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Preface

Specification and semantics are two branches of theoretical computer science on which for-
malisms for analyzing, constructing and verifying computer software have been successfully
built. Over the last few years such formal methods have been increasingly accepted and
applied in practice which in turn has stimulated new efforts in research.
In this second edition of the seminar on Specification and Semantics recent scientific

results and new research directions in the area of foundations, methods and applications of
mathematics-based software development were discussed by more than 40 scientists. The
36 talks focussed in particular on the following topics:

• mathematical foundations of specification and semantics
including models and logic calculi, concepts of category and type theory, algebraic
concepts and theorem provers;

• methods of formal semantics
including denotational, operational and axiomatic semantics, algebraic and categor-
ical semantics, transition systems and term and graph rewriting;

• approaches to formal specification
including abstract data types, model-oriented specification, algebraic specification,
graphical specification and formal specification languages;

• formal development and verification methods
including formal requirement analysis and specification, structuring and modularisa-
tion techniques, verification and validation of modules and configurations and formal
aspects of reusability;

• applications of specification and semantics
including description of programming languages, methods for software development,
parallel and distributed systems, safety-critical systems, modeling and specification
languages, data and knowledge based systems.

On behalf of all the participants the organizers would like to thank the staff of Schloß
Dagstuhl for providing an excellent environment to the conference.

The Organizers,

Hartmut Ehrig Friedrich von Henke José Meseguer Martin Wirsing
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Timed Process Algebra: Theory and Applications

J.C.M. Baeten

Eindhoven University of Technology
P.O.Box 513

5600 MB Eindhoven, The Netherlands
josb@win.tue.nl

This is joint work with Jan Bergstra, University of Amsterdam and Utrecht University.
We give an overview of our work since 1989 on process algebra extended with timing

constructs. Based on untimed process algebra, we have extensions with discrete timing
(time divided into slices) and dense timing (continuous time). We have variants with
relative timing, absolute timing and parametric timing (where relative and absolute are
integrated). We have variants with timestamped actions and with two-phase timing (where
execution of actions and passage of time are separated). We stress the fact that all these
styles are needed, and should interact closely. We have an integrated framework, based
on conservative extensions. All timing constructs found in the literature can be translated
into this framework.
We mention a number of applications. More information can be found on

http://www.win.tue.nl/win/cs/fm/josb.

A Unified Relational Approach to

Semantics of Non-deterministic

Applicative Programs

Rudolf Berghammer

Institut für Informatik und Praktische Mathematik
Christian-Albrechts-Universität Kiel

Preusserstraße 1–9, D–24105 Kiel, Germany
rub@informatil.uni-kiel.de

The natural meaning of a program written in an applicative language like LISP or ML
is a (possibly partial) function. Functions are specific relations, and the idea of relational
semantics for applicative programs is to regard the semantics of programs as elements of
an (abstract) relational algebra.
In general, relations are neither univalent nor total. Thus, using them rather than

functions in semantics, one is able to avoid the complexity introduced by artificial bottom
elements denoting undefinedness and has, in addition, natural candidates for modelling
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non-determinism. A further reason for using relations is that they can be calculated with
so well. Using equational-like reasoning for applicative programs, we can construct proofs
that are intuitive, memorable and even machine-checkable.
The two basic ingredients of functional / applicative programs are composition and ap-

plication. Composition is a built-in operator of relational algebra and based on it ap-
plication easily can be defined. Other control constructs like conditional and recursive
declarations as well as concrete data like truth values and natural numbers must be trans-
lated into the language of relations.
The talk is organized as follows. First, we collect relational descriptions of the data

domains the programs defined later will operate on. Then, we introduce the idea that an
applicative program is a relation, and look at some ways of combining simple programs
into more complex ones. In the third part we define the formal syntax and relational
semantics of a simple non-deterministic applicative language. And, finally, we explore the
three different kinds of non-determinism known from the literature and their significance
for termination problems.

Architectural Specifications

Michel Bidoit

LIENS, CNRS URA 1327 & Ecole Normale Supérieure
45 rue d’Ulm

F–75230 Paris Cedex 05, France
Michel.Bidoit@ens.fr

In this talk we explain the motivations that have led to the introduction of “architectural
specifications” in the specification language currently designed by the Common Frame-
work Initiative for Algebraic Specifications (CoFI, cf. Peter Mosses’s talk). Architectural
specifications are intended to fulfill the following requirements:

• To be able to describe in a design specification the architecture of the system to
be implemented. Thereby this architecture is considered to be a crucial part of the
design specification.

• To be able to identify sub-components and to provide to implementation teams spec-
ifications of these sub-components as independent implementation tasks. Each sub-
component specification should be implementable independently.

• Any combination of (arbitrary) correct realizations of the component specifications
should provide a correct realization of the whole system specification, and only such
combinations are indeed correct reazlizations: it is mandatory to respect the archi-
tecture as specified in the architectural design specification.
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Then we explain why the usual model class semantics for loose specifications is not fine
enough, and we provide some ideas on how to define both the syntax and the semantics of
architectural specifications.

Evolving Algebras and Parnas Tables

Egon Börger

Dipartimento di Informatica, Universita di Pisa
On sabbatical leave at Siemens Research and Development

München, Germany
boerger@di.unipi.it

We show that Parnas’ approach to use function tables for a precise program documentation
can be generalized and gentilized in a natural way by using evolving algebras for well
documented program development as proposed by us in [BBD+95].
Parnas’ function table approach and the evolving algebra approach to program docu-

mentation share a large common ground, pragmatically, conceptually and methodologically.
Pragmatically, they both aim at supporting the understanding of programs by humans -
for purposes like review, maintenance, use by application domain experts. Conceptually,
they both are based on the use of functions, of the notion of states and their dynamics as a
function of time, and of the distinction of environmental (monitored) and controlled quan-
tities. Methodologically, they both are concerned a) to use only standard mathematical
language for providing unambiguous complete descriptions using simple notation, b) to re-
veal the structure of programs by identifying byilding blocks and by keeping traces of their
development, c) to ”show” the correctness of programs or program parts by mathematical
reasoning.
Evolving algebras offer a fainer grained use of functions (which by the way are allowed

to come with an arbitrary finite number of arguments and are classified also into dynamic
and static functions). Evolving algebras provide methods for semantical structuring of
programs (which are based on systematic use of stepwise refinements). In addition by
a simple yet precise semantics they yield a safe mathematical foundation for the use of
function tables. (This semantics is based only on first-order logic and directly supports the
intuitive understanding of programs by progrmamers.)
In this talk we illustrate our claims by translating some typical Parnas tables, taken

from the literature, into evolving algebra rules.

