Dagstuhl Report

Deduction
Wolfgang Bibel Ulrich Furbach
Technische Hochschule Darmstadt Universitat Koblenz-Landau
Fachbereich Informatik Fachbereich Informatik
Alexanderstr. 10 Rheinau 1
64283 Darmstadt 56075 Koblenz
Germany Germany
bibel@intellektik. uli@informatik.
informatik.th-darmstadt.de uni-koblenz.de
Ryuzo Hasegawa Mark Stickel
Department of Electronics Artificial Intelligence Center
Kyushu University SRI International
10-1 Hakozaki 6-chome 333 Ravenswood Avenue
Higashi-ku, Fukuoka 812 Menlo Park, California 94025
Japan USA
hasegawa@ele. Stickel@AI.SRI.COM

kyushu-u.ac. jp

This report! covers the seminar on Deduction, held at Dagstuhl, Germany
during February 24-28, 1997. This seminar was organized by W. Bibel
(Darmstadt, Germany), U. Furbach (Koblenz, Germnay), R. Hasegawa (Ky-
ushu, Japan) and M. Stickel (SRI, USA). It brought together about 50 re-
searchers from various countries.

Dagstuhl, a place being developed exclusively for research activities in
Computer Science, provides an excellent atmosphere for researchers to meet
and exchange ideas. During this seminar we had 41 talks, a panel, and a
discussion how system implementors could cooperate.

*Compiled by Peter Baumgartner, Universitat Koblenz.

1 A Note from the Organizers

The Dagstuhl Seminar on Deduction, succeeding the ones in 1993 and in
1995, was convened to give international researchers on deduction the oppor-
tunity to meet and discuss techniques, applications and research directions
for deduction. The seminar also provided a forum for results obtained in the
German focus project (DFG Schwerpunkprogramm) on deduction.

Throughout this seminar it turned out that logic is not only an essential
formalism for computer science and artificial intelligence. Moreover there is a
driving force towards using logic and automated deduction within various ap-
plications and other domains of computer science. There were talks ranging
from more theoretical questions on deduction systems, to applications like
planning, logic programming, knowledge representation and to verification
of hard- and software.

With the excellent computing facilities available at Dagstuhl it also was
possible to have a number of very impressive system demonstrations.

A panel on “How to get Automated Deduction out of its Corner” was
organised during this seminar by Wolfgang Bibel. The discussion resulted
in an agreement that there are realistic examples of applying automated
deduction and its methods within various application areas.

Ulrich Furbach

2 Abstracts of the Talks

Jiirgen Avenhaus, Univ. Kaiserslautern

Inductive Theorem Proving with Partial Functions

In this talk we are interested in an algebraic specification language that al-
lows for sufficient expessiveness, admits a well-defined semantics, and allows
for formal proofs. To that end we study specifications over built-in algebras.
To keep things simple, we consider built-in algebras only that are given as
the initial model of a Horn clause specification. On top of this Horn clause
specification new operators are (partially) defined by positive /negative con-
ditional equations.

In the first part of the talk we define model-theoretic and operational se-
mantics for such a hierarchical specification. We show that these semantics
coincide, provided some restrictions are met. We associate a distinguished
algebra A, to a hierachical specification spec. This algebra is initial in the

class of all models of spec. As a consequence, an equation s = t is valid in
Agpec iff it is valid in all term-generated models of spec. For this reason we
define inductive validity as validity in this model Ajp..

In the second part of the talk we present a proof calculus for inductive va-
lidity. Traditional inductive theorem proving restricts to the case where the
specification (a) is terminating and (b) defines all new operators totally. Our
proof calculus does not need these restrictions.

We give some examples to show how concrete proofs are carried out.

Franz Baader, RWTH Aachen

Combination of Compatible Reduction Orderings that are Total
on Ground Terms

Reduction orderings that are compatible with an equational theory F and
total on (the F-equivalence classes of) ground terms play an important role in
automated deduction. This paper presents a general approach for combining
such orderings: it shows how FE;-compatible reduction orderings total on
Yi-ground terms and E,-compatible reduction orderings total on > p-ground
terms can be used to construct an (E; U Fj)-compatible reduction ordering
total on (X; U Xy)-ground terms, provided that the signatures are disjoint
and some other (rather weak) restrictions are satisfied.

This work was motivated by the observation that it is often easier to
construct appropriate orderings for “small” signatures and theories sepa-
rately, rather than directly for their union. Well-known examples for this
phenomenon are theories axiomatizing several associative-commutative func-
tion symbols.

Michael Beeson, San Jose State University

Automatic Generation of Epsilon-Delta Proofs

A computer program has been able to generate a proof of the uniform con-
tinuity of f(x) = x%. This is the first time a program has been able to prove
the continuity of a non-linear function.

The methods used are intended to exemplify techiques for a fruitful
integration of theorem-proving and symbolic computation. A “backwards
Gentzen” theorem prover is used, in which at any state, either computation
or logical rules can be used. If computation is used, the computational op-
erations may generate new assumptions (new formulae in the antecedent).
These may include metavariables to be instantiated to specific terms later.

Control of the inference procedure involves symbolic computation also at
the metalevel. For example, a procedure called FactorBounding is used to
decide that when confronted with the goal

|z —y||x® + 2y +y? < e

we should try to bound the second factor.

The success of this work rests in large part on the logically-correct sym-
bolic computation code in my software Mathpert, which was developed to
help students learn algebra, trigonometry, and calculus. To achieve the result
described above, this code was combined with more or less standard proof
search techniques.

