Dagstuhl — Seminar
on
Computeralgebra — Software

February 05 - 09, 1996

Organizers:

Johannes Buchmann (Saarbriicken)
Riidiger Loos (Tiibingen)
Roman Mader (Ziirich)

Overview

The main focus of this seminar was to bring together experts on computer
algebra systems and to discuss various aspects of computer algebra software.
The seminar covered the design of systems for differential equations, algebraic
number theory, elliptic curves, term rewriting, algebraic geometry, invariant
theory, representation theory, and symmetric groups. Furthermore, tech-
niques for special problems in computer algebra like parallelization, building
interfaces, garbage collection, memory management, and interoperability be-
tween systems were discussed.

The thirty eight participants came from seven countries. In addition to the
official program, there was time for free discussions and informal meetings
between participants. After the talks, the developers presented their sys-
tems and practical problems could be discussed. The nice atmosphere of the
Dagstuhl Institute made this seminar a very enjoyable experience.

The organizers would like to thank everyone who contributed to the suc-
cess of this seminar.

ABSTRACTS

I A strongly-typed embeddable
computer algebra library

Manuel Bronstein

We describe the new computer algebra library ! and its underlying
design. The development of X! is motivated by the need to provide highly
efficient implementations of key algorithms for linear ordinary differential and
(q)-difference equations to scientific programmers and to computer algebra
system users, regardless of the programming language or interactive system
they use. As such, X! is not a computer algebra system per se, but a library
(or substrate) which is designed to be “plugged” with minimal efforts into
different types of client applications. The design characteristics of 2T are:

o It is written completely in the A# programming language, and has
been designed from the ground up to take full advantage of the vari-
ous A¥ features: OO-category hierarchy, abstract data types, generic
algorithms, etc. ..

e [t is tuned for the manipulation of univariate skew-polynomials, rather
than for the mathematical structures of commutative algebra. As a re-
sult, it provides efficient sub-algorithms for differential equations (cur-
rently symmetric powers and rational kernels).

e In addition to an axiom-like strongly-typed library of algorithms, ¥1* pro-
vides an object-oriented expression tree type where the operators are
themselves data types. Through various functions exported by the
operators and through an included parser, this type is used for bi-
directional communication with the “outside world” (TEX, C, axiom,

4

maple, etc...). A generic interpreter category permits the quick devel-
opment of “XIT —servers”, i.e. typeless read-eval loops which give access
to the various X' algorithms through process to process communica-
tion.

As a result, X' can be embedded into applications in two completely differ-
ent fashions: either linked as a strongly-typed library into programs written
in various compiled languages, thereby extending the type system by more
than a hundred computer algebra data types, or used as a separate process
with string-based interface from any interactive shell capable of reading and
writing files. We demonstrate the latter use with a very short Maple program
that computes LCLM-decompositions of completely reducible second order
linear differential operators through the use of X" functionalities during that
computation.

LiDIA — a C++ library for
computational number theory

Johannes Buchmann, Thomas Papanikolaou

In our research group we implement the best known algorithms for factor-
ing integers, factoring polynomials, discrete logarithms, linear algebra, lattice
basis reduction, elliptic curves, permutation groups, and algebraic number
fields. Furthermore, we make experiments with these algorithms and we try
to improve them.

Highly efficient research software often uses assembler, is poor docu-
mented, has no source code available, is not well structured, and contains
only little mathematical abstraction. Therefore, if algorithms should be im-
proved rewriting seems often easier than reusing available software.

To avoid this waste of human work, we develop a system for computa-
tional number theory and computer algebra, called LiDIA, which tries to
make the software written in our group

e verifiable

e reusable
e improvable

e extendable, also by others,

with a minimal loss of efficiency.

In this talk we report about this system LiDIA which consists of a very
efficient C++ library, a small machine dependent kernel, and a user interface,
called LC. The system is available from ftp@cryptl.cs.uni-sb.de.

Combining Term Rewriting and
Computer Algebra in ReDuX
Reinhard Biindgen

We argue that term rewriting systems can profit from computer algebra
systems and vice versa. Presenting the ReDuX term rewriting laboratory
we show which of its modules benefit from modules of the SAC-2 computer
algebra system. Then we describe in more detail how the reduction relation
defined by a complete term rewriting system can be speed-up using built-in
algebraic data types. We propose to use models of the rewrite specification
as built-in data types that are freely generated by an (infinite) set of free
generators. Such built-in data structures are called evaluation domains. A
mapping that interprets a term to an object of the evaluation domain and
then maps this object back to the normal form of the original term can then
alternatively be used to compute normal forms. Most of the canonical rewrite
specifications for algebraic varieties allow for evaluation domains that have a
natural (i.e. efficient) evaluation function. The way the evaluation function
works is independent of the intended model of the specification and it remains
useful even if only a subspecification of a complete specification allows for an
evaluation domain. In the latter case we speak of partial evaluation domains.
ReDuX has been extended to support partial evaluation domains such that

rewrite specifications can be parameterized by built-in data types. Experi-
ments with this extended version of ReDuX showed that partial evaluation
domains can account for speed-ups of more than 1000.