3



References

[BBD+95] C. Beierle, E. Börger, I. Durdanovic, U. Glässer, and E. Riccobene. Refining abstract
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Proof systems for parametric specifications

Maŕıa Victoria Cengarle

Ludwig-Maximilians-Universität München
Oettingenstr. 67

80538 München, Germany
cengarle@informatik.uni-muenchen.de

In this talk we consider a kernel ASL language for formal specification over an arbitrary
institution whose category of signatures is inclusive, and has initial object, inclusion pre-
serving pushouts, and semi-composable signatures. This language is equipped with the
three specification-building operators of amalgamated sum, renaming and restriction (also
called export). The semantics of a specification expression is based on the loose approach.
The language is enhanced with simply typed λ-calculus parameterization. Given a

sound proof system for the underlying institution, a proof system for parameterized specifi-
cations is presented. This system extends a structured proof system for the non-parametric
fragment and its judgements are supplied with a context assuming values for variables pos-
sibly occurring free in the parameterized specification term. The system is correct, and is
moreover complete w.r.t. denotable assumptions if the structured proof system is complete
(what depends on the completeness of the proof system chosen for the institution, appli-
cability of the deduction theorem, the interpolation property, the form of formulas, and
some other hypothesis on finiteness of formulas and/or inference rules). The proof system
permits the derivation of the refinement approach to implementation relation by means of
an inference system which again extends a system for non-parametric specification expres-
sions. With these tools combined, we can support the definition of parameter restrictions
in terms of refinement, and furthermore their derivation. In this way, the β-equality of
λ-terms becomes a derived relation. In other words, parameter verification is performed.
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Specification of Concurrent Systems:

From Petri Nets to Graph Grammars

Andrea Corradini

Dipartimento di Informatica
Corso Italia 40
Pisa, Italy

andrea@di.unipi.it

Graph Rewriting Systems are a powerful formalism for the specification of parallel and
distributed systems, and the corresponding theory is rich of results concerning parallelism
and concurrency.
I will review some results of the theory of concurrency for the algebraic approach to

graph rewriting, emphasizing the relationship with the theory of Petri nets. In fact, graph
rewriting systems can be regarded as a proper generalization of Petri nets, where the current
state of a system is described by a graph instead of by a collection of tokens. Recently, this
point of view allowed for the generalization to graph rewriting of some interesting results
and constructions of the concurrent semantics of nets, including processes, unfoldings, and
categorical semantics based on pair of adjoint functors.

First-order Definable Automata

Jorge R. Cuéllar

Siemens, ZFE T SE 1
Munich, Germany

Jorge.Cuellar@zfe.siemens.de

Think of an Evolving Algebra as describing a set of traces. (Not only one trace, due to some
non-determinism, say through the presence of oracles for the actions of the environment
or the indeterminism of the “timing conditions” of agents). A trace is simply a sequence
of states (= Σ-Algebras, for some signature Σ). Let us assume that the composition of
agents (Evolving Algebras on signatures that may intersect) is defined in such a way that
the set of traces of the composition is related to the sets of traces of the agents by the
condition that, π is a trace of the composition iff when restricted to the local states of
each agent, the restriction is a trace of the corresponding agent. If this is the case, and
the composition is seen as an Evolving Algebra, then the resulting Evolving Algebra has
fairness properties.
This leads us to the following definition: a FOL-Automaton is (Π,Π0,→,F where Π is

a set of states (algebras), Π0 a subset of Π (described by a first-order formula)→ a subset
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of Π×Π, (also described by a first-order formula, as in TLA) and F) a set of acceptance (or
fairness) conditions. A technical point is that the acceptance conditions should be stutter
invariant, due to the fact that composition (as well as refinement) introduce stuttering.
This is achieved by the introduction of observable transition formulas (a generalization of
Lamport’s 〈A〉f).
Then a definition of traces of FOL-Automata is given, together with a notion of com-

position (or product, or conjunction) of FOL-Automata. The traces of the composition
is the intersection of the traces of the automata. Further, with an appropriate method of
hiding (existential quantification), the notion of refinement corresponds to trace inclusion.
Moreover, this definition of FOL-Automata may be extended to the case where the

Automata “communicate” via “actions” (and not “variables”).
One application of the methods described is the use of model-checking and automata-

based reasoning for TLA or, in other words, the combination of TLA-Theorem proving
and model-checking.

Specifying Concurrent Information Systems Without

Specifying Concurrency

Hans-Dieter Ehrich

Technische Universität Braunschweig
Postfach 3329

D-38023 Braunschweig
HD.Ehrich@tu-bs.de

An information system is a reactive, open, and typically distributed system maintaining
data bases and application programs. A crucial point is to obtain high-level specification
techniques that are suitable for such systems, i.e., that cope with data and programs as
well as distribution and concurrency and communication. The talk presents recent ideas on
semantic fundamentals. The key idea is not to specify concurrency explicitly but assume
it as the basic mode of operation. Explicit specification is given for constraining concur-
rency, e.g., sequential execution, synchronous interaction, etc. For doing this, a distributed
temporal logic is used. Interpretation is given in locally sequential prime event structures.
The model categories of interest have final elements that may serve for assigning standard
semantics. In-the-large specification concepts like inheritance, hiding, generalization and
aggregation can be given semantics as limits and colimits in appropriate model categories.
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Synchronization of views of system specifications

based on graph transformations

H. Ehrig

FB 13, Technische Universität Berlin
Franklinstr. 28/29

D-10587 Berlin, Germany
ehrig@cs.tu-berlin.de

coauthored by
R. Heckel, U. Wolter (TU Berlin), A. Corradini (Univ. Pisa), G. Engels (Leiden)

This lecture bridges the gap between system specifications based on algebraic specification
techniques with those based on graph transformations. In the case of algebraic speci-
fications the synchronization of views can be done using amalgamation, which can be
considered as a pushout construction in the Grothendieck category of generalized algebras.
The synchronization construction for typed graph transformation systems, on one hand
has been developed by Leila Ribeiro according to the requirements of the industrial com-
pany NUTEC within a German-Brazil cooperation project, on the other hand turns out to
be a pullback construction in the category of graph transformation systems. In fact this
category is also a Grothendieck category with respect to a split opfibration functor defined
by typed graph transformation systems. Moreover, a loose semantics for graph transfor-
mation systems is defined which can be shown to be a cofree functor. Hence it preserves
pullbacks which implies compositionality of the loose semantics w.r.t. the synchronization
operation.

