
Report

on the Dagstuhl Seminar

Discrete Tomography:
Algorithms and Complexity

January 20 - 24, 1997

The workshop, organized by P. Gritzmann (Trier), and M. Nivat (Paris),
was attended by 20 participants from 5 countries (7 nationalities). It was
a workshop in the very sense of the word, without a fixed formal sched-
ule, many of the talks were spontaneous and informal presentations at the
black board, and the discussion of ideas and new approaches in discrete
tomography was central.

The basic problem of discrete tomography is to reconstruct finite point
sets that are accessable only through some of their discrete X-rays. In the
simplest case, an X-ray of a finite set F in a direction u is a function giving
the number of its points on each line parallel to u, effectively the projection,
counted with multiplicity, of F on the subspace orthogonal to u.

The continuous analogue of this reconstruction problem is the classical
task to invert X-ray or Radon-transformations, a problem of fundamental
importance in computerized tomography. While the continuous problem is
quite well understood (and the solution techniques are utilized in practise
so prominently), the problem changes dramatically when turning to the
discrete case. Questions of discrete tomography have long been studied in
the context of image processing and data compression, and in the realm of
data security; new motivation, however, comes from the need of practical
reconstuction techniques in material sciences.

The talks discussed a broad range of aspects of discrete tomography. Some
focussed on the real-world aspects of discrete tomography, others presented
theoretical structural insight, partly with a view towards comparing dis-
crete and continuous tomography. Some talks dealt with the computational
complexity of various tasks relevant in this area while others focussed on al-
gorithmic approaches using deterministic techniques from computer algebra
or polyhedral combinatorics aiming at optimal solutions or randomized algo-
rithms aiming at good approximations. Yet other presentations rounded off
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the area by giving insight in its connection to other problems and explaining
related problems and results.

The workshop brought together scientists of various fields and with dif-
ferent scientific background. By way of exchanging ideas and problems,
discussing possible approaches usually until late at night, presenting exist-
ing software and discussing encouraging new ideas and directions of possible
further progress the workshop made a significant contribution to the solution
of the important underlying real-world problems.
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Elena Barcucci

X-rays characterizing some classes of digital sets
A digital set is a finite subset of the integer lattice ZZ2 defined up to a
translation. An X-ray of a digital set in a direction u is a function giving
the number of its points on each line parallel to u.

Reconstructing a digital set from its X-rays along a given set of direc-
tions is of primary importance in medical diagnostics (computer-aided to-
mography), pattern recognition, image processing and data compression.
Several authors have been studying this theory and have proposed various
algorithms for determining a digital set starting out from its X-rays in hor-
izontal and vertical directions. One of the main difficulties involved in this
reconstruction is the “ambiguity” deriving from the fact that, in some cases,
many different digital sets have the same X-rays. In an effort to reduce this
ambiguity and facilitate reconstruction, many authors suggest the following
two methods:

- more than two X-rays are assigned,
- some of the properties of the digital set to be reconstructed are given

“a priori” (for example: convexity, connection, symmetry) and the
algorithms take advantage of this further information to reconstruct
the set.

In this talk, we study the ambiguity problem with respect to some classes
of digital sets on which some connection constraints are imposed. In partic-
ular, given a class F of digital sets, we want to know if a set U of directions
exists such that among all of F ’s elements, each element in F is determined
by its X-rays in U ’s directions. If the set U exists, we say that the class F
is characterized by U . By extending the concept of switching component
introduced by Chang and Ryser [1, 4], we prove that there are some classes
of digital sets that cannot be characterized by any set of directions. One of
these classes is the set of column-convex polyominoes (i.e., digital sets which
are convex with respect to the vertical direction). Gardner and Gritzmann
[3] studied the problem on the class of convex sets (i.e., sets which are con-
vex with respect to all the directions). The authors show that if U is a
set of four directions having cross ratio ρ(U) 6∈ {4/3, 3/2, 2, 3, 4}, then the
class of convex sets is characterized by U . We prove that if the cross ratio
ρ(U) ∈ {4/3, 3/2, 2, 3, 4}, then the convex sets cannot be characterized by
U . We then try to find out whether these results can be extended to the
class of convex polyominoes (i.e., sets which are only convex with respect to
the horizontal and vertical directions). We prove that if the horizontal and
vertical directions do not belong to U , Gardner and Gritzmann’s result can-
not be extended to convex polyominoes. If U = {(1, 0), (0, 1), u3 , u4}, where
(1, 0) and (0, 1) are the horizontal and vertical directions and the cross ratio
ρ(U) 6∈ {4/3, 3/2, 2, 3, 4}, we believe that U can characterize the class of
convex polyominoes. We wish to point out that, as shown in [2], there is
an exponential number of convex polyominoes having the same horizontal
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and vertical X-rays. In order to give experimental evidence of this conjec-
ture, we use an algorithm that reconstructs convex polyominoes from their
discrete X-rays. Moreover, we prove that no number δ exists such that if
|U | ≥ δ, then U characterizes the convex polyominoes. This number exists
for convex sets and is equal to 7 (see [3]).
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Yves Caseau