Programming with Algebraic

Structures and Morphisms:
The Magma Language

John Cannon

The design of a Computer Algebra language is of necessity based on
some particular view of mathematics. Analysis of systems such as Mac-
syma, Maple, Reduce and Mathematica show they are based on the idea
of performing transformations on symbolic expressions belonging to a sin-
gle fixed structure (usually some kind of differential ring). While this view
may be appropriate for problems such as integration and the solution of dif-
ferential equations, it is much less successful when used as the metaphor
for computation in branches of mathematics such as algebra, number the-
ory, geometry and combinatorics where the ideas of algebraic structure and
structurepreserving transformation (morphism) are of fundamental impor-
tance.

A new model for the design of Computer Algebra systems based on the no-
tions of algebraic structure (magma) and morphism has been devised. Mag-
mas are first classified in terms of the algebraic variety to which they belong.
The variety, of course, determines the operations and the axioms which these
operations satisfy. However, to create a particular magma, we have to specify
its (carrier) set and this is done through the notion of a category. For ex-
ample, matrix rings, polynomial rings and power series rings are examples of
(indexed) categories belonging to the variety of rings. Relationships between

magmas (e.g. A is a submagma of B, C is a quotient magma of D) are then
naturally represented in terms of morphisms.

Magma is a new software system for algebra, number theory and geome-
try which has been designed in accordance with these principles. The use of
the concept of a magma as the design basis provides a natural strong typing
mechanism. Further, structures and their morphisms appear in the language
as first class objects. Standard mathematical notions are used for the basic
data types. The result is a powerful, clean language which deals with ob-
jects in a mathematically rigorous manner. An example creating the Galois
correspondence between subfields and subgroups of a Galois extension of @
of degree 8 was presented as an illustration of the way in which magmas and
morphisms provide the basis for a natural and concise means of specifying
algebraic computations.

Parallel Long Integer Arithmetic

Giovanni Cesari

Multiple precision arithmetic forms the core of symbolic computation sys-
tems. A speedup of the basic algorithms can therefore improve all higher-level
algorithms. Several packages have been developed for sequential processors.
Although they were implemented carefully, they are still unsatisfactory for
large inputs. Performance can be improved by choosing algorithms with bet-
ter asymptotic behavior or by using other computing models such as parallel
machines.

We have developed a parallel implementation of multiple precision arith-
metic on distributed memory architecture. These algorithms will constitute
the core of a parallel Computer Algebra library. We have seen that for large
inputs parallel multiple precision arithmetic can offer very high performance
improvements. Our target machine is the distributed memory Paragon. We
have also studied how ”portable” programs can be written using MPI (mes-
sage passing interface) without sacrificing efficiency.

PARI / GP
Henri Cohen

PARI is a package designed for working very efficiently with mathemat-
ical types, especially those related to number theory, and contains a large
number of sophisticated functions dealing with numerical analysis, elemen-
tary number theory and algebraic number theory. It can be accessed either
as C / C++ library, or through an interpreter, called GP.

The inner kernel consists of a few hundred lines of assembly language
code (one kernel per processor of course). Then comes a multiprecision kernel
containing all operations on bigints and bigfloats.

In particular, the bigfloat implementation (which has been ported to other
systems such as MAGMA) is mathematically much more correct then other
such implementations found, e.g. in MMM.

Then a GEN (for generic) kernel contains programs for handling arith-
metic operations between mathematical types.

Finally a large number of library packages (linear algebra, numerical anal-
ysis and transcendental functions, elementary and advanced number theory,
plotting and input / output, ...) are available.

KANT — More than numbers

Mario Daberkow

The computer algebra system KASH for computational algebraic number
theory has taken advantage of several software packages, that have not been
developed by the KANT group, namely the C—kernel from the system Magma
containing a memory management and basic arithmetic, the user interface
from the computer algebra system GAP, the PVM-system for distributed
computing and the database system mSQL.

We discussed several aspects of reusing developed software by showing
the advantages and disadvantages of such a policy. For the system KANT
it has been proven to be very successful to use existing software and the

overall effort to build interfaces between KANT the used software has been
comparable moderate, e.g. to build the interfaces for the mentioned packages,
at most 15% of the total source code was needed. To write these interfaces
approximately 20% of the total programming time was necessary. Compared
to the effort that would have been necessary to develop these modules alone,
this is a rather moderate amount of source code and programming time.
Finally, other important arguments for using these modules, are the facts
that these libraries are already used for a long time and that they are still
under development.

Computer Algebra Systems as
Numeric Interfaces

J.H. Davenport

We describe work by Mike Dewar, Mike Richardson, Michael McGettrick,
Godfrey Nolan, lan Meikle, Bill Naylor, Brian Dupée and Simon Atkins. This
team has achieved the following.

e An interface (called IRENA) between Reduce and the Nag Fortran
Library — the library contained 700 routines, so full interfaces were
developed to about 100 of them. This involved a great deal of work in
developing uniform treatments of concepts like 'rectangles’, which do
not exist in Fortran, are natural to provide in a higher-level interface,
and do not have a uniform parameterization in the Nag library.

e An interface between Axiom and the Nag library, available in Axiom
2.0 and beyond. This builds on the lessons learnt from IRENA, in par-
ticular the communications technology (now using a separate process,
potentially on a remote machine) and the user interface (now a hyper-
text “fill in the boxes” interface of the same style as Axiom’s “basic
commands”).

