
Gilberto File

The aim of our work is to define a set of operations on abstract domains that
allow to costruct complex domains from simple ones or viceversa that allow
to decompose a complex domain into simpler components. In this seminar I
describe two such operations: the quotient and the complement and I illustrate
their usefulness for decomposing the well-known abstract domain Sharing.

In general an abstract domain D expresses several different information.
The quotient operation computes the part of an abstract domain that is useful
to compute a single particular information. We have shown that the quotient
of Sharing with respect to the groundness property is the abstract domain of
definite propositional formulas Def. From this result it’s easy to prove that the
domain Pos of positive formulas is strictly better than Sharing for computing
groundness.

Once we know that Def abstracts Sharing, it’s natural to wonder about
what remains of Sharing when Def is “taken out of it”. This intuition is
formalized by the operation of complementation: we want to know what is
the complement of Def wrt Sharing (Sharing — Def). We show that such
a complement exists in most cases of interest. Moreover we give a character-
ization of Sharing — Def as a simple upper closure on Sharing that we call
Sh+. Furthermore we show that also Sh+ can be divided into two more ab-
stract components: one expressing the pair-sharing information and the other
expressing the set-information.

Joint work with A. Cortesi (Venezia), R. Giacobazzi (Pisa), K. Palamidessi
(Genova), F. Ranzato (Padova), and W. Winsborough (PSU, USA).

Improving the Results of Static Analyses of Programs by Local De-
creasing Iterations
Philippe Granger

We present a new technique conceived for improving the accuracy of the re-
sults of static analyses of programs. It relies on and complements the classical
lattice-theoretic model for abstract interpretation, and is therefore defined at a
very general level. The idea consists in embedding local decreasing iterations
in the global iteration stage of the analysis; by local iterations, we mean that
they correspond to some special control points of the program and not to the
whole program to be analyzed. Special techniques dedicated to static analyses
on numbers are developed to take full advantage of the method, which allows, in
practice, to handle more efficiently conditional branches, assignments in back-
wards analysis, combinations of static analysis frameworks, and to combine ab-
stract interpretation and symbolic evaluation. Our technique may significantly
improve the analysis results.

Static Analysis of Value-Passing Process Calculi
Chris Hankin

There are a number of applications in safety critical systems and consumer elec-
tronics where simple concurrent languages are used. Often, there is the need
for static analysis which tracks the use of values in such programs. Standard
approaches to the semantics of value-passing process calculi involve a transla-
tion into a pure calculus (only involving pure synchronisation). This expansion

10

involves a loss of information which is unacceptable for many of the analyses
of interest. We present a model of value passing process calculi based on syn-
chronisation trees which gives a direct treatment of values. The construction is
general but is illustrated in the context of value-passing CCS. We illustrate the
use of the model as the basis for an abstract interpretation which discovers de-
pendency information. The abstract interpretation uses the domain Def, which
was developed in the logic programming community.

Joint work with David Clark and Lindsay Errington.

Abstract Interpretation of Functional Logic Programs: Problems and
Partial Solutions
Michael Hanus

Functional logic languages amalgamate functional and logic programming paradigms.
They can be efficiently implemented by extending techniques known from logic
programming. We show how global information about the call modes of func-
tions can be used to optimize the compilation of functional logic programs. Since
mode information has been successfully used to improve the implementation of
pure logic programs and these techniques can be applied to implementations of
functional logic programs as well, we concentrate on optimizations which are
unique to the operational semantics of functional logic programs. In the first
part we consider normalizing innermost narrowing as the operational seman-
tics. Normalizing innermost narrowing combines the deterministic reduction
principle of functional languages with the nondeterministic search principle of
logic languages. We define a suitable notion of modes for functional logic pro-
grams based on this operational semantics and present compile-time techniques
to optimize the normalization process during the execution of functional logic
programs. Furthermore, we present a framework to derive such global mode in-
formation. Due to the normalization process between narrowing steps, standard
analysis frameworks for logic programming cannot be applied. Therefore we de-
velop new techniques to correctly approximate the effect of the intermediate
normalization process.

In the second part we consider an operational semantics derived from the
lazy evaluation principle of functional languages. We show that strictness infor-
mation is not sufficient to transform lazy narrowing into eager narrowing due to
the presence of logical variables (in contrast to pure functional languages). Since
additional groundness information is necessary, we discuss possible techniques
to derive such information w.r.t. lazy narrowing strategies.

[1] M. Hanus. Towards the global optimization of functional logic programs. In

Proc. 5th International Conference on Compiler Construction, pages 68—82.
Springer LNCS 786, 1994.

