
Contents

Davide Ancona
An Algebraic Approach to Mixins and Modularity . 2

David Basin
Verification Based on Monadic Logic . 3

Don Batory
The Jakarta Project . 3

Michel Bidoit
If Refinement is The Key, Where is The Key to Refinement? 4

Egon Börger
Industrial Use of ASMs for System Documentation
A Case Study: The Production Cell Control Program . 5

Ruth Breu
A Loose Approach to OOA Techniques . 7

Bettina Buth
Combining Tools for the Verfication of a Fault-Tolerant System 8

Christine Choppy
Reverse Engineering for Fortran Code Using Algebraic Specifications 9

Felix Cornelius
Classification and Integration of Formal Specifications for
Distributed Systems . 10

Jorge R. Cuellar
Combining FOL and ω–Automata Methods —
A Large Industrial Application .11

Grit Denker
Communication of Distributed Objects: A Temporal Logic Approach12

Arie van Deursen
Origin Tracking and Software Renovation .12

i

Theodosis Dimitrakos
Modularisation, Craig-Robinson-Interpolation, and
the Validation and Construction of Refinements . 13

Radu Grosu
Reconciling Real-Time with Asynchronous Message Passing 15

Maritta Heisel
Making Formal Techniques Applicable for Non-Experts:
Agendas and Strategies . 15

James Hook
Domain Specific Specification Languages or:
Captain Hook Visits the Telephone Company . 16

Richard Jüllig
Specware: Support for Formal System Development . 17

Alexander Knapp
A Formal Approach to Object-Oriented Software Engineering 18

Ulrike Lechner
Object-Oriented Specification of Distributed Systems —
Specification Style and Method . 19

Michel Lemoine
(Semi-)Automatic Test Generation from Rigorous Specifications 19

Christian Lengauer
Regularity =⇒ Parallelism .20

Jacques Loeckx
Hierarchical Constructive Specifications . 21

Antonia Lopes
k2 (Refinement morphism = Component morphism) 22

Tom Maibaum
Boiled and Steamed Colimits

Alfio Martini
Shedding New Light in the World of Logical Systems . 23

ii

Annabelle McIver
Probabilistic Temporal Logic . 24

Peter Ölveczky
Specifying the Boiler in Timed Rewriting Logic . 25

Peter Päppinghaus
Industrial Use of ASMs for System Documentation . 26

Gianna Reggio
A Graphic Notation for Formal Specification of Dynamic Systems26

Peter Y. A. Ryan
Applying Formal Methods to Security Protocols . 27

Wolfram Schulte
A Formal Object-Oriented Method Inspired by Fusion and Object–Z 29

Graeme Smith
Integrating Object–Z and CSP . 29

Karl Stroetmann
Using Formal Methods for the Validation of Prolog Programs 30

Markus Wolf
Another Look at Localities and Failures in the π–Calculus, or:
Everything May Fail .31

iii

Preface

The Seminar “Logic for Systems Engineering”, held at Schloß Dagstuhl dur-
ing March 3–7, 1997, was a successor of the Dagstuhl Seminars “Logical
Theory for Program Construction” in 1991 and 19941 The slightly modified
title is intended to stress that program development methods must be inte-
grated in a general software development method, if they are to be applicable
in practice.

The importance of formal methods for the development of correct software
is now generally recognized. A few “realistic” case studies have meanwhile
been carried out. Moreover, the software industry is increasingly interested
in these methodologies.

Main subjects treated during the Seminar were:

• formal specification methods

• formal object-oriented specification techniques

• integration of formal and “pragmatic” software development techniques

• practical applications of formal specification methods

• reuseability

The Seminar focussed on problems, the solution on which is a prerequisite
for industrial applications.

On behalf of all participants the organizers would like to thank the staff of
Schloß Dagstuhl for providing an excellent environment to the conference.

The Organizers

Stefan Jähnichen Jacques Loeckx Martin Wirsing

Seminar-Reports Nr. 7 and 84 are still available at Dagstuhl office.

1

An Algebraic Approach to
Mixins and Modularity

Davide Ancona

Universitá di Genova

I will present a kernel modular language, called MIX(FL), supporting the
notion of mixin module. A mixin is a module which contains deferred com-
ponents, i.e. components to be imported from another module; a binary and
commutative operator of merge allows to associate deferred components of
one mixin with the corresponding definitions (if any) of the other. In this
way, mixins allow recursive definitions to span module boundaries. MIX(FL)
is a very simple typed module language, supporting separate compilation and
providing a set of constants which are mixin definitions (collections of type
and function declarations and definitions) and five operators for mixins ma-
nipulation (merge, freeze, restrict, hide and rename). Hide and rename are
standard operators, whereas freeze and restrict allow to deal with virtual
components and redefinition of them by means of overriding. These five
operators can be expressed by the combination of three primitive and pow-
erful operations (primitive merge, reduct and primitive freeze). The denota-
tional semantics of the module language is based on an algebraic approach
(i.e. module = algebra, interface = algebraic signature). What is more,
the semantics is parametric in (the semantics of) the core language; this
is suggested by the notation MIX(FL), where FL can be replaced by other
languages.

2

Verification Based on
Monadic Second-Order Logic

David Basin

Universität Freiburg
(Joint work with Nils Klarlund, AT&T Bell Labs)

We present show how WS2S (the weak monadic theory of two successors)
provides a language for specifying many kinds of problems in hardware and
distributed computing. We report on experience with a verification tool
based on WS2S, which implements validity checking/counter-model genera-
tion based on a reduction of formulas to canonical automata.

