
Dagstuhl Seminar
on

Loop Parallelization

Organized by

Christian Lengauer (Universität Passau)

Lothar Thiele (ETH Zürich)

Michael Wolfe (Oregon Graduate Institute)

Hans Zima (Universität Wien)

Schloß Dagstuhl 15. – 19.4.1996

Contents

1 Preface 1

2 Abstracts 3
The Omega Library

William Pugh . 3
Compiler Techniques for Multiprocessors and the Polaris Restructurer

David Padua . 3
The Loop Parallelizer LooPo

Martin Griebl . 4
Optimal Loop Parallelization under Register Constraints

Christine Eisenbeis and Antoine Sawaya 4
Automatic Performance Analysis for SVM-Fortran Programs

Michael Gerndt . 5
Parallelizing Nested Loops with Approximation of Distance Vectors: A

Survey
Alain Darte and Frédéric Vivien 6

New Algorithms for Address Generation for HPF-Style Mappings
Arun Venkatachar and Jagannathan Ramanujam 6

Modular Mappings of Loop Nests
Hyuk Jae Lee and Jose A. B. Fortes 7

Transforming Imperfectly Nested Loops
Induprakas Kodukula and Keshav Pingali 8

On the Removal of Anti and Output Dependences
Pierre-Yves Calland, Alain Darte,
Yves Robert and Frédéric Vivien 8

Memory Reuse Analysis in the Polyhedral Model
Sanjay Rajopadhye and Doran Wilde 9

Static Analysis to Reduce Synchronization Costs in Data-Parallel Pro-
grams
Manish Gupta . 9

Systolic Parallelization of Programs with Multiple Loops
Friedrich Wichmann . 10

Compilation Techniques for Sparse Matrix Computations
Harry Wijshoff . 11

HPF+ – Language and Implementation Support for Irregular Compu-
tations
Hans Zima . 11

Compilation Issues for Irregular Problems
Guillermo P. Trabado and Emilio L. Zapata 12

Foundations of Parallel Speculative Execution
Paul Feautrier and Jean-François Collard 13

i

Optimistic Parallel Computation
Damal K. Arvind . 14

On the Optimal Size and Shape of Supernode Transformation
Edin Hodzic and Weijia Shang 14

Reducing Storage Size for Static Control Programs Mapped onto Par-
allel Architectures
Eddy De Greef, Francky Catthoor and Hugo De Man 14

Optimization of Inspector/Executor Code Generated by Parallelizing
Compilers
Thilo Ernst . 15

On Two Examples of the Need for Non-Traditional Optimizations In-
volving Reductions
P. Sadayappan . 16

Parallel Programming with PEI
Guy-René Perrin . 17

Parallel Loops in High Performance Fortran
Robert Schreiber . 17

Dataflow Analysis in Parallel Programs
Jean-François Collard and Martin Griebl 18

A Library for Operations on Z-Polyhedra
Tanguy Risset . 18

3 List of Participants 19

ii

1 Preface

As parallelism emerges as a viable and important concept of computer technol-
ogy, the automatic parallelization of loops is becoming increasingly important
and receiving increased attention from researchers. The reasons are (1) that
programming parallel computers by hand is impractical in all but the simplest
applications and (2) that, by exploiting the parallelism in nested loops, poten-
tially large numbers of processors can be utilized easily and a speed-up of orders
of magnitude can be attained.

Methods of loop parallelization have been developed in two research communities:
regular array design and parallelizing compilation.
Researchers in regular array design impose regularity constraints on loop nests
in order to apply a geometric model in which the set of all parallelizations of the
source loop nest can be characterized, the quality of each member of the set can
be assessed and an optimal choice from the set can be made automatically. That
is, regular array design methods identify optimal parallelizations of regular loop
nests.
Researchers in parallelizing compilation are interested in faster methods than
their colleagues in regular array design and, therefore, often apply heuristics
to attain reasonable but not necessarily optimal parallelizations. Parallelizing
compilation methods can often cope with less regular loop nests but do, in general,
not produce provably optimal results.

The primary goal of this seminar was to intensify communication between the
two communities. In recent years, the methods used in both communities have
increasingly converged on the theory of linear algebra and linear programming.

