
Andreas Brennecke, Reinhard Keil-Slawik (editors)

Position Papers for Dagstuhl Seminar 9635 on

History of
Software Engineering

August 26 – 30, 1996

organized by

William Aspray, Reinhard Keil-Slawik and David L. Parnas



History and Identity

In August 1996 about a dozen historians met with about a dozen computer scientists to discuss
the history of software engineering. The term software engineering has been deliberately chosen
as being provocative at the 1968 NATO Conference on Software Engineering. This notion was
meant to imply that software manufacture should be based on the types of theoretical founda-
tions and practical disciplines that are established in the traditional branches of engineering.
This need was motivated by the so-called software crisis. Ever since, the debate whether such a
crisis exists has continued within the software engineering community. It is a crucial question,
because if the answer is yes, software engineering may not be called an engineering discipline
yet. If the answer were no, the question would be, what is it that constitutes this discipline.

It turned out at the seminar that there may or may not be a software crisis, but there is
definitely what might be called an identity crisis. A strong indicator for this phenomenon is the
fact that after more than 30 years computer scientists are investigating the history of other estab-
lished branches of engineering to find out (or to define?) what should be done to turn software
engineering into a sound engineering discipline. In this endeavor, historians were regarded to
be some kind of universal problem solvers who were called in whenever a general answer to
some fundamental question was needed.

Of course, this could not work, because history is not a methodical vehicle to clarify
ones own identity or to derive normative principles and guidelines for a discipline.

Furthermore, there is only little historic knowledge in the field of software engineering
as compared to the “History of Programming Languages”, for instance, or the history of elec-
tronic calculating devices. Thus, a Dagstuhl seminar on the “History of Software Engineering”
can only act as a starting point, providing (a) a first overview of what has been accomplished so
far and (b) identify crucial issues to be studied in the future.

With respect to my own expectations about the possible outcome, I have to admit that
I was too optimistic when I took the first initiative for this seminar. I underestimated the per-
sonal and disciplinary identity problems and I was expecting more historical studies already
having been carried out in the field. As a consequence, this seminar report does not provide the
reader with a coherent and concise account of what constitutes the history of software engineer-
ing. It contains, however, some of the many facets, issues and approaches to the field which
have made this Dagstuhl seminar a very stimulating event and which may serve as a starting
point for further investigations. More than before, I am convinced that studying the history of
software engineering is a necessary and rewarding activity especially also for young scholars in
the field.

I want to thank the people from Schloß Dagstuhl for providing such a stimulating envi-
ronment. Thanks also to Bill Aspray and David Parnas who organized the seminar together with
me, and finally many thanks to Andreas Brennecke who took the burden to prepare this seminar
report.

Paderborn, July 1997

Reinhard Keil-Slawik

i



-1

Contents

Invitation to the Dagstuhl Seminar on: “The History of Software Engineering” ...........   1
William Aspray, Reinhard Keil-Slawik, David L. Parnas

Advantages and Problems of Bringing Together the Historical and ................................   2
Engineering Communities to Study Software Engineering History
William Aspray

Comparison of electrical “engineering” of Heaviside’s times and ...................................   4
software “engineering” of our times
Robert L. Baber

Recent Research Efforts in the History of Computing: .....................................................   6
Thomas J. Bergin

Report on Dagstuhl Conference: Final Session: Historians Report .................................   7
Thomas J. Bergin

Software Process Management: Lessons Learned From History .....................................   9
Barry W. Boehm

Remarks on the history and some perspectives of ...........................................................   12
Abstract State Machines in software engineering
Egon Boerger

Development And Structure Of The International Software Industry, 1950-1990 ......   18
Martin Campbell-Kelly

From Scientific Instrument to Everyday Appliance: .......................................................   19
The Emergence of Personal Computers, 1970-77
Paul Ceruzzi

A Synopsis of Software Engineering History: The Industrial Perspective ....................   20
Albert Endres

Software Engineering – Why it did not work ...................................................................   25
Jochen Ludewig

Brief Account of My Research and Some Sample References ........................................   28
Donald Mackenzie

Finding a History of Software Engineering ......................................................................   29
Michael S. Mahoney

Science versus engineering in computing ..........................................................................   34
Peter Naur

ii



0

Software Engineering: An Unconsummated Marriage ...................................................   35
David Lorge Parnas

Software objects in the Deutsches Museum München – Some considerations ..............   35
Hartmut Petzold

The 1968/69 NATO Software Engineering Reports .........................................................   37
Brian Randell

Plex – A Scientific Philosophy ............................................................................................   42
Douglas T. Ross

Research Abstract ...............................................................................................................   45
Stuart Shapiro

Research Abstract ...............................................................................................................   47
Richard Sharpe

Three Patterns that help explain the development of Software Engineering ................   52
Mary Shaw

Paradigms and the Maturity of Engineering Practice: ....................................................   57
Lessons for Software Engineering
James E. Tomayko

iii



1

Invitation to the Dagstuhl Seminar on:
“The History of Software Engineering”

William Aspray
Reinhard Keil-Slawik

David L. Parnas

Computer science is often characterized as an engineering discipline with the systematic study
and development of software as its principal subject matter. Software Engineering, however,
although combining both key words, has not become a central discipline in most computer sci-
ence departments. In many respects, this discipline embodies the same ideosyncracies that can
be observed within computer science as a whole such as:

• Highly innovative and rapidly changing field with no broadly recognised core of
material that every practitioner must know;

• Few results are supported by empirical or comparative studies;
• Work within the field older than 3–4 years is rarely acknowledged or referenced;
• Old problems are given new names and old solutions overlooked;
• Evolution of the discipline is tightly coupled to economic and societal demands;
• There is a need for interdisciplinary work comprising e.g. mathematics,

psychology, business or management science, … ;
• Continuing debate about whether there should be a discipline called software

engineering, and if so, whether this should be treated as another discipline among
the set of traditional engineering disciplines.

In a highly dynamic scientific environment, with ongoing debates about fundamental issues a
historic investigation may help to better understand the issues in question and may provide some
support to assess the current state of the discipline and what has been accomplished so far. It
may further help to encourage scientists and young scholars to look into the past in order to built
upon experiences and insights already accomplished rather than inventing the wheel anew every
once and a while. Lessons learnt from the past may provide a deeper understanding of the com-
plexity and problems encountered in software engineering up to date.

On the other hand, historians may have the chance to study the history of technology
by talking directly to those who were part of it. The interdisciplinary exchange between histo-
rians and computer scientists, resp. software engineers may also yield a more accurate picture
of the past than either one of these disciplines could accomplish on their own.

Thus, the aim of the seminar is to bring together software engineers and historians to
discuss the history of software engineering for two reasons:

• to gain a better understanding of what has been accomplished in the past, and how
it came about, and

• to try to improve on future research and practice in software engineering based on
previous experiences and insights.

The conference may also help in the establishment of a recognised set of core principles that
should be known by everyone who calls him/herself a Software Engineer.

Problems and questions to be discussed at the seminar should comprise the whole
realm of issues ranging from purely technical to social and societal ones.



2

Advantages and Problems of Bringing Together
the Historical and Engineering Communities

to Study Software Engineering History

William Aspray

The first section of the talk discussed what historians do, and how they do history differently
from engineers. The focus was on a few themes:

Technological determinism – i.e. that technology develops in a certain, deterministic
way with its own autonomous logic; or in a milder form, that technology develops along certain
paths (technological trajectories) that represent natural technological choices. Historians do not
accept these approaches, which diminish human agency; what are seen as necessary technolog-
ical directions by engineers are seen as human choices by historians.

Technological progress – i.e. that technology necessary gets better over time and
makes the world a better place. Historians ask the question “better for whom?” Progress is
regarded by historians as a value-laden term. Historians have studied examples of technologies
being uninvented – contrary to the notion of progress.

Social construction of technology – an approach adopted by some historians of tech-
nology in more or less radical versions, and influencing most others. The basic idea is that tech-
nology does not develop autonomously, but rather it is a human artifice. More precisely, SCOT
historians see people, technology, and institutions as equal actors.

Contextualization – i.e. trying to understand the various social, economic, technical,
political, etc. contexts in which technology develops. It is a more moderate and widely accepted
historical notion, looking for ways to get around the one-dimensionality of any one of these
approaches and seeking a way of combining them without compromising theoretical principles.
Many historians specialize in one historical approach, e.g. they are economic historians, while
others use many tools. None of these approaches are privileged; and using multiple approaches
gives multiple perspectives.

Priority claims – i.e. who invented a technology first. This was a major interest of his-
torians in the past and continues to interest engineers. History does not give special place to
what happens first; and many precursors are unimportant in that they had little impact.

Technological failures – Many engineers restrict their historical studies to technologi-
cal successes. Increasingly, historians are interested in failures, for they want to explain why
something with promise did not work out. Failures can reveal structure and relationships in a
way that successes do not.

The second part of the talk raised a number of historical issues and possible explana-
tions of software engineering, mainly related to its origins.



3

Software crisis – Was the so-called “software crisis” really a crisis? who was it a crisis for? what
were its causes? was it the origin of software engineering?

Technology imbalance theory – One claim is that, during the 1960s, memory and pro-
cessor speed increased markedly but software techniques improved very little. Was this a prin-
cipal cause of the software crisis?

Expectation theory – More was expected of operating systems in the 1960s, e.g. mul-
tiprogramming capabilities, than had been expected in the past. Was the software crisis simply
an expression of difficulty meeting heightened expectations?

Professionalization – Can the software crisis and the origins of software engineering
be seen as an effort for software writers to professionalize themselves, develop professional
methods, and establish ethics and procedures for safe and reliable products?

Economic – Can the origins of software engineering be explained as an economic driv-
ing force on the part of suppliers and customers who wanted to have means to control pricing
and delivery timetables?

Dramatic failure theory – Was the rhetoric of crisis simply the result of a few large-
scale, dramatic failures, such as OS/360 and the Mariner I spacecraft failure, rather than a gen-
eral trend?

Dissemination issue – To what degree were particular books (e.g. Fred Brooks, Myth-
ical Man-Month) or conferences (NATO on software engineering) influential in identifying/
creating a problem and building a community of interested people?

Labor perspective – Can software engineering be explained as the move away from the
celebration of the craft skills of the talented individual programmer to the regularization of prac-
tice so that it could be accomplished by masses of less skilled individuals?

These and a number of other issues were raised as a way of starting a general discussion for the
conference.



4

Comparison of electrical “engineering” of Heaviside’s times
and software “engineering” of our times

Robert L. Baber

In the second half of the nineteenth century the field of electrical technology, in particular tele-
graphy and telephony, exhibited problems analogous to those in software development in the
past and present. Also in many other technical fields spectacular failures were all too common,
such as bridges collapsing under the weight of locomotives and, still earlier, ships sinking on
their maiden voyages because of instable hull designs.

It is the thesis of this presentation that software development today is in a pre-engineer-
ing phase analogous in many respects to the pre-engineering phases of the now traditional engi-
neering disciplines. In this talk, selected examples of experiences from some of those disci-
plines, especially electrical telegraphy and telephony, are presented. From some observations
regarding similarities between the experiences in those disciplines in the past and software
development today, some questions regarding lessons software developers might learn from
those earlier experiences of others are raised. Some answers are suggested.

“Those who do not learn their lessons from the mistakes of history are doomed to
repeat them.” It appears to me that we are repeating those mistakes and will, I am afraid, have
to relearn those lessons the hard way. We do not seem to be even trying to learn from the history
of the classical engineering fields.

In 1628 the Swedish navy’s magnificent new ship Wasa sank at the beginning of her
maiden voyage, only a few hundred meters from the shipyard in a light squall. The loss of life
and property was considerable. Analysis performed after salvaging her in 1961 showed that her
hull was dynamically instable. Today we can calculate in advance of actual construction
whether a ship will be stable or not. Similarly, in the last century many bridges collapsed under
the weight of locomotives, again with much loss of life and property. Today, structural engi-
neers can and do verify by calculation, before construction, that a proposed bridge design will
support its own weight and the intended load under specified environmental conditions (e.g.
wind, earthquakes, etc.).

In the case of electrical telegraphy and telephony before and around the turn of the cen-
tury, a number of phenomena confused designers and limited the advance of the field. Insuffi-
cient understanding of relevant technical aspects of the systems in question sometimes led to
considerable financial losses, e.g. the destruction of the first successfully laid transatlantic cable
in 1858. Expensive experiments were conducted, often with inconclusive results, in attempts to
understand the phenomena in question (e.g. the different working speeds of a telegraphic circuit
in the two directions, distortion of voice signals in transmission lines, etc.). People like Oliver
Heaviside solved many of these problems by analysis, using paper and pencil only, often many
years before those solutions were accepted and put into practice by the “practical” men. In the
eyes of these practitioners such theories were useless, even ludicrous, as evidenced by the fact
that one of them, Maxwell’s theory, implied self propagating electromagnetic waves, something
no one had ever observed and clearly never would observe, let alone make practical use of! A
few years later Hertz, knowing from theoretical considerations what to look for and how to look
for it, observed such waves. A few decades later, these waves were being used for practical,
commercially viable transatlantic communication.



5

The essential factor which accounts for the very substantial difference between design correct-
ness yesterday and today in these fields is, it seems clear to me, is a scientific and mathematical
foundation for each of the engineering fields of today and the fact that their practitioners apply
that foundation regularly and as a matter of course in their work. Their models of the artefacts
being designed are not only descriptive (as in pre-engineering days also), but predictive. Fail-
ures and successes can be and are predicted – calculated – in advance. Only if success is deter-
mined in advance is the artefact even built; e.g. in civil engineering such a calculation is nor-
mally required as part of the application for a building permit. Trial and error (mostly error) is
no longer an accepted design technique.

The scientific and mathematical foundations referred to above are provided by New-
ton’s laws (for the civil and mechanical engineer) and by Maxwell’s laws (for electrical engi-
neers). The comparable foundation for software engineering in the true sense of the word engi-
neering is provided by the work of Floyd, Hoare, Dijkstra and others, but has not yet come into
widespread use in practice. We are still living and working in the pre-engineering days of soft-
ware development.

We have all heard of the many consequences of our non-engineering approach to soft-
ware development. The many mistakes, expensive failures, even some deaths are well known.
We laugh about substantial parts of the telephone system in the U.S. being out of service for
hours at a time, but behind such failures are expensive, even life endangering consequences. In
another moderately publicized incident several cancer patients died due to overdoses of radia-
tion delivered by a system controlled by faulty software. Quite recently, the Johannesburg Stock
Exchange has been repeatedly plagued by interruptions lasting as long as an entire trading day
which were attributed to faulty and deficient software in essential computer systems.

Instead of implicitly using the pre-engineering days of such fields as nautical, civil and
electrical technology as role models, we should and could be explicitly using their current engi-
neering practice as role models. Just one example is the world wide telephone network. I can
use my South African hand held mobile cell telephone while riding in an automobile on a Ger-
man autobahn to talk with someone in England or in an outlying area in Thailand. The signals
are transmitted through some combination of analog and/or digital land lines, terrestrial and sat-
ellite radio links. Each of the individual subsystems in this extensive network was designed with
little or no information about most of the other subsystems. In fact, the designers of many of
these subsystems could not even know that some day their subsystems would be used to carry
signals originating or terminating in a hand held mobile telephone operating in a radio cell net-
work. The success of such a system derives from two main and commonly employed engineer-
ing design strategies: (1) Every subsystem is rigorously designed to a precisely and well defined
interface specification dealing with both logical and physical aspects of the signals being trans-
mitted and processed. (2) Each such subsystem is correctly designed to these interface specifi-
cations, using predictive models as outlined above and based on a scientific and mathematical
foundation also outlined above.

The sooner we software developers start in earnest to follow the examples set by our
engineering brethren, the better off everyone will be, especially our customers and the users of
our software. Developing software in the traditional way is nothing other than high tech Russian
roulette.



6

Bibliographie

Baber, Robert L.:Software Reflected: The Socially Responsible Programming of Our
Computers, North-Holland, Amsterdam, 1982.

Baber, Robert L.:Praktische Anwendbarkeit mathematisch rigoroser Methoden zum
Sicherstellen der Programmkorrektheit, Reihe Programmierung komplexer Systeme /
PKS, Walter de Gruyter, Berlin, 1995.

Borgenstam, Curt; Sandström, Anders:Why Wasa Capsized, Wasa Studies 13, Statens
sjöhistoriska museum, Stockholm, no date given (1984?).

Marciniak, John J. (ed.):Encyclopedia of Software Engineering, John Wiley & Sons, New
York, 1994.

McDermid, John A. (ed.):Software Engineer’s Reference Book, Butterworth-Heinemann,
Oxford, 1991.

Nahin, Paul J.:Oliver Heaviside: Sage in Solitude, IEEE Press, New York, 1988.