The decision problem for WS2S is non-elementary decidable and thus un-
likely to be usable in practice. However, we have used our implementation to
automatically verify, or find errors in, a number of circuits studied in the lit-
erature. Previously published machine proofs of the same circuits are based
on deduction and may involve substantial interaction with the user. More-
over, our approach is orders of magnitude faster for the examples considered.
We show why the underlying computations are feasible and how the tool we
use generalizes standard BDD-based hardware reasoning.

The Jakarta Project

Don Batory

University of Texas, Austin

Jakarta is a tool suite for building GenVoca generators — software generators
that synthesize applications through component composition. Jakarta pro-
vides an extensible version of Java, which supports metaprogramming, i.e.,
constructs to create, parameterize, instantiate, and manipulate programs as
abstract syntax trees. The core of the suite is Bali, a GenVoca generator
of compilers: customized versions of the Java language and its compiler are

3

synthesized through component composition. Each Bali component encap-
sulates a primitive extension to Java, which might be a new programming
construct (e.g., templates) or a sophisticated domain-specific GenVoca gen-
erator.

If Refinement is The Key,
Where is The Key to Refinement?

Michel Bidoit

LSV, CNRS & ENS de Cachan
(Joint work with Rolf Hennicker, Ludwig–Maximilians–Universität

München)

We introduce a concept of behavioural implementation for algebraic specifi-
cations which is based on an indistinguishability relation (called behavioural
equality). The central objective of this work is the investigation of proof rules
that first allow us to establish the correctness of behavioural implementations
in a modular (and stepwise) way and, moreover, are practicable enough to in-
duce proof obligations that can be discharged with existing theorem provers.
Under certain conditions our proof technique can also be applied for prov-
ing the correctness of implementations based on an abstraction equivalence
between algebras in the sense of Sannella and Tarlecki. The whole approach
is presented in the framework of total algebras and of first-order logic with
equality.

4

Industrial Use of ASMs for

System Documentation

A Case Study:
The Production Cell Control Program

Egon Börger

Università di Pisa

Abstract State Machines (alias evolving algebras as defined by Y. Gurevich)
have been used to specify languages (e.g. Prolog, C++, VHDL) and architec-
tures (e.g. PVM, APE100, Transputer, DLX), to validate standard language
implementations (e.g. of Prolog, Occam), to verify numerous distributed and
real-time protocols, etc.. See [2] for a recent survey and general discussion
of the approach.

In this talk, we explain the use the software designer can make of ASMs
for a systematic modular development of well documented programs. We
exemplify the method by an ASM solution of the production cell control
problem (posed in the case study book Formal Development of Reactive Sys-
tems edited by C. Lewerentz and T. Lindner, Springer LNCS 891, 1995).

As starting point we present the ground model which faithfully reflects the
production cell as informally specified by C. Lewerentz and T. Lindner op. cit.
We explain how the information hiding and abstraction mechanisms of ASMs
allow the designer to formulate the ground model as an appropriate interface
to the customer; this provides a possibility to discuss and negotiate with the
customer, in rigorous yet simple terms of traditional mathematical language,
so that one can come to a common understanding of the contract (i.e. of what
the informal description really means) and of the conditions on its being met
eventually by the algorithmic design. The modularity capabilities of ASMs
are used to reflect in a direct way the distributed nature of the production
cell.

Starting from this abstract model of the system we define a series of refined
models all the way to executable C++ code (which controls successfully the
production cell simulation environment, running at FZI Karlsruhe). The
ability of ASMs to reflect arbitrary abstraction levels facilitates the modular

5

development of different components and a transparent definition of precise
interfaces through which these components are put together in a distributed
environment. The mathematical relations between the various models allow
us to prove the required properties of the system (safety, liveness etc.) at
appropriate abstraction levels. These proofs are given in ordinary mathemat-
ical terms, as used by engineers; they are nevertheless amenable, where this
is considered to be necessary for safety-critical reasons, to mechanization in
machine based proof environments like PVS. K. Winter from GMD Berlin is
working on a model checking verification of our proofs.

The hierarchy of refined models, together with the proofs relating the dif-
ferent levels, constitute a full documentation of the whole design and make
the executable code amenable to rigorous inspection. This approach, which
combines modular development with controlled stepwise refinement includ-
ing optimizations, provides also an economical way to achieve extendability
and modifiability for the design of complex systems in a context where cost
effective maintenance of the final product is a crucial issue.

The work on the production cell is joint work with my student Luca Mearelli;
for a draft version see [3], a revised version which contains also the model
checking work on our specification done by K. Winter is in preparation. For
another case study which exemplifies this approach to the design of well
documented and formally inspectable code see [1].

References

[1] Christoph Beierle, Egon Börger, Igor D- urd-anović, Uwe Glässer, and
Elvinia Riccobene, An Evolving Algebra Solution to the Steam-Boiler
Control Specification Problem. In: Jean Raymond Abrial, Egon Börger,
and Hans Langmaack (Eds.), The Steam-Boiler Case Study Book,
Springer LNCS 1996 (to appear)

[2] E. Börger, Why use of evolving algebras for hardware and software engi-
neering. In: M. Bartosek, J. Staudek, J. Wiedermann (Eds), SOFSEM’95
22nd Seminar on Current Trends in Theory and Practice of Informatics,
Springer Lecture Notes In Computer Science, vol. 1012, 1995, pp. 236–
271.

6

[3] Luca Mearelli, An evolving algebra model of the production cell. Tesi di
laurea, Dipartimento di Informatica, Università di Pisa, February 1996.

