Dagstuhl Seminar 97041:

High-Level Concurrent Languages

Date January, 20-22, 1997

Organizers Kohei Honda, University of Edinburgh
Martin Odersky, Universitat Karlsruhe
Benjamin Pierce, Indiana University
Gert Smolka, Universitat des Saarlandes and DFKI
Phil Wadler, Bell Labs, Lucent Technologies

Initiative and Local Martin Miiller, Universitiat des Saarlandes
Organisation Joachim Niehren, Universitat des Saarlandes

Computer systems are undergoing a revolution. Twenty years ago, they were
centralized, isolated, and expensive. Today, they are parallel, distributed, net-
worked, and inexpensive. However, advances in software construction have failed
to keep pace with advances in hardware. To a large extent, this is a consequence
of the fact that current programming languages were conceived for sequential and
centralized programming.

Challenged by this state of affairs, a number of concurrent programming lan-
guages have been designed. These include Erlang, concurrent versions of ML or
Haskell, and languages explicitly designed for concurrency such as Obliq, Oz, or
Pict. The motivations behind the design of these languages are rather diverse,
ranging from constraint programming, the development of graphical user inter-
faces, and multi-agent systems, to real-time and distributed programming.

Programming models should be simple, practical, high-level, and well-founded.
This enables rigorous language specifications and opens the possibility for formal
reasoning about programs. In the last decade considerable progress has been made
in the development of sequential programming models, notably the functional
and logic ones. In contrast, the methodology and formal machinery for designing
models for concurrent programming is still underdeveloped. Since the late 1980’s,
however, it is rapidly evolving.

There have been three main lines of research, based on Hewitt’s actor model,
process calculi in the tradition of Hoare’s CSP and Milner’s CCS, and logic pro-
gramming. The actor model captures Hewitt’s early vision of concurrency as the
most general form of computation and has been developed into various actor lan-
guages. Hoare and Milner suggest a model of concurrency based on channel com-
munication. Different versions of concurrent constraint programming draw upon

ideas from concurrent and constraint logic programming, and integrate elements
from process calculi.

The three traditions have developed rather independently without much com-
munication or cooperation between groups, although there is urgent technical
need for such interaction. Furthermore, the combined know how of these groups
has reached a point which opens the possibility to make some fundamental
progress. The seminar is intended to bring together researchers involved in the
design, development, foundations, and applications of high-level concurrent pro-
gramming languages and models.

Participants

Joe Armstrong, Ericsson Computer Science Laboratory
Luca Cardelli, Digital Equipment Corporation

Mads Dam, Swedish Institute of Computer Science
Denys Duchier, Universitat des Saarlandes

Cédric Fournet, INRIA Rocquencourt

Robert H. Halstead Jr., Digital Equipment Corporation
Seif Haridi, Swedish Institute of Computer Science
Matthew Hennessy, Sussex University

Kohei Honda, University of Edinburg

Jean-Jacques Lévy, INRIA Rocquencourt

Ugo Montanari, University of Pisa

Martin Miiller, Universitat des Saarlandes

Joachim Niehren, Universitat des Saarlandes

Oscar Nierstrasz, University of Berne

Martin Odersky, Universitat Karlsruhe

Benjamin Pierce, Indiana University

Andreas Podelski, Max Planck Institut, Saarbriicken
Antonio Porto, DI-FCT/UNL, Lisbon

Didier Rémy, INRIA Rocquencourt

John Reppy, AT&T Bell Laboratories, New Jersey
Enno Scholz, Freie Universitat Berlin

Christian Schulte, Universitat des Saarlandes

Peter Sewell, Cambridge University

Gert Smolka, Universitat des Saarlandes

Kazunori Ueda, Waseda University

Peter Van Roy, Université catholique de Louvain
Vasco T. Vasconcelos, University of Lisbon

Philip Wadler, Bell Labs, Lucent Technologies
Nobuko Yoshida, University of Edinburgh

Table of Abstracts

Higher Order Processes in Erlang

Joe Armstrong, Ericsson Computer Science Laboratory

The Oblig Model of Distributed Computation & Mobile Ambients
Luca Cardelli, Digital Equipment Corporation, Systems Research Center

