
Report on the Dagstuhl-Seminar 9637
Graph Transformations in Computer Science

September 9 - 13, 1996

Organizers:
Hartmut Ehrig (Berlin)
Ugo Montanari (Pisa)

Grzegorz Rozenberg (Leiden)
Hans Jürgen Schneider (Erlangen)

The research area of graph transformations dates back to the early seven-
ties. Its methods, techniques, and results have already been applied in many
fields of computer science such as formal language theory, pattern recognition
and generation, compiler construction, software engineering, concurrent and dis-
tributed systems modelling, database design and theory, and so on. This wide
applicability is due to the fact that graphs are a very natural way to explain
complex situations on an intuitive level. Graph transformation brings dynamics
to all these descriptions and can describe the evolution of structures. Therefore
graph transformation has become attractive as a programming and specification
paradigm for complex structured software and graphical interfaces. In particular
graph rewriting is promising as a comprehensive framework in which the trans-
formation of all these very different structures can be modelled and studied in a
uniform way. The operational approach immediately formalizes a specific type
of graph transformation and may be implemented efficiently. On the other hand,
the categorical approach yields attractive formal properties. In recent years this
approach was extended to high-level replacement systems and was modified by
replacing the double-pushout construction both by a single-pushout construction
and by a pullback construction. The evolution of the field and the state-of-the-art
are documented in six volumes of Lecture Notes in Computer Science (73, 153,
291, 532, 776, and 1073).

During this Dagstuhl-Seminar, 35 lectures were presented by the participants
from seven European countries, Brazil, Israel, and Japan on foundations as well
as on applications. Comparing the abstracts in this booklet with those of the
previous Dagstuhl-Seminar on this topic (Report No. 53), we observe a clear
shift to the new aspects of foundations mentioned above and to specification of
concurrent and distributed systems. System demonstrations showed the improve-
ment of efficient implementations and let us expect that the gap between formal
methods in system development and graphical methods can be bridged over by
graph-transformation based methods.

1

Altogether the seminar led to fruitful discussions between theory and applica-
tion and between advocates of different approaches. The participants appreciated
the stimulating atmosphere in Schloß Dagstuhl.

Finally, I would like to express my warmest thanks to the co-organizers; unfor-
tunately two of them, Hartmut Ehrig and Grzegorz Rozenberg, could not attend
the seminar because of sickness; nevertheless, they also have contributed to the
success of the seminar by their co-operation in preparing it.

October 1996 Hans J. Schneider

2

Contents

A Simple Graph Grammar Enabling the Representation of
Layered Graphs as “Pages” over Words Generated by the
Grammar, Azaria Paz . 5

Aspects of Term Graph Homomorphisms, Wolfram Kahl 5
The Higher Object Programming System HOPS

(System Demonstration), Wolfram Kahl 6
Rewriting Partial Graphs, Gabriel Valiente 7
Efficient Graph Rewriting and Its Implementation, Heiko Dörr 8
Parallel Composition of Graph Grammars, Leila Ribeiro 9
A View-Based Approach to System Modelling, Gregor Engels . . 11
Synchronization of Views and Loose Semantics of Typed Graph

Productions, Hartmut Ehrig . 11
Behavioral Constraints for Loose Graph Transformation Sys-

tems, Reiko Heckel . 12
Graph Rewriting with Active Integrity Constraints, Andy Schürr 13
Reengineering of Databases using Triple Graph Grammars, Al-

bert Zündorf . 14
Distributed Graph Transformation With Rule-Based Split and

Join Operations, Gabriele Taentzer 15
How to Construct a Hyperedge Replacement System for a

Context-free Set of Hypergraphs, Klaus Barthelmann 16
Concurrent Semantics for the π-Calculus

via Graph Rewritings, Marco Pistore 17
Genuine Pullback Rewriting, Michel Bauderon 17
Double Pullback and Pattern Rewriting in Hypergraphs., Hélène

Jacquet . 19
Persistent Sequential Entities in ESM Systems, Dirk Janssens . 20
A Partial Order Representation of Processes of Transforming

Graphs, Józef Winkowski . 20
Another Approach to Model Actor Systems with Graph Trans-

formations, Ingrid Fischer . 22
Graph Rewriting for Coordination, Ugo Montanari 22
A (2-)Categorical Presentation of Term Graph (Rewriting),

Fabio Gadducci . 23
Rule-Based Refinement of High-Level Structures, Julia Padberg 25
Rewriting Fuzzy Graphs, Yasuo Kawahara 26
Assisting Creativity by Graph Transformations, Ewa Grabska . 27
Syntactic Picture Generation: Methods and Tools, Hans-Jörg

Kreowski . 28
Some Ideas Concerning Graph Transformation by Tree Trans-

ductions, Frank Drewes . 29

3

Parameterized Graph Transformation Units, Sabine Kuske . . . 30
Modelling Object-Oriented Databases by Attributed Two-Level

Graph Grammars, Herbert Göttler 31
Object-Based Specification of Communication-Based Systems

Views and Synchronization, Annika Wagner 32
Substitution-Based Graph Rewriting, Annegret Habel 33
Constrained data types, Pieter Koopman 34
Automorphism groups of rooted deterministic equational graphs,

Laurent Pélecq . 34
(Graph Transformation Systems) Transformation Systems, Francesco

Parisi Presicce . 36
Application of Graph Grammars in an Educational Software

Engineering Game, Kurt Schneider 37
On Termination of Algebraic Graph Rewriting Systems, Jürgen

Müller . 38
Termination of Term Graph Rewriting, Detlef Plump 39

4

A Simple Graph Grammar Enabling the

Representation of Layered Graphs as “Pages”

over Words Generated by the Grammar

Azaria Paz

Technion Haifa, Israel

Interconnection networks are useful structures used in many applications such
as packet routing schemes, telephone switching networks, parallel computation
architectures etc. In the past several years Even and Litman introduced a new
technique, the ”layered cross product” technique. They showed that several well
known interconnection networks can be constructed by this technique from simple
layered graphs. We present a simple graph grammar over a 3 letters alphabet
having the property that when the words generated by the grammar are combined
into ”pages” according to a simple given rule, the resulting pages can represent
layered graphs, including all layered graphs which can be generated by the layered
cross product technique of Even and Litman. Moreover the graph grammar
representation enables a decomposition technique for layered graph which can be
split, by this technique, into primitive cross product components.

Aspects of Term Graph Homomorphisms

Wolfram Kahl

Universität der Bundeswehr München, Germany

The main topic of this talk were second-order term graphs, i.e., term graphs
with explicit variable binding, explicit variable identity and with metavariables of
arbitrary arities. Rewriting on these term graphs emulates Klop’s Combinatory
Reduction Systems (CRSs), a term formalism generalizing λ-calculus.

The aim then was to procure some familiarity with and insight into the in-
trinsic structure of these second-order term graphs. To this purpose, the talk
concentrated on an appropriate notion of homomorphisms that

1) avoids “capture of variables” in analogy to the valuation mechanism in CRSs,

5

2) ensures compositionality of at least certain interesting subsets of homomor-
phisms.

These homomorphisms can then be used to form a foundation for an appropri-
ate algebraic approach to second-order term graph rewriting that also
encompasses graph reduction, but we did not delve into the details of the whole
rewriting approach.

Just a few of the more involved homomorphism conditions were presented,
since these most directly give a feeling for the differences between terms and
term graphs on one hand, and between first-order and second-order term graphs
on the other hand. These conditions are:

Variable control: No node of a variable occurring free within the image of a
metavariable is the image of a bindable variable.

Encapsulation unity: If any node not encapsulated in G1 has an image that
is encapsulated by another node r, then the images of all nodes in G1 are
reachable from r.

Encapsulation consistency: For any two unencapsulated nodes x and y in
G1, no variable in G2 occurs free under the image of x, but only bound under
the image of y (while being reachable over a non-selfencapsulating path).

