
Internationales Begegnungs- und

Forschungszentrum f ür Informatik

Schloß Dagstuhl

Seminar Report 9537

Parallel and Distributed Algorithms

September 11 – 15, 1995

Ov e r v i e w

The Dagstuhl Seminar on Parallel and Distributed Algorithms was organized by
Cynthia Dwork (IBM Almaden Research Center, San José), Friedhelm Meyer auf
der Heide (Universität Paderborn), and Ernst W. Mayr (Technische Universität
München). It brought together 24 participants from 6 countries, 7 of them came
from overseas.

The 22 talks presented cover a wide range of topics including parallel sorting
algorithms, shared memory simulations, parallel data structures, scheduling al-
gorithms, operating systems, analysis of computer architectures, and aspects of
distributed computing like consistency, fault tolerance, and approximate agree-
ment in distributed systems. The abstracts of all talks are documented in this
seminar report.

The outstanding environment and organization of Schloß Dagstuhl greatly
contributed to the success of the seminar.

Reported by Christian Scheideler

3

Participants

Artur Czumaj, Universität-GH Paderborn
Martin Dietzfelbinger, Universität Dortmund
Thomas Erlebach, TU München
Faith Fich, University of Toronto
Torben Hagerup, Max-Planck-Institut für Informatik, Saarbrücken
Zvi Kedem, New York University
Miroslaw Kutylowski, Universität-GH Paderborn
Yossi Matias, AT&T Bell Laboratories, Murray Hill
Ernst W. Mayr, TU München
Friedhelm Meyer auf der Heide, Universität-GH Paderborn
Burkhard Monien, Universität-GH Paderborn
Wolfgang J. Paul, Universität des Saarlandes
Andrea Pietracaprina, Università di Padova
Vijaya Ramachandran, University of Texas at Austin
Rüdiger Reischuk, Med. Universität Lübeck
Larry Rudolph, The Hebrew University of Jerusalem
Wojciech Rytter, University of Warsaw
Christian Scheideler, Universität-GH Paderborn
Uwe Schwiegelshohn, Universität Dortmund
Nir Shavit, MIT Cambridge
H. Raymond Strong, IBM Almaden Research Center, San José
Eli Upfal, IBM Almaden Research Center, San José
Rolf Wanka, Universität-GH Paderborn
Ralph Werchner, Universität Frankfurt

4

Contents

Artur Czumaj

Contention Resolution in Hashing Based Shared Memory Simulations

Martin Dietzfelbinger

Gossiping and Broadcasting vs. Computing Boolean Functions in Processor Networks

Faith Fich

Faster Approximate Agreement with Multi-writer Registers

Torben Hagerup

Signature Sort

Zvi Kedem

Calypso: A Distributed Execution Platform for Parallel Computations

Miroslaw Kutylowski

The Shearsort Algorithm on 3-Dimensional Meshes

Yossi Matias

Efficient Scheduling for Languages with Fine-Grained Parallelism

Ernst W. Mayr

Algebraic Analysis of Parallel Process Models

Wolfgang J. Paul

The Complexity of Simple Computer Architectures

Andrea Pietracaprina

Worst-Case Analysis of Shared Memory Realizations on Parallel Machines

Vijaya Ramachandran

The QRQW PRAM: Accounting for Contention in Parallel Algorithms

Rüdiger Reischuk

Scattering in Processor Networks with Set-up Delays

Larry Rudolph

Bit-Parallel, Free-Space, Optical Communication

Creating a Wider Bus Using Word Compression

Wojciech Rytter

Sublinear Time Parallel Algorithms for Constructing Optimal Binary Search Trees

Christian Scheideler

Space-Efficient Routing Strategies

Uwe Schwiegelshohn

Parallel Scheduling Algorithms

Nir Shavit

Diffracting Data Structures

H. Raymond Strong

Collective Consistency: Consistent Failure Detection for Parallel Computing

5

Eli Upfal

How Much Can Hardware Help Routing ?

