
Dagstuhl Seminar 9538

New Trends in the Intergration of Paradigms

Organized by:
Chris Hankin (Imperial College, London)
Hanne Riis Nielson (Aarhus University)

September 18-22,1995

Preface

A number of programming paradigms have been identified, including object-oriented, con-
current, applicative (functional), declarative (logic), as well as imperative. Some of these are
more successful than others but no single paradigm seems adequate for all aspects of soft-
ware production; an example being the meaningful exploitation of the massive paralellism
offered by current and future hardware. There appear to be two ways forward: integration of
paradigms taking the best from each or the development of coordination mechanisms which
support inter-language working.

Integration of paradigms necessitates a deeper understanding of the design methodologies,
the semantic basis, the techniques for analysis, transformation and implementation, and the
application in the construction of sofware as well as the verification of the ensuing systems.
These problems may be approached via the development of integrated languages or may be
studied through the design of calculi that exhibit the essential features. In the past the study
of the lambda-calculus and calculi for concurrency have helped in providing a breakthrough
in our understanding of functional languages and concurrent systems and calculi for object-
orientation are on their way.

Coordination languages are based on a model of concurrent computation in which agents
cooperate via a shared data space, rather than message passing or shared variables. Examples
range from collections of coordination primitives to be embedded in other languages, as in
Linda, to pure coordination languages such as Gamma. Problems relating to semantics, (open
systems) verification and static analysis are current research topics.

In both approaches, we anticipate that techniques of a deductive nature will prove essential
for most theoretical studies: semantics is likely to be based on variations of operational
semantics whose descriptive power surpasses that of denotational semantics and more recent
semantic frameworks. Consequently analyses may profitably be based on inference systems
(perhaps including type systems as special cases). To obtain efficient implementations the
use of constraints seem beneficial. However, many problems still require unifying frameworks,
not least those of transformation and implementation.

In order to ensure that there was a good interaction between the advocates of these two
different approaches we started the meeting with a number of provocative talks related to
language design. It was followed by discussions in small groups which later reported back
in a plenary session. A major question that arose during these discussions concerned the
need to identify concrete examples where integration of specific paradigms adds value; it was
clearly felt that it did not make sense to integrate any arbitrary two paradigms. To introduce
another dimension in the discussions we continued the meeting with a number of semantics

related talks bringing in issues as analysis and verification of programs and systems. Again
this was followed by a discussion session which partly was a continuation of the previous one
and partly was concerned with the applicability of the semantic techniques to the various
programming paradigms and their integration. The seminar concluded with a number of
short talks showing a spectrum of other problems studied for multi-paradigmatic languages.

The Dagstuhl seminar provided an excellent opportunity for bringing together two hitherto
disparate groups of scientists. Thanks to the engagement of the participants the seminar
exposed a lot of interesting developments in this emerging and exciting area. By having ample
time for discussions we improved our understanding of the differences and commonalities
between the various approaches to integration of paradigms and we got valuable insights into
how semantic issues are handled in the different settings.

2

Acknowledgement: We would like to thank Ian Mackie for helping us to collect the ab-
stracts.

3

MONDAY 18th September 1995

09.00 - 09.15 Introduction Chris Hankin
09.15 - 10.15 Opening Statements Everyone
10.45 - 11.30 The Oz Programming Model Gert Smolka
11.30 - 12.15 The Essence of Functional Logic Languages Michael Hanus
14.00 - 14.45 Foundations of Interactive Computing Peter Wegner
14.45 - 15.30 Modularity and Abstraction Mechanisms . . . Gul Agha
16.00 - 16.45 Declarative Programming Herbert Kuchen
16.45 - 17.30 Gamma Chris Hankin

TUESDAY 19th September 1995

09.00 - 10.30 Discussion Groups
11.00 - 12.15 Plenary Session
14.00 - 14.45 Rewriting Logic José Meseguer
14.45 - 15.30 Abstract Interpretation Alan Mycroft
16.00 - 16.45 Reasoning about Programs Carolyn Talcott
16.45 - 17.30 Agent Programming . . . Bent Thomsen