Specification and Semantics

of Software Architectures

José Luiz Fiadeiro

Department of Informatics
Faculty of Sciences, University of Lisbon

Campo Grande, 1700 Lisboa
Portugal

llf@di.fc.ul.pt

We provide a categorical semantics for connectors as used in software architectures, namely
by Allen and Garlan, that uses and generalises notions of parameterisation as developed
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for abstract data type specification. More concretely, we investigate the applicability of
pushout-based notions of parameter passing in the context of categories of, on the one
hand, temporal specifications and, on the other hand, COMMUNITY programs. The
fact that these two categories are concrete and reflective over categories of signatures is
exploited for generalising parameterisation to connectors specified in the form of diagrams.
Finally, we extend the notion of connector of Allen and Garlan by taking roles as temporal
specifications and the glue as a COMMUNITY program.

An Object Specification Language Implementation

with Web User Interface based on Tycoon

Martin Gogolla, Mark Richters

Bremen University
Postfach 330440
D-28334 Bremen
Germany

{gogolla|snurp}@informatik.uni-bremen.de

TROLL light is a specification language suitable for the description of structure and
behavior of objects in information systems [GCH93, GCD+95]. The language allows to
describe the part of the world to be modeled as a community of concurrently existing
and communicating objects. Apart from a set-theoretic semantics TROLL light has a
pure algebraic semantics [GH95]. The main underlying idea is to present a transition
system where the states represent the states of the specified information system, and state
transitions are caused by the occurrence of finite sets of events.
Tycoon is a persistent programming environment [Mat93, MMS95] developed at Ham-

burg University. It is an open system in the sense that it allows different methods for
persistent storage of objects and programs (for example file systems, relational databases,
object-oriented databases, etc.) and different methods for handling of user interfaces (for
example TCL/TK, Web Browsers, etc.). The underlying programming language TL has a
rich type system, and allows for generic programming and external communication. It is
orthogonal with respect to persistence, type completeness, and interator abstraction. TL
is strictly typed, has higher order functions, is neutral with respect to the data model, and
has a small language kernel. TL is the basis for all services in the Tycoon programming
environment.
We concentrate on the user interface of a TROLL light implementation based on Ty-

coon. The implementation employs a normal Web browser (Netscape, Mosaic, etc.) for
both the exploration of template, i.e. object type, descriptions (for an example see the
window in Fig. 1 displaying an author template) and objects, i.e. instances (for an example
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Figure 1: Object template

see the window in Fig. 2 displaying an author object), of these templates. In particular,
objects are represented by HTML documents and object references can be followed simply
with the Web browser.
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Figure 2: Object instance

[GCH93] M. Gogolla, S. Conrad, and R. Herzig. Sketching Concepts and Computational Model
of TROLL light. In A. Miola, editor, Proc. 3rd Int. Conf. Design and Implementa-
tion of Symbolic Computation Systems (DISCO’93), pages 17–32. Springer, Berlin,
LNCS 722, 1993.

[GH95] M. Gogolla and R. Herzig. An Algebraic Semantics for the Object Specification
Language TROLL light. In E. Astesiano, G. Reggio, and A. Tarlecki, editors, Re-
cent Trends in Data Type Specification (WADT’94), pages 288–304. Springer, Berlin,
LNCS 906, 1995.
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Object: author (oid = 6) 
Sort of object: author 
The super object is an instance of authorContainer. 

Attributes 

• Name:string="Ghezzi" 
• DateOfBirth : string = "1949" 
• SoldBooks : MAP(Y ear:int, N umber:int) = MAP() 

Subobjects 

State 1 

Events 

• BIRTH create(N ame : string, DateOfBirth : string) 
• changeN ame(N ew Name : string) 
• storeSoldBooks(Y ear : int, Number : int) 

Query and Interaction 
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You can perform queries or trigger events in the context of this object. Enter a term 
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[Mat93] F. Matthes. Persistente Objektsysteme: Integrierte Datenbankentwicklung und Pro-
grammerstellung. Springer, Berlin, 1993.

[MMS95] B. Mathiske, F. Matthes, and J.W. Schmidt. Scaling Database Languages to Higher-
Order Distributed Programming. In P. Atzeni and V. Tannen, editors, Proc. of the
5th Int. Workshop on Database Programming Languages (DBPL’95), 1995.

Classical Logic and Exception Handling

Philippe de Groote

Inria-Lorraine & CRIN-CNRS
615 rue du jardin botanique, B.P. 101
54602 Villers-lès-Nancy Cedex, FRANCE

Philippe.de.Groote@loria.fr

The notion of exception and the one of data type constructor, in Standard ML, are
unified. This unification, which follows a proposal by D.B. MacQueen, is based on the
special datatype exn that stands for the type of exception. Values of type exn are first-
class citizen: they may be stored, they may be pass as parameters, returned as results,
etc. In addition, and contrarily to the other values, they may also be turned into packets
by being raised.
The typing and reduction rules of the operator raise are the following:

Γ − N : exn

Γ − raiseM : α

V (raise M) → (raise M) (for V a value)

(raiseM)N → (raiseM) (for N any expression)

These rules correspond respectively to the deduction rule and the proof reduction rules
that are used in natural deduction for falsity.

⊥

α

...
α→ β

...
⊥
α

β
→

...
⊥

β

...
⊥

α→ β

...
α

β
→

...
⊥

β

This observation allows us to draw the following conclusion: it makes sense to identify,
through the Curry-Howard isomorphism, the type of exceptions (exn) with the logical notion
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of falsity (⊥). Let us accept this identification and proceed further with our type-theoretic
analysis of exception handling.
Packets, i.e. raised exceptions, are propagated and then possibly handled. The typing

rule for exception handlers is akin to the following:

Γ − M : α Γ − N : exn → α

Γ − M handle N : α

This rule is certainly sound, but not satisfactory. On the one hand, we would like to
have a rule that allows exception declarations to be discarded. This is mandatory if we
want to preserve the logical consistency of the type system because we have identified the
type of exception with falsity. On the other hand, as it is stated, this rule does not reflect
the SML exception handling mechanism properly. Indeed in SML the right hand side of
the operator handle is not an expression but a match.
A solution to these two problems is to consider the following typing rule:

Γ, y : ¬α − M : β Γ, x : α − N : β

Γ − let y : ¬α inM handle (y x)⇒ N end : β

This rule, which is consistent with the definition of SML, corresponds to the elimination of
the disjunction for the particular case of the excluded middle. Therefore it is sound with
respect to classical logic. This is not too surprising because it is known, since Griffin’s
work, that there is a strong connection, through the Curry-Howard isomorphism between
classical logic and sequential control.
Because classical logic is consistent, it is not possible to build any closed expression of

type ⊥ (that is of type exn) by using the above rule. Consequently, our typing system seems
to ensure the interesting property that well-typed programs cannot give rise to uncaught
exceptions. Unfortunately it is not so because the operational semantics of ML does not
fit our interpretation. For this reason, we propose a modified semantics. As far as non-
exceptional values are concerned, this modified semantics is equivalent to the original one.
Moreover, it ensures that any raised exception is eventually handled.
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First Steps Towards an Institution of Algebra

Replacement Systems

Martin Große–Rhode

Technische Universität Berlin
Franklinstr. 28/29
Berlin, Germany

mgr@cs.tu-berlin.de

For the specification of interactive (open, distributed) systems a notion of states and
state transitions is needed. The purpose of the Algebra Replacement Systems – approach
is to introduce such notions on top of purely functional algebraic data type specifications
in order to allow for a layered system specification that is as functional as possible and
adds state changes on top of the functional part. This idea is expressed by the slogan
states are algebras and transitions are replacements of (sub–)algebras. The framework is
developed systematically as an institution, that is, signatures, models and morphisms, and
axioms (replacement rules) and satisfaction are defined in general. In particular a loose
semantics (model category) for replacement rules is defined that allows to interpret rules as
requirement specifications instead of concstructions. It can be shown that the constructive
interpretation of replacement rules then yields an initial model in the category defined
above.

On Proof Systems for Structured Specifications

Rolf Hennicker

Institut für Informatik, Ludwig-Maximilians-Universität München
Oettingenstr. 67

D-80538 München, Germany
hennicke@informatik.uni-muenchen.de

– In cooperation with Michel Bidoit, Maŕıa Victoria Cengarle, and Martin Wirsing –

Reasoning about specifications is a fundamental task when using formal specifications in
program development. For this purpose proof methods are needed that allow one to prove
consequences of a specification.
We provide an overview on proof systems for structured ASL-like specifications in a

first-order logical framework. Two different kinds of proof systems are considered: non-
compositional and structured proof systems. While non-compositional proof systems either
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compute a normal form of a given specification or associate a flat, unstructured set of non-
logical axioms and rules to a specification, structured proof systems allow one to perform
proofs according to the modular structure of a given specification.
First we show that the considered proof systems are sound and (relatively) complete for

a kernel specification language that includes basic (flat) specifications, renaming, export
(hiding) and the combination of specifications. Then we extend the kernel language by
reachability and observability operators and we show that using infinitary first-order sen-
tences and/or infinitary (semi-formal) proof rules the soundness and completeness results
carry over to the extended language.

Behavioural abstraction and behavioural satisfaction

in higher-order logic, with higher-typed functions

Martin Hofmann and Don Sannella

TH Darmstadt
Schloßgartenstr. 7
D-64289 Darmstadt

Germany
mh@mathematik.th-darmstadt.de

The behavioural semantics of specifications in higher-order logic with function types is
analysed. A characterisation of behavioural abstraction based on a reinterpretation of
equality as indistinguishability, originally due to Reichel, recently generalised to first-order
logic by Bidoit, Hennicker, and Wirsing, and subsequently extended by the authors to
higher-order predicate logic, is further generalised to higher-order logic with function types
and Hilbert’s ε-operator. This generalisation enables for example a direct formulation of
specifications using recursively defined local functions.
The possibility of having higher-order functions not only in specifications, but also in

signatures, is discussed.
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Action Refinement and Inheritance of Properties in

Systems of Sequential Agents

Michaela Huhn

Institut für Informatik, Universität Hildesheim,
Marienburger Platz 22,
Hildesheim, Germany

huhn@informatik.uni-hildesheim.de

For systems of sequential agents, fundamental relations between events - causality and
conflict - are naturally connected to a global dependency relation on the system’s alphabet.
Action refinement as a strictly hierarchical approach to system design should preserve this
connection. It can be shown that bisimulation is a congruence with respect to action
refinement and temporal logic specifications can be inherited from the abstract to the
concrete level.
To model the behaviour of systems of sequential agents we use synchronisation struc-

tures, a subclass of prime event structures respecting localities. Action refinement on
synchronisation structures does not strictly inherit causality and conflict as it is done in
the standard approach but parameterised with a dependency relation. The dependency re-
lation is derived from the structuring of the system into components which we assume to be
fixed already in an early design phase. Then parameterised inheritance of causality allows
to execute parts of refinements concurrently even if the corresponding abstract actions are
causally ordered which has been shown to be useful in case studies. Parameterised inher-
itance of conflict may lead to deadlocks on the refined level although the abstract system
and the refinement function are deadlock-free. These deadlocks occur if the refinements of
different actions interfere and they indicate that additional control structure is required to
maintain the behaviour.
To express temporal properties of systems we use νTrPTL, a linear time partial order

logic. νTrPTL contains local next operators that correspond exactly to local transitions of
the agents. This correspondence is fundamental for the definiton of a family of refinement
transformations compatible with the action refinement operator on the models. A refine-
ment transformation is based on regular expressions that describe causal chains leading
through a refinement. The regular expressions are used to substitute an abstract modality
“Next a” by a sequence of modalities. Under reasonable constraints on the refinement
function satisfaction of formulae on the abstract system turns out to be equivalent to
satisfaction of the transformed formulae for the refined system.
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Describing the Semantics of Concurrent

Object-Oriented Languages

C B Jones

Department of Computer Science
Manchester University

Manchester
M13 9PL, UK
cbj@cs.man.ac.uk

This talk will review attempts to ascribe semantics to concurrent object-based languages
using both operational (SOS) and translational (to process algebras) approaches. The
two semantic approaches will be compared as to their usefulness for gaining an intuitive
understanding of the COOL in question. Thus far there is nothing very novel but the
question of proving the soundness of some equivalences will be shown to be a non-trivial
challenge using either semantics.
The foils can be viewed by ftp’ing to ftp.cs.man.ac.uk in pub/cbj/fools.ps.gz.