In terms (or term trees, as opposed to general term graphs) these conditions are
ensured to always hold either by virtue of the way binding is coded by name
and scope and from the definition of substitutions, or by virtue of the absence of
sharing, of rootedness or of acyclicity. Indeed, the last condition is only relevant
in the presence of cycles, where special care has to be taken with the definition of
the images of metavariables, which have to stop not only at the images of their
successors, but also at “self-encapsulation borders”.

For a proper treatment of second-order term graphs, furthermore extensions
of the conventional term graph homomorphism concept as total node mappings
are necessary: certain partial mappings have to be considered, and edges leaving
metavariables may have to be mapped to sets of edges.

Although quite involved in the technical details, the second-order term graph
homomorphisms discussed in this talk still have a direct intuitive appeal and the
complicated homomorphism conditions serve very well to give us a much more
direct grip on the structural properties of variable binding.

6

The Higher Object Programming System HOPS

(System Demonstration)

Wolfram Kahl

Universität der Bundeswehr München, Germany

The Higher Object Programming System HOPS, which has been developed by
a group led by Gunther Schmidt since the mid-eighties, is a graphically interac-
tive term graph editing and transformation system designed for transformational
program development.

HOPS manipulates arbitrary second-order term graphs with nameless vari-
ables, explicit variable binding, explicit variable identity and metavariables with
arbitrary arity.

Although usually the user will start from a functional programming paradigm,
in principle the current implementation is language independent.

The most notable features of HOPS are:

Term DAGs at the user interface, and not only as an internal representa-
tion — this makes program structure more immediately accessible to
the user and offers sharing in term graphs as a separate abstraction
principle,

Literate programming with embedded term graphs, where programs are
considered as documents where the code (in the shape of term graphs
serving the purposes of declarations, transformation rules and example
graphs) is interspersed between documentation prose, and both can be
edited from the same interface,

Strong online term graph typing that not only serves to make typing
mistakes impossible, but also guides program development,

Interactive transformation facilities that can be used at any stage of
program development and bring about a great flexibility,

Automatic transformation support for speeding up mechanical trans-
formation tasks.

7

Rewriting Partial Graphs

Gabriel Valiente

Technical University of Catalonia, Spain
joint work with Francesc Rosselló

University of the Balearic Islands, Spain

Rewriting of partial graphs using total and partial morphisms is put in the
unified framework of algebraic transformation of unary partial algebras. Explicit
constructions for several variants of the double-pushout and the single-pushout
transformation of partial graphs are given in detail.

A relationship between rewriting of total graphs and rewriting of partial
graphs is established by means of free completions, which preserve both double-
pushout and single-pushout derivations. Given a double-pushout or single-pushout
direct derivation of total graphs, a corresponding direct derivation of partial
graphs can be found such that the resulting total graph is the maximal free
completion of the resulting partial graph. Moreover, any double-pushout or
single-pushout direct derivation of partial graphs can be uniquely extended to
a corresponding direct derivation of total graphs.

Maximal free completions allow a more efficient rewriting of total graphs by
rewriting of corresponding partial graphs and completion of the resulting partial
graph. Sufficient conditions are also given for a class of completions of partial
graphs to preserve double-pushout and single-pushout derivations.

Efficient Graph Rewriting and Its

Implementation

Heiko Dörr

Daimler-Benz AG, Germany

At first glance, efficient graph rewriting is a contradiction in terms. Before
a graph rewriting rule can applied, an appropriate subgraph of the graph to be
transformed must be found. By definition of rewriting, this subgraph must be

8

isomorphic to the rule’s left-hand side. Hence each rewriting step requires the
solution of the isomorphic subgraph problem, which is NP-complete.

Our work faces this shortcoming on a theoretical and practical level. First of
all, we develop a sufficient condition under which the isomorphism problem for
graphs and rules of a given rewriting system con be solved in constant time. The
condition can be evaluated by static analysis of the rewriting system. The eval-
uation firstly performs an abstract interpretation of the system. It approximates
the sets of unique vertex labels and so-called strong V-structures of the language
defined by the rewriting system. Secondly, the evaluation of the condition tries
to find for each rule a search strategy appropriate for the isomorphism problem.
That strategy must initiate the search in a uniquely labeled vertex and bypass
any potential strong V-structure. If there is such a strategy for each rule of a
rewriting system, the system belongs to the class of so-called UBS graph rewriting
systems and the isomorphic subgraph problem is solvable in constant time.

On the practical level we develop an environment for programmed and at-
tributed graph rewriting systems. It consists of a compiler and an abstract ma-
chine for graph rewriting. On the basis of a denotational semantics for control
structures we design an optimization for rule sets. It speeds up the subgraph iso-
morphism test for a set of applied rules by reuse of previous results. The abstract
machine supports the optimized application test for rule sets. It can furthermore
execute whole programmed attributed graph rewriting systems.

Parallel Composition of Graph Grammars

Leila Ribeiro

Universidade Federal do Rio Grande do Sul, Brazil

The specification of complex systems is usually done by the “divide and con-
quer” idea: the system is divided into smaller, less complex components that are
developed separately and then merged in some way to form the specification of
the whole system. A suitable formalism that supports such a development shall
assure that the composition operators used to merge the component specifica-
tions are compatible with the semantics of the system. Compatibility here means
that the behaviour of the whole system can be derived from the behaviours of
its components, that is, the composed system does not shows a behaviour that
is not specified in any of its components.

9

The main aim of this paper is to provide an approach to the parallel com-
position of graph grammars. The parallel composition presented here formalizes
the intuitive idea of divide and conquer described above: an abstract descrip-
tion of a system is divided into components that are further specialized and then
merged together to form the specification of the whole system. The important
requirement is that each component is a kind of conservative extension of the
abstract description of the system, in the sense that the specialization of the
abstract view defined in the component does not imply that the behaviour of
the abstract level would change. Such specializations are formalized by special
graph grammar morphisms. These morphisms are not only interesting to de-
scribe specializations (refinements) of grammars, but also to express structural
and behavioural compatibilities between graph grammars.

Summarizing, the new concept of parallel composition of graph grammars
presented here has the following characteristics:

• The initial (start) graph is taken into account;

• The composition of two grammars can be based on a shared part (co-
operative parallel composition), or be a composition without any shared
parts (pure parallel composition);

• The composition is based on specialization morphisms. These mor-
phisms express the fact that both components to be composed are spe-
cializations of the shared parts;

• The result of the composition is suitably syntactically and semantically
related to the component grammars;

• The parallel composition is compositional with respect to a true concur-
rent semantics of graph grammars, namely the unfolding semantics.

10

A View-Based Approach to System Modelling

Gregor Engels

Leiden University, The Netherlands
joint work with H. Ehrig, R. Heckel, G. Taentzer (TU Berlin),

A. Corradini (Univ. of Pisa)

In order to manage the complexity of large system specifications, they have to
be decomposed into subspecifications. Each subspecification describes a certain
part of the system. This might be a certain aspect, like the data, dynamic,
or functional aspect, as it is known from object-oriented modelling techniques.
Or it might be a certain view onto the system, as it is known from database
modelling techniques. The talk motivates the usage of views in graph grammar-
based specifications. First, the usage of typed graph grammars inherently ensures
an integration of the data and the functional aspect within a view. Second, it is
explained that it is not appropriate in case of views to have a fixed semantics.
The standard fixed semantics, i.e. a graph transformation system, has to be
relaxed to a loose semantics, i.e. a graph transition system. This reflects the idea
that a view models only a part of the complete system. Other views may overlap
a view with respect to data or functionality. A complete system specification is
yielded by exploiting the approach of cooperative parallel composition of graph
grammars (see talk by Leila Ribeiro).