C. Beierle, G. Meyer, FernUniversitat Hagen
Analysis and Verification of Type-Annotated Logic Programs

The technique of annotating programs can be used for the analysis and the
verification of programs. The kind of annotations most widely used are type
annotations. We investigate the use of types in logic programming where
types are used not only for static analysis, but also as dynamic constraints
in the spirit of constraint logic programming. Furthermore, types can be
interpreted as describing approximations of the success set of a program.
We analyze characteristics and shortcomings of different approaches to types
in logic programming and propose a notion of type annotations that allows
static program analysis to detect typing errors as well as useless clauses.

Wolfgang Bibel, TH Darmstadt

Reasoning about Action in CL

A resource-sensitive logic (termed linear connection method in Bibel 1986
and closely related to BCK) is embedded in classical first-order logic as a
sublogic to yield a structurally simple and rather natural new computational
logic CL for reasoning about theories as well as actions. Deduction in both
parts of CL is nearly identical which supports the ease and efficiency of im-
plementation and reflects reasoning in natural language where the difference
is blurred anyway. CL is compared with linear logic, the STRIPS formalism,
the fluent calculus, and the situation calculus. It is illustrated how planning,
temporal projection, postdiction, ramification, qualification, indeterminism,
synchronization, and diagnosis may be done in CL using a classical theorem
prover like SETHEO or KOMET.

Jim Cunningham, Imperial College

Multi-modal Deduction: a mechanism for realising rationality

Multi-modal logic provides a framework for theories of rationality, where
distinct modalities are used to separate what is Sensed (S) to be the case
from what is Believed (B), Intended (W), Wanted (W), brought about by an
action a (&,), or directly Done by a (D,). For example, the axiom schema:
Sa — Ba captures the naive notion that what is sensed is believed. A
slightly improved theory with updating (Next) and unorganised memory
(Previously) might have the schema pair: Sa — N Ba, S—~aABa — NBPa,
and so on. A similar first attempt to capture goal directed action can yield
the problematic rapacious schema: WaABE,a — D,. In a well known paper
Cohen & Leveque provide improved multi-modal theories which demonstrate
the expressive capability of multi-modal logics for Al. To describe continuous
change in Al scenarios, Halpern & Shoham developed a multi-modal interval
logic. In recent work, Leith & myself have shown that tense and aspect in
natural language can also be represented in this logic.

To realise an abstract multi-modal logic for theories of rationality we need
a programme for multi-modal deduction. One direct way is to build a net-
work of inference engines, each working concurrently in a different modality,
with appropriate communication in the common language of classical propo-
sitions. We may, for example, split each instance of a the naive sensing-is-
believing schema, say Sc — Bec, by introducing a communicated proposition
X., so that S¢c — X, and X. — Be. Of course, this requires an interpolation
lemma, but it indicates a direction for multi-modal deduction which lies be-
hind my work with Pitt in distributed modal KE Theorem Proving systems.
However, for logical deduction to provide rationality we must also get away
from the idea that deduction is just theorem proving. This is a tradition of
Mathematical logic rather than of Philosophical logic. In Al we need to use
deduction for other forms of rational enquiry too, like discovering interest-
ing consequents, abducing causes and planning actions. (To illustrate this
tradition, Lewis Carroll’s School-Boy’s problem is presented as a challenge).

Bernd Ingo Dahn, Univ. Berlin
Proof Presentation - Why and How / The Robbins Case

In late 1996 William McCune proved with the automated theorem provers
EQP and Otter that each Robbins algebra satisfies Winker’s second condi-
tion. Hence each Robbins algebra is Boolean. This solved a problem which
was open for more than 60 years.

We demonstrate the automatic generation of a human readable presen-
tation of this proof by the ILF system. It translates Otter proofs into block
structured proofs. These proofs can be easily presented in any language with
SGML document type definition. They can be also combined consistently
with proofs from other systems.

The block structured proof is then transformed automaticaly. This elim-
inates trivial details and generates additional explanations. Renaming and
type setting declarations introduce abbreviations for important terms. These
procedures can be varied in order to present the proof from several points of
view.

ILF has also a tool to visualize the logical structure of the proof. This
supports the identification of important proof steps.

The analysis of different proof presentations made it possible to reveal the
mathematical idea of the solution of Robbins problem by EQP and Otter.
Thus the depth of terms in the proof could be reduced from 14 to 4.

Jorg Denzinger, Univ. Kaiserslautern

Learning Search Control for Automated Deduction

We present the general problems that arise, if one wants to enhance an auto-
mated prover with learning capabilities and we sketch some general solutions
to these problems. Furthermore, we present a concept for an automated
theorem prover that employs a search control based on ideas from several
areas of artificial intelligence (AI). The combination of case-based reasoning,
several similarity concepts, a cooperation concept of distributed Al and re-
active planning enables a system using our concept to learn form previous
successful proof attempts. In a kind of bootstrapping process easy problems
are used to solve more and more complicated ones.

We provide case studies from two domains of interest in pure equational
theorem proving taken from the TPTP library. These case studies show that
an instantiation of our architecture achieves a high grade of automation and
outperforms state-of-the-art conventional theorem provers.