Verification of Erlang Programs

Mads Dam, Swedish Institute of Computer Science

A Calculus of Mobile Agents
Cédric Fournet, INRIA Rocquencourt

Scheduling Issues in Parallel Programming

Robert H. Halstead, Jr., Digital Equipment Corporation, Cambridge Re-
search Lab

A Fully Abstract Denotational Model for a subset of Facile

Matthew Hennessy, Sussex University

Games as Behavioural Types

Kohei Honda, University of Edinburg

Computing with Tiles

Ugo Montanari, Dipartimento di Informatica, University of Pisa

Typed Concurrent Programming with Logic Variables

Martin Miiller, Universitat des Saarlandes

Call-By-Need versus Call-by-Value Complezity

Joachim Niehren, Universitat des Saarlandes

Scripting, Composition and Coordination

Oscar Nierstrasz, University of Berne

Process Calculus in Direct Style

Martin Odersky, University of South Australia

6

10

10

10

11

11

Pict: A Programming Language Based on the Pi-Calculus

Benjamin C. Pierce, Indiana University 11

Temporal Properties of Concurrent Constraint Programs

Andreas Podelski, Max Planck Institut, Saarbriicken 12

The TAO road to high-level concurrent programming
Antonio Porto, DI-FCT/UNL, Lisbon, Portugal 12

Implicit typing a la ML for the join-calculus
Didier Rémy, INRIA Rocquencourt 13

Issues in Concurrent Language Design
John Reppy, AT&T Labs Research 13

The Design of Distributed Oz and its Mobility Protocol

Peter Van Roy and Seif Haridi, Université catholique de Louvain and
Swedish Institute of Computer Science 14

A Monad of Imperative Streams ... and Its Application Interactive Graphics

Enno Scholz, Freie Universitdat Berlin 15

Local Channel Typing for a Distributed m-calculus
Peter Sewell, Cambridge University 15

The Oz Programming Model
Gert Smolka, DFKI and Universitat des Saarlandes, Saarbriicken 16

Diagnosis of Concurrent Logic Programs

Kazunori Ueda, Waseda University 16
Abstracting Communications in Mobile Processes

Vasco T. Vasconcelos, University of Lisbon 17

Largely lambda, with a slice of pi
Philip Wadler, Bell Labs, Lucent Technologies 17

Graph Types for Monadic Mobile Processes
Nobuko Yoshida, University of Edinburgh 20

Higher Order Processes in Erlang
Joe Armstrong, Ericsson Computer Science Laboratory

A higher order process is a process whose behaviour is paramaterised with a
lambda expression. Higher order processes are to concurrent programming what
higher order functions are to sequential programming.

A small number of higher order functions (map, foldl, filter, ...) prove useful for
writing sequential code since they abstract out common sequential control pat-
terns. Similarly, a small number of higher order processes can be used to abstract
out common patterns of concurrency.

Using higher order processes we can arrange to divide the solution of a problem
into two parts. The first part (the higher order process) contains all the concur-
rent code. The second part (the paramaterising lambda expression) contains only
sequential code.

By suitable choice of higher order processes we can arrange that most of the code
in a large concurrent system can be written as strictly sequential code.

In this talk I presented three higher order processes called client-server, worker-
supervisor and event-manager. [also talked about how these were used in a large
(300,000+ line) application program written in Erlang.

The Obliq Model of Distributed Computation & Mobile
Ambients
Luca Cardelli, Digital Equipment Corporation, Systems Research
Center

I described the Obliq model of distributed computation, based on the free flow
of network pointers. I argued that this model is great for a local-area-network
or an Intranet, but does not work well over the Internet because of firewalls and
widespread unreliability.

I then discussed the Ambient model of mobile computation, which is based on
primitives that are better suited to Internet situations. Ambients are named,
mobile collections of threads and sub-ambients. The names are used for access
control and for mobility synchronization. I presented an example of pure mobility,
based on passengers being transported by trains between stations.

Mobile Ambients is based on joint work with Andrew Gordon, Cambridge Com-
puter Lab

Verification of Erlang Programs
Mads Dam, Swedish Institute of Computer Science

We consider the problem of verifying general temporal and functional properties
of programs in a core fragment of the Erlang programming language. Erlang is a
first-order call-by-value concurrent functional programming language. Important
features which verification needs to address are dynamic spawning of processes
and asynchronous buffered communication. A symbolic operational semantics
of a "core Erlang” is given, along with a temporal logic based on the modal
mu-calculus extended with the first-order language of equality plus a number of
Erlang-specific predicates and operations. We suggest an approach to verification
based on stepwise refinement of proof goals. The difficult issues are how to deal
with message queues and control structures which lead to unbounded growth of
state spaces: dynamic process spawning and non-tail recursion. We apply a com-
positional technique based on loop detection which has previously been applied
to CCS and the pi-calculus. A proof system and an example proof of an RPC
application is outlined.