A Loose Approach to OOA Techniques

Ruth Breu

Technische Universität München

Object oriented analysis techniques like UML, OMT or OOSE integrate de-
scription techniques of various application domains that have been success-
fully applied for years in practice like Entity/Relationship diagrams and state
transition diagrams. However, the integration in the context of objects is only
ad-hoc. Many concepts lack of an exact interpretation and the interrelations
between the different description techniques remain unclear.

The presented formal foundation aims to overcome these deficiencies by pro-
viding an integrated system view. The system to be developed is modelled
abstractly by a notion of system models describing the static and dynamic
properties of objects. In particular, the dynamic evolution of a system of
objects is described by the concept of life cycles. The approach is based on
the ideas of loose modeling. This means that the abstract view of a system
is open for later extensions and modifications and thus is able to cope with
incompleteness issues.

In a second step, the different description techniques are mapped onto this
semantic domain. The overall system view obtained is the basis for studying
interrelations between different description techniques and refinement con-
cepts. The description techniques considered are class diagrams for modeling
the static structure of a system, sequence diagrams for modeling exemplary
object behaviour and state transition diagrams for modeling complete object
behaviour.

7

Combining Tools for the Verification of a
Fault-Tolerant System

Bettina Buth, Rachel Cardell-Oliver, Jan Peleska

Universität Bremen

The formal methods developed over the last decades have been advertised
as a means for improving software quality in general and for increasing con-
fidence in safety critical software in particular. Nevertheless, the impact of
formal methods on industrial software development is minimal. Many rea-
sons are given for this, including their unsuitability for the development of
large systems (scalability), the dependence on trained staff to apply formal
methods, and the lack of tool support for their application.

In order to complement these efforts it is necessary to gain experience with
the methods by applying them to exemplary but realistic applications in
industrial projects. The aim here is not to support the overall development,
but rather to identify crucial components and phases where the effort is
justifiable.

One of our interest here is the investigation of software development ap-
proaches with respect to verification support. The starting point for this
research is a case study on the design of a fault-tolerant computer system
presented by Peleska. The development in this example is based on an invent-
and-verify paradigm, where the design steps are refinements of CSP specifi-
cations and processes. Peleska has presented a formal theory to justify the
links between the different phases of the development method and provided
sketches for the proofs involved. In order to provide verification support for
the proof obligations arising we employ a combination of tools:

• HOL for the verification of generic theories, which are used for the
refinement of sat-relations,

• PAMELA+PVS for the verification of invariant properties arising for
the proofs that concrete processes satisfy given specification,

• FDR for checking the refinement of processes.

8

Each of the tools is used in a specific phase of the development, but there
is no direct interaction between the tools. This allows to choose freely from
the tools available.

Reverse Engineering of Fortran Code
Using Algebraic Specifications

Sophie Cherki], Christine Choppy]]

]Université Paris-Sud,]]Université Nantes

This talk describes an experience in trying to help maintaining existing For-
tran 77 code of a large industrial application. Our approach is to start with
reverse engineering this code using algebraic specifications to provide an ab-
stract description of its functionalities. This implies an active reading of the
code (together with the comments in the code) which lead us to find out
interesting bugs and anomalies.

The resulting algebraic specification consists in a graph of specification mod-
ules; the axioms may be first order formulae, but we mainly used conditional
equations. The code of this application is structured in such a way that,
most of the time, a module implements a few functionalities. The structure
of the algebraic specification reflects this code structure.

The key issues are to find out the signatures and the axioms for the speci-
fication modules. Fortran 77 exhibits only predefined types and anonymous
array types. As a consequence, extracting the signature of a specification
associated to a Fortran module raises various difficulties and we present how
to overcome them. Extracting the specification axioms is achieved by means
of identifying unit actions within the code, composing their associated equa-
tions, and simplifying the - rather unreadable - resulting expression in order
to obtain axioms that are easier to read (this last step requires the use of
theorem proving).

The resulting specification may serve both as a precise documentation, and
as a basis for the development of the new version of the code, where both
useless code, anomalies and bugs are removed.

9

Classification and Integration of

Formal Specifications for
Distributed Systems

Felix Cornelius

Technische Universität Berlin

A semantic unifying framework is presented aiming at providing a target
for the main aspects covered by existing formal specification languages for
‘dynamic’ systems. It consists of five levels:

DATAS I Languages Algebras
RELS II Data States Relations
TRANS III D.S. Transformations Relations/Functions
PROC IV Processes Interface Sets/LTS’s
ARCH V Architectures Hyper-graphs

Each level is given by a set, inter-relations are expressed by appropriate
mappings. The three most important mappings are:

1. Datas : Rs(P) → P(R(P))

For each reactive state rs ∈ Rs(P) (the set of states in the labeled
transition system describing P) there is a set Datas(rs) of data states
in level II.

2. transform : (→
≖
) → TRANS

For each transition t in the Labeled Transition System of a process
there is a corresponding transformation on the underlying data state.

3. zoom-in : Nd(N) → (ARCH ∪ PROC)

Each node in the hyper-graph of a distributed process in ARCH cor-
responds to a “lower level” process, be it an atomic process in PROC,
be it another distributed process in ARCH.

This five level semantic framework is intended to provide a pool, an additional
rôle-oriented semantics for arbitrary specification documents. Hence, it is a
structured integration platform for partial specifications.

10

Combining FOL and ω-Automata Methods —
A Large Industrial Application

Jorge R Cuellar

Siemens AG, München

If you were an civil engineer, trying to apply mathematical methods (general
math. methods, control theory, integral operators, PDE’s, linear algebra) to
solve a real life problem, perhaps you will start at a high abstraction level
and go down the ladder to a very concrete setting where you are left with
solving eigenvalue problems for matrices or with other forms of calculations.