10

e A higher-level interface to DO3PSF, a routine for solving hyperbolic
PDEs, with 39 parameters, six of which are subroutines with a to-
tal of 59 parameters, and one of which is an array of 30 interacting
options. Here we have developed both a generic interface (of the same
style as above) and an interface to a specific PDE, Burger’s equation
ou 10u? : : : ’ .

g — 22 = (), which also incorporates calls to Axiom’s graphical ca-

pabilities to display the result.

e An “expert system” ANNA, which takes a description of the mathe-
matical problem (using the same style of interface) and decides which
Nag routine would be most suitable for the problem, and then calls
it via the interface already developed. Alternatively, the system may
perform a symbolic transformation first. This system is intended for
non-experts and for use in teaching.

e A “browser” for large symbolic structures such as matrices. This is
designed to help with the situation where a symbolic system spits out
a large number of lines for a single result, so that the user cannot see
the wood for the trees.

REDLOG
Computer Algebra Meets Computer

Logic
Parts I and 11

Andreas Dolzmann and Thomas Sturm

11

REDLOG is a package that extends the computer algebra system REDUCE
to a computer logic system, i.e., a system that provides algorithms for the
symbolic manipulation of first-order formulas over some temporarily fixed
language and theory. In contrast to general purpose theorem provers, the
methods applied know about the underlying algebraic theory and make use
of it. The focus is on simplification, parametric linear optimization, and
quantifier elimination. We exhibit the REDLOG design issues and implemen-
tation techniques.

Why are Algebra Systems So Slow ?
John Fitch

This talk addresses the issue of software performance of algebra systems.
For many years I have been concerned with creating such software, and have
noticed that even acknowledged fast systems are capable of being improved.
This is often the result of oversights by the designers or programmers, leading
to inappropriate structures or algorithms.

After a survey of past system the main subject of the talk is a low level
memory tracing tool which is provided in CSL, on which REDUCE is built,
and preliminary results are presented which make explicit the ways in which
memory is used when running a REDUCE application. This suggests a
number of ways in which we can improve the CSL design, and also that of
REDUCE itself.

The same mechanisms are also available in the related LISP system CCL.
on which a future release of AXIOM will be based; and so the same techniques
are expected to yield improvements in AXIOM as well.

The message is that performance engineering works.

SINGULAR

12

Gert-Martin Greuel, Hans Schonemann

The talk consisted of two parts: description of some of the principles and
features of Singular and a report on an implementation of MP / MPP, a
protocol to communicate polynomial structures between CAS.

Singular is a special system for Commutative Algebra, Algebraic Geom-
etry and Singularity Theory. The basic algorithms include a very efficient
standard (Grobner) basis algorithm for general term orderings which need
not well-orderings. This allows to compute and use Grébner bases in general
K-algebras as

polynomial algebras, localization of these in prime ideals, tensor prod-
ucts of such algebras but also in non-commutative algebras as exterior
algebras, Weyl-algebra.

several ground fields K are available such as @), IF, (p=prime < 32003),
IF,, ¢ = p" small, algebraic and transcendental extensions.

usual ideal theoretic operations and intersection, ideal quotient, satu-
ration and more advanced algorithms using free resolutions of modules.

combinatorial algorithms like dimension, multiplicity, Hilbert-series.
algorithms for factorization uni- and multivariate polynomials.

several libraries with procedures for primary decomposition, homolog-
ical algebra, semiuniversal deformation etc., written in the Singular
language (C-like).

Distributed computing and interoperability between specialized CAS lead
to the problem of connecting these systems. We present a solution which is
both general and efficient, based on the MultiProtocol MP.

Important points are the concepts of dictionaries, annotations and pro-
totypes.

Dictionaries define the semantics of operators, constants and annota-
tions and therefore provide an easy way to extend the protocol.

Annotations provide additional information about the data objects
which may be very useful for the receiver, like the monomial order-
ing in a distributed polynomial.

13

e Prototypes are special annotations which describe the structure of the
data (and can prove their homogeneity).

The encoding is not specific to a particular system; each MP-interface
can parse the byte stream and, if it knows the dictionaries, understand it.

Generic symbolic programming in
C++ — an example
Erich Kaltofen

Abstract: Given a vector space basis with integral domain coefficients,
a variant of the Gram-Schmidt process produces an orthogonal basis using
exact divisions, so that all arithmetic is within the integral domain. Zero-
division is avoided by the assumption that in the domain a sum of squares
of nonzero elements is always nonzero. In this talk we fully describe this
method and use it to illustrate and compare a variety of means for imple-
menting generic algorithms. Previous generic programming methods have
been limited to one of compile-time, link-time, or run-time instantiation of
type parameters, such as the integral domain of this algorithm, but we show
how to express generic algorithms in C++ so that all three possibilities are
available using a single source code. Finally, we take advantage of the gener-
icness to test and time the algorithm using different arithmetics, including
three huge-integer arithmetic packages.

