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Preamble

The field of algorithmic complexity of real computational problems has seen
strong developments in recent years. This topic with geometrical, algebraic,
analytic, and numerical aspects encompasses the foundational area of scientific
computing and has a wide range of relevant applications.

This new specific conference intends to join the various directions, to streng-
then their unity, and to promote exchange of new ideas. It will take place on a
regular and periodic basis, most likely every second year.

Beside participants from the former East and West of Germany participants
came from Argentina, Belgium, Brazil, France, Italy, The Netherlands, Poland,
Spain, Switzerland, and the United States. Scientists from both, Mathematics
and Computer Science, contributed to the success of the seminar. We thank them
all for their contribution.

Felipe Cucker, Thomas Lickteig, Mike Shub
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Abstracts

On the Complexity of Real Equation Solving
by Bernd Bank, Humboldt–Universität zu Berlin

The first part of the speech deals with the particular case of integer points
in a semi-algebraic set described by quasi-convex polynomial inequalities in the
n–dimensional real space. The simply exponential bounds are “optimal” with
respect to the dense codification of the polynomials.

Without changing the data structure there is no hope to improve the com-
plexity. In a second part it is discussed, what can be expected if the method re-
cently developed by GIUSTI/ HEINTZ/ MORAIS/ MORGENSTERN/
PARDO is transferred to the real case. This method finds the isolated points
in a zero–dimensional affine variety. Its main features are the use of straight line
programs as data structure and the polynomial sequential time measured in both,
the length of the input description and an appropriate affine “geometric” degree
of the equation system.

The main result with respect to the real case is the following: the transferred
method finds a representative point with algebraic coordinates of each connected
component of a given smooth and compact real hypersurface. A suitably defined
“real degree” of some polar variety corresponding to the input equation describing
the hypersurface in question replaces the affine geometric degree of the equation
system.

On Bounding the Betti Numbers of Semi-Algebraic Sets
by Saugata Basu, Courant Institute, New York University

In this talk we give a new bound on the sum of the Betti numbers of semi-
algebraic sets. This extends a well-known bound due to Oleinik and Petrovsky,
Thom and Milnor. In separate papers they proved that the sum of the Betti
numbers of a semi-algebraic set S ⊂ Rk, defined by P1 ≥ 0, . . . , Ps ≥ 0, deg(Pi) ≤
d, 1 ≤ i ≤ s, is bounded by (O(sd))k. Given a semi-algebraic set S ⊂ Rk defined
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as the intersection of a real variety, Q = 0, deg(Q) ≤ d, whose real dimension
is k′, with a set defined by a quantifier-free Boolean formula with atoms of the
form, Pi = 0, Pi > 0, Pi < 0, deg(Pi) ≤ d, 1 ≤ i ≤ s, we prove that the sum
of the Betti numbers of S is bounded by sk′

(O(d))k. In the special case, when
S is defined by Q = 0, P1 > 0, . . . , Ps > 0, we get a slightly tighter bound of
(

s

k′

)

(O(d))k. This result generalises the Oleinik-Petrovsky-Thom-Milnor bound

in two directions. Firstly, our bound applies to arbitrary semi-algebraic sets,
not just for basic semi-algebraic sets. Secondly, the combinatorial part (the part
depending on s) in our bound, depends on the dimension of the variety rather
than that of the ambient space. It also generalizes a result of Basu-Pollack-Roy
where a similar bound is proven for the number of connected components.

On Lower Bounds for the Complexity of Polynomials with Algebraic
Coefficients
by Walter Baur, Universität Konstanz

We present a very simple method to prove lower bounds for the non-scalar
complexity of polynomials having algebraic coefficients. Examples: Let pi be the
i-th prime number. Then

∑n
i=1

√
piT

i and
∏n

i=1(T −√
pi) both have complexity

≥ const.
√

n/ log n (Heintz-Sieveking, Heintz-Morgenstern resp.).