Rolf Wanka

Simple but Fast Parallel Sorting on Multi-Dimensional Meshes

6

Abstracts

Contention Resolution in Hashing Based Shared Memory Simulations

by Artur Czumaj (joint work with F. Meyer auf der Heide and Volker Stemann)

We investigate the problem of simulating shared memory on the Distributed Memory Ma-
chine (DMM). Our approach uses multiple copies of shared memory cells distributed among
the memory modules of the DMM via universal hashing. Thus the main problem is to de-
sign strategies that resolve contention in the memory modules. Developing ideas from ran-
dom graphs and very fast randomized algorithms, we present new simulation techniques
that enable us to improve the previously best results exponentially. Three randomized sim-
ulations are presented, all achieving better time-performance that previously known. The
best of them simulates an n-processor CRCW PRAM ion an n-processor DMM with delay
O(log log log n log∗ n), with high probability.

We also present a general technique that can be used to turn these simulations to time-
processor optimal ones, in the case of EREW PRAMs to be simulated. We obtain a time-
processor optimal simulation of an (n log log log n log∗ n)-processor EREW PRAM on an n-
processor DMM with O(log log log n log∗ n) delay.

We further demonstrate that the simulations obtained can not be significantly improved using
our techniques. We show an Ω(log log log n/ log log log log n) lower bound on the expected
delay for a class of PRAM simulations, called topological simulations, that cover all previously
known simulations as well as the simulations presented in the paper.

Gossiping and Broadcasting vs. Computing Boolean Functions in Processor Net-

works

by Martin Dietzfelbinger

The gossip problem for an undirected graph G is the following: Assume each node initially
has a piece of information, which is atomic, but replicable. In one round a node can send all
the information it has gathered so far to one of its neighbors or can receive such information
from one of its neighbors. How many rounds are necessary and sufficient so that all nodes get
all the information? This problem has been studied intensively over some decades and has
been completely or partially solved for many graph classes. The aim of this talk is to show
that results from gossiping theory are closely related to the problem of computing Boolean
functions in networks of processors under certain communication modes, in particular in the
problem of synchronizing the processors, which corresponds to computing the OR function,
as follows: initially, each processor has one input bit; finally, all processors know the output
value. At the first glance, this task seems simpler than gossiping, since no atomic messages
have to be preserved and since the algorithms that are allowed are more flexible in that
they may use different communication patterns for different inputs. In the talk it is shown
that for certain types of communication protocols (“telegraph mode”: in one step a processor
either can receive a message or send a message or do nothing, with prior knowledge whether a
message will arrive or not), best algorithms for computing the OR and best gossip algorithms
are the same. This result can be extended to different tasks and communication modes. For
example, the problem of computing a Boolean function with the output appearing at one
of the nodes is closely related to the problem of broadcasting one atomic message from one

7

source node to all nodes in the network.

Faster Approximate Agreement with Multi-writer Registers

by Faith Fich

In the approximate agreement problem, each of n processors has a real input xi and all
nonfaulty processors must compute a real output yi in the range of the xi’s and at most ǫ
apart from one another. An algorithm that solves this problem is presented.

Signature Sort

by Torben Hagerup (joint work with Rajeev Raman)

The word-sorting problem is to sort n integers of w bits each on a w-bit machine with a
usual unit-time instruction repertoire including addition, multiplication, etc. n and w are
independent parameters, except that w ≥ log n (otherwise it is not possible to address all
of the input). We describe a sequential and a parallel version of a new randomized sorting
method called signature sort. Under the assumption w ≥ (log n)2+ǫ, for some fixed ǫ >
0, sequential signature sort solves the word-sorting problem in O(n) expected time, and
parallel signature sort works in O(log n) expected time on an EREW PRAM with O(n/log n)
processors. Signature sort is based on representing pieces of the input keys by shorter, unique
integer signatures obtained via universal hashing.

Calypso: A Distributed Execution Platform for Parallel Computations

by Zvi Kedem (joint work with A.Baratloo and P. Dasgupta)

The importance of adapting distributed environments for use as parallel processing platforms
is well established. However, current solutions do not always address important issues that
exist in real networks. External factors like the sharing of resources, unpredictable behavior of
the network and machines including slowdowns and failures, are present in multiuser networks
and must be addressed. In using todays available toolkits for distributed programming, in
general, the responsibility of handling these external factors is left to the programmer, a task
that further complicates the development of an already difficult job of parallel programming.