Joint work with: Ulfar Erlingsson and David Musser (both RPI).

14

Computing Invariant Rings with the
INVAR-System

Gregor Kemper

INVAR is a program package for invariant theory of finite groups. Con-
sider the following setting:

Let K be a field and G < GL,(K) a finite matrix group, which acts on
the multivariate polynomial ring R = K[x1,...,x,] by linear substitutions of
the variables. We are interested in the invariant ring R = {f € R| o(f) =
f Vo € G}. In particular, it is our goal to provide algorithms that calculate
a finite system of generators of R as an algebra over K. This is done in two
major steps:

1. Calculation of primary invariants. This is performed by a new al-
gorithm that the author proposed with the aim of obtaining primary
invariants of low degrees.

2. Calculation of secondary invariants. Here the two cases char(K) | |G|
(“modular”) and char(K) |/ |G| (“non-modular”) split. In the non-
modular case, there are linear algebra methods which use Molien’s
formula to obtain secondary invariants, whereas in the modular case a
new algorithm using syzygy calculations and Grobner bases is used.

The INVAR-system is written in the Maple programming language and
is available in the Maple Share Library. A second version is in progress. The
main computational requirements are Grobner bases, primary decomposition
and/or the Grobner factorization algorithm, calculation of syzygy modules
and linear algebra. Some of the tasks are performed by specialized systems
such as SINGULAR or MACAULAY. Partial interfaces to these systems are
included.

Gregor Kemper, The Invar Package for Calculating Rings of Invariant,
IWR Preprint 93-34, Heidelberg 1993.

Gregor Kemper, Calculating Invariant Rings of Finite Groups over Arbi-
trary Fields, J. of Symbolic Computation (to appear).

15

SYMMETRICA
Adalbert Kerber

The development of SYMMETRICA started 10 years ago with the diploma
thesis of Axel Kohnert. The intention was to develop a computer algebra sys-
tem for representation theory, combination theory, the theory of invariants of
symmetric groups, and related classes of groups like the alternating groups,
and the Kranz products of symmetric, alternating, and linear groups.

It should run on each computer using a C — compiler, should be written
in standard C and should have an object oriented design (This was before
the release of C++).

Over the years, a very large system has been developed, which is used
intensively by many universities. Important parts of the system have been
written by the group of A. Lascoux (Paris VII), the team of A. O. Morris
(Aberystwyth), and the group of H. Liineburg (Kaiserslautern).

The implemented data structures and algorithms for representation the-
ory are based on multivariate polynomials. Important classes of these poly-
nomials are the symmetric polynomials, in particular, the classical bases
of the elemental and monomial symmetric polynomials, especially Schur-
polynomials. There are also new generalizations available like Schubert- and
zonal polynomials.

SYMMETRICA is public domain software and will be public domain in
the future. The user of the system can obtain the source code including the
IXTEX files of the handbook (which are unfortunately very incomplete) via
the Internet.

One of the main differences of SYMMETRICA compared to other sys-
tems is the availability of procedures for computing irreducible, modular
representations of matrices, projective ordinary matrix representations, de-
composition numbers, and Brauer characters of symmetric groups.

New extensions of the system cover the constructive theory of discrete
structures using finite group operations (We are also interested in Hecke-
algebras at the moment).

As an example, we presented the application of the constructive theory of
discrete structures, in particular the construction of 7 designs. Furthermore,
we showed the connection to applications in chemistry (construction of all
molecular graphs for a set of given data). Another application, which is under

16

development at the moment, is the computation of complete catalogues of
irreducible linear codes.

Documentation of Algorithms and
Proof of Results in Computer Algebra

Wolfram Koepf

We assume that a user who is not the developer uses a general purpose
command (like solve, integrate, sum, etc.) in a general purpose system
(like Axiom, Maple, Mathematica, Reduce, etc.).

If the system generates a result, then the questions arise: How can the user
prove the result? How can the user receive information about the algorithms
used? If no result is obtained, then: How can the system help the user to
solve the problem?

We give examples of such situations, and propose the following:

e Naming: The algorithms should be called by their names
e Citing: They should be cited appropriately (e.g. in Help Page)

e Variables: Preferably the same variable names should be used as in
the cited literature

e Information Depth: Rather detailed information about intermediate
results should be accessible

e Failure: In case of failure an indication should be given which algo-
rithms have been used, and which others might be applicable

e Algorithms: If available, algorithms should be used that enable mech-
anisms for fast proofs of their results

17

We give examples of an implementation of Gosper’s and Zeilberger’s algo-
rithms in Maple which is on these lines. These algorithms bear rational
certificates with which an easy proof of their results is possible.