Recent Research Efforts in the History of Computing:

Thomas J. (Tim) Bergin

My major focus in the early part of 1996 was the organization of the ACM’s50th Anniversary
Retrospective program. The Retrospective took place on February 14, 1996, which was the 50th
anniversary of the public unveiling of the ENIAC at the Moore School, University of Pennsyl-
vania, and opened ACM’sComputing Weekwhich included the Computer Science Conference.
For the latter, I organized aHistory Track consisting of five panels on “ENIAC,” “The Army,
the National Need, and the ENIAC,” “Early Computer Efforts at the National Bureau of Stan-
dards,” “Hardware History (with Maurice Wilkes),” “Software History,” and a lecture by Alan
Kay on “The History of the Personal Computer”. I also served as a consultant to a team which
created a large photographic exhibit for the conference and provided a complimentary exhibit
of artifacts from my collection.

I am continuing this research, and working with the US Army on documenting early
Army efforts to develop and use computers. As part of this effort, I gave the opening address at
a two-day meeting, in November, at the Aberdeen Proving Grounds, MD.Fifty Years of Army
Computing: From ENIAC to MSRC (the MSRC is a new supercomputer center which was ded-
icated at the conclusion of this meeting). This meeting allowed pioneers from the early days of
Army computing to share their experiences. Present efforts involve editing the transcripts of the
meeting for publication, and doing oral histories of early Army computing pioneers. I am also
planning on developing a database of original ENIAC drawings and documents to assist the
Army and researchers.

The major effort at this time is the creation of a Museum on The History of Computing,
on the American University campus. This museum will consist of two rooms (160 square feet)
and will contain a copy of the photographic exhibit created for the ACM 50 Anniversary Ret-



7

rospective (above) and two display cases of artifacts relating to the general history of comput-
ing. In addition to a display of mechanical calculating devices, the museum will also house
examples of early microcomputers, a teletype, and a working IBM 029 keypunch. There will
also be changing exhibits, which will focus on more specific topics such as the history of pro-
gramming languages or the history of artificial intelligence. These exhibits will be developed
with colleagues who are specialists in these areas.

Finally, I will be working with William Aspray, of the Computing Research Associa-
tion, on a three year research project to examine the “History of Academic Computer Science.”
This effort will involve case studies of computer science, information systems, computer/elec-
trical engineering and information science programs. as well as an examination of selected
industries and professional organizations.

Report on Dagstuhl Conference:
Final Session: Historians Report

Thomas J. (Tim) Bergin

The Historians met on Thursday night and formulated a summary statement to be delivered at
the concluding session on Friday morning. We believe that a history of software engineering
could be written, providing that boundaries, topics, themes, approaches, evidence, etc. are iden-
tified. Although historiography is usually an individual or small team effort, larger and more
diverse teams could attempt to document the history of a movement such as software engineer-
ing. The team necessary to complete such a monumental task would consist of historians, soft-
ware engineers, and other individuals involved in program/application development in the
1950s and 1960s (and perhaps up to the present time). In order to have a chance at succeeding,
someone (presumably a historian) would have to have control of the project, so that the effort
proceeded as if from a “single mind.”

During the historians work session, last evening, the following points were made:

1 it is important to present crisp interpretations with appropriate contrasts;
2 we need to examine the discipline prior to the NATO conferences, i.e., what exactly

lead up to the problems and the Conferences?
3 we need to examine multiple threads throughout the discipline (software

development methodologies, systems analysis tools; project management
techniques, etc.)

4 we need to examine the “software crisis” and document multiple perspectives
(from the universities, from industry, from government, from non-American
sources)

5 we see the need for relevant, in-depth, case studies:
a. by community: ACM, IEEE, SHARE, GUIDE, DPMA, etc.
b. by software category: operating systems, compilers/languages, interfaces, etc.)
c. by life cycle stages: systems analysis (needs assessments, requirements

documentation, and methodologies/tools/techniques), systems design
(architectures, data storage strategies and hardware interfaces/dependencies),



8

development (languages, compilers, software engineering techniques and
tools), and management (project management, resource management, and
software quality metrics).

6 we believe that we need to develop a distinctive view of software engineering, i.e.,
one that is more than a definition based on a few disparate academic papers or
practitioners views.

7 we need to examine the interactions, over time, between the defense establishment,
software development consulting and service organizations, and the multiple,
relevant academic disciplines (computer science, information systems, computer
engineering, and software engineering (where so identified)).

8 in general, therefore, we need to determine the beginning, the middle, and the end
(?) of software engineering, as we would define it (and its extensions and progeny).

In conclusion, we believe that this week was a good start down a long and windy road. The his-
tory of large technical movements, if we may categorize software engineering in that way, has
not ever been documented a large group, especially one dominated by practitioners. If a mem-
bers of this Dagstuhl seminar decided to pursue a history of software engineering, we would
need to recognize the enormity of the project, the broad range and depth of resources needed for
completion, and the necessity of adopting the basic precepts of software engineering (however
defined)s to provide some control over the process and the participants. The software engineer-
ing model would allow the group to:

(1)identify goals and requirements,
(2)design executable independent modules/research-projects by which to divide the

effort,
(3)assign projects to cooperating historians and software engineers, and,
(4)apply project management techniques to control progress and quality.

Such a large effort by a diverse group of people would in all likelihood suffer from the same
problems which the software engineering discipline attempted to answer for the applications
development process. Thus, we close with these thoughts:

(1)the notions of a beginning, a middle, and an end of a living process come from us,
the historians, they do not exist in the real world;

(2)history is not an agreement; we can’t vote on it; it is an elucidation of facts with
significant interpretation;

(3)the idea of developing a history of software engineering is of interest to the
historians, but we are mindful of the problems of the software development
process: (a) someone would have to exercise intellectual control of the project, and
(b) that a project as complex as this would need to apply the lessons learned from
the history of software engineering;

In the interest of encouraging further research we would like to point out that there are some
models for such an approach to history. There have been two conferences devoted to the history
of programming languages (HOPL). In 1978, the ACM Special Interest Group on Programming
Languages (SIGPLAN) sponsored a Conference on the History of Programming Languages
(HOPL) in Los Angeles, CA (USA). The Program Committee prepared material to guide pro-
spective contributors, including a list of questions designed to elicit “good history.” Also of



9

interest to the Dagstuhl participants, is a paper by Henry Tropp entitled “On Doing Contempo-
rary History,” and “General Questions Asked of All Authors.” The results of this effort are doc-
umented inHistory of Programming Languages, edited by Richard L. Wexelblat, editor, [New
York: Academic Press, 1981].

A second HOPL Conference was held in Cambridge, MA in 1993. The Program Com-
mittee followed the strategy of the earlier conference, and prepared a set of questions that was
sent as guidance to all prospective contributors. These questions are documented in J.A.N. Lee,
“Guidelines for the Documentation of Segments of the History of Computing,”Annals of the
History of Computing, Volume 13, Number 1 (1991). In addition, the Committee asked Michael
S. Mahoney to serve as Conference Historian. Mahoney’s lecture on “Making History” as well
as his paper, “What Makes History?” are both of interest to the Dagstuhl participants. This sec-
ond HOPL Conference is documented in Thomas J. Bergin and Richard J. Gibson, editors,
History of Programming Languages, [New York: ACM Press/Addison-Wesley, 1996].

Another excellent reference to guide such research is R. W. Hamming’s “We Would
Know What They Thought When They Did It,” which can be found in N. Metropolis, et al (eds),
A History of Computing in the Twentieth Century, [Orlando: Academic Press, 1980]. In addi-
tion, there have been some fine papers on aspects of software engineering history, such as Stuart
Shapiro’s “Splitting the Difference: The Historical Necessity of Synthesis in Software Engi-
neering,”IEEE Annals of the History of Computing, Volume 19, Number.1 (January-March,
1997), pp. 20-54, and Mary Shaw’s “Prospects for an Engineering Discipline of Software,”
IEEE Software, Vol.7, No. 6 (November 1990), pp. 15-24.

In conclusion, the historians suggest that a history of software engineering would be
an important contribution to our knowledge of computer science and its allied disciplines, and
that a return to Schloß Dagstuhl to work on such a project would be most welcome.

SOFTWARE PROCESS MANAGEMENT:
LESSONS LEARNED FROM HISTORY

Barry W. Boehm

Regarding history, George Santayana once said, “Those who cannot remember the past are con-
demned to repeat it.”

I have always been dissatisfied with that statement. It is too negative. History has pos-
itive experiences too. They are the ones we would like both to remember and to repeat.

The three papers in this session are strong examples of positive early experiences in
large-scale software engineering. The papers are:

• H.D. Benington, “Production of Large Computer Programs,”Proceedings, ONR
Symposium, June 1956.

• W.A. Hosier, “Pitfalls and Safeguards in Real-Time Digital Systems with Emphasis
on Programming,”IRE Transactions on Engineering Management, June, 1961.

• W.W. Royce, “Managing the Development of Large Software Systems: Concepts
and Techniques,”Proceedings, WESCO, August 1970.



10

Given the short lifespan of the software field, they can certainly be called “historic.” Indeed,
since many people date the software engineering field from the NATO Garmisch conference in
1968, two of them can even be called “prehistoric.” They are certainly sufficiently old that most
people in the software engineering field have not been aware of them. The intent of this session
is to remedy this situation by reprinting them in the Conference Proceedings, and by having the
authors (or, in one case, Hosier’s colleague J.P. Haverty) discuss both the lessons from their
papers which are still equally valid today, and the new insights and developments which have
happened in the interim.

Rationale: 1961 Lessons vs. 1979 Practice

About the best rationale I can provide for the value of these papers is an exercise I performed
in 1979 to compare the lessons learned in Hosier’s 1961 article with a sample of 1979 software
engineering practice gathered from a set of 50 term papers from a course I was giving at the
time. Overall, I would say that the 1961 Hosier lessons were being applied successfully about
50% of the time. Here are some sample comparisons between the 1961 lessons and 1979 prac-
tice:1

• Testable Requirements
Hosier: As soon as specifications for a system program are definitive, contractors
should begin to consider how they will verify the program’s meeting of the
specifications. In fact, they should have had this in mind during the writing of the
specifications, for it is easy to write specifications in such terms that conformance
is impossible to demonstrate. For example: ‘The program shall satisfactorily
process all input traffic presented to it.’”

1979 Experience: “A requirements spec was generated. It has a number of
untestable requirements, with phrases like ‘appropriate response’ all too common.
The design review took weeks, yet still retained the untestable requirements.”

“The only major piece of documentation written for the project was a so-called
specification. Actually, the specification was written after the program was
completed and looked more like a user’s manual.”

• Precise Interface Specifications
Hosier: “The exact interpretation of digital formats, the rise an fall times of
waveforms, special restrictions as to when each type of data may or may not be sent
these and sundry other details must be agreed on by all parties concerned and clearly
written down. Accomplishing this is apt to be a monumental and tedious chore, but
every sheet of accurate interface definition is, quite literally, worth its weight in
gold.”

1979 Experience: “No one had kept proper control over interfaces, and the
requirements specs were still inexact.”

“The interface schematics were changed over the years and not updated, so when
we interfaced with the lines, fuses were burned, lights went out...”.

1.Boehm, B.W., “Software Engineering: As It Is,”Proceedings, 4th ICSE, September 1979.



11

“The interface between the two programs was still not exact. When interfacing the
two programs we ran into run time errors. Debugging was difficult because of the
lack of documentation. We also began to forget exactly what our code did in certain
situations and wished we had done more documentation.”

• Lean Staffing in Early Phases
Hosier: “The designer should not be saddled with the distracting burden of keeping
subordinates profitably occupied…. Quantity is no substitute for quality; it will only
make matters worse.”

1979 Experience: “At an early stage in the design, I was made the project manager
and given three trainees to help out on the project. My biggest mistake was to burn
up half of my time and the other senior designer’s time trying to keep the trainees
busy. As a result, we left big holes in the design which killed us in the end.”

I think things have gotten somewhat better since 1979, but I daresay there are still a good many
current projects which could have benefitted from the lessons in these three papers.

Software Process Insight

Given that the theme of this conference centers on the software process, it is worth examining
how these early papers address the software process.

Royce’s 1970 paper is generally considered to be the paper which defined the stage-
wise “waterfall” model of the software process. But it is surprising to see both that the earlier
Benington and Hosier papers had good approximations to the waterfall model, and that Royce’s
paper already incorporates prototyping as an essential step compatible with the waterfall model.

The stages in Benington’s Figure 4 are very similar to those in Royce’s waterfall, and
actually contain more detail in the area of software and system integration and test. Hosier’s
Figure 2 adds even more detail on the interactions between the various stages and activities in
the process. It is particularly good in identifying the steps required to prepare all the support
capabilities necessary to software production: coding rules or programming standards, input-
generating programs, test control and recording capabilities, data reduction programs, etc. The
primary additional contribution of Royce’s Figure 3 is in the explicit treatment of iteration and-
feedback, and the focus on confining iterations as much as possible to neighboring phases, in
order to minimize the much more expensive long-range feedback loops.

One frequent objection to the waterfall model is that it forbids prototyping. People
interpret it to say, “Thou shalt not write one line of code until every detailed design specification
is complete.” Royce’s Figure 7 shows that this was not the intent: the “Do it twice” approach
emphasizes at least one round of prototyping (called “simulation” in Royce’s paper) to ensure
that high-risk issues are well understood. Benington’s original paper does not mention proto-
typing, but his later Foreword indicates that SAGE did an extensive early prototype before
entering full-scale software development. Hosier does not say much about prototyping, except
for such occasional statements as, “Possibly, parts of the program may have been created for
simulation in previous studies,” indicating that prototyping was used in his context as well.
Probably the major difference today is the existence of powerful tools for rapid prototyping,
making prototypes much more costeffective (or “schedule-effective”) for use today.



12

Summary

Although these three papers may be of considerable interest for historic perspective on our
understanding of the software process, I do not think that is their primary value. Their main
value is their continuing relevance today. Most of the specific guidance they provide on require-
ments analysis, prototyping, early planning, precise interface specifications, lean staffing in
early phases, core and time budgeting, objective progress monitoring, integration planning and
budgeting, support software preparation, documentation, test planning and control, and involv-
ing the customers and users, can be used as well today as at the time they were written. They
stand today as the record of thoughtful people summarizing the lessons they had learned, in the
hopes that those of us who came along later would be able to repeat the positive software engi-
neering experiences from history rather than the negative ones. I hope you will be able to benefit
from them.

Reprint of: Barry W. Boehm: SOFTWARE PROCESS MANAGEMENT: LESSONS LEARNED
FROM HISTORY. Proceedings, ICSE 9, March-April 1987
© ACM 1987 (Permission to copy without fee all or part of this material
is granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is given that copying is
by permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.)

Remarks on the history and some perspectives of
Abstract State Machines in software engineering

Egon Boerger

In Gurevich88 a notion of Abstract State Machine, previously called evolving algebras, has
been proposed in an attempt to sharpen Turing’s thesis by considerations from complexity the-
ory where the notion has led to important new developments (see BlaGur94). Immediately after
Gurevich had defined his notion of ASM, it has been used to develop a powerful method for
design and analysis of software and hardware systems (see Boerger94 and Boerger95 for a
detailed historical and methodological account).

In this talk we first survey some of the major real-life case studies from software engi-
neering and hardware engineering through which that method has been developed or to which
it has been applied as a test for its practicality. We then explain that Gurevich’s notion of ASM
(see Gurevich95 for a detailed definition) provides a convergence of Dijkstra’s notion of
abstract machine (see Dijkstra68), of Wirth’s notion of stepwise refinement and of the data
abstraction idea which has been developed in the theory of abstract data types. In this way
ASMs can be viewed as representing an epistemologically complete realization and generaliza-
tion of the long standing structured programming program (see DaDiHo72). We conclude the
talk by pointing to recent research showing that the ASM based design and verification method,
when applied in software engineering, provides a possibility to solve the Ground Model Prob-
lem and to develop in a systematic and practical manner well documented and formally inspect-
able code from rigorous ASM requirement specifications.



13

1. A detailed survey of the ASM literature from 1988–1995 can be found in the annotated bib-
liography in Boerger95a; the more recent work can be traced through the two ASM WWW sites
http://www.uni-paderborn.de/cs/asm.html and http://www.eecs.umich.edu/gasm/ in Paderborn
and Ann Arbor. In the following we mention therefore only some outstanding examples which
illustrate salient features of the ASM based specification method.