Synchronization of Views and Loose Semantics of

Typed Graph Productions

Hartmut Ehrig

Technische Universität Berlin, Germany
joint work with Reiko Heckel, Julia Padberg, Gabriele Taentzer,

Uwe Wolter (TU Berlin), Andrea Corradini (Pisa), Gregor Engels (Leiden)

The concept of views is used on two levels. First, so-called design views are
developed for structuring specifications, that is, a system is modeled according
to different views (e.g., representing the needs of different kinds of users) which

11

have to be synchronized afterwards in order to build the whole system. Views
can be specified by means of typed graph transformation systems, where the
type graph determines the visible types and the productions describe the known
operations of that view. The synchronization of views is done by the construction
of cooperative parallel composition of graph transformation systems, developed
by Leila Ribeiro and presented at the same seminar.

If the specification is complete, a view may describe an observation of the
system in operation. In this case we speak of a user view. It turns out that the
semantics of such a view cannot be described by computations (i.e., graph trans-
formations), but just by observations of computations of the global system. Such
observations of computations cannot be represented by graph transformations in
the usual sense because a local view may lack operations (productions) of the
global system, so that state changes may be observed that do not have a cause
in the local view.

Therefore, the notion of graph transition is introduced as loose semantics for
productions, where the production specifies only a lower bound to the activities
that are to happen during application. Contrastingly, in the classical double-
pushout approach to graph rewriting, productions are interpreted as complete
descriptions of the transformations to be performed.

For typed graph transformation systems a transition sequence semantics is
developed, comprising all finite and infinite sequences of transitions in a system.
Moreover, this semantics is shown to be compositional w.r.t. the synchronization
of views.

Behavioral Constraints for Loose Graph

Transformation Systems

Reiko Heckel

Technische Universität Berlin, Germany

In this lecture, the concept of synchronization of views presented at the same
seminar in the framework of typed graph transformation systems with loose se-
mantics is extended by behavioral constraints. Such constraints can be used to
control the transformation process, to express properties of systems for their veri-
fication, or (what provided the initial motivation of this talk) to restrict the loose

12

semantics of productions. Examples of behavioral constraints include starting
and ending graphs, application conditions for productions, static and dynamic
integrity constraints, programmed graph transformations, etc.

In order to support a variety of behavioral constraints we develop a generic
framework for behavioral constraints for typed graph transformation systems in
the double-pushout approach. The framework, called logic of behavioral con-
straints, provides the main notions and results presented in the talk on synchro-
nization of views and loose semantics of productions on an axiomatic basis. The
techniques are motivated by the concepts of logic of constraints and institutions
in the field of algebraic specification of abstract data types.

Known instances of logics of behavioral constraints include (so far) delete/create
permissions for graph transitions, negative application conditions for productions,
as well as static and dynamic integrity constraints expressed by temporal logic.

For any given logic of behavioral constraints, the synchronization by parallel
composition of graph transformation systems as well as the transition sequence
semantics extend to graph transformation systems with constraints. Moreover,
the compositionality of the semantics w.r.t. the synchronization has been trans-
fered to the extended setting.

The framework can be made approach independent if we assume a category
of graph transformation systems (of whatever approach) such that a morphism
of that category corresponds to a translation of the transformation steps in the
source system to transformation steps in the target system. Then, a flat (un-
structured) graph transformation system becomes comparable to a flat GRACE
transformation unit, which could provide a new way of structuring transforma-
tion units, featuring refinement and synchronization in addition to the currently
available use relation.

Graph Rewriting with Active Integrity

Constraints

Andy Schürr

RWTH Aachen, Germany

joint work with Manfred Münch, Andreas Winter

Integrity constraints are a well-known means to define consistency conditions
for data stored in any kind of information system. Knowledge bases or deductive

13

database systems usually offer predicate logic formulas for defining static integrity
constraints which restrict the set of all legal data(base) states. But there are also
many publications on Information System modeling which advocate the usage
of temporal logic formulas or life cycle expressions. They support the definition
of dynamic integrity constraints which restrict the set of all legal database state
transition sequences. Last but not least there are so-called active database sys-
tems which associate conditions (constraints) with actions. These actions may
update derived data (views) or recover a database from an inconsistent state.

Rather recently the graph grammar community developed a growing inter-
est in combining the operational paradigm of programming with graph rewrite
rules with the more declarative paradigm of constraint based programming. Both
paradigms are now combined in the programmed graph rewriting system language
and environment PROGRES. It offers predicate logic formulas and conditional
graph patterns for the definition of static integrity constraints as well as pre- and
postconditions for restricting the applicability of graph rewrite rules. Further-
more, it supports the definition of future directed dynamic integrity constraints
based on testing the applicability of complex graph rewriting programs (which
are similar to life cycle expressions of OO-modeling notations). All these types of
constraints may have associated repair actions which transform an inconsistent
graph into one which respects all defined integrity constraints.

The PROGRES system and its documentation is available as free software on
the worldwide web:

http://www-i3.informatik.rwth-aachen.de/research/progres/index.html

Reengineering of Databases using Triple Graph

Grammars

Albert Zündorf

Universität Paderborn, Germany

Object-oriented technology has become mature enough to satisfy many new
requirements coming from areas like computer-aided design (CAD), computer-
integrated manufacturing (CIM), or software engineering (SE). However, a com-
petitive information management infrastructure often demands to merge data
from CAD-, CIM-, or SE-systems with business data stored in a relational sys-
tem. In addition, complex dependencies between those data stored in the different

14

systems might exist and should be maintained. One approach for seamless inte-
gration of object-oriented and relational systems is to migrate the data (and the
corresponding schema) from a relational to an object-oriented system.

In this talk I describe an integrated design environment that supports the
migration process and overcomes major drawbacks of comparable approaches.
Our approach is based on the application of Triple Graph Grammars for the
specification of the translation of (elements of) relational schemata to ”equiva-
lent” OO schemata (elements). From this specification we automatically derive
an interactive schema design and translation environment.

Reference:

J. Jahnke, W. Schäfer, A. Zündorf: A Design Environment for Migrating
Relational to Object Oriented Database Systems. To appear in Proc. 1996
International Conference on Software Maintenance (ICSM ’96)

Distributed Graph Transformation With

Rule-Based Split and Join Operations

Gabriele Taentzer

Technische Universität Berlin, Germany

Distributed Graph Transformation as presented in this talk combines struc-
tured graph transformation on two abstraction levels, the network and the local
level, with the concept of synchronization by interface graphs. In this new ap-
proach, the main distribution concepts of categorical graph grammars developed
by Schneider are combined with the algebraic approach to distributed graph
grammars introduced by Ehrig et.al. Modeling distributed systems by this new
kind of distributed graph transformation offers a clear description of dynamic
networks, local and distributed actions such as synchronization based on graph
transformation.

In this talk, we emphasize the split and the join operations which are special
network changing actions. In contrast to previous definitions, the split and join
operations are described in a rule-based way within the framework of distributed
graph transformation. This leads to a constructive and deterministic formulation
of these operations.

15

Distributed graph transformation is based on the double-pushout approach.
For the formulation of split operations the original double-pushout approach is
used which allows non-injectiveness in all parts of a production. A distributed
transformation step is characterized by a double-pushout on distributed graphs
and graph morphisms. Satisfying the so-called distributed gluing condition the
applicability of distributed graph productions to distributed graphs and the
uniqueness of such production applications is stated.

Distributed graph transformation has a close relationship to synchronization
of views. The main differences are the global view which is not necessarily re-
flected in a distributed graph. Moreover, views are defined by distributed types
whereas distributed graphs model distributed instances (of types).

How to Construct a Hyperedge Replacement

System for a Context-free Set of Hypergraphs

Klaus Barthelmann

Universität Mainz, Germany

We give a new proof for the fact that a context-free set of simple hypergraphs
can be generated by hyperedge replacement if the connectivity of its elements is
bounded in some way. Measures for connectivity are the maximum degree, the
tree-width, or the number of hyperedges relative to the number of vertices. It all
boils down to the question whether or not arbitrarily large bipartite graphs are
subgraphs of the elements. We show how to decide these preconditions without
extra work.