PARSAC-2: Parallel Symbolic
Computation on the desk-top
Wolfgang Kiichlin

We give an introduction to programming methods and algorithms suit-
able for parallelizing Computer Algebra on modern multiprocessor worksta-
tions. Specifically we discuss multi-threaded programming and its use in the
PARSAC-2 system for parallel symbolic computation. PARSAC-2 contains a
system environment, called S-threads, which supports the multi-threading of
symbolic algorithms in C for execution on a shared memory parallel machine.
It also contains a distributed environment, called DTS, which can execute
suitable threads of control remotely on the network. Finally we present
our experience with some examples of parallel algorithms useful for solving
systems of polynomial equations, including parallel methods for the compu-
tation of Grobner Bases, multivariate polynomial GCD’s, and root isolation
of univariate polynomials. More detailed information may be found in:

W. Kiichlin.

PARSAC-2: Parallel Computer Algebra on the Desk-Top.

In J. Fleischer, J. Grabmeier, F. Hehl, and W. Kiichlin, editors,
Computer Algebra in Science and Engineering, pages 24—43,
Singapore, 1995. World Scientific.

18

An Invitation to an Open System for
Computer Algebra Research
Riidiger Loos

The first part summarizes the activities of the computer algebra research
group at Tiibingen. We concentrate on computer science aspects of computer
algebra, in particular on language design for computing with algebra what
we correlate with recent developments in functional programming languages
like Theta (Liskov) or Sather-K (Goos). The second area is the definition of
a portable interface for CA-libraries on the base of C++ and the Standard
Template Library. These libraries should be useful for other research groups
in CA through the internet.

The second part summarizes impressions from the Dagstuhl meeting. It
was planned when it became obvious that at least four different CA research
groups in Germany develop software independently, for example for com-
puting Groebner bases. Compared with previous decades CA research has
reached the working mathematicians and covers many aspects of current re-
search activities in pure and applied mathematics, in chemistry, hardware
verification, in physics and other applied sciences. We observed that the
software technology used in CA is not anymore at the forefront of computer
science. Many mathematicians use CS terminology in a vague and misleading
manner, young programmers from mathematics reinvent methods and tools
available for a long time in CS.

By these reasons in the third part we propose a common software research
effort spanning many different groups both from mathematics and computer
science. Primary goal is the reuse and interoperability of CA software across
different groups, the focus on visible applications in other sciences and the
cooperation with current CS research in deductive data bases, software spec-
ification and verification, reliable compiler construction, networking and in-
teroperable libraries. New software developed in CA should even have a
common language and common interface to other scientific libraries.

19

The computer algebra system

CHEVIE and some applications
Frank Liibeck

CHEVIE is a joint project with: Meinolf Geck, Gerhard Wis, Gunter
Malle, Jean Michel, and Gotz Pfeiffer.

CHEVIE is a special purpose computer algebra system for research math-
ematicians, interested in the representation theory of finite groups of the Lie
type and associated structures, like Weyl-groups and Iwahori-Hecke-algebras.

The system consists of programs, written in the high level languages of
the computer algebra system GAP and Maple, as well as library files readable
by one of these systems.

The Maple-part of CHEVIE contains a library of generic ordinary char-
acter tables of series of groups of Lie type. They describe the character
tables of sets of groups like GL2(q), SUs(q), Spa(q), ..., where g runs through
all prime powers. Also, there is a library of tables of Green functions and
there are programs to deal with these tables: look at values, print in TEX
- format, show information on classes, characters or references to the liter-
ature, compute orthogonality relations, structure constants, tensor products
(all calculations without specializing the q).

The GAP-part contains programs to compute in and with Coxeter groups
and Iwahori-Hecke-algebras (programs for classical and library for (all) ex-
ceptional types).

The talk gave examples of how CHEVIE is developed in interaction with
mathematical questions.

Furthermore, applications of the system in modular representation theory,
Galois theory and group theory were mentioned.

The talk closed with a short overview on (almost existing) future exten-
sions of CHEVIE: decomposition numbers of groups of Lie type and Iwahori-
Hecke algebras; cyclotomic algebras; braid groups; a system of programs for
computing (at least parts of) generic character tables (several single pro-
grams may be useful itself); new tables, in particular tables of unipotent
characters of some groups up to rank 8.

20

Garbage Collection techniques for
Computer Algebra

Gérard Milmeister

Garbage collection is an important issue in symbolic computation sys-
tems, especially interactive ones. There are several popular techniques: mark
and sweep, stop and copy and reference counting. For all of them there exist
variants that try to cope with their respective shortcomings.

In the AlgBench symbolic computation system we implemented a ref-
erence counting collector using smartpointers in C+-+. These simulate real
(naked) pointers by wrapping them up in a hierarchy of classes parallel to the
hierarchy of collected object classes. Smartpointers take care of the updating
of reference counters.

We discuss the benefits and problems, especially those problems resulting
from the limitations of the C++4 compiler.

Mixfix Syntax for Computer Algebra
Stephan A. Missura

Mathematical notation is highly overloaded and strongly context de-
pendent. Furthermore, it is extended incrementally by new operators and
character-based parsing is needed. Hence, the corresponding grammar is
usually ambiguous.

Mixfix notation is a very general method for defining new operator syn-
tax and is therefore very well suited for supporting mathematical notation
in interactive computer algebra systems. It supports prefix-, post-, infix-
operators and also mixed forms. Juxtaposition and coercion operators fit
very well in this scheme too.

Because the types of the declared operators and variables are used during
parsing the parser already does type-checking and more strings can be parsed

21

in an unambiguous way than with conventional methods found in current
computer algebra systems.