Basic concepts of rule-based specification

Hans-Jörg Kreowski

Universität Bremen
Fachbereich Mathematik/Informatik

Postfach 33 04 40
D-28334 Bremen

kreo@informatik.uni-bremen.de

Deriving configurations from configurations by applying rules is the key notion of any
rule-based specification framework (like Chomsky grammars, L-systems, term rewriting,
graph transformation, Petri nets, and many others). Moreover, the derivation process may
start in certain initial configurations only, and only certain terminal configurations may be
accepted as results. In this way, each set of rules together with descriptions of initial and
terminal configurations, called a transformation unit, specifies a binary relation on config-
urations. In practical applications, such rule-based specifications may comprise hundreds,
thousands, even millions of rules so that one needs structuring principles to build up large
systems from small units. For this purpose, a transformation unit is allowed to import a
set of items. If each imported item refers to a binary relation on configurations on the
semantic level, one may compose derivation steps, applying rules of the transformation

16



unit, with calls of the semantic relations of the imported items. This yields an interleav-
ing semantics for transformation units genralizing the derivation semantics of elementary,
unstructured transformation units. To obtain a proper structuring principle, one may as-
sume that the imported items are again transformation units. If the import structure in
such a case is hierarchical, the interleaving semantics constructed level by level yields a
unique interpretation. But even the assumption of a nested import structure with cycles
is meaningful. In this case, one can show that the interleaving semantics considered as an
operator on binary semantic relations has got a least fixed point, which can be as limit of
iterated interleaving semantics starting from empty relations.

Three Techniques Used in Specification Development

Wei Li

Dept of Computer Science
Beijing University of Aeronautics and Astronautics

Beijing,100083, P.R.China
liwei@cs.sebuaa.ac.cn

The processes of the development of a software system can be described by a sequence of
versions of the software system. Its ultimate precise specification of the software system
is the limit of sequence of the versions of the software system. Our approach is to intro-
duce the idea of approximation, convergence, and limits to the study on the specification
development.
Three key techniques are briefly introduced. They play an important role in building

the interactive specification development environments. they are: Fast algorithms on the
satisfiability problem in order to guarantee that the new laws added are consistent with the
current version; Efficient revision calculus so that the modification for generating a new
version can be done as less as possible when error is found in the current version; And good
development strategies to make the sequence of versions of the specification converging to
its limit as fast as possible.
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Rewriting Logic as a Logical and Semantic

Framework

Narciso Mart́ı-Oliet (joint work with J. Meseguer)

Departamento de Informática y Automática
Escuela Superior de Informática

Universidad Complutense de Madrid, Spain
narciso@eucmos.sim.ucm.es

Rewriting logic, described in [J. Meseguer, Conditional Rewriting Logic as a Unified Model
of Concurrency, Theoretical Computer Science 96, 1992, 73–155], is proposed as a logical
framework in which other logics can be represented, and as a semantic framework for the
specification of languages and systems.
Using concepts from the theory of general logics introduced in [J. Meseguer, General

Logics, in: H.-D. Ebbinghaus et al. (eds.), Logic Colloquium’87, North-Holland, 1989,
275–329], representations of an object logic L in a framework logic F are understood as
mappings L → F that translate one logic into the other in a conservative way. The ease
with which such maps can be defined for a number of quite different logics of interest,
including equational logic, Horn logic with equality, linear logic, logics with quantifiers,
and any sequent calculus presentation of a logic for a very general notion of “sequent,”
is discussed in detail. Representation maps of this kind provide executable and modular
specifications of the corresponding object logics within rewriting logic which can be very
useful for prototyping purposes.
Regarding the different but related use of rewriting logic as a semantic framework, the

straightforward way in which very diverse models of concurrency can be expressed and
unified within rewriting logic is emphasized and illustrated with examples such as concur-
rent object-oriented programming and CCS. The relationship with structural operational
semantics, which can be naturally regarded as a special case of rewriting logic, is discussed
by means of examples. In addition, the way in which constraint solving fits within the
rewriting logic framework is briefly explained. Finally, the use of rewriting logic as a logic
of change that overcomes the frame problem in AI is also discussed.
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Primitive subtyping ∧ implicit polymorphism
|= object-orientation

Stephan Merz

Universität München
Oettingenstr. 67

80538 München, Germany
merz@informatik.uni-muenchen.de

We present a new predicative and decidable type system, called ML≤ suitable for languages
that integrate functional programming and parametric polymorphism in the tradition of
ML, and class-based object-oriented programming and higher-order multi-methods in the
tradition of CLOS. Instead of using extensible records as a foundation for object-oriented
extensions of functional languages, we propose to reinterpret classical datatype declarations
as abstract and concrete class declarations, and to replace pattern-matching on run-time
values by dynamic dispatch on run-time types. ML≤ is based on universally quantified
polymorphic constrained types, where constraints are conjunctions of inequalities between
monotypes built from extensible and partially ordered classes of type constructors. We
define subtyping, domains, subdomains, and type application, all of which are based on
a basic notion of constraint implication. We give type-checking rules for a small, explic-
itly typed functional language with multi-methods, show that the resulting system has
decidable minimal typing, and prove a subject reduction theorem.

(Joint work with François Bourdoncle, Ecole des Mines, Paris.)

Membership Algebra

José Meseguer

SRI International
333 Ravenswood Avenue

Menlo Park, CA 94025, USA
meseguer@csl.sri.com

Membership equational logic is the outcome of a long-term search for greater simplic-
ity, expressiveness and generality in algebraic specification, coupled with the desire for
efficient implementability by rewriting, to pass from specifications to efficient declarative
programs. It supports partiality, subsorts, operator overloading, and error specification. It
can be fruitfully used as a common logical framework for algebraic specification in which
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other advanced algebraic specification formalisms can be conservatively translated with
particularly good preservation of their model-theoretic properties.
A signature in membership equational logic is a triple Ω = (K,Σ, π : S → K) with K a

set of kinds, (K,Σ) a many-sorted (although it would be better to call it “many-kinded”)
signature, and π : S −→ K a function from a set of sorts S to K. We denote by Sk the
inverse image of k along π.
An Ω-algebra is then a (K,Σ)-algebra A together with the assignment to each sort

s ∈ Sk of a subset As ⊆ Ak.
Atomic formulas are either Σ-equations, or membership assertions of the form t : s,

where the term t has kind k and s ∈ Sk. General sentences are Horn clauses on these
atomic formulae, quantified by finite sets of K-kinded variables.
Therefore, membership equational logic is a special case of Horn logic with equality

so that we have all the usual good properties: soundness and completeness of appropriate
rules of deduction, initial and free algebras, relatively free algebras along theory morphisms,
and so on.
Intuitively, the elements in sorts are the good, or correct, or nonerror, or defined,

elements, whereas the elements without a sort are error elements.
The important point is that, although membership equational logic is a very simple

logic, it can faithfully represent very nicely many other logics, even more complex ones,
used in algebraic specification. In particular, denoting membership equational logic by
Eqtl :, we have a conservative map of logics