On the example of a large industrial example, the author suggests that this
is also possible in the world of Formal Methods. You may safely combine the
methods of Gurevich, Lamport, Pnueli, Cousot-Cousot, Wonham, and many
others.

For many reasons (synthesis, controllability, I/O, etc.) it is not too reason-
able to restrict yourself to only one method. You may start with Evolving
Algebras (ASM’s), but at a certain point it is reasonable to restrict yourself
to, say, TLA or LTL and then further to FOL and later to an intuitionistic
setting or to S1S to compile your implementation.

In our example the idea is first to represent the system as restrictions on the
sequences of events (typically as automata) and events as transition relations
on (auxiliary) variables. These relations are given as the conjunction of a set
of FOL-constraints. Later, ideas of abstract interpretation are used for the
purpose of compilation.

11

Communication of Distributed Objects:
A Temporal Logic Approach

Grit Denker

Technische Universität Braunschweig
(Joint work with Hans-Dieter Ehrich)

We present fundamentals of an approach to object oriented specification of
distributed systems. In contrast to most of the work existing in this field
about network of processors, hardware, etc., our concern is the high-level
specification of distributed systems. We do not assume global time for con-
current object systems. For specifying such systems we propose DTL, a
distributed temporal logic. The main contribution is that DTL is capable
of specifying complex constraints about the behavior of concurrent systems
without explicitely talking about concurrency. In particular, we introduce
different kinds of synchronous communication in distributed systems such as
deferred and immediate call, and deferred and immediate execution. The
ideas are illustrated by examples given in TROLL, a formal object oriented
specification language.

Origin Tracking and Software Renovation

Arie van Deursen

CWI Amsterdam

Legacy systems are software systems that resist change. Software renova-
tion is an activity aiming at improving legacy systems such that become
more adaptable, or at actually carrying out required mass modifications. A
typical renovation is the year-2000 problem. Tools for carrying out year-
2000 conversions look for initial date infections (seeds, such as suspicious
keywords), propagate these through MOVEs and CALLs, try to reduce the
number of infections found, and then (semi)-automatically modify the code
using a widening or windowing approach.

12

Of great importance for year-2000 conversions and software renovation is an
accurate data flow analysis tool that can be easily connected to all source lan-
guages used in the system to be renovated. In the context of the ASF+SDF
formalism, the DHAL Data Flow High Abstraction Language has been pro-
posed. Languages are easily mapped to DHAL and on top of DHAL several
elementary data flow operations such as goto elimination and alias propaga-
tion have been defined.

Origin tracking is a general technique concerned with linking back analysis
results, obtained for example from DHAL operations to the original source
code. For transformations expressed in a functional style (using, e.g., term
rewriting), origin information can be maintained automatically. For each
reduction, origin annotations in the reduct are constructed in a way that
depends on the form of the rewrite rule applied. We discuss several ap-
proaches (syntax-directed, common subterms, collapse-variables, any-to-top,
non-linear rules), as well as their use in typical specifications occurring in a
renovation setting.

Modularisation,

Craig-Robinson Interpolation and

the Validation and Construction of
Refinements

Theodosis Dimitrakos

Imperial College, London

The encapsulation of specification refinement in terms of implementation
steps (‘canonic-steps’) has been matured, within the last 15 years, as a
‘logical/proof-theoretic’ counterpart of the ‘algebraic/semantical’ approach
to (formal) specification refinement. One contribution of this approach to
refinement is establishment of a close relation between the compossibility of
refinements (modularisation) and some interpolation properties of the under-
lying formalism.

13

In this talk I present a straightforward generalisation of th an implemen-
tation step to an arbitrary Entailment System (alias: π-Institution) which
is then followed by analogous generalisation of the Craig-Robinson Interpo-
lation (CRI) property. CRI can be viewed as a combination of Robinson’s
Consistency Theorem with Craig Interpolation Lemma and turns out to be
similar to what is sometimes called ‘Splitting Interpolation’. Modularisation,
in this framework, is shown to coincide with the preservation under pushouts
of a (closed under composition) class of faithful theory interpretations. The
existence of Craig-Robinson Interpolants consequently shown to be a neces-
sary and sufficient condition for the preservation of faithful (conservative)
theory morphisms under pushouts and, therefore, a necessary and sufficient
condition for the general case of Modularisation.

The Uniform version of Craig-Robinson Interpolation (UCRI) is also shown
to facilitate the computation and mechanical validation of data refinements.
Unfortunately, this particular UCRI is absent from most ‘expressive’ logics
that are currently used. (Classical Propositional & Heyting’s Intuitionistic
Logic have UCRI, but Equational, First Order Classical/Intuitionistic do not
have UCRI).

To compensate for this inadequacy, I present a generic method to extend
conservatively a large class of Entailment Systems with which have some
version of CRI to corresponding Entailment Systems which have a UCRI.
This extension is accompanied by a (mechanisable) method to , validate
and, in some cases, to construct correct refinements.

Refinement on the Entailment System of Classical First Order logic is pre-
sented as a case study. Classical first order logic, has CRI but lacks UCRI.
The extension method results to a weak Second Order entailment which is
conservative over the first order origin and has a adequately strong version of
UCRI. The validation and construction of refinements are, then performed
on the weak Second Order Entailment System (‘development logic’) whereas
the specification takes place in the First Order subentailment (‘specification
logic’).