WEDNESDAY 20th September 1995

09.00 - 10.30 Discussion Groups
11.00 - 12.15 Plenary Session

THURSDAY 21st September 1995

09.00 - 09.30 Geometry of Interaction Ian Mackie
09.30 - 10.00 Using CHAMS . . . in Facile Lone Leth
10.00 - 10.30 What is Coordination . . . Paolo Ciancarini
10.45 - 11.30 Performance Eval. in Systems Spec. Roberto Gorrieri
14.00 - 14.45 The TAO Computation Model António Porto
14.45 - 15.30 Reasoning about Higher-order Processes Roberto Amadio
16.00 - 16.45 Integration of OO and FP Laurent Dami
16.45 - 17.30 Towards Temporal Type Systems Mads Dam
17.30 - 18.00 A general model for object-based systems Holger Naundorf

FRIDAY 22nd September 1995

09.00 - 10.30 Closing discussion

4

Contents

Gul A. Agha

Modularity and Abstraction Mechanisms for Specifying Concurrent Systems 6
Roberto M. Amadio and Mads Dam

Reasoning about Higher-OrderProcesses . 7
Paolo Ciancarini

What is coordination and what has to do with integration . 8
Mads Dam

Towards Temporal Type Systems . 9
Laurent Dami

Integration of Functional and Object-Oriented Paradigms:

Achievements and Open Problems . 10
Roberto Gorrieri

Performance Evaluation in Systems Specification . 11
Chris Hankin

Gamma . 13
Michael Hanus

The Essence of Functional Logic Languages . 14
Herbert Kuchen

Declarative Programming . 15
Lone Leth

Using CHAMs for the design of the distributed constructs in Facile . 16
Ian Mackie

Geometry of Interaction . 18
Holger Naundorf

A general Model for object based Systems . 19
Oscar Nierstrasz

Towards Composition Languages . 20
António Porto

The TAO computation model . 21
Didier Rémy

Typechecking record concatenation using constrained type . 22
Gert Smolka

The Oz Programming Model . 23
Carolyn Talcott

Reasoning about Programs . 24
Bent Thomsen

Agent Programming Needs Integration of Multiple Paradigms

or How to program the worlds largest computer . 25
Peter Wegner

Foundations of Interactive Computing . 26

5

Modularity and Abstraction Mechanisms

for Specifying Concurrent Systems

Gul A. Agha

University of Illinois
agha@cs.uiuc.edu

Abstract

A central goal of our research is to address the complexity of building and maintaining
large-scale software systems. We describe a number of programming language constructs
which abstract over common coordination patterns as well as their representation. Such
constructs include activators, actorspaces, synchronizers, and protocols. The constructs are
abstractions built using autonomous concurrent objects (actors). Specifically, we show that
the Actor model provides a flexible basis for building a meta-architecture for implementing
coordination abstractions. The talk provides examples which illustrate how using these con-
structs simplifies the task of designing, implementing and modifying software systems without
compromising computational efficiency.

6

Reasoning about Higher-Order Processes

Roberto M. Amadio
(joint work with Mads Dam)

Sophia Antipolis
amadio@cma.cma.fr

Abstract

We address the specification and verification problem for process calculi such as Chocs,
CML and Facile where processes or functions are transmissible values. Our work takes place
in the context of a static treatment of restriction and of a bisimulation-based semantics. As a
paradigmatic and simple case we concentrate on (Plain) Chocs. We show that Chocs bisimu-
lation can be characterized by an extension of Hennessy-Milner logic including a constructive
implication, or function space constructor. This result is a non-trivial extension of the classi-
cal characterization result for labelled transition systems. In the second part of the paper we
address the problem of developing a proof system for the verification of process specifications.
Building on previous work for CCS we present a sound proof system for a Chocs sub-calculus
not including restriction. We present two completeness results: one for the full specification
language using an infinitary system, and one for a special class of so-called well-described

specifications using a finitary system.
The results of this work are reported in [1].

7

What is coordination and what has to do with integration

Paolo Ciancarini

Dept. of Computer Science, Univ. of Bologna
Pza. di Porta S.Donato, 5 – 40127 Bologna - Italy

tel. +39 51 354506 fax. +39 51 354510 e-mail: cianca@cs.unibo.it
WWW Home page: http://www.cs.unibo.it/ cianca/index.html

Abstract

The birth of world-wide information systems like the WWW suggests the possibility of
building on the Internet infrastructure (middleware) similarly open systems for coordination
of people and their activities. Coordination languages and models were born for parallel pro-
gramming tasks, but are more and more explored as tools for designing and building open
and distributed software systems. A coordination model should clearly define its coordination
entities, coordination media, and coordination laws, that should be implemented in the co-
ordination languages which embed such a model. A coordination language is itself a tool for
integration. At least at application level coordination languages have been used for ”putting
together” existing pieces of software; some efforts are in progress to use similar concepts also
to combine and integrate specification notations of diverse natures.

