
Control of Search in AI Planning

In the field of artificial intelligence, ”planning” is defined as designing the behavior of
some entity that acts, either an individual, a group, or an organization. The output is
some kind of blueprint for behavior, which we call a plan. There are a wide variety of
planning problems, differentiated by the types of their inputs and outputs. Typically,
planning problems get more and more difficult as more flexible inputs are allowed and
fewer constraints on the output are required. As this flexibility increases, the space of
possibilities needing to be explored by the planning algorithm grows extremely quickly
(usually exponentially).
The goal of this workshop was to provide a specific focus on controlling this search. This
problem is the essence of the planning problem, and it arises regardless of which specific
planning methodology is used (nonlinear planning, deductive planning, hierarchical
planning, etc.) - in all of these controlling an exponentially growing search space is a
central problem. In all planning formalizations, it is critical that some sort of knowledge
(heuristic or otherwise) is used to make reasonable decisions at any of the many choice
points which arise in planning. Such choice points can concern:

• ordering of subgoals

• selection of operators/control structures

• resolution of conflicts/threats by different techniques

• choosing between differing commitment strategies

• selecting/choosing the right control regime

In all of these cases, picking the right control knowledge can result in an algorithm
that is able to identify and prune many dead-end branches of the search space before
the algorithm explores them, ideally while preserving the soundness and completeness
of the planner. However, designing search control approaches is difficult and it is often
impossible to ensure various qualitative and quantitative properties of the “controlled
algorithms”.

The workshop brought together over 30 participants from Europe, America, Asia,
and Australia representing a large part of the planning community. The programme
consisted of invited survey talks, short presentations of participants, working group
sessions, and a general discussion about the empirical evaluation of planning systems.
We had invited talks on search control in deductive planning, structural categorization of
planning domains and problems, dynamic planning, and search problems and techniques
from operations research. The working groups addressed in detail the questions of
different search spaces, domain based features and domain analysis, and search control
in dynamic real time domains.

This report contains the abstracts of presentation and invited talks as well as a sum-
mary of the working group sessions.

Jim Hendler and Jana Koehler, November 1996
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Deductive vs. “Classical” Planning

or

How to Waste Research Efforts

by Wolfgang Bibel, Technical University Darmstadt, Germany (also affiliated with Uni-
versity of British Columbia).

So-called “classical” planning has largely ignored its natural ties with automated de-
duction (AD). Even a logic-oriented AI book as the one by Russell and Norvig (1994,
p. 342) sets planning apart of AD. This talk is a reminder of these close ties and points
out the potential benefits of such a joint approach.
As a logical basis we take Bibel’s linear connection method (1986), which is a practi-
cally important fragment (and in fact anticipator) of linear logic (1987). Therein we
demonstrate with three well-known concepts in classical planning (partially ordered
plans, causal links and protection) that they are just different names of well-known
concepts in AD (spanning matings, isolated connection reduction, irreversibility of re-
ductions). These concrete examples together with general theoretical knowledge show
that searching for plans is exactly the same as searching for proofs, even on a low level.
It is therefore waste of research efforts if the two communities develop their techniques
independently.
Finally, we give a short overview of the substantial body of research (documented in
numerous publications) which has been carried out mainly in Germany on deductive
planning with resource sensitive logics such as the linear connection method.

Search Control in Deductive Planning

by Susanne Biundo, German Research Center for Artificial Intelligence, Germany.

Deductive planning systems rely on an expressive logical representation formalism,
a proper formal semantics, and a calculus the rules of which are used to implement
the planner. Plans are generated by constructive proof of so-called plan specification
formulae. In the simplest case, specification formulae describe the initial state and
the goal state and demand for the existence of a plan that transforms the one into
the other. Starting from a plan specification, a proof (tree) is developed by applying
logical inference rules in a backward-chaining manner, and by instantiating the plan
variable accordingly. We have introduced the modal temporal planning logic TPL, as
an example, and have demonstrated how deductive planning works in this context.
TPL is an expressive formalism that allows for the distinction of rigid and flexible
symbols and provides a programming language for plans, including control structures
like conditionals and loops. The search problems and solutions we have addressed are
concerned with the guidance of the theorem proving = planning process, the selection
of appropriate basic actions, and the selection of subgoals. Since a carefully designed
domain model is an essential prerequisite for acting safely and efficiently in this context,
the planning environment we have introduced provides deductive support in setting up
provably consistent domain models.
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Constraint-Based Planning Architectures

by Amedeo Cesta, IP-CNR, Rome, Italy.

The general context for our research is the design of integrated planning and scheduling
architectures for constraint-based activity management. A number of aspects useful
to improve the applicability of such architectures have been addressed. One aspect is
connected with the involvement of users in actively exploiting such systems. Relevant
problems are: the definition of a domain representation language powerful enough to
represent the physical constraints of a domain, and endowed with clear semantics as a
basis for automated verification tools; the investigation of various aspects of the inter-
action with the user like the ”cognitive intelligibility” of the plan representation and
the planning process. A second aspect consists in the study of specialized classes of
constraint propagation techniques: interesting results on the efficiency and flexibility
of manipulating quantitative temporal networks have been obtained through the syn-
thesis of dynamic algorithms for constraint posting and retraction; also the problem of
mixed resource and time constraints representation has been studied and some tech-
niques proposed for the synthesis of implicit temporal constraints from the analysis of
resource representation. A further aspect consists in the integration of the incremental
constructive way of building a solution with local search techniques: in particular a
taboo search algorithm has been proposed that take advantage of the given temporal
representation to solve planning problems requiring multiple resources.
Joint work with Angelo Oddi and Cristiano Stella.

Propositional STRIPS Planning as the Semantic and Computational

Foundations for AI Planning

by Tom Dean, Brown University, USA.