14

Reconciling Real-Time with
Asynchronous Message Passing

Radu Grosu

Technische Universität München
(Joint work with Manfred Broy, Cornel Klein)

At first sight, real-time and asynchronous message passing like in SDL and
ROOM seem to be incompatible. Indeed these languages fail to model real-
time constraints accurately. In this talk, we show how to reconcile real-time
with asynchronous message passing, by using an assumption which is sup-
ported by every mailing system throughout the world, namely that messages
are time-stamped with their sending and arrival time. This assumption al-
lows us to develop a formalism which is adequate to model and to specify
real-time constraints. The proposed formalism is shown at work on a small
real-time example.

Making Formal Techniques Applicable
for Non-Experts: Agendas and Strategies

Maritta Heisel

Technische Universität Berlin

Using formal techniques in software development may lead to a considerable
gain in product quality because formal techniques make it possible to express
and eventually prove semantic properties of the developed products (e.g.,
specifications, designs, programs, or test cases). A formal method should not
only consist of a formal language with a rigorously defined semantics, but
also include methodological support for its application.

I present two concepts designed to support non-experts in using formal tech-
niques. The first concept of an agenda provides guidance for the application
of formal techniques without the need for machine support. An agenda is a

15

list of activities to be performed when carrying out some task in the context of
software engineering. Each step of an agenda is associated with an expression
of the formalism to be used. Steps may also have associated validation condi-
tions that provide application independent checks of the developed product.
If the context in which a formal technique is to be applied is made sufficiently
precise, agendas can be quite detailed. This is demonstrated by an agenda
for specifying safety-critical software.

The second concept of a strategy aims at a machine supported application
of formal techniques and a partial automation of software development ac-
tivities. Strategies are a generic knowledge representation mechanism for
formally representing knowledge about software development activities (that
may be informally expressed using agendas). Simpler strategies can be com-
bined to more powerful ones with strategicals. Strategies can be represented
in a modular way, which makes them implementable in conventional pro-
gramming languages. An abstract problem solving algorithm and a generic
system architecture provide uniform implementation concepts for systems
supporting strategy-based software development activities. All in all, strate-
gies provide a comprehensive, formalism-independent and flexible framework
for supporting the application of formal techniques by machine.

Agendas and strategies can be used to support various development tasks and
formalisms. Examples are the specification acquisition, design of software
systems using architectural styles, and program synthesis.

Domain Specific Specification Languages or:
Captain Hook Visits the Telephone Company

James Hook

Pacific Software Research Center
Oregon Graduate Institute of Science and Technology

The talk presents a technique for the definition of domain specific languages
in the context of a domain engineering process being applied at Lucent Tech-
nologies/Bell Labs. The talk is in four parts. Chapter 1, in which Captain

16

Hook prepares to hunt the illusive domain-specific language, outlines Soft-
ware Design Automation (SDA), a collection of the techniques for finding
potential specification languages in the workplace and capturing them with
formal definitions. Chapter 2, in which Captain Hook visits the Telephone
Company, outlines Weiss’ domain engineering process, Family Abstraction,
Specification and Translation (FAST), being applied jointly by researchers
and developers at Lucent and discusses experiences to date with the integra-
tion of FAST and SDA. Chapter 3, in which Captain Hook shows his creation
to Gyro Gearloose, presents technical details of the application of monads in
the structure of a software component generator based on a domain specific
language developed using the SDA process. The Talk concludes with Chapter
4, in which Captain Hook dreams of his future visit to the telephone company.
This chapter discusses general and specific opportunities and challenges for
the effective integration of formal methods and engineering practice.

Specware:
Support for Formal System Development

Richard Jüllig

Kestrel Institute, Palo Alto

Specware is an attempt to realize the best of formal methods research in
a software development environment. It represents a synergy of decades of
research in formal specifications—algebraic specification and general logics—
and abstract mathematical theories originally invented for dealing with com-
plex structures—category theory and sheaf theory.

Specware is a tool that supports the modular construction of formal specifi-
cations and the stepwise and componentwise refinement of such specifications
into executable code. Specware may be viewed as a visual interface to an
abstract data type providing a suite of composition and transformation op-
erators for building specifications, refinements, code modules, etc. This view
has been realized in the system by directly implementing the formal founda-
tions of Specware: category theory, sheaf theory, algebraic specification and

17

general logics. The language of category theory results in a highly param-
eterized, robust, and extensible architecture that can scale to system-level
software construction.

Software development in Specware is characterized by two tenets: description
and composition. In Specware, we always deal with descriptions, i.e., a col-
lection of properties, of the artifact that we ultimately wish to build. These
descriptions are progressively refined by adding more properties, until we can
exhibit a model or witness (usually a program) which satisfies these proper-
ties. Descriptions in Specware are written in one of several logics. Specware
handles complexity and scale by providing composition operators which allow
bigger descriptions to be put together from smaller ones. The colimit oper-
ation from category theory is pervasively used for composing structures of
various kinds in Specware. Besides composition operators, one needs book-
keeping facilities and information presentation at various abstraction levels.
Specware uses category theory for bookkeeping and abstraction.

A Formal Approach to
Object-Oriented Software Engineering

Alexander Knapp, Martin Wirsing

Ludwig–Maximilians–Universität München

The goal of this talk is to show how formal specifications can be integrated
into one of the current pragmatic object-oriented software development meth-
ods. Jacobson’s method OOSE (“Object-Oriented Software-Engineering”) is
combined with object-oriented algebraic specifications by extending object
and interaction diagrams with formal annotations. The specifications are
based on Meseguer’s Rewriting Logic and are written in an extension of the
language Maude by process expressions. As a result any such diagram can
be associated with a formal specification, proof obligations ensuring invari-
ant properties can be automatically generated, and the refinement relations
between documents on different abstraction levels can be formally stated and
proved. Finally, we provide a schematic translation of the specification to
Java and thus an automatic generation of an object-oriented implementation.