Melvin Fitting, City University of New York
First-Order Modal Logics

The talk consisted of a brief sketch of the complexities that must be ad-
dressed in a full treatment of first-order modal logic(s). Specifically, the
following items were discussed: Existence presuppositions; that is, what as-
sumptions can be made concerning quantifier domains. Rigid vs non-rigid

designators. Syntax issues. Skolemization. Herbrand’s theorem. Equality
and problems related to it, such as Frege’s morning star/evening star prob-
lem. The possibility of non-designation. Definite descriptions.

The presentation was essentially semantic. Tableau systems exist that
can deal with the issues raised. Implementation is a different matter, and is
likely to prove quite complex. It is left as an exercise.

Ulrich Furbach, Universitat Koblenz

Semantically Guided Theorem Proving for Diagnosis
Applications

In this paper we demonstrate how general purpose automated theorem prov-
ing techniques can be used to solve realistic model-based diagnosis problems.
For this we modify a model generating tableau calculus such that a model of a
correctly behaving device can be used to guide the search for minimal n-fault
diagnoses. Our experiments show that our general approach is competitive
with specialized diagnosis systems.

Pascal Gribomont, University of Liege

Connection-based invariant verification for concurrent
programs : Validation of Boolean conditions.

The correctness problem for hardware and software systems can often be re-
duced to the validity problem for logical formulas. However, the size of the
logical formulas to be validated grows faster than the size of the system un-
der investigation, and the complexity of the validation procedure makes this
approach practically intractable for large programs. We introduce a strategy
for dealing with this problem in the propositional case, corresponding e.g. to
digital circuits and concurrent synchronization algorithms. Efficiently com-
putable criteria are used to assess the mutual relevance of formulas and sub-
formulas. They are based on the notions of interpolation and polarity, and
allow to detect and discard provably irrelevant parts of Boolean verification
conditions. These criteria lead to a simplification and validation method,
whose efficiency is investigated both theoretically and practically.

Reiner Hahnle, Univ. Karlsruhe

Semantic Tableaux with Selection Functions

Recently, several different sound and complete tableau calculi were intro-
duced, all sharing the idea to use a selection function and so-called restart
clauses: A-ordered tableaux, tableaux with selection function, and strict
restart model elimination. We present two new sound and complete abstract
tableau calculi which generalize these on the ground level. This makes dif-
ferences and similarities between the calculi clearer and, in addition, gives
insight into how properties of the calculi can be transferred among them.
In particular, a precise borderline separating proof confluent from non-proof
confluent variants is exhibited.

Masami Hagiya and Masayuki Fujita, University of Tokio and
Mitsubishi Research Institute

Specification Verification by Hybrid Reasoning System in
CafeOBJ: An Algebraic Specification Language

CafeOBJ is an algebraic specification language belonging to the OBJ fam-
ily of languages originated by Joseph Goguen. Among its new features are
(1) introduction of rules in the sense of rewriting logic and (2) introduction
of hidden sorts for describing behavioral specifications. Both features are
intended to support object-orientation. This talk is a brief overview of an
ongoing project developing an environment for specification and verification
in CafeOBJ. The project is led by Kokichi Futatsugi and funded by IPA
(The Information-technology Promotion Agency, Japan), beginning in 1996
and ending in 1998. It consists of three subsystems: (1) language processing,
(2) verification and (3) editing and retrieval. As for language processing,
a term writing abstract machine and a compiler to abstract code are being
developed. Verification in CafeOBJ will be done in an hybrid environment
consisting of various provers. A network-wide environment based on an ex-
tension of HTML is expected to support editing and retrieval of modules.

The key points in verification under the environments are: (1) No new
language for describing proofs is introduced. Theorems and lemmas are writ-
ten as modules or views in CafeOBJ. (2) The extension of HTML (called
Forsdonnet) supports tags that represent constraints relating pieces of infor-
mation on a document. Modules in CafeOBJ as well as verification traces
are described in Forsdonnet. Provers are considered as constraint solvers and
prover outputs are also inserted and maintained in Forsdonnet.

F. von Henke, A. Dold, H. Pfeifer, H. Ruef3, Universitat Ulm

Deductive Program Verification Revisited: Compiler
Correctness

Compiler correctness is a problem that has been investigated for at least 30
years. In this talk we give a survey of an effort to build up the mathematical
basis for specifying and verifying compiler correctness in a completely formal
and mechanizable framework.

Since modeling the semantics of loops typically requires fixed points, the
starting point of this development is a formal treatment of the relevant parts
of domain theory and fixed point theory. Based on this, denotational se-
mantics for elementary constructs (expressions, sequence, conditional, while
loop) is developed; other forms of semantics including weakest preconditions,
Hoare semantics, operational semantics in the SOS style, and appropriate al-
gebraic laws as used in refinement calculi are derived. This development is
carried out using the PVS system, thus leading to a collection of (typically
parameterized) theories suitable for inclusion in a PVS library.

The formal specification of compilation for the constructs listed above
proceeds in steps: each type of constructs is dealt with separately, thus
isolating the essential aspects of the compilation step. The final translation
of control constructs into machine code involving jumps requires two kinds of
induction: fixed-point induction for handling loops, and induction over the
structure of (source) programs.