I believe that the propositional STRIPS planning problem (or a suitable generaliza-
tion thereof that allows for slightly more representational freedom) constitutes a very
important object of inquiry for AI. I am not advocating STRIPS as the sole object of
study for AI planning; however, I think that it deserves considerable attention given
that it captures the one particularly important aspect of AI planning problems: the
dynamics can be represented using poly log n space even though all n states are reach-
able from the initial state. AI has from the earliest been interested in how a small set
of rules can be used to represent very complex interactions. We know a little about
the asymptotic worst-case complexity of STRIPS and its variants, but there is still a
great deal that we don’t know. In particular, we know little about approximations
and even less about expected performance measures. It is too bad that STRIPS is
not currently as compelling as say TSP. However, I would claim that it is every bit
as interesting from a mathematical standpoint as TSP and I believe that compelling
applications will emerge as practitioners become more knowledgeable about planning
technology and this technology matures.
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Dynamic Planning: A cause or solution to problems in planning search

control?

by Edmund H. Durfee, University of Michigan, USA.

Plans need to be executed by real systems, operating in real worlds. The world won’t
wait while the system decides what to do, and the system might have only limited
computational and sensory resources to make its decisions. The goal of planning,
therefore, is to generate a plan specification that when executed works fast enough
within the limited resources to avoid undesirable states and accomplish desired goals.
But such plans might not exist! To deal with this case, the planner needs to eliminate
some demands - which means that the system might be unprepared for some situations.
Dynamic planning is the solution to this problem: when ”out of its depth” the system
can rely on the planner to plan a way out of the difficulty. Of course, this means that
the system has to be watching out for situations that it is unprepared for (it must
”expect the unexpected”), and be able to replan fast enough to preempt catastrophic
consequences of being outside of the range of states for which the system is prepared.
This means that dynamic planning is the cause of the need for controlling search, since
planning cannot take too long. Fortunately, the planner might use the same models
of the domain for planning its replanning actions as for planning the actions in the
world, and therefore can determine the timing needs of replanning. This ability allows
it to plan for dynamic planning that is fast enough to assure some level of desired
performance.

The Search Control, the Holy Grail of Planning?

by Brian Drabble, University of Edinburgh, United Kingdom.

Intelligent planning systems are now being applied to ever more challenging real world
problems and tasks. However, as the complexity of the problem domain increases so
does the need to embed more planning knowledge in the system. Without knowledge
to guide the planning system in its choice of “what to do next” and in pruning invalid
branches in the search space the size of the problem becomes intractable. While some
people may view this as “cheating” it is an essential element in any practical planning
solution.
The O-Plan project has pioneered a number of search control techniques which aim
to prune the search space or provide guidance on which issue to address next. These
techniques include:

1. Typed Preconditions: which encodes the user’s intention on the ways in which a
precondition should be satisfied.

2. Branch1/BranchN: which provides a measure of the impact on the search space
at the next level (Branch1) and at the most primitive level (BranchN).

3. Issue Dependencies: which provides an explicit triggering language to allow issue
to be released for processing at the most opportune time.
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As planning problems increase in size and complexity the need for further and more
expressive representation techniques will increase. The challenge to AI planning re-
searchers is to develop these expressive representation while at the same time main-
taining the search contol power needed to solve challenging real world problems.

Memory-limited Search and a Workbench for Heuristic Search

by Jürgen Eckerle, Albert Ludwigs University Freiburg, Germany.

State space search has a wide range of applications, often only restricted by space and
time constraints. Especially best-first search is a useful search paradigm in the area
of heuristic search. Classical best-first search like the well-known AΛ, however, has a
space requirement which grows exponentially with search depth since each generated
node is stored. For that reason several best-first search algorithms have been developed
in the recent years which are admissible under space limitations.
One method for efficient usage of memory is provided by our algorithm DBIDAΛ (dy-
namic balanced IDAΛ) which on the one hand makes detecting duplicates more worth-
while than in former approaches and on the other hand reduces the cost for updating
the data structure. The additional overhead cost per node expansion (compared with
IDAΛ) amortized over a sequence of expansions is quite small. This is achieved by com-
bining breadth-first and depth-first search with strategies for balancing the explicitly
stored subpart of the search tree.
Results explaining the tradeoff between space and time complexity are useful. For a
general model of best-first state space search including e.g. IDAΛ, ITS, SMAΛ, DBIDAΛ

etc. we can prove a lower bound for the time complexity of space-limited search. This
lower bound is sharp in case of duplicate free search trees. We prove that the product
of space and time (measured in the number of node expansions) is of order Ω(n2) in
the worst-case where n is the number of states in the problem graph.
Furthermore, we present our program environment called HSF a general workbench
for solving state space problems based on heuristic search. HSF allows both a fair
comparison of different search algorithms under common conditions as well as rapid
prototyping of new algorithms. The environment has been successfully used for a prac-
tical course in heuristic search in which two-person teams implemented and visualized
one selected puzzle.

Agent-based HTN Planning

by Kutluhan Erol, Intelligent Automation Inc., USA.

This work is focused on studying and evaluating a planning architecture that can
incorporate expertise and data from a variety of sources. It will support planning
and execution simultaneously, recover from failures and exploit opportunities, and
also support on-line job requests from multiple users. Our proposed architecture is
based on autonomous agents, and it employs hierarchical task network (HTN) planning
techniques for handling the interactions and resolving the conflicts among the agents.
HTN techniques have provided a significant improvement over the traditional state-
based techniques by focusing on jobs (referred to as tasks in the HTN terminology)
and on the interactions among them.

7



It will combine the advantages of domain-specific planning by capturing specialized
expertise in the agents (which will be the task experts) and the advantages of domain-
independent planning by providing an architecture that can be easily implemented,
incrementally modified, and adapted to the changing conditions. Wherever the machine
intelligence does not suffice, human operators can be integrated to the architecture as
agents, interacting through computer terminals.