Sets of hypergraphs are described as least solutions of polynomial systems of
equations with certain operations. The collections of operations cause the differ-
ence in expressive power. The general one, our starting point, consists (mainly) of
the quantifier-free definable operations and was introduced by Courcelle (1992).
The second collection is suitable for hyperedge replacement; it traces back to
Bauderon and Courcelle (1987). We translate a system of equations using the
first into a larger one using the second under the conditions stated above. Our
transformation is “direct” in the sense that the structure of the resulting system of
equations reflects the structure of the original one. This distinguishes it from the
approach of Courcelle (1995), which uses methods from automata theory, logic
and graph theory, and employs several encodings in the transformation process.

16

Our proof is more general than its other precursors: Engelfriet and Heyker (1994)
on the one hand and Engelfriet and Rozenberg (1990) followed by Brandenburg
(1991) on the other, which transform sets of rewriting rules.

Concurrent Semantics for the ß-Calculus

via Graph Rewritings

Marco Pistore

Università di Pisa, Italy

joint work with Ugo Montanari

In this lecture we equip the π-calculus with an operational semantics based
on graphs and double-pushout rewritings. The π-calculus is a process algebra
with the ability of handling channels as messages, thus modeling agents able to
change their neighborhood. Graph rewriting systems happen to be a very con-
venient metalanguage for the π-calculus. They allow for instance for expressing
the behavior of any particular agent with a finite number of productions — pro-
duction schemata are required instead for the operational semantics of the whole
language.

Concurrent semantics for the π-calculus can be extracted from the opera-
tional semantics on graphs. A (truly) concurrent semantics of a concurrent lan-
guage aims at expressing, in addition to input-output behavior and temporal
dependencies, other informations like causal dependencies of actions and spatial
distribution of systems.

An operational concurrent semantics is obtained by applying the shift con-
struction, due to Ehrig and Kreowski: derivations which differ just in the execu-
tion order of concurrent rewritings are identified, and in this way the amount of
parallelism in the derivations is recognized.

Abstract concurrent semantics are also defined. Three classical observations
for concurrent semantics — interleaving, partial ordering and mixed ordering —
are defined on the graph derivations. Bisimulation is exploited to obtain three
equivalences of π-calculus agents corresponding to the observations. As expected,
the ordinary observational equivalence for the π-calculus is re-obtained in this
context as the equivalence induced by the interleaving observation.

17

Genuine Pullback Rewriting

Michel Bauderon

LaBRI, Université de Bordeaux, France

Graphs can roughly be considered from two points of view, either as sets of
vertices linked by edges or as sets of edges glued by vertices, each point of view
leading to a different kind of graph rewriting systems, basically node rewriting
and edge rewriting.

In both cases the basic ingredients are given by specifying what is to be re-
placed, how it is linked to the rest of the graph, by what it will be replaced
and how the replacing part will be connected to the remaining part of the orig-
inal graph, the main difference between both types of rewriting being probably
that node rewriting may create new edges in an unpredictable way, while edge
rewriting does not create anything, but simply unites into a single object already
existing items.

This has made a big difference when trying to develop a more abstract setting
for graph rewriting. Indeed, considering the graph to be rewritten as ”embedded”
in the big graph (in a sense which we shall not make more precise), it quickly
appeared that the categorical generalizations of union and equivalence relation,
namely coproduct and coequalizer where enough to give a good description of
edge-oriented rewriting. This gave rise to the well known double-pushout ap-
proach extensively developed by the Berlin school. Unfortunately, this approach
was absolutely unable to describe the creation of edges and thus was not appli-
cable to node rewriting.

Hyperedge Replacement Vertex replacement

Substitution replaces an edge replaces a node
Interface a family of nodes a set of edges
Connection glues interface nodes creates interface edges
Algebraic framework Available Available
Categorical approach Available None
Logical Theory Available Available

This talk presents the main principles and results obtained over the last two
years using pullback rather than pushout as a basic rewriting mechanism. The
basic objects are structured graphs i.e. graph morphisms of the form G :→ S

where S is a fixed graph. They form a (comma) category with pullbacks and S

is a neutral element for the categorical product.

18

A fixed structured graph of a very specific shape A, called the alphabet is defined
such that unknowns and rules are morphisms of structured graphs with codomain
A, whose pullback provides the basic rewriting mechanism.
We then show that with an appropriate choice of S, single pullback and double
pullback rewriting can describe both vertex replacement (of the NLC and NCE
type) in graphs and hypergraphs, hyperedge replacement and most cases of double
pushout rewriting.

References :

M. Bauderon, A uniform approach to graph rewriting : the pullback approach,
in Proceedings WG’95, Lect. Notes in Comp. Sci 1017., 101-115

M. Bauderon, H. Jacquet, Node rewriting in graphs and hypergraphs : A
categorical approach, submitted, short version to appear in Proceedings WG’96,
Lect. Notes in Comp. Sci

Double Pullback and Pattern Rewriting in

Hypergraphs.

Hélène Jacquet

LaBRI, Université de Bordeaux, France

This talk was a follow-up on a framework introduced by Michel Bauderon in
1994. Michel Bauderon has shown how the pullback (and double pullback) can
be used to provide a unifying description of various graph rewriting mechanisms
such that NLC or NCE.

This work extends the use of the pullback in order to rewrite a node, a handle
or more generally a pattern in a hypergraph.

A double-pullback rule is a couple of morphisms (l, r) - in the category we have
defined for hypergraphs - from two hypergraphs L and R to a third structured
hypergraph A called the alphabet.

An occurrence of this rule in a given hypergraph G is a morphism occ : G→ L

such that the pattern of G which will be rewritten exactly occurs in L.

The application of the rule to this occurrence is done in two steps :

19

• We first built the pullback complement D. This pullback complement
is a hypergraph such that there exists a morphism a : D→ A and G is
the result of the pullback of the pair (a, l).

• Second, we build G as the pullback of the pair (a, r) : G is the result of
the rewriting of G by the double pullback rule (l, r).

Finally, we have presented HH-grammars introduced by Courcelle, Engelfriet and
Rozenberg in ”Handle Rewriting Hypergraph grammars” [1993], and we have
shown how we can construct for each rule of an identification-free HH-grammar
a corresponding double pullback rule.

Persistent Sequential Entities in ESM Systems

Dirk Janssens

University of Antwerp (U.I.A.), Belgium

In the analysis of systems consisting of a set of interacting sequential agents,
such as concurrent object-oriented systems, actor systems or protocols, it is
desirable to have the possibility of proving properties of the global system by
combining proofs of properties of the separate sequential components. In this
contribution it is shown that the process semantics for ESM graph rewriting (a
generalization of Actor Grammars) allows such a compositional analysis.

The basic idea is that the semantics consists of processes (in the sense of Petri
Net processes, i.e., based on an explicit representation of causality) equipped with
a condition on the contexts in which they may occur. These conditions, which are
closely related to the embedding mechanism of ESM systems, provide a means to
relate information from the semantics of one sequential agent to information from
the semantics of another sequential agent, thus providing an interface between
the parts of a compositional proof.

The method is demonstrated by a proof of a global property of a simpli-
fied sender-receiver protocol. The results presented illustrate the potential of a
process-based semantics for graph rewriting as well as the expressive power of a
well-chosen embedding mechanism.

20

A Partial Order Representation of Processes of

Transforming Graphs

Józef Winkowski

Polish Academy of Sciences, Poland

joint work with Andrea Maggiolo-Schettini, University of Pisa, Italy

Usually processes of rewriting graphs are represented by sequences of appli-
cations of productions, called derivations, and it is assumed that applications
which are independent in the sense that they do not intersect except in the con-
texts can be performed concurrently. The potential concurrency of applications of
productions in a process of rewriting graphs can be reflected in the so called shift-
equivalence of representing derivations, that is in the possibility of obtaining such
derivations one from another by repeatedly exchanging contiguous independent
steps. Consequently, a process of rewriting graphs can be defined as an equiv-
alence class of derivations with respect to shift-equivalence, called a derivation
trace.