The first practical use of ASMs has been made for providing rigorous but simple def-
initions of the semantics of different kinds of real-life programming languages. Examples are
the logic programming language PROLOG, the imperative parallel language OCCAM, the
1993 standard of the IEEE hardware design language VHDL, the object-oriented language C++,
OBERON, etc. (see Boerger90, Boerger90a, Boerger92, BoDuRo94, BoeDur96, BoGlMu94,
BoGlMu95, Wallace95, KutPie97). These definitions show that ASMs allow one to give suc-
cinct formal models of complete programming languages which support the way programmers
think and work (“operational view”) and nevertheless are simple and have a rigorous mathemat-
ical basis. As a matter of fact, the ASM definition of the logic programming language PROLOG
has provided the basis for the formulation of the ISO 1995 PROLOG standard (see BoeDae90,
BoeRos95). For PROLOG and OCCAM it has been shown that these ASM definitions can be
refined in a natural way by a sequence of intermediate ASM models leading to a correct imple-
mentation by WAM and Transputer code respectively (see BoeRos94, BoeDur96). The correct-
ness of the underlying compilation schemes has been proved by mathematical argument, com-
ing in the form of lemmas accompanying the various refinement steps. In the PROLOG-to-
WAM case this proof has been mechanically verified (see SchAhr97, Pusch96) and could be
reused for extensions of the ASM specifications to Prolog with polymorphic types, to the con-
straint logic programming language CLP(R), to a sublanguage of Lambda-Prolog where impli-
cations are allowed in the goals, to a parallel distributed version of Prolog and to other Prolog
extensions (see BeiBoe97, BeiBoe97a, BoeSal95, Kwon97, Araujo97).

After these experiments with ASM definitions and implementations of full-fledged
programming languages, subsequent work has established that ASM specifications offer in full
generality the possibility of turning intuitive design ideas into rigorous specifications and proofs
for (high-level as well as low-level) system properties. This has been tried out successfully for
many different computing systems, namely for protocols, pipelined RISC architectures, control
software, etc. (see for example Huggins95, BoGuRo95, BoeDel96, BoeMaz97, BBDGR96,
BoeMea97). Such transparent and easy to understand ASM modellings of complex real-life
computing systems, relating high-level and low-level views of these systems in a natural and
provably correct way, confirm that the ASM method is capable of supporting Abrial’s program
of accomplishing “the task of programming (in the small as well as in the large) by returning to
mathematics” (see Abrial96). The ASM approach provides a still greater freedom than Abrial’s
B-method because it avoids any a priori prescribed combined formal language and proof system
and invites the system engineer to use whatever form of mathematical language, programming
notation and rigorous reasoning may be useful for defining the desired system and for justifying
his construction.

2. The naturalness of the ASM models for the great variety of computing systems mentioned
above could be obtained only because of the most general abstraction principle which is built
into the notion of ASM. Gurevich’s notion of ASM combines two fundamental ingredients
which for decades have lived in separate worlds: Dijkstra’s notion of abstract machines on the
one side and on the other side the idea of having states as structures (in the sense of first-order
logic, i.e. collections of domains with functions and predicates defined on them). Dijkstra pro-



14

posed the notion of abstract machine in the context of the definition of his operating system
T.H.E. (see Dijkstra68, preceded by the class concept of Simula67 which has been interpreted
as a form of abstract machine in Hoare76), but despite numerous variations of the concept which
have been introduced later by many researchers (virtual machines, layered machines, data base
machines, etc., to mention only some), nobody has given an epistemologically complete defini-
tion of the underlying notion of “abstraction” or even tried to justify whether the proposed
notion is the most general one possible. On the other side, in the theoretically oriented commu-
nity of abstract data types, it seems to have been recognized since the late 60-ies that the appro-
priate most general notion of “abstract state” is that of structure or algebra, as explained above.
But unfortunately this understanding has been used only for static system descriptions (techni-
cally speaking by describing state components by syntactic terms) and has never been related
to the dynamics of machines. This may explain also why the structuring (composition and
refinement) principles which have been investigated were mainly of syntactical nature, guided
by the syntax of the underlying formal (programming) language.

Gurevich’s notion of ASM is that of a machine transforming structures. Arbitrary
structures are allowed, of whatever degree of “abstraction”, i.e. with any domains of objects and
any operations and predicates defined on them. Gurevich argues convincingly that this concept
allows us to justify a generalized Turing’s thesis (see Gurevich88a) and thus guarantees that the
concept of “abstraction” underlying the notion of Abstract State Machine is the most compre-
hensive one we can think of in terms of our current mathematical knowledge. The pragmatic
consequence is that the common practice of system engineering can be accommodated where a
system is defined in terms of its basic objects and of its basic operations which the system uses
for its actions; such definitions can be formalized as ASM directly, without any need to intro-
duce extraneous encodings. The dynamic machine behavior is expressed by instructions which
– given certain conditions – assign new values to functions (“guarded function updates”). The
freedom to choose the objects and fundamental operations guarantees that also most general
forms of refinement can be realized within the ASM framework. Both data and actions can be
refined separately or simultaneously, providing composition and modularization principles
which go well beyond any syntactical framework and reflect semantical structurings of the sys-
tem under investigation. In this way the ASM method generalizes the longstanding structural
programming endeavour.

3. In relation to software engineering the abstraction and refinement principle which are built
into the notion of ASM incorporate a strongest form of Parnas’ information hiding principle and
of modularization concepts (see Parnas72). They allow us to define abstract systems with pre-
cise interfaces, making use of the concepts of oracle functions and of externally alterable func-
tions (see Boe95).

The refinement method used for building software in steps avoids overspecification
and helps to postpone premature design decisions; sequences of stepwise refined ASMs can be
used conveniently to realize modular architectural design. Industrial software can be developed
using ASMs systematically, from the requirement specification to code, in such a way that the
abstract ASM models reflect the code structure and provide a satisfactory documentation of the
whole system at different levels of abstraction (see for example BBDGR96, BoeMea97). It is
interesting to note that this method can be applied successfully also for reengineering of com-
plex hardware systems (see the example of the APE100 parallel architecture in BoeDel95).

Pragmatically more important seems to me the fact that the notion of ASM solves the
ground model problem which is fundamental for software engineering. A ground model (see



15

Boerger94 where I used the term primary model) of a system S – which itself is very often not
a mathematically well defined system – is a mathematical model which formalizes the basic
intuitions, concepts and operations of S, without encoding, in such a way that the model can be
recognized by the system expert “by inspection” and thus justified as a faithful adequate precise
representative of S. Good ground models play a crucial role for provably correct specifications
of complex systems in general. A provably correct specification transforms a given model A
into another model B–an “implementation” of A– and proves that this implementation is cor-
rect; ultimately, in a chain of such provably correct specifications, the first model must be
ground in the above sense in order to provide, from the pragmatic point of view, a safe founda-
tion for the whole specification hierarchy. This is true in particular for software systems where
the ground model must be understandable to the application domain expert (the customer). How
can one establish the correctness of such a first model S0 in a specification chain? The question
is how we can relate the non–formal system S to the formal model S0. By definition there is no
provable relation between the mathematical object S0 and the loosely given informal system S.
Therefore the only thing we can hope for is a pragmatic foundation: we have to grasp the cor-
rectness of S0 with respect to S by understanding (“by inspection”). In order to make such a
pragmatic foundation safe, the ground model S0 has to be flexible, simple, concise, abstract and
rigorous (see the discussion in Boerger95). The flexibility provbided by the freedom of abstrac-
tion with ASMs makes it possible for the practitioner to construct satisfactory ASM ground
models, thus coming up with reliable requirement specifications.

References

(Abrial96) J.R. Abrial, The B-Book. Cambridge University Press, 1996, pp. XXXIV+779.

(Araujo97) L. Araujo, Correctness Proof of a Distributed Implementation of Prolog by Means
of Gurevich Machines. (manuscript)

(BeiBoe97) C. Beierle and E. Boerger, Specification and correctness proof of a WAM extension
with abstract type constraints. In: Formal Aspects of Computing, Vol. 8(4), 1996, 428–
462.

(BeiBoe97a) C. Beierle and E. Boerger, Refinement of a typed WAM extension by polymorphic
order-sorted types. In: Formal Aspects of Computing, Vol. 8(5), 1996, 539–564.

(BBDGR96) C. Beierle, E.Boerger, I. Durdanovic, U. Glaesser and E. Riccobene, Refining
abstract machine specifications of the steam boiler control to well documented executable
code. In: J.-R. Abrial, E.Boerger,H. Langmaack (Eds.): Formal Methods for Industrial
Applications. Specifying and Programming the Steam-Boiler Control. Springer LNCS
State–of–the–Art Survey, vol. 1165, 1996, 52-78.

(BlaGur94) A. Blass and Y. Gurevich, Evolving Algebras and Linear Time Hierarchy. In B.
Pehrson and I. Simon, editors, Proc. of the IFIP 13th World Computer Congress 1994,
Vol. I, pp. 383–390. Elsevier, 1994.

(Boerger90) E. Boerger, A logical operational semantics for full Prolog. Part I: Selection core
and control. In: Springer LNCS, vol. 440, 1990, pp. 36-64.

(Boerger90a) E. Boerger, A logical operational semantics for full Prolog. Part II: Built-in
predicates for database manipulations. In: B.Rovan (Ed.): MFCS’90. Mathematical
Foundations of Computer Science. Springer LNCS, vol. 452, 1990, pp 1-14.



16

(Boerger92) E. Boerger, A logical operational semantics for full Prolog. Part III: Built-in
predicates for files, terms, arithmetic and input-output. In: Y.Moschovakis (Ed.) Logic
from Computer Science. Berkeley Mathematical Sciences Research Institute
Publications, vol.21, Springer 1992, pp. 17-50.

(Boerger94) E. Boerger, Logic Programming: The Evolving Algebra Approach. In: B. Pehrson
and I. Simon (Eds.), IFIP 13th World Computer Congress 1994, Volume I: Technology/
Foundations, pp.391-395, 1994, Elsevier, Amsterdam.

(Boerger95) E. Boerger, Why use of evolving algebras for hardware and software engineering.
In: M.Bartosek, J.Staudek, J.Wiedermann (Eds), SOFSEM’95 22nd Seminar on Current
Trends in Theory and Practice of Informatics. Springer Lecture Notes In Computer
Science, vol. 1012, 1995, pp.236–271.

(Boerger95a) E. Boerger, Annotated Bibliography on Evolving Algebras. In: E. Boerger (Ed.),
Specification and Validation Methods, Oxford University Press, 1995, pp.37–52

(BoeDel96) E. Boerger and G. Del Castillo, A formal method for provably correct composition
of a real–life processor out of basic components (The APE100 reverse engineering
project). In: Proc. First IEEE International Conference on Engineering of Complex
Computer Systems (ICECCS’95). IEEE Computer Society Press, Los Alamitos,
California, 1995, pp.145-148.

(BoeDae90) E. Boerger and K. Daessler, PROLOG. DIN papers for discussion. ISO/IEC JTC1
SC22 WG17 report no.58, National Physical Laboratory, Middlesex, April 1990, pp.92-
114.

(BoeDur96) E. Boerger and I. Durdanovic, Correctness of Compiling Occam to Transputer
Code. In: The Computer Journal, Vol. 39, No.1, pp.52-92, 1996.

(BoDuRo94) E. Boerger, I. Durdanovic and D. Rosenzweig, Occam: Specification and
Compiler Correctness. Part I: Simple Mathematical Interpreters. In: E.-R. Olderog (Ed.),
Proc. PROCOMET’94 (IFIP Working Conference on Programming Concepts, Methods
and Calculi), pages 489-508, North-Holland, 1994

(BoGlMu94) E. Boerger, U. Glaesser, W. Mueller, The Semantics of Behavioral VHDL’93
Descriptions. In: EURO-DAC’94 European Design Automation Conference with EURO-
VHDL’94. Proceedings IEEE CS Press, Los Alamitos, CA, 1994, pp.500-505.

(BoGlMu95) E. Boerger, U. Glaesser, W. Mueller, Formal Definition of an Abstract VHDL’93
Simulator by EA-Machines. In: Carlos Delgado Kloos and Peter T. Breuer (Eds.), Formal
Semantics for VHDL, pp.107–139, Kluwer Academic Publishers, 1995

(BoGuRo95) E. Boerger, Y. Gurevich and D. Rosenzweig, The Bakery Algorithm: Yet Another
Specification and Verification. In: E.Boerger (Ed.), Specification and Validation
Methods, Oxford University Press, pages 231–243, 1995

(BoeMaz97) E. Boerger and S. Mazzanti, A Practical Method for Rigorously Controllable
Hardware Design. in: Proc. ZUM’97, Springer LNCS (in print)

(BoeRos94) E. Boerger and D.Rosenzweig, The WAM – Definition and Compiler Correctness.
In: Logic Programming: Formal Methods and Practical Applications (C.Beierle,



17

L.Pluemer, Eds.), Elsevier Science B.V. North-Holland, Series in Computer Science and
Artificial Intelligence, 1995, pp. 20–90 (chapter 2).

(BoeRos95) E. Boerger and D.Rosenzweig, A Mathematical Definition of Full Prolog. In:
Science of Computer Programming 24 (1995) 249–286.

(BoeSal95) E. Boerger and R. Salamone, CLAM Specification for Provably Correct
Compilation of CLP(R) Programs. In: Specification and Validation Methods (E.Boerger,
Ed.), Oxford University Press, pages 97–130, 1995

(DaDiHo72) O. Dahl, E. Dijkstra, C. Hoare, Structured Programming. Academic Press, 1972.

(Dijkstra68) E. W. Dijkstra, Structures of the T.H.E. Multiprogramming System. In: Comm.
ACM 11 (1968), 341–346.

(Gurevich88) Y. Gurevich, Logic and the challenge of computer science. In E. Boerger (Ed.),
Current Trends in Theoretical Computer Science, pp. 1–57. CS Press, 1988.

(Gurevich88a) Y. Gurevich, Algorithms in the World of Bounded Resources. In: R. Herken
(Ed.), The Universal Turing Machine. A Half-Century Survey. Kammerer and Unverzagt,
Hamburg-Berlin 1988, pp. 407–416.

(Hoare76) C. Hoare, The structure of an operating system. In: Springer LNCS 46 (1976),
pp.242–265.

(Huggins95) J. Huggins, Kermit: Specification and verification. In E. Boerger (Ed.),
Specification and Validation Methods. Oxford University Press, 1995, pp. 247–293.

(KutPie97) P.W. Kutter and A. Pierantonio, Montages: Toward the Semantics of Realistic
Programming Languages. (manuscript)

(Kwon97) K.Kwon, A structured presentation of a closure-based compilation method for a
scoping notion in logic. (manuscript)

(Pusch96) C. Pusch, Verification of Compiler Correctness for the WAM. In: J. von Wright, J.
Grundy, J. Harrison (eds.), Theorem Proving in Higher Order Logics (TPHOLs’96,
Turku), Springer LNCS 1125, pp. 347-362, 1996.

(SchAhr97) G. Schellhorn and W. Ahrednt, Reasoning about Abstract State Machines: The
WAM CaseStudy. (manuscript)

(Wallace95) C. Wallace, The semantics of the C++ programming language. In E. Boerger (Ed.),
Specification and Validation Methods. Oxford University Press, 1995, pp. 131–164.



18

DEVELOPMENT AND STRUCTURE
OF THE INTERNATIONAL

SOFTWARE INDUSTRY, 1950-1990

Martin Campbell-Kelly

Abstract

The software industry has existed since the mid-1950s, but until about 1970 very little attention
was paid to it, largely because the industry was too small to merit detailed analysis other than
as an unquantified sector of the overall computer business. As late as 1970, the annual turnover
of all U.S. software firms was less than $1/2 billion – about 3.7 percent per cent of the total com-
puter business. The software industry began to grow significantly in the 1970s, first following
IBM’s unbundling decision of 1969, and towards the end of the decade from the rise of the per-
sonal computer. By 1979 annual sales of U.S. software firms were about $2 billion. The 1980s
saw dramatic growth rates in the software industry of 20 per cent a year or more, so that the
annual revenues of U.S. firms had grown to $10 billion by 1982, and $25 billion by 1985 – over
ten times the 1979 figure. Today the global sales of software exceed $100 billion.

This paper attempts to develop a model of the software industry based on historical
principles. Software firms are classified into three sectors, based on their historical evolution:

1 Software contractors
2 The packaged-software industry
3 The personal-computer software industry

The software contractors were the first programming firms, the earliest dating from the mid-
1950s. The role of the software contractor was to develop one-of-a-kind programs for computer
users and manufacturers. The ethos of the software contractor was analogous to that of a civil
engineering contractor in terms of its corporate culture, organizational capabilities, and relation-
ships with customers.

The second group of firms, the suppliers of packaged software, evolved in the 1960s
to develop program products for computer users in public and private sector organizations. The
packaged software suppliers operated in direct competition with computer manufacturers; and
like them they have evolved the characteristics of firms in the capital goods sector.

The third group, the personal-computer software suppliers, became a significant sector
in the late 1970s. Virtually all of the personal-computer software firms developed outside the
established software industry; in some cases there was a background in developing hobby or
games software, and a “techie” computer culture. This background has profoundly affected the
shape of the personal-computer software industry and its products. Even though most personal-
computer software is now sold to corporate users, the ethos of the industry is more akin to pub-
lishing or consumer products than to capital goods. For example, the search for a “hit” product
is paramount, and this has led to analogies being drawn with the pop music business, or the Hol-
lywood movie industry.