Reconstruction of Polyominoes: A Contribution from a
Constraint-Based Scheduling Perspective
We propose two approaches towards reconstructing a convex polyomino (i.e.,
h-convex and v-convex) from its two projections (horizontal and vertical).
The first method uses constraint propagation techniques from employee
scheduling to solve the exact problem. Using a straightforward model where
a polyomino is seen as a set of bands representing different schedules, we
obtain a simple-yet-efficient algorithm which can solve problems of sizes
up to 100 in a few seconds. The second approach deals with the approx-
imate problem, where the two projections are given as vectors of intervals
(min-value-max). The question is to find a polyomino whose projections
fall within the bounds and such that the sum of the absolute differences
with the target value is minimal. We show that the previous naive model
is not sufficient and we introduce a few techniques drawn from a specialized
algorithm for the exact polyomino reconstruction. We show that although
finding an approximate polyomino is easy, finding the best approximation
is a hard combinatorial problem for which only problems of sizes up to 20
can be solved.

R.J. Gardner

Uniqueness issues in discrete tomography
In 1980, Peter McMullen and I proved that there is a set S of four directions
in the plane that has the property that every planar convex body can be
distinguished from any other by its X-rays in the directions in S. An X-ray
gives the lengths of all chords of the body parallel to a particular direction.
Larry Shepp asked whether a similar result holds for discrete X-rays of
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convex lattice sets when these are taken in lattice directions. A convex

lattice set in Z
n is a finite subset of Z

n that is equal to the intersection of
its convex hull with Z

n. A lattice direction in E
n is a direction parallel to a

line joining two different points of Z
n. The discrete X-ray of a finite subset

F of E
n in the direction u is the function on the hyperplane u⊥ through the

origin perpendicular to u giving the number of points in F lying on each
line parallel parallel to u. Effectively, this is the projection (counted with
multiplicity) of F on u⊥.

In 1995, Peter Gritzmann and I obtained a positive answer to this ques-
tion. We showed that a set S of lattice directions has this uniqueness
property if the cross ratio of the slopes of some four directions in S, ar-
ranged in increasing order, is not 4/3, 3/2, 2, 3, or 4. The set S =
{(1, 0), (0, 1), (2, 1), (−1, 2)} is a specific example that has the uniqueness
property. Moreover, any set of seven or more lattice directions has the
uniqueness property. On the other hand, there is a set of six lattice direc-
tions that does not have the uniqueness property, and no set of three lattice
directions does.

To establish the cross ratio condition for uniqueness, one has to find all
solutions of a certain equation in which an expression involving four complex
roots of unity is equal to a rational number. It turns out that the appropriate
tool is p-adic analysis, in particular, p-adic valuations.

Yan Gerard

Properties of the Minkowski sum in discrete geometry
One can investigate the properties of the Minkowski sum in the framework
of discrete geometry. We notice that connectivity and convexity are pre-
served by Minkowski addition. The convexity in the horizontal or (and) the
vertical direction of the digital plane (Z2), associated with 4-connectivity
is also preserved by this sum. Minkowski addition commutes with the op-
erator providing the convex hulls of sets. Moreover we have a geometric
construction of the Minkowski sum of two discrete polygons (of Z2).