Calypso is a prototype software system for writing and executing parallel programs on non-
dedicated platforms, based on commercial off-the-shelf networked workstations, operating
systems, and compilers. Among characteristics of the system are: (1) simple programming
model incorporating shared memory constructs, (2) separation of the program and the exe-
cution parallelism to allow programs to scale as computers join an ongoing computation, (3)
transparent utilization of unreliable shared resources by providing dynamic load balancing
and fault tolerance, and (4) effective performance for large classes of medium- to coarse-
grained computations.

A notable property of the system is that at its core lie theoretical algorithmic techniques
seamlessly blending parallelism, load balancing, and fault tolerance. These techniques were
originally developed in the context of abstract PRAM models and produced a general and flex-
ible methodology for reliable parallel computing on asynchronous distributed platforms. The
theoretical techniques were further developed so that they are now efficiently implemented
using services provided by standard system software. The theoretical foundations were devel-
oped by (various subsets of): Y. Aumann, Z. Kedem, K. Palem, M. Rabin, A. Raghunathan,

8

and P. Spirakis. Some key relevant publications appeared in STOC’90, STOC’91, STOC’92,
and FOCS’93. The current Calypso prototype was developed by A. Baratloo, P. Dasgupta,
and Z. Kedem.

The Shearsort Algorithm on 3-Dimensional Meshes

by Miroslaw Kutylowski (joint work with Rolf Wanka)

Shearsort is one of the classical sorting algorithms working on 2-dimensional meshes of pro-
cessors performing compare-exchange operations. It consists of ⌈log l⌉ + 1 rounds of m + l
parallel steps on a l × m-mesh. If m is a power of 2, then log m + 1 such rounds suffice.

There is a straightforward generalization of Shearsort to multi-dimensional meshes, but due
to very complex behavior of this generalized algorithm no run time analysis has been known
yet, except for very special cases. Experiments indicate that multi-dimensional Shearsort may
satisfy similar time bounds as its 2-dimensional counterpart. We analyze the 3-dimensional
case and show that on a m3 ×m2 ×m1-mesh it suffices to perform log m3 + log m2 +O(log m3

log m2

)

rounds. If m2 and m1 are powers of 2, then log m2 +log m1 +O(log log m2 +log log m1) rounds
suffice.

Provably Efficient Scheduling for Languages with Fine-Grained Parallelism

by Yossi Matias (joint work with G. Blelloch and P. Gibbons)

Many high-level parallel programming languages allow for fine-grained parallelism. As in
the popular work-time framework for parallel algorithm design, programs written in such
languages can express the full parallelism in the program without specifying the mapping of
program tasks to processors. A common concern in executing such programs is to dynamically
schedule tasks to processors so as to not only minimize the execution time, but also to
minimize the amount of memory needed. Without careful scheduling, the parallel execution
on p processors can use a factor of p or larger more memory than a sequential implementation
of the same program.

We first identify a class of parallel schedules that are provably efficient in both time and
space, even for programs whose task structure is revealed only during execution. For programs
with sufficient parallelism, the schedule guarantees that the amount of memory used by the
program is within a factor of 1 + o(1) of a sequential implementation. This space bound
is obtained by proving a graph-theoretic result relating parallel and sequential traversals of
directed acyclic graphs.

We then describe an efficient dynamic scheduling algorithm that generates schedules in this
class, for languages with nested fine-grained parallelism. The algorithm is relatively simple,
performing the necessary processor allocation and task synchronization while incurring at
most a constant factor overhead in time and space. The correctness and performance guaran-
tees of the algorithm rely on properties of depth-first-like traversals of series-parallel graphs.
The algorithm is the first efficient solution to the scheduling problem discussed here, even if
space considerations are ignored.

9

Algebraic Analysis of Parallel Process Models

by Ernst W. Mayr

We first consider binomial ideals over the rationals in the unknowns x1, . . . , xn. It is known
that Gröbner bases for such ideals are again binomial and obey a doubly exponential degree
bound. We use this bound and another doubly exponential degree bound (due to Herrman/26)
for the word problem for finitely presented commutative semigroups to derive an exponential
space bound for the following problems:

1. the subword reachability problem in finitely presented commutative semigroups;

2. the problem of computing the minimal elements of an equivalence class in a finitely
presented commutative semigroup;

3. the problem of computing the periods of an equivalence class in a finitely presented
commutative semigroup;

4. the equivalence problem for finitely presented commutative semigroups;

5. the problem of computing the reduced Gröbner bases for a binomial ideal.