18

Object-Oriented Specification of

Distributed Systems —
Specification Style and Method

Ulrike Lechner

Universität Passau

The object-oriented specification language Maude has proven itself to be ex-
pressive. However the object model of Maude is very unconventional. We use
alternative specification formalisms, algebraic and coalgebraic specifications
and the µ-calculus to reason about the object model, the properties of Maude
specifications and in particular the properties that are inherited via the set
of object-oriented reuse and structuring concepts developed for Maude.

(Semi-)Automatic Test Generation from
Rigorous Specifications

Marielle Doche, Michel Lemoine, Christel Seguin

ONERA CERT, Toulouse

One of the main problem the industry is faced with is the accuracy of testing
accordingly the specifications that have been built. Indeed it is very common
for industry to subcontract software from informal requirements document
and informal specifications. Moreover because the confidence in the software
it receives back is not high enough, the industry is used to develop some test-
ing specification in a second step, independently of the informal specification
it provided to the subcontractor.

The talk is mainly dedicated to the applicability, at an industrial level, of
some formal methods in a new way, in order to derive test in a (semi) au-
tomatic manner from formal specifications that must be built from some
informal requirements.

19

Starting from an existing design (an Automatic Teller Machine communicat-
ing through a connection line with a Central System) we have developed a
formal Z specification composed of 3 corresponding (semi) independent state
spaces. We then transform each operation (on state space) into a Disjunctive
Normal Form of sub-operations, each one containing only AND-operators.
Each sub-operation is no more than a “Test Class” from which “Test Data”
are classically derived.

Because this 1st step is only able to help the designer to find out independent
“Test Data” it is necessary to complement it with a 2nd formal specification
allowing to specify the dynamic behavior of the system. For that purpose we
have used TRIO, a 1st order logic including some temporal logic capacity. We
then specify some temporal constraints we would like the dynamic behavior
meets. Because TRIO works with a “temporal window” (from Now to “n”
time units in the future or from “n” time units in the past down to “m” time
units in the future) it is possible to derive ALL the “models” (sequences of
assignments of values) that satisfy the temporal constraints.

Combinatorial explosion is avoided because values are restricted to these ones
computed in the 1st step and because the considered “temporal window” is
short enough.

The talk emphasizes as well the usefulness of combining two “compatible”
formal notations, each one providing some accurate ”by product”.

Regularity =↽ Parallelism

Christian Lengauer

Universität Passau

We develop parallel versions of two programs for the polynomial product:

1. A nested loop program. Here, we are employing a geometrical space-
time mapping model, the polytope model, in which nested loop pro-
grams can be parallelized automatically, optimizing some stated ob-
jective function like the number of parallel steps (execution time), the

20

number of processors, the number of communication channels, etc. The
formal techniques employed in this method are linear algebra and lin-
ear programming. We present two parallel programs, each with a linear
time and space complexity.

2. A divide-and-conquer program. Here we are considering a modification
of the space-time mapping model for loop parallelization to obtain a
parallel loop program for Karatcuba’s polynomial product. The reason
to choose divide-and-conquer over nested loops is to achieve a sublinear
time complexity (at the expense of an increased number of processors).

The objective of the presentation is to discuss the strengths and weaknesses
of the space-time mapping approach to the parallelization of loops and re-
currences. Papers on this topic can be obtained on the Web under:

http://www.uni-passau.de/~lengauer/

Hierarchical Constructive Specifications

Jacques Loeckx

Universität Saarbrücken

Constructive specifications have been described in [1]. While their semantics
is defined operationally they may—alternatively—be viewed as initial spec-
ifications satisfying a number of constraints. One of these constraints, the
“termination constraint”, guarantees the existence of a reduction ordering.
This constraint is automatically verified when the operatioins are defined in a
“primitive recursive way”. In other cases it may be difficult to find a suitable
reduction ordering.

Hierarchical constructive specifications are constructive specifications satis-
fying an additional constraint: informally speaking, the different operations
have to be defined “successively”. The goal of this talk is to present a very
simple and intuitive proof method for the verification of the termination

21

constraint of these specifications. The method presents similarities with the
proof method described in [2]. As a difference it is model-oriented rather
than presentation-oriented. Hence, contrasting with the method presented
in [2] it has not been developed as an automatic proof method; on the other
hand, it leads to proofs that are intuitively clear and easy to understand.

References

[1] Loeckx J., Ehrich H.-D., Wolf M. Specification of Abstract Data Types,
Wiley-Teubner, 1996.

[2] Arts Th., Giesl J.. Termination of Constructor Systems, Internal Report
IBN 95/34, Technische Hochschule Darmstadt, 1995.k2 (Refinement morphism =

Component morphism)

Antonia Lopes

University of Lisbon
(Joint work with Jose Luiz Fiadeiro)

When several components are interconnected together to form a complex sys-
tem, the overall behaviour of a system depends on the individual behaviour
of its components.

In general, components are described in terms of the behaviour they ensure
to have in any context and, hence, composition is given by conjunction,
i.e. the properties of a system are given by the conjunction of the properties
of its components. In this case, the system also acts as a refinement of its
components in the sense that all their properties are preserved.

In the action-based approach to systems specification, it is not satisfactory
to describe a system only in terms of the behaviour it ensures to have in any

22

context. Since communication is based on the synchronisation of actions, a
system cannot guarantee to have a liveness property in any context, unless it
makes some assumptions on its environment. An alternative to the assump-
tion commitment style of specification is to consider that systems are also
described in terms of the behaviour they are willing to have when working as
a component of a larger system. In this case, the willingness properties of a
complex system are not given by the conjunction of the willingness properties
of its components and, thus, the notion of refinement does not coincide with
the notion of component of.