Questions discussed at the seminar included:

• Algorithms that yield optimal parallelizations are usually computationally
complex. For what applications is this (not) a serious restriction? For what
applications do heuristic algorithms yield better performance, and what are
the heuristics?

• Loop parallelization methods have yielded static parallelism in the past.
How can they be made more dynamic, e.g., for the treatment of while loops
or of irregular data structures?

• What parallel programmable computer architectures should the research in
loop parallelization aim at?

• What do the users of parallelizing compilers expect from loop paralleliza-
tion?

1

• What are the special requirements on design methods for multi-media ap-
plications?

• How can memory management in parallelized programs be made more ef-
ficient?

The 41 participants of the workshop came from 9 countries: 14 from the US
(funded by the National Science Foundation), 10 from France, 9 from Germany
and 8 from other European countries. The organizers would like to thank every-
one who has helped to make this workshop a success.

Christian Lengauer Lothar Thiele Michael Wolfe Hans Zima

2

2 Abstracts

The Omega Library

William Pugh
University of Maryland at College Park, USA

The Omega library provides routines for analyzing constraints over integer vari-
ables built using linear constraints, the usual logical connectives (and, or, not)
and universal and existential quantification. This is Presburger arithmetic; the
tightest upper bound on the complexity of verifying the satisfiability of Pres-

burger arithmetic is 22
2O(n)

.
The Omega library is targeted at problems that arise in the context of analyzing
and transforming scientific programs for execution on parallel computers and
within that context is generally fast. It has also found some use in other domains
(such as analyzing the requirements for the A7 attack fighter).
We describe the capabilities of and interface to the Omega library, discuss some
of the design decisions we made in creating that interface, and give a high-level
overview of how the Omega library operates.

Compiler Techniques for Multiprocessors and
the Polaris Restructurer

David Padua
The University of Illinois at Urbana-Champaign, USA

Multiprocessor computers are rapidly becoming the norm. Parallel workstations
are widely available today and it is likely that most PCs in the near future will also
be parallel. Some classes of applications will have to be developed in explicitly
parallel form. Yet, in order to avoid a substantial increase in software devel-
opment costs, compilers to translate conventional programs into efficient parallel
form will clearly be necessary. In the ideal case, multiprocessor parallelism should
be as transparent to programmers as functional level parallelism is to program-
mers of today’s superscalar machines. However, compiling for multiprocessors
is substantially more complex than compiling for functional unit parallelism, in
part because successful parallelization often requires a very accurate analysis of
long sections of code.
We discuss our recent experience at Illinois on the automatic parallelization of
scientific codes. New techniques for dependence analysis, idiom recognition, and

3

privatization have been developed in recent years based on an extensive analysis
of the characteristics of real Fortran codes. These techniques, which are based
on both static and dynamic parallelization strategies, have been incorporated
in Polaris, a source-to-source Fortran restructurer developed at the University of
Illinois. Polaris accepts Fortran 77 with vector extensions and generates programs
in parallel Fortran dialects including those of SGI, Sun, and the Cray T3D, as
well as *step, an implementation of the last version of the ANSI X3H5 standard.
Polaris is implemented in C++ around a class hierarchy representing the source
program internally. Preliminary results of the effectiveness of Polaris on parallel
workstations are encouraging and we expect that, once the implementation of
the new techniques is complete, Polaris will be able to obtain good speedups for
most scientific codes on parallel workstations.

The Loop Parallelizer LooPo

Martin Griebl
University of Passau, Germany

We report on a prototype for testing different methods of space-time mapping
loop nests. LooPo admits perfect or imperfect loop nests in a number of impera-
tive languages, takes data dependences from the user or derives them itself from
the source code, provides a choice of strategies for scheduling and allocating the
loop nest’s iterations, and produces synchronous or asynchronous parallel target
code for shared-memory or distributed-memory machines.

Optimal Loop Parallelization under Register
Constraints

Christine Eisenbeis and Antoine Sawaya
INRIA-Rocquencourt, Le Chesnay, France

We deal with the interaction between instruction scheduling and register allo-
cation, in the case of straight line code and in the case of loops. This problem
is at the heart of code optimization in microprocessors with instruction-level
parallelism. Usual solutions use heuristics based on a decoupled approach. We
propose here a formulation via linear integer programming that allows depen-
dence, resource and register constraints to be integrated in the same framework.
By varying the parameters, all kinds of optimization problems can be solved ex-
actly (maximization of the throughput, minimization of the number of registers).