Worst-Case Analysis of Shared Memory Realizations on Parallel Machines

by Andrea Pietracaprina (joint work with G. Pucci and K.T. Herley)

We present deterministic lower and upper bounds on the slowdown required to simulate
an (n, m)-PRAM on a parallel machine consisting of q processors and p memory banks,
q, p ≤ n, communicating through an interconnection network. Taking into account only
memory contention, we prove that the simulation slowdown is at least Ω(n/q+ns/p) where s
is a function of n, m and p which ω(1) unless m = Θ(n) or p = O(1). Also, under the standard
point-to-point assumption, we prove a bandwidth-based lower bound formulated in terms of
the decomposition tree of the simulating network. The general result yields lower bounds

of Ω((n/p)p1/d(log(m/2n2)/ log log(m/2n2))1−1/d) and Ω(n/p
√

p log(m/2n2)/ log log(m/2n2))

when specialized to p-node d-dimensional meshes and to the p-leaf pruned butterfly (a variant
of Leiserson’s fat-tree), where each node (leaf) hosts a processor and a memory bank.

As for the upper bounds, we introduce a novel scheme that exploits the splitting and com-
bining of messages. Such a scheme can be implemented on an n-node d-dimensional mesh
(d = O(1)) with O(n1/d(log(m/n))1−1/d) slowdown, and on an n-leaf pruned butterfly with

O(
√

n log(m/n)) slowdown. Similar results can be obtained when the simulating machine

consists of p ≤ n processor/memory pairs. These simulations attain the best worst-case
slowdowns to date for such interconnections. Moreover, the one for the pruned butterfly is
the first PRAM simulation scheme on an area-universal network, and employs novel sorting
and routing primitives. Furthermore, the simulations are space-efficient and require a total
amount of storage that is within a polylogarithmic factor of the size of the PRAM memory.

10

The QRQW PRAM: Accounting for Contention in Parallel Algorithms

by Vijaya Ramachandran (joint work with Phil Gibbons and Yossi Matias)

We introduce the queue-read, queue-write (QRQW) parallel random access machine (PRAM)
model, which permits concurrent reading and writing to shared memory locations, but at a
cost proportional to the number of readers/writers to any one memory location in a given
step. The QRQW PRAM model reflects the contention properties of most commercially
available parallel machines more accurately than either the well-studied CRCW PRAM or
EREW PRAM models: the CRCW PRAM model does not adequately penalize algorithms
with high contention to shared memory locations, while the EREW PRAM model is too
strict in its insistence on zero contention at each step.

The QRQW PRAM is strictly more powerful than the EREW PRAM. We show a separation
of sqrt(log n) between the two models, and presents faster and more efficient randomized
QRQW PRAM algorithms for several basic problems such as leader election, linear com-
paction, multiple compaction, hashing, load balancing, and generating a random permuta-
tion. Furthermore, we show that the QRQW PRAM can be efficiently emulated with only
logarithmic slowdown on Valiant’s BSP model, and hence on hypercube-type non-combining
networks, even when latency, synchronization, and memory granularity overheads are taken
into account. This matches the best emulation result known for the EREW PRAM, and
considerably improves upon the best emulation result known for the CRCW PRAM on such
networks. Finally, we also present some lower bounds results for this model, including lower
bounds on the time required for broadcasting and related problems and for the leader election
problem.

Scattering in Processor Networks with Set-up Delays

by Rüdiger Reischuk (joint work with Andreas Jakoby)

We investigate the communication capacity and optimal data transmission schedules for pro-
cessor networks connected by communication links, for example Transputer clusters. Each link
allows the two processors at its endpoints to exchange data with a given fixed transmission
rate τd. The communication itself is done in a blocking mode, that means the two processors
have to synchronize before starting to exchange data and at any time each processor cannot
communicate with more than one other processor (single-port model).