Deciding and Describing Positivity of Real Polynomials
by Eberhard Becker, Universität Dortmund

Let f, g1, . . . , gr ∈ R[X1, . . . , Xn]. The following two problems are discussed:

1) decide whether f ≥ 0 (resp. f > 0) on Rn,

2) if f ≥ 0 (resp. f > 0) on S̄ = S(g1, . . . , gr) = {x ∈ Rn| all gi ≥ 0}, describe
f in terms of g1, . . . , gr.

Ad 1) The basic idea is to associate to f a zero-dimensional system Sg such
that f takes on a negative value iff Sg has a real root. Two examples of such a
system are presented. In each case the system describes the set of critical points
of a suitable function.

Ad 2) Let T be the quadratic semiring in R[X1, . . . , Xn] generated by g1, . . . , gr.
According to Stengle (≈ 1976) f can be written as a rational function t1/t2 where
ti ∈ T . We discuss results of Polya, Habicht and Schmüdgen (1991, Math. An-
nalen) about possible denominators t2. It is outlined that the Kadison-Dubois
representation theorem (e.g. Becker-Schwartz, Arch. Math. 1983) provides a
uniform way to prove all these results and some others. In addition, from the
information about the possible t2 one can deduce a test to check positivity.
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Hybrid and Dynamical Systems Complexity
by Olivier Bournez, LIP, École Normale Supérieure de Lyon

We explore the simulation and computational complexity of dynamical sys-
tems. We introduce a new discrete model of computation: the analog automaton
model. We characterize its computational power as precisely P/poly in polyno-
mial time, and every discrete language in exponential time. So we show that this
model is strictly more powerful than Turing machines.

In a first part, we characterize the computational power of discrete dynamical
systems with an injective piecewise linear transition function f : Rd → Rd as
precisely the computational power of analog automata in polynomial time and in
exponential time for d > 1.

In a second part, we define some notions of simulation of a discrete dynamical
system by a continuous dynamical system. We prove that with some reasonable
hypotheses, it is not possible to simulate Turing machines or analog two stack
automata with continuous dynamical system over Rd, for d ≤ 2. We show that, it
is actually possible to simulate analog automata with continuous dynamical sys-
tems in dimension 3, using mirror systems, piecewise constant derivative systems,
Lipschitz differential equations over a bounded space or linear hybrid systems.
Thus, we get that these systems do have super-Turing capabilities. We charac-
terize the computational power of linear hybrid systems and piecewise constant
derivative systems as precisely the computational power of analog automata in
polynomial and in exponential time. (Joint work with M. Cosnard.)

Two Iterative Methods for Numerical Polynomial Solving
by Jean-Paul Cardinal, Universidad de Cantabria

We present in this talk two iterative methods for numerical solving of uni-
variate complex polynomials. Both are based on basic rational operations in the
quotient algebra of the polynomial. The cost of one iteration in these two meth-
ods is quasi-linear in the degree thanks to Fast Fourier Transform and Toeplitz
like techniques. The number of iterations needed for the method to converge is
intimately related to the geometry of the roots and turns out to be quite small
and regular in practice. The first method finds roots one by one while the second
one recursively splits the polynomial into factors of smaller degrees. Tests and
examples are shown to illustrate these methods.

Nonlinear Complexity Lower Bounds for Randomized Algebraic Deci-
sion Trees
by Dima Grigoriev, Pennsylvania State University

Lower Bounds on the depth of randomized algebraic trees are obtained for the
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languages being either the unions of hypersurfaces or polyhedra. As applications
we get Ω(n2) lower complexity bound for knapsack problem and Ω(n log n) for
element distinctness problem. (Joint work with M. Karpinski, F. Meyer auf der
Heide, and R. Smolenski.)