Reactive Action Plans for Task Execution

by R. James Firby, University of Chicago, USA.

I am interested in building intelligent agents to act in everyday environments. To cope
with the complexity of such domains, the agent typically needs to plan at an abstract
level, neglecting many of the details involved in actually interacting with the world.
However, this leaves the agent with the problem of executing plans that do not contain
actions that can be directly executed in the world. My Reactive Action Plan (RAP)
system for task execution is a model for how that process might take place. Planned
tasks are expanded at run time using a hierarchical library of task methods that include
mechanisms for synchronizing actions with continuous control processes, interpreting
sensor and action results in context, monitoring task progress, and retrying actions that
do not succeed in achieving their goals. In addition, the RAP language is specifically
designed so that RAP methods can be treated as abstract planning operators. The
RAP system has been used for task execution in a variety of soft real-time systems
including on our robot at the University of Chicago. For the robot, the RAP system
has been tightly integrated with a modular, reconfigurable vision and control system.

Planning in Uncertain Worlds

by Michael Georgeff, Australian Institute for AI (AIAI), Australia.

In today’s technological world, computers are increasingly finding application in com-
plex process control, business management, provision of customer service, medical
treatment, telecommunications, and so on. These systems often need to carry out
quite complex tasks, over some period of time, in a world subject to change and un-
certainty. The very scale of the application often prevents complete specification, and
even if this could be accomplished, the business and social drivers usually demand
changes to the specifications even before the first implementation is rolled out. In the
world in which we live, chaos, uncertainty, and change are the norm, not the exception.
Despite this, most designers of complex realtime systems continue to apply software
technologies and methodologies that were constructed for static, certain, and definable
worlds. This invariably leads to huge time and cost overruns, dramatic system fail-
ures, and relentless pressure on IT providers to accommodate change and ill-specified
functionality.
Our research focus is on these types of application: dynamic, uncertain, and complex.
We aim to investigate and design software architectures suited to such applications
and to develop methodologies that allow the construction of systems that can survive
uncertainty and change.
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To this end, we have been conducting research and development on agent-oriented
systems (also commonly known as software agents) for over ten years. Agent-oriented
technology is a fundamentally new paradigm for building computer systems that we
believe will come to dominate the area of distributed realtime systems.
An agent-oriented system consists of a collection of autonomous software agents (pos-
sibly a very large number), each of which responds to events generated by other agents
and by the environment in which the agents are situated. Each agent continuously
receives perceptual input and, based on its internal state, responds to the environment
by taking certain actions that, in turn, affect the environment.
Our theoretical research has examined the logical foundations of agent architectures
(such as the mental attitudes of beliefs, desires, goals, intentions, plans, commitments,
and obligations) and the processes that operate on these mental attitudes (such as de-
liberation, means-end reasoning, and reconsideration). Using a possible worlds frame-
work, we have formalized various mental attitudes and the processes that operate on
them.
We are also building tools to assist the design, development, and deployment of soft-
ware agents. We have developed agent-oriented systems such as dMARS, a C++ based
software development environment for building and testing software agents. The sys-
tem development effort has been supported by research into areas that bridge the gap
between theory and application, such as abstract architectures for building software
agents and agent-oriented languages.
We have also worked closely with end-users to produce a range of large-scale agent-
oriented applications in areas such as air traffic management, business process man-
agement, and air-combat modelling. Many of these applications are fully operational
systems, and provide important feedback for the further development of dMARS and
raised important questions for foundational research.

Accelerating Partial-Order Planners: Some Techniques for Effective

Search Control and Pruning

by Alfonso Gerevini, University of Brescia, Italy.

We are concerned with improving the performance of “well-founded” domain-independent
planners – planners that permit proofs of soundness, completeness, or other desirable
theoretical properties. Recently, we have proposed some domain-independent tech-
niques for accelerating partial-order planners. The first two techniques are aimed at
improving search control while keeping overhead costs low. One is based on a simple
adjustment to the default A* heuristic used by ucpop to select plans for refinement.
The other is based on preferring “zero commitment” (forced) plan refinements when-
ever possible, and using LIFO prioritization otherwise.
A more radical technique is the use of operator parameter domains to prune search.
These domains are initially computed from the definitions of the operators and the
initial and goal conditions, using a polynomial-time algorithm that propagates sets
of constants through the operator graph, starting in the initial conditions. During
planning, parameter domains can be used to prune nonviable operator instances and
to remove spurious clobbering threats. While we applied this technique in the context
of partial-order planning, it could also be applied to other planning frameworks.
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In experiments based on modifications of ucpop, our improved plan and goal selection
strategies gave speedups by factors ranging from 5 to more than 1000 for a variety
of problems that are nontrivial for the unmodified version. Crucially, the hardest
problems gave the greatest improvements. The pruning technique based on parameter
domains often gave speedups by one order of magnitude or more for difficult problems,
both with the default ucpop search strategy and with our improved strategy. The
Lisp code for our techniques is available from the authors or as an on-line appendice
of a paper recently published in JAIR vol 5, 1996.
This is joint work with Len Schubert (University of Rochester, USA).

Planning for Autonomous Mobile Robots

by Malik Ghallab, LAAS-CNRS Toulouse, France.