Our efficiency analysis will be more realistic by taking into account the setup time for a
communication, which will be assumed to be a fixed constant τs > 0. Thus, a large amount
of data can be sent from one processor to a neighbour faster by a single long communication
step than by a bunch of small data exchange steps: sending m data units in one step takes
time τs + mτd. However, there is a tradeoff since the receiver has to wait until it has received
the complete set of data before it can forward pieces to other processors.

The following prototype task called scattering will be considered: At the beginning one pro-
cessor called the source possesses a set of unit size data packets, one for each processor in
the network. The goal is to distribute the packets in minimal time to all recipients.

Our results concerning the complexity of this problem in arbitrary processor networks are as
follows: for the general case, we give lower bounds on the minimal schedule length and show
that to determine the length precisely is NP–complete. Special classes of simple strategies
are investigated in more detail. For certain networks they turn out to yield optimal schedules.

11

Finally, for specific regular networks like hypercubes and multidimensional grids we construct
optimal schedules that can be computed efficiently, resp. good approximation algorithms.

Bit-Parallel, Free-Space, Optical Communication

by Larry Rudolph

In this paper, we examine several issues of bit-parallel free space optical communication such
as arbitration operations, fault tolerance, and connector alignment.

This paper explores some of the advantages of bit-parallel, free-space, optical communication
as opposed to the more common bit-serial communication techniques. While free-space optical
communication promises to overcome many of the current technological limitations for truly
massive, high-performance information interchange, we argue that it is important to send the
bits in parallel unlike current optical communication technology.

This paper focuses on bit-parallel communication and shows how it can be used in several
ways. In particular, a solution to the arbitration problem for controlling concurrent access
is presented. We assume a newer, nonstandard architectural support to handle the unusual
demands of arbitrarily large fan-in. Using a dual-rail transmission of binary data, we show
how bit-parallel communication can tolerate faulty detectors. Finally, we also show how to
handle the alignment requirements between transmitters and receivers.

Creating a Wider Bus Using Word Compaction

by Larry Rudolph

The effective bandwidth of a bus and external communication ports can be increased by using
a variant of data compression techniques that compacts words instead of data streams. The
compaction is performed by caching the high order bits into a table and sending the index
into the table along with the low order bits. A coherent table at the receiving end expands the
word into it original form. Compaction / expansion units can be placed between processor
and memory, between processor and local bus, and between devices that access the system
bus.

Simulations have shown that over 90 per cent of all information transferred can be sent in a
single cycle when using a 32 bit processor connected by a 16 bit wide bus to a 32 bit memory
module. This is for all forms of data, address, data, and instructions, and when a cache-based
processor is used.

Sublinear Time Parallel Algorithms for Constructing Optimal Binary Search

Trees

by Wojciech Rytter

The OBST problem consists in constructing an optimal binary sarch tree for a given sequence
of weights pi, qi. The items are stored in the inorder in the internal nodes of the tree (their
weights are pi’s, and the weights of external nodes are qi’s. The sum of weights equals 1).

The best sequential algorithm for the OBST problem is Knuth’s algorithm having quadratic
work. In this paper we are interested in parallel algorithms with subquadratic work for
the OBST problem for special input sequences (when pi + qi ≥ const

n
for eqach i) and for

approximately optimal solutions with arbitrarily small error. Our algorithms work in O(n 0.6)

12

time with n processors.

We also show that there are algorithms working in sublinear time with expected sublinear
work, assuming the sequence of weights is randomly permuted. The algorithms use nonstan-
dard decompositions of binary search trees into two different types of subtrees.

Space-Efficient Routing Strategies

by Christian Scheideler (joint work with F. Meyer auf der Heide)

We present a new approach towards space-efficient routing on arbitrary networks. This ap-
proach works in such a way that a network G with very space-efficient path system is sim-
ulated by some network H . Furthermore we present routing protocols that support this
approach and obtain the following results.

1. For any vertex-symmetric network with n vertices, degree d, and diameter D = Ω(log n)
it holds for all s ∈ [2, n]:
A randomly chosen function and any permutation can be routed in time O(logs n ·D),
w.h.p., if O(s · D · d) space is available at each processor and O(log(s · D)) space is
available in each packet for storing routing information. (The drawdack of this scheme
is that it is randomized and requires unbounded buffer size.)