4

We report on examples of computation timings that turn out to be prohibitive
in some specific cases, but tractable on average.

Automatic Performance Analysis for
SVM-Fortran Programs

Michael Gerndt
KFA Jülich, Germany

Programming massively parallel machines is much simplified by using a high-level
programming language providing a global view on data and computation. The
most well known example is High Performance Fortran. HPF compilers generate
SPMD code with explicit message passing. If the compiler is unable to identify
access patterns, such as in irregular grid applications, the generated code has to
rely on costly run-time analysis.
Another approach is to combine the strength of hardware and software technology
to solve the problem of mapping high-level languages to distributed memory
machines. One can implement a global address space on the system level, as
is done with shared virtual memory where remote accesses are automatically
resolved via data migration among the different memories.
SVM-Fortran is a high-level language based on task and data parallelism. The
user can enforce data locality with respect to the local memories by specifying a
work distribution enforcing reuse of local data. Although it is easy to parallelize
programs with SVM-Fortran according to a high-level parallelization strategy,
i.e., domain decomposition, it is necessary to optimize the program carefully.
This optimization relies on performance information.
The SVM-Fortran programming environment provides a new approach for tracing
performance data: selective tracing based on a combination of compile time and
run time instrumentation. Selective tracing enables an incremental performance
analysis cycle, starting from coarse information and gathering more and more
precise information. The process of incremental parallelization can be automated
based on rules describing the information required and appropriate predicates to
proof the bottlenecks.
There are two classes of rules: refinement rules and proof rules. Refinement rules
handle the problem of making proven hypotheses more precise, for example, refin-
ing the statement that a locality bottleneck exists into region-specific hypotheses
that a locality problem exists in that region. Proof rules instead are used to prove
a hypothesis.
The current set of hypotheses in one step of the performance analysis cycle re-
quires information determined by the applicable set of proof rules. This leads to
the second important aspect of automatic performance analysis, the synthesis of

5

new instrumentation requests. This synthesis has to take into account the exe-
cution time of the program, the amount of required information and the possible
intrusion.
The presentation outlines the structure of an automatic performance analysis tool
for SVM-Fortran programs consisting of selective tracing, hypothesis refinement
and instrumentation synthesis.

Parallelizing Nested Loops with Approximation
of Distance Vectors: A Survey

Alain Darte and Frédéric Vivien
LIP, ENS Lyon, France

We compare three nested loop parallelization algorithms (Allen and Kennedy’s
algorithm, Wolf and Lam’s algorithm and Darte and Vivien’s algorithm) that use
different representations of distance vectors as input. We study the optimality
of each with respect to the dependence analysis it uses. We propose well cho-
sen examples that illustrate the power and limitations of the three algorithms.
This study permits to identify which algorithm is the most suitable for a given
representation of dependences.

New Algorithms for Address Generation for
HPF-Style Mappings

Arun Venkatachar and Jagannathan Ramanujam
Louisiana State University, Baton Rouge, Louisiana, USA

Two new algorithms are discussed for address generation for one-level and two-
level mappings for distributed address space machines.
The first algorithm is shown to have a complexity of O(log(min(s, pk))), the
same as that of the complexity of computing GCD. Here s is the stride, k is the
block size and p is the number of processors. The address generation problem
is viewed as an integer lattice problem and then basis vectors are computed in
order to scan the lattice to enumerate elements in lexicographic order. The idea
of this algorithm is to generate these basis vectors in O(log(min(s, pk))) time.
The time taken to compute these vectors is markedly faster than the time taken
by other existing methods to solve the same problem. The results are compared
to those of the algorithms developed at Rice University and our own previous
work. Methods to compute the starting elements on each processor in O(k) time
are also discussed.

6

The second algorithm talks about generating addresses for the case of a two-level
mapping. In this case, the alignment factor is greater than 1. A new method of
solving this problem is to keep track of the offsets of the allocated elements and
then reusing them to compute the new set of accessed elements. Results show
that this method is about 6 to 10 times faster than the approach used by RIACS.