19

The paper used this historical model to address three economic and policy issues in the software
industry:

1 Why does the United States dominate the software industry? And the related issues:
What are the historical reasons for the weak positions of the European and Japanese
software industries? Does the developing nations’ software industry represent a
threat?

2 What role has R&D played in successful software firms?
3 Why did IBM and the existing software firms fail to penetrate the market for

personal computer software in the 1980s?

The paper concluded by discussing the place of recreational software in the software industry.

From Scientific Instrument to Everyday Appliance:
The Emergence of Personal Computers, 1970-77

Paul Ceruzzi

Abstract

Among the many changes in computing since the Software Engineering Conference of 1968,
the greatest has been the emergence of the Personal Computer and with it the giant software
companies, like Microsoft, who supply operating systems, applications, and networking soft-
ware to desktop machines. Serious studies of the way software is developed at these companies
have not been done, but anecdotal evidence and a few “insider” accounts indicate that current
practice at these firms has little if anything to do with the spirit of the 1968 NATO Conference.

This paper looks at the roots of Personal Computer Software and attempts to find con-
nections between it and software development that occurred on mainframes and minicomputers
that came before. It finds that there are indeed strong connections, many of which go back to the

Digital Equipment Corporation, founded in 1957 and housed in an old woolen mill on
the banks of the Assabet River about 30 miles west of Cambridge, Mass. In particular, DEC’s
PDP-6, a large system (not a minicomputer) introduced in 1964 and intended for time-sharing,
was the focus of efforts to create software that was interactive, conversation, that took up little
memory space, and powerful. These efforts we recentered at MIT and at DEC, and led to sys-
tems like the “ITS,” “TOPS-10,” “Tenex” Operating Systems, all for a time shared large system.

The file-handling concepts developed there were later transferred to stand-alone mini-
computers like the PDP-8 and PDP-11, and from there to the first Personal Computers. Evi-
dence for this line of influence comes from interviews with some PC system programmers, but
it is also found in the very commands themselves that migrated from one to the other. Thus,
“PIP,” “DDT,” and “TECO” –system programs found on many DEC machines– were also
found among the commands of CP/M, one of the most influential of PC operating systems. CP/
M is widely acknowledged as a major influence on MS-DOS, perhaps the most successful com-
mercial software ever written. But a closer analysis of MS-DOS reveals that it was a significant



20

extension and modification of CP/M. Still, in tracing this thread, I found the principal emphasis
among developers the qualities of ease of use, power, and above all economy of memory
requirements; I found no evidence of a desire to follow the tenets of good Software Engineering
practice.

That conclusion is further reinforced by a parallel examination of the other piece of
software that formed the basis for Microsoft’s fortunes: Microsoft’s version of BASIC. Here,
too, I found a strong connection to DEC, especially in borrowing the commands “USR,”
“PEEK,” and “POKE,” which gave Microsoft’s BASIC a clear advantage over the BASICs of
its competitors. But here again: the use of these machine-language hooks, as well as the choice
of the BASIC language itself, show how little these developments owed to Software Engineer-
ing.

I conclude by speculating that this may in part explain some of the problems with the
current state of PC software. At the same time I also conclude that those who would promote
the tenets of Software Engineering must share some of the blame for not taking a more active
role in PC software development, a role that might have prevented this state of affairs from
emerging.

A Synopsis of Software Engineering History:
The Industrial Perspective

Albert Endres

Introduction

In this paper I will give a condensed survey of the software engineering history between 1956
and now. I have structured the 40 years into three eras and each era in two time periods. Each
period is characterized by a different set of goals pursued, methods and tools unsed, lessons
learned and problems identified. The periods may overlap and are less distinct from each other
than the three eras. Of course, there are significant events prior to 1956. I have chosen to con-
sider them as pre-history and neglected them.

Any attempt to describe a 40-year period on a few pages means selecting highlights
and suppressing details. It is like drawing a small scale map of a country. If you are a motorist
you look for roads, other features hardly count. This paper, as the title says, emphasizes the view
from industry. This means, that ideas that did not become relevant in industry are ignored.

Mastering the Machine (Era I)

This era comprises the 12 years from 1956 to 1967. It is the era where the term “software engi-
neering” had not been coined yet. The two periods considered are both strongly influenced by
external forces. It is also the forming period of the computer industry.



21

The Batch Period

The first computers that achieved significant use in industry, be it for commercial or scientific
applications were batch-oriented systems. This mode of operation resulted from the two typical
I/O and storage media, namely punched cards and magnetic tape. The main goal of software
development was to exploit the limited hardware resources (storage and processing power) in
an optimal way. Any less than optimal use could double or triple the processing times, measured
in hours, or make the total job infeasible. Therefore lots of effort was spend on manually tuning
code, mainly written in Assembler. The first compilers like the 7090 FORTRAN compiler
(developed by Backus and his team) proved that this could be done as well by machine. Since
compile times for reasonably sized applications could also last hours, most changes were
applied to the object code first. Recompilations only occurred in certain time intervals, usually
at night.

At least one key lesson was learned during this period. For most applications high level
languages of the FORTRAN or COBOL type could produce adequately performing code. The
problems identified were the extensive compile times and the awful clerical task to keep source
and object code in synchronization.

The Interactive Period

During the second half of the sixties, interest shifted away from language issues to the more
general question of development tools. The main goal was to reduce the clerical aspects of cod-
ing and to eliminate the need for modifying object code.

The hardware environment that supported this goal was the availability of non-volatile
random-access storage in the form of DASD or disk and the mode of computer usage referred
to as timesharing (probably invented at MIT by Corbato et al.).

The software technology developed during this period was that of incremental compi-
lation, source level editing and debugging, and automatic test data generation. These technolo-
gies were supported by the concept of on-line source code administration and version control.
Although the main I/O device used for on-line development was a simple typewriter (or teletype
device) the mode of operation can be referred to as interactive. From a later period’s view, the
tools developed during this period can be called lower CASE tools.

The achievement of this period and the lesson learned was, that it is advisable to main-
tain programs at the source code, rather than at the object code level. The problems identified
during this period can be described by such terms as “code and fix” approach and “spaghetti
code”. Moreover, people started to recognize that there is more to software development than
just coding. In fact, people started to realize that programming has much in common with other
development cycles and that the highest risks may lie in thepre-testingand even in thepre-cod-
ing phases. This motivated a new approach to the field and started up a new era.

Mastering the Process (Era II)

It was during this era that software engineering was established as a field of study. The era
roughly lasts from 1968 to 1982. Many people may argue that the ideas brought about during
this era are still relevant today. This still allows us to call them historic ideas because they were
most dominant at that time. During this era software pricing was introduced by hardware ven-
dors and an independent software industry arose.



22

The Process Period

It is common to associate this period with the first recognition of the software crisis. Some peo-
ple insist that the original crisis still exists today, others have identified a series of crisises, one
following the other. The initial software crisis which turned away from coding tools to the study
of the development process, was recognized first in industry. Later on, the subject was also dis-
cussed heavily in academic circles and appropriate curricula, conferences and journals were
established.

The main goal pursued during this period was to reduce development risks and to
improve quality and productivity. This lead to studies, identifying the causes of failing software
projects, collecting data on cost spent per activity and to the analysis of software error data.
Each organisation reacted with a set of development guidelines, typically expressing some
phased approach to development. The waterfall model and many improved versions of it were
introduced. The principle of check and balance was applied wherever feasible. This usually
resulted in the creation of an independent test organisation which later may have grown into a
quality assurance function. A milestone event of this period was the recognition that code
inspections, if done wisely, could be more effective than testing. Code inspections (as docu-
mented by Fagan) were later extended to test case and to design inspections. Collecting and
analysing process data became common practice. The first self assessment procedures were
introduced (e. g. by Humphrey)

The key lesson learned during this period was that the quality of a product cannot be
assured by only looking at the final product, i. e. the outcome of the development cycle. Quality
assurance has to address the entire development process and here in particular the early phases.
This is possible, however, only if synchronization and co-location of assurance and develop-
ment activities is planned and arranged for. Clearly, tremendous progress was made in terms of
raising the quality level of software shipped. Several organisations that carefully selected and
analysed their process data could show quality improvement more than a factor of 10 within 5-
6 years.

The Formal Period

The goal pursued by formal methods is to increase the trustworthiness of software and to
improve productivity by achieving automation. This explains why practitioners put great hopes
in these methods. Formal methods are applicable to software specification, transformation and
verification. In the most visionary views, proponents expected that once a formal specification
was found the entire remaining development process could be automated through a series of
correctness preserving transformations. A less demanding solution is attempted in the case of
verification. Here a formal specification would serve as yardstick for a manually derived imple-
mentation to prove its consistency with the original specification. The kind of tools developed
were design languages or specification languages (including editors and checkers), transforma-
tion systems and verifiers.

In an industrial environment, the proponents of formal methods were typically con-
fronted with two main arguments, namely education and tools. Even if considerable effort was
spend to solve these problems, the acceptance was still less than expected. Formal methods and
verification in particular have had their successes mainly for small security or safety critical pro-
grams.



23

For large projects, it usually turned out that neither the requirements nor the design can be
expressed in a succinct mathematical model. To each requirements specification there belongs
a whole set of non-functional requirements for which different forms of expression are relevant.
Examples are the cross domain data interrelationships, the usability, performance and compat-
ibility requirements. Another problem not addressed by formal methods is the need of the
requirements analyst or the designer to communicate with non-professional users through lan-
guage that is understandable for them. The more critical the application is to human organisa-
tions, the more important this aspect becomes.

While in era I it was recognized that the highest risks lie in the precoding phases, era
II learned that thepre-designactivities also needed a high amount of attention. It is therefore
justified to view the following periods as a new era.

Mastering Complexity (Era III)

This is the era since 1983. The milestone event is the arrival of the PC. The first of the two peri-
ods may be considered history, the second period is the contemporary period. During this era
the traditional dominance of hardware over software ended. Hardware has become subservant
to software, also examplified by the stumbling of some companies (IBM, DEC) that were for-
merly strong as hardware vendors.

The Structured Period

The structured methods have their origin really in the preceding era (Dijkstra, Mills, Wirth), in
particular as far as their application to coding and design is concerned. What made structured
methods pervasive in industry was their application to requirements analysis.

What helped strongly was a change in the hardware environment, namely the spread
of CRT displays, and here in particular the category of all-points-addressable devices. This
opened up computers as a tool for engineers doing graphical designs. Eventually software
designers wanted to become more like engineers by drawing rather than writing programs. This
called for graphical design notations. Although graphical notation can be formal in nature (as
shown by Harel), they are usually considered as a good means to communicate with non-pro-
grammers.

The emergence of CRTs as everybody’s user interface also created a new software
entity, namely the Graphical User Interface (GUI) tools. Suddenly, software engineering
seemed to be able to feed its own industry. It was the starting point of the CASE euphoria. So
far only individual small tools like those of a craftsman were available, now everything could
be integrated into a universal workbench. The strategic opportunity offered by the CASE tech-
nology was that programs could eventually be maintained at the design level rather than at the
source code level. This would have been one possible way-out from the language struggle.

As indicated before, not all blossoms ripened into fruits. First the users of CASE tools
had to struggle with two surprises: (a) picking a tool meant picking a design and analysis
method. If the organisation was not ready for this decision the tool became shelfware, (b) the
hope that a CASE tool would automate code generation did not materialize. If people had jus-
tified the CASE investment under the premise of automatic code generation, the effort did not
pay off. As a result, the dichotomy between design and code continued to exist, meaning, if the
design changed the code has to be changed as well. Or vice versa, if the code changed the design
has to be updated, an even worse problem. A CASE tool that could be used as a drawing tool



24

only or as a repository for all kinds of non-related material soon became too expensive, i. e. the
learning and maintenance costs were too high.

The structured methods showed up another serious problem. Doing data modelling and
process modelling totally distinct from each other, did not lead to a system structure that was
easy to maintain, as processes and data did not automatically preserve their interrelationship.
Nor was the problem of code reuse and the reengineering of existing systems addressed.

The Object-oriented Period

The potential of software reuse was, as we all know, pointed out by a visionary (McIlroy) as
early as 1968. It is fair, however, to say that it was not seriously addressed until recently. In fact
it is the theme underlying the entire object-oriented movement, which is the buzzword of our
time. What really motivates people to look at software reuse is the recognition of software as an
asset. Wherever the world is dominated by hardware designers, software is always an add-on,
something done quickly late in the cycle to feed the hardware. If software is planned for reuse
(forgetting about unplanned reuse) it will be designed and implemented differently than before.
It will be modularized, encapsulated and portable. If object-oriented concepts are applied, the
additional mechanisms of inheritance and polymorphism are available.

Similarly as in the case of structured methods, the object-oriented methods were first
applied to coding, then to design and later to requirements analysis. Contrary to the structured
methods, there is a seamless transition possible between analysis, design and implementation.
Code reuse is achieved through the exploitation of class libraries or (mainly in the case of GUI-
intensive programs) through the use of application frameworks. Also design reuse is being dis-
cussed widely under the concept of design patterns.

Reengineering has also a much clearer defined role as before. It is the process of con-
verting a non-object-oriented system to an object-oriented structure, thus building a new tech-
nological base for extension and reuse. Object-orientation has the potential to construct soft-
ware systems that have a truely modular structure and are easily decomposable in natural sub-
units (following the criteria originally proposed by Parnas). Processes and data are lumped
together.

The problems identified for this generation of development methods mainly relate to
the increased demands on testing and software understanding. Also cycle time appears to
become an important issue, particularly if a market is still expanding because creative people
see opportunities for innovative products and services.

Concluding Remarks

The last 40 years of software development are certainly only the beginning of our field and rep-
resent a short period if measured in historic terms. Nevertheless, it is helpful to try to identify
some threads that could form a road map into the future. As historians usually argue, the only
purpose to study history is to learn about the future.

The model of history used in this essay is a very simplistic one. It emphasizes the learn-
ing process of the community. There certainly are much more elaboreted models like the one
used by B. Boehm during the same workshop. It allows for thesis and antithesis, challenges and
resistance. For a more detailed analysis such a model would by very useful.



25

Software Engineering – Why it did not work

Jochen Ludewig

A Concept which was never Defined

F.L. Bauer, 1968

The whole trouble comes from the fact that there is so much tinkering with software.
It is not made in a clean fabrication process, which it should be. What we need, is
software engineering.

That means: Software Engineering was invented as a provocative word without meaning (like
“threatened by peace” or “deafening with silence”). Let us check the standard glossary:

Again, not a definition, but agoal!

More Differences than Similarities

Successful Engineering

“Engineers” were not defined. Their typical profile (knowledge, behaviour, way oft thinking)
developed over at least two centuries. If we want to know what an engineer is, we do not need
a dictionary, we can simply watch one of them. (Note: In Software Engineering, there is a tra-
dition to talk about engineers without knowing them. This resembles the way the Romans would
talk about the heroic Germanic people1, or the Germans about the heroic Red Indians2)

In fact, average engineers donot work formally, they donot apply difficult mathemat-
ics, they donot read scientific books, etc., but tend to solve standard problems using standard
approaches, andsometimes extend their solutions carefully in order to achieve slightly better
results.

Craftsmen and Engineers

Engineering was built on top of crafts, like smith, mason, cabinet-maker.
These crafts date back to the MiddleAges. They have developed ahigh level of quality, guar-
anteed and defended by theguilds.

1.Tacitus: De origine et situ Germanorum
2.Karl May: Winnetou

Software Engineering

(1) The application of a systematic, disciplined, quantifiable approach to the development,
operation, and maintenance of software; that is, the application of engineering to
software.

(2) The study of approaches as in (1).

IEEE Std. 610.12 (1990)



26

There is no craft behind Software Engineering. There are no people who are used, and expected,
to deliver decent quality. There are no guilds who would expel them if they break the rules.

Formality and Standards

Engineers use formalisms for drawings, datasheets etc., but rarely do difficult things in formal
ways. Their formalisms are simple and well understood.

In Software Engineering, we do not have many formalisms (except few programming
languages) which are generally accepted and understood. In particular, there are no agreed for-
malisms for communicating information about software or system requirements and design.

Engineers apply standards. Otherwise, they would not be able to communicate, to use
components in their designs, to maintain broken equipment, deliver products within reasonable
time.

In Software Engineering, we have few standards, which are not even well known and
accepted. Therefore, we are not able to do what the engineers can do thanks to their standards.

The Role of the Customer

The overall cost of high quality goods is usually lower than the cost of less mature, less reliable,
less complete products. Still, high quality goods are more expensive. Engineers can expect their
customers to appreciate good quality because they know the effects of poor quality, and they
are able to distinguish good quality from bad quality.

In a market where the customers are stupid, or incompetent, high quality goods are
hard to sell.