8

Towards Temporal Type Systems

Or

Reasoning About Open Distributed Systems

Mads Dam
SICS

mfd@sics.se

Abstract

Interesting properties of open distributed systems mix functional and temporal aspects.
Systems with components that are incompletely specified, or which spawn processes locally
or remotely require new compositional techniques for their verification, at least as far as
their temporal properties are concerned. Such techniques are crucial to the development of
future type systems for high-level distributed programming languages that incorporate more
information about the dynamic, and interactive, behaviour of systems. We present the first
proof system that attempts to solve this problem in a general fashion. Specifically we present
a compositional proof system for checking processes against formulas in the modal µ-calculus,
capable of handling general infinite-state processes, and hence process spawning. The proof
system is obtained in a systematic way from the operational semantics of the underlying
process algebra. A non-trivial proof example is given, and the proof system is shown to be
sound in general, and complete for finite-state processes.

9

Integration of Functional and Object-Oriented Paradigms: Achievements

and Open Problems

Laurent Dami

CUI, University of Geneva
dami@cui.unige.ch

Abstract

Both functional and object-oriented languages have interesting mechanisms for software
composition and reuse. Functional languages have parametric polymorphism and type in-
ference; object-oriented languages have subtype polymorphism and various constructs for
incremental construction, like inheritance or delegation. Although clearly different, these
mechanisms are not orthogonal, and are not easily combined. Some attempts have been made
to design new languages which borrow syntactic constructs from both paradigms; however,
such attempts, lacking a formal semantics, fail to fully understand the interaction between
these constructs, and often lose many properties of the original FP or OO paradigms. So,
in our view, successful integration can only proceed from a sound formal model supporting
both paradigms. Efforts are currently being made in this direction, both in the ML and in
the Haskell community, based on some extensions of the lambda-calculus with either records
or with ”primitive objects” la Abadi/Cardelli. We show how our Lambda-N calculus, a
lambda-calculus with ”name-based interaction”, i.e. parameter passing by keywords, is also
appropriate, and probably simpler, for this formal foundation. The open problems then con-
sist in ”coming back to the surface”, i.e. finding the best combination of high-level constructs
which make such integration convenient for programmers, and amenable to reasonable im-
plementations. Some aspects are already quite clear: for example, most researchers seem to
agree that the proper way to combine type inference, parametric polymorphism and subtyping
is to use recursively constrained types, i.e. types with collections of subtyping constraints on
their free type variables. On the other hand, there is still no obvious answer for a number of
design aspects, like for example how to combine pattern matching with OO data abstraction.

10

Performance Evaluation in Systems Specification

Roberto Gorrieri

University of Bologna
gorrieri@cs.unibo.it

Abstract

The need of integrating the performance analysis of a concurrent system into the design
process of the system itself has been widely recognized and stimulated many researchers. The
problem is that, in the case when the performance aspect is neglected, time-critical concur-
rent systems, such as real-time systems and communication protocols, cannot be modeled in
a completely satisfactory manner. And, more important, there is no way of estimating the
performance of the concurrent systems under consideration. It often happens that a con-
current system is first fully designed and tested for functionality, and afterwards tested for
efficiency. As a consequence, if the performance is detected to be poor, the concurrent system
has to be redesigned, thus negatively affecting both the design costs and the delivery at a
fixed deadline.

In the last two decades a remarkable effort has been made in order to enhance the ex-
pressiveness of well-established formalisms developed in the theory of concurrency, such as
Petri nets and process algebras, based on the introduction of the concept of time. Among
the results of this effort, we shall focus our attention on stochastic Petri nets and stochastic
process algebras.

Stochastic Petri nets constitute a very mature field in which it is possible to model and
analyze concurrent systems both from the qualitative and quantitative point of view. However,
the use of stochastic Petri nets implies some drawbacks related to the lack of both linguistic
and semantic compositionality as well as the fact that a real integrated analysis does not exist
since the functional and the stochastic models obtained from each net are separately studied.
This problems could be solved by putting a stochastic process algebra on top of the stochastic
Petri net formalism.

In this talk we present an integrated approach for modeling and analyzing concurrent
systems based on stochastic process algebras and stochastic Petri nets, which relates different
points of view of concurrent systems (centralized vs. distributed) as well as different aspects
of their behavior (qualitative vs. quantitative). The approach is divided into two phases.