We discuss the design and implementation of a mixfix parser, especially
the use of a higher-order, polymorphic type system and the new method of
bracketing the token list produced by the scanner, which results in a reduction
of the recursion depth during parsing.

The Design of a
Computeralgebra-System
Holger Naundorf

When designing a general purpose computeralgebra-system, many differ-
ent goals are set. The most important ones are generality and flexibility on
the one hand and user-friendliness on the other hand.

Many people consider these goals as contradictory and hence try to find a
satisfactory compromise. In contrast we consider generality and flexibility as
a premise for user-friendliness, because every user prefers a different design.
Hence the user must be able to change the system according to his/her ideas.
Many examples of the necessity of flexibility can be given either for input,
functionality and output.

Though a general and flexible system need not be user-friendly, it is usu-
ally possible to make it user-friendly — in most cases even for the user. The
most general and flexible design is usually the easiest to implement due to
the lack of special cases.

Due to these considerations we designed MuPAD emphasizing generality
and flexibility. Relying on this we made MuPAD user-friendly.

22

Computing the class group of
quadratic orders over principal ideal

domains
— a template implementation

Sachar Paulus

The most up-to-date algorithm for computing class groups of imaginary
quadratic orders over the ring of rational integers was designed by Kevin
McCurley after an idea of Martin Seysen. It is based on collecting relations by
the reduction of randomly chosen binary quadratic forms. A generalization
of this algorithm to quadratic orders over any other principal ideal domain
requires either the existence of a reduction theory of binary quadratic forms
with coefficients in this domain or another way of collecting relations. Both
possibilities are examined for rings of integers of number fields resp. maximal
subrings of congruence function fields and localizations thereof (whenever
their class group is not trivial).

As a result, we conjecture that there exists a reduction theory of bi-
nary quadratic forms with coefficients in the maximal order of a totally
real normeuclidean quadratic number field with totally negative discrimi-
nant. There is also a way of collecting relations similar to sieving techniques
known from factoring which does not depend on reduction theory. A re-
sulting generic algorithm has been implemented in C++ as TEMPLATE
functions using LiDIA (for bigint and matrix computations), LEDA (for dic-
tionaries of arbitrary types) and a TEMPLATE function package for finite
abelian groups. Several examples are given; we compute e.g. a factor of the
Jacobian of a hyperelliptic curve of type 1 over a finite field and show how
the combination of sieving and reduction in the classical cases yields major
improvements in practice.

23

The KANT Project
Michael Pohst

KANT is a software package specializing in sophisticated computations
with algebraic number fields. The more elementary tools used - like mem-
ory management, basic arithmetic, finite fields, linear algebra, and lattice
theory - are adopted from Magma. The calculations in number fields, how-
ever, are based on algorithms which were either developed or at least im-
proved by members of the KANT group. In this talk we report on recent
progress with relative extensions of number fields. Major achievements are
an algorithm for detecting subfields and the potential of computing Hilbert
class fields. The user can access the KANT routines via the KANT-Shell
KASH. It was developed by using GAP and allows Maple like program-
ming. KANT is public domain and is available from: ftp.math.tu-berlin.de
at pub/algebra/Kant/Kash.

How To Lift a Library
Sibylle Schupp

Generic algebraic libraries run the risk of losing efficiency compared to
non-generic libraries. To solve the seeming antagonism between genericity
and efficiency, we propose a technique which we call lifting. The lifting
process is an abstraction process which starts with a well-known efficient
algorithm and abstracts carefully from it. As lifting guarantees that fast
non-generic algorithms instantiate their generic lifts, we preserve computing
time. Apart from generic programming, lifting is interesting for computer
algebra in conceptual and conceptional respects.

24

Interoperability between Computer
Algebra Systems
Gébor A. Simon

In the development of a computer algebra algorithm one would frequently
like to use (perhaps only temporarily) existing algorithms, which are imple-
mented in different, possibly incompatible systems. This means, that one
needs possibilities which allow the cooperation and/or communication be-
tween programs, applications, objects and environments despite differences
in the implementation language, execution environment and model abstrac-
tion. All these possibilities are meant by the notion of interoperability .
The basic aspects of interoperability are: (i) the control aspect, caring about
the coordination of the inter-operating programs, (ii) the data aspect, es-
tablishing type compatibility for the shared data objects and (iii) choosing
transport services and low-level communication protocols achieving an effi-
cient transmission of the data. There are several groups working on such
problems in the computer algebra (OpenMath, Posso XDR, Central Control,
ASAP, MP, CAS/Pi, MathLink, MathEdge etc.) Most of the research activ-
ities in this field concentrate on the data aspect (or type model), looking for
a single universal representation, either on a character or byte stream basis.
The implementations are usually based on low-1 evel transport mechanisms,
which are optimized for performance, rather than for the ease of program-
ming, reliability, flexibility and extensibility. For an application programmer
it is difficult to manage these very technical aspects concerning the transport
mechanism, even in connection with his/her own system and much more with
foreign systems.