Modular Mappings of Loop Nests

Hyuk Jae Lee and Jose A. B. Fortes
Purdue University, West Lafayette, Indiana, USA

Many optimizations (of programs with loops) used in parallelizing compilers and
systolic array design are based on linear transformations of loop iteration spaces.
Additional important optimizations and designs are possible by using recently
proposed modular mappings, which are described by linear transformations mod-
ulo a constant vector. We identify and characterize a class of (BLAS-like) algo-
rithms that can be optimized for parallel execution by modular mappings. A
formal technique to derive optimal modular schedules (i.e., the time component
of a modular mapping) is provided. Subsequently, conditions that guarantee the
injectivity of a modular mapping (i.e., a modular schedule plus a modular proces-
sor allocation) are discussed and techniques are provided to generate efficiently
constrained injective modular mappings. Given a BLAS-like algorithm with a
nested loop of depth n, the complexity of these generation techniques is O(n2n!).
We also propose a new class of data alignments, called expanded modular data
alignments (EMDAs), for algorithms that are mapped by modular time-space
transformations. An EMDA subsumes multiple modular data alignments (MDAs)
which are described by affine functions modulo a constant vector. Conditions for
perfect alignment between a modular time-space mapping and an EMDA are pro-
vided. However, these conditions together with other conditions discussed above
introduce non-linear constraints in the problem of generating modular mappings.
A method with O(n2) complexity is provided to choose some entries of a trans-
formation matrix so that non-linear constraints are transformed into linear ones.
Although the solution space of the problem is reduced by assigning fixed values
to some entries, the proposed heuristic attempts to reduce the number of the
fixed entries and exclude as few solutions as possible.
We also consider the issue of deriving the inverse transformation of a given mod-
ular mapping. We identify a class of modular functions whose inverses result
directly from computing the inverse of the (coefficient) matrix used to specify
a modular mapping. An efficient method with O(n2) complexity is provided to
formulate the problem of generating such modular mappings as an integer linear
programming problem.

7

Transforming Imperfectly Nested Loops

Induprakas Kodukula and Keshav Pingali
Cornell University, Ithaca, New York, USA

Loop transformations are critical for compiling high-performance code for mod-
ern computers. Existing work has focused on transformations for perfectly nested
loops (that is, loops in which all assignment statements are contained within the
innermost loop of a loop nest). In practice, most loop nests, such as those in ma-
trix factorization codes, are imperfectly nested. In some programs, imperfectly
nested loops can be transformed into perfectly nested loops by loop distribution,
but this is not always legal. We present an approach to transforming imper-
fectly nested loops directly. Our approach is an extension of the linear loop
transformation framework for perfectly nested loops, and it models permutation,
reversal, skewing, scaling, alignment, distribution and jamming. We also give a
completion procedure which generates a complete transformation from a partial
transformation.

On the Removal of Anti and Output
Dependences

Pierre-Yves Calland, Alain Darte,
Yves Robert and Frédéric Vivien

LIP, ENS Lyon, France

We build upon results of Padua and Wolfe (1986), who introduced two graph
transformations to eliminate anti and output dependences. First, we give a uni-
fied framework for such transformations. Then, given a loop nest, we aim at
determining which statements should be transformed so as to break artificial cy-
cles involving anti or output dependences. The problem of finding the minimum
number of statements to be transformed is shown to be NP-complete in the strong
sense, and we propose two efficient heuristics.

8

Memory Reuse Analysis in the Polyhedral
Model

Sanjay Rajopadhye and Doran Wilde
IRISA, Rennes, France, and Brigham Young University, Provo, Utah, USA

We address the problem of compiling programs expressed in the polyhedral model
(systems of affine recurrences over polyhedral domains). Such languages, being
functional, are inherently single assignment. Some parallelizing compilers which
use the polyhedral model also use an intermediate single assignment form due to
array expansion. We present a static analysis method that enables a compiler
to generate multiple assignment (and hence memory-efficient) code. First, we
give an algorithm to determine the “usage table”, a key piece of information that
specifies the set of index points at which a particular value is used. Based on the
usage table, we develop an analysis method that gives necessary and sufficient
conditions under which an index domain can be projected so that memory can
be reused.