Where is the “Electrical Engineering” in Electrical Engineering?

Component versus Common Denominator

In a profession like EE, there are many specialists (power generation, electrical engines, micro-
waves, semiconductors, etc.), but there is no “specialist” for EE, because the essentials of the
field are in theintersection of all the specializations. Otherwise, the specialists would neither
produce good quality, nor could they successfully communicate with each other.

Software Engineering is usually treated as one topic out of many. Students may speci-
alise in compilers, or AI, or SE. This approach means that in a faculty, there are some 10 pro-
fessors teaching informatics, one of which teaches SE. When students do a project, chances are
9 to 1 that they will not learn how to do it properly. Co-operation is unlikely, one side will usu-
ally not benefit.

We should make Software Engineering the common denominator of all branches of
informatics, not just another branch.

The Need for a Software Culture

Engineers can deliver good products fairly reliably because they have got

• the craftsmen as their professional ancestors
• an education in which the common principles are not betrayed, but applied without

thinking
• degrees which have a clear meaning, and imply certain responsibilities
• a sound theory, which has been expressed in terms simple enough for the engineers
• standards and notations which are generally accepted



27

• customers who appreciate good quality
• support from researchers when necessary or useful.
• products which develop slowly.

These ingredients together form aculture.

In a culture, all parts are required. If one is missing, the structure will collapse.

In Software Engineering, we must improve in all aspects!

References

The papers below are available from

http://www.informatik.uni-stuttgart.de/ifi/se/se.html

J. Ludewig: Von der Software-Zivilisation zur Software-Kultur: Die Vision einer verläßlichen
Software-Umgebung. H. Mayr. (Hrsg.), Beherrschung von Informationssystemen. GI-
ÖCG-Jahrestagung 1996, Klagenfurt, Verlag R. Oldenbourg, Wien, S.255-266.

J. Ludewig: Der Modellstudiengang Softwaretechnik. in P. Forbrig, G. Riedewald (Hrsg.):
SEUH’97 (Software Engineering im Unterricht der Hochschulen). Berichte des German
Chapter of the ACM, Band 48, Teubner, Stuttgart, S.9-23.

culture: (...):

a:the integrated pattern of human knowledge, belief, and behaviour that depends upon man’s
capacity for learning and transmitting knowledge to succeeding generations

b:the customary beliefs, social forms, and material traits of a racial, religious, or social group

c:the set of shared attitudes, values, goals, and practices that characterises a company or
corporation

Merriam Webster’s CollegiateDictionary

Figure 1: Building blocks of a culture



28

Brief Account of My Research and Some Sample References

Donald Mackenzie

My research is on two closely related topics. One topic is the development of safety-critical and
security-critical computer systems, where I have been examining processes of the development
and assessment of such systems. The underlying hypothesis is that these are not simply techni-
cal matters, but also social ones. The development of a computer system is an organisational
and managerial task, and its assessment falls in part into the sphere of the sociology of knowl-
edge. When one constructs a “safety case” or “security case” for a computer system, that is in
part an exercise in persuasion. Not only a systems developers, but also customers, regulators,
and sometimes users and the public, have to be convinced.

The second research topic is “the sociology of mathematical proof”. It relates to the
first because deductive proof is increasingly being used to demonstrate the safety and security
of computer systems. As is well known, the complexity of such systems means that it is fre-
quently infeasible to test them exhaustively. So since the late 1960s computer scientists have
sought ways of showing deductively that programs or hardware designs are correct implemen-
tations of their specifications. This practical interest in mathematical proof moves proof from
the textbooks and lecture theatres to the world of commerce and the law. In 1991, for example,
there was litigation in Britain that hinged upon what mathematical proof should be taken to
mean in the context of safety-critical systems. More generally, two different notions of proof
(formal proof, as analysed by logicians, and “rigorous argument” as practised by mathemati-
cians) can be seen as co-existing, and sometimes contending, in this area.

The papers in which I have described this research are as follows:

1 ‘Formal Methods and the Sociology of Proof’, in J.M. Morris and R.C. Shaw, eds,
Proceedings of the Fourth Refinement Workshop (London: Springer, 1991), 115-124.

2. [Commentary] ‘The Fangs of the VIPER’, Nature, 352 (8 August 1991), 467-68.

3. ‘Computers, Formal Proof and the Law Courts’, Notices of the American Mathematical
Society, 39 (1992), 1066-69.

4. ‘Negotiating Arithmetic, Constructing Proof: The Sociology of Mathematics and Information
Technology’, Social Studies of Science, 23 (1993), 37-65.

5. ‘The Social Negotiation of Proof: An Analysis and a further Prediction’, in Peter Ryan and
Chris Sennett, eds, Formal Methods in Systems Engineering (London: Springer, 1993),
23-31.

6. ‘Computer-Related Accidental Death: An Empirical Exploration’, Science and Public Policy,
21 (1994), 233-48.

7. ‘The Automation of Proof: A Historical and Sociological Exploration’, IEEE Annals of the
History of Computing, 17 (3) (1995), 7-29.



29

8. ‘How do we Know the Properties of Artefacts? Applying the Sociology of Knowledge to
Technology’, in Robert Fox (ed.), Technological Change: Methods and Themes in the
History of Technology (London: Harwood, 1996), 247-63.

9. ‘Proof and the Computer: Some Issues Raised by the Formal Verification of Computer
Systems’, Science and Public Policy, 23 (1996), 45-53.

10. ‘Computers, “Bugs”, and the Sociology of Mathematical Proof’, in William H. Dutton (ed.),
Information and Communication Technologies: Visions and Realities (Oxford: Oxford
University Press, 1996), 69-85.

11. (with Malcolm Peltu, Stuart Shapiro and William H. Dutton, ‘Computer Power and Human
Limits’, in William H. Dutton (ed.), Information and Communication Technologies:
Visions and Realities (Oxford: Oxford University Press, 1996), 177-95.

12. (with Margaret Tierney) ‘Safety-Critical and Security-Critical Computing in Britain: An
Exploration’, accepted for publication in Technology Analysis and Strategic
Management.

13. (with Garrel Pottinger) ‘Mathematics, Technology, and Trust: Formal Verification,
Computer Security, and the U.S. Military’, accepted for publication in IEEE Annals of the
History of Computing.

FINDING A HISTORY OF SOFTWARE ENGINEERING

Michael S. Mahoney

(Prefatory note: What follows is an abbreviated version of the talk I planned to give, recon-
structed some time later from the notes. A decision at the time to proceed interactively and to
open the floor to questions and comments soon generated a series of active and interesting
exchanges that left time to hit only the highlights. I make no attempt to recapture the actual dis-
cussion, since I can take credit for little of its content.)

The title has at least two senses, and I intend them both. In the first instance is describes
historians trying to determine just what the subject of their history might be and then deciding
how to write that history. What is a history of software engineering about? Is it about the engi-
neering of software? If so, by what historical model of engineering? Is it engineering as applied
science? If so, what science is being applied? Is it about engineering as project management? Is
it engineering by analogy to one of the established fields of engineering. If so, which fields, and
what are the terms of the analogy?

Of what history would the history of software engineering be a part, that is, in what
larger historical context does it most appropriately fit? Is it part of the history of engineering?
The history of business and management? The history of the professions and of professional-
ization? The history of the disciplines and their formation? If several or all of these are appro-
priate, then what aspects of the history of software engineering fit where?

Or, to put the question in another light, is the historical subject more accurately
described as “software engineering” with the inverted commas as an essential part of the title.



30

What seems clear from the literature of the field from its very inception, reinforced by the open-
ing session of this conference, is that its practitioners do not agree on what software engineering
is, although most of them freely confess that, whatever it is, it is not an engineering discipline.
Historians have no stake in the outcome of that question. We can just as easily write a history
of “software engineering” as the continuing effort of various groups of people engaged in the
production of software to establish their practice as an engineering discipline. The question of
interest to historians is how “software engineers” have gone about that task of self-definition.

In large part, addressing that question comes down to observing and analyzing the
answers practitioners have offered to the questions stated in the opening paragraph above. That
is, rather than positing a consensus among practitioners concerning the nature of software engi-
neering, historians can follow the efforts to achieve a consensus. Taking that approach would
place the subject firmly in the comparative context of the history of professionalization and the
formation of new disciplines.

The second sense of the title follows from the approach through “software engineer-
ing”. Efforts by practitioners to define or to characterize software engineering quite often
amount to finding a history, that is, to seeking to identify the current development of software
engineering with the historical development of one of the established engineering disciplines or
indeed of engineering itself. Using history in this way has its real dangers; the initial conditions
cannot by their nature be exactly repeated. Nonetheless, it is at the very least essential that one
both have the right history and have the history right, and that is not a simple matter.

I would argue that every definition of software engineering presupposes some histori-
cal model. For example, take the oft-quoted passage from the introduction to the proceedings of
the first NATO Software Engineering Conference:

The phrase ‘software engineering’ was deliberately chosen as being provocative, in
implying the need for software manufacture to be based on the types of theoretical
foundations and practical disciplines that are traditional in the established branches
of engineering.

The phrase is provocative, to be sure, if only because it leaves all the crucial terms undefined.
What does it mean to “manufacture” software? What, precisely, are the “theoretical foundations
and practical disciplines” that underpin the “established branches of engineering”, and in what
sense are they “traditional”, i.e. historical?

Some, or perhaps even much, of the disagreement among the participants in the first
NATO conferences rested on the different histories they brought to the gatherings. None of
them was a software engineer, for the field did not exist. Rather, people came from quite varied
professional and disciplinary traditions, each of which had its own history, in many cases a
mythic history.

Some viewed engineering as applied science in the sense expressed in another context
by John McCarthy:

In this paper I shall discuss the prospects for a mathematical science of computation.
In a mathematical science, it is possible to deduce from the basic assumptions, the
important properties of the entities treated by the science. Thus, from Newton’s law
of gravitation and his laws of motion, one can deduce that the planetary orbits obey
Kepler’s laws.1

1.“Towards a mathematical science of computation”,Proc. IFIP Congress 62 (Amsterdam: North-Hol-
land, 1963), 21.



31

In another version of the paper, he changed the precedent only slightly:

It is reasonable to hope that the relationship between computation and mathematical
logic will be as fruitful in the next century as that between analysis and physics in
the last. The development of this relationship demands a concern for both applica-
tions and for mathematical elegance.1

The applications of mathematics to physics had produced more than new theories. The mathe-
matical theories of thermodynamics and electricity and magnetism had informed the develop-
ment of heat engines, of dynamos and motors, of telegraphy and radio. Those theories formed
the scientific basis of engineering in those fields. McCarthy looked to a mathematical theory of
computation to play a similar role for programming, and he was not alone.

Yet, despite the substantial achievements of theoretical computer science during the
1960s, Christopher Strachey could still lament in a discussion on the last day of the second NATO
Conference that “one of the difficulties about computing science at the moment is that it can’t dem-
onstrate any of the things that it has in mind; it can’t demonstrate to the software engineering people
on a sufficiently large scale that what it is doing is of interest or importance to them.”2 About a
decade later, a committee in the United States reviewing the state of art in theoretical computer
science echoed his diagnosis, noting the still limited application of theory to practice.3 By the
mid-’70s, moreover, it seemed clear to some that, even if existing theory had practical applica-
tion, it would not quite meet the needs of software engineering. As Barry Boehm put it In a 1976
article:

Those scientific principles available to support software engineering address problems
in an area we shall callArea 1: detailed design and coding of systems software by ex-
perts in a relativelyeconomics-independent context. Unfortunately, the most pressing
software development problems are in an area we shall callArea 2: requirements anal-
ysis design, text, and maintenance of applications software by technicians in aneco-
nomics-driven context.4

However successful the experimental systems and theoretical advances produced in the labora-
tory, especially the academic laboratory, they did not take account of the challenges and con-
straints of “industrial-strength” software in a competitive market. Those problems were, as Fritz
Bauer had put it in an address at IFIP 71, “too difficult for the computer scientist”.

If not applied science, then what? Others at the NATO conference had proposed mod-
els of engineering that emphasized analogies of practice rather than theory. Perhaps the most
famous of these was M.D. McIlroy’s evocation of the machine-building origins of mechanical
engineering and the system of mass production by interchangeable parts that grew out of them.
As recent studies of the American machine-tool industry during the 19th and early 20th century
have shown, McIlroy could hardly have chosen a more potent model (he has a longstanding

1.“A basis for a mathematical theory of computation”,Proceedings WJCC, 9-11 May, 1961 (New York:
NJCC, 1961), 225-238; repr. with corrections and an added tenth section, in P. Braffort and D. Hirsch-
berg (eds.), Computer Programming and Formal Systems (Amsterdam: North-Holland Publishing
Co., 1963), 33-70; at 69.

2. Peter Naur, Brian Randell, and J.N. Buxton (eds.),Software Engineering: Concepts and Techniques.
Proceedings of the NATO Conferences (NY: Petrocelli, 1976), 147.

3.What Can Be Automated? (COSERS), ed. Bruce W. Arden (Cambridge, MA: MIT Press, 1980), 139.
The committee consisted of Richard M. Karp (Chair; Berkeley), Zohar Manna (Stanford), Albert R.
Meyer (MIT), John C. Reynolds (Syracuse), Robert W. Ritchie (Washington), Jeffrey D. Ullman
(Stanford), and Shmuel Winograd (IBM Research).



32

interest in the history of technology). Between roughly 1820 and 1880, developments in
machine-tool technology had increased routine shop precision from .01” to .0001”. More
importantly, in a process characterized by the economist Nathan Rosenberg as “convergence”,
machine-tool manufacturers learned how to translate new techniques developed for specific
customers into generic tools of their own. So, for example, the need to machine percussion locks
led to the development of the vertical turret lathe, which in turn lent itself to the production of
screws and small precision parts, which in turn led to the automatic turret lathe. It was indeed
the automatic screw-cutting machine that McIlroy had in mind.

Especially as expressed by McIlroy, the idea has had a long career in software engineering.
During the ’70s It directed attention beyond the development of libraries of subroutines to the notion
of “reusable” programs across systems, and in the ’80s it underlay the growing emphasis on object-
oriented programming as the means of achieving such reusability on a broad scale. It is essentially
what Cox is looking for as software’s “industrial revolution”. More generally, the analogy with
machine-building and the metaphorical language of machine-based production became a continuing
theme of software engineering, often illustrated by pictures of automobile assembly lines, as in the
case of Peter Wegner’s four-part article inIEEE Software in 1984 on “Capital-Intensive Software
Technology”.1 The cover of that issue bore a photograph of the Ford assembly line in the ’30s,
and a picture of the same line in the early ’50s adorns Greg Jones’sSoftware Engineering
(Wiley, 1990).

As the move from machine tools to the assembly line suggests, McIlroy’s model of
mechanical engineering was closely akin to Bauer’s proposal at IFIP 71 that “software design
and production [be viewed] as an industrial engineering field”.

For the time being, we have to work under the existing conditions, and the work has to
be done with programmers who are not likely to be re-educated. It is therefore all the
more important to use organizational and managerial tools that are appropriate to the
task.2[

On that model the problems of large software projects came down to the “division of the task
into manageable parts”, its “division into distinct stages of development”, “computerized sur-
veillance”, and “management”. Bauer’s idea was not new. In a “Position Paper for [the] Panel
Discussion [on] the Economics of Program Production” at IFIP 68, also presented in substance
at the NATO conference, R.W. Bemer of GE had already suggested that what software manag-
ers lacked was a proper environment, namely a “software factory”, which “should be a program-
ming environment residing upon and controlled by a computer.”

Few concepts are as heavily freighted with history as that of the factory, and this was
especially the case in the 1960s as exponents of automation strove to complete the revolution in
production sparked by Henry Ford’s assembly line and at the same time to distinguish them-
selves from him. Hand in hand with automation went operations research and management sci-
ence, the practitioners of which similarly insisted on the essential difference between their sci-
entific approach and the “scientific management” of the industrial engineer. Herbert Simon was
not fooled and he reminded the members of the Operations Research Society that

4. Boehm, “Software Engineering”,IEEE Transactions on Computers, C-25,12(1976), 1226-41 (repr. in
Milestones of Software Engineering, ed. Paul W. Oman and Ted G. Lewis [Los Alamitos, CA: IEEE
Computer Society Press, 1990, 54-69), at 1239 (67).

1. IEEE Software1,3 (July 1984), 7-45.
2. Bauer, “Software Engineering”,Information Processing 71 (Amsterdam: North-Holland Publishing

Co., 1972), I, 530-538; at 532.