Estimating Stratfications in Parametric Optimization
by Harald Günzel, RWTH Aachen

Using the example of multi-objective optimization the possible use of strati-
fications in optimization theory (and practise) is illustrated. Then, the existence
of a stratification of the so-called Karush-Kuhn-Tucker set is shown. Finally,
with the help of a combinatorial code, the finiteness of the latter stratification is
estimated. The fact that this estimation does not solve the stratification problem
entirely has to do with Mnëv’s universality theorem.

The Elimination Theory of Dr. Jekyll and Mr. Heintz
by Joos Heintz, Universidad de Buenos Aires & Universidad de Cantabria

Behind the cultivated personality of Dr. Jekyll (Oxford University) the dirty
face of Mr. Heintz is showing up. This announces bad news: terrific polynomials
are threatening the patient and continuous work of POSSO programmers all over
Europe, mothers hide their children, children are crying ....

The community is waiting for the hero arriving from the galaxy of the sparse
cosmos who will put again things in order, reestablishing the law of software (as
AXIOM, MAPLE, MATHEMATICA), hunting down Mr. Heintz and sending
him back to place he is coming from: the Sing-Singular locus.

Analytic Machines
by Günter Hotz, Universität des Saarlandes, Saarbrücken

The extension of the R-machines of BSS for R = Q by a special register
δ enables these machines to read real input tapes with a precision δ as rational
numbers. Q-analytic computations restart the Q-machines with a higher precision
when they reach the halting state. Infinite computations of this type are accepted
iff the output tape produces a convergent sequence. Functions which can be
computed by this device are called Q-analytic. Extensions of the R-machines M
by operations e1, . . . , en are called M(e1, . . . , en) machines. The following results
are proved in Hotz, Schieffer, and Vierke, Analytic Machines, El. Coll. Comp.
Compl., ECCC TR95-025 (WWW: http://www.eccc.uni-trier.de./eccc).

Each program p for an R-machine can be transformed into a program p̄ for a
Q-analytic machine such that both machines compute the same function.
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If e1, . . . , en are strong Q-analytic (computable in the sense of Grzegorczyk),
then each M(e1, . . . , en) computable function is Q-analytic. There are examples
of functions which are Q-analytic but not M(e1, . . . , en) computable for ei strong
Q-analytic and bijective. This has been proved by applying that the Hausdorff
dimension of sets can not be enlarged by such computations.

The halting problem of Q-analytic machines is the convergence problem of
these infinite computations. By standard methods it can be shown that the halt-
ing problem of Q-analytic machines can not be decided by Q-analytic functions.
This throws new light on the stability problem of dynamic systems.

VC-Dimension of Pfaffian Networks and the Applications
by Marek Karpinski, Universität Bonn

We introduce a new method for proving explicit upper bounds on the VC-
dimension of the Pfaffian networks, and more generally, Boolean combinations
of general Pfaffian formulas (the case where the o-minimality is not yet even
established!). In 1993 the finiteness of VC-dimension for sigmoidal networks has
been established for the first time using a deep result in model theory. The
explicit bounds on the VC-dimension remained an open problem. In this work
we answer to this open problem. We given a quadratic bound in the number of
parameters of Pfaffian networks, and formulas, solving also the problem of their
sampling complexity. We present also a number of applications of our method.
(Joint work with A. MacIntyre, Oxford.)

Partial Fraction Decomposition in C (z) and Simultaneous Newton It-
eration for Factorization in C [z]
by Peter Kirrinnis, Universität Bonn

This talk presents fast numerical algorithms for factoring univariate complex
polynomials and for computing partial fraction decompositions (PFDs) of rational
functions in C (z). Numerically stable and computationally feasible versions of
PFD are specified both for rational functions with all singularities in the unit
disk and for rational functions with arbitrarily distributed singularities.

Two major algorithms for computing PFDs are presented. The first one is a
Newton type algorithm for simultaneously improving the accuracy of all factors
in an approximate factorization of a polynomial resp. all partial fractions of an
approximate PFD of a rational function. This method includes fast numerical
algorithms for the following subproblems: the multiplication of a sequence of
polynomials, the addition of a sequence of rational functions, and the computa-
tion of modular representations. Algorithmically useful starting value conditions
for the Newton algorithm are provided.