Alain Heuerding, IAM, University of Bern
LWB - The Logics Workbench

The Logics Workbench is an interactive system which gives a survey of a
broad variety of propositional logics. One application is as a supporting tool
for teaching activities at various levels, but it also offers efficient algorithms
for experts. The carefully designed human interface comes with a powerful
information system. Therefore it should be easy also for non-specialists to
use the LWB with profit. For more information:

lwb@iam.unibe.ch
http://lwbwww.unibe.ch:8080/LWBinfo.html

Jorg Hudelmaier, Univ. Tibingen
Construction of Kripkean Countermodels for Intuitionistically
Unprovable Sequents

There is a well known direct relationship between finitely failing LK-derivations
of a propositional formula and its Boolean countermodels. For LJ, however,

there is no similar relationship with Kripkean semantics. Therefore we intro-
duce a new calculus LJn obtained from LJ by adding an additional premiss
to its I—-rule. The form of this new premiss is the same as the form of the
(single) I—-premiss of LK. Then we show that any unprovable formula of LJ
has a finitely failing LJn-derivation. Thus for LJn the required relationship
with Kripkean semantics holds.

Deepak Kapur, State University of New York

Mechanical Verification of Arithmetic Circuits

The use of a rewrite-based, induction theorem prover, Rewrite Rule Labo-
ratory RRL, is discussed for gate-level verifying arithmetic circuits. It will
be shown that the induction scheme generation heuristic in RRL based on
the cover set method, tight integration of decision procedures with rewriting,
and intermediate lemma generation heuristics can help in finding verification
proofs of arithmetic circuits with minimal user guidance. Particularly, RRL
has been used to automatically verify that ripple carry, carry save as well
as a more sophisticated carry lookahead adder perform addition on numbers
represented by bit vectors of any length. Correctness of multiplier circuits is
established generically and parametrically by showing that the family of mul-
tipliers circuits including linear multiplier, Wallace multiplier, 7-3 multiplier
as well as Dadda multipler can all be done in the same way. Intermediate
lemmas needed for verifying that the multipliers perform multiplication on
numbers represented by bit vectors of any length can be mechanically gen-
erated from the circuit structure, repetitive use of carry-save adders and the
fact that bit vectors represent numbers.

Finally, it is be shown that the invariant properties of an SRT division
circuit described in Clarke et al’s CAV’96 paper can also be established au-
tomatically by RRL using its linear arithmetic procedure, rewriting and case
analysis mechanisms. This shows that verification of such a circuit does not
need sophisticated capabilities of computer algebra systems such as Maple
and Mathematica. This proof turned out to be straightforward, a pleasant
surprise to us.

Michael Kohlhase, Univ. Saarbriicken

Deduction Techniques for Natural Language Understanding

The talk emphasizes the opportunity of using deduction methods in natural
language understanding.

10

We start out by explaining some some of the usages of reasoning, such as
common ground maintenance, discourse structure and coherence and finally
during the reconstruction of underspecified material.

The technical part of the talk, takes a closer look at higher-order unifi-
cation techniques for ellipsis reconstruction and corrections. In the first case
we show how higher-order colored unification, a variant of HOU developed
for inductive theorem proving (rippling with meta-variables) can be used as
a general interface to specify extra-semantical linguistic constraints on the
solutions and thereby restrict the search spaces.

In the case of corrections, we need an extension of HOU that takes logical
equivalences into account to cope with the discourse relation of parallelity in
the presence of background. This involves the use of a theorem prover inside
higher-order unification.

The talk closes with the challenge to the community to take a closer look
at the linguistic applicatio

Wolfgang Kiichlin, Universitdt Tiibingen (joint work with
Reinhard Biindgen and Manfred Gébel)

Parallel Term Rewriting on a Hierarchical Multiprocessor

We report on a parallel implementation of an unfailing term completion pro-
cedure on a network of multiprocessor workstations. Our parallelization con-
cept uses a simplified form of the Teamwork approach by Avenhaus and
Denzinger to combine several instances of our parallel term-rewriting system
PaReDuX. It integrates distributed search parallelism on the network, based
on a master—slave approach, with the parallel execution of each strategy on
a multi-processor. Both levels of parallelism are realized by a uniform fork—
join paradigm using multi-threading. In many of our examples we are able
to combine the benefits of distributed and shared-memory approaches for
superior overall speed-ups.

A full paper on this subject has been published in Proc. DISCO’96,
Springer LNCS 1128, pp. 183-194.

Alexander Leitsch, TU Vienna (joint work with Christian
Fermiiller)

Automated Model Building: Representation, Construction and
FEvaluation

Hyperresolution is presented as decision procedure, model building proce-
dure and evaluation procedure on (classes of) clause logic. If hyperresolution

11

terminates on a set of clauses (e.g. on clause sets belonging to the decision
classes PVD and OCCIN) without deriving a contradiction then the result-
ing satisfiable set of clauses C can be used as raw material for automated
model building. If C is a fixed point under hyperresolution + replacement
and the positive clauses are decomposed (i.e. different literals do not share
variables) then there is a backtracking-free method for producing an atomic
model representation; this method is based on literal selection and deductive
closure. Moreover hyperresolution can be used as an evaluation algorithm for
arbitrary clauses over atomic representations; this gives the first evaluation
algorithm over infinite models. A method (using signature-based subsump-
tion) is defined to decide the equivalence problem of different atomic repre-
sentations. Thus we have shown that hyperresolution, the oldest refinement
of resolution, is much more than just a method to derive O. Finally exten-
sions of model representation formalisms and generalizations to equational
clause logic are indicated.

Neil V. Murray, SUNY Albany

A Remark on Proving Completeness

Completeness proofs that generalize the Anderson-Bledsoe excess literal ar-
gument are developed for calculi other than resolution. A simple proof of
the completeness of regular, connected tableaux for formulas in conjunctive
normal form (CNF) is presented. These techniques also provide complete-
ness results for some inference mechanisms that do not rely on clause form.
In particular, the completeness of regular, connected tableaux for formulas
in negation normal form (NNF), and the completeness of NC-resolution for
NNF formulas under a linear restriction can be proved.