33

Except in matters of degree (e.g., the operations researchers tend to use rather
high-powered mathematics), it is not clear that operations research embodies any phi-
losophy different from that of scientific management. Charles Babbage and Frederick
Taylor will have to be made, retroactively, charter members of the operations research
societies. ... No meaningful line can be drawn any more to demarcate operations re-
search from scientific management or scientific management from management sci-
ence.1

One does not divorce oneself from history simply by denying it. An attentive reading of most
of the literature on the “software factory” reveals the continuing influence of Taylor’s “one best
way” and of Ford’s management by mechanization. Yet, even a cursory analysis of the nature
of software and its production shows how far short they fall of the technical and material pre-
conditions of Taylor’s and Ford’s methods. To the extent that more recent versions of the soft-
ware factory presuppose a highly trained, highly paid workforce given time and latitude to forge
finely crafted software tools and parts, the concept seems to beg the question that prompted it
in the first place.

What can historians looking for the history of software engineering tell software engineers
looking for a history of their field? Forget the cliche about ignoring the lessons of the past. Think
rather about the histories that people carry with them by virtue of their origins, education, and pro-
fessional acculturation. Those histories reveal themselves in many ways, among them in the names
people give to new undertakings. Software engineering began as a search for an engineering disci-
pline on which to model the design and production of software. That the search continues after
twenty five years suggests that software may be fundamentally different from any of the artifacts or
processes that have been the object of traditional branches of engineering: it is not like machines, it
is not like masonry structures, it is not like chemical processes, it is not like electric circuits or semi-
conductors. It thereby raises the question of how much guidance one may expect from trying to
emulate the patterns of development of those engineering disciplines. During general discussion on
the last day of the Rome conference, I.P. Sharp came at the problem of software production from an
entirely different angle, arguing that one ought to think rather in terms of “software architecture” (=
design), which would be the meeting ground for theory (computer science) and practice (software
engineering). “Architecture is different from engineering,” he maintained and then added, “I don’t
believe for instance that the majority of what [Edsger] Dijkstra does is theory – I believe that in time
we will probably refer to the ‘Dijkstra School of Architecture’.”2 That is no small distinction.
Architecture has a different history from engineering, and we train architects differently from
engineers.

1996 Michael S. Mahoney. Not for citation, quotation, or distribution
without permission of the author.

1. Herbert A. Simon,The New Science of Management Decision (NY: Harper & Row, 1960), 14-15.
2. J.N. Buxton and B. Randell (eds.),Software Engineering Techniques: Report on a conference spon-

sored by the NATO Science Committee, Rome, Italy, 27th to 31st October 1969 (Birmingham: NATO
Science Committee, n.d.), 12.



34

Science versus engineering in computing

Peter Naur

In order to achieve a proper view of software engineering, a view that will help clarify how and
why such a thing may be usefully pursued and taught, it seems to me important, first of all, to
establish a tenable understanding of the whole complex of the interrelated notions denoted sci-
ence, engineering, and computing.

Achieving such an understanding in my view meets the difficulty that the discussion
around these items in recent years has been entirely misguided. This misguidance has been fur-
thered by several different confusions, including

• the claim that science is a matter of logic,
• the dominance of behaviourism in psychology,
• the claim that sciences are logical constructions upon foundations,
• the adoption of an information processor view of human thought,
• the claim that the human handling of language may be described in terms of rules.

In view of this situation I have made an examination of human knowing, so as to clarify its rela-
tions to logic, language, computing, and science. This has been published as a book: Knowing
and the Mystique of Logic and Rules. As one major conclusion of this book, science and schol-
arship (‘Wissenschaft’) may properly be described to be centered aroundcoherent description.

Adopting this notion, to wit thatthe core of science is coherent description, it remains
merely to state that in this contextengineering must properly be understood to be centered
around theactivity of construction. With such a view it is clear that the activity of engineering
will depend on the descriptions established scientifically, but will not in itself lead to scientific
contributions.

References

Datalogi som videnskab. DIKU rapport nr. 95/4, 1995. Version in English: Computing as
Science has been rejected for publication by Comm. ACM

Knowing and the Mystique of Logic and Rules, Kluwer Academic Publishers, xii + 365 pages,
1995.



35

Software Engineering: An Unconsummated Marriage

David Lorge Parnas

Abstract

Although the first of many conferences on “Software Engineering” was held in Munich nearly
three decades ago, communication between those who study software and those who work as
Engineers has not been effective. Today, the majority of Engineers understand very little of the
“science of programming”. On the other side, the scientists who study programming understand
very little about what it means to be an Engineer, why we have such a profession, how the pro-
fession is organised, and what Engineers learn during their education. In spite of this mutual
ignorance, today’s Engineers spend much of their time writing and using software, and an
increasing number of people trained in Computer Science or Mathematics pontificate about
“what Engineers do”.

Studying the traditional areas of engineering we find (1) that they have faced, and
developed solutions to, many of the issues that software engineering experts are discussing
today. We also find that traditional engineers are beginning to recognise the need to treat soft-
ware development as a new branch of Engineering. Many cannot do their jobs properly without
a better knowledge of the science of software. Others cannot live up to their own professional
responsibilities unless if they use software packages developed by people who do not take
responsibility for their “fitness for use”.

We conclude that the two fields have much to learn from each other and that the mar-
riage of software and engineering should be consummated.

Software objects in the Deutsches Museum München –
Some considerations

Hartmut Petzold

Surely software represents one of the “most important steps” in the historical development of
technology, referred to in the statute of the Deutsches Museum, when it demands its illustration
and documentation by “prominent and typical masterpieces”.

The wished completion of the present collection and exhibition by software objects
does not only mean the integration of one more class of subjects into the already existing broad
spectrum of the museum. Rather it is a question of a new technological quality, which will be
effective in all departments of the museum in the future. Already one can notice this tendency
in all new exhibitions.

Usually the traditional western museums were seen as institutions which feel bound to
the spirit of enlightenment and devoted themselves to the collection and presentation of objects
with hardware quality.



36

The statement behind these questions applies largely to the technical activities with the muse-
ums artifacts, as to the extensive problems with its transport, its presentation in the gallery, its
storage in the depositories, its lending out to external exhibitions and also its restoring and
repairing. The workaday routine of the museums collaborators is nearly completely determined
by problems connected with the artifacts.

All the different artifacts must be incorporated in a list of objects which can be admin-
istrated identically. It must be possible to identify them by a name and by a number and it must
be possible to store them at a determined place for a very long time. This means that software
only can be included into the museum collection in a defined shape as a software object.

Presumably the most important quality of artifacts in a museum lies in the fact that they
can be perceived by the visitor’s senses without a special qualification. The process of the per-
ceptibility by the senses is crucial for all presentations.

Artifacts with hardware quality are immediately perceptible for the human eyes. Cal-
culated presentations and also the individual educational background of the visitors can change
the mode of the perceptibility.

The handling of software objects put these questions much more fundamentally. What
does an object with software quality look like? Obviously there is no agreement.

In an exhibition which is only assembled of a certain number of computer screens in
operation, the computer hardware is not much in evidence. But is that what is to be seen on the
screen really the software object? I want to precise my question: Should we in the Deutsches
Museum pass that what is to be seen on the screen off as the side of the software object which
is perceptible by the eye and should we even define its “appearance”?

The importance of traditional museums depends for a great part on the originality and
the singularity of its collected artifacts. On principle copies from hardware objects are assessed
lower than the originals. When this difference is dropped the substance of the museum is
touched. I think that here is a fundamental problem for the relations between software objects
and the museum.

One could imagine that in the future a suitable computer would replace the depot room.
A telephone call from another museum, from an exhibition maker or from a private buff could
be sufficient to initiate the copymaking not only from one software object but even from the
whole collection and to transfer it by the telephone line. Because all copies will be absolutely
identical the importance of the museum could be derived essentially from the documentation,
its scolarship and its administration. The assessment of the ratio between object and “complet-
ing materials” would be reverse.

The role of the “technical monument”, in some cases of the “national monument”, is
important for the way the museum sees itself and is seen by the public. I am not sure if the pecu-
liarities of a software object are oposed to its presentation in the museum in this sense. But I am
sure that there will be many new possibilities how to present the software objects.

The originators of the Deutsches Museum have introduced one criterion for the selec-
tion out of the immense number of possible objects: only “masterpieces” should be included
into the collection. The category “masterpiece” orients of ideas from the last centuries particu-
larly the 19th. But it would be wrong to reduce the importance of this criterion to a historical
reminiscence. Despite all technical change in our century the idea of the masterpiece continues
to exist – not only in Germany. The success of the Deutsches Museum – the whole name is
“Deutsches Museum von Meisterwerken der Naturwissenschaft und Technik” – is due not least
to this criterion and what has been made out of that. If a technological product is to be seen as



37

a masterpiece the Deutsches Museum, not the Patent Office, takes over the role of the arbitration
court: The object becomes a masterpiece when it is admitted to the museum collection.

For almost a century, through all political systems in Germany, the public has accepted
this role. The idea of the masterpiece is still an ideal present in the public awareness and the
Deutsches Museum is the only holy temple in Germany. Obviously the apparently timeless
“masterpiece” has found a role as a counterpart to the industrial product which is measured by
its price performance ratio. Surely a Walhalla of the heroes and the fights of technology satisfies
a deep urge of the protagonists of the traditional hardware technologies and also of the public.
The market already declares “winner” and “success” if a piece of software sells well. But the
Deutsches Museum can, and should, judge software by conferring opon selected software the
term “Masterpiece”.

The 1968/69 NATO Software Engineering Reports

Brian Randell

The idea for the first NATO Software Engineering Conference, and in particular that of adopt-
ing the then practically unknown term “software engineering” as its (deliberately provocative)
title, I believe came originally from Professor Fritz Bauer. Similarly, if my memory serves me
correctly, it was he who stressed the importance of providing a report on the conference, and
who persuaded Peter Naur and me to be the editors. (I was at the time working at the IBM T.J.
Watson Research Center in the U.S.A., but had got to know “Onkel Fritz” through having been
a member of the IFIP Algol Committee for several years.) As a result, it was agreed that Peter
and I would stay on for an extra week after the conference in order to edit the draft report,
though we arranged to move from Garmisch-Partenkirchen to Munich for this second week.

Quoting from our Report of the 1968 Conference [Naur and Randell January 1969]:

“The actual work on the report was a joint undertaking by several people. The large
amounts of typing and other office chores, both during the conference and for a pe-
riod thereafter, were done by Miss Doris Angemeyer, Miss Enid Austin, Miss Petra
Dandler, Mrs Dagmar Hanisch and Miss Erika Stief. During the conference notes
were taken by Larry Flanigan, Ian Hugo and Manfred Paul. Ian Hugo also operated
the tape recorder. The reviewing and sorting of the passages from written contribu-
tions and the discussions was done by Larry Flanigan, Bernard Galler, David Gries,
Ian Hugo, Peter Naur, Brian Randell and Gerd Sapper. The final write-up was done
by Peter Naur and Brian Randell. The preparation of the final typed copy of the re-
port was done by Miss Kirsten Anderson at Regnecentralen, Copenhagen, under the
direction of Peter Naur.”

As I and other participants have since testified, a tremendously excited and enthusiastic atmo-
sphere developed at the conference. This was as participants came to realize the degree of com-
mon concern about what some were even willing to term the “software crisis”, and general
agreement arose about the importance of trying to convince not just other colleagues, but also
policy makers at all levels, of the seriousness of the problems that were being discussed. Thus
throughout the conference there was a continued emphasis on how the conference could best be



38

reported. Indeed, by the end of the conference Peter and I had been provided with a detailed pro-
posed structure for the main part of the report. This was based on a logical structuring of the
topics covered, rather than closely patterned on the actual way in which the conference’s vari-
ous parallel and plenary sessions had happened to be timetabled.

Peter and I were very pleased to have such guidance on the structuring and general con-
tents of the report, since we both wished to create something that was truly aconference report,
rather than a mere personal report on a conference that we happened to have attended. Indeed
Peter argued that we should not provideany additional text at all ourselves, but rather produce
the main part of the report merely by populating the agreed structure with suitable direct quota-
tions from spoken and written conference contributions. I, however, persuaded him that brief
editorial introductions and linking passages would improve the continuity and overall readabil-
ity of the report. So, (together with the decision that a small selection of the written texts would
also be incorporated in full as appendices), we arrived at the final form of the report.

In Munich we worked from the notes taken by the rapporteurs, which we had arranged
would be keyed, as they were made, to footage numbers on the recorded tapes. The tapes were
not systematically transcribed, since this process typically takes five to six times real time.
Rather we used the rapporteurs’ notes, and our memories, to locate particularly interesting and
apposite sections of the tapes and just these were transcribed. We thus built up a large set of
transcribed quotations, which we supplemented with suitable quotations from the written con-
tributions. Then, for each section of the report, one or other of us attempted to turn the relevant
set of quotations into a coherent and pseudo-verbatim account of the discussion on that topic,
bringing together material from quite separate sessions when appropriate since many topics had
been revisited in various parallel and plenary sections.

The work in Munich was as enjoyable as it was intense, and afforded plenty of oppor-
tunity for re-hearing some of the more memorable discussions, so that many of these became
etched much more deeply into my memory, and had a stronger effect on my subsequent
research, than would have been the case had I merely taken part in the conference. The report
was virtually complete by the end of the week in Munich, and then Peter Naur took everything
back with him to Copenhagen where a complete first draft was produced using a paper tape-
controlled typewriter (I assume a flexowriter) – a technique that seemed novel at the time but
one that he correctly advised us would greatly aid the preparation of an accurate final text. (My
memory tells me that this draft was then circulated to participants for comments and corrections
before being printed, but no mention is made of this in the report so I may be wrong.)

The actual printing and distribution was done by NATO, and the Report became avail-
able in January 1969, just three months after the conference. Copies were distributed freely on
request and it rapidly achieved wide distribution and attention. One of the more delightful reac-
tions to it from amongst the participants was that of Doug McIlroy, who described it as “a tri-
umph of misapplied quotation!”. (It was only many years later did I learn from a short article
by Mary Shawthat Al Perlis gave out copies of the report to the CMU computer science grad-
uate students with the words “Here, read this. It will change your life.” [Shaw 1989])

Such was the success of the first conference that the organizers sought and obtained
NATO sponsorship for a second conference, to be held one year later in Italy. Peter Naur,
wisely, was not prepared to repeat his editorial labours, but I – rather rashly – after some initial
hesitation agreed to do so, this time in co-operation with John Buxton. As I recall it, the plans
for the second conference were discussed at a meeting held in an office at NATO Headquarters.
My main memory is that the office was dominated by a very large and impressive safe, which
to my amusement was revealed to be completely empty when our host, at the end of the meeting,



39

opened it so as to put away the bottles from which drinks had earlier been served to us. During
these preparatory discussions I provided, based on my hard-won experience at Munich, what I
proudly considered to be a very well thought-out list of requirements regarding the facilities that
we would need to have in Rome. (The most important of these was that the editorial team should
have full time access to an Italian-speaker who would help sort out any difficulties that might
arise – of this, more later.)

My initial (over)confidence was also in part due to the fact that this second time
around, John and I had been offered the full time services of two experienced technical writers
from ICL, namely Ian Hugo (who had been closely involved in the preparation of the first
report) and Rod Ellis, and we had each arranged to be accompanied to Rome by an expert sec-
retary, Margaret Chamberlain and Ann Laybourn, respectively. Ian, incidentally, went on to
help found Infotech, a company that subsequently over a period of years organized a large num-
ber of technical conferences, each of which led to the publication of a State-of-the-Art Report,
whose format closely matched that of the NATO reports.

In the event the second conference was far less harmonious and successful than the
first, and our editorial task turned out to be very different. Quoting from our introduction to the
Report of the 1969 Conference [Buxton and Randell April 1970]:

“The Rome conference took on a form rather different from that of the conference
in Garmisch and hence the resemblance between this report and its predecessor is
somewhat superficial. The role played by the editors has changed and this change
deserves explanation. … The intent of the organizers of the Rome conference was
that it should be devoted to a more detailed study of the technical problems, rather
than including also the managerial problems which figured so largely at Garmisch.
… The resulting conference bore little resemblence [sic] to its predecessor. The
sense of urgency in the face of common problems was not so apparent as at
Garmisch. Instead, a lack of communication between different sections of the par-
ticipants became, in the editors’ opinions at least, a dominant feature. Eventually the
seriousness of this communications gap, and the realization that it was but a reflec-
tion of the situation in the real world, caused the gap itself to become a major topic
of discussion. … In view of these happenings, it is hardly surprising that the editors
received no clear brief from the conference as to the structure and content of the re-
port.”

Thus the task of producing a report which was both respectable and reasonably accurate was
much more difficult than I could have imagined – and was not aided by all sorts of difficulties
that we suffered, almost all of which would have been much more easily dealt with if a local
organizer had been provided as agreed. Nevertheless, a number of the participants expressed
pleased surprise at our report, when they afterwards received a draft for checking, and evidently
thought more highly of it than of the conference that it purported to document.