In a paper by Corradini, Ehrig, Löwe, Montanari and Rossi it is shown that
derivation traces of so called safe graph grammars can be ordered such that they
form prime event structures. In a paper by Corradini, Montanari and Rossi it
is shown that derivation traces of safe graph grammars correspond exactly to
isomorphism classes of partially ordered structures called graph processes.

Both derivation traces and graph processes are defined for concrete graph
grammars with the idea of associating with each grammar a semantical meaning
in the form of the set of its derivation traces or graph processes.

In our presentation we introduce models of processes of rewriting graphs in-
dependently of graph grammars, and we define operations allowing us to combine
such models. In particular, this allows us to describe sets of processes of concrete
graph grammars.

Similarly to graph processes, our models, called dynamic graphs, are enriched
variants of contextual occurrence nets in the sense of Montanari and Rossi. A
dynamic graph consists of data elements which represent nodes and edges of
graphs taking part in a process of rewriting or in a collection of such processes,
and of events which represent rewriting steps. When representing a single process
a dynamic graph may be equipped with some canonical representations of the
initial graph and of the resulting graph, and then, by analogy with concatenable
processes of Degano, Meseguer and Montanari, called a concatenable dynamic
graph.

21

Dynamic graphs may be considered to be either concrete or abstract, that is
up to isomorphism. An important feature which distinguishes dynamic graphs
from derivation traces and graph processes is that abstract concatenable dynamic
graphs admit natural universal operations with the aid of which one can represent
derivation traces of arbitrary graph grammars.

Another Approach to Model Actor Systems with

Graph Transformations

Ingrid Fischer

Universität Erlangen, Germany

Actors are independent concurrent objects that interact by sending asyn-
chronous messages. Each actor has a unique mail address which may be used to
send it messages. Moreover, a mail address may be included in messages sent
to other actors so that the actor topology may be changed. Each actor has a
behaviour which determines how the actor responds to a message. This response
can consist of different actions: the actor can send new messages, create new
actors and change its behaviour.

Visual specification of both the structure and the dynamic process flow in this
environment can help either to write actor programs in a corresponding language
or to debug already written programs at the same level the specification is given.

Graph transformations are an appropriate formalism to handle this task. In
a configuration graph, actors as well as messages are given as nodes marked
with a behaviour/message label and an element of a Σ-algebra for their contents.
Acquaintances of actors/messages and the target of messages is modelled with
the help of edges. Transformation rules serve to change the configuration graph.
Each rule simulates the acceptance of a message by an actor and inserts new mes-
sages/actors in the graph together with the new behaviours and acquaintances.

The application of graph transformation rules is modelled with the classical
double pushout approach. Several possible transitions in an actor system can be
described with the help of parallel application of rules.

22

Graph Rewriting for Coordination

Ugo Montanari

Università di Pisa, Italy

joint work with Francesca Rossi

In the talk we describe our approach to modelling the dynamics of coordina-
tion systems. For distributed systems we mean systems consisting of concurrent
processes communicating via shared ports and posing certain synchronization re-
quirements, via the ports, to the adjacent processes. We use graphs to represent
states of such systems, and graph rewriting to represent their evolution. The
kind of graph rewriting we use is based on simple context-free productions which
are however combined by means of the synchronization mechanism. This allows
for a good level of expressivity in the system without sacrifying full distribution.
Moreover, to approach the problem of combining productions together, we sug-
gest to exploit existing techniques for constraint solving. This is based on the
observation that the combination problem can be modelled as a (finite domain)
constraint problem. In this respect, we propose to use both local consistency
techniques, to remove the possible redundancies in a system state, and a dis-
tributed backtracking search algorithm, as used in distributed constraint solving.
Our method has two main advantages: first, it is completely formal and thus pro-
vides a precise description of the way a distributed system evolves; second, it also
seems very promising from the performance point of view, since the techniques
we propose to combine productions together have been proven very convenient
in several cases.

A (2-)Categorical Presentation of Term Graph

(Rewriting)

Fabio Gadducci

Università di Pisa, Dipartimento di Informatica, Italy

The classical theory of Term Graph Rewriting studies the issue of represent-
ing finite terms with directed, acyclic graphs, and of modeling term rewriting via

23

graph rewriting. The main advantage of using graphs is that the sharing of com-
mon subterms can be represented explicitly in a graph. Therefore the rewriting
process is speeded up, because the rewriting steps do not have to be repeated for
each copy of an identical subterm. Thus a single graph reduction may correspond
to n term reductions, where n is the “degree of sharing” of the reduced subterm.

The rich theory of Term Rewriting also includes a nice categorical presentation
of term rewriting systems in terms of 2-categories. Terms over a given signature
Σ can be represented faithfully as arrows of a suitable cartesian category, called
the Lawvere theory of Σ. This category has natural numbers as objects, and
an arrow from n to m is an m-tuple of terms with at most n variables; arrow
composition is substitution, and the product of two arrows is the concatenation
of the corresponding tuples of terms.

Given such a category, a rewrite rule R = 〈l, r〉 can be regarded as a cell ,
i.e., a vertical arrow between the two arrows corresponding to the left-hand side
l and to the right-hand side r. This situation can be denoted as R : l ⇒ r :
n → 1, which also says that l and r are arrows from n to 1, i.e., they have
at most n variables. Given a term rewriting system, the structure obtained in
this way, i.e., the Lawvere theory of Σ enriched with one cell for each rule, is
called a c-computed . The interesting fact is that from such a c-computed, a
free construction can generate a (cartesian) 2-category by adding all identity
cells, and closing cells with respect to horizontal and vertical composition. The
resulting 2-category faithfully represent all the possible rewriting sequences of
the original system. In fact, horizontal composition of cells generates all the
possible instantiations of the rules and, at the same time, places rules in all
possible contexts. Vertical composition acts instead as sequential composition.
Furthermore, the generated rewriting sequences are subject to an equivalence
that subsumes the Lévy equivalence, due to the axioms of 2-categories.

Now, is it possible to give a 2-categorical presentation of term graph rewriting
analogous to the one just described? In this talk some initial results are illus-
trated. We show that, while terms can be seen as arrows of a cartesian category
(the Lawvere theory), so term graphs are the arrows of a s-monoidal category ,
i.e., a symmetric strict monoidal category equipped with two “symmetric trans-
formations” ∇ (the duplicator) and ! (the discharger). Our current work tries
to prove that, representing term graph rules as cells, the free 2-category of the
resulting computed faithfully represents term graph rewriting sequences.

In the talk we introduce ranked term graphs, i.e., equivalence classes of di-
rected acyclic graphs labeled over a signature Σ, with distinguished lists of vari-
able and root nodes, which are used for their “composition”, which is the coun-
terpart of term substitution. One key result shows that every ranked term graph
can be obtained form a small set of atomic term graphs using the operations of
composition and “union”, i.e., disjoint union with concatenation of the lists of

24

roots and variables.

The 2-categorical presentation of term graph rewriting allows us to clarify in a
formal framework both the similarities and the intrinsic difference between term
rewriting and term graph rewriting, disregarding any representation mismatch.
This topic has been addressed in many paper in literature, where all the authors
agree that term graph rewriting is a sort of term rewriting with explicit sharing
of subterms. However, this simple fact is often made more complex by the need
of encoding and decoding functions between terms and term graphs.

On the contrary, the categorical framework allows to show that the only differ-
ence between terms and term graphs (regarded as arrows of suitable categories)
is in the naturality of the transformations ∇ and !: in fact a s-monoidal category
where these transformations are natural is also cartesian.

Rule-Based Refinement of High-Level Structures

Julia Padberg

Technical University of Berlin, Germany1

The concept of refinement is an important technique within software engineer-
ing. Based on the idea of high-level replacement systems in the double-pushout
approach, we propose rule-based refinement to present rules denoting the re-
placement of a substructure by another one, without changing the remaining
part. This has the advantage of a simple local presentation of the refinement,
even if the whole system is large and complex.