The other algorithm is an extension of Schönhage’s splitting circle method
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for factoring polynomials in C [z] to an algorithm for numerical PFD. Using
this method for computing starting values for the above Newton iteration yields
favourable time bounds (measured in bit operations) for PFD, polynomial fac-
toring, and root calculation. In particular, the time bounds for computing high
accuracy PFDs and high accuracy factorizations are linear in the output size (and
hence optimal) up to logarithmic factors.

Approximating the Volume of Definable Sets
by Pascal Koiran, LIP, École Normale Supérieure de Lyon

The first part of this paper deals with finite-precision arithmetic. We give an
upper bound on the precision that should be used in a Monte-Carlo integration
method. Such bounds have been known only for convex sets; our bound applies
to almost any “reasonable” set.

In the second part of the paper, we show how to construct in polynomial time
first-order formulas that approximately define the volume of definable sets. This
result is based on a VC dimension hypothesis, and is inspired from the well-known
complexity-theoretic result “BPP ⊆ Σ2”.

Finally, we show how these results can be applied to sets defined by systems of
inequalities involving polynomial or exponential functions. In particular, section 5
contains an application to a problem of structural complexity in the Blum-Shub-
Smale model of computation over the reals.

Solving Polynomial Systems
by Tien-Yien Li, Michigan State University

Numerically solving isolated zeros of polynomial systems in affine space has
become increasingly important in applications. Many engineering models, such
as power flow problem with PQ-specified buses, the most general six degree of
freedom manipulators, and various eigenvalue problems, can be formulated as
polynomial systems.

Elimination theory is the classical approach to solving systems of polynomial
equations, but its reliance on symbolic manipulation makes it seem unsuitable
for all but small problems. Moreover, the method reduces the problem to the
ill-conditioned problem of numerically solving a high-degree polynomial equation
in one variable.

In this talk, a new approach, developed in the last decade, by using the ho-
motopy continuation method will be surveyed. The method involves first solving
a trivial system, and then deforming these solutions along smooth paths to the
solutions of the target system. The method has been successfully implemented
in solving many polynomial systems, and the amount of computation required to
find all solutions can be made roughly proportional to the number of solutions.

9



Semi-Algebraic Complexity – Additive Complexity of Diagonalization
of Quadratic Forms
by Thomas Lickteig, Universität Bonn

We study matrix calculation such as diagonalization of quadratic forms under
the aspect of additive complexity and relate these complexites to the complexity
of matrix multiplication. For the upper bound we give an uniform BSS algorithm,
the asymptotic exponent ωBSS(DIAG) of which coincides with the non-uniform
asymptotic exponent ω of matrix multiplication.

Since matrix multiplication allows an asymptotic uniformization we can use
non-uniform methods for the lower bound reduction. While in [Bürgisser-Kar-
pinski-Lickteig 91] for multiplicative complexity the customary “thick path ex-
istence” argument was sufficient, here for additive complexity we need the more
delicate finess of the real spectrum (cf. [Bochnak-Coste-Roy 87], [Becker 86],
[Knebusch-Scheiderer 89]) to obtain a complexity relativization. Our discussions
substantiate once more the signification and future rôle of this concept in the
mathematical evolution of the field of real algebraic algorithmic complexity.

A further technical tool concerning additive complexity is the structural trans-
port metamorphosis from [Lickteig 90] which constitutes another use of exponen-
tiation and logarithm as it appears in the work on additive complexity by [Grig-
oriev 82] and [Risler 85] through the use of [Khovanski 80]. (Joint work with K.
Meer.)