Static Analysis to Reduce Synchronization
Costs in Data-Parallel Programs

Manish Gupta
IBM T. J. Watson Research Center, Yorktown Heights, New York, USA

For a program with sufficient parallelism, reducing synchronization costs is one
of the most important objectives for achieving efficient execution on any parallel
machine. We present a novel methodology for reducing synchronization costs of
programs compiled for SPMD execution. This methodology combines data flow
analysis with communication analysis to determine the ordering between produc-
tion and consumption of data on different processors, which helps in identifying
redundant synchronization. The resulting framework is more powerful than any
that have been previously presented, as it provides the first algorithm that can
eliminate synchronization messages even from computations that need communi-
cation. We show that several commonly occurring computation patterns, such as
reductions and stencil computations with reciprocal producer-consumer relation-
ship between processors, lend themselves well to this optimization, an observation
that is confirmed by an examination of some HPF benchmark programs. Our

9

framework also recognizes situations where the synchronization needs for mul-
tiple data transfers can be satisfied by a single synchronization message. This
analysis, while applicable to all shared memory machines as well, is especially
useful for those with a flexible cache-coherence protocol, as it identifies efficient
ways of moving data directly from producers to consumers, often without any
extra synchronization.

Systolic Parallelization of Programs with
Multiple Loops

Friedrich Wichmann
University of Paderborn, Germany

The presented approach tries to combine systolic parallelized loop nests by use of
a set of communication patterns to generate a parallel program. This loop combi-
nation model is targeted at numerical programs containing sequences of loops or
loop nests and assignment statements. The systolic parallelization technique is
applied to regular loop nests in order to get different possible parallel implemen-
tations. Their input/output data builds the interface between subsequent loop
nests.
The loop nests are accessing data elements regularly. If a systolic space-time
transformation is applied to the access pattern, the positions of data elements
can be described. Qualitative features of the possible position patterns for regular
systolic loops have been described. Stationary data elements can have different
displacements, directions (forward/backward for one-dimensional arrays), “holes”
in processor usage, or skip of some data element indices. Pipelined data elements
can differ additionally in timing. Thus, their starting or final position can have
offsets from the processor boundary, their speed is determined by “delays” in
the communication between processors or “slow”, i.e., the occurrence of unused
places in the data stream. Also, broadcast input or tree-structured output from
reductions can be considered. The data element accesses can be analyzed and
described qualitatively (cf. “utilization sets”), and after applying the space-time
transformation this yields an exact description of position patterns.
Finally, the possible pairs of position pattern types are looked at to give op-
timized communication patterns for the transport of data elements across the
interface between two subsequent loop nests. These can be shift operations for
displacements and offsets, a shift “mirrored” at the end of the array for turning
the direction, and gathering/scattering to deal with holes. Mirroring can also be
used to turn stationary into pipelined data (or vice versa in the symmetric case).
It is possible to deal with part of the reorganization of data elements in parallel
to the computation phase of the loop nests. If there is no such opportunity, as

10

for pipelined data with different speed, the reorganization code has to transport
the data in an extra phase (“default solution”).
The model and strategy presented can be used for programming real parallel
machines if one estimates the costs of different means of communication. The
selection of parallel solutions for the loop nests and the necessary communication
patterns is planned to be done iteratively, driven by parameters like the dimension
of loop nests and data. The loop combination scheme, which is still going to be
realized and evaluated, is related to work from both areas, data parallel loop
parallelization and parallel task optimization, as well as the compilation and
synthesis of regular systolic arrays.

Compilation Techniques for Sparse Matrix
Computations

Harry Wijshoff
Leiden University, The Netherlands

The problem of compiler optimizations for sparse matrix codes is well known
and no satisfactory solutions have been found yet. One of the major obstacles is
caused by the fact that sparse matrix programs deal explicitly with the particular
data structures selected for storing sparse matrices. This explicit data structure
handling obscures the functionality of a code to such an extent that the opti-
mization of the code is prohibited, i.e., by the introduction of indirect addressing
and variables not known at compile time.
We present a method which postpones data structure selection until the compile
phase, thereby allowing the compiler to combine code optimization with explicit
data structure selection. This method not only enables the compiler to gen-
erate efficient code for sparse matrix computations, also the complexity of the
programming effort is greatly reduced.