Φ : OSEqtl −→ Eqtl :

from (an appropriate version of) order-sorted equational logic to membership equational
logic, and also a conservative map

Ψ : PEqtl −→ Eqtl :

from partial equational logic with conditional existence equations to membership equa-
tional logic. In this way, both partial and order-sorted algebra are subsumed in membership
algebra.
These extensions to membership algebra are both particularly nice, in that they are

bicompatible extensions , so that for each order-sorted (resp. partial) theory T there is
a full inclusion (called the extension functor) of the category of algebras of T into the
category of membership algebras for Φ(T ) (resp. Ψ(T )) that has a right adjoint in the
other direction, called the restriction functor . It then follows that initial algebras, free
algebras, and relatively free algebras—for example, in parameterized constructions—are
all preserved by both extension and restriction. Therefore, for all practical purposes we
can do our computation and our proof-theoretic and model-theoretic reasoning for order-
sorted or partial algebra specifications in their corresponding translations into membership
equational logic.
These ideas can be seen as an extension of ideas in order-sorted algebra. They have

been efficiently implemented in Maude, in joint work with Steven Eker, Patrick Lincoln,
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and Manuel Clavel. They also have a very nice rewriting operational semantics and Knuth-
Bendix completion theory, as well as powerful rewriting-based inductive proof techniques,
that have been developed in joint work with Jean-Pierre Jouannaud and Adel Bouhoula.

Refining Ideal Behaviours

Bernhard Möller

Institut für Informatik
Universität Augsburg

D-86135 Augsburg, Germany
moeller@uni-augsburg.de

We provide some mathematical properties of behaviours of systems, where the individual
elements of a behaviour are modeled by ideals of a suitable partial order. It is well-known
that the associated ideal completion provides a simple way of constructing algebraic cpos.
An ideal can be viewed as a set of consistent finite or compact approximations of an object
which itself may even be infinite.
We introduce a special way of characterising behaviours through sets of relevant ap-

proximations. This is a generalisation of the technique we have used before for the case of
streams. Given a subset P ⊆M of a partial order (M,≤), we define

ideP := {Q≤ : Q ⊆ P and Q directed} ,

where Q≤ := {x ∈ M : ∃ y ∈ Q : x ≤ y} is the downward closure of Q. So ideP is the
set of all ideals “spanned” by directed subsets of P . Of particular interest are the infinite,
non-compact ideals among these, since they correspond to “lively” runs of the system.
We prove a number of distributivity and monotonicity laws for ide and related operators.
They are the basis for correct refinement of specifications into implementations.
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The Tile Model

Ugo Montanari

Dipartimento di Informatica, University of Pisa
Corso Italia, 40
Pisa, I-56100 Italy
ugo@di.unipi.it

In this paper we introduce a model for a wide class of computational systems, whose
behaviours can be described by certain rewriting rules. We gathered our inspiration both
from the world of term rewriting, in particular from the rewriting logic framework of
Meseguer, and of concurrency theory: among the others, the structured operational se-
mantics (Plotkin), the context systems (Larsen and Xinxin) and the structured transition
systems (Corradini and Montanari) approaches.
Our model recollects many properties of these sources: first, it provides a compositional

way to describe both the states and the sequences of transitions performed by a given
system, stressing their distributed nature. Second, a suitable notion of typed proof allows to
take into account also those formalisms relying on the notions of synchronization and side-
effects to determine the actual behaviour of a system. Finally, an equivalence relation over
sequences of transitions is defined, equipping the system under analysis with a concurrent
semantics, where each equivalence class denotes a family of “computationally equivalent”
behaviours, intended to correspond to the execution of the same set of (causally unrelated)
events.
As a further abstraction step, our model is conveniently represented using double-

categories: its operational semantics is recovered with a free construction, by means of a
suitable adjunction.
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CoFI: The Common Framework Initiative for

Algebraic Specification

Peter D. Mosses

BRICS, Department of Computer Science
University of Aarhus
Ny Munkegade bldg. 540

DK-8000 Aarhus C, Denmark
pdmosses@brics.dk

The Common Framework Initiative for Algebraic Specification (CoFI1) is an open in-
ternational collaboration. The main immediate aim is to design a coherent family of
algebraic specification languages, based on a critical selection of constructs from the many
previously-existing such languages—without sacrificing conceptual clarity of concepts and
firm mathematical foundations. The long-term aims include the provision of tools and
methods for supporting industrial use of the CoFI languages.
After motivating the CoFI we outline its aim and scopes, and explain one general design

decision that has already been taken: that the family of languages should be obtained
as restrictions or extensions of a simple general-purpose algebraic specification language.
The tentative design of this central language was recently agreed at a meeting of the
CoFI Language Design Task Group (Munich, 5–7 July 1996); it includes features such as
partial functions, predicates, subsorts, first-order axioms, structured specifications, and
constraints. The restricted languages are intended for use with tools (e.g., for prototyping)
and may correspond to various existing algebraic specification languages; the extensions
will accommodate advanced specification constructs (e.g., for specifying reactive systems).
Up-to-date information about the progress of the CoFI and details of the tentative

language design may be obtained from the CoFI Home Page on WWW, URL:

http://www.brics.dk/Projects/CoFI.

1CoFI is pronounced like ‘coffee’.
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A monotonic declarative semantics for normal logic

programs

Fernando Orejas

Dept. L.S.I, Universitat Politècnica de Catalunya
Pau Gargallo 5

08028 Barcelona, Spain
orejas@lsi.upc.es

In a previous paper we developed a methodology for studying the semantics of several
modular constructs in Logic Programming. This methodology was heavily based first on
the definition of adequate institutions characterizing the behaviour of the given class of logic
programs and then on the existence of several categorical constructs in that institution.
In particular, in that paper we studied the class of definite logic programs and sketched
how these results could be straightforwardly extended to the class of logic programs with
constraints.
In this talk we will present preliminary results for applying this methodology to the

class of normal logic programs (i.e. logic programs with negation). In particular, we present
a new model-theoretic declarative semantics for normal logic programs that allowed us to
define an institution of logic programs with negation coping with the problems of the
inherent non-monotonicity of negation in logic programming. In addition, we will show
that this institution is semi-exact and has free constructions.
The presentation will consist, first, in showing how to solve the problems of non-

monotonicity for the class of propositional programs and, then, in showing how to solve
the problems for generalizing the constructions to the first-order case.