11

[2] M. Hanus and F. Zartmann. Mode analysis of functional logic programs. In
Proc. 1st International Static Analysis Symposium, pages 26—42. Springer
LNCS 864, 1994.

Abstract Interpretation in a Production C/C++ Compiler
Luddy Harrison

I describe the design of a commercial C/C++ compiler that is intended to pro-
duce highly optimized machine code for computer systems that rely on concur-
rency to achieve their peak performance (superscalar, VLIW, SIMD, etc.) The
compiler operates upon a low-level intermediate form (called Q) which is essen-
tially structured assembly language. In this setting, pointer casting and pointer
arithmetic have a natural semantics in terms of machine types. The optimiza-
tions performed by the compiler are driven by a dependence graph. The edges
of the graph are associated with direction vectors that describe the control-flow
movements between the source and sink of the dependence. In restructuring
Fortran compilers such direction vectors connect points in an iteration space
that is defined by a loop nest. Here, the direction vectors are procedure strings,
and connect points in a global iteration space in which there is a dimension
for every important control point in a program (subroutine, call site, etc.) I
illustrate several dependence tests in this setting, including a dependence test
over subscripted (array) data, and a test over linked data structures.

Flow Analysis in the Geometry of Interaction
Thomas Jensen

This talk presents an approach to flow analysis of programs with higher-order
functions under normal-order reduction. The framework is based on an abstract
machine derived from the Geometry of Interaction semantics for cut elimination
in Linear Logic proof nets. The transition system defined by the machine induces
a set of equations defining the flow between the program points, represented by
vertices in the proof net. This set of equations defines a collecting semantics
for the program and is amenable to further analysis by standard methods from
abstract interpretation. As examples of its application we show how to derive
analyses in the framework: strictness analysis, aimed at optimising call-by-name
to call-by-need, closure analysis, aimed at deciding which closures are passed
around as arguments in a higher-order functional program, and usage analysis
for approximating the number of times a particular argument to a function is
used.

Removing Redundant Data and Code over a Range of Programming
Languages
Neil D. Jones

Meta-interpreters provide a general, convenient way to implement, say, a user-

12

oriented language using a well-established and engineered implementation lan-
guage. The price, unfortunately, is often poor efficiency.

Partial evaluation can help, by removing much “interpretation overhead”—
indeed, it can remove all overhead for simple untyped languages (Lisp, A-
calculus) so one can “have one’s cake” (convenient user-oriented language) “and
eat it too” (run it efficiently).

Alas, this happy situation does not hold for typed languages; the culprit is
the necessary use of a universal value domain, often exploding the size of object-
language data as represented in the interpreter, and thereby running slower than
necessary.

The talk (work in progress) outlined a way to remove this overhead by post-
processing the partial evaluator’s output on a user-oriented program. This
consists of an abstract interpretation, to trace the flow from “producers” of
constructors, type tags, pointers, etc. to their “consumers” that decompose/use
them. The safety of the analysis ensures detection of (many) redundant con-
structors, etc., and is used to optimize the program by removing much code
both to construct and deconstruct values.

Analyzing and Optimizing Parallel Programs without Additional Costs
Jens Knoop

For a sequential program the classical answer of how to get a fast running object
program is to compile it by means of an optimizing compiler. More recently,
a second answer becomes popular and more and more important: To apply an
automatic parallelizer and to run the generated program on a parallel machine.
However, all too often both alternatives are considered to exclude each other
because naive adaptations of the sequential optimization methods fail, and their
straightforward correct adaptations have unacceptable costs caused by consider-
ing all interleavings that manifest the possible executions of a parallel program.

The point of this talk is to show that for the large class of bitvector problems,
which are most relevant in practice, there is an elegant way out of this dilemma.
In fact, we show how to construct for parallel programs with shared memory and
interleaving semantics optimal bitvector analyses which are as efficient as their
sequential counterparts, and which can easily be implemented. This is very
important as there is a broad variety of powerful classical optimizations like
code motion, strength reduction, partial dead code elimination, and assignment
motion which only require bitvector analyses. All these optimizations are now
available for parallel programs almost without any additional costs on the run-
time and the implementation side.

Joint work with Bernhard Steffen (University of Passau, Germany) and Jiirgen
Vollmer (University of Karlsruhe, Germany).

13

On the Abstract Diagnosis of Logic Programs
Giorgio Levi

Abstract diagnosis of logic programs is an extension of declarative diagnosis,
where we deal with specifications of operational properties, which can be char-
acterized as abstractions of SLD-trees (observables).