Joachim Niehren, Univ. des Saarlandes

On Equality Up-to Constraints over Finite Trees, Context
Unification, and One-Step Rewriting

We introduce equality up-to constraints over finite trees and investigate their
expressiveness. Equality up-to constraints subsume equality constraints, sub-
tree constraints, and one-step rewriting constraints. We establish a close cor-
respondence between equality up-to constraints over finite trees and context
unification. Context unification subsumes string unification and is subsumed
by linear second-order unification. We obtain the following three new results.
The satisfiability problem of equality up-to constraints is equivalent to con-
text unification, which is an open problem. The positive existential fragment

12

of the theory of one-step rewriting is decidable. The 3*V*3* fragment of the
theory of context unification is undecidable.

Keywords tree constraints, subtree relation, string unification, context uni-
fication, linear second-order unification, one-step rewriting, natural language
understanding.

Ilkka Niemela, Univ. Helsinki

Disjunctive Logic Programming and First-Order Theorem
Proving

It is argued that merging disjunctive logic programming (DLP) and first-
order theorem proving is very natural and offers advantages to both of the
fields. On one hand, each DLP system contains a full first-order theorem
prover: evaluating a positive query against a positive disjunctive program
amounts to testing classical consequence from a set of first-order clauses.
Hence, efficient theorem proving techniques are an essential ingredient in
every DLP implementation. On the other hand, DLP offers knowledge rep-
resentation techniques (such as closed world assumption, default values, rules
with exceptions) that can be very useful for representing domain knowledge
for a theorem prover.

The disjunctive well-founded semantics of Brass and Dix (D-WFS) is
put forward as a promising basis for merging DLP and theorem proving
paradigms. D-WF'S was originally defined for ground programs as the weak-
est semantics invariant under some very natural program transformations.
We generalize D-WFS to the first-order case and show that D-WFS has
the following property: negative queries are evaluated according to mini-
mal model entailment which is a generalization of entailment under subset
minimal Herbrand models and positive queries are answered using classical
entailment. This allows a modular integration of DLP and theorem prov-
ing: answering positive queries can be done using a classical theorem prover
which uses a minimal model reasoner as a background reasoner for handling
the negative queries.

Tobias Nipkow, Univ. Saarbriicken

Winskel is (almost) Right
Towards a Mechanized Semantics Textbook

We present a formalization of the first 100 pages of Winskel’s The Formal
Semantics of Programming Languages in the theorem prover Isabelle/HOL:

13

2 operational, 2 denotational, 1 axiomatic semantics, a verification condition
generator, and the necessary soundness, completeness and equivalence proofs,
all for a simple imperative language.

Hans de Nivelle, CWI, Amsterdam

Verification of Mathematical Proofs in Classical Logic Using
Sequent Calculus.

We present a sequent calculus for set theory which has the following features:
It has direct introduction and elimination rules for the element relation, and
the element relation is extended to n-tuples.

In the second part of the talk we give a formalism (called proof trees)
for representing proofs in this sequent calculus, which is intended to have
a simplicity and charm that can compete with the lambda-terms of type
theory. We show that the proof trees have a monotonicity and relevance
property, and we show how cut elimination (for the classical fragment) can
be implemented using proof trees.

Jens Otten, TH Darmstadt

Proof Strategies for Intuitionistic Logic

Intuitionistic logic, due to its constructive nature, has an essential significance
for the derivation of verifiably correct software. According to the “proof-as-
programs” paradigm of program synthesis theorems proven in a constructive
manner can be interpreted a specifications of programs which are implicitly
contained in the proof. Therefore we are currently working on several proof
methods for intuitionistic logic:

e a non-clausal connection method (based on Wallen’s matrix character-
ization) [2],

e a free-variable analytic tableau calculus (also based on Wallen’s char-
acterization), and

e a proof method which decides propositional intuitionistic logic via a
translation into classical propositional logic and the application of a
non-clausal Davis-Putnam procedure [1,4].

In the following we will shortly explain our second approach.

In classical provers usually term unification and Skolemization is used
to express the non-permutabilities between the quantifier rules (due to the
eigenvariable condition in the sequent calculus). To handle the non-permutabilities

14

between certain intuitionistic rules in a similar way we use a specialized string
unification and extend Skolemization accordingly.

Our analytic tableau calculus is similar to the classical one. To deal with
intuitionistic logic we have to assign a prefix p to each formula in the tableau
where some tableau rules add a character to the current prefix of the formula.
A prefiz (or semantically spoken a world path) of a formula is a string and
essentially describes its position in the formula tree. We use a free-variable
tableau calculus, i.e. we do not only use free variables for the terms but also
for the prefixes. Similar to the Skolem-term introduced in the first-order
classical case we use a Skolem-character s(xy,...,z,) for the prefixes. For
the Skolem-function s we use the unique position of the current formula in the
formula tree. The variables x4, ..., z, are only the free variables introduced
in the current branch of the formula tree not in the current branch of the
tableau. This means that we use a Skolemization for the term- and prefix-
variables which is similar to some liberalized d-rule in the classical tableau
calculus.