The first phase, interfaced with the system designer, consists of representing the concur-
rent system as a term of the stochastic process algebra. Because of compositionality, the
system designer is allowed to develop the algebraic representation of the system in a modular,
stepwise refinement manner. If the stochastic process algebra is equipped with an interleaving
semantics accounting for both the qualitative and quantitative part of the system behavior,
the interleaving model of the algebraic representation of the system can be projected on a
functional model and a performance model which can be analyzed by means of tools like
Concurrency Workbench and SHARPE, respectively.

The second phase consists of automatically obtaining from the algebraic representation
of the system an equivalent distributed representation. In order for it to be implemented,
the stochastic process algebra is required to have a distributed semantics as well. A suitable
distributed model might be a stochastic Petri net, because stochastic Petri nets constitute

11

a mature field in which it is possible the description and the analysis of concurrent systems
both from the functional and the performance viewpoint, assisted by tools like GreatSPN.
The net representation of the concurrent system is derived from the algebraic one without
intervention of the system designer, in order to avoid overhead concerning graphical complex-
ity and absence of compositionality. The net representation turns out to be useful in the case
when a less abstract representation is required highlighting dependencies and conflicts among
system activities, and helpful to detect some properties (e.g., partial deadlock) which can be
easily checked only in a distributed setting.

This integrated approach is instantiated to the case of the stochastic process algebra
Extended Markovian Process Algebra (EMPA), as it is a stochastic process algebra fulfilling
the needed requirements. In fact, it is supplied with an interleaving semantics, from which
a functional and a performance semantics can be derived, as well as a distributed semantics.
The name of the algebra stems from the fact that action durations are mainly expressed by
means of exponentially distributed random variables (hence Markovian), but it is also possible
to express actions having duration zero (hence Extended).

12

Gamma

Chris Hankin

Imperial College, UK
clh@doc.ic.ac.uk

Abstract

Gamma is a concurrent programming model which is based on the chemical reaction
metaphor. A Gamma program may be viewed as a conditional multi-set rewrite system.
Rules in the program interact by generative communication via the multi-set.

In this talk we give an overview of the current developments of the Gamma formalism.
We start with some simple examples. We then discuss the semantics of Gamma programs;
we start with an intuitive structural operational semantics for Gamma and then develop a
resumption-style denotational semantics. The latter is used to derive a program logic for
Gamma using notions from Abramsky’s Domain Theory in Logical Form. The soundness
of the logic follows from the general theory. The logic is a variant of Brookes’ Transition
Assertion Logic; it is related to a logic for Gamma that has been previously studied by
Errington, Hankin and Jensen. We conclude by considering higher-order extensions to the
basic Gamma formalism.

This talk is based on joint work with David Cohen, Simon Gay, Daniel Le Métayer, Juarez
Muylaert Filho and David Sands.

13

The Essence of Functional Logic Languages

Michael Hanus

Informatik II, RWTH Aachen
D-52056 Aachen, Germany

hanus@informatik.rwth-aachen.de

Abstract

Declarative programming languages like functional or logic languages have raised an in-
creasing interest during recent years. The expressive power of such languages results in smaller
and more readable programs and requires less development time. Moreover, the execution
of functional or logic programs can compete with imperative programs due to efficient im-
plementation techniques which have been essentially improved during the last years. The
application of such languages has raised the demand for one language that integrates the
advantages of functional and logic programming languages. In this talk we discuss the basic
operational principles of such integrated functional logic languages. These languages are usu-
ally based on narrowing, a combination of the reduction principle of functional languages and
the resolution principle of logic languages. Due to the inefficiency of simple narrowing, a lot
of narrowing strategies have been proposed. We discuss sophisticated narrowing strategies for
different classes of functional logic programs. The main difficulty of combining functional and
logic languages is the reasonable combination of the search paradigm of logic languages with
the efficient deterministic reduction principle of functional languages. We show that this is
possible using recent results in this area. For inductively sequential programs (programs with
non-overlapping left-hand sides), needed narrowing is an evaluation strategy which is opti-
mal w.r.t. the length of computed derivations and the number of computed solutions. In the
presence of rules with overlapping left-hand sides, the addition of a simplification process be-
tween lazy narrowing steps can largely reduce the search space. Using these recent strategies,
functional logic programs have a deterministic behavior if ground expressions are evaluated
and non-deterministic steps are performed only if logical variables occur at run time. This
shows that a sound, complete and efficient combination of search and deterministic reduction
is possible in modern functional logic languages.