We illustrate this approach using a Modal Action Logic to specify the safety
properties that a system ensures to have and the readiness properties (a kind
of required nondeterminism) that a system is willing to have.

Shedding New Light in
the World of Logical Systems

Alfio Martini

Technische Universität Berlin

The notion of an Institution is here taken as the precise formulation for the
notion of a logical system. By using elementary tools from the core of cat-
egory theory, we are able to reveal the underlying mathematical structures
lying “behind” the logical formulation of the satisfaction condition, and by
doing so, to get a both suitable and deeper understanding of the institution
concept. This allows us to systematically approach the problem of describing
and analyzing relations between logical systems, as well as to redesign the
notion of an institution to a purely categorical level, so that the satisfaction
condition becomes a functorial (and natural) transformation from specifica-
tions to (subcategories of) models. This systematic procedure is also applied
to discuss and give a natural description for the notion of an institution mor-
phism. The last technical discussion is a careful and detailed analysis of two
examples, which tries, as an outcome, to outline how the new categorical in-
sights could help in guiding the development of a unifying theory for relations
between logical systems.

23

Accepted for publication in CTCS’97 (Conference on Category Theory in
Computer Science)

Probabilistic Temporal Logic

Annabelle McIver

Oxford University

Various attempts have been made to extend temporal logic to include prob-
abilistic reasoning, with mixed success. For example Feldman and Harel [1]
present a probabilistic dynamic logic which covers probabilistic choice, but
without nondeterminism; and Hart and Sharir [2] construct a probabilistic
propositional logic which deals only with properties that hold with probabil-
ity 1.

Our recent work [5] (following eg Jones [3]) is based on expectations rather
than explicit probability distributions, and its smooth extension of predicate
transformers seems to hold the key to a similar extension of temporal logic,
including both nondeterminism (extending [1]) and ‘proper’ probabilities (ly-
ing strictly between 0 and 1, extending [2]).

In particular the theory of probabilistic predicate transformers [5] leads natu-
rally to a reformulation of Morris’ weakest-precondition-based temporal logic
[4]. By defining appropriate generalisations of the predicate operators (im-
plication, conjunction and disjunction) on the space of expectations, likewise
many of the laws of standard temporal logic generalise also, making for a
practical tool for the calculation of temporal properties and their associated
probabilities.

Finally the interpretation of the ‘probabilistic formulae’ over (probabilistic)
transition systems has lead to some startling insights into the operational
interpretation of (even non-probabilistic) temporal operators, in terms of
games.

24

References

[1] Feldman and Harel, A Probabilistic Dynamic Logic, Journal of Computer
System Sciences 28, 193–215 (1984).

[2] Hart and Sharir, Probabilistic Propositional Temporal Logics, Informa-
tion and Control, 70, 97–155 (1986).

[3] Jones, C. Probabilistic Non-determinism, Doctoral Thesis, 1990.

[4] Morris, J. M. Temporal Predicate Transformers and Fair Termination,
Acta Informatica 27, 287–313 (1990).

[5] Morgan, McIver and Seidel. Probabilistic Predicate Transformers, ACM
Transactions on Programming Languages and Systems, 18, (3) 325–353,
(1996).

Specifying the Boiler in
Timed Rewriting Logic

Peter Ölveczky], Piotr Kosiuczenko]], Martin Wirsing]]

]University of Bergen,]]Ludwig–Maximilians–Universität
München

In this talk crucial parts of our object-oriented algebraic solution of the
steam-boiler specification problem are presented. The solution is written in
Timed Maude. Timed Maude is a specification language under development
where the static parts of the specified system are described by equational
specifications, whereas the behaviour of a process is described by timed term
rewriting. Timed Maude is based on Meseguer’s Maude language, and its
underlying logic is timed rewriting logic, an extension of rewriting logic to
deal with hard real-time systems.

25

Industrial Use of ASMs for
System Documentation

Peter Päppinghaus], Egon Börger]]

]Siemens AG,]]Università di Pisa

We report on ongoing work using ASMs to document the basic functionality
of an existing large software system implemented in C++. The software to be
documented is the toolset TRANSIT (TRain ANalysis and SImulation Tool
set) developed and used at Siemens for the simulation of railway systems
(cf. SIGNAL + DRAHT (88) 3/96).

The system consists of several components communicating with each other
by a message passing mechanism. One of the goals of the work is to specify
these components on a level of abstraction appropriate to express constraints
about this interaction, which currently are not made explicit.

A Graphic Notation for
Formal Specification of Dynamic Systems

Gianna Reggio

Università di Genova

Given an already established formal specification method for reactive sys-
tems, we develop an alternative graphic notation for its specifications to im-
prove the writing and the understanding of such specifications and, hopefully,
the acceptance of the method by industrial users.

26

Applying Formal Methods to
Security Protocols

Peter Y. A. Ryan

DRA Malvern

We present an overview of the aims and key results of a 3 year research pro-
gramme on the application of ”mainstream” formal methods to the analysis
and design of security protocols. By ”security protocol” we mean a prescribed
interaction between nodes of a distributed network that uses cryptographic
mechanisms such as encryption, hashing, digital signatures etc to achieve
certain security requirements. These can include:

• Authentication

• Confidentiality

• Key-exchange

• Integrity

• Anonymity

• Non-repudiation

The attraction of such protocols from the point of view of formal analysis
is that they are very compact yet have to satisfy subtle properties in a hos-
tile environment. They are, in Roger Needham’s phrase: “typically 3 lines
programmes that people still succeed in getting wrong”.