On the Cost of Splitting Polynomials
by Gregorio Malajovich, Instituto de Matematica da UFRJ, Rio de Janeiro

The complexity of solving a degree d polynomial equation up to b bits of pre-
cision was bounded by Pan to O(d1+ǫ) arithmetic operations os O(((b + d)d2)1+ǫ)
Boolean operations. The algorithm involved requires a very high precision ((((b+
d)d)1+ǫ) bits). Our objective is to develop fast algorithms using a moderate pre-
cision (at least, in most cases). The problem of splitting polynomials seems to
be one important bottleneck.

Given a polynomial f with d1 zeros inside the disk D(R−1) = {ζ : |ζ| < R−1}
and d2 zeros outside the the disk D(R), we want to find factors g and h, f = gh,
such that g has all its d1 zeros inside D(R−1), and h has all its d2 zeros outside
D(R).

The factorization of f may be reduced to solving the system ϕf (g, h) = f −
gh = 0 of d+1 polynomials in d+1 unknowns (it is understood that g is monic).
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In vector notation, the system can be written as:

ϕf (g, h) =

















g0h0 − f0

g1h0 + g0h1 − f1
...
hd−1 + gd−1hd − fd−1

hd − fd

















The system ϕf (g, h) may be solved by Newton iteration. We construct a Newton

operator and a starting point with the following property: If

∑

i6=d1

|fi|2

|fd1
|

is small

enough, then the iteration will converge quadratically.
The above property is related to the separation annulus, and is implied by

large enough R (still depending on d). It remains to investigate some issues
related to the numerical stability of the algorithm. (Joint work with J. P. Zubelli.)

On the Structure of NPC

by Klaus Meer, RWTH Aachen

We deal with complexity classes PC and NPC as they were defined over the
complex numbers by Blum, Shub, and Smale. Under the assumption PC 6=
NPC the existence of non-complete problems in NP C , not belonging to PC , is
established. (Joint work with G. Malajovich.)

Real Number Oracle Machines and Topological Complexity of Zero
Finding
by Erich Novak, Universität Erlangen

The talk is based on ongoing discussion with Steve Smale and Henryk Woźnia-
kowski.

The results concerning the topological ǫ-complexity of zero finding depend on
a) the class F of functions;
b) the class of arithmetic operations;
c) the error criterion (root error or residual error).
1) If we allow only operations that are Lipschitz, i.e., no division, then bi-

section is optimal even for the class F of linear functions f(x) = ax + b, where
f(0) < 0 and f(1) > 0.

2) If we allow the sign function or division together with log and exp, then
no branching is necessary for the class of increasing functions.

Both results are for the root criterion, but we also discuss examples for the
residual error where branching is (or is not) necessary.
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Polynomial and Matrix Computations
by Victor Pan, Lehman College, City University of New York

One of the major topics of our recent book [B-P] was the study of compu-
tations with Toeplitz and other dense structured matrices considered as a link
between computations with polynomials and with general matrices. This study
has lead us to improving computations in both of the latter areas and to nar-
rowing the gap historically arisen between them. In the talk we recall some
examples of correlations between Toeplitz matrices and general matrices and be-
tween Toeplitz matrices and polynomials, which enabled us to improve parallel
algorithms for some fundamental computations in all 3 areas. For some major
computations with n × n Toeplitz and Toeplitz-like matrices A (rank, inverse,
linear system solving), we have obtained the parallel complexity bounds

a) of O(log2 n) time and O(n2/ log n) arithmetic processors over any field of
characteristic zero or greater than n (recalled from [B-P]),

b) of O(log3 n) and O(n2/ log2 n), respectively, over any field [P1], and

c) of O((log n) log(n log ‖A‖)) and O(n log n), respectively, over the integers
[B-P], [P2].

The two latter results, of b) and c), over any field and integers, are randomized,
and our computations over the integers (part c)) only involve O(n log ‖A‖)-bit
precision.