HPF+ – Language and Implementation Support
for Irregular Computations

Hans Zima
University of Vienna, Austria

The High Performance Fortran Forum (HPFF), which first convened during 1992,
set itself the task of defining language extensions for Fortran to facilitate data
parallel programming on a wide range of parallel architectures without sacrificing

11

performance. Much of the work focussed on extending Fortran 90 by directives
for specifying alignment and distribution of a program’s data. These enable the
programmer to influence the locality of computation by controlling the manner
in which the data is mapped to processors. Other major extensions include data
parallel constructs, such as the FORALL statement and construct, the INDE-
PENDENT directive, and a number of library routines.
However, the current version of the language, HPF-1, has not fully achieved the
stated goal. While the basic distribution functions offered by the language –
regular block, cyclic, and block cyclic distributions – can support regular numer-
ical algorithms, advanced applications such as multiblock codes, particle-in-cell
codes or sweeps over unstructured grids require added functionality that cannot
be expressed adequately. This is a major weakness of HPF, which until now has
significantly reduced its chances of becoming accepted in the numerical commu-
nity.
We outline the major features of HPF+, a language which, on the one hand,
eliminates some unnecessary or ill-defined features of HPF-1, and, on the other
hand, extends its functionality, with an emphasis towards providing non-standard
data and work distributions, much along the lines of the Vienna Fortran language.
More specifically, the following set of extensions has been proposed:

• data distribution to processor subsets

• processor views

• general block distributions

• indirect distributions

• user-defined distribution functions, and

• on-clauses for the control of the work distribution in an INDEPENDENT
loop.

At this time, the syntax and semantics of HPF+ have been informally defined.
In the ESPRIT IV project “HPF+”, which is coordinated by the University of
Vienna and includes the University of Pavia, NAS Software, and three application
developers (ECMWF, Engineering Systems International (ESI), and AVL), a full
language specification is being developed and implemented in the framework of
the Vienna Fortran Compilation System. The results of this work are also being
input to the HPF Forum, which currently works on the definition of an HPF-2
language.

12

Compilation Issues for Irregular Problems

Guillermo P. Trabado and Emilio L. Zapata
University of Malaga, Spain

Many large-scale computational applications contain irregular data access pat-
terns related to unstructured problem domains. Examples include finite element
methods, computational fluid dynamics, and molecular dynamics codes. Such
codes are difficult to parallelize efficiently with current HPF compilers. However,
most of these problems exhibit spatial locality. We review how data is handled
in such programs, which problems arise at the time of parallelization and the
techniques that a compiler will use to parallelize these codes.
Unordered sets of particles or locations are stored as coordinate lists that can
be distributed using Multiple Recursive Decomposition (MRD), a pseudo-regular
distribution, which combines efficient implementation with good load balancing
and communication behavior. Unstructured domains are accessed via indirection
arrays. We introduce a new directive that serves to identify indirection arrays and
the boundaries of the associated domains. Indirection arrays are aligned with the
data arrays. Using the information provided in the directive, the compiler can
produce a target program with significantly better performance than an approach
based on indirect distributions and the inspector/executor paradigm.

Foundations of Parallel Speculative Execution

Paul Feautrier and Jean-François Collard
University of Versailles, France

Static scheduling consists of compile-time mapping of operations onto logical ex-
ecution dates. However, scheduling so far only applies to static control programs,
i.e., roughly to nests of DO (or FOR) loops. To extend scheduling to dynamic
control programs, one needs a method that (1) is consistent with unpredictable
control flows (and thus unpredictable iteration domains), (2) is consistent with
unpredictable data flows, and (3) permits speculative execution. We discuss first
the several types of dependences which are to be considered in the scheduling pro-
cess: data dependences and control dependences. Then we show that speculative
execution is obtained if one ignores some control dependences when selecting a
schedule. To restore program correctness, one has to include compensating de-
pendences. Provided that the schedules are selected in such a way that the total
amount of work to be done before any given instant is finite, one can prove that
the parallel program terminates and gives correct results. A simple criterion for

13

the finiteness condition is given. In the conclusion, we point to the many ques-
tions which are still unsolved and have to be answered before speculative parallel
execution becomes a practical method.