Peter Gritzmann

On the computational complexity of reconstructing lattice
sets from their X-rays
(joint work with R.J. Gardner and D. Prangenberg)
The talk discusses various inverse problems in discrete tomography. These
questions are motivated by demands from material sciences for the recon-
struction of crystalline structures from images produced by quantitative high
resolution transmission electron microscopy.

In particular, we completely settle the complexity status of the basic
problems of existence (data consistency), uniqueness (determination), and



8

reconstruction of finite subsets of the d-dimensional integer lattice Z
d that

are only accessible via their line sums (1-dimensional X-rays) in some pre-
scribed finite set of lattice directions. Roughly speaking, it turns out that
for all d ≥ 2 and for a prescribed but arbitrary set of m ≥ 2 pairwise non-
collinear lattice directions, the problems are solvable in polynomial time if
m = 2 and are NP-complete (or NP-equivalent) otherwise.

Paolo Gronchi

Reconstruction of finite convex sets
(joint paper with Maurizio Saroldi) Suppose we have a discrete convex set
K contained in a given square [0, a] × [0, a] and we can check whether a
considered straight line intersects K or not. The question is how many lines
we have to consider in order to reconstruct the discrete set in an interactive
way.

We prove that an upper bound is given by 4a + 2VK where VK is the
number of vertices of the convex hull of K in IR2. We find sharp bounds
for Va, the maximum of VK among all sets contained in the given square.
Furthermore we show that

lim
a→∞

Va

a
2

3

= 3

(

4

π

)
2

3

.

Thomas Kasper

Reconstructing Polyominoes with Constraint Programming
(joint work with Alexander Bockmayr and Tomasz Zajac)
Constraint Programming is a new and promising methodology for tackling
complex combinatorial problems. We propose to use constraint program-
ming as a framework to model and solve discrete tomography problems. We
exemplify the use of this framework by considering the polyomino recon-
struction problem and the polyomino approximation problem. The goal of
the reconstruction problem is the reconstruction of a binary pattern that is
connected and convex in rows and columns from its vertical and horizontal
projections. If the reconstruction fails, we turn to the approximation prob-
lem, where we compute an approximation pattern that is also connected and
convex, but may have different projections. In this case the objective is to
minimize the difference with respect to the projection numbers given in the
original formulation. Using the extended modelling capabilities of constraint
programming, like numeric and symbolic constraints, and the possibility to
easy modify and extend the constraint model in an incremental way, we
present models for both problems. For the reconstruction problem we give
a pseudo-Boolean model and a finite domain model. For the approximation
problem we use only a pseudo-Boolean model. Preliminary computational
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tests indicate good results for the reconstruction problem. On the other
hand, the results for the approximation problem leave much to be desired
and call for an improved model. Further future work is to check whether
constraint programming can be successfully applied to other discrete tomog-
raphy problems.

Attila Kuba

Reconstruction of 3D Binary Matrices
The problem of reconstruction of binary matrices from their projections
(row sums) is considered. This kind of reconstruction theory has been ap-
plied in combinatorics, graph theory, operations research, genetics, medicine,
electron microscopy and image processing. A survey is given to show the
differences between the 2D and 3D cases from the viewpoints of uniqueness,
partial uniqueness, and reconstruction algorithm. It is proved that the exis-
tence of a mixed submatrix (containing only mixed rows, i.e. having both, 0
and 1 elements) is necessary and sufficient in 2D, however it is only necessary
but not sufficient in 3D case for the non-uniqueness of the binary matrix.
It is shown that the additivity property is suitable to decide the uniqueness
if the projectional matrix is totally unimodular (as in the 2D case). Since
the projectional matrix in 3D case is not totally unimodular, this theorem
can not be applied here. A method is presented to find so-called invariant
boxes (i.e. positions of invariant-1’s and invariant-0’s) in a 3D binary ma-
trix. Finally, it is mentioned that the core-envelope algorithm can be used
in the reconstruction of 3-directionally convex 3D binary matrices.