Planning is reasoning on actions, of different kinds and at different levels. The au-
tonomous robot domain, as explored by the Robotics and AI group at LAAS-CNRS,
offers a rich paradigm for investigating and experimenting with planning problems in
dynamic worlds. Particular actions such as those involving the management of sen-
sors and actuators have been modeled with their specific characteristics, e.g. uncertain,
imprecise and non-deterministic effects, geometrical or kinematic constraints. Specific
planners have been developed and integrated within robots; they take into account
complex planning operators, e.g. closed-loop motion control with sensor feedback, re-
lying on domain specific as well as on more general planning techniques. A domain
independent planner, called IxTeT, relies on these specific planners and the PRS-based
reactive level. IxTeT handles explicitly time and events expected in a dynamic world.
A flexible architecture, now on board on 4 different robots developed by the group,
eases the integration and offers a high level of robustness, through standardization and
formal specification and code generation of modules. The functional level of this ar-
chitecture is composed of specific planners as well as of low level control modules; the
supervision level in charge of the real-time decision making is the PRS-based execution
monitoring and reacting system; it controls the IxTeT planning level.
Several open problems that arise for planning in such a domain are actively being
worked on by the group. Among these, the relationship between the planners and
the reactive procedures (today hand-coded) need to be better understood and made
more flexible. A decision theoretic planner (today restricted to perception planning
and decoupled from the task planner) would handle the uncertainty in the domain
knowledge; it arises the issue of consistent heterogeneous planning.

On Executing Discrete POMDP Plans

by Joachim Hertzberg, GMD Sankt Augustin, Germany.

Assume that a plan is to be executed in the presence of uncertainty in the sensor in-
formation and in the action control and that the execution is required to pass through
certain given situations of the environment. We discuss invariant properties that plan
execution under these assumptions should obey. For discrete Partially Observable
Markov Decision Problems (POMDPs) as the formal framework underlying plan exe-
cution, our approach provides a plan execution monitoring algorithm, which is derived
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from a path following monitor of a mobile robot. This algorithm is then shown to fulfill
the required properties of plan execution.

The Design and Implementation of a Derivational Replay Framework with

Learning from Case Failure

by Laurie H. Ihrig and Subbarao Kambhampati, Arizona State University, USA.

Case-Based Planning (CBP) provides a way of scaling up domain-independent planning
to solve complex problems in realistic domains. It replaces the detailed and lengthy
search for a solution to a large problem with the retrieval and adaptation of previous
planning experiences. In general, CBP has been demonstrated to improve performance
over generative (from-scratch) planning. However, the performance improvements it
provides are dependent on adequate judgements as to problem similarity. In particular,
although CBP may substantially reduce planning effort overall, it is subject to a mis-
retrieval problem. The success of CBP depends on these retrieval errors being relatively
rare.
DerSNLP (Derivational Systematic NonLinear Planner) is a case-based planner which
performs eager derivation replay. DerSNLP extends current CBP methodology by
treating case failure as a learning opportunity. It incorporates explanation-based learn-
ing techniques that allow it to explain and learn from the retrieval failures it encounters.
These techniques are used to refine judgements about problem similarity in response
to feedback when a wrong decision has been made. The same failure analysis is also
used in building the case library, through the addition of repairing cases. An empirical
evaluation of this approach demonstrates the advantage of learning from case failure.

Improving the Learning Efficiencies of Realtime Search

by Toru Ishida, Kyoto University, Japan.

The capability of learning is one of the salient features of realtime search algorithms
such as LRTA*. The major impediment is, however, the instability of the solution
quality during convergence:

1. they try to find all optimal solutions even after obtaining fairly good solutions,
and

2. they tend to move towards unexplored areas thus failing to balance exploration
and exploitation.

We propose and analyze two new realtime search algorithms to stabilize the convergence
process. Epsilon-search (weighted realtime search) allows suboptimal solutions with
epsilon error to reduce the total amount of learning performed. Delta-search (realtime
search with upper bounds) utilizes the upper bounds of estimated costs, which become
available after the problem is solved once. Guided by the upper bounds, delta-search
can better control the tradeoff between exploration and exploitation.
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Efficient Planning by Graph Rewriting

by Craig A. Knoblock, University of Southern California, USA.

Planning involves the generation of a network of actions that achieves a desired goal
given an initial state of the world. There has been significant progress in the analysis
of planning algorithms, particularly in partial-order and in hierarchical task network
(HTN) planning. In this abstract we propose a more general framework in which
planning is seen as a graph rewriting process. This approach subsumes previous work
and offers new opportunities for efficient planning.
A (partial) plan is a labelled graph whose nodes are actions and whose edges express
constraints (ordering, causal links, etc). In planning by graph rewriting we allow the
substitution of an arbitrary partial plan by another partial plan. This subsumes the
main transformations present in partial-order planners (adding a new node or linking
to a previous one for goal establishment, adding ordering edges for threat resolution),
and in HTN planners (substituting a non-primitive action by a partial plan). There
are several planning domains that can benefit from expressive plan transformations
(such as query access planning and machine-shop process planning). We expect that
hill-climbing from a (possibly suboptimal but easily constructed) initial plan using such
transformations will be efficient for many domains.
Joint work with Jose Luis Ambite.

Finding Optimal Solutions to Rubik’s Cube using Memory-Based

Heuristics

by Richard E. Korf, University of California at Los Angeles, USA.

We present the first optimal solutions to random instances of Rubik’s Cube, a prob-
lem with about 4 × 1019 states. The branching factor of the problem space is about
13.35, and the median optimal solution length is 18 moves. The heuristic search algo-
rithm used is Iterative-Deepening-AΛ (IDAΛ). Traditional heuristic functions, such as
3-dimensional manhattan distance, are not sufficient to optimally solve this problem
on current machines. The heuristic we employ is a large lookup table that contains the
number of moves required to solve just the corner cubies, from each possible position
and orientation, which is a lower bound on the number of moves required to solve the
entire puzzle. This table contains about 88 million entries, occupies 42 megabytes of
memory, and is easily constructed from a breadth-first search of the subspace contain-
ing just the corner cubies. A complete set of 10 random problem instances were solved
optimally. If N is the total number of states in a problem, M is the number of heuristic
values that can be stored in memory, and T is the number nodes generated by IDA*,
then we can show that T is approximately equal to N/M . This means that the running
time of the algorithm decreases linearly with the amount of available memory. In our
experiments with Rubik’s Cube, for example, N = 1019, M = 108, and T = 1011. As
computer memories get larger and cheaper, this algorithm will become increasingly
cost-effective.
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Combinatorial optimization and frequency assignment: an overview of

algorithmic approaches

by Jan Karel Lenstra, Eindhoven University of Technology/CWI, The Netherlands.