Optimistic Parallel Computation

Damal K. Arvind
University of Edinburgh, Scotland, UK

The correct execution of a parallel program demands that the causal relation-
ships, either due to data or control dependencies, be respected. For extracting
greater concurrency in programs, it may be advantageous to be able to specu-
late on conditional control dependencies: for instance in the case of loops with
run-time dependencies or programs which are rich in control structures. This
requires additional mechanisms during the program execution for detecting and
recovering from causal violations. We describe the fundamentals of optimistic
parallel computation and explore the intimate interactions between the compiler
and the hardware for supporting this efficiently.

On the Optimal Size and Shape of Supernode
Transformation

Edin Hodzic and Weijia Shang
Santa Clara University, California, USA

Supernode transformation has been proposed to reduce the communication startup
cost by grouping a number of iterations in a nested loop as a supernode which is
assigned to a processor as a single unit. A supernode transformation is specified
by n families of hyperplanes, which slice the iteration space into parallelepiped
supernodes, the grain size of a supernode, and the relative side lengths of the
parallelepiped supernode. The total running time is affected by the three factors.
We discuss how to find an optimal grain size and an optimal relative side length
vector. Our results show that the optimal grain size is the ratio of the commu-
nication startup cost to the computation speed of the processor, and that the
optimal supernode shape is similar to the shape of the index space, in the case
of hypercube index spaces and supernodes.

14

Reducing Storage Size for Static Control
Programs Mapped onto Parallel Architectures

Eddy De Greef, Francky Catthoor and Hugo De Man
IMEC, Leuven, Belgium

We report new insights in the problem of reducing storage size for static control
programs that are being mapped onto several classes of parallel architectures.
These insights and the accompanying mathematical descriptions allow us to em-
ploy more aggressive data transformations than previously possible. These trans-
formations can result in a considerable reduction of the storage size by reusing
memory locations several times. This is especially important for data-intensive
algorithms implemented in embedded systems, such as multimedia applications.
In these applications, the memory cost is usually dominant, such that a large re-
duction in memory area is certainly desirable. The presented techniques (almost)
do not interfere with traditional parallelization techniques and are in that sense
complementary to them. They are embedded in a larger methodology for mem-
ory management which focuses on both optimizing transformations and improved
memory organization when mapping multimedia applications onto processors.

Optimization of Inspector/Executor Code
Generated by Parallelizing Compilers

Thilo Ernst
GMD-FIRST, Berlin, Germany

In compiling irregular codes for distributed-memory architectures, the lack of
compile-time knowledge about data access patterns is hampering sophisticated
organization of communication. Combined compile-time/run-time analysis tech-
niques, often called inspector/executor methods, are known as one of the most
promising approaches to attack this problem.
However, if such methods are applied by the compiler to data-parallel assignments
(e.g., HPF FORALL) in a simple, local manner, prohibitive performance penalties
can be caused by redundant inspector computations. Notably, invariant inspector
computations occurring in (possibly nested) loops are identified as damaging the
performance.
These and other cases can successfully be attacked by applying partial redun-
dancy elimination (PRE) optimization techniques to the inspector computations
under consideration. Such techniques find a more optimal placement of the com-
putations in question while satisfying the usual optimization criteria.

15

However, in contrast to classical optimization, an inspector computation also
entails a memory allocation for the (possibly huge) run-time descriptor in which
the result is stored. This gives rise to the question at which point to deallocate the
memory for each descriptor, now that the descriptor computations/allocations are
placed differently.
A simple algorithm based on statement-level descriptor liveness analysis is pre-
sented to find a safe, sufficient and optimal placement of deallocation primitives
based on the computation/allocation placement found by the PRE algorithm.
Finally, preliminary work is presented about integrating a PRE method based
on the notion of districts with a solution of the deallocation placement problem
discussed before.