Alfred K. Louis

Discrete Versus Indiscrete Tomography
In this lecture we present results from conventional continuous tomography
such as consistency conditions, derivation of inversion formulas and algo-
rithms. In the continuous case the Radon transform of a density distribution
f is defined for a direction ω and the distance s from the origin of the x–ray
path as

Rf(ω, s) =

∫

IR2

f(x)δ(s− x⊤ω)dx

By a simple computation we find

∫

IR

Rf(ω, s)ψ(x)ds =

∫

IR2

f(x)ψ(x⊤ω)dx . (1)

This relation serves as basis for deriving consistency conditions and inversion
formulas. In the discrete case the distribution f is assumed to be a sum of
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point masses at integer points k ∈ IN2

0 with weights 0 or 1:

f =
∑

k

fkδk

where δk denotes the delta distribution at position k ∈ IN2

0. The discrete
x–ray transform is then defined as

Df(ω, ℓ) =
∑

k

fk δ̄(ℓ− ω⊤k)

where δ̄ is the Kronecker symbol with δ̄(0) = 1 and δ̄(ℓ) = 0 for ℓ 6= 0. The
corresponding result to (1) for the discrete case and for fixed direction ω is

∑

ℓ

Df(ω, ℓ)ψ(ℓ) =
∑

k

fkψ(ω⊤k) . (2)

Especially for ψ = 1 we see that the ray sum
∑

ℓDf(ω, ℓ) is independent
of the direction ω. The choice ψ(ℓ) = exp(−2πıℓn/q) leads to the discrete
Fourier transforms of the data and the searched for distribution f .

In the lecture we further present a general tool to derive fast inversion formu-
las, the approximate inverse, by precomputing reconstruction kernels. The
influence of the unavoidable data errors is demonstrated with reconstruc-
tions from real data. Finally a movie with reconstructions from real data in
3D X-ray computer tomography, measured at the Fraunhofer Institute for
nondestructive testing in Saarbrücken, is shown.

Alberto Del Lungo

Reconstructing convex polyominoes from horizontal and ver-
tical projections II
A cell is a unitary square [i, i+ 1] × [j, j + 1] in which i, j ∈IN0. Let S be a
finite set of cells. A column (row) of S is the intersection of S with an infinite
vertical strip [i, i + 1]×IR (horizontal IR×[i, i + 1]) in which i ∈IN0. The ith
row projection and the j-th column projection of S are the number of cells in
S’s ith row and j-th column, respectively. We dealt with the reconstruction
of objects from their projections: with regard to establishing the existence
of a set S of cells in which the ith row projection and the j-th column pro-
jection are equal to hi and vj , respectively, and H = (h1, h2, . . . , hm) ∈INm

and V = (v1, v2, . . . , vn) ∈INn are two assigned vectors. This problem is of
primary importance in medical diagnostics (computer-aided tomography),
pattern recognition, image processing and data compression and has been
studied by various authors. In the paper [1], we studied the problem with
respect to some classes of cell sets on which we imposed some connectivity
constraints and devised an algorithm for convex polyomino reconstruction.
This algorithm establishes the existence of a convex polyomino Λ having
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projections equal to (H,V ). Moreover, if there is at least one convex poly-
omino having projection (H,V ), the algorithm reconstructs one of them in
a maximum of O(n4m4) time.

In this talk, we deduce some operations (called partial sum operations) for
the reconstruction of convex polyominoes, from some properties of H’s and
V ’s partial sums. We use these operations to define a new algorithm in which
it is not necessary to find feet’s positions, whereas the “old” algorithm has to
examine all of them (i.e. O(n2m2) positions). Since the computational cost
of a partial sum operations is O(nm), the new algorithm’s complexity is less
than O(n2m2) and is therefore smaller than that of the previous algorithm.
At the moment, however, we only have experimental evidence to support
the fact that our algorithm establishes the existence of a convex polyomino
Λ whose projections are equal to (H,V ), for all instances (H,V ).

We wish to point out that Woeginger [2] proved that the reconstruc-
tion problem in the classes of horizontally and vertically convex sets (h,v)
and polyominoes (p) is an NP-complete problem. In [1], we showed that
the reconstruction is NP-complete in the classes (p,h), (p,v), (h) and (v).
Therefore, the problem can be solved in polynomial time only if all three
properties p, h and v, are shared by the cell set. This, in turn, means that
the set is a convex polyomino.
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Maurice Nivat

Chords of a convex subset of Z2

The set of chords is the Minkowski sum P + (−P ) of P and its symmet-
ric. The problem we attempt to solve is the following: given a centrally
symetric subset of Z