A Calculus of Mobile Agents
Cédric Fournet, INRIA Rocquencourt

We propose the distributed join-calculus as a formal setting that fits the needs
of distributed programming with global communication, agent-based migration,
and partial failure of the system.

By adding reflexion to the chemical machine of Berry and Boudol, we first
obtain a model of concurrency that is consistent with mobility and distribution.
This provides a natural extension of functional programming with concurrency
(fork- and join- synchronization) and with some object-oriented features. This can
also be seen as a process calculus which we proved equivalent to the pi-calculus
of Milner, Parrow and Walker.

We then define our calculus for mobile agents as an extension of the join-
calculus, and we give its refined distributed chemical semantics. Communication,
migration, failure, and failure detection are precisely defined as atomic reduction
steps. However, they can still be efficiently implemented in a mostly asynchronous
distributed setting. Various examples illustrate how to express remote executions,
dynamic loading of remote resources and protocols with mobile agents.

We use this setting as the core of a programming language; a distributed im-
plementation is under way, and was demonstrated during the workshop.

(Based on joint work with Georges Gonthier, Jean-Jacques Levy, Luc Maranget

and Didier Remy).

Scheduling Issues in Parallel Programming
Robert H. Halstead, Jr., Digital Equipment Corporation, Cambridge
Research Lab

The speed of a parallel computation is often heavily influenced by scheduling
issues. Good scheduling can improve the performance of a program in two ways:
by reducing overhead and by focusing resources on the most important compu-
tations. For programs expressed in terms of fine-grained threads, the ”lazy task
creation” implementation technique can dramatically reduce overhead by adap-
tively coarsening the grain of the threads actually created at run time; however,
for strong models of fairness, lazy task creation is not a legal implementation
technique.

Other programs benefit from speculative computing, where some computations
are initiated before it is certain that their values will be needed. The ”sponsors”
abstraction can provide information to control speculative computations, but it
is still unclear how best to present it to programmers. For both lazy task creation
and sponsors, the challenge is to resolve the semantic issues in a way that helps
programmers and also enables high-performance implementations.

A Fully Abstract Denotational Model for a subset of
Facile
Matthew Hennessy, Sussex University

In this talk I will report on some recent work with Takis Hartonas where we
study an applied typed call-by-value A-calculus which in addition to the usual
types for higher-order functions contains an extra type called proc, for processes.
The constructors for terms of this type are similar to those found in standard
process calculi such as CCS.

We first give an operational semantics for this language in terms of a labelled
transition system which is then used to give a behavioural preorder based on
contextual; the expression N dominates M if in every appropriate context if M
can produce a boolean value then so can N.

Games as Behavioural Types
Kohei Honda, University of Edinburg

The talk discusses some elements of game semantics, especially the basic notions
of Hyland-Ong games, from a viewpoint of behavioural types, i.e. the classifica-
tion of interactive behaviours of processes. The introduction tries to be simple,

10

intuitive, but exact. A new presentation is used with, hopefully, added clarity. In
particular we use the exact correspondence between name passing processes and
strategies to clarify the structure of interaction sequences strategies are engaged
in. We discuss how these ideas would be useful to gain high-level abstraction of
varied process behaviours.

Computing with Tiles

Ugo Montanari, Dipartimento di Informatica, University of Pisa

In the talk we introduce a model for a wide class of computational systems, whose
behaviours can be described by certain rewriting rules. We gathered our inspira-
tion both from the worlds of term rewriting, in particular from the rewriting logic
framework of Meseguer, and of concurrency theory: among the others, we consid-
ered the approaches based on structured operational semantics (SOS) (Plotkin),
on contexts systems (Larsen and Xinxin) and on structured transition systems
(Corradini and Montanari).

Our model recollects many properties of these sources: it provides a compositional
way to describe both the states and the sequences of transitions performed by a
given system, stressing their distributed nature. Forthermore, a suitable notion
of typed proof allws us to take into account also those formalisms relying on the
notions of synchronization and side effects to determine the actual behaviour of
a system.