The conference had been held outside Rome in a rather charmless American-style hotel
whose facilities and cuisine I’m sure did little to engender a harmonious atmosphere. It had been
agreed beforehand that we would move to a (particular) hotel in Central Rome for the report
writing – only during the conference did we discover that no attempt had yet been made to
reserve accommodation at this hotel. Needless to say, the hotel turned out to be full, and so last
minute arrangements had to be made, and our offices and families alerted to the change of plans.

On the Saturday morning following the conference the six of us, plus all our luggage,
and a very impressive set of typewriters, tape-recorders, boxes of paper and other office sup-
plies, etc., were transported by minibus to Central Rome to the very pleasant substitute hotel,



40

which was situated just across from the main entrance to the Roman Forum. In fact we arrived
rather too early for the hotel, since only the small suite we were to use as an editorial office was
available, our bedrooms not yet having been vacated and cleaned. We thus had to accept the
hotel receptionist’s suggestion that we all be initially installed in this one suite until our own
rooms were ready.

I still treasure the memory of our arrival, which was watched open-mouthed by the var-
ious hotel staff and guests in the lobby. This was not just because of our number and our moun-
tain of luggage, and the small army of porters – just one of whom had a door key – that were
being employed to move it. It was undoubtedly also due to the interesting appearance the six of
us must have made – in particular the fact that Margaret Chamberlain was wearing an extremely
short miniskirt. This fashion apparently had yet to spread from London to Rome, where it was
still regarded at least by all the Italian men as quite sensational. And Rod Ellis was wearing a
splendid long black leather jacket and the sort of thick-soled suede shoes that at that time were
known, in Britain at least, as “brothel-creepers”. But most memorable of all was John Buxton’s
remark when the last of the porters had bowed himself out of our suite, and the six of us were
standing around our luggage mountain wondering what to do first. He suddenly said, “I’ve had
a great idea. Let’s phone down to the front desk and ask for two thousand foot of colour film
and a stronger bed, please.”

This provided a wonderful start to a week in which we managed to find continual
solace in humour despite the pressure of work and the many adversities we had to face. For
example, by mid week, almost all of the original typewriters and tape recorders were no longer
operational, and we were threatening to abandon Rome and to move to Brussels in order to com-
plete the work at NATO Headquarters. Even the stapler had broken. As Ian Hugo has reminded
me, “the suite had a bathroom which was surplus to requirements and the bath became the final
resting ground for dead typewriters, tape recorders, etc; by the end of the week it was full to
overflowing!” However we soldiered on, though in the end half of the Report had to be bravely
typed by Ann Laybourn on a totally-unfamiliar German-keyboard typewriter that we had man-
aged to borrow ourselves from the hotel.

All these adversities – whose impact would have been much less had we had the prom-
ised local assistant – in fact helped to bind us together as a team. Rod Ellis’ brilliant gift for
mimicry also helped by providing many welcome moments of general hilarity as, suiting his
choice to the topic at hand, he switched effortlessly in conversations with us between the voices
of Edsger Dijkstra, Fritz Bauer, and many of the other participants whose conference comments
had been captured for posterity by our tape recorders.

We did in fact finish the report by early on the Friday evening – in good time for a final
celebration dinner, once Rod and Ian had returned from the University of Rome where they had
made copies of the draft report (and, rather fittingly, broken the photocopier). It was in keeping
with the rest of the week, though, that nearly all the restaurant waiters in Rome chose that
moment to go on strike – indeed, we saw a large procession of them march right past our win-
dows shouting and waving banners – so that we had to content ourselves with an in fact excel-
lent dinner in the hotel.

Something I had completely forgotten until I reread the introduction to the 1969 Report
while preparing this brief account was that this second report was typeset at the University of
Newcastle upon Tyne, to where I had moved from IBM in the interim. In fact some of the
world’s earliest work on computerized type-setting had been done at Newcastle. Quoting from
the report: “The final version of the report was prepared by the Kynock Press, using their com-
puter type-setting system (see Cox, N.S.M and Heath, W.A.: “The integration of the publishing



41

process with computer manipulated data”. Paper presented to the Seminar on Automated Pub-
lishing Systems, 7–13th September 1969, University of Newcastle upon Tyne, Computer Type-
setting Research Project), the preliminary text processing being done using the Newcastle File
Handling system …”. (However, I perhaps should also mention that this second report took
three months longer to produce than its predecessor report.)

Unlike the first conference, at which it was fully accepted that the term software engi-
neering expressed a need rather than a reality, in Rome there was already a slight tendency to
talk as if the subject already existed. And it became clear during the conference that the orga-
nizers had a hidden agenda, namely that of persuading NATO to fund the setting up of an Inter-
national Software Engineering Institute. However things did not go according to their plan. The
discussion sessions which were meant to provide evidence of strong and extensive support for
this proposal were instead marked by considerable scepticism, and led one of the participants,
Tom Simpson of IBM, to write a splendid short satire on “Masterpiece Engineering”.

John and I later decided that Tom Simpson’s text would provide an appropriate, albeit
somewhat irreverent, set of concluding remarks to the main part of the report. However we were
in the event “persuaded” by the conference organizers to excise this text from the report. This
was, I am sure, solely because of its sarcastic references to a “Masterpiece Engineering Insti-
tute”. I have always regretted that we gave in to the pressure and allowed our report to be cen-
sored in such a fashion. So, by way of atonement, I attach a copy of the text as an Appendix to
this short set of reminiscences.

It was little surprise to any of the participants in the Rome conference that no attempt
was made to continue the NATO conference series, but the software engineering bandwagon
began to roll as many people started to use the term to describe their work, to my mind often
with very little justification. Reacting to this situation, I made a particular point for many years
of refusing to use the term or to be associated with any event which used it. Indeed it was not
until some ten years later that I relented, by accepting an invitation to be one of the invited
speakers at the International Software Engineering Conference in Munich in 1979. The other
invited speakers were Barry Boehm, Wlad Turski and Edsger Dijkstra. I was asked to talk about
software engineering as it was in 1968, Barry about the present state, Wlad about the future of
software engineering, and Edsger about how itshould develop. I had great fun in preparing my
paper [Randell 1979] since I included numerous implied challenges to Barry, whose talk was
scheduled immediately after mine, to justify claims about progress since 1968. He studiously
ignored all these challenges, or perhaps failed to recognize them, I’m sorry to say.

In my 1979 attempt at describing the 1968/9 scene I did not feel it appropriate to dwell
on my experiences in helping to edit the two NATO Reports – so I am very pleased to have had
cause to complete my personal software engineering reminiscences, so-to-speak. I thank the
organizers of this conference for giving me this opportunity and, in particular, a belated means
for me to publish the text that was so sadly censored from the Report of the 1969 Conference.

References

J.N. Buxton and B. Randell, (Ed.):Software Engineering Techniques: Report on a Conference
sponsored by the NATO Science Committee, Rome, Italy, 27th to 31st October 1969,
Brussels, Scientific Affairs Division, NATO, April 1970, 164 p.

P. Naur and B. Randell, (Ed.):Software Engineering: Report on a Conference sponsored by the
NATO Science Committee, Garmisch, Germany, 7th to 11th October 1968,Brussels,
Scientific Affairs Division, NATO, January 1969, 231 p.



42

B. Randell: “Software Engineering in 1968,” inProc. of the 4th Int. Conf. on Software
Engineering,pp. 1–10, Munich, 1979.

M. Shaw: “Remembrances of a Graduate Student (for panel, “A Twenty Year Retrospective of
the NATO Software Engineering Conferences”),” inProc. 11th Int. Conf. on Software
Engineering,vol. 11, pp. 99–100, 1989. (Reprinted inAnnals of the History of
Computing, Anecdotes Department, 11, 2, 1989, pp.141–143.)

Plex – A Scientific Philosophy

Douglas T. Ross

Plex is a scientific philosophy – not a philosophy of science, but a philosophy which itself is
scientific in its character and practice.

science n 1a: possession of knowledge as distinguished from
ignorance or misunderstanding Webster’s Collegiate 1979

Plex has no assumptions or axioms – only definitions – expressed in ordinary language – but
used with extraordinary purpose and precision. No formal logic or mathematics appears. Even
counting is not allowed, at first.

The entire Epistemology of Plex is the Formal Saying:

Only that which is known-by-definition
is known – by definition.

where the Definition of Definition follows from

If D defines X, then Y satisfies D if <Y> is <X>.

where “is” is the ontological copula, and to define “satisfies” needs a longer derivation than is
suitable for presentation here. The self-definition of X is X itself; “X is X”expresses self-defi-
nition of X. {The < >s are called Meaning Quotes; “ ”s are Naming Quotes.}

The Possibility Definition is:

A possibility is that which may, butneed not BE.

Notice that BEing itself is a possibility (for it satisfies the Possibility Definition). IS is itsreal-
ization.

To complete these few Plex foundation definitions, given that “Nothing” is our proper name for
<that which does not exist> – here is the

and <may not BE> and <may BE> are the two States of Possibility
while ISN’T and IS are the two States of BEing

so <may not BE>/ ISN’T and <may BE>/IS are the twoStates of Reality



43

First Definition of Plex:

Nothing doesn’t exist.

where “existence” is BEing and is that which isdefined by the First Definition – as pure non-
Nothing-ness – i.e. IS itself. [Notice that the First Definition doesnot define Nothing, which has
no definition at all – for <it> ISN’T! – having no self-definition.]

By the Plex Epistemology,without any definition, Nothing is known.

Finally, theDefinition of Meaning arises in the Saying:

Every possibility is meaningful –
its meaning BEing its possibility.

– a most marvelously recursive discovery. Yes, thisis our ordinary every-day meaning of
“meaning”, although it is pure Plex and is not to be found in any dictionary. To understand it it
is merely necessary to appreciate the Possibility Definition, for bythis definition, that which
there is defined – (the <may BE>/<may not BE> dichotomy of the States of Possibility) – IS the
meaning (of that possibility).

Whatdifference does it make
whether that possibility is realized or not?

I.e. in the overall scheme of things,

What is the<before>-to-<after> effect of its existence?
– Whatrole does it fulfill?

Surely that is what matters about <it>. That is what gives it meaning.

The meaning of any word (which also is the definition of Superposition)

Let <point> = <any word>. Then prove the following Propositions.

Proof of P5 by Mathematical Induction

I.e. <> = <Nothing> = <“Nothing”>
= <that which is known without definition>

so Nothing is <The Ultimate Knowledge>
by means of which all else is known.

P1) Let points be such that, except for identity,
they all are indistinguishable.

P2) Let there be only points.
P3) Let the world be the collection of all points.
P4) Then the identity of a point

is the collection of all other points,
P5) And every point is the whole world.

I n = 1: A world of one point is the whole world.



44

The true import of the meaning definition and of existence itself is embodied in the Proposi-
tions, P1 through P5, which resolve Plato’s “ideals” (“general elements” in modern parlance) –
Is there an ideal cat through which (by some relationship) I can know thatmy catis a cat? Prop-
ositions P1-P5 define and demonstrate how the meaning of any wordworks. Every usage of the
word is just as perfect as any other. This also lies behind the Bose-Einstein State of Matter,
recently demonstrated. Time going forward in a expanding universe of <now> – <all that
exists> is a consequence.

This 1975 proof was first presented in public in an abortive Graduate Seminar on Plex
in the Fall of 1984 in the MIT EECS Department. It has since then appeared in several publica-
tions, including

D.T. Ross: From Scientific Practice to Epistemological Discovery.
In: C. Floyd, H. Züllighoven, R. Budde, R. Keil-Slawik (Eds.): Software Development
and Reality Construction. Springer-Verlag, 1992, pp. 60-70

D.T. Ross: Understanding /:\ The Key to Software.
In: Scaling Up: A Research Agenda for Software Engineering. National Research Council
NRC-04131-7, 1989, pp. 66-73

II Assume the theorem true for n-1 points. (n>1)
I.e. for any collection of n-1 points, every point is the whole world.

III To prove the theorem for n points given its truth for n-1 (n>1)
a) The identity of any one point, p, in the collection is a collection of n-1

points, each of which is the whole world, by II.
b) The identity of any other point, q, i.e. a point of the identity of p, is a

collection of n-1 points, each of which is the whole world, by II.
c) The identity of p and the identity of q are identical except that where

the identity of p has q, the identity of q has p. In any case, p is the
whole world by b) and q is the whole world by a).

d) Hence both p and q are the whole world, as are all the other points (if any)
in their respective identities (and shared between them).

e) Hence all n points are the whole world.
IV For n=2, I is used (via II) in IIIa and IIIb, q.e.d.
V Q.E.D. by natural induction on the integers.



45

Research Abstract

Stuart Shapiro

In the 1960s, the efficient and timely production and maintenance of reliable and useful soft-
ware was viewed as a major problem. In the 1990s, it is still considered a major problem. The
“software crisis” which was declared three decades ago persists, assuming it makes any sense
to speak of a thirty year crisis. Although most would admit to some amelioration of the “crisis,”
steadily increasing requirements and ambitions have helped sustain it.

At the NATO conferences of the late sixties, the solution to the “crisis” was declared
to be “software engineering.” This, however, begged a number of questions. What is the nature
of software as a technological medium? How does software development compare and contrast
with other areas of technological practice. What is engineering? Is it sensible to speak of engi-
neering software?

Answering these questions has been a difficult and tempestuous process which contin-
ues to this day. This becomes abundantly clear when one examines the practitioner discourse
which has taken place in a number of prominent computing and software trade and professional
journals over the years in the form of articles, news and conference reports, book reviews, and
letters. The participants in this discourse represent a wide range of nationalities and educational
and employment backgrounds. Thus, while the journal-based discourse in which they have
engaged over time does not constitute the complete social and intellectual history of software
technology, it is certainly a prime component of that history.

This discourse suggests that software as well as computing in general have character-
istics which render them fundamentally different from other technologies. As in fields such as
chemical engineering, would-be computing and software professionals have pursued that pro-
fessionalism in a highly deliberate fashion and have found the process difficult and controver-
sial. Unlike practitioners in those other fields, however, they have been unable to forge a con-
sensus on an appropriate model—art, craft, science, engineering, etc.—for their activities. In
attempting to achieve that consensus, moreover, they have engaged in frequent and often heated
debate concerning the epistemology and praxis of computing and software development. Com-
plicating matters further has been widespread confusion regarding the nature of engineering and
science. Especially prevalent has been the misconception that engineering is essentially applied
science.

Historians and sociologists (as well as some insightful technological practitioners)
have discredited the notion that engineering is applied science, but it is not surprising that this
myth has proven so attractive to computing and software technologists. In the aftermath of the
Second World War, many areas of engineering fell under the spell of this myth. With science
sitting at the top of the epistemological totem pole and, in the U.S., lecture halls filling with ever
increasing numbers of students, emphasizing analysis over design and formulae over judgment
made a certain kind of sense. However, this emphasis ended up in large part hindering rather
than enhancing effective practice. This realization has been slowly dawning on many commu-
nities of technological practitioners and the pendulum now appears to be swinging back in the
other direction.

Misconceptions of the nature of engineering aside, though, computing and software
appear fundamentally different from other areas of technological practice owing to their wide
ranging applicability. Computers are general-purpose problem-solving devices and their wide



46

utility is a function of this. However, their utility in a specific context is due to the software
which turns them into special-purpose problem-solving devices. Software can play this role
because it is abstract and thus unusually malleable. With this abstractness, however, comes a
complexity which challenges both the cognitive processes of the individual and the degree to
which the software development process can be automated.

Because computer systems span a virtually limitless number of problem domains but
must function within specific ones, fundamental problem-solving processes are of exceptional
concern in computing and this is one reason for the seeming inadequacy of any one model of
professional activity. Moreover, this irreducible tension between specificity and generality
marks both software development techniques as well as software applications. Software tech-
nologists must find a balance between sophisticated and powerful context-dependent features
usable in a narrow domain and less sophisticated and powerful features amenable to more gen-
eral usage. This is one reason why a software “industrial revolution” seems quite unlikely, as it
suggests the difficulty of producing high-level yet widely usable standard software components.
Together with the irrelevance of manufacturing-based analogies for software and an apprecia-
tion of the history and role of standardized components in the Industrial Revolution, this indi-
cates how any great faith in the ameliorative powers of standardized software parts is probably
misplaced. Standards of practice, i.e. software process standards, are similarly affected by the
tension between specificity and generality. Moreover, the cultural history of programming and
the resulting emphasis on controlling practitioners have served to produce process standards
based on problematic assumptions regarding the ability and/or willingness of practitioners to
respond to variations in circumstance (including application domain) with variations in proce-
dure.

As a result of this broad range of application areas, a key issue in the epistemology and
practice of software development involves the mapping of archetypal or model problems and
solutions onto actual problems across the wide expanse of problem domains addressed by com-
puting. As a result, I am currently turning my attention toward exploring the nature of engineer-
ing epistemology by comparing software with other areas of technological practice. Because of
my focus on the development, organization, and use of archetypal problems and solutions, I am
particularly interested in psychological and philosophical issues surrounding analogies, catego-
ries, and professional judgment.