Distributed object managers, as SOM/DSOM, OLE, CORBA etc. try
to provide a convenient infrastructure for the development of distributed
applications. In this paper, we summarize our experiences with a prototype
implementation for a communication interface between SAC-2 and LiDIA,
using the CORBA like Inter—Language Unification (ILU) system from Xerox
PARC.

SAC-2 is a traditional CA system, using its own garbage collection and
the implementation language C. LiDIA is a recent one implemented in C
++4. We will show, what components would be need e.g. to use the LLL

25

(Lenstra, A.K., Lenstra H.-W., Lovész, L.) algorithm reducing lattice bases
implemented in LiDIA, from a SAC-2 application written in ALDES. For
the demonstration sake we will here examine a simple example, computing
the determinant of a matrix with arbitrary precision integer coefficients.

The method we present helps to reduce the complexity of developing
distributed applications to solve common problems in the computer algebra.
The developer do not need detailed knowledge about the foreign system, to
set up a server application. Users of the client application need not to care
about localizing a server application, it will be found automatically using the
support of the infrastructure provided by the ILU system.

Fast Multiprecision Arithmetic
The Turing Processor System
Ekkehart Vetter

TP, developed by A. Schénhage (schoe@cs.uni-bonn.de), is a collection
of about 200 efficient routines for long integers (including Schonhage-Strassen
multiplication), fast ged computations, and for large scale computations with
real and complex numbers and polynomials, all within arbitrary and guar-
anteed precision. The routines, although written in a special, assembler-like
programming language TPAL, are compiled into C and can be used within
nearly any environment. The underlying hypothetical machine bases on a
Turing machine and a RISC processor. Its tapes—each cell storing a whole
32-bit word—turn out to be well suited for the efficient implementation of
computer arithmetic algorithms.

This hypothetical machine can be efficiently emulated on real machines.
Special care is taken of the implementation of the self-growing tapes. Here
one important aspect is locality: The local tape access, characterizing Turing
machines, circumvents the memory bottleneck of current computer architec-
tures. The tape management API allows an efficient communication and
parameter passing from and to TP.

26

An optimizing compiler translates TPAL into C (optionally mixed with
assembler statements). Thus, the emulation is quite portable. Summarizing,
beside an environment for the design and in-depth evaluation of computer
arithmetic algorithms, TP provides a fast multi-precision kernel for computer
algebra and numerical applications. More information about TP can be
obtained from : ftp://ftp.cs.uni-bonn.de/pub/tp/HTML/TP.html.

Theorem Proving in Cancellative
Abelian Monoids

Uwe Waldmann

A theorem prover that is to be used for applications such as program
verification and synthesis has to cope with the fact that theories from which
program properties are to be derived are divided into several parts: some
specifying standard mathematical structures, including numbers, lists, mul-
tisets, graphs, others providing the axioms for additional free function and
predicate symbols. The latter describe, in a more or less ad hoc manner, ob-
jects, and their properties, of the particular domain of application for which
a program is to be written. The prover must thus combine mathematical
with meta-mathematical reasoning; it must be able to deal with unknown
domains, but also to deal efficiently with known domains.

Traditional theorem proving techniques like resolution are ill-suited for
mathematical reasoning, as they do neither recognize nor make use of exist-
ing algebraic structure. Even worse, axioms like associativity, commutativ-
ity, or transitivity allow an enormous number of inferences and produce large
numbers of equivalent variants of given formulae. To overcome these prob-
lems it is necessary to integrate the algebraic axioms as inference rules into
the general proving calculus. We describe a refined superposition calculus
for cancellative abelian monoids. Our calculus requires neither explicit infer-
ences with the theory clauses for cancellative abelian monoids nor extended
equations or clauses. Improved ordering constraints allow us to restrict to

27

inferences that involve the maximal term of the maximal sum in the maxi-
mal literal. Furthermore, the search space is reduced drastically by certain
variable elimination techniques [1].

References:

[1] Harald Ganzinger and Uwe Waldmann. Theorem proving in cancella-
tive abelian monoids. Technical Report MPI-1-96-2-001, Max-Planck-
Institut fir Informatik, Saarbriicken, Germany, January 1996.

Programming Language Support for
Memory Management

Stephen Watt

We look at the problem of memory management and implications in com-
puter algebra. It is observed that the biggest gains do not come from improv-
ing the speed of allocation / deallocation / garbage collection, but rather from
avoiding memory allocation to begin with. The code transformation methods
of the A% compiler are presented, with emphasis on procedural integration
(cross-file inlining) and data-structure elimination. Finally, we make a case
that programming language support (source language semantics) offers sig-
nificant potential to improve memory behaviour. We propose that by limiting
write access to objects to an explicitly declared initial part of their lifetime
that we obtain the flexibility to in-place updating operations to create val-
ues and then the generational memory and the transformable / optimizable
code asfeets of read only objects. Language support can enforce no. aliasing
of objects during the initial, writable part of their life without imposing an
unbearable burden for the usual case where many read-only mathematical
objects are handled.