2. For any vertex-symmetric network with n vertices, degree d, and diameter D = Ω(log n),
there is a deterministic hot-potato routing protocol that can route any permutation in
time O(log n·D log1+ǫ D) for any ǫ > 0 if each vertex has a self-loop, and O(D(log log D+
log d)) space is available in each vertex and O(log D) space is available in each packet
to store routing information.

This protocol makes use of a new offline routing protocol for buffer size 1 which may
be of independent interest. Furthermore, the protocol can be used to obtain the same
bounds as above for arbitrary graphs with second largest eigenvalue λ if D is set to
logλ n.

Besides these results we present routing protocols that take into account the bandwidth or
buffer size of a network. These protocols yield work-optimal circuit switching in Butterflys
with bandwidth log log n and work-optimal hot potato wormhole routing in (m, d)-tori if the
length of the worms is at least d log n (n = md) and 1 ≤ d ≤ log n

log log n
.

Finally, we present a protocol for arbitrary shortest path systems with buffer size b that needs

O(C·D1/b+log n
b

(D + C + log n)) time to route all packets.

Parallel Scheduling Algorithms

by Uwe Schwiegelshohn

The talk started with introducing requirements for parallel job scheduling. Next, makespan
scheduling was compared with flow time scheduling. We showed that while the flow time of
the optimal makespan solution may be as much as

√
P times the optimal flow time with P

being the number of processors, the makespan of the optimal flow time solution is not more
than Θ(1) times the optimal makespan. Then, a distributed scheduling approach based on a
two level hierarchy was suggested. The bottom level addresses the scheduling problems of a
single user and uses on-line makespan algorithms with a small competitive factor. For the flow

13

time algorithms of the top level we first demonstrated that the competitive factor may be a
linear function of the number of tasks and that this approach is therefore not applicable for
flow time scheduling. Instead it was suggested to use a scheduling approach where the ratio
execution time

weight
is kept constant while the execution time itself is unknown. A new algorithm was

introduced which uses a list of jobs ordered by work
weight

(modified Smith’s ratio) for scheduling.

When all jobs are known up front, the algorithm needs O(m log m) running time where m
is the number of tasks and has a worst case approximation factor of 2.42 regardless of the
execution times. While it requires preemption there are never more than two tasks active
on one processor and no task migration is necessary during the execution of the schedule.
Finally, it was discussed how to extend the method to include network topology, precedence
constraints, deadlines and additional resource constraints.

Diffracting Data Structures

by Nir Shavit (joint work with Dan Touitou)

Shared pools and stacks are two widely used multiprocessor coordination structures that with
applications ranging from simple producer/consumer buffers to job-schedulers and procedure
stacks. The literature offers us a variety of possible pool implementations, from queue-lock

based solutions to the wonderfully effective randomized work-pile techniques of Rudolph,
Slivkin-Allaluf and Upfal and stealing techniques of Blumofe and Leiserson. Unfortunately,
the former offer good performance under sparse access patterns, but scale poorly since they
offer little or no potential for parallelism, while the latter offer good expected response time
under high loads, but very poor performance as access patterns become sparse.

This talk introduces elimination trees, a novel form of the diffracting-tree data structures that
provide pool and stack implementations with an average constant response time under high
loads, and a logarithmic time termination guarantee under sparse patterns. Our empirical
results show that unlike diffracting trees, and in spite of the fact that elimination trees offer
a “deterministic” guarantee of coordination, they scale like the “probabilistic” work-pile and
stealing methods, providing improved response time as the load on them increases.

Collective Consistency: Consistent Failure Detection for Parallel Computing

by H. Raymond Strong (joint work with C. T. Howard Ho and Cynthia Dwork)

This talk presents a new paradigm for the coordination of distributed processes that is useful
in the context of parallel computing. Coordination is an abstraction of the many ways mem-
bers of a group cooperate to reach collective goals. When the members of a group participate
in a coordination protocol, each member receives some (possibly null) input value, and if ev-
erything works properly, deach member is expected to produce some output value (or action).
We review the paradigms of distributed commit, agreement, and consensus, and discuss the
various assumptions that must be made in order to guarantee that a protocol satisfies the
paradigm. In general, these assumptions can only be assigned a ”high probability”.