Frequency assignment problems occur when a network of radio links has to be estab-
lished. Each link has to be assigned an operating frequency from a set of available
frequencies. The assignment has to satisfy certain interference limiting restrictions de-
fined on pairs of links. Moreover, the number of frequencies used is to be minimized.
These problems have been investigated by a consortium consisting of research groups
from Delft, Eindhoven, London, Maastricht, Norwich, and Toulouse. The participants
developed optimization algorithms based on branch-and-cut and constraint satisfac-
tion, as well as approximation techniques such as simulated annealing, taboo search,
variable-depth search, genetic algorithms, and potential reduction methods. These
algorithms were tested and compared on a set of real-life instances.

Towards intelligent agents in production planning and adaptive scheduling

by Hans-Jakob Lüthi, ETH Zürich, Switzerland.

The paper describes the use of an agent framework within the context of a planning and
control system for an automated work cell. Because of the dynamic complexity of the
planning task, this system must be able to monitor itself, and to react as independently
as possible to changing external circumstances. In order to achieve this, the planning
task is distributed among a number of virtual intelligent agents. Each one of these
agents supports a clearly defined task, has its own problem-solving strategies, and
can request assistance from other agents. Simulation plays an important part in this
system. It is used by the agents to monitor their own solution strategies, and to assess
the future consequences of their decisions.

Controlling Means-Ends Analysis Search Using Regression-Match Graphs

by Drew McDermott, Yale University, USA.

The classical planning problem is to find a sequence of actions to achieve a goal from
an initial situation, given definitions of the actions in a STRIPS-style representation.
There are several search spaces one can use to solve such problems. One of the simplest
is the set of plan prefixes, or sequences of actions that the solver hopes to extend to
a complete solution. This space has not been attractive because of the lack of good
heuristic estimators of the distance to the nearest solution from a given plan prefix. One
promising idea is to build a regression-match graph in order to analyze the structure
of a problem. This is a graph whose nodes are ground literals, linked to actions that
might achieve them. The preconditions of each action are matched to the current
situation to obtain a set of difference literals that must be achieved by further actions,
and so forth. The estimated effort associated with a literal is 0 if the literal is currently
true; otherwise it is the sum of the estimated efforts for the difference literals of its
most promising action. For some problem classes, using the regression-match graph
transforms an exponential search into a polynomial one.

13



For other problems, the regression-match graph does not work so well, and the reason
often is that the graph gives an effort of 0 to literals that are currently true, even if
they are sure to be deleted soon. It looks, however, as if it ought to be possible to
predict using the graph which deletions are inevitable. In some simple cases things do
work out that way. It is a current research goal to see if the idea can be made to work
efficiently in a broader set of cases.

Island Planning and Refinement in Proof Planning

by Erica Melis, University Saarbrücken, Germany.

Proof planning is an alternative to classical theorem proving. Proof planning is classical
planning with no goal interaction. It faces search problems because of long solutions
and possibly infinite branching. Furthermore, plans that are comprehensible to the
user are required in particular in mixed-initiative proof planning.
For planning proofs by induction a specific meta-level control has been introduced. This
is not enough, however, and does not work for all kinds of proofs. Inspired by proof
planning examples, we use a planning framework that can employ multiple planning
strategies, such as forward/backward state-space and HTN-planning. In order to tackle
the search-space-problem and the structured-plan-problem, new planning strategies are
introduced and integrated into the general planning framework: island planning and
island refinement, as well as subproblem refinement.
The planning with multiple strategies has the additional choice point of selecting an ap-
propriate planning strategy. Some exemplary control knowledge for choosing strategies
is developed.
We think that planning for other realistic problems, even in a static and deterministic
environment and with complete information, can make use of our ideas.

AI Planning: Theory Versus Practice

by Dana S. Nau, University of Maryland, USA.

AI planning systems are finally reaching the point where they can provide useful so-
lutions to practical problems. Using Hierarchical Task Network (HTN) planning tech-
niques, we are developing a planning system that plays contract bridge better than the
best available commercial program, and a concurrent-engineering system for integrated
design and process planning of microwave transmit/receive modules.
We are using an atypical control strategy for HTN planning: rather than doing goal-
directed partial-order planning, we instead do total-order planning using a depth-first
left-to-right search. We have found this approach preferable for two reasons:

• Several of the domain assumptions that might lead one to prefer goal-directed
search and partial-order planning are inapplicable in our planning domains (and
we suspect they are inapplicable in many other practical planning domains).

• With our approach, the planner knows the input state of each step of the plan.
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This makes it possible to do complex numerical and probabilistic computations, and to
interact with external information sources – both of which are necessary for planning
in our domains (and many other practical domains).

Solving Hard Qualitative Temporal Reasoning Problems by Using

Tractable Subclasses of Allen’s Interval Algebra

by Bernhard Nebel, Albert Ludwigs University Freiburg, Germany.

While the worst-case computational properties of Allen’s calculus for qualitative tempo-
ral reasoning have been analyzed quite extensively, the determination of the empirical
efficiency of algorithms for solving the consistency problem in this calculus has received
only little research attention. In this talk, we demonstrate that using the ORD-Horn
class in Ladkin and Reinefeld’s backtracking algorithm leads to performance improve-
ments when deciding consistency of hard instances in Allen’s calculus. For this pur-
pose, we identify phase transition regions of the reasoning problem, and compare the
improvements of ORD-Horn with other heuristic methods when applied to instances in
the phase transition region. Further, we give evidence that combining search methods
orthogonally can dramatically improve the performance of the backtracking algorithm.
While these result probably do not have immediate consequences for planning, they
raise the questions whether similar phenomena are observable in planning problems. In
particular, it would be interesting to find a phase transition region for planning and to
try to apply tractability results for planning in order to speed up planning algorithms.