14

Declarative Programming

Herbert Kuchen

RWTH Aachen, Lehrstuhl für Informatik II
D-52056 Aachen, Germany

herbert@informatik.rwth-aachen.de

Abstract

The idea of declarative programming is that the user specifies an application on a high
level and in such a way that the specification can be executed directly. Thus, a proof showing
the correctness of some implementation is not necessary. This approach is only feasable,
if the specification language is restricted enough. Mainly three paradigms for declarative
programming have been proposed which have this property: logic programming, functional
programming, and functional logic programming.

Logic programming is based on Horn clauses and uses unification for parameter passing
and (SLD-)resolution as execution mechanism. It offers logic variables and hence partial data
structures (like difference lists) as well as a built-in search mechanism. Predicates can be
used in such a way that, given (the shapes) of some arguments, corresponding remaining
arguments can be computed. Logic programming enables an easy integration of constraint
solving and hence domain specific search strategies. Unfortunately, determinism is hard to
spot and to exploit in logic programs. Moreover, logic languages are mostly untyped, causing
“typing errors” to show up at runtime. The most popular logic language Prolog contains a lot
of impure features which spoil the declarative nature of the language, e.g. the cut (an ad-hoc
way to express determinism), assert and retract (to store global information and to implement
an implication), call (an unsafe and tedious way of simulating higher order predicates), and
I/O-predicates (which cause (non-backtrackable) side effects).

Functional programming is based on (recursive) function definitions. It uses pattern
matching for parameter passing and (graph) reduction as execution mechanism. It provides
higher order functions (and thus user defined control structures), lazy evaluation (enabling
infinite data structures), nested function calls, (typically) a polymorphic type system (offering
the reuse of code and disabling runtime type errors), and purely declarative I/O. Functional
languages lack built-in search and logic variables.

Functional logic languages are based on function definitions and use either residuation
or narrowing as operational semantics. Narrowing is a combination of pattern matching for
parameter passing and reduction as execution mechanism. Functional logic programming
combines the advantages of purely functional and purely logic languages, i.e. higher order
functions, lazy evaluation, polymorphic typing, partial data structures, and (mostly) built-in
search. The impure features of Prolog are no longer needed. In particular, determinism is
expressed by the use of functions (rather than “cut”).

15

Using CHAMs for the design of the distributed constructs in Facile

Lone Leth
(Joint work with Bent Thomsen)

ECRC
Lone.Leth.Thomsen@ecrc.de

Abstract

In this talk we use the chemical abstract machine (CHAM) framework for discussing
various semantics for the Facile programming language and for formalising (parts of) its
implementations.

The basic idea of the CHAM is that the state of a system is like a chemical solution where
molecules float around. These molecules can interact with each other according to reaction
rules. Solutions can be heated to break complex molecules into smaller ones, and solutions can
be cooled to rebuild heavy molecules from components. Molecules can contain subsolutions
enclosed in membranes to deal with abstraction and hierarchical programming. CHAMs all
obey a simple set of structural laws. Each particular machine is defined by adding a set of
simple rules that specify how to generate new molecules from old ones. The framework has
been used to specify CHAMs for CCS and the γ-calculus, for LCCS, for the π-calculus, for
LO and for the weak λ-calculus with sharing.

We use the formal CHAM semantics to give informal arguments about implementability
of various constructs based on the observation that the more complicated CHAM machinery
needed to describe the semantics of constructs the harder it is to give a “real” implementation,
since each molecule will correspond to some data structure or even some thread of control.
Furthermore, we use the CHAM framework to formalise (parts of) the current implementa-
tions of Facile developed at ECRC by specifying some of the internal representations and at
the same time abstract from other details.

We also use this formalisation to demonstrate how different implementation strategies
could be used and what would be the consequence of such an implementation choice in a
distributed implementation.

We take the Facile language as source for discussion, but the results also apply to several
other new languages such as CML and Poly/ML. Characteristic for all these languages is that
they combine ideas from the λ-calculus and process algebra, such as CCS, to support high
level constructs for programming concurrent, parallel and/or distributed systems and mobile
agents.
The work may also be seen as a case study in comparing semantic descriptions using structural
operational semantics and the chemical abstract machine framework

This is a step towards a complete formalisation of the language implementation.
We do not propose to implement Facile directly by implementing a given CHAM. Although

the CHAM framework is intended as a framework for describing concurrent abstract machines
it seems to be too abstract for direct implementation. The CHAM seems to be advantageous
when describing internal system architecture and behaviour. Compared with an SOS a CHAM
semantics is much simpler since a CHAM factors out so-called structural rules. Inference rules
become replaced by rewrite rules, e.g. parallel composition will be translated into molecules,
and solutions of molecules are naturally associative and commutative. This allows us to

16

rapidly write down rules for prototype semantics which are shorter and clearer than their
SOS counterparts. The CHAM framework has also allowed us to work in an incremental way
when moving from one semantics to another. It seems to be difficult to use this approach
when designing SOS.