The model has been applied to a variety of computational paradigms. In the
talk, we considered three languages: CCS, Horn clauses and 7-calculus. In the
CCS case, the basic tiles directly correspond to SOS rules. For logic program-
ming (Horn clauses with SLD resolution), the tiles correspond to clauses and to
pullback squares representing unification steps. Furthermore, all pullback squares
can be derived from a finite number of basic squares which correspond to the steps
of the unification algorithm. For m-calculus, the basic tiles are those corresponding
to transitions of recursive sequential processes and those defining the behaviour
of parallel composition and restriction.

Typed Concurrent Programming with Logic Variables
Martin Miiller, Universitat des Saarlandes

We present a concurrent higher-order programming language called Plain and a
concomitant static type system. Plain is based on logic variables and computes
with possibly partial data structures. The data structures of Plain are procedures,
cells, and records. Plain’s type system features record-based subtyping, bounded
existential polymorphism, and access modalities distinguishing between reading
and writing.

Based on joint work with Joachim Niehren and Gert Smolka

11

Call-By-Need versus Call-by-Value Complexity

Joachim Niehren, Universitat des Saarlandes

Up to overhead the complexity of call-by-need evaluation is smaller than the
complexity of call-by-value evaluation. This is a folk theorem that I prove in my
talk. The idea is to compare call-by-need evalution with call-by-value evaluation
within a single calculus. This calculus has to be flexible enough for allowing
both evaluation strategies. A good candidate is the call-by-let A-calculus. By this
choice, I am able to simplify a previous proof based on the m-calculus, which I
presented at POPL 96.

Scripting, Composition and Coordination
Oscar Nierstrasz, University of Berne

We would like to view open systems as flexible configurations of software compo-
nents glued together by general-purpose connectors. More specifically, we would
like to build open, distributed applications from components glued together by
connectors that realize generic coordination abstractions.

A scripting language allows you to write a “script” that specifies how compo-
nents are glued together. A composition language further allows you to define
new kinds of glue (i.e., connectors) that implement (for example) generic coor-
dination abstractions. A (typed) composition language clearly needs to support
objects, components, concurrency, subtyping and genericity. Other features, like
higher-order abstractions and some reflective capabilities also seem to be neces-
sary to specify general-purpose connectors, but it is not clear what set of features
would constitute the minimum requirements for a composition language.

We are currently implementing an experimental framework of coordination com-
ponents and connectors in Java (and Pizza) in an attempt to make these require-
ments more precise, and we are using Pict as an executable specification language
to develop a formal model of concurrent objects, components and connectors.

Process Calculus in Direct Style
Martin Odersky, University of South Australia

We study an extension of asynchronous m-calculus where names can be returned
from processes. We show that with this simple extension an extensive range of
functional, state-based and control-based programming constructs can be ex-
pressed by macro expansions, similar to Church-encodings in lambda calculus.
The calculus has a mapping into asynchonous m-calculus which closely corre-
sponds to Plotkin’s CPS transform for call-by-value A-calculus.

12

Pict: A Programming Language Based on the Pi-Calculus

Benjamin C. Pierce, Indiana University

PICT is a programming language in the ML tradition, formed by adding a layer
of convenient syntactic sugar and a static type system to a tiny core.

The core language, Milner’s pi-calculus, has been used as a theoretical foundation
for a broad class of concurrent computations. The goal in PICT is to identify high-
level idioms that arise naturally when these primitives are used to build working
programs — idioms such as basic data structures, protocols for returning results,
higher-order programming, selective communication, and concurrent objects.
The type system integrates a number of features found in recent work on theoret-
ical foundations for typed object-oriented languages: higher-order polymorphism,
simple recursive types, subtyping, and a powerful partial type inference algo-
rithm.

Temporal Properties of Concurrent Constraint Programs
Andreas Podelski, Max Planck Institut, Saarbriicken

The existing automated verification methods apply mainly to those concurrent
systems where the number of concurrent processes is statically fixed and, more-
over, the control flow depends essentially on only finitely many data. In this paper,
we consider concurrent constraint programs with empty guards (cc* programs)
for specifying systems that do not underlie these limitations. cc* programs are
abstractions of cc systems with non-empty guards. We define a framework of inter-
mittent and invariant program assertions for specifying temporal-logic properties
(“liveness”, “safety”) of the executions of cc programs. We show that one can char-
acterize the properties by the least and greatest fixpoints of a logical-consequence
operator associated with of a cc* program, provided that the constraints have the
so-called saturation property. For example, the constraints underlying the cc lan-
guage Oz, equations over infinite trees, do have the saturation property. The
characterization allows us to apply abstract-interpretation methods (such as set-
based analysis) to verification. We obtain thus methods for abstract debugging
and abstract verification of concurrent constraint programs.