We have implemented our prefix-based tableau calculus in Prolog, called
ileanTAP [3]. At first a leanTAP like technique for path checking is used to
prove the classical validity of a given first-order formula. Afterwards we try
to unify the prefixes of those atoms closing the branches of the tableau proof
found in the first step. If this additional string unification succeeds the for-
mula is intuitionistically valid. Although the implementation of ileanTAP is
comparable short (about 4 kilobytes) its performance is sometimes even bet-
ter than the performance of the tableau prover ft from Sahlin et. al. (which
consists of about 200 kilobytes of C source code). Due to the modular treat-
ment of the different logical connectives the implementation can easily be
adapted to deal with other non-classical logics such as the modal logics S4,
D, D4, S5 and T.

[1] DANIEL KORN, CHRISTOPH KREITZ. Deciding Intuitionistic Propositional

Logic via Translation into Classical Logic. In W. McCune, editor, CADE-
14, LNAI, Springer Verlag, 1997.

[2] CHRIsTOPH KREITZ, JENS OTTEN, STEPHAN SCHMITT. Guiding Program
Development Systems by a Connection Based Proof Strategy. In M. Proietti,
editor, LOPSTR 95, LNCS 1048, pp. 137-151, Springer Verlag, 1995.

[3] JENS OTTEN. ileanTAP: An intuitionistic theorem prover. TABLEAUX ’97,
LNAI, Springer Verlag, 1997.

[4] JENS OTTEN. On the Advantage of a Non-Clausal Davis-Putnam Proce-
dure. Technical Report, AIDA-97-1, TH Darmstadt, 1997, submitted.

Larry Paulson, Univ. Saarbriicken
Formal Proofs about Cryptographic Protocols

15

Security protocols are formally specified in terms of traces, which may
involve many interleaved protocol runs. Traces are defined inductively. Pro-
tocol descriptions model accidental key losses as well as attacks. The model
spy can send spoof messages made up of components decrypted from previous
traffic.

Correctness properties are verified using the proof tool Isabelle/HOL. Sev-
eral symmetric-key protocols have been studied, including Needham-Schroeder,
Yahalom and Otway-Rees. A new attack has been discovered in a variant
of Otway-Rees (already broken by Mao and Boyd). Assertions concerning
secrecy and authenticity have been proved.

The approach rests on a common theory of messages, with three opera-
tors. The operator parts denotes the components of a set of messages. The
operator analz denotes those parts that can be decrypted with known keys.
The operator synth denotes those messages that can be expressed in terms of
given components. The three operators enjoy many algebraic laws that are
invaluable in proofs.

Wolfgang Reif, Univ. Ulm

Theorem Proving in Large Theories

The motivation behind this work is the question: how can formal software
verification benefit directly from automated first-order theorem proving? To
answer the question we used the software verification tool, KIV ([RSS95],
[Rei95], [FRSS95]) as a test environment, and did comparative experiments
with four automated theorem provers as dedicated subsystems for the non-
inductive first-order goals that showed up during proofs of specification-
and program properties. The four provers were Otter ([WOLB92]), Setheo
([GLMS94]), 44P ([BHOS96]) and Spass ([WGR96)).

The challenge for the provers in this application is the large number of
(up to several hundred) axioms in typical software specifications. Both the
success rates and the proof times strongly depend on how good the provers
are able to find out the few relevant axioms that are really needed in the
proofs. We present a reduction technique for this problem. It takes the
axioms of a theory and a theorem and computes a reduced axiom set by
eliminating as many irrelevant axioms as possible. The proof search for the
theorem then is performed in the reduced set. Comparative experiments
with the four automated theorem provers showed that with the reduction
technique they proved more theorems than before, and were faster for those
that could be proved already without reduction.

16

References

[BHOS96]

[FRSS95]

[GLMS94]

[Rei95)

[RSS95]

[WGR96]

[WOLB92

Bernhard Beckert, Reiner Hahnle, Peter Oel, and Martin
Sulzmann. The tableau-based theorem prover J4P, version
4.0. In Michael McRobbie, editor, Proc. 13th CADE, New
Brunswick/NJ, USA, LNCS 1104, pages 303-307. Springer, 1996.

T. FuchB, W. Reif, G. Schellhorn, and K. Stenzel. Three Selected
Case Studies in Verification. In M. Broy and S. Jahnichen, edi-
tors, KORSO: Methods, Languages, and Tools for the Construc-
tion of Correct Software — Final Report. Springer LNCS 1009,
1995.

C. Goller, R. Letz, K. Mayr, and J. Schumann. Setheo v3.2:
Recent developments — system abstract. In A. Bundy, editor,
12th International Conference on Automated Deduction, CADE-
12, Springer LNCS 814. Nancy, France, 1994. for the newest
version of SETHEOQ, see the URL: http: //wwwjessen.informatik.-
tu-muencen.de/forschung /reasoning/setheo.html.

W. Reif. The KIV-approach to Software Verification. In M. Broy
and S. Jahnichen, editors, KORSO: Methods, Languages, and

Tools for the Construction of Correct Software — Final Report.
Springer LNCS 1009, 1995.

W. Reif, G. Schellhorn, and K. Stenzel. Interactive Correctness
Proofs for Software Modules Using KIV. In Tenth Annual Con-

ference on Computer Assurance, IEEE press. NIST, Gaithers-
burg, MD, USA, 1995.

C. Weidenbach, B. Gaede, and G. Rock. Spass & flotter, version
0.42. In 13th International Conference on Automated Deduction,
CADE-13, Springer LNCS, 1996.