17

Geometry of Interaction: Semantics and Implementation

Ian Mackie

LIX, Ecole Polytechnique, France
mackie@lix.polytechnique.fr

Abstract

The purpose of this talk is to try to provide some intuitions and basic concepts underlying
the Geometry of Interaction and Game Semantics that have recently been introduced to model
the dynamics of computation.

Traditionally, semantics has been divided into two schools of thought: operational (step by
step syntax rewriting) and denotational (modeling answers in some mathematical universe).
The Geometry of Interaction and Game semantics are attempts to find a middle ground
between these paradigms. The result is a semantics that we can use to reason about step by
step computation in a (traditional) mathematical setting. Moreover, the steps of computation
are linear and reversible, i.e. really atomic.

We conclude the talk by showing how to apply this idea to functional programming imple-
mentations (the Geometry of Interaction Machine) and hint at some current research direc-
tions including: automatic compiler generation, evaluation strategies, parallel computation,
communication, logic programming and term rewriting systems.

18

A general Model for object based Systems

Holger Naundorf

University of Paderborn, Germany
snoo@plato.uni-paderborn.de

Abstract

The object based paradigm will play a key rôle in integration of paradigms, because it
is more a coordination than a programming language paradigm – encapsulation hides the
concrete language used to implement an object.

To formalize this coordination aspect it is important to use a model that really abstracts
from the internals of objects. A suitable means are abstract time systems known from abstract
system theory – a generalization of traces. An arbitrary number of objects – even infinite
many objects – can form an object based system. The objects communicate with each other
and the outside world via a transmission unit – itself an object described by an abstract time
system. Since objects communicate by messages only they cannot create new objects; instead
the creation of objects is modeled by activating objects (therefore object based systems with
infinite many objects are needed).

An object based system itself defines an abstract time system in a canonical way, hence
can be viewed as an object and thus this model is hierachical. Unfortunately a so defined
object can expose strange behavior like lack of causality. But with relatively weak conditions
– the transmission unit needs some time to propagate messages – the defined abstract time
system is very well behaved.

19

Towards Composition Languages

Oscar Nierstrasz

University of Berne
Institut für Informatik (IAM)

Neubrückstrasse 10, CH-3012 Bern, Switzerland
oscar@iam.unibe.ch

WWW: http://iamwww.unibe.ch/∼oscar

Abstract

Present-day Object-Oriented Languages emphasize programming over composition: in
general, it is not possible to build applications from an object-oriented class library or frame-
work by simply composing and linking objects instantiated from pre-existing classes. One
must always program new classes that use, or are derived from those provided. In this sense,
object-oriented technology fails to raise the level of abstraction from programming with core
language concepts to composition with domain specific components.

We posit the need for a so-called composition language, which would support both the
composition of applications from domain-specific components, as well as the definition of the
component frameworks themselves. Composition languages would be used at two distinct
levels: the framework level and the application level. At the Framework Level, a compo-
sition language would support the specification of: (i) generic software architectures, (ii)
standard component interfaces and protocols, (iii) composition mechanisms (or ”glue”), (iv)
open, generic software components, (v) high-level syntax for compositions. At the Applica-
tion Level, a composition language would support the specification of: (i) elaboration and
instantiation of generic components, (ii) applications as compositions, (iii) explicit, manipu-
lable software architectures, (iv) meta-level reasoning (access to framework level to support
dynamic composition).

A composition language would support an integrated object/component model based on
a rigorous semantic foundation. Such a foundation - or object calculus - could well be based
on a variant of the π calculus. Challenges for such a language include the modeling of
the foundational software abstractions (components, active objects, etc.), the development
of an appropriate type system with type inference, support for interoperability with existing
languages and component libraries, modeling of abstractions for concurrency and distribution,
and modeling of reflective capabilities to support evolution of long-lived distributed systems.