SATPLAN — Pushing the Envelope: Planning, Propositional Logic, and

Stochastic Search

by Bart Selman, AT&T Laboratories, USA.

Planning is a notoriously hard combinatorial search problem. In many interesting do-
mains, current planning algorithms fail to scale up gracefully. By combining a general,
stochastic search algorithm and appropriate problem encodings based on propositional
logic, we are able to solve hard planning problems many times faster than the best
current planning systems. Although stochastic methods have been shown to be very
effective on a wide range of scheduling problems, this is the first demonstration of its
power on truly challenging classical planning instances. This work also provides a new
perspective on representational issues in planning.
Joint work with Henry Kautz.

Deductive Planning in Real World Applications

by Werner Stephan, German Research Center for Artificial Intelligence, Germany.

In Deductive Planning, planning problems are considered as deduction problems and
are solved by using some theorem prover to construct a correctness proof and the plan
itself hand in hand.
During the last years, we have developed the formal and technical basis for applying this
approach to real world situations, thereby exploiting similiarities with formal software
construction, among others.
Formalisms which we have used in this context are (special variants of) Dynamic Logic
and Temporal Logic. Recent work includes:

15



• the development of basic techniques for axiomatizing planning domains,

• the formalization of strategies for plan generation (special refinement strategies,
for example), and

• the development of mechanisms for structuring (the axiomatization of) planning
domains.

For the actual process of proof generation (= plan generation) we follow the paradigm
of Tactical Theorem Proving. This allows for structuring proofs in way such that
(macro-) steps correspond to meaningful manipulations in the underlying scenario.
Current work is concerned with the formalization and implementation of (generic)
search strategies used in conventional (non-deductive) planners. Bridging this gap
would allow for a combination of efficient search techniques with the advantages of
Deductive Planning.

Reactive Planning: Failure, Sensing and Planning Actions

by Paolo Traverso, IRST, Italy.

I am interested in systems which are able to execute and to construct plans of actions
which may fail, actions that acquire information from the real world, and actions that
generate and execute plans of actions. These planning systems must take into account
the fact that, as it happens in real systems, actions may fail, and must provide the
ability of reasoning about failure handling in acting, sensing and planning. A long term
goal of my research is to provide a formal account of systems which are able to plan to
act, plan to sense and plan to plan, and therefore, to integrate action, perception and
reasoning. Some recent developments of this research has lead to the construction of
a “Model Based Planner”, i.e. a planner where goals, systems and plans are described
as state transition graphs. This allows for the application of efficient techniques of
planning search.
Joint work with Alessandro Cimatti, Enrico Giunchiglia, Fausto Giunchiglia, and Luca
Spalazzi.

Control of AI Search in Planning Through Reuse of Experience

by Manuela Veloso, Carnegie Mellon University, USA.

For several years now, we have developed several methods to acquire control knowl-
edge for AI planning through learning from experience. The Prodigy planner has a
well-defined decision cycle which is open to be controlled by invocation of any guid-
ance. In particular, we have pursued the use of derivational replay of one or multiple
past planning episodes to reduce the search in complex planning problems. Recently,
we applied the strategy of derivational replay to a realistic route planning problem
using the real map of Pittsburgh. Planning cases are indexed and retrieved based on
geometric and symbolic features, e.g. time of day, relative location, user preferences.
Derivational replay has been also combined with conditional planning. Planning effort
is shared among different conditional branches; extra steps are added if needed, as well
as unnecessary steps are identified and deleted. The similarity between conditional
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branches makes the derivational replay produce considerable savings in search in plan-
ning. We recently have started research on planning and real execution. We combined
Prodigy with a robotic platform Xavier. The integrated architecture, Rogue, controls
the planning for asynchronous user requests and monitors their execution with the goal
of learning to improve planning from execution experience. Finally, we are also pursu-
ing the development of layered learning and planning in a multiagent system, such as
robotic soccer. We have used a simulator and a real robotic framework to study issues
of collaborative and adversarial planning in robotic soccer.

Multiagent Planning Architecture

by David E. Wilkins, SRI International, USA.

The objective of our Multiagent Planning Architecture project is to develop a new
architecture for large, sophisticated planning problems that require the coordinated
efforts of diverse, geographically distributed human and computer experts. We have
defined a Multiagent Planning Architecture (MPA) that will facilitate incorporation
of new tools and capabilities as they become available, and exploration of new ways
of reconfiguring, reimplementing, and adding new capabilities to the planning system.
In particular, this project will explore novel strategies for integrating planning and
scheduling.
MPA is a layered, agent-based architecture that groups planning agents (PAs) and
meta-PAs into Planning Cells. We will build upon the diverse range of planning ca-
pabilities already developed under the DARPA-Rome Laboratory Planning Initiative
(ARPI), drawing from the JTF-ATD architecture while extending its capabilities for
planning.
MPA will provide wrappers and agent libraries (in both C and Lisp) to facilitate the
construction of agents from legacy systems. PRS-CL, a reactive execution system
originally developed for NASA, provides the technology for our most sophisticated
agent wrappers. PAs will be defined for several classes of ARPI technology, and will
communicate using the common plan representation and the agent communication
languages already being developed by other ARPI projects.
MPA provides specifications of the messages to be sent between agents. Thus, all
PAs of a common class would outwardly be the same, except for differences in the
range of generic services provided; inwardly they would employ application-specific
data structures and techniques.
In addition, we will ”program” a community of agents in MPA that will apply new
technologies to air campaign planning. In particular, we will decompose an ARPI plan-
ning technology and an ARPI scheduling technology, so that each technology becomes
a set of PAs. This decomposition will allow previously distinct ARPI technologies to
be more tightly and flexibly integrated, and allow other technologies to replace some
of the PAs in a modular fashion. We will use meta-PAs to define different control
strategies among the PAs.
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WORKING GROUPS