Proof of Refinements

Revisited

Peter Padawitz

Universität Dortmund
peter@ls5.informatik.uni-dortmund.de

A specification SP ′ refines or implements a specification SP if a certain class of models of
SP ′ satisfies the axioms of SP . We investigate the particular case where the semantics of
SP and SP ′, respectively, is given by a single model, either an initial or a final one. Initial
models are suitable for static data types with free constructors, structural-recursive func-
tions, safety predicates and an object equality that is derivable from the axioms that define
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the type. Final models capture the semantics of dynamic types with non-free constructors,
infinite objects, actions, liveness predicates and an object identity that depends on the
observable object behaviour. Working with these two model constructions puts a number
of powerful proof rules at one’s disposal in order to show the correctness of a refinement
in the above sense. More precisely, we call the validity of the axioms of SP in the model
of SP ′ the partial correctness of the refinement of SP by SP ′. Total correctness requires
a further condition, namely that the union of SP and SP ′ is consistent w.r.t. SP . This
condition is dual to partial correctness. It ensures that adding SP ′ to SP does not change
the model of SP as far as theorems about SP are concerned. Consistency can mostly be
reduced to rewrite-oriented properties of SP ∪ SP ′ such as ground confluence and nor-
mal form completeness, which in turn can be guaranteed by designing the specifications
according to specific axiom schemata.

An Algebraic Approach

to Global-Search Algorithms

Peter Pepper

Institut für Kommunikations- und Softwaretechnik
Technische Universität Berlin
Franklinstraße 28/29
Berlin, Germany

pepper@cs.tu-berlin.de

The underlying idea of this approach—which is done jointly with Doug Smith fromKestrel
Institute — is to use libraries of specifications and diagrams over these specifications to
develop efficient solutions for complex problems. This brings greater flexibility to earlier
concepts that have been implemented in the Kids system.
As illustrating examples with a moderate degree of complexity we use classical backtrack

problems such as the 8 queens or a simple scheduling task. Here it can be seen, how the
global-search paradigm is combined with constraint propagation in order to achieve smaller
and smaller search spaces — which is the key to efficiency.
An essential feature is the introduction of specific higher-order predicates that serve

as the basis for the problem specification. But at the same time these predicates also
induce the appropriate strategies for the algorithm development. This way we obtain a
uniform framework that covers the whole spectrum from problem specification to efficient
implementation.
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A variant of Quantified Dynamic Logic

Gerard R. Renardel de Lavalette

Department of Computing Science
University of Groningen

P.O.box 800
9700 AV Groningen, the Netherlands

grl@cs.rug.nl

MLCM (Modal Logic of Creation and Modification) is a variant of Quantified Dynamic
Logic. It emerged from the development of the wide-spectrum specification language COLD
at Philips Research Laboratories Eindhoven (NL) in the ESPRIT project METEOR (1984-
1989), sponsored by the European Community.
Like QDL, MLCM is an extension of first order logic with modal operators [α], where α

is a program expression. MLCM differs from QDL in that it is not the variable assignment
that is being changed by a program, but the interpretation of the signature elements. This
idea is also incorporated in Gurevich’s Evolving Algebras.
MLCM has the following atomic properties:

• NEW c extends the universe with a new object and makes c refer to it;

• f(t1, . . . , tn) := t changes the value of function f on the arguments t1, . . . , tn to t;

• p(t1, . . . , tn) :↔ A changes the value of predicate p on the arguments t1, . . . , tn to the
truth value of A.

We present syntax, semantics and a complete axiomatisation of MLCM. Finally we
consider an extension of MLCM with a program construct borrowed from Evolving Alge-
bras: α, β (the join of α and β) combines the state changes of α and β provided they are
consistent. Extending the completeness result to this extension of MLCM is an object of
current research.
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Mind the gap! Abstract versus concrete models of

specifications

Don Sannella

Laboratory for Foundations of Computer Science
Edinburgh University

Edinburgh EH9 3JZ, Scotland
dts@dcs.ed.ac.uk

In the theory of algebraic specifications, many-sorted algebras are used to model programs:
the representation of values is arbitrary and operations are modelled as ordinary functions.
The theory that underlies the formal development of programs from specifications takes
advantage of the many useful properties that these models enjoy.
The models that underlie the semantics of concrete programming languages are differ-

ent. For example, the semantics of Standard ML uses rather concrete models, where values
are represented as closed constructor terms and functions are represented as “closures”.
The properties of these models are quite different from those of many-sorted algebras.
This discrepancy brings into question the applicability of the theory of specification

and formal program development in the context of a concrete programming language, as
has been attempted in the Extended ML framework for the formal development of Stan-
dard ML programs. We investigate the difference between abstract and concrete models
of specifications, inspired by the kind of concrete models used in the semantics of Stan-
dard ML, in an attempt to determine the consequences of the discrepancy.

This is joint work with Andrzej Tarlecki (Warsaw University and Polish Academy of
Sciences).

Functional Specification Using HOPS

Gunther Schmidt

Universität der Bundeswehr München
Werner-Heisenberg-Weg 39
85577 Neubiberg, Germany

schmidt@informatik.unibw-muenchen.de

The Higher Order Programming System allows editing, moulding, and transforming di-
rected acyclic graphs (DAGs). These DAGs represent either types or programs. In the
first case, they are built from constructors 1, variable, ×, +, →, recursive data types etc.,
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while in the latter they stem from λ-calculus, from the combinator field, or from the prod-
uct/projection/function pairing and sum/injection/function sum area. Program DAGs are
always typed according to the generic typing of their constituents.
An overview was given on programming styles ranging from data flow to functional,

applicative, and imperative.
The applications of HOPS programming mentioned include an HTTP demon, a BIB-

TEX browser with graphical user interaction, a translation of parts of π-calculus to ADA,
a generated parser, and monad considerations.