The main thrust of the programme has been the use of CSP to formalise
the network, the nodes, and the hostile agent(s). The security properties
can also be elegantly formalised in CSP and then refinement checks can be
conducted to establish whether or not the system refines the property in
question. These checks are conducted in a highly automated fashion using
the CSP model-checker FDR. If the check fails, FDR returns a counter-
example that in effect details an attack on the protocol. The model-checker
operates by exhaustively checking all (essentially distinct) behaviours of the
two processes.

27

Once the specification has been established the approach is thus highly au-
tomated. Considerable ingenuity may be required of course to compress the
models to keep the state space size small enough for model-checking to work
whilst ensuring that no significant behaviours are lost.

The effectiveness of this approach has been demonstrated by, for example,
the finding of a number of novel attacks on well-known protocols, most no-
tably Lowe’s uncovering of an attack on the Needham-Schroeder Public-key
protocol. This protocol had previously been considered to be secure since
it’s publication some 17 years earlier and indeed had been “proven” secure
using the BAN-logic.

The application of the concepts and of the concepts and techniques to other
areas such as safety-critical and fault-tolerant systems is also outlined. For
example the concept of non-interference used in security to formalise the ab-
sence of information flow can be adapted the weaker notion of non-disruption
that neatly formalises the concept of fault resilience.

In summary: it has been shown that:

• security protocols are a very fruitful application area for formal meth-
ods,

• Model-checking techniques can be highly effective,

• formal methods can yield valuable results at reasonable cost as long as
the application is chosen carefully and tools and techniques are suitably
matched.

28

A Formal Object-Oriented Method
Inspired by Fusion and Object–Z

Wolfram Schulte

Universität Ulm

We present a new formal OO method, called Fox, which is a synergetic com-
bination of the semi-formal Fusion method and the formal specification lan-
guage Object–Z. To manage complexity and to foster seperation of concerns,
Fox distinguishes between analysis and design. In each phase structure and
behaviour specifications are developed step-by-step. The specifications may
be graphical or textual. We give proof obligations to guarantee that the de-
veloped models are formally consistent and complete, and that the resulting
system conforms to the original specification. By walking through a simple
example—a graph editor—we illustrate the application of Fox.

Integrating Object–Z and CSP

Graeme Smith

Technische Universität Berlin

While most specification languages can be used to specify entire systems, few,
if any, are particularly suited to modelling all aspects of such systems. The
formal development of particularly large, or complex, systems can, therefore,
often be facilited by the use of more than one formal specification language.

This talk presents a method of formally specifying concurrent systems us-
ing the object-oriented state-based specification language Object–Z together
with CSP. The rationale is that Object–Z provides a convenient method of
modelling the complex data structures needed to define component processes,
and CSP enables the concise specification of process interaction. The advan-
tage of Object–Z over more traditional state-based languages such as Z is that
its class structure provides a construct easily identifiable with CSP processes.
The basis of the integration is a semantics of Object–Z classes identical to

29

that of CSP processes. This enables classes specified in Object–Z to be used
directly within the CSP part of the specification.

The approach uses the exisiting languages without altering their syntax or
semantics. This makes it accessible to users who are already familiar with
the languages and also enables the use of tools and methods of verification
and refinement developed for them.

Using Formal Methods for the
Validation of Prolog Programs

Karl Stroetmann

Siemens AG
(Joint work with Thomas Glaß and Martin Müller)

So far, attempts to apply formal methods for the verification of software had
only a very limited success. This is mainly due to the excessive costs associ-
ated with interactive formal proofs. The situation is different in those areas
where automatic proof systems can be applied, e.g. in hardware verification.
It is therefore argued that in order to apply formal methods we should shift
our attention from verification to validation and apply automated theorem
proving to the static analysis of software.

This idea is demonstrated with the programming language Prolog. To this
end, Prolog is extended with a type system. Furthermore, a new declar-
ative semantics that describes the effects of the cut operator faithfully is
introduced. Using this semantics it is possible to check the completeness
and consistency of a Prolog program with the help of an automatic theorem
prover. The industrial evaluation of this idea has shown that this approach
does increase the quality of software dramatically without increasing its cost.

30

Another Look at Localities and Failures
in the π-Calculus or: Everything May Fail

Markus Wolf

Universität Saarbrücken

In 1994 Amadio and Prasad introduced an extension of the π-calculus for han-
dling located processes, channels and failure of locations, [1]. This seemed to
be an interesting setting to study mobile objects. Unfortunately, the calculus
assumes one permanent or non-failing location which does not correspond to
the intuition that every location may fail. While removing the assumption
and trying to model a mobile process it turned out that it is not possible
to model mobility that is robust under failure of the original location of a
process. However, it is easy to model the situation adequately if one moves
to a higher-order version of the located π-calculus. This seems to contradict
Sangiorgi’s result [2] that every process of the higher-order π-calculus can be
compiled to a process of normal π-calculus exhibiting essentially the same be-
haviour. Using Sangiorgi compilation on a mobile process in the higher-order
located setting yields essentially the mobile process in the first-order located
setting which is bot robust under failure. Hence a notion of bisimulation, as
for example in [1], which does not observe failed locations would distinguish
the two processes.

References

[1] R. Amadio, S. Prasad. Localities and Failures. In P. S. Thiagarajan (ed.),
Proc. 14th Conf. Foundations of Software Technology and Theoretical
Computer Science (LNCS 880). Springer, Berlin, 1994, pp. 205–216.

[2] Davide Sangiorgi. Expressing Mobility in Process Algebras: First-Order
and Higher-Order Paradigms. PhD Thesis, University of Edinburgh, 1992.

31