References

“Degrees of Freedom: The Interaction of Standards of Practice and Engineering Judgment,”
Science, Technology & Human Values (forthcoming).

“Splitting the Difference: The Historical Necessity of Synthesis in Software Engineering,”
IEEE Annals of the History of Computing19 (1, 1997).

“Escaping the Mythology that Plagues Software Technology,” inThe Responsible Software
Engineer: Selected Readings in IT Professionalism,Colin Meyers et al., eds. (London:
Springer-Verlag, 1996), 249-257.

Stuart Shapiro and Steve Woolgar, “Understanding Software Development Standards in
Commercial Settings: a project report,” (Uxbridge: Brunel University, 1995), CRICT
Discussion Paper No. 54

“Boundaries and Quandaries: Establishing a Professional Context for IT,”Information
Technology & People7 (1, 1994): 48-68.



47

Research Abstract

Richard Sharpe

Richard Sharpe continues to work on the subject of software agents. At the Dagstuhl 1996
History of Software Engineering Conference he analysed the recent history of software agents
since the visionary statement of Karl Hewitt [Viewing Control structures as patterns of passing
messages – Artificial Intelligence 8(3) 1977]. He identified two strands of development, both
extensively funded by US ARPA sources:

Strand one:The AI communities stemming from the Thinking Machines Conference 1956;
continuing from Hewitt but weakened by the Donner Pass of AI in 1987 when
funding cut;

Strand two:The network-driven approach where the Internet provides the environment for
agents:

Software agents are produced by “heroic nerd”, “tiger team” programming organisations in
metropolitan locations with close teams of developers/testers/others.

Software agents are:
• autonomous-acting software objects; complete tasks for users with a greater degree

of independence and scope than other software.
• a piece of software which will act for its client, human user or system, to perform

tasks on behalf of client so that client does not have to.

Four benefits to users:
• should enhance personal productivity as agents filter, prompt and gather

information for users;
• should extend reach of user or user(s) by gathering and collating information which

user could not connect to at all or without considerable effort;
• should help user(s) analyse data and reveal patterns they did not know were within

data; and
• could coordinate complex systems simply, without development of equally

complex centralised scheduling and control software.

Initial military and private backing in AI programmes, than Internet interest revival, developed
software agent technology to:

• a style of software – agent-oriented software;
• software product internally or externally developed; and
• a feature within other software products or projects, internally or externally

developed.

Today many different names: intelligent brokers, actors, softbots, knowbots and userbots; ‘bot’
from robot.



48

Software agents in enterprises can:
• bring customers closer to suppliers of products and services;
• support enterprise’s continued demand for change;
• inject further intelligence into enterprise; and
• simplify environment for both customers and employees.

Recent history shows:
• no single, stable theory of software agent behaviour;
• a 20-year history of expectations for role of agents; and
• advent of World Wide Web (WWW) provided latest boost to interest in agent

technology.

Five main elements of software agents:
• initiator – human or system on whose authority agent acts;
• task – set by initiator;
• domain – area in which agent has to complete task;
• target system(s) – in a domain; and
• resources – employed by agent to complete task.

Software agents have attributes:
• task oriented, not process oriented;
• autonomous, not heavily supervised by initiator;
• tailorable, to needs of initiator;
• heuristic, learn about initiator, domain & strategies; and
• combinable, collaborate to complete task.

Eight categories of software agent:
1 Gatherer and/or distributor
2 Seeker and combiner
3 Trader and negotiator
4 Co-ordinator and scheduler
5 Analyser
6 Filter
7 Displayer
8 Prompter: wide or local

Five strands of IT in agents:
• development of GUI,
• World Wide Web,
• Object technologies,
• Digital libraries, and
• Distributed AI.

Unification movements:
• Language-based unification – search for a meta language;
• Project-based unification – pragmatic unification;
• Standards-based unification – de jure or de facto; and
• Package-based unification – packages achieve unity.



49

Three components:
Objects: special instance of objects.

Agent communications to:
• become “mobile code”;
• interact when remote;
• interact with other agents.

Five communications approaches:
• hand-build low level transport mechanism;
• inside a confined system;
• agent-specific communications subsystems;
• services of existing system software; and
• extend existing communications software.

Development languages and tools:
• pure agent-orientated languages;
• languages and environments developed for WWW applications;
• languages and environments from artificial intelligence; and
• languages and environments from Corba world.

Agent links to legacy software:
• WWW;
• transaction;
• database;
• GUI; and
• node on a communications network.

Agent standards:
• common agent platforms;
• inter-agent communications;
• internal agent standards between layers; and
• development languages and environments.
• Standardisation efforts:
• object design standards; and
• communications standards for underlying Internet communication links.

 Business case: Friedman [Computer Systems Development Wiley 1989] fourth phase:
• replace or mask complex, centralised scheduling software;
• IT get away from stand-alone functions;
•  “watch” actions of users and include heuristic qualities; and
• build on a spiral of productivity using heuristic software agents.



50

Technical level:
• implemented in layers;
• co-operative hierarchies to achieve appropriate level of supply to a varied demand;
• may get deadlocked; methods can be implemented;
• state-style communication force enriched client/server relationship;
• state-style communication fixes hard; and
• resolve agent conflict – negotiation or arbitration.

Push and pull
Promoting factors:

• Enterprise – what is agenda for enterprise?
- Customer personalisation
- Continued enterprise organisational changes
- Continual extraction of value from operational data.

• Information – how can it be exploited?
- overload in servers
- overload at clients.

• Technology – what does its use entail and how can it be used?
- spare client and server capacity can be exploited by new forms of software.

• Vendors – what agendas do vendors have?
- vendor value-added search
- vendor search for differentiation.

Retarding factors:
• strategic information identification – hard to select strategic information;
• co-operative relations strain;
• resistance to IT-based business in SME and SOHO;
• standards and protocols not fixed; and
• security – agent or virus?; trust?

Vendors have own promoting and retarding factors.

Enterprise objectives:
• becoming customer focused and driven;
• creating additional value;
• creating simple organisations and responses to complex events; and
• making change permanent and self-driven.

Suitable for:
• for users overburdened with information or reluctant to use IT because of fear of

overburdening;
• for users who could only achieve more understanding from information by use of

agent technology;
• applications where request-bid-select approach of coordination agents could mask

complexity of control systems;



51

• for regular distribution of information, updates or software;
• to keep customers informed automatically of changes in schedules, services,

products, prices or key fritters;
• for matching of fluctuating demand with various sources of supply; and
• for use in management of networking resources;
• for use on those applications which have high support costs.

Primary enterprise implementation ways:
• through developing software agents and/or software agent systems for its own use;
• through commissioning others to develop software agents and/or software agent

systems;
• through purchasing software agents and/or software agent systems for its own use;
• through purchasing other software components with software agents embedded or

implemented as features within them; and
• through adopting an agent-orientated software approach to all development.

Conform to:
• client/server,
• GUI-centric,
• DBMS-centric,
• intermediate-representation-centric,
• Blackboard, and
• subsumption: made up of smaller, simple parts.

Avoid mismatches.

Future

Pragmatically absorbed by enterprises in IT agenda.

Improve productivity of individual users; useful tool for analysis.

Few strategic adoptions of agent-oriented software.

Future technical problems:
• build agent communities remotely at remote sites;
• name agents across networks;
• locate active agents in world-wide networks with, potentially, billions of active

agents; and
• interrogate agents about their resources, tasks and routes to target systems so as to

tell “real” agent from potential virus.



52

Three Patterns that help explain
the development of Software Engineering

Mary Shaw

The term “software engineering” came to prominence when it was used as the name of a NATO
workshop in 1968 [NaRan69]. It was used then to draw attention to software development prob-
lems. It was then, as to a large extent it remains now, a phrase of aspiration, not of description.

In the intervening years, the focus of the academic community (though not so much the
industrial software development community) has shifted from simply writing programs to ana-
lyzing and reasoning about large distributed systems of software and data the come from diverse
sources. Figure 1 lays out the highlights of these shifts.

I see three simple patterns that have guided this development. Each of these provides partial
explanations, but none is either comprehensive enough or rich enough to be in and of itself a
full model.

(1) Evolution of engineering disciplines.

Technologies evolve from craft through commercial practice before they integrate scientific
knowledge and become true engineering disciplines. Figure 2 illustrates this pattern. Software
engineering has been following this pattern; it helps to explain the role of software process
improvement. [Shaw90]

Figure 1: Highlights of academic attention in software engineering

Simple input-

output
specifications

Emphasis on

algorithms

Data structures

and types

Programs

execute once and
terminate

Systems with

complex
specifications

Emphasis on

system structure,
management

Long-lived

databases

Program systems
execute continually

1960 +  5
Programming-
any-which-way

1970 +  5
Programming-
in-the-small

1980 +  5
Programming-
in-the-large

Mnemonics,
precise use of

prose

Emphasis on
small programs

Representing
structure, sym-

bolic information

Elementary
understanding of

control flow

1990 +  5
Programming-
in-the-world

Distributed systems

with open-ended,
evolving specs

Emphasis on

subsystem
interactions

Data & computation

independently
created, come and go

Suites of

independent
processes cooperate

Specifi-
cations

Design
Empha-

sis

Data

Control



53

Exploitation of a technology begins with craftsmanship: practical problems are solved by tal-
ented amateurs and virtuosos, but no distinct professional group is dedicated to problems of this
kind. Intuition and brute force are the primary problem-solving strategies. Progress is haphaz-
ard, and the transmission of knowledge is casual. Extravagant use of materials may be tolerated,
and manufacture is often for personal or local use.

At some point, the products of the technology gain commercial significance, and econ-
omies of manufacture become an issue. At this point, the resources required for systematic com-
mercial manufacture are defines, and the expertise to organize exploitation of the technology is
introduced. Capital is needed to acquire raw materials or invest in manufacture long before sale,
so financial skills become important. Scale increases over time, and skilled practitioners are
needed for continuity and consistency. Pragmatically-derived procedures are replicated care-
fully without necessarily having knowledge of why they work. Management and economic
strategies may assume as large a role as the development of the technology. Nevertheless, prob-
lems with the technology often stimulate the development of an associated science.

When the associated science is mature enough to yield operational results – that is,
results that are cast in the form of solutions to practical problems, not as abstract theories – an
engineering discipline can emerge. This allows technological development to pass limits previ-
ously imposed by relying on intuition; progress frequently becomes dependent on science as a
forcing function.

Software engineering is in the process of moving from the craft to the commercial
stage. It has only achieved the stature of a mature engineering discipline in isolated cases.

(2) Abstraction and its coupling to specifications

The granularity of our abstractions – the intellectual size of a chunk we treat as atomic –
increases over time. Abstractions are supported by formal specifications, but formal specifica-
tions will be used in practice only to the extent that they provide clear payoff in the near term.
[Shaw80]

This pattern can be seen in the development of data types and type theory. In the early
1960’s, type declarations were added to programming languages. Initially they were little more
than comments to remind the programmer of the underlying machine representation. As com-
pilers became able to perform syntactic validity checks the type declarations became more
meaningful, but “specification” meant little more than “procedure header” until late in the
decade. The early 1970s brought early work on abstract data types and the associated observa-

Figure 2: Evolution of engineering disciplines (after [Finch51])

Craft

Production

Commercial

Science

Professional
Engineering



54

tion that their checkable redundancy provided a methodological advantage because they gave
early warning of problems. At this time the purpose of types in programming languages was to
enable a compile-time check that ensured that the actual parameters presented to a procedure at
runtime would be acceptable. Through the 1980s type systems became richer, stimulated by the
introduction of inheritance mechanisms. At the same time, theoretical computer scientists began
developing rich theories to fully explain types. Now we see partial fusion of types-in-languages
and types-as-theory in functional languages with type inference. We see in this history that the-
oretical elaboration relied on extensive experience with the phenomena, while at the same time
practicing programmers are willing to write down specifications only to the extent that they are
rewarded with analysis than simplifies their overall task.

Figure 3:  Language constructs and phases of software engineering development

2000

1980

1950

1970

1990

1960

Programming-

any-which-way

Programming

-in-the-small

Programming-

in-the-large

Programming-

in-the-world

packages

structured programming

generic definitions

architectural chunks

inheritance
abstract data types

objects

procedures

algorithms, data structures

extensible languages

mnemonics, macros

higher-level languages

Figure 4: Coupled development of abstraction and specification

2000

1980

1950

1970

1990

1960

packages

structured programming

generic definitions

architectural chunks

inheritance
abstract data types

objects

procedures

algorithms, data structures

extensible languages

mnemonics, macros

higher-level languages

prose

formal specificationsconcrete complexity

formal syntax

signatures

formal semantics

strong types

ìsoftware engineeringî

algebraic and model specs for ADTs



55

(3) Progressive codification

Specification techniques evolve in parallel with our understanding of the phenomena they spec-
ify. [ShGar95] We begin by solving problems any way we can manage. After some time we dis-
cover in the ad hoc solutions some things that usually work well. Those enter our folklore; as
they become more systematic we codify them as heuristics and rules of procedure. Eventually
the codification becomes crisp enough to support models and theories. These help to improve
practice; they also allow us to address new problems that were previously unthinkable.

Thus, as some aspect of software development comes to be better understood, more powerful
specification mechanisms become available, and they yield better rewards for the specification
effort invested. We can characterize some of the levels of specification power:

> Ad hoc: implement any way you can
> Capture: simply retain and explain a definition
> Construction: explain how to build an instance from parts
> Composition: explain how to compose parts and their specifications
> Selection: guide designer’s choices for design or implementation
> Verification: determine whether an implementation matches specification
> Analysis: determine the implications of the specification
> Automation: construct an instance from an external specification

When describing, selecting, or designing a specification mechanism, either formal or informal,
it is useful to be explicit about which level it supports. Failure to do so leads to mismatches
between user expectations and specification power.

Figure 5: Cycle of progressive codification

Folklore

Codification

Improved practice

Models & theories

New problems

Ad hoc solutions

Folklore



56

Brooks proposes recognizing three kinds of results, together with criteria for judging the quality
of those results [Brooks88]:

findings well-established scientific truths truthfulness and rigor
observations reports on actual phenomena interestingness
rules-of-thumb generalizations, signed by an author usefulness

but perhaps not fully supported by data
all three freshness

Bibliography

[Brooks88] Frederick P. Brooks, Jr. Grasping Reality Through Illusion – Interactive Graphics
Serving Science.Proceedings of the ACM SIGCHI Human Factors in Computer Systems
Conference, May 1988, pp. 1-11.

[Finch51] James Kip Finch. Engineering and Western Civilization. McGraw-Hill 1951.

[NaRan69] Peter Naur and Brian Randell (eds). Software Engineering: report on a conference
sponsored by the NATO Science Committee, Garmisch Germany 1968. NATO 1969.

[Shaw80] Mary Shaw. The Impact of Abstraction Concerns on Modern Programming
Languages.Proc IEEE, September 1980, alsoIEEE Software Oct 1984.

[Shaw90] Mary Shaw. Prospects for an Engineering Discipline of Software.IEEE Software,
November 1990.

[ShGar95] Mary Shaw and David Garlan. Formulations and Formalisms in Software
Architecture. Computer Science Today (LNCS 1000), Jan van Leeuwen (ed), Springer-
Verlag 1995.



57

Paradigms and the Maturity of Engineering Practice:
Lessons for Software Engineering

James E. Tomayko

There is a reluctance to include software engineering among the engineering disciplines. This
is because many computer scientists and others see engineering in a binary model: fully formed,
or non-existent. The truth is that different fields of engineering represent a wide range of matu-
rity levels. One way of defining the maturity of a particular form of engineering is to study its
paradigms (in the Kuhnian sense of commonly-held practices, plus process attributes). At first
glance, software engineering seems a riotous collection of idiosyncratic techniques. In reality,
it has a few paradigms, and these are no fewer than other immature engineering disciplines at
similar stages of development. Yet, the other disciplines did not go through nearly the same
level of wrenching internal debate and open derision by critics.

Paradigms serve as the basis for practice. They clearly represent successful solutions,
and are evidence of practice maturity. As an example, consider the fundamental paradigm of
heavier-than-air flight: a fuselage with wings and cruciform tail, moving rapidly through the air.
Once George Cayley defined such a design, other aeroplane designers adopted it en masse. By
1914, subtle variations such as tractor biplanes, pusher biplanes, and tractor monoplanes were
in the aeronautical engineering toolkit, yet the basic paradigm remained to guide design deci-
sion-making.

Many are confused by the fact that software engineering does not shape physical arti-
facts (it is most commonly a component of a larger system), but that does not impede the devel-
opment of paradigms. The stored program concept, subroutines, information hiding, and evolu-
tionary development lifecycles are all conceptual paradigms that serve to guide software engi-
neering practice. When software engineering education is based on recognition and use of par-
adigms, stronger engineers will result.