We introduce a simple and efficient method to detect incompleteness errors,
which is based on the application of the immediate consequences operator to
the specification. The method is proved to be correct and complete whenever
the immediate consequences operator has a unique fixpoint. We prove that this
property is always satisfied if the program belongs to a large class of programs
(acceptable programs). We then show that the same property can be proved for
any program P, if the observable belongs to a suitable class of observables. We
finally consider the problem of diagnosis of incompleteness for a weaker class of
observables, which are typical of program analysis.

Practical Experience with using Abstract Interpretation in a Highly
Optimizing Compiler for CLP(R)
Kim Marriott

Constraint Logic Programming (CLP) languages extend logic programming by
allowing constraints from different domains such as real numbers or Boolean
functions. The considerable expressive power and flexibility gained by com-
bining constraint programming with logic programming is not without cost.
Implementations of constraint logic programming (CLP) languages must in-
clude expensive constraint solving algorithms tailored to specific domains, such
as trees, Booleans, or real numbers. The performance of many current CLP
compilers and interpreters does not encourage the widespread use of CLP.

I will describe a highly optimizing compiler for CLP(R), a CLP language
which extends Prolog by allowing linear arithmetic constraints. The compiler
uses sophisticated global analyses to determine the applicability of different
program transformations. The analyzer is based on a generic abstract interpre-
tation engine and six different analysis domains which give information about
definite and possible interaction between constraints. Preliminary evaluation of
the optimizing compiler and the analyzer is very promising.

Joint work with Andrew Kelly, Andrew Macdonald, Harald Sgndergaard, Peter
Stuckey, and Roland Yap.

Generation of Efficient Interprocedural Analyzers with PAG
Florian Martin

To produce high quality code, modern compilers use global optimization algo-
rithms based on abstract interpretation. These algorithms are rather complex;
their implementation is therefore a non—trivial task and error—prone. However,

14

since they are based on a common theory, they have large similar parts. We
conclude that analyzer writing better should be replaced with analyzer genera-
tion.

We present the tool PAG that has a high level functional input language
to specify data flow analyses. It offers the specification of even recursive data
structures and is therefore not limited to bit vector problems. PAG generates
efficient analyzers which can be easily integrated in existing compilers. The
analyzers are interprocedural, they can handle recursive procedures with local
variables and higher order functions. PAG has successfully been tested by gen-
erating several analyzers (e.g. alias analysis, conditional constant propagation)
for an industrial quality ANSI-C and Fortran90 compiler.

Research in compiler generation has concentrated mostly on front end and
lately on back end generation. The optimization phase has not received much
attention. Only a few systems [4, 5, 6] for generation of analyzers have been
designed and built. All of them apply ad-hoc methods or heuristics if the lan-
guage has subroutines. We present a new generative system for interprocedural
analyses, PAG, that is able to produce analyzers which can be applied in several
different compilers by instantiation of a well designed interface. The system is
based on the theory of abstract interpretation. The philosophy of PAG is to
support the designer of an analyzer by providing three languages for specifying
the data flow problem, the abstract domains, and the compiler interface. This
simplifies the construction process of the analyzers as well as the correctness
proof and it results in a modular structure. The specifier is neither confronted
with the implementation details of domain functionality nor with the traversal
of the control flow graph or syntax tree nor with the implementation of suitable
fixpoint algorithms.

Joint work with Martin Alt.

[1] M. Alt and F. Martin. Generation of efficient interprocedural analyzers with
PAG. In International Conference on Static Analysis (SAS’95), Lecture
Notes in Computer Science. Springer, 1995. to appear.

[2] P. Cousot and R. Cousot. Abstract Interpretation: A Unified Lattice Model
for Static Analysis of Programs by Construction or Approximation of Fix-
points. In Conference Record of the 4th ACM Symposium on Principles of
Programming Languages, pages 238-252, 1977.

[3] M. Sharir and A. Pnueli. Two approaches to interprocedural data flow
analysis. In S. S. Muchnick and N. D. Jones, editors, Program Flow Analysis:
Theory and Applications, chapter 7, pages 189-233. Prentice-Hall, 1981.

[4] S. W. K. Tjiang and J. L. Hennessy. Sharlit — A tool for building optimizers.
In Proceedings of the Conference on Programming Language Design and Im-
plementation (PLDI), pages 82-93, San Francisco, CA USA, [7] 1992. ACM

15

Press , New York, NY , USA. Published as SIGPLAN Notices, volume 27,
number 7.

[5] G. Venkatesch and C. N. Fischer. Spare: A development environment For
Program Analysis Algorithms. In IEEE Transactions on Software Engineer-
ing, volume 18, 1992.