L. Wos, R. Overbeek, E. Lusk, and J. Boyle. Automated
Reasoning, Introduction and Applications (2nd ed.). McGraw
Hill, 1992. for the newest version of OTTER, see the URL:
http://www.mcs.anl.gov/home/mccune/ar /otter /#doc.

Piotr Rudnicki, University of Alberta

Maizar - an experimental data base for mathemtics

17

The Mizar project is a long-term effort aimed at developing software to sup-
port a working mathematician in preparing papers. A. Trybulec, the leader
of the project, has designed a language—also called Mizar—for writing for-
mal mathematics. The logical structure of the language is based on a natu-
ral deduction system developed by Jaskowski and the language mimics the
ways traditional mathematics is written. The texts written in the language
are called Mizar articles and are organized into a data base. The Tarski-
Grothendieck set theory forms the basis of doing mathematics in Mizar. The
implemented processor of the language checks the articles for logical consis-
tency and correctness of references to other articles.

Two dacades of experience with Mizar make us believe that the organiza-
tion of the database and development of the authoring language form bigger
challenges for a similar project than increasing the grinding power of the
logical formulae manipulator.

Mizar is a modest trial run for QED: "a project to build a computer
system that effectively represents all important mathematical knowledge and
techniques.”

To learn more about Mizar visit:

http://www.cs.ualberta.ca/ piotr/Mizar, or
http://mizar.uw.bialystok.pl/Mizar/Project.html

Thorsten Schaub, Univ. Saarbriicken

Prolog Technology for Default Reasoning

We show how Prolog technology can be used for efficient implementation of
query answering in default logics. The idea is to translate a default theory
along with query into a Prolog program and a Prolog query such that the
original query belongs to an extension of the default theory iff the Prolog
query is derivable from the Prolog program.

Manfred Schmidt-Schauf}, Univ. Saarbriicken

Deductive Analysis of functional programs

We address the analysis of programs written in a lazy functional program-
ming language, where we focus on using the methods from automated the-
orem proving rather than using a theorem prover. In particular, this is an
investigation of the power of abstract reduction. The idea is simple: Formu-
late the query syntactically, using extra constants like T or L representing all

18

expressions or all undefined expression, respectively. Then reduce the expres-
sions in the query and try to find a representation of all possible reductions.
We prefer to model this as constructing a closed tableau.

The method successfully treats strictness analysis, evaluation context
analysis, termination analysis and equality analysis. Prototype implemen-
tations demonstrate the power of the method.

Peter H. Schmitt, Univ. Saarbriicken

A Tableauz System for linear-time temporal logic

In this talk I present joint work with Jean Goubault-Larrecq. A full version
will appear in the proceedings of TACAS’97.

We consider the propositional logic LT L, for linear time using the modal

operators O (for all following time points) and < (at some later time point).
This logic is strictly weaker than full propositional linear-time logic LT'L
which contains in addition the modal operator o (at the next time point).
The interest in the fragment LT L, comes from the fact that its satisfiability
problem is NP-complete while the satisfiability problem for LT L is PSPACE-
complete.
The tableau calculi known upto know for LTL, e.g. the one given by
P.Wolper, use the usual tableau extension rules and in addition an expensive
test for completed cycles. We present a tableau calculus based on prefixed
formulas that can do without such a test. The formulas appearing in the
tableau are of the following forms:

1. [S,t]Cz,...,Ck
2. [s,00[Cyy...,Ck
3.|OO|C],...,Ck

Here s,t are constants denoting time points. In addition there will appear
inequalities of the form s < t+4n or s <t —n on the tableau. The semantics
relative to a temporal structure S = (IN, <,) is given by:

1. S |: [S,t]Cz,...,Ck =
for all s <14 <t there is some 1 < j < k such that S,i = Cj.

2. SE[s,00[Cy....Che
for all s <4 there is some 1 < j < k such that S,i = Cj.

3. SE|lc|Cyy...,Cre
for infinitely many i S,i = C; A ... A C.

19

Notice the assymmetry between the interval case and the oo-case. We present
a set of invertible rules and closure conditions that consitute a sound. com-
plete and always terminating tbaleau procedure. The set-up is modular in
so far as the expansion part of the tableau procedure is independent of the
closure part. We present in this talk a method for closure that uses a resolu-
tion calculus plus some graph algorithm, whioh checks unsatisfiability of the
set of inequalities accumulated on a given branch.

Helmut Schwichtenberg, Univ. Miinchen

Remarks on Gentzen calculi

It is shown that permutative conversions terminate for the cut-free intuition-
istic Gentzen (i.e. sequent) calculus; this proves a conjecture by Dyckhoff and
Pinto. The main technical tool is a term notation for derivations in Gentzen
calculi. These terms may be seen as A-terms with explicit substitution, where
the latter corresponds to the left introduction rules.

John Slaney, Australian National University

Substructural Modal Logics

This talk outlines the trasditional relevant logic R of Anderson and Bel-
nap and the way that modal operators can be added to it to get systems
which combine relevance with modality. Delicate issues arise, particularly
concerning conservative extension of different versions of such logics. These
observations are not new; the point of the present talk is to use them as
examples to illustrate how complicated it is to combine systems, and thus
to help correct the common over-optimistic impression that mixing logics is
easy.