13

The TAO road to high-level concurrent programming
Antonio Porto, DI-FCT/UNL, Lisbon, Portugal

TAO is an abstract concurrent model/language that aims to be general purpose
(suitable for database systems, operating systems, the Web, etc.), high-level (ab-
straction and compositionality features allowing a direct representation of con-
cepts at arbitrary conceptual levels), and promoting the separation of concerns
between computation (functions, relations) and coordination (processes, interac-
tion, change)

It is a task-oriented model: the state of an agent contains a task (expressing
future activities) and a database (expressing current facts), and the operational
model is one of state transitions driven by the task, whereby task reductions oc-
cur and the database may change. The basic actions are queries and commands
on the database, and these are defined in very general terms, through the entail-
ment relation in the space of situations which give semantics to the database.
A query can embody an arbitrarily complex transformational computation, and
commands force (nonmonotonic) database updates.

Tasks can be composed in parallel but also with generic sequential, synchronous,
choice and atomization operators, which together promote a more high-level de-
scription of certain processes. For procedural abstraction there are named tasks
and recursive task decomposition rules. Lexically scoped logical variables in tasks
further add to high-level expressivity. The way they work puts no constraints on
the data syntax, therefore higher-order features are available.

There is a recursive structure of agents for dynamic forms of locality. An agent can
have named subagents besides its task and database, and a task can be delegated
to a named agent. This works as a remote procedure call that in combination with
sequentiality provides a high-level mechanism, as low-level handshaking protocols
are hidden in the implementation. The agent structure, with suitable forms of vis-
ibility control, allows for a useful implicit use of contextual inheritance of rules
and databases.

Implicit typing a la ML for the join-calculus
Didier Rémy, INRIA Rocquencourt

We adapt the Damas-Milner typing discipline to the join-calculus. The main
result is a new generalization criterion that extends the polymorphism of ML to
join-definitions. We prove the correctness of our typing rules with regards to a
chemical semantics. We also relate typed extensions of the core join-calculus to
functional languages.

Based on joint work with Cédric Fournet, Cosimo Laneve, and Luc Maranget

14

Issues in Concurrent Language Design
John Reppy, AT&T Labs Research

Writing correct and robust concurrent programs is hard, and the most important
tool the programmer has for this task is the concurrent language she is using. I
have been thinking about the design of concurrent programming languages from
this perspective for the past ten years, or so, and have developed some strong
opinions (as well as some languages). This talk presents a biased view of many of
the issues facing a concurrent language designer.

A good concurrent language should support modular programming, which
means that there need to be mechanisms for abstracting and composing concur-
rent behaviors. Another important feature is the expressiveness of the primitives;
if they are too low-level, the programmer must expend significant effort imple-
menting higher-level concurrency mechanisms. On the other hand, higher level
mechanisms are inflexible, because the hardwire in complex patterns of interac-
tion (e.g., Ada’s rendezvous mechanism). The ideal situation is for the language
to provide a reasonable set of low-level primitives and mechanisms for composing
higher-level operations in a uniform way. Another important issue are synchro-
nization guarantees provided by the primitives. While stronger guarantees may
carry some implementation cost and run-time overhead, they provide a more
robust programming model.

The language Concurrent ML (CML) reflects this design philosophy. Its most
important feature is support for first-class synchronous abstractions, which allows
the construction of libraries of higher-level and/or application-specific communi-
cation and synchronization abstractions. I give an example of the distributed
implementation of Linda-style tuple spaces as a CML library. The resulting com-
munication operations can be used in exactly the same contexts as those opera-
tions that are builtin to CML.

The slides for this talk are available on the CML homepage at:

http://www.research.att.com/ jhr/sml/cml.