[6] K. Yiand W. L. Harrison III. Automatic generation and management of in-
terprocedural program analyses. In Conference Record of the Twentieth An-
nual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 246259, Charleston, South Carolina, Jan. 1993.

Inference Based Analysis
Flemming Nielson

The focus in this talk is the extraction of properties for (functional) program-
ming languages with concurrency and polymorphism; we make this concrete by
a study of Concurrent ML. The first stage of the analysis is a type and effect
inference that extracts the type of a given expression as well as the communica-
tion behaviour (a kind of process algebra expression) its evaluation may give rise
to. The second stage of the analysis then analyses the behaviours using tech-
niques from abstract interpretation in order to provide results useful for static
and dynamic processor allocation. Both stages incorporate correctness results
and algorithms in order to obtain solutions. The talk concludes by identifying
the need to integrate polymorphism and polyvariance into the same analysis
framework.

Joint work with Hanne Riis Nielson.

A Type System Equivalent to Flow Analysis
Jens Palsberg

Flow-based safety analysis of higher-order languages has been studied by Shiv-
ers, and Palsberg and Schwartzbach. Open until now is the problem of finding
a type system that accepts exactly the same programs as safety analysis. We
prove that Amadio and Cardelli’s type system with subtyping and recursive
types accepts the same programs as a certain safety analysis. The proof involves
mappings from types to flow information and back. As a result, we obtain an
inference algorithm for the type system, thereby solving an open problem.

Interprocedural Data Flow Analysis Based on Temporal Specifica-
tions
Arnd Poetzsch-Heffter

This paper investigates the specification of data flow problems by temporal
logic formulas and proves fixpoint analyses correct. Temporal formulas are in-

16

terpreted w.r.t. programming language semantics given in the framework of
evolving algbras. This enables very high-level specifications, in particular for
history sensitive problems. E.g. the classical bit vector analyses can be refined
by using information about branch conditions without having to change their
specifications. The general semantics framework makes the approach directly
applicable to realistic programming languages.

We use the specifications to prove fixpoint analyses of data flow analyses
correct. As an example, we develop a powerful interprocedural deadness anal-
ysis that uses constant information depending on the context where the active
procedure was called. By proving such a combination of backward and forward
analyses correct, we illustrate the use of specifications in correctness proofs.

Higher-Order Fixpoint Iteration
Mads Rosendahl

We present a method for doing demand-driven fixpoint iteration on domains
with higher-order functions. The technique is based on using partial function
graphs to represent higher-order object. The main problem in finding fixpoints
for higher-order functions is to establish a notion of neededness so as to restrict
the iteration to those parts of the function that may influence the result. This
is here done through a uniform extension of the domain of values with need
information.

Fixpoint equations of this kind may arise from strictness analysis of higher-
order functions using the BHA-technique To analyse the strictness one has to
evaluate the strictness functions for a small set of arguments: one argument
tuple for each parameter to the function. The set of all possible arguments to
the strictness function may, however, be many orders of magnitude bigger. The
technique has been used in a strictness analyser for Haskell.

The use of fixpoint iteration as a programming paradigm is discussed through
examples from language theory and it is argued that it may be used as a gen-
eralisation of recursion.

The Complexity of Exhaustive Motion-Elimination Frameworks
Oliver Riithing

An important class of optimization techniques that mutually take advantage of
each other are methods employing code motion in order to increase the potential
of elimination transformations.

Common to such motion-elimination frameworks is the presence of second
order effects. Taking these second order effects completely into account requires
that both types of transformations are applied exhaustively. However, unlike
to the components involved, which are usually based on bit-vector data flow
analyses and whose complexity is well-understood, there is no serious estimation
on the number of iteration steps that is necessary in order to stabilize the whole

17

process.

Measurements indicate that practically relevant motion-elimination frame-
works do stabilize considerably fast. In this talk the theoretical evidence for this
observation is given. For some important problems we present linear bounds
that are even independent from the branching structure of a program. Finally,
we provide a new argument for the importance of splitting critical edges, since
code motion based on bidirectional data flow analysis is shown to impose extra
penalty costs.

Defining Flow Sensitivity in Data Flow Problems
Barbara G. Ryder

Since Banning first introduced flow sensitivity in 1978, the term has been used
to indicate hard or complex data flow problems, but there is no consensus as
to its precise meaning. We look at Banning’s original uses of the term and
some interpretations they have generated. Then we consider the multiplicity of
meanings in more recent interprocedural analyses, categorizing a number of data
flow problems. We also classify several recent interprocedural approximation
techniques with respect to properties related to sensitivity and discuss additional
data flow problem properties. Finally, we propose a definition for flow sensitivity
that attempts to capture the effects of program representation granularity and
function space properties.