Bruce Spencer, University of New Brunswick

Two New Restrictions of Resolution

A binary resolution derivation, represented by a binary tree in which each
internal node represents a resolution of its parent clauses followed by zero or
more factoring operations, can be restricted by Tseitin’s well-known regular-
ity restriction. In a regular tree, no two nodes on any branch resolve upon
identical literals. An edge rotation is possible in a tree, similar to an AVL
rotation, if the atom resolved upon in the child node is not merged by the
parent. We call a tree minimal if it remains regular after any sequence of

20

rotations. Although there may be exponentially many sequences, we give a
linear time algorithm to tell if two minimal trees will combine to form a mini-
mal tree. Furthermore the rank/activity restriction is introduced which may
deactivate some literals within a clause, making them unavailable for fur-
ther resolutions. The combination of minimality and rank/activity preserves
completeness.

Shinobu Takamatsu, Osaka Sangyo University

First-Order Logic Based Situational and Dynamic
Interpretation of Natural Language Descriptions in Hardware
Design Specifications

For verification, synthesis and design of hardware systems, various formal
specification languages have been used in a combined form, which are tem-
poral logics, finite state machine languages, data flow graphs and hardware
description languages. Furthermore, informal natural language expressions
are used for the unified descriptions of time, action, state transition and
causality, and for the abstract descriptions such as functions and hierarchy
of devices. We propose a method for situational and dynamic interpretation
of natural language descriptions as well as formal language ones in hard-
ware design specifications. Natural language expressions are formulated by
the multi-modal predicate logic integrating logics of time, action, causality
and conditional. The semantics of the logic is given by first -order logic for-
malization based on verification-conditional and situational semantics. We
present the methods for transformation of natural language expressions to
the first-order logical formulas through the multi- modal logical ones, and
for description of the rules on modality, device action, register transfer and
control state transition by the first-order logic. A method for dynamic in-
terpretation using belief revision is given which is based on the inference
mechanism of the first-order logic and is reinforced with default reasoning
and meta level reasoning. The above processing system is implemented by
Prolog language.

Andrei Voronkov, Uppsala University
Herbrand’s Theorem and Equational Reasoning
Recently, a number of new results were proved in the area of equational rea-

soning for the connection and the tableau methods. We overview these results
and their relation to problems in mathematical logic related to Herbrand’s

21

theorem and intuitionistic provability. Many of these new results can be for-

mulated as statements about (fragments of) simultaneous rigid E-unification
(SREU).
In the talk we discuss

1. Herbrand’s theorem for equational reasoning and SREU.
2. SREU and second-order unification.

3. The undecidability of SREU.

4. SREU and (tree) automata.

5. The monadic case of SREU.

6. Decidable special cases of SREU.

The results discussed in the talk were obtained by J. Gallier, A. Degtyarev,
Yu. Gurevich, Yu. Matiyasevich, P. Narendran, D. Plaisted, M. Veanes and
the speaker.

Christoph Weidenbach, MPI Saarbriicken
The Role of Abstraction in Automated Theorem Proving

We propose a variant of ordered resolution with semantic restrictions based
on interpretations which are identified by the given atom ordering and se-
lection function. Techniques for effectively approximating validity in these
interpretations are presented. We (dynamically) abstract the given clause set
into a decidable fragment of first-order logic. The models of this fragment
approximate the interpretations of the original clause set, such that neces-
sary inferences can be selected and redundant clauses can be detected. The
framework is shown to be strictly more general than certain previously intro-
duced approaches. Implementation of our techniques in the SPASS prover
has lead to encouraging experimental results.

Akihiro Yamamoto, TH Darmstadt

FExtensions of Deductive Logic Programming for Inductive
Logic Programming

22

In this talk we define declarative and procedural semantics for arbitrary
clausal theories, where a clausal theory is a conjunction of clauses. The
declarative semantics for a clausal theory is a set of ground literals which
are logical consequences of the theory. Muggleton used the set without
noticing that it can be regarded as a declarative semantics for the theory.
The procedural semantics is called SB-derivation, which was originally called
C-derivation by Plotkin. We show that the relation between the two se-
mantics is quite similar to the one between the least Herbrand model and
SLD-resolution for definite logic programs. The relation characterizes Mug-
gleton’s inverse entailment with Plotkin’s relative subsumption. We also
show that the declarative semantics for a conjunction of a definite program
and a goal has a special structure, and it can be generated by the combina-
tion of SOLD-derivation and bottom-up evaluation of the definite program.
SOLD-derivation is an extension of SLD-resolution by adding the skip opera-
tor proposed by Inoue. Our results highlights a difference between abduction
and induction.

3 Panel: How to get Automated Deduction
out of its corner

A panel under this topic was held Tuesday, 25. Febr. 96, with panelists Wolf-
gang Bibel (Chair), Ryuzo Hasegawa, Deepak Kapur, Wolfgang Kiichlin, and
Mark Stickel. The title was meant to reflect the contrast between the field’s
amazing successes and its standing within the scientific community and the
public.

In the lively discussion a healthy self-confidence was exhibited by pointing
to numerous successes which have been achieved in the past, successes which
range from an unprecedented growth of the accumulated body of knowledge
over the automatic discovery of a proof for the longstanding open problem
by Robbins (positively noted even in an article of the New York Times)
to everyday use of deductive systems in the hardware (and increasingly also
software) community. Areas with a promising potential for applications men-
tioned were mathematics (proof checking/finding), synthesis and verification
of hardware and software, safety technology (protokolls), natural language
understanding, planning, and so forth. Even in these times of severe money
shortage a sense of optimism could be felt in almost all of the contributions.

Wolfgang Bibel

23