2, say Q, such that Q = −Q, construct P if it exists
such that Q = C(P ) the set of chords of P . We use crucially the convex

hull P̂ of P and the property that C(P̂ ) = ˆC(P ), building first the convex

polygons such that C(P̂ ) = Q̂. The construction is well known and leads to
a Knapsack problem with a pseudo polynomial algorithm (polynomial in the

size of Q̂, NP-complete in the minimal representation of Q̂ as the sequence
of its oriented edges) with unfortunately a possibly exponential number of
solutions. To obtain the P ′s such that Q = C(P ) if any we have to “carve”

the polygons P̂ , but there are too many.
Thus we show how to adapt the standard algorithm in order to check at
each step that the P̂ being built is compatible with Q: as a result we have
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a pseudo-polynomial algorithm producing P′s such that all chords issuing
from a vertex of its convex hull are in Q and, of course, C(P̂ ) = Q̂. There
remains the problem of small chords, linking interior points of P , which may
be elements of Q: it remains to prove that one can always delete points in
P to remove them.

Renzo Pinzani

Reconstructing convex polyominoes from horizontal and ver-
tical projections
A cell is an unitary square [i, i + 1] × [j, j + 1], in which i, j ∈ IN0. Let S
be a finite set of cells. The ith row projection and the jth column projec-

tion of S are the number of cells in the ith row and in the jth column of
S, respectively. In this talk, we examine an aspect of the reconstruction
of objects from their projections: that of establishing the existence of a set
of cells S, in which the ith row projection and the jth column projection
are equal to hi and vj, respectively, and H = (h1, h2, . . . , hm) ∈ INm and
V = (v1, v2, . . . , vn) ∈ INn are two assigned vectors. Determining the exis-
tence of a set S having assigned projections (H,V ) means establishing the
existence of solutions to the following system in n + m equations and in
n×m binary variables si,j:

n
∑

j=1

si,j = hi, 1 ≤ i ≤ m,

m
∑

i=1

si,j = vj , 1 ≤ j ≤ n.

A set S of cells can be represented by a matrix of 0 and 1, that is, a
binary pattern. First Ryser [5], and subsequently Chang [2] and Wang [6]
studied the problem of proving the existence of solutions to this system and
therefore of binary patterns S having assigned projections (H,V ) and they
showed that this decision problem can be solved in O(nm) time. These au-
thors also developed some algorithms that reconstruct S starting out from
(H,V ). The main problem met with in the reconstruction is the “ambi-
guity” involved because, in some cases, a great many sets have the same
projections (H,V ). For example, if H = (h1, h2, . . . , hm) = (1, 1, . . . , 1)
and V = (v1, v2, . . . , vn) = (1, 1, . . . , 1), there are n! different sets having
these projections. The ambiguity is reduced if some of the properties of
the set to be reconstructed are given “a priori” (for example: convexity,
connection, symmetries). In this case, the algorithms take advantage of
this further information to reconstruct the set. As far as this method is
concerned, some properties imposed on the sets entirely eliminate all ambi-
guity (see [3]), while other properties only partially reduce it. It is shown
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in [4] that there is an exponential number of convex sets having the same
projections. We also noted that, in some cases, ambiguity reduction does
not facilitate the set’s reconstruction. For instance, the problem of recon-
structing a discrete set from its horizontal and vertical projections (H,V )
is NP-complete for some classes of discrete sets on which some connection
constraints are imposed (see [1, 7]).

In this talk, we consider the class of convex polyominoes. A polyomino is
a connected finite set of adjacent cells lying two by two along a side and it
is defined up to a translation. A polyomino is convex if all its columns and
rows are connected. We define an algorithm that establishes the existence
of a convex polyomino having horizontal and vertical projections equal to
(H,V ) in polynomial time. Moreover, if there is at least one convex poly-
omino having projection (H,V ), the algorithm reconstructs one of them in
a maximum of O(n4m4) time.
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Dieter Prangenberg

Discrete Tomography: On the algorithmic complexity
(Joint work with R. Gardner and P. Gritzmann)
We focus on the algorithmic complexity of recovering discrete lattice sets
from their discrete X-rays. This problem is of fundamental importance in
many practical applications. In particular, improvements in the generation
and interpretation of high resolution transmission microscopy images lead
to the problem of recovering crystalline structures from the knowledge of
X-ray information in certain directions.