Our new coordination paradigm is called collective consistency. The assumptions on which
it depends are simpler than those of the coordination paradigms mentioned above. Like dis-
tributed commit, it does depend on the assumption that participants only deviate from their
assigned programs by stopping. It also assumes eventual communication between participants
who do not stop. Unlike anyu of the above mentioned coordination paradigms, collective con-

14

sistency does not require that any correctly functioning participant must eventually produce
an output. In its weakest form collective consistency only requires that any two participants
that do produce outputs and do not regard each other as having failed must produce the
same output. This paradigm does not require any randomness or synchrony assumptions. A
stronger variation requires that all outputs that are produced must be identical, indepen-
dent of any failure detection. A nontrivial collective consistency protocol must have distinct
scenarios in which all participants produce each of at least two different outputs. One can
have a correct nontrivial protocol for consistency in an environment in which there can be
no correct protocol for agreement or consensus.

We first motivate the new paradigm with a discussion of failure tolerance in parallel comput-
ing. Then we give a lower bound result that applies to all coordination protocols to show that
we are on the right track with collective consistency. We discuss several variations of a pro-
tocol for collective consistency. Finally we enumerate a number of open questions including
the question of whether collective consistency can be achieved in the context of Byzantine
failures.

Simple but Fast Parallel Sorting on Multi-dimensional Meshes

by Rolf Wanka (joint work with Miros law Kuty lowski)

We introduce a family of sorting algorithms for the d-dimensional m-sided mesh, with m a
power of 2. These algorithms can be described and analyzed in a very simple way.

The first algorithm is a method that needs Θ(d2m log m) steps. It does not need any form of
routing and is a variant of the multi-dimensional Shearsort.

The second method allows additional routing phases. Here, Θ(d2m) parallel steps are sufficient
to sort. If d is constant, this algorithm is asymptotically optimal.

The constant factors in the runtime for both algorithms are very small. Both methods are
based on the fact that, if the contents of a mesh with snake-like indexing scheme is 2-ordered,
a single iteration of the multi-dimensional Shearsort already sorts the entire sequence of keys.

How Much Can Hardware Help Routing ?

by Eli Upfal (joint work with A. Bodorin, B. Schieber, and P. Raghavan)

We study the extent to which complex hardware can speed up routing. Specifically, we con-
sider the following questions. How much does adaptive routing improve over oblivious routing?
How much does randomness help? How does it help if each node can have a large number of
neighbors? What benefit is available if a node can send packets to several neighbors within
a single time step? Some of these features require complex networking hardware, and thus it
is important to investigate whether the performance justifies the investment.
By varying these hardware parameters, we obtain a hierarchy of time bounds for worst-case
permutation routing. We develop a nearly complete taxonomy of the complexity of routing.

15

E-Mail Addresses

Artur Czumaj artur@uni-paderborn.de

Martin Dietzfelbinger dietzf@ls2.informatik.uni-dortmund.de

Thomas Erlebach erlebach@informatik.tu-muenchen.de

Faith Fich fich@cs.toronto.edu

Torben Hagerup torben@mpi-sb.mpg.de

Zvi Kedem kedem@cs.nyu.edu

Miroslaw Kutylowski mirekk@uni-paderborn.de

Yossi Matias matias@research.att.com

Ernst W. Mayr mayr@informatik.tu-muenchen.de

Friedhelm Meyer auf der Heide fmadh@uni-paderborn.de

Burkhard Monien bm@uni-paderborn.de

Wolfgang J. Paul paul@cs.uni-sb.de

Andrea Pietracaprina andrea@artemide.dei.unipd.it

Vijaya Ramachandran vir@cs.utexas.edu

Rüdiger Reischuk reischuk@informatik.mu-luebeck.de

Larry Rudolph Rudolph@cs.huji.ac.il

Wojciech Rytter rytter@mimuw.edu.pl

Christian Scheideler chrsch@uni-paderborn.de

Uwe Schwiegelshohn uwe@carla.e-technik.uni-dortmund.de

Nir Shavit shanir@theory.lcs.mit.edu

H. Raymond Strong strong@almaden.ibm.com

Eli Upfal ely@almaden.ibm.com

Rolf Wanka wanka@uni-paderborn.de

Ralph Werchner werchner@thi.informatik.uni-frankfurt.de

16

Addresses

Artur Czumaj
Universität-GH Paderborn
FB 17 - Mathematik/Informatik
Warburgerstr. 100
33098 Paderborn
Germany
Phone: +49-5251-60-6490