Working Group 1: Different Search Spaces

This working group included Wolfgang Bibel,Tom Dean, Drew McDermott, Alfonso
Gerevini, Jim Hendler, Laurie Ihrig, Craig Knoblock, Richard Korf, Erica Melis, Bart
Selman, Werner Stephan, Manuela Veloso.
The challenge for this working group was to identify a unifying framework in which we
can compare the various planning approachs and their corresponding search spaces.
Some of the existing approaches and systems include:

• Forward and backward search

• Total-order planners (e.g., Strips, Prodigy)

• Partial-order planners (e.g., UCPOP, Tweak)

• Deductive planners

• Graphplan & SATplan

• Abstraction planning

• Case-based planning

Initial Framework
We started with the obvious approach and attempted to characterize all of these ap-
proaches in terms of the space they search. Thus, we attempted to describe each
approach in terms of the nodes and transitions between the nodes that define the
space.

• Forward and Backward Search – This is often what people refer to as state space
search. The nodes are a description of the situation or world state and the
transitions are the actions that transform one state into another.

• Total-order Planners – This includes planners such as Prodigy and Strips, which
use a means-ends analysis search. For these planners the nodes consist of a partial
initial plan along with a goal stack or goal set and the transitions are either an
operator application or a subgoal.

• Partial-order Planners – This includes planners such as UCPOP and Tweak,
which are planners that search through a space of partially-ordered plans. The
simple characterization of this space is to view the nodes as partial plans and
the transitions as commitments (either ordering constraints or new steps) to the
plan. The more accurate characterization is that the nodes describe possible
completions and the transitions are restrictions on the completions. The differ-
ence is that there may be additional data structures and refinements that are not
captured by the simple characterization.

• Deductive Planners – After some discussion, we concluded that the search space
of the deductive planners is equivalent to the partial-order planners. The nodes
are possible completions and the transitions are restrictions on the completions.
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• Graphplan & SATplan – These are planners that on the face of it are searching
a very different space. However, as noted previously by Rao Kambhampati, one
way to view these systems is that they provide a approach to representing a
disjunction of partial plans. Thus, the nodes in the space are disjunctive partial
plans and the transition are restrictions on the completions of these plans.

One limitation of this framework is that it does not capture the preprocessing that
many systems perform before actually searching one of these spaces. For example, in
the case of Graphplan, a key to its efficient search is to propagate mutual exclusion
constraints in order to reduce the size of the search space. Similarly, abstraction
or problem reformulation systems first search in the space of problem reformulations
before they attempt to actually search the ground space.

Key Research Issues
The working group spent some time discussing what we thought were some of the
important research topics that future work should focus on:

• How to control search?
- avoid redundancy
- generate evaluation functions

• How to represent problems?
- problem space
- space that is searched

• How to produce high quality plans?

• How to put planning into scheduling?

• How to combine search techniques? e.g., HTN and abstraction planning

• How to compare different approaches?

• Is there a mathematical generalization of the STRIPS representation to cover
more practical problems?

Interesting Questions
We discussed a great many topics and not all of them can be discribed in a coherent
story, so I have compiled a few of what I think are the more interesting points that
were raised at some point in the dicussion.

• What are the tradeoffs in different languages?
- speed
- expressability
- ease of use

• Is it more efficient to search the plan space or the state space?
- may be easier to express search heuristics in one formalism
- state space planners may be forced to commit early

• How can STRIPS-style operators be used to represent numerical computations?
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• How can we express knowledge in terms of a set of rules that describes a complex
space?
One of the useful features of the STRIPS-formalism is that it can be used to
represent an exponential space in a compact form.

• Case-based planning can be viewed a a form of change in the search space.
There is an adaptation space instead of search space. There is also a space-time
tradeoff between memory and time.

• How many cases do you need for case-based reasoning to cover a space?

Working Group 2: Search Control in Dynamic Real Time Domains

The working group discussion has been organized along the following main steps:

1. a characterization of the domain, the environment and the system specifications
where dynamic real time search control is needed,

2. a characterization of the main issues that systems planning in such domains
should address and of the main kind of functions, properties and solutions they
should provide,

3. a list of open research problems, possibly with a practical research guideline and
plan for the short or long-term future.

Domain – environment – system characteristics
Some of the problems that planners in dynamic domains have to address are the fol-
lowing: timing requirements, uncertain-imprecise-incomplete information about the
world, change of goals to be achieved and of data/information/facts available from the
external environment. Moreover, planning systems have usually to satisfy a complex
set of domain dependent requirements, e.g. the ability to recover from failures and
unexpected situations, robustness and reliability, safety and liveness requirements.

Issues, tasks, and key factors
In a planning system for real time dynamic domains there are two main kinds of
different planning/search activities:

1. Planning for dynamic domains: this corresponds to the (off-line) search for con-
structing a reliable/robust/safe plan which can drive the system during execution.

2. Planning in dynamic domains: this corresponds to the search activities which
have to be performed during plan execution in order to achieve goals and meet
requirements.

An analysis of the difference between planning for and in dynamic domains cannot
be conducted independently of the fact that systems working in real time domains
have to deal not only with search, but also with execution. The main problem is not
only a problem of search control, it is also a problem execution control. These two
kinds of main activities are strictly related and cannot be dealt with in a completely
separate way. According to this perspective, the input parameters to the construction
of a system executing and planning for/in dynamic domains are the following:
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1. plan time vs. action time

2. plan time vs. perception time

3. plan time vs. change rate

4. variability of 1.-3.