20

The TAO computation model

António Porto

Departamento de Informática
Universidade Nova de Lisboa

2825 Monte da Caparica
Portugal

ap@@fct.unl.pt

Abstract

We present the TAO computation model, which aims at providing an abstract view of
computation, of general applicability, directly supporting high-level abstractions, and based
on a set of orthogonal primitive computational ingredients.

The state of an agent is considered to consist of three components: the task, representing
actions to be performed, the database, representing contingent truths, and the rules, defin-
ing procedural abstractions. The task specifies a composition (parallel, sequential, choice,
synchronous) of elementary actions (queries and commands) or named tasks. These are de-
composed into tasks using the rules, in a recursive manner, eventually getting to elementary
actions. The operational semantics defines a computational step as a synchronous (atomic)
execution of a query and a command. Queries may only be executed when certain truths
are entailed by the database, whereas commands always execute and as an effect may (non-
monotonically) change the database. Commands are assumed to have a deterministic nature,
and we abstractly characterize the restrictions needed for this. This basic model allows for co-
ordination among concurrent tasks through queries and updates on their shared database. We
further consider scoped variables in tasks and substitutions, for direct communication among
tasks. Finally we introduce systems of named agents with separate rules and databases, with
dynamic agent creation and task delegation among agents.

21

Typechecking record concatenation using constrained types

Didier Rémy

INRIA-Rocquencourt
B.P. 105, F-78153 Le Chesnay Cedex

Didier.Remy@inria.fr

Abstract

We use the framework of contrained types to proposed a type system for record concate-
nation with type inference. The main application is multiple inheritance in object-oriented
languages. Another interest is to show the flexibility of type inference with constrained types.

The talk is composed of three parts. We first review type inference with contrained types.
In a second part we consider record concatenation, which raises two problems: the need for
exact information about the presence of fields is solved by enriching the structure of types
and refining the subtype relation; the encoding of the intersection type of concatenation into
contrained types is solved by the addition of a new kind of constraints. In a third part, we
compare two different approaches to record types, subtyping vs. row variables, and we show
that both mechanisms are orthogonal and can be added together to provide a richer type
system.

22

The Oz Programming Model

Gert Smolka

Programming Systems Lab
German Research Center for Artificial Intelligence (DFKI)

Stuhlsatzenhausweg 3
66123 Saarbrücken, Germany

smolka@dfki.uni-sb.de
http://ps-www.dfki.uni-sb.de:80/∼smolka/

Abstract

The Oz Programming Model (OPM) is a concurrent programming model that subsumes
functional and object-oriented programming as facets of a general model. This is partic-
ularly interesting for concurrent object-oriented programming, for which no comprehensive
and formal model existed until now. There is a conservative extension of OPM providing
the problem-solving capabilities of constraint logic programming. OPM has been developed
together with a concomitant programming language Oz designed for applications that re-
quire complex symbolic representations, organization into multiple agents, and soft real-time
control. An efficient, robust, and interactive implementation of Oz is freely available.

23

Reasoning about Programs

Carolyn Talcott

Stanford University
clt@sail.stanford.edu

Abstract

This talk gives a rather personal perspective in which I will consider reasoning about
programs exhibiting a spectrum of paradigms/facilities. I will begin with a brief summary of
early work in which methods were developed to reason about programs that could be modelled
as first order functions, or as state transformers. Then I will trace a lambda thread, follow-
ing the view of Landin that programming languages are lambda expressions plus operators
providing desired computational facilities (lambda – the ultimate integrating mechanism). I
will focus on three rather different choices of primitives:

functional – lambda-fun = lambda + if + numbers and pairs
mutable data – lambda-mk = lambda-fun + cell creation, access, update
concurrent – lambda-act = lambda-fun + actor primitives
For each situation, questions to consider are:
What are we reasoning about? What is the mental or semantic model? What sorts of

assertions are being made?
What are some methods/reasoning principles?
As one adds facilities to the language what breaks? what persists? what tools continue

to work? what new ones have been developed?
I will take an operational approach to reasoning about programs, beginning with a study

of operational equivalence. Program calculi provide a particularly robust means of proving
equations, as the proofs remain valid when new facilities are added. In particular, the laws of
the computational lambda calculus form a kernel theory that is valid in all the cases consid-
ered. One might take this as a criteria for an acceptable integration of primitives. However,
program calculi are generally too weak to serve as the only tool for proving observational
equivalence. We discuss some general approaches to proving equivalence and how they are
modified in the different settings. In the case of lambda-act we also consider equivalence
based on interaction semantics, which appears to be amenable to modular reasoning about
components and their combinations.