[B-P] D. Bini, V. Y. Pan, Polynomial and Matrix Computations, vol. 1, Birkhäu-
ser, Boston, 1994.
[P1] V. Y. Pan, Parallel Computations of Polynomial GCD and Related Compu-
tations, Proc. Seventh Ann. ACM-SIAM Symp. on Discrete Algorithms, January
1996.
[P2] V. Y. Pan, Effective Parallel Computations with Toeplitz and Toeplitz-like
Matrices Filled with Integers, preprint.

Lower Bounds for Diophantine Approximation
by Luis Miguel Pardo, Universidad de Cantabria & École Polytechnique,
Palaiseau

In this talk we introduce some intrinsic upper complexity bounds concerning
elimination problems. We show that the Turing machine complexity for solving
(within the context of algebraic geometry) is polynomial in terms of the degree
of the input polynomials, the number of variables, the syntactical length of the
input, the (affine) degree and the (affine) height of the intermediate varieties.
The same intrinsic bounds hold true for the decision problem in the Nullstel-
lensatz. These upper complexity bounds imply the existence of algorithms that
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profit from the good conditions of the input system, being of current complexity
dO(n) for bad conditioned ones. Moreover, these upper complexity bounds yield
meaningful lower bounds for the numerical analysis approach to solving systems
of multivariate polynomial equations. This is obtained using intrinsic Liouvillian
estimates. The consequences say that floating point encoding and binary encod-
ing of rational and Gaussian numbers, are not well suited for numerical solving.
In particular, the time becomes exponential or the approximation is far away
from the true solution. Hence, the Liovillian estimates yield lower bounds for
the length of any ”approximate zero” (in the sense of Shub-Smale) in terms of
the condition number γ of the system. (Joint work with M. Giusti, K. Hägele, J.
Heintz, J. L. Montaña, J. E. Morais.)

An Enumerative Theorem in Real Algebraic Geometry with an Appli-
cation to Discrete Geometry
by Richard Pollack, Courant Institute, New York University

First we discuss the following enumerative theorem of real algebraic geometry
which represents joint work with S. Basu and M.-F. Roy.

Let R be a real closed field and V a variety of real dimension k′ which is the
zero set of a polynomial Q ∈ R[X1, . . . , Xk] of degree at most d. Given a family
of s polynomials P = {P1, . . . , Ps} ⊂ R[X1, . . . , Xk] where each polynomial in
P has degree at most d, we prove that the number of cells defined by P over

V is
(

s

k′

)

(O(d))k. Note that the combinatorial part of the bound depends on the

dimension of the variety rather than on the dimension of the ambient space.
This bound, in the case where the variety V is the Grassmannian Gk,d, of k

dimensional subspaces of Rd, plays an essential role to obtain the following bound
in geometric transversal theory which was obtained jointly with J. E. Goodman
and R. Wenger.

A suitably separated family of n compact convex sets in Rd can be met by
k-flat transversals in at most

O(k)d2

((

2k+1 − 2

k

)(

n

k + 1

))k(d−k)

or, for fixed k and d, O(nk(k+1)(d−k)) different order types. This is the first non-
trivial bound for 1 < k < d− 1, and generalizes (asymptotically) the best known
bounds for line transversals in Rd, d > 2.

Average Case Complexity of Counting Problems
by Michel de Rougemont, Université Paris-Sud

We study Valiant’s Graph Reliability problem for the average case complexity.

13



Let a Gaussian-distance distribution µ be defined such that if Dn = {1, . . . , n} is

the set of nodes, the probablility that an edge (i, j) exists is e−(j−i)2 .
We show that the Graph Reliability problem (a #P -hard problem) is Average-

P for the Gaussian-distance distribution µ. (Joint work with D. Bourago.)