We discuss the relation of rule-based refinement to other notions of refinement.
Assume that we have an arbitrary refinement relating some structure to some
other structure. Then this relation of the two structures can be regarded as
the left and the right hand side of a transformation. Hence, each refinement
discussed in literature, can be considered as a transformation in our sense. A more
substantiated approach to include well-known refinements is the new concept
of Q-transformations within the frame of high-level replacement systems. This
concept combines well-known approaches of refinement with the new concept
of rule-based refinement. The main idea is to supply rules with an additional
morphism, which belongs to a specific class Q of morphisms.

This work is part of the research project Forschergruppe Petrinetz Technologie and has
been partially supported by the German Research Council (DFG).

25

Moreover, we review the concepts and results for independence and paral-
lelism of transformations in high-level replacement systems and extend them to
Q-transformations. We introduce horizontal structuring techniques, union and
fusion, that generalize constructions known from coloured nets to high-level struc-
tures using the categorical concepts of coequalizers and pushouts within the frame
of high-level replacement systems. Furthermore, we sketch the compatibility of
these constructions with both transformations and Q-transformations.

Finally, we demonstrate the application of these techniques to our case study,
concerning the requirements engineering of a medical information system.

Rewriting Fuzzy Graphs

Yasuo Kawahara

Kyushu University, Japan

joint work with Masao Mori

The aim of this talk is to formalize a fuzzy graph rewriting with single-pushout
approach from a viewpoint of relational calculus. A fuzzy graph here means a
pair of an (ordinary or crisp) set of nodes and a fuzzy (connection) relation on the
nodes. To formalize a fuzzy graph rewriting in this setting we first discussed about
the algebraic and logical structure of fuzzy relations. A partial morphism between
fuzzy graphs is a partial function between the sets of nodes preserving fuzzy
graph structures in a sense. As an application of relational calculus we showed
that the category of fuzzy graphs and their partial morphisms has pushouts.
Based on these facts we formalized a fuzzy graph rewriting with single-pushout
approach. In general the definition (choice) of matchings to production rules is
very important, and changes the aspect of graph rewritings. Thus we proposed
two kinds of possible matchings for fuzzy graph rewriting. The former is a rigorous
matching, which leads a fact that if the production rule is a partial morphism,
then the rewriting square is a pushout. The latter is rather ambiguous one,
called an ε-matching, where 0 < ε < 1. The fuzzy graph rewriting with using
ε-matching gives an ε-equivalent fuzzy graph regarded as an approximation to
pushout rewritings.

26

Assisting Creativity by Graph Transformations

Ewa Grabska

Jagiellonian University, Cracow

In this paper creative design is discussed within
the framework of graph transformations. On the
one hand, the increasing availability and use of the
Worldwide Network has opened up the opportu-
nity for designers to collaborate with each other in
ways not possible previously. Designers can now
work on the same design at different geographic lo-
cations. This new possibility requires a fresh look
at the role of formal approaches to design. On the
other hand, it is known that design is associated
at many levels with patterning, shaping and form
giving. Therefore representations of visual infor-
mation have always played a very significant role
in design problem solving. This is another reason
why our considerations are restricted to graphical
design in which a drawing is a basic unit of com-
munication among designers as the transer of a
message from one designer to another.
The term design may be discussed in relation to
both product (designed object) and process. Our
approach to design is based on the composite rep-
resentation which allows to integrate the product
designing and the process designing. The com-
posite representation forces the designer to think
about products at two levels: the higher level of
structural properties described by means of the
graph and the lower level of geometry and other
attributes, like colour, texture, described by the re-
alization scheme. This representation is to a great
extent oriented towards visual evaluation.

27

□

Certain problems in visual communication are cen-
tered typically around the questions: what is in-
tended and what is perceived? Concerning per-
ception and creative thinking leads to the concept
of emergence being in the heart of large scien-
tific interest. On the level on graph structures,
emergence can be defined as arising implicit graph
structures from a given explicit graph structure
during the evolution of problem requirements and
solution concepts. The importance of emergence
in design is that it allows to extend the space of
possibilities to a solution. The composite represen-
tation allows easily to fix these new possibilities.
Searching of emergent shapes can be seen in the
relation to an attempt at achieving order. Some
properties of the regular emergent graph structures
are presented. By visualizing the graph structure
of the designed object the designer has a chance to
grasp the essence of the current solution.

Syntactic Picture Generation: Methods and Tools

Hans-Jörg Kreowski

Universität Bremen, Germany

Methods for picture generation may be attributed as syntactic if they provide
means for generating pictures from a given syntactic entity like a grammar or an
automaton.

generator-syntactic
entity

-pictures

Examples of this kind are chaincode picture languages, L-systems with turtle
interpretation, map-L-systems, cellular automata, iterated function systems, and
collage grammars. In all these models of syntactic picture generation, derivations
of certain configurations are built up where each occurring configuration can be

28

interpreted as a picture (or a scene if one works in higher dimensions). Hence
one always gets sequences of pictures in a natural way, i.e. animation sequences
or films.

Such syntactic films can be created in the studio system BIZARR goes to Hol-
lywood which has been developed under UNIX/X-Windows in C++ at the Univer-
sity of Bremen. It provides all the methods mentioned above (except chaincode
interpretation). The methods can be freely combined to produce sequences of
3D-scenes. One can observe the evolving scene and see the film from the point of
view of a camera. There is a fast wireframe output that runs nearly interactively
while the film is created. And there is a raytracer output that runs days and
weeks for some seconds of film, but allows scenes with colors and textures.

Some Ideas Concerning Graph Transformation by

Tree Transductions

Frank Drewes

Universität Bremen, Germany

A tree transduction is a nondeterministic transformation τ : TΣ → ℘(TΣ′) be-
tween sets of terms over finite signatures. If the symbols in Σ are graph operations
and those in Σ′ are operations on some domain D such tree transductions can
compute mappings f of graphs into D. For this, it is required that, if t ∈ TΣ

denotes a graph G then τ (t) consists of one or more trees that denote f(G).

This notion of computation by tree transductions is known to yield some
interesting decidability results. For example, if Σ′ consists of the operations 0,
1, maximum, addition, and multiplication on the natural numbers and τ is a
composition of top-down or bottom-up tree transductions then it can be decided
for context-free graph languages L (represented by a corresponding grammar)
whether f is bounded on L.

While this is quite a nice result it is often the case that one would like to verify
properties of graph transformation systems and their derivations rather than of
graph languages. This talk presents first ideas in this direction. The basic idea is
to consider a tree transduction τ : TΣ → ℘(TΣ) (where Σ is a signature of graph
operations) that computes the single steps of a derivation relation ⇒. Since the
output signature equals the input signature iteration is possible. Thus, repeated

29

application t1→τ t2→τ · · · →τ tn of τ yields a derivation G1 ⇒ G2 ⇒ · · · ⇒ Gn,
where each Gi is the graph denoted by ti.

In the talk, this notion of derivation is introduced. As an example it is shown
how fully balanced trees can be recognized by an algorithm which is expressed in
terms of a derivation relation computed by a linear bottom-up tree transduction.
Furthermore, some very first results are presented. The first shows that, in a
certain way, some types of derivation relations defined in the double-pushout
approach can be computed by tree transductions. The second type of results
concerns methods which allow to prove properties of the derivation relations
computed by linear bottom-up tree transductions. Typical proofs of this kind
are termination proofs and proofs of properties which remain invariant under the
considered derivation relation.

Parameterized Graph Transformation Units

Sabine Kuske

Universität Bremen, Germany

Graph transformation units are a structuring principle of the graph-and-rule-
centered language GRACE, currently under development involving researchers
from Aachen, Berlin, Bremen, and Leiden. The components of a transformation
unit are a set of rules, descriptions of initial and terminal graphs, a control
condition, and a set of imported transformation units. Semantically, it transforms
initial graphs to terminal ones by interleaving rule applications with calls to
imported units such that the control condition is obeyed.