While the complexity is completely settled for one-dimensional X-rays
(line sums) the extension to higher dimensional X-rays (plane sums) is of
interest. We are going to treat these problems from an algorithmic point of
view.
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We also consider the poly-atomic case, that is the problem of recovering
crystalline structures composed of several types of atoms. This problem is
related to the problem of reconstructing interfacial structures in material
sciences. It is shown that reconstructing sets of several types of atoms is
already NP-complete for six types of atoms and two X-rays.

Jean - Pierre Reveilles

The MAT operator for edge detection
(abstract not available)

Peter Schwander

Application of Discrete Tomography to
Electron Microscopy of Crystals
Recent progress in HRTEM (High-Resolution Transmission Electron Mi-
croscopy), allows us to probe microscopic properties of small crystals at the
atomic level. This is important for the development of processing semicon-
ductor materials for microelectronics.

In HRTEM an application of discrete tomography arises as follows: a
parallel beam of electrons is directed at a small piece of a 3D crystal. Af-
ter passage through the crystal and a high magnification lens system, the
electrons form a 2D image. The microscope resolution is sufficient that
individual atom-columns can be resolved, at least for some directions. A
technique, named QUANTITEM, deduces a signal from the image that is di-
rectly proportional to the number of atoms contained in each atom-column.
Therefore, for a small crystal, the measured values must be approximately
integral multiples of a fixed quantity. Thus, line sums, each corresponding
to the number of atoms contained in a single atom-column, can be obtained
from the image.

For physics and materials science it is of great interest to reconstruct
crystals consisting of about 106 atoms from the measured line sums. This
reconstruction problem of discrete tomography brings up mathematical is-
sues of practical relevance, such as uniqueness, computational complexity
and algorithms. The mathematics is considerably different from continuous
tomography so that the well known inversion techniques cannot be applied.
The problem is finite but NP-complete when more than two projection di-
rections are used. Therefore, enumeration techniques, such as Simulated
Annealing, are of little practical use for the crystal sizes of interest. Recently
LP methods on fuzzy sets have been considered and first results obtained
from test sets were promising.

In the future, practical constraints of the measurement technique, such as
number and type of projection directions, experimental noise and incomplete
data due to limited field of view, must also be taken into account.
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This presentation attempts to outline the unsolved aspects of the yet still
young field of discrete tomography, rather than to give a closed mathematical
description.

Sven de Vries

Polyhedral Methods for Discrete Tomography
(joint work with P. Gritzmann)

We focus on the algorithmic problem of recovering discrete lattice sets
from their discrete X-rays. This problem is of fundamental importance in
many practical applications. In particular, improvements in the interpreta-
tion and generation of high resolution transmission microscopy images lead
to the problem of recovering crystalline structures with the knowledge of
X-ray information for certain directions.

While the problem is known to be NP-complete if more than 2 X-rays are
given, the algorithmic question, how to solve it in reasonable time, remains
to be studied.

We introduce two linear programs to describe reconstruction-problems in
discrete tomography:

Ax = b,

x binary;

and the (equivalent) maximization problem on its submissive:

max
∑

xi,

s.t. Ax ≤ b,

x binary.

The feasible region P of the second formulation turns out to be fulldimen-
sional, while the decision problem, whether the first polytope is 0- or larger-
dimensional given a single solution, is already NP-complete. We describe
various families of facets of the tomography polytopes P.

To reduce the problem-size we propose an interior-point based strategy
to fix variables.

For approximation results we use matroid based methods and a rounding
strategy.

Markus Wiegelmann

Discrete Tomography:
Switching Components and Primal Heuristics
Switching components are the combinatorial structures explaining the ambi-
guities in inversion problems that arise in Geometric Tomography. Using a
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natural formulation of the basic algorithmic problems in Discrete Tomogra-
phy as {0, 1}-integer programs we interpret switching components as moves
in the {0, 1}-fibers attached to the projection matrix. The Gröbner basis
approach to integer programming allows to study the structural and algo-
rithmic properties of these moves in a precise way. In particular, it provides
systematic improvements of backprojection-like primal algorithms for NP-
hard reconstruction problems. Implementations of these algorithms yield
very high performances even for large reconstruction problems with up to
106 points.