The Design of Distributed Oz and its Mobility Protocol

Peter Van Roy and Seif Haridi, Université catholique de Louvain and
Swedish Institute of Computer Science

We argue that mobility between sites should be part of the basic language se-
mantics in a language for distributed programming. We present a language, Dis-
tributed Oz, in which all language entities are extended with a distributed be-
havior. This behavior is carefully designed to respect a simple and expressive
language semantics when sites are disregarded. This allows transparent program-
ming, i.e., a computation behaves correctly independently of how it is partitioned

15

between sites. We argue that extending the language semantics with mobility con-
trol enables efficient distributed programming by giving the programmer a simple
and effective control over network communication patterns. Mobility control is
the ability for objects to migrate between sites or to remain stationary at one
site. In this way, the syntax and semantics of objects are the same regardless of
whether they implement stationary servers or mobile agents. We show how to use
Distributed Oz to program arbitrary migratory behavior. We give the language
semantics and its distributed refinement. We formally specify the mobility pro-
tocol and prove that it implements the language semantics. Distributed Oz has
been implemented as an extension to the publicly-available Oz 2.0 system.

A Monad of Imperative Streams ... and Its Application
Interactive Graphics
Enno Scholz, Freie Universitat Berlin

A calculus is presented which is suitable for performing concurrent 1/0 in a func-
tional programming language. It is defined as a monad on top of the functional
language Haskell. The monad is a conservative extension of Haskell’s IO monad.
Whereas an object of type IO a represents an imperative program which, at the
end of its execution, produces a value to type a, an object of the new St monad
represents an imperative program which, at arbitrary times, may produce values
of type a. Thus, imperative programs may be interleaved in a nonpreemptive way.
Moreover, functional (= static) relationships may be established between imper-
ative, stateful (= dynamic) objects.

It is demonstrated how the St monad is used in the PIDGETS framework to
program interactive graphics.

Local Channel Typing for a Distributed B-calculus
Peter Sewell, Cambridge University

In the distributed setting there are essential differences (in performance and fail-
ure behaviour) between local and global communication. Nonetheless, as far as
possible a programming language for distributed migratory computation should
allow the two to be accessed uniformly.

I gave a distributed m-calculus, which might be used as a partial basis for a dis-
tributed Pict-like language, and its structural congruence/reduction semantics.
It integrates location and migration primitives, based on those of the Distributed
Join Calculus, with asynchronous 7.

I went on to give a type system in which the input and output capabilities for
channels may be either global or constrained to be local. This allows optimization,

16

e.g. for communication on channels whose receivers are constrained to be at the
same location as the channel. Subtyping allows communications to be accessed
uniformly.

The Oz Programming Model
Gert Smolka, DFKI and Universitat des Saarlandes, Saarbriicken

The Oz Programming Model (OPM) is a concurrent programming model based
on logic variables. It can express eager and lazy functional programming and
concurrent object-oriented abstractions. The primitive data structures of OPM
are first-class procedures, cells, names, and abstract values. Control is based on
sequential composition and thread creation. Basic synchronization is automatic
since statements block until their input variables are bound to (partial) data
structures.

The talk intoduced OPM and illustrated its expressivity with examples including
higher-order functions, locks, channels, records, and abstract types.

The talk did not cover the constraint extension of OPM, which provides for
constraint programming by adding a full constraint store, propagators, and first-
class spaces. Extended OPM serves as the basis of Oz, a programming system
that was demonstrated at night in Dagstuhl’s wine cellar.

Volume 1000 of Springer’s LNCS series contains an introduction to a previous
version of OPM not having sequential composition and abstract values.

Diagnosis of Concurrent Logic Programs
Kazunori Ueda, Waseda University

Strong moding and constraint-based mode analysis are expected to play funda-
mental roles in debugging concurrent logic/constraint programs as well as in
establishing the consistency of communication protocols and in optimization.
Mode analysis of Moded Flat GHC is a constraint satisfaction problem with
many simple mode constraints, and can be solved efficiently by unification over
feature graphs. In practice, however, it is important to be able to analyze non-
well-moded programs (programs whose mode constraints are inconsistent) and
present plausible “reasons” of inconsistency to the programmers in the absence
of mode declarations.

I discussed the application of strong moding to systematic and efficient static
program debugging. The basic idea, which turned out to work well at least for
small programs, is to find a minimal inconsistent subset from an inconsistent
set of mode constraints and indicate the symbols (or symbol occurrences) in the
program text that imposed those constraints. A bug can be pinpointed better by

17

finding more than one overlapping minimal subset. These ideas can be readily
extended to finding multiple bugs at once. For large programs, stratification of
predicates narrows search space and produces more intuitive explanations. Strat-
ification plays a fundamental role in introducing mode polymorphism as well.