Joint work with Thomas J. Marlowe and Michael G. Burke.

Solving Shape-Analysis Problems in Languages with Destructive Up-
dating
Mooly Sagiv

This paper concerns the static analysis of programs that perform destructive
updating on heap-allocated storage. We give an algorithm that conservatively
solves this problem by using finite shape-graphs to approximate the possible
“shapes” that heap-allocated structures in a program can take on. In contrast
with previous work, our method is even accurate for certain programs that
update cyclic data structures.

For certain programs — including ones in which a significant amount of de-
structive updating takes place — our technique is able to determine such prop-
erties as (i) when the input to the program is a list, the output is (still) a list;
(ii) when the input to the program is a tree, the output is (still) a tree; and
(iii) when the input to the program is a possibly circular list, the output is a
possibly circular list. For example, our method can determine that “list-ness” is
preserved by (i) a program that performs list reversal via destructive updating
of the input list, and (ii) a program that searches a list and splices a new element
into the list. Furthermore, our method can determine that “circular list-ness”
is preserved by the program that searches a list and splices in a new element.

18

None of the existing methods that use graphs to model the program’s store
are capable of determining that “list-ness” is preserved on these examples (or
examples of similar complexity). As far as we know, no other existing alias-
analysis/shape-analysis method (whether based on graphs or other principles)
has the ability to determine that “circular list-ness” is preserved by the list-
insert program.

Joint work with Thomas Reps and Reinhard Wilhelm.

Constraints to Stop Deforestation
Helmut Seidl

Deforestation is a transformation of functional programs to remove interme-
diate data structures. It is based on outermost unfolding of function calls
where folding occurs when unfolding takes place within the same nested func-
tion call. Since unrestricted unfolding may encounter arbitrarily many terms,
M.H. Sgrensen in 1994 proposed a grammar based analysis to determine those
terms which should better not be transformed. We recast his analysis by means
of set constraints and show how it can be made more informative by adding
further constraint systems—essentially at no loss in efficiency. The constraint
systems we add are

e Boolean constraints to restrict the approximation to terms possibly en-
countered by the outermost unfolding strategy;

e integer constraints to additionally compute depths or sizes of arguments
and/or reduction contexts.

Termination Analysis of Logic Programs
R. K. Shyamasundar

A methodology for proving the termination of well-moded logic programs is de-
veloped by reducing the termination problem of logic programs to that of term
rewriting systems. A transformation procedure is presented to derive a term
rewriting system from a given well-moded logic program such that the termina-
tion of the derived rewrite system implies the termination of the logic program
for all well moded queries under a class of selection rules. This facilitates ap-
plicability of a vast source of termination orderings proposed in the literature
on term rewriting, for proving termination of logic programs. The termination
of various benchmark programs has been established using this approach. Un-
like other mechanizable approaches, the proposed approach does not require
any preprocessing and works well even in the presence of mutual recursion. The
transformation has also been implemented as a front-end to Rewrite Rule Labo-
ratory (RRL) and has been used in establishing termination of nontrivial Prolog
programs such as a prototype compiler for ProCos PL, language.

19

The transformational approach is extended for proving termination of paral-
lel logic programs such as GHC programs; it exploits the fact that unifications
in GHC-resolution correspond to matchings. The termination of a GHC pro-
gram for a class of queries is implied by the termination of the resulting rewrite
system. The approach facilitates the applicability of a wide range of termina-
tion techniques developed for rewrite systems in proving termination of GHC
programs. The method consists of three steps: (a) deriving moding information
from a given GHC program, (b) transforming the GHC program into a term
rewriting system using the moding information and finally (c¢) proving termi-
nation of the resulting rewrite system. Using this method, the termination of
many benchmark GHC programs such as quick-sort, merge-sort, merge, split,
fair-split and append, etc., can be proved.

Positive Logic for Dependence Analysis
Harald S¢ndergaard

Many static analyses for declarative programming/database languages use Boolean
functions to express dependencies among variables or argument positions. Ex-
amples include groundness analysis for (constraint) logic programs and finite-
ness analysis and functional dependency analysis for databases. We identify
four classes of Boolean functions that are commonly used for program analysis.
Two of them, Pos and Def, capture dependencies by admitting implication. We
give semantic and syntactic characterisations of the classes and investigate their
algebraic properties. We show how the properties of positive logic translate
into a groundness analysis which is not only highly precise but also practical as
witnessed by several independent implementations.

20