Behavioural satisfaction and equivalence

in concrete model categories

Andrzej Tarlecki

Institute of Informatics
Warsaw University
ul. Banacha 2
Warsaw, Poland

tarlecki@mimuw.edu.pl

— joint work with Michel Bidoit —

We use the well-known framework of concrete categories to show how much of standard
universal algebra may be done in an abstract and still rather intuitive way. This is used
to recast the unifying view of behavioural semantics of specifications based on behavioural
satisfaction and, respectively, on behavioural equivalence of models abstracting away from
many particular features of standard algebras. We also give an explicit representation of
behavioural equivalence between models in terms of behavioural correspondences. The
work is illustrated not only in the usual algebraic framework but also by the development
of the corresponding notions for partial and for regular algebras.
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Faster Asynchronous Systems

Walter Vogler

Institut für Informatik, Uni. Augsburg
D-86135 Augsburg, Germany

vogler@informatik.uni-augsburg.de

A testing scenario in the sense of De Nicola and Hennessy is developed to measure the
worst-case efficiency of asynchronous systems. The resulting testing-preorder is charac-
terized with a variant of refusal traces and shown to satisfy some properties that make
it attractive as a faster-than relation. Finally, one implementation of a bounded buffer
is shown to be strictly faster than two others – in contrast to a result obtained with a
different approach by Arun-Kumar and Hennessy.

A Formal Approach to Object-Oriented Software

Engineering

Martin Wirsing

Institut für Informatik
Ludwig-Maximilians-Universität München
Oettingenstr. 67, D-80538 Munich, Germany
wirsing@informatik.uni-muenchen.de

Current object-oriented design methods, such as those of Rumbaugh, Shlaer-Mellor, Ja-
cobson and Booch use a combination of diagrammatic notations including object and class
diagrams, state transition diagrams and scenarios. Other, academic approaches, such as
Reggio’s entity algebras, Meseguer’s Maude and Ehrich/Sernadas’ Troll propose fully for-
mal descriptions for design specifications. Both approaches have their advantages and
disadvantages: the informal diagrammatic methods are easier to understand and to apply
but they can be ambiguous. Due to the different nature of the employed diagrams and
descriptions it is often difficult to get a comprehensive view of all functional and dynamic
properties. On the other hand, the formal approaches are more difficult to learn and require
mathematical training. But they provide mathematical rigour for analysis and prototyping
of designs.
To close partly this gap we propose a combination of algebraic specification with rewrit-

ing as integrating formal model for design description. Similar to entity algebras and
Maude, the static and functional part of a software system is described by classical alge-
braic specification whereas the dynamic behaviour is modeled by nondeterministic rewrit-
ing. We show that the diagrammatic notations mentioned above can be formally based on
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this framework. The construction of subsystems, the design of timing constraints and the
control of the flow of messages are other characteristics of our approach. Moreover, the
notion of refinement provides a formal tool for checking the correctness of implementations.
Therefore the combination of algebraic specification with rewriting gives a coherent

view of object-oriented design and implementation. Formal specification techniques are
complementary to diagrammatic ones. The integration of both leads to an improved design
and provides new techniques for prototyping and testing.

Inductive Theorem Proving in Partial

Positive/Negative-Conditional Equational

Specifications

Claus-Peter Wirth

Fb. Informatik, Univ. Kaiserslautern, D-67663 Kaiserslautern, Germany
wirth@informatik.uni-kl.de

In general, the class of models of algebraic specifications given by positive/negative-condi-
tional equations (i.e. universally quantified first-order implications with a single equation
in the succedent and a conjunction of positive and negative (i.e. negated) equations in
the antecedent) does not contain a minimum model in the sense that it can be mapped
to any other model by some homomorphism. We present a constructor-based approach
for assigning appropriate semantics to such specifications by introducing two syntactic
restrictions: firstly, for each term of a negative equation in a condition, this condition
also has to contain a literal requiring the “definedness” of this term; secondly, we restrict
the rules whose left-hand sides are constructor terms to have “Horn”-form and to be
“constructor-preserving”. Under the assumption of confluence, the factor algebra of the
term algebra modulo the congruence induced by our reduction relation is a minimal model
which is — beyond that — the minimum of all models that do not identify more constructor
terms than necessary.
Furthermore, we present some conceivable notions of inductive validity for first-order

equational clauses w.r.t. constructor-based partial positive/negative-conditional equational
specifications. Monotonicity of validity w.r.t. consistent extension of the specification ad-
mits an incremental construction of specifications without destroying the validity of already
proved formulas. For inductive validity, monotonicity is essential because — contrary to
deductive theorem proving — such extensions are required by the inductive proofs them-
selves. Therefore it is important that our notions of inductive validity are monotonic w.r.t.
consistent extension of the specification.
Finally, we give an overview of our inference system for clausal theorem proving w.r.t.
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various kinds of inductive validity in theories specified by constructor-based positive/ne-
gative-conditional rule systems that have to be (ground) confluent, but need not be ter-
minating. Our constructor-based approach is well-suited for inductive theorem proving
even in the presence of partially defined functions. It provides explicit induction hypothe-
ses and can be instantiated with various wellfounded induction orderings. The soundness
proof for the inference system is developed systematically by presenting an abstract frame
inference system a priori and then designing each concrete inference rule locally as a sub-
rule of some abstract frame inference rule. While this emphasizes a well structured clear
design of the concrete inference system, our fundamental design goal is user-orientation
and practical usefulness rather than theoretical elegance. The resulting inference system is
comprehensive and quite powerful, but requires a sophisticated concept of proof guidance.

Observations and questions concerning partiality and

don’t care non-strictness

Uwe Wolter

Technical University Berlin
Sekr. FR 6-1, Franklinstr. 28/29
10587 Berlin, Germany
wolter@cs.tu-berlin.de

The talk addresses the question of an algebraic semantics for functional languages based on
algebraic specifications of partial algebras with conditional existence equations. Especially
we discuss the relation ships between partial algebras and cpo’s. We end up with the
following observations and conclusions.

1. A pure algebraic treatment of call-by-name non-strictness is not possible. We need
cpo’s for this purpose.

2. Strict function combined with a non-strict if then else can be described within partial
algebraic specifications.

3. Partial algebras and cpo’s reflect different aspects of functional languages:

• partial algebras ⇒ functions on values

• cpo’s ⇒ computations with values

Both aspects are not fully compatible and sometimes we have to treat both aspects
in parallel (strictness analysis).
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4. Within cpo-approaches we can not describe intensional function spaces and the com-
bination with imperative procedures. But the algebraic approach covers naturally
these features.
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