On Two Examples of the Need for
Non-Traditional Optimizations Involving

Reductions

P. Sadayappan
Ohio State University, Columbus, Ohio, USA

We present two examples to point out the need for optimizations pertaining to
reduction operations – an aspect that has traditionally not been addressed much
by the work on parallelizing compilers.
The first example is parallel sparse Cholesky factorization. Several domain-
specific ideas used in generating efficient ”hand-crafted” parallel codes for this
computation are first explained. It is then shown for a sample sparse matrix that
a re-constructed directed acyclic graph corresponding to a ”hand-crafted” paral-
lel algorithm is in fact different from that corresponding to an efficient sequential
sparse Cholesky algorithm. The difference is fundamentally due to changes in
the order of application of commutative and associative operations, facilitated by
domain-specific heuristics that use deep insight into the application domain. If
a general-purpose DAG scheduling heuristic were to be used with the different
DAG corresponding to the sequential program, it seems impossible to create the
same (or a comparable) schedule as that possible by use of the domain heuristics.
This is at least partly due to the fact that, by using the sequential program’s
DAG, the degree of freedom possible with reordering commutative/associative
operations is not exploited.
The second example is motivated by an application in computational physics.
There is the potential for a significant reduction in the number of arithmetic
operations in a nested loop computation by judicious application of a distributive
law to a multi-dimensional summation expression. This kind of optimization
involving reduction operations is traditionally not performed by compilers.

16

Parallel Programming with PEI

Guy-René Perrin
Université Louis Pasteur, Strasbourg, France

A wide range of research work on the static analysis of programs forms the foun-
dation of parallelization techniques which improve the efficiency of codes: loop
nest rewriting, directives to the compiler to align or distribute the data or the
operations, etc. These techniques are of particular interest in data parallel pro-
gramming. They are based on geometric transformations either of the iteration
space or of the index domains of arrays.
In some sense, this shows that, beside a classical functional point of view on
programs, geometric issues in parallel programming or parallelizing compilation
have to be considered of main importance for the mastery of efficient computa-
tions. This geometric approach entails an abstract manipulation of array indices,
to define and transform the data dependences in the program, the way the data
are, or are not, locally accessible, their expansion in a multidimensional space of
virtual processors, etc. This requires to be able to express, compute and modify
the placement of the data and operations in an abstract discrete reference do-
main. Then, the programming activity may refer to a very small set of primitive
issues to construct, transform or compile programs. PEI is a program notation
and includes such issues.
We focus on some applications in parallel programming, which are induced by
algebraic laws in PEI: parallelization techniques, memory storage optimization,
reduction and data alignment in data-parallel languages.

Parallel Loops in High Performance Fortran

Robert Schreiber
HP Labs, Palo Alto, California, USA

High Performance Fortran (HPF) is widely known as a data-parallel dialect of
Fortran. In fact, HPF supports more than one means for expressing parallelism.
Simple array-based data parallelism is there, but so is a quite general parallel
loop construct, a DO loop whose iterations are asserted to be independent. This
allows an arbitrary collection of tasks to run in parallel provided, in HPF version
1, that they do not communicate.

17

Of course, this prohibition is too limiting. In HPF version 2, an additional
capability allows loops whose iterations perform reduction operations to also run
in parallel. Another construct of HPF 2 will allow more general task structures,
such as task pipelines, to be expressed. Finally, HPF 2 supports the ability to
map data structures to processor subsets and to operate in parallel on different
data structures using different submachines.

Dataflow Analysis in Parallel Programs

Jean-François Collard and Martin Griebl
Université de Versailles, France, and University of Passau, Germany

We describe a dataflow analysis of array data structures for data-parallel and/or
control- (or task-) parallel imperative languages. This analysis departs from
previous work because (1) it handles simultaneously both parallel programming
paradigms, and (2) it does not rely on the usual iterative solving process of a set
of dataflow equations but extends array dataflow analysis based on integer linear
programming, thus improving the precision of results.

A Library for Operations on Z-Polyhedra

Tanguy Risset
IRISA, Rennes, France

Z-polyhedra are in the intersection of polyhedra and integral lattices. Z-polyhedra
are used to model loop iteration domains; operations on Z-polyhedra are useful for
loop transformations. We present a practical approach to the problem of compu-
tation upon Z-polyhedra. We introduce a canonic representation of Z-polyhedra,
which allows to perform comparisons and transformations of Z-polyhedra with
the help of a computational kernel for polyhedra. This contribution is a step
towards the manipulation of images of polyhedra by affine functions. It has ap-
plications in the domain of automatic parallelization and parallel VLSI synthesis.

18

3 List of Participants

19