5. costs/rewards

What is actually available to the planner is a set of low level behaviors (programs,
automata,..) which control low level actions and sensor readings. These behaviors have
to be matched by the planner w.r.t. the goals to be achieved and the current context the
system is working in. There are different planning approaches one can undertake: (1)
synthesize universal automata (off-line), (2) synthesize specific automata, (3) synthesize
abstract plan based on the set of available behaviours.
In (2) and (3), at any decision point, the planner must decide whether to act or to
(re)plan. More in detail, at each decision point, the planner has to decide whether to
continue the current plan, sense to improve the state model, or retrieve or synthesize
another plan/automaton.
One of the key issues is how to decide for one of the different behaviors above. In
this decision, some key factors are the quality of the plan w.r.t. robustness, optimal-
ity, action cost, the time cost vs. quality, and the plan context, i.e. its effects on the
time/quality curve. In certain cases, depending on time constraints, a search mech-
anism which is not optimal but fast enough, might be better than optimal planners.
Depending on the application, the trade off between optimality (quality) of plans and
time cost is a crucial factor.

Open research problems

Get Empirical!
A main short term goal is to provide a set of benchmark problems which can be used to
evaluate dynamic planners. Some of those proposed by the working group are the fol-
lowing: Autoline, AARIA, Truckworld, ACM flight simulator, robot simulator, Forest
Fire Fighting Simulator, Civilization, Air campaign simulator, Robocup in Football.
A longer term goal is to find a set of abstract and artificial domains. The benchmarks
should take into account both search and execution. One of the main issues here is to
find out a set of evaluation criteria and metrics for the evaluation of planners.

Search + Execution control.
A key issue is to study the interaction between plans and reactive procedures and the
problem of the control of the interactive loop between the planner and the executor.

Heterogeneous planning and representation.
Planning in a dynamic domain needs the integration of different, heterogeneous plan-
ning mechanisms and representations.

Pixels to predicates: an intermediate level.
A key problem is to find a proper intermediate representation level from the data
structures manipulated by the low level sensor and actuator controllers and the higher
level data structures needed for controlling planning search.
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Robustness, stability, perpetual.
Several potential application areas of planners for dynamic domains require to deal
with the problem of guaranteeing a robust and stable behaviour.

Building user confidence.
The industrial take up of planning in dynamic domains is strongly dependent on the
capability to provide a degree of confidence to end-users that the planner will behave
safely and satisfactorily under unespected events and situations.

Designing planning that anticipate dynamic replanning.

Working Group 3: Domain based features and domain analysis

The members of the group included Brian Drabble, Amedeo Cesta, Yannis Dimopoulos,
Susanne Biundo, Dana Nau, and Jana Koehler. Our group produced two things: a set
of observations, and a list of open problems. In both of these, we only included things
that the entire group agreed on—we even discussed the wording of our conclusions to
make sure everyone agreed.

Observations
The knowledge acquisition problem is different for different planning representations.
This hasn’t been generally recognized, because of the limitations of STRIPS operators—
STRIPS operators lead people to believe that it is easy to represent planning domains,
and encourage people to make idealized assumptions that lead to shallow representa-
tions.
If it could be done correctly, it would be useful to have a basic planning ontology, whose
basic building blocks can be used to build any representation of plans. In other words,
this would be an ontolingua for planning analogous to KIF, the Knowledge Interchange
Format. However, developing this will be very difficult, because for planning, we need
to select a good representation for computation. One question is how to represent
control knowledge for a domain—control knowledge depends not only on the domain
but also on the planning algorithm.
In developing such an ontolingua, it will be difficult to avoid being

1. too problem-dependent to be general,

2. general but too vague to be useful.

One possible approach might be to have representation formalisms that can be re-
fined depending on what representational details are needed—a library of different
representation techniques, and ways to combine them together in a way that insures a
well-founded semantics—along with information about how this will affect the represen-
tational power and the complexity of planning, and the completeness fo the algorithm.
Here are several other points to keep in mind in carrying out such an effort:

1. It would be a very good idea to look at standardization efforts in other fields.

2. Three kinds of planning knowledge: problem specific, domain specific, and do-
main independent. In order to make planning systems easy to use and maintain,
we need to be clear about which is which. Part of why SNLP became popular
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was because it was so easy to understand: it has a small easy-to-describe domain-
independent strategy, and an easy-to-describe operator syntax. Other planners
that were more complicated to describe have not been as widely accepted, partly
because they were difficult to describe.

3. It is desirable to have a way to encode integrity constraints into the domain
representation. This can be quite useful for debugging purposes.

4. In most planners, is relatively easy to modify the planner to generate not only
the plan but also the tactical information it used to develop the plan. This
information, if generated, can be helpful for replanning.

Open Problems

1. Is there a way to automatically generate pruning strategies by analyzing the
planning domain?

2. How to judge adequacy of a representation?

3. How to measure and describe domain complexity?

4. Does there exist a representation that is more expressive than STRIPS, and easier
to use (for finding adequate representations) than O-Plan and temporal logic?

For problem 4, we discussed the trade-off between representational power and compu-
tational efficiency of the planning algorithms. We agreed that different representation
formalisms can be ranked in a partial order w.r.t. their representational power, with
STRIPS being rather weakly expressive and O-PLAN and temporal logic being very
expressive. The computational efficiency of STRIPS planning algorithms was rated
rather low, while O-PLAN is rather highly efficient since a lot of control information
can be incoded in the representation.
Another trade-off exists between representational power and the ease of finding an
adequate representation of a domain. Here, none of the three representation techniques
can be considered as making it easy to come up with a really adequate representation
of a domain.
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