1. K. Ueda, and M. Morita, Moded Flat GHC and Its Message-Oriented Im-
plementation Technique. New Generation Computing, Vol.13, No.1 (1994),

pp.3-43.

2. K. Ueda, Ezxperiences with Strong Moding in Concurrent Logic/Constraint
Programmang. In Proc. Int. Workshop on Parallel Symbolic Languages and
Systems, LNCS 1068, Springer, 1996, pp.134-153.

3. K. Cho and K. Ueda, Diagnosing Non-Well-Moded Concurrent Logic Pro-
grams. In Proc. 1996 Joint International Conference and Symposium on
Logic Programming (JICSLP’96), M. Maher (ed.), The MIT Press, 1996,
pp.215-229.

Abstracting Communications in Mobile Processes
Vasco T. Vasconcelos, University of Lisbon

Witnessing the increase of complexity on the objects that names may carry in
process algebras — from CCS, through the (monadic and then the polyadic) pi-
calculus, to the calculus of objects (where names carry a label together with a
tuple of names) — we propose a framework where communications are taken from
an abstract universe.

The calculus, parametric on what processes may exchange, is based on the asyn-
chronous pi-calculus, the novelty being the usage of “located guarded-processes”
as receptors. Such a process fires the body of a guard that matches the incoming
message.

Types emerge from the actual syntax of communications by means of a choice
and a “carries” constructor. A type assignment system ensures that well-typed
programs will not go wrong.

Largely lambda, with a slice of pi
Philip Wadler, Bell Labs, Lucent Technologies

Lambda calculus remains a source of inspiration for work on concurrent calculi,
and so the first part of the talk summarised some recent developments in lambda
calculus. The second part of the talk reversed the usual idea of embedding lambda
calculus within pi calculus, and compared two sets of primitives for embedding
pi calculus within lambda calculus.

18

PART I: Some recent developments in lambda calculus. * Moggi’s com-
putational calculus, lambda-c, was first proposed in his 1988 technical report on
monads. It has the following grammar and laws.

terms L M,N:=V|P
values Vi=x|Ax.N
non-values P := LM | let z =M in N

(beta.v) (Ax.N)V — N[z :=V]

(beta.let) let x =V in N — N[z :=V]

(eta.v) Ax.(Va) — V

(eta.l) letz=Minz — M

(assoc) lety=(letx=Lin M)in N— letx=Lin (let y=M in N)
(let.1) PM — let x = Pin aM

(let.2) VP — lety=Pin Vy

This calculus contains Plotkin’s call-by-value calculus, lambda-v, which consists
onlyof (beta.v) and (eta.v). It is just large enough to have as equalities all equa-
tions that must hold between any two terms with side effects (where the general
notion of side effect may be modeled using a monad).

* In particular, lambda-c allows us to strengthen Plotkin’s classic CPS results.
We view CPS as a translation from lambda-c to lambda-cps (the smallest subset
of lambda-v that contains in the image of the CPS translation and is closed under
reduction). Write M* for the CPS translation of a lambda-c term M, and N for
the inverse CPS translation of a lambda-cps term N. Then we have

lambda-c = M — N{ iff lambda-cps + M —— N.

This is an instance of a Galois connection (or an adjoint).
* A variant of lambda-c provides a better model of space as well as time.
Replace (beta.v) and (beta.let) by the following.

(1) (M. N)M — let x = M in N

(V) let x =V in Clz] — let 2 =V in C[V]
(Gw) letz=Vin N — N, if x not free in N

* A further variant provides a calculus that models call-by-need rather than
call-by-value. Replace (G.v) by the following.

(G) letz=Min N — n, if x not free in N

The let terms preserve sharing, while the switch from (G.v) to (G) means that
an unneeded term may be discarded without first being evaluated.
Further discussion of some of these points can be found in the papers:

1. A reflection on call-by-value. Amr Sabry and Philip Wadler. International
Conference on Functional Programming, ACM Press, Philadelphia, May
1996.

19

2. A call-by-need lambda calculus. Zena Ariola, Matthias Felleisen, John
Maraist, Martin Odersky, and Philip Wadler. 22'nd Symposium on Prin-
ciples of Programming Languages, ACM Press, San Francisco, California,
January 1995.