In the talk, an axiomatic approach to parameterized transformation units
is presented which allows to describe classes of transformation units. For this
purpose, the components of a parameterized transformation unit are typed ex-
pressions containing typed variables. Each instantiation of the variables with ex-
pressions induces a substitution of the parameterized transformation unit. The
presented concept has the following useful properties: First, substitution of a pa-
rameterized transformation unit yields again a parameterized unit. In particular,
if the actual parameters do not contain variables, we obtain a non-parameterized
transformation unit. Second, the substitution is associative. This means roughly
speaking that we get the same unit if we first substitute a parameterized trans-
formation unit trut w.r.t. a variable instantiation val and then the result w.r.t.

30

val’, or if we first substitute the expressions associated to the variables by val
w.r.t. val’ and then the unit trut w.r.t. the resulting variable instantiation.

Modelling Object-Oriented Databases by

Attributed Two-Level Graph Grammars

Herbert Göttler

Universität Mainz, Germany

joint work with Bernd Himmelreich, GEFM Eschborn, Germany

Graphs are used at many stages of database design and implementation. This
is the case for the relational and for the object-oriented paradigm as well. In the
project PARES (’Picture Administration and Retrieval System’, supported by
the Ministry of Economics of the State of Rheinland-Pfalz) we investigate the
usefulness of object-oriented databases for non-standard applications, especially
for the storing of (Picasso) pictures as scans and additional information pertaining
to them. Such information can be: A syntactical description (the set of graphical
objects like lines, rectangles, circles, any kind of polygons, etc.), a semantical
description (the set of objects a viewer is supposed to see, like a glass, a person, a
table, etc.), and the relations between them (e.g.: This rectangle, representing a
table, is parallel to one representing a mirror.). A query like: ’Show all tables in
the database!’ (not just the pictures containing a table!) requires an extremely
complicated datamodel which can only be designed in a reasonable manner by
the object-oriented approach.

Things become even more complicated if also dynamic aspects have to be
considered: In the PARES-project we do not only deal with unrelated pictures
but also with series of pictures which are related in the sense that one can define
’the difference’ between one picture and its (logical) successor. This is very much
alike the step-by-step construction of, say, a machine. Such a difference - in other
words: such a construction step - could be: A rectangle representing a table is
rotated by 30 degrees.

For our application it is necessary not to store just the sequence of pictures
(this was done for the sake of animation, too) but also the operation which
produces the successor picture of a given one.

In our framework we model the database as a graph representing the objects
and the relations (inheritance included). Quantities like coordinates are handled

31

by attributes. An operation like ’Rotate a rectangle representing a table from a
position parallel to the axes by 30 degrees!’ gets modelled as the application of a
graph production. Depending on the difference between two succeeding pictures
the object scenario plus its attributes can change dramatically with the effect that
the graph production implementing the change of the graph of the object scenario
can be very complicated. This is due to the fact that many different aspects are
incorporated into a single production, like consistency of the relations in respect
to inheritance.

According to the principle ’Separation of concerns’ we use two-level graph
grammars to cope with the complexity of the problem. On the one level, the
hyperrule level, we describe, so to speak, a simple specification of what has to
be done. On the other level, the metarule level, we describe how it is done. The
metarules guarantee, for example, the already mentioned consistency aspects.

The whole setting works only because the graph productions - the hyper-
and the metarules as well - are considered to be graphs themselves. This way,
the metarules can be applied to the hyperrules (until these become ’productive’)
in the very same way as the productive hyperrules can be applied to the graph
representing the present state of the database.

Object-Based Specification of

Communication-Based Systems Views and

Synchronization

Annika Wagner

TU Berlin, Germany

We present an object-based specification technique which includes an ad-
vanced attribute concept, views, a synchronization mechanism and a mechanism
for ensuring consistency. In this talk we concentrate on views and synchroniza-
tion. Formally our approach is based on the single-pushout transformation of
partial algebras, which are used to represent global system states.

Introducing a view concept as generalization of the knows-relationship be-
tween objects to a knows-relationship between an object and the global state,
leads to a more complex description of a system state. This description by a so-
called system graph consists of partial algebras and partial injective morphisms in

32

between them instead of just a single partial algebra. We introduce single-pushout
transformation of these system graphs with a complex notion of a system trans-
formation rule consisting of a (global) state transformation rule and (local) view
transformation rules.

Integrating the concept of amalgamation of rules as synchronization mecha-
nism we can specify complex actions in a modular way by a rule scheme containing
different types of rules instead of a single system transformation rule. Valuation
rules are used to specify the local effects an action has on the attributes of a sin-
gle object. Interaction rules describe the synchronization of actions of different
objects.

An object-based specification consists of a static object specification, namely
an object signature and an algebraic specification of the used abstract data types,
and a specification of the objects dynamics, namely a set of valuation and a set
of interaction rules assigned with each object type, which are combined in rule
schemes.

Furthermore we show how our approach is related to that of distributed graph
transformation (presented by G. Taentzer) and to that of the synchronization of
views (presented by R. Heckel).

Substitution-Based Graph Rewriting

Annegret Habel

Universität Hildesheim, Germany

The talk addresses the substitution-based approach to graph rewriting, in-
troduced in Plump and Habel (1996). The approach is very simple to describe
and needs neither pushouts nor embedding instructions. It allows to simulate the
well-known double pushout (DPO) approach as well as term rewriting in such a
way that a direct derivation in these models corresponds to a direct derivation in
the substitution-based approach. Restricting the approach to basic substitution-
based (SB) rewriting, one obtains a one-to-one correspondence between DPO
rewriting and basic SB rewriting. This allows to transfer results like commuta-
tivity and parallelism theorems from the DPO approach to the basic SB approach.
For general SB rewriting, a “weak commutativity problem” is investigated. Coun-
terexamples to weak commutativity in the general case are given. For the case
of weakly non-overlapping derivations G ⇒ H by r and G ⇒ H ′ by r′, where r

33

deletes, preserves, or copies context and where r′ preserves context, the existence
of derivation sequences H ⇒ X by r′ and H ′ ⇒ X by r is shown.

Constrained data types

Pieter Koopman

Leiden University, The Netherlands

This paper treats enforcing constraints on data types in functional program-
ming languages. Examples of the intended kind of constrained data types are
sorted lists and balanced trees. Since the standard type system is not able to
check these constraints, the usual solution is to use an abstract data type for the
constrained version of the data type. Since instances of abstract data types can
only be constructed by the fixed number of functions in the signature, it is easy
to verify that the constraints will be met.

The drawback of this approach is that the constrained data type is entirely
different from the plain data type. This implies that none of the standard ma-
nipulating functions can be applied to the constrained data type. For instance,
the standard function to compute the length of a list cannot be applied to the
abstract data type sorted list. This can only be solved by defining new instances
of the standard functions for the constrained data types, or by using explicit type
conversions. Both solutions are undesirable.

We propose to use type annotations to indicate that the data type is con-
strained. By a proper extension of the notion of type instance the standard
functions are applicable to the constrained data types. By indicating how the
annotated types behave under construction and destruction, it is possible to de-
rive an approximation of the possible annotations automatically. The functions
can become polymorphic in the annotations on the types manipulated.

Like abstract data types the notion of subject reductions is lost. However, in
annotated types the change is less dramatic. For abstract data types, the derived
type after reductions can be totally different from the original type. For annotated
types the original type is an instance of the derived type: it is not always possible
to reconstruct the annotations. Apart from the annotations subject reduction
holds.

34

Automorphism groups of rooted deterministic

equational graphs

Laurent Pélecq

LaBRI, Université Bordeaux I, France

Equational graphs have been introduced by Bauderon and Courcelle. An
equational graph is the least solution of sets of hypergraphs equations. Courcelle
showed that monadic second order logic (MSOL) of equational graphs is decidable
(cf. [Courcelle 89]). Moreover he showed that equational graphs are definable by
a closed formula of MSOL (cf. [Courcelle 90]). Some other results can be found
in [Caucal 90].