Small Inequalities and Positivstellensatz
by Marie-Françoise Roy, IRMAR, Université de Rennes I

We define two notions of equivalence between basic semi-algebraic sets:

• quadratic equivalence, when their ring of quadratic functions are isomor-
phic,

• logical equivalence, when their defining set of small inequalities can simul-
taneously be extended, using a set of small deduction rules, to a common
set of small inequalities,

and prove that these two notions coincide. Equivalent basic semi-algebraic sets
have same dimension and same number of connected components. (Joint work
with H. Lombardi and N. Mnëv.)

Aspects of Complexity of Algebraic Geometry over Non-Algebraically
Closed Fields
by Tomas Sander, Universität Dortmund

A class K of fields K of characteristic 0 is introduced for which bounds of
usually double exponential nature can be proved for properties of the K-rational
points VK of a K-variety V . Model theoretic properties of this class are investi-
gated. This class contains e.g. C , R, Qp, PAC-fields, and Henselian fields. If for
fields in K systems of algebraic equations can be solved effectively it is possible
to compute algebraic-geometric data of VK effectively.

Soft Branching versus if-then-else
by Arnold Schönhage, Universität Bonn

Starting from the observation that strict branching by comparison of real
numbers is unrealistic (impossible for oracle inputs, extremely difficult for inputs
defined by programs) or possibly of very high complexity even for discrete applica-
tion data, we present the notion of soft branching as a (possibly nondeterministic)
selection from several alternatives with some overlap:

do branch B1 with assertion A1 or do B2 with A2,
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where A1 and A2 are predicate formulae not necessarily excluding each other.
Three examples illustrate this concept, among them the intersection of two annuli
(soft circles, so to say) and the use of quasi-gcds, cf. J. of Complexity 1, 118–137
(1985).

Complexity – Algebraic Perspective
by Steve Smale, City University of Hong Kong

Hilbert’s Nullstellensatz was considered as a decision problem, first over the
complex numbers, then over a general field. Via a model of machines (joint
with L. Blum and M. Shub), the intractibilty of the Hilbert decision problem
is equivalent to the conjecture P is not NP , over that field. This subject was
developed.

Kolmogorov Complexity and Real Computation
by Paul Vitany, CWI - Mathematisch Centrum, Universiteit van Amsterdam

The Kolmogorov complexity of a finite binary string is the length of the
shortest effective binary program which computes it – that is, the length of the
shortest binary description. This definition is objective and absolute, in the
sense of being recursively invariant. In the appropriate way it can be extended
to infinite binary sequences, and in that sense to arbitrary reals. Hence it makes
sense to talk about recursive reals, r. e. reals, pararecursive reals, random reals,
and so on. With respect to real computations, where the description of the real
constants involved should be expressed in effective terms, or relative to non-
effective descriptions, the known theory of effective descriptions with or without
computational resources in terms of e. g. time and space, that is Kolmogorov
complexity theory, can (and presumably should) be profitably applied. For details
on the theory see the textbook M. Li and P. Vitany, An Introduction to
Kolmogorov Complexity and its Applications, Springer-Verlag, New York, 1993.

Applying Quantifier Elimination to Problems in Simulation and Opti-
mization
by Volker Weispfenning, Universität Passau

I present a new elimination method that eliminates linear (and quadratic) vari-
ables from a Boolean combination of polynomial equations and inequalities with
parameters. In contrast to the (doubly exponential) classical Fourier-Motzkin
method, the method is singly exponential in the worst case; moreover it works
in polynomial space for parameter-free problems. The method has been im-
plemented in REDUCE and tested successfully in benchmark LP-problems and
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industrial simulation of complex networks with more than 50 variables.

On Information and Arithmetic Complexities
by Henryk Woźniakowski, Columbia University & Uniwersytet Warszawski

The talk is based on the paper There exists a linear problem with infinite
combinatory complexity by G. W. Wasilkowski and the author. We present
a linear problem whose information complexity is finite but whose arithmetic
(combinatory) complexity is infinite. This holds in a real number model (BSS)
with oracles given by arbitrary linear functionals.

Reported by Thomas Lickteig
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