Gerhard J. Woeginger

The Reconstruction of Polyominoes from their Orthogonal
Projections
The reconstruction of discrete two-dimensional pictures from their projec-
tions is one of the central problems in the areas of medical diagnostics,
computer-aided tomography, pattern recognition, image processing and data
compression. In this talk, we show that it is NP-complete to reconstruct a
two-dimensional connected pattern from its two orthogonal projections H
and V .

Neal Young

Randomized Rounding for Discrete Tomography
Raghavan and Thompson’s method of randomized rounding converts frac-
tional solutions of linear programs to approximate, integer solutions. Dis-
crete tomography is naturally described as a linear program whose integer
solutions correspond to valid reconstructions of the hidden data from the
given line sums. Randomized rounding yields an approximate solution in
that each constraint with desired line sum b has line sum b ± O(

√
b logn)

where n is the number of line sums.
Variants of the method yield deterministic algorithms and algorithms that

obtain the same performance guarantee without solving the linear program
first (the latter algorithms are somewhat more efficient). Also, variants
can guarantee to meet the line sums in one direction (for a 2D problem)
or two directions (for a 3D problem) exactly, while maintaining the same
performance guarantees for the other line sums.

----
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Open problems

During the workshop and particularly in an extended problem session var-
ious open problems were posed. The following is a list of those problems
that we handed in in writing – not containing problems which were only
presented orally.

Richard J. Gardner

Problem 1: Let n ≥ 3. Is there a finite set S of lattice directions in general
position in E

n with the property that every convex lattice set in Z
n can be

distinguished from any other by its discrete X-rays in the directions in S?
The corresponding problem for n = 2 is completely solved by the re-

sults of R. J. Gardner and P. Gritzmann, Discrete tomography: Deter-
mination of finite sets by X-rays, Trans. Amer. Math. Soc., to appear,
and E. Barcucci, A. Del Lungo, M. Nivat, and R. Pinzani, X-rays char-
acterizing some classes of digital pictures, preprint. When n = 3, the set
S = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}, for example, does not have this property.
To see this, color the vertices of the standard unit cube alternately black
and white. Then the set of four black points and the set of four white points
are different convex lattice sets with the same discrete X-rays in the direc-
tions in S. It is easy to see that this example is not optimal, however. The
question corresponding to Problem 1 for continuous X-rays of convex bodies
is also open and is posed in R. J. Gardner, Geometric Tomography, Cam-
bridge University Press, New York, 1995, Problem 2.1 and R. J. Gardner,
Geometric tomography, Notices Amer. Math. Soc., 42, 1995, 422–429. For
the continuous version, there is an example of a set S with |S| = 6 that does
not have the property, based on the polyhedron (4, 6, 10); see R. J. Gardner,
Geometric Tomography, Cambridge University Press, New York, 1995, The-
orem 2.2.2 and Figure 2.1. I conjecture that there is an affirmative answer
to Problem 1 for sets S with |S| ≥ 7.
Problem 2: Is there a finite set S of lattice directions in E

2 , with the
property that every convex lattice set in Z

2 can be distinguished from any
(arbitrary) lattice set in Z

2 by its discrete X-rays in the directions in S?
It follows from R. J. Gardner and P. Gritzmann, Discrete tomography:

Determination of finite sets by X-rays, Trans. Amer. Math. Soc., to appear
that only sets S with |S| ≥ 4 can have this property. Suppose that S is
any set of lattice directions such that every convex lattice set in Z

2 can be
distinguished from any other by its discrete X-rays in the directions in S.
Then it is possible that S also has the property required in Problem 2. In
particular, it is not known whether the set S = {(1, 0), (0, 1), (2, 1), (−1, 2)}
has the required property, or whether any set S with |S| ≥ 7 does. Again,
the corresponding continuous version of Problem 2 is also open and is posed
in R. J. Gardner, Geometric Tomography, Cambridge University Press, New
York, 1995, Problem 2.8.
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P. Gritzmann

Let Fd denote the class of all finite subsets of Z
d, let G ⊂ Fd and let L1,d

denote the family of 1-dimensional subspaces of E
d that are spanned by a

lattice vector v ∈ Z
d \ {0}.