3. Lazy vs. strict. Philip Wadler. ACM Computing Surveys, June 1996.

PART II: Embedding pi in lambda * One way to embed pi calculus in
lambda calculus is to augment the lambda calculus with one constant for each
construct of the pi calculus, modeling binding with higher-order functions in the
way first suggested by Church. SML notation is used for the lambda calculus side,
where Ch is the type of channels, and Pr the type of processes.

P,Q == vx.P new:(Ch— Pr)— Pr
lz[g].P send: Ch* Chlist «x Pr — Pr
?2[z].Q recv : Ch* (Chlist — Pr) — Pr
P|Q op|| : Pr« Pr — Pr
0 none : Pr

For example, here is a pi calculus term and its encoding.

vr.vy.new(fnr = new(fny =
lz[y].Psend(x, [y], P)

|72[2].Q]|recv(z, fn[z] = Q)

* Here is a second set of constants that may be used to represent concurrency, akin
to the monadic style used in Concurrent Haskell. It is also surprisingly close to the
style used in Concurrent ML. The type Ev corresponds to events in Concurrent
ML, or the monad in Concurrent Haskell. The type unit has one value, written
0.

op >>="aFv«* ('a —' bEv) —' bEv

op >>: unitEv ¥’ bEv —' bEwv

return ' a —" aFEv

new?2 : ChEv

send2 : Ch x C'hlist — unit Ev

recv2 : Ch — (Chlist)Ev

fork2 : unitEv — unitEv

For example, here is the same term as above, encoded in the new style.

new?2 >>= (fnr = new2 >>= (fny =
fork2(send2(x, [y]) >> P) >>
recv2(x) >>= (fn[z] = Q)))

* Here is how constants in the second style may be defined in terms of those in
the first style. Those familiar with monads will recognize the monadic encoding

20

of CPS.

type'aEv = (‘a — Pr) — Pr
e>>=f = fnc= e(fnx = fzc)
return(x) = fnc= cx

recv2(x) = fnc= recv(z, fnz = cz)
fork2(e) = fnc= e(fn() = none)||c()
e>>f = e>>=(fn()=f)

send2(x,y) = fnc= send(z,7y,c())
)

* The use of a monadic style in Concurrent ML is at first blush rather a
surprise. Monads are typically used to encode a call-by-value style of evaluation
with side effects into a pure functional language without side effects, where the
side-effecting function of type ’a — ’b corresponds to a side-effect free function
of type ’a — ’b Ev. (Replace Ev by whatever monad captures the side effects you
are interested in.) Under this encoding, the functions

new?2 : ChEv
send2 : Ch x Chlist — unitEv
recv2 : Ch — (Chlist)Ev

might be rewritten as

new3 : unit — Ch
send3 : Ch * Chlist — unit
recv3 : Ch — Chlist

and so why do we need the monad Ev? The answer becomes clearer when we look
at the next combinator,

fork2 :unitEv — unitEv
which would be encoded as
fork3 : (unit — unit) — unit

where the argument is made into a function, the usual call-by-value trick for
turning computations into values. This is workable, but cumbersome, and the
attractions of making the monad explicit become clearer.

John Reppy points out there is a further impetus for representing processes
explicitly ith the type ("a Ev) rather than implicitly with a side-effecting function
(unit — ’a). In Concurrent ML there is a choice operator, which is similar to fork
except the arguments should all denote guarded processes, rather than arbitrary
processes. (Choice also differs from fork in taking a list of arguments rather than
two, but that is an orthogonal issue.) It is easy enough to contrive that the type
(’a Ev) only denotes processes that are guarded, thereby providing an additional
impetus for using the explicit ("a Ev) in preference to the implicit (unit — ’a).

21

Graph Types for Monadic Mobile Processes
Nobuko Yoshida, University of Edinburgh

While types for name passing calculi have been studied extensively in the context
of sorting of polyadic m-calculus the type abstraction on the corresponding level
is not possible in the monadic setting, which was left as an open issue by Milner
[Milner 92]. We solve this problem with an extension of sorting which captures
dynamic aspects of process behaviour in a simple way. Equationally this results
in the full abstraction of the standard encoding of polyadic w-calculus into the
monadic one: the sorted polyadic 7m-terms are equated by the basic behavioural
equality in the polyadic calculus if and only if their encodings are equated in the
basic typed behavioural equality in the monadic calculus. This is the first result
of this kind we know of in the context of the encoding of polyadic name passing,
which is a typical example of translation of high-level communication structures
into m-calculus. The construction is general enough to be extendable to encodings
of calculi with more complex operational structures.

22