28

Computer Algebra Software for
Algebraic Geometry (CASA)

Franz Winkler

The program package CASA (Computer Algebra Software for construc-
tive Algebraic geometry) is designed for performing computations and rea-
soning about geometric objects in classical algebraic geometry, in particular
affine and projective algebraic geometry over an algebraically closed field
F' of characteristic 0. Moreover, the field F' has to be a computable field
in the sense of the underlying computer algebra system Maple, i.e. all the
arithmetic operations have to be available in the system. In the absence
of any special indication of the field, CASA always assumes that the field of
computation is the rational numbers () or a finite algebraic extension thereof.

CASA has been developed at RISC-Linz over the last years, starting in
1990, by a research group under the direction of the author. It is mainly
developed as a result of various ph.d. and masters theses done in the com-
puter algebra group at RISC-Linz. Consequently, the functionality provided
strongly reflects the research interests of the people working on the develop-
ment of CASA. The current version of the system, CASA 2.2, is built on top
of the Maple computer algebra system, in particular Maple V.3.

The objects that CASA deals with are algebraic sets in four different
representations.

o Implicit representation: An algebraic set is the set of common zeros of
a system of polynomial equations. To give an algebraic set in implicit
form means to give finitely many polynomials.

e Projected representation: As a consequence of the primitive element
theorem every irreducible d-dimensional algebraic set in n—dimensional
space is, after a suitable linear transformation of coordinates, bira-
tionally projectable onto an irreducible d—dimensional algebraic set in
(d+1)-dimensional space, which can be specified by a single polynomial
in d+1 variables. This can be generalized to unmixed-dimensional alge-
braic sets. An algebraic set in projected form is given by a polynomial
and a tuple of rational functions (specifying the birational mapping).

29

e Parametric representation: Some irreducible algebraic sets can be pa-
rameterized by rational functions. An algebraic set in parametric form
is given by a tuple of rational functions that parameterizes the algebraic
set.

o Representation by places: All algebraic curves can be parameterized
by a set of power series that are convergent around a point of the
curve. An algebraic set is given by places if for each branch passing
through a certain point on the algebraic set a tuple of power series that
parameterizes the algebraic set around the point is specified.

CASA also works with the polynomial ideals corresponding to these geo-
metric objects.
The operations available in CASA include

ideal theoretic operations +, *,N, /,

e creating algebraic sets in different representations,

e generating curves of fixed multiplicities at given points,
e intersection, union, and difference of algebraic sets,
e computing tangent cones and tangent spaces,

e computation of the dimension of an algebraic set,

e decomposition into irreducible components,

e transformations of algebraic sets to hypersurfaces,

e computation of the genus of a curve,

e rational parameterization of curves,

e implicitization of parametrically given algebraic sets,
e Puiseux series expansions,

e plotting both explicitly and implicitly given curves and surfaces.

30

An early version of the system was described in [1]. For more information
on the underlying mathematics and software issues we refer to [3]. Some
typical sessions of CASA may be found in [4]. A reference manual of the
current version can be found in the technical report [2]. CASA is available
at the ftp server ftp.risc.uni-linz.ac.at in the directory /pub/CASA.

References:

e [1] R. Gebauer, M. Kalkbrener, B. Wall, F. Winkler, CASA: A Com-
puter Algebra Package for Constructive Algebraic Geometry, in: Proc.
ISSAC’91, 403-410, S.M. Watt (ed.), ACM Press (1991).

e [2] M. Mnuk, B. Wall, F. Winkler, CASA Reference Manual (Version
2.2), RISC Report 95-05 (1995).

e [3] B. Wall, Symbolic Computation with Algebraic Sets, Ph.D. Disser-
tation, RISC (1993).

e [4] F. Winkler, Constructive Algebraic Geometry with CASA, talk at
the workshop CoCoA, Cortona (1993) and RISC Report 93-26 (1993).

Display, Generation, and Evaluation
of Mathematical Structures

Tom Wickham — Jones

This talk will examine mathematical notation and how it can be used in
computer mathematics systems. It will consider the development of modern
notation and its relation to mathematics and to computer systems. The
display of notation by classical printing and the WWW will then be discussed,
followed by consideration of the methods by which these display forms can be
generated. It will be shown how the most natural methods lead directly to a
powerful integration of live interactive mathematics structures in computer
mathematics systems.

31

SIMATH - a computer algebra system
with an emphasis on elliptic curves

Horst G. Zimmer

SIMATH is a computer algebra system written in C. A list system serves
as the basis for all SIMATH types such as integers, rationals, matrices and
vectors. In addition to the source libraries containing all SIMATH functions
the system is equipped with the programmable calculator simcalc by which
most functions can be handled in an interactive mode.

Emphasis lies on algorithms for elliptic curves. Fundamental procedures
concern

e The determination of torsion groups of a large class of elliptic curves
over number fields of degree < 4.

e The computation of the rank and a basis of the Mordell-Weil-group
over @) and certain quadratic number fields with and - if possible -
without assuming the Birch and Swinnerton-Dyer conjectures.

e The determination of all integral and S-integral points of elliptic curves
over ().

e The construction of elliptic curves over large finite fields with group of
rational points of given order - with application to

— the search for large prime numbers

— the determination of elliptic curves which are of cryptographical
relevance.

Reporter: Markus Maurer (Saarbriicken)

32