Going beyond equational reasoning we discuss a framework for specifying and reason-
ing about programs based on properties viewed as collections of values (which include clo-
sures/procedures) defined by formulae.

24

Agent Programming Needs Integration of Multiple Paradigms or How to

program the worlds largest computer

Bent Thomsen
(Joint work with: Lone Leth, Frederick Knabe and Pierre-Yves Chevalier)

ECRC
Bent.Thomsen@ecrc.de

Abstract

As the Internet swells today past 30 million users and commercial networks such as Com-
puServe and America OnLine gain in popularity, a broad range of information and services is
becoming available on the emerging global information infrastructure (GII). In this extremely
diverse and rapidly changing environment, flexibility and adaptability are key characteristics
that the new distributed systems for accessing and providing services must have. An emerg-
ing technology, “mobile agents”, offers significant potential in providing these capabilities to
developers of the GII.

In this talk we give a short introduction to mobile agents, discuss their potential and
describe a proof-of-concept prototype implementation done at ECRC. We then discuss the
role of integrated multiple paradigm programming in the construction of systems based on
mobile agents, in particular we discuss the use of the Facile multi-paradigm programming
language.

Facile’s basis on formal process models for mobility (e.g., the π-calculus and CHOCS) and
on functional programming languages has allowed it to inherit features and a basic approach
that provide an edge in developing a significant class of mobile applications.

25

Foundations of Interactive Computing

Peter Wegner

Brown University
pw@cs.brown.edu

Abstract

Computing paradigms are evolving from a focus on algorithms in the 1960s and 1970s to a
focus on interaction in the 1990s. Interaction machines, defined by extending Turing machines
with input and output actions, are shown to be more expressive than algorithms in capturing
the behavior of objects, software systems, and intelligent agents. We develop fundamental
concepts and models of interactive computing, show the direct relevance of these models to
software technology and artificial intelligence, and show that interaction machines provide a
precise framework for empirical computer science. Interaction is shown to be nonalgorithmic
even in the absence of concurrency and distribution, while noninteractive concurrency and
distribution are shown to be algorithmic. Interaction machines cannot compute more powerful
(noncomputable) functions, but express ”comptable nonfunctions” that handle nonfunctional
properties like time.

Interaction machines cannot be specified by sound and complete logics: they are incom-
plete in the sense shown by Godel for the integers (the set of all true statements is not
formally specifiable). Church’s thesis that the intuitive notion of computing corresponds to
formal computing by Turing machines is seen to be invalid or at least inapplicable, since
interaction machines determine a very natural notion of computing more powerful than Tur-
ing machines. The Chomsky hierarchy of machines is extended beyond Turing machines to
synchronous and asynchronous interaction machines, but mathematical characterization of
machine behavior by sets or formal grammars cannot be similarly extended, showing that
machines can specify more powerful forms of behavior than mathematical notations.

Since interaction machines cannot be completely specified by a formal system, they are
specified by partial interface specifications that determine desired modes of use but not all
possible behaviors. Practical software design techniques such as the object modeling technique
OMT, use-case analysis, and Microsoft’s Componet Object Model COM are seen to be natural
instances of fundamental interactive models rather than ad-hoc kludges that will later be
replaced by tidy algorithmic formal models. Multiple interfaces are shown to be a more
flexible framework than object-oriented inheritance as a model for interactive systems of
software components. The paradigm shift in artificial intelligence away from models based
on logic and search towards agent-oriented models is likewise seen to be consistent with
fundamental principles of interactive modeling. The Turing test is reinterpreted to include
interaction machines with multiple interfaces and we conclude that interaction machines can
plausibly be said to think, since they not only have richer behavior than Turing machines
but also invalidate Searle’s intensional and Penrose’s extensional arguments that machines
cannot think.

26

References

[1] R. Amadio and M. Dam. Reasoning about higher-order processes. In Proc. CAAP 95,
Aarhus, 1995.

[2] S. Antoy, R. Echahed, and M. Hanus. A needed narrowing strategy. In Proc. 21st ACM

Symposium on Principles of Programming Languages, pages 268–279, Portland, 1994.
Available at http://www.sics.se/

[3] M. Hanus. Combining lazy narrowing and simplification. In Proc. of the 6th International

Symposium on Programming Language Implementation and Logic Programming, pages
370–384. Springer LNCS 844, 1994.

27