Martin Dietzfelbinger
Universität Dortmund
Fachbereich Informatik
Lehrstuhl II
44221 Dortmund
Germany
Phone: +49-231-755-4737 /-2777

Thomas Erlebach
TU München
Institut für Informatik
80290 München
Germany
Phone: +49-89-2105-84 95

Faith Fich
University of Toronto
Dept. of Computer Science
10 King’s College Road
Toronto Ontario M5S 1A4
Canada
Phone: +1-416-978-6183

Torben Hagerup
Max-Planck-Institut für Informatik
Im Stadtwald
66123 Saarbrücken
Germany
Phone: +49-681-302-5358

Zvi Kedem
New York University
Courant Institute of Mathematical Sciences
251 Mercer Street
New York NY 10012-1185
USA
Phone: +1-212-998-3101

Miroslaw Kutylowski
Universität Paderborn
FB 17 - Mathematik/Informatik
D-33095 Paderborn
Germany
Phone: +49-5251-60-6461

Yossi Matias
AT&T Bell Labs - Murray Hill
Rm 2D-146
600 Mountain Avenue
Murray Hill NJ 07974-0636
USA
Phone: +1-908-582-70 68

Ernst W. Mayr
TU München
Institut für Informatik 14
80290 München
Germany
Phone: +49-89-2105-2680/2681 (Secr.)

Friedhelm Meyer auf der Heide
Universität-GH Paderborn
FB 17 - Mathematik/Informatik
D-33095 Paderborn
Germany
Phone: +49-5251-60-6480/6481 (Secr.)

17

Burkhard Monien
Universität-GH Paderborn
FB 17 - Mathematik/Informatik
D-33095 Paderborn
Germany
Phone: +49-5251-60-6707/6695 (Secr.)

Wolfgang J. Paul
Universität des Saarlandes
Fachbereich 14 - Informatik
Postfach 11 50
D-66041 Saarbrücken
Germany
Phone: +49-681-302 2436

Andrea Pietracaprina
Università di Padova
Dipartimento di Matematica Pura e Applicata
Via Belzoni 7
35131 Padova
Italy
Phone: +39-49-827 5949

Vijaya Ramachandran
University of Texas at Austin
Department of Computer Sciences
Taylor Hall 2.124
Austin TX 78712-1188
USA
Phone: +1-512-471-95 54

Rüdiger Reischuk
Med. Universität zu Lübeck
Technisch-Naturwissenschaftliche Fakultät
Institut für Theoretische Informatik
Wallstraße 40
D-23560 Lübeck
Germany
Phone: +49-451-7030-416

Larry Rudolph
The Hebrew University of Jerusalem
Department of Computer Science
91904 Jerusalem
Israel
Phone: +972-2-585261

Wojciech Rytter
University of Warsaw
Institute of Infomatics
Ul. Banacha 2
PL-02-097 Warszawa
Poland

Christian Scheideler
Universität-GH Paderborn
FB 17 - Mathematik/Informatik
33095 Paderborn
Germany
Phone: +49-5251-60-6433

Uwe Schwiegelshohn
Universität Dortmund
Lehrstuhl für Datenverarbeitungssysteme
44221 Dortmund
Germany
Phone: +49-231-755-26 34

Nir Shavit
MIT Cambridge
Lab of Computer Science
545 Technology Square
Cambrige MA 02139
USA
Phone: +1-617-253 5905

18

Eli Upfal
IBM Almaden Research
Dept. K53/802
650 Harry Road
San Jose CA 95120-6099
USA
Phone: +1-408-927-1788

Rolf Wanka
Universität-GH Paderborn
FB 17 - Mathematik/Informatik
D-33095 Paderborn
Germany
Phone: +49-5251-60-6433

Ralph Werchner
Universität Frankfurt
FB 20 Informatik
Robert-Mayer-Str. 11-15
60054 Frankfurt
Germany
Phone: +49-69-798-23424

19