Thanks to these results, one can show that the orbit of any vertex of an equa-
tional graph is definable in MSOL. We consider a rooted deterministic equational
graph G. Let x denotes a root of G. Using pushdown automata (pda), one can
construct a context-free graph H that gives G by contraction of some edges (cf.
[Muller, Schupp 85]). By successive transformations of the formula defining the
orbit of x, we define a set of configurations of the pda which represents the orbit.
This is an example of the Courcelle’s general formalism of relative definability of
structures. The set of configurations is proved to be rational.

From rationality, we deduce a decomposition of any automorphism over a set
of generators. These generators are the automorphisms for which the image of
x is the extremity of some positive path of bounded length with origin x. The
bound depends only on the graph and the root. This set of generators is finite in
deterministic graphs.

The result is that automorphism groups of deterministic rooted equational
graphs are finitely generated. It generalizes the same result for context-free graphs
(cf. [Pélecq, to appear]).

35

(Graph Transformation Systems) Transformation

Systems

Francesco Parisi Presicce

Universitá di Roma La Sapienza, Italy

Graph Transformation Systems provide a powerful and flexible formalism for
the specification of parallel and distribute systems. Configurations are repre-
sented by graphs and their evolution by the application of transformation rules.

In the process of developing an adequate transformation system, it is often
necessary to modify the current GTS. This can be done either by replacing a
subsystem with another one (global transformation) or by modifying in a uniform
way some of the existing rules (local transformation).
The global transformation can be achieved via a High Level Replacement System
based on the category of GTS and GTS morphisms. Each rule has the form
L← K → R (in the Double Pushout approach to graph rewriting) or L ↼ R (in
the Single Pushout approach) where L, K and R are GTS and the morphisms
are total in the DPO and partial in the SPO. In the DPO approach we obtain an
HLR1-category while in the SPO approach we have at least an HLR0.5- category
. In both cases then the GTS-replacement systems satisfy the Local Confluence
Theorem.
The local transformation is obtained by applying a transforming rule p to each
production p1 of the GTS. The expected result is that if p : p1 ⇒ p2, p1 : G1 ⇒ H1

and p : G1 ⇒ G2, then p : H1 ⇒ H2 and p2 : G2 ⇒ H2 both in the DPO and in
the SPO.
While every local transformation can be viewed as a global one (replacing the old
rules with the modified ones), the converse is not always true.
The results are based on compatibility of application morphisms and composition
of diagrams and so the ideas and techniques can be applied to other approaches
based on universal categorical constructions.

36

Application of Graph Grammars in an

Educational Software Engineering Game

Kurt Schneider

Daimler Benz AG

SESAM is a software project simulator. It was developed at the University
of Stuttgart, Germany. SESAM enables students of software engineering to lead
their own (simulated) projects. Each student plays the role of a project manager.
All other project participants (including customer, software developers, etc.), all
documents (specifications, designs, code, test plans etc.) are simulated. Players
interact with their simulated projects in an adventure game fashion: They assign
tasks to developers, organize, plan, and schedule project activities, interact with
developers, and they should control project progress. They also have to react
upon unexpected events.

Internally, SESAM uses a situation model that can be characterized as an
instantiation of an extended Entity-Relationship schema (including inheritance
and attributes). The ER schema represents the universe of discourse; each con-
crete instantiation represents a concrete situation in a particular project. Such a
situation model can be formally interpreted as graph. Nodes are instantiations
of classes such as ”Developer”, ”Specification Document”, or ”Customer”. Edges
represent relationships between nodes. Each instantiation has a set of attributes
with individual values.

Quantitative changes in this model result from attribute value changes over
simulated time. Qualitative changes stem from graph modifications performed
on the situation model. Graph modifications are formalized as productions of an
attributed graph grammar. Player actions may directly trigger a graph grammar
rule. Depending on subgraph patterns detected in the situation model graph,
other productions may be applied without direct user involvement. They produce
autonomous and often unexpected project behaviour. Whenever a pattern (”left
hand side of a graph production”) is detected in the situation model graph, the
production can be applied. This leads to subgraph replacement (”replacement
of left hand side by right hand side”). Each production is called ”event model”
in the SESAM terminology. A new notation was developed for event models. It
combines left and right hand sides of a graph production, annotating elements
that are to be deleted by minus signs, and elements that are to be inserted by
plus signs. We did not use existing formalisms or tools because we had to tightly
integrate qualitative graph modifications with quantitative continuous attribute
value changes over simulation time.

37

An algebraic graph grammar approach was used. The application of the graph
grammar formalism allowed to directly describe a triggering situation pattern to-
gether with a resulting action in terms of situation model graph modifications.
Many application domains for graph grammars reported in literature are them-
selves highly formalized calculi. In contrast, SESAM started with a rather vague
specification of requirements. Graph grammars where pragmatically selected as
modelling medium because they seemed to minimize the cognitive distance be-
tween observable events in real software projects and their description in event
models. In both cases, patterns trigger events.

Not the formal properties of a calculus stimulated this application, but its
intuitive appeal. From this perspective, a more pragmatic and comprehensive
introduction to graph grammars would be highly desirable. Such a writeup could
lead application providers to make a better informed choice among existing graph
grammar approaches. And it should provide easy-to-read examples of how to get
started in the respective approach. Excessive formality must be avoided in such
a tutorial.

On Termination of Algebraic Graph Rewriting

Systems

Jürgen Müller

Technische Universität Berlin, Germany

joint work with Detlef Plump, Universität Bremen, Germany

Two necessary and sufficient conditions for termination of algebraic graph
rewriting systems are established. In the frameworks of the two algebraic graph
rewriting approaches, single-pushout and double-pushout, it is shown first, that
termination is equivalent to the finiteness of all forward closures, being certain
minimal derivations in which each step depends on previous steps. This charac-
terization is the same for both algebraic graph rewriting approaches. It is not
possible to receive this result for the single-pushout approach from the double-
pushout approach only by translating the rules. The translation of the rules does
not reflect the application condition of rules in the double-pushout approach. Two
necessary conditions for the proof of the first termination criteria are shown for
both algebraic graph rewriting approaches, the compatibility of dependence and
minimality of derivations, and the compatibility of independence and minimality
of derivations.

38

It is shown second, that termination of a graph rewriting system is equivalent
to the existence of a reduction order for this system. Reduction orders are well-
founded, partial orders on graphs, including every possible derivation of a graph
rewriting system.

Termination of Term Graph Rewriting

Detlef Plump

Universität Bremen, Germany

Term graph rewriting differs from term rewriting in that common subexpres-
sions can be shared, due to the representation of expressions by graphs. Sharing
saves not only space but also time since certain repeated computations can be
avoided. This talk addresses the termination of term graph rewriting. First,
it is shown that term graph rewriting terminates for more systems than term
rewriting. However, when all rules are right-linear (i.e., no rule contains repeated
variables in its right-hand side), then term graph rewriting terminates if and
only if term rewriting terminates. This allows to transfer undecidability results
for some restricted classes of term rewriting systems to term graph rewriting. It
is also shown that termination of term rewriting is undecidable for those systems
that are terminating under graph rewriting.

In the second part of the talk, fully shared rewriting is introduced as a par-
ticular kind of term graph rewriting in which term graphs are fully collapsed
before a rewrite rule is applied. An advantage of this rewrite model is that terms
have unique graph representations, so that termination may be proved by or-
ders on terms. To this end, an extension of the well-known recursive path order
is proposed. This full sharing order is, unlike the recursive path order, not a
simplification order and hence is not a priori known to be well-founded. To over-
come this problem, a notion of homeomorphic embedding is considered that is
strictly included in the conventional notion. It is conjectured that this relation
is still a well-quasi order on the set of ground terms (yielding a generalization of
Kruskal’s Tree Theorem). As the full sharing order contains the new embedding
relation, the truth of the conjecture would imply that the full sharing order is
well-founded.

39