For given S1, . . . , Sm ∈ L1,d, ConsistencyG(S1, . . . , Sm) asks whether
given functions Xi for Si, i = 1, . . . ,m, encode the X-rays of some set F ∈ G,
while UniquenessG(S1, . . . , Sm) asks whether there is a solution different
from a given one. The precise definitions and relevant data structures of
these problems are contained in [2], as are the complexity results: For d ≥ 2
and m ≥ 3 different lines S1, . . . , Sm in L1,d, ConsistencyFd(S1, . . . , Sm)
and UniquenessFd(S1, . . . , Sm) are NP-complete in the strong sense. The
counting version #

(

ConsistencyFd(S1, . . . , Sm)
)

that asks for the number
of solutions is #P-complete for m ≥ 3.
Problem 1: Determine the computational complexity of
#

(

ConsistencyFd(S1, S2)
)

?

Let Cd denote the class of convex lattice sets, where a set F ∈ Fd is a
convex lattice set if F = Z

d ∩ convF .
Problem 2: Characterize the computational complexity of
ConsistencyCd(S1, . . . , Sm).

This problem is particularly interesting for d = 2, and certain sets of four
and arbitrary sets of seven lattice lines since a result in [1] shows that X-
rays in some 4 and any 7 mutually noncollinear lattice directions determine
planar convex lattice sets uniquely.

This result is also relevant for the following problem. For a class G ⊂ Fd,
define the Helly number H(G) for consistency to be the least integer h such
that there is a solution for any instance I of ConsistencyG(S1, . . . , Sm)
whenever there are solutions for all corresponding consistency problems ob-
tained by considering h of the m X-sets in I. If U(G) denotes the least
integer such that sets in the class G are uniquely determined by X-rays in
any set of U mutually nonparallel lattice directions (if such an integer exists,
∞ otherwise) then H(G) ≤ U(G) + 1. For convex lattice sets it follows that
H(C2) ≤ 8.
Problem 3: Is it true that for every G ⊂ Fd a finite value of H(G) implies
that U(G) is also finite?

While the first three problem are based on [2], the last problem is from [3],
where similar problems are studied in the “polyatomic case” where c ≥ 2 dis-
joint lattice sets have to be reconstructed simultaneously. The complexity for
m ≥ 3 is of course clear, but how difficult is Polyc-ConsistencyFd(S1, S2)
(where for each l = 1, . . . , c and i = 1, 2, a function Xi,l is given and the

question is whether there exist disjoint sets Fl ∈ Fd such that XSi
Fl ≡ Xi,l

for l = 1, . . . , c and i = 1, 2)?
While the problem is easy for c = 1, it is shown to be NP-complete for

c ≥ 6.



19

Problem 4: What is the computational complexity of
Polyc-ConsistencyFd(S1, S2) for c = 2, 3, 4, 5?

It is conjectured in [3] that these problems are NP-complete at least for
c ≥ 3, and there is an unpublished work of Picouleau on the case c = 2.
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A. Kuba

Problem: Find a 3D binary matrix which is unique (w.r.t. the given three
projections taken in rows), but which is non-additive.

Gerhard J. Woeginger

Problem 1: Does there exist a polynomial time algorithm that takes as
input a vertical projection vector V ∈ Rn and a horizontal projection vector
H ∈ Rm, and that behaves as follows: Either the algorithm outputs a
polyomino with projections V ∗ and H∗ such that every component of (V,H)
differs by at most one from the corresponding component of (V∗,H∗), or
otherwise the algorithm outputs “No” and in this case there does not exist
a polyomino with projections V and H. (Note that this does not mean that
the algorithm has to recognize all the non-polyomino projections).

Alternatively, one may ask that the algorithm outputs a polyomino with
projections V ∗ and H∗ such that the Manhattan distance between (V,H)
and (V ∗,H∗) is bounded e.g. by O(

√
n+m) or even by O(1).

Problem 2: What is the computational complexity of recognizing the hor-
izontal and vertical projections of the following class of almost convex pat-
terns: The pattern is connected, and the intersection of every vertical and
of every horizontal line with the pattern consists of at most two intervals.